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Abstract
This paper shows how the current state of the art
in image classification performs on LEGO bricks.
Currently the standard image classification models
with deep learning are single label image classi-
fiers. In this paper we will convert them to work on
multi-label images and subsequently evaluate how
well they perform. We show how well the classi-
fiers will work on three different types of datasets.
Experiments will be conducted on these three types
of datasets to compare the performance of three dif-
ferent multi-label image classifiers. The main re-
search question accompanying this paper is “How
well does the state of the art in image classifica-
tion work on LEGO bricks?”. Three subquestions
are set up to answer this question. The first will
regard the existence of the image classifiers. The
second subquestion will regard how big the influ-
ence is of real life aspects, such as deterioration of
the LEGO bricks. The final subquestion will be
about the performance on the datasets. After an-
swering these questions and conducting the experi-
ments, we came to the conclusion that the ResNext
model performed the best on almost all of the cate-
gories. Based on the numbers of the results we can
also conclude that the models should perform well
with multi-label images of LEGO bricks.

1 Introduction
Image classification is a fundamental problem when it comes
down to computer vision [14]. Other computer vision tasks
such as object detection and localization heavily depend on
image classification as it forms their basis [21]. Currently
there are many image classification models making use of
deep learning. Deep learning is the process in which train-
ing data, which is similar to another problem, is given to the
system. The goal is to train the system automatically so that it
can solve future problems without needing any extra informa-
tion [17]. There are multiple settings when it comes to deep
learning for image classification, these are single label clas-
sification and multi-label classification for example. When
given an image of a cat, it is the task of the single label image
classifier to return the result “cat”. However, when a picture

Evaluation of an image

Figure 1: The process of evaluating an image with ResNet repre-
senting a trained model.

with multiple objects in it is presented for a multi-label im-
age classifier, the classifier should return every object that is
present in the image. Great success has been achieved within
the field of single label image classification [25], however,
multi-label classification still seems to be quite the challenge
[30].

An interesting application for this multi-label image clas-
sification is on LEGO bricks. The reason is that not only can
this be applied on real world situations but also due to the
fact that this research can be taken as a basis for other re-
search. In the real world for example, there are companies
that scan satellite images for cars to predict serveral things
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such mall sales [19]. We will be researching three of the top
image classifiers on a set of LEGO bricks. The problem will
be as follows. The models will be fed images which have
up to thirteen of those LEGO bricks in it. The images will
be process and at the end, the model will have to return the
subset of bricks present in the image. An example of the in-
put and output can be found in figure 1This will be done for
three different types of datasets. One is a real dataset and the
other two are synthetic datasets. The real dataset will be im-
ages which are taken by hand with a camera. The synthetic
datasets will be divided into a dataset which is generated with
a modeling program while the other will be created by cut-
ting LEGO bricks from real images and pasting it on random
backgrounds. The former we will refer to as the synthetic
dataset while the latter we will refer to as the cut and paste
dataset. With these results we will be able to evaluate the
performances of the modified multi-label image classifiers.

We will research how good the current state of the art in im-
age classification works on LEGO bricks. To this end, three
subquestions have been set up to help answer the main ques-
tion. The first research question is “What image classifiers
currently exist?”. Currently there are many image classifiers
available on the official website of PyTorch, however, due to
time constraints, only three image classification models will
be chosen for this research. The three chosen ones will be the
top three available on their website. The second subquestion
will be, “How well does real data perform against synthetic
and cut and paste data?”. This will be done by comparing
the results of the different datasets. The final subquestion is
“How well does a model perform when it is trained on syn-
thetic or cut and paste data and evaluated on real data?”.

The main contribution of this paper will be the analysis and
modification of different multi-label image classifiers applied
on LEGO bricks. This will provide the information about
whether the models currently work on multi-labeled LEGO
brick images in the first place. This paper will also provide
the results of the performances on different datasets with the
purpose of showing how the models perform on the differ-
ent circumstances, such as the difference in lighting, details
of background and reflection. Finally, this paper will also
provide the comparison of the performance of the multi-label
image classifiers on near perfect data and real life data. The
near perfect data is synthetic data in which the objects are
perfectly clean, have a consistent color and reflect light per-
fectly.

To report our findings as efficiently as possible, first a de-
scription of the models will be given together with related
work. The training and evaluation process will then be ex-
plained after which the experiments follow. With the experi-
ments there will be conclusions and an overall result and dis-
cussion of the results is given afterwards. Finally, the conclu-
sion and the future work will be discussed.

2 Related Work
2.1 Feature Extraction
Image classification is a task in the computer vision world
that refers to the process of classifying an image based on the
contents of the image [12]. The input for such a classifier is

the image, the features of the image and what the image rep-
resents. Image classification with deep learning is the process
of training an image classifier with input data that only con-
sists of the image and what the image represents. The differ-
ence between classical image classifiers and image classifiers
based on deep learning, is that the latter learns to extract the
features of an image itself [3]. There are many different meth-
ods to extract features from an image. An image can have
color, texture and shape features for example [16]. ResNet
down samples the images to extract the features. While down
sampling there are different combinations of average pooling
and max pooling. That is a layer that goes over all of the pix-
els of an image and creates groups of pixels. Next it converts
those groups of pixels into one pixel with a certain value. For
an average pooling the value of the new pixel will be the aver-
age value of all the pixels in that group. For max pooling the
new value will be the maximum value of the group of pixels
[1]. ResNet and variations of ResNet will mostly be used in
this research.

2.2 LEGO Classification
There have been people who have tried to implement LEGO
classification before. Daniel West, for example, created a
LEGO sorter [20]. This application had the limitation that
the bricks had to be analyzed one by one before sorting them.
This reduced the problem to a single label classification prob-
lem. Another group of students tried to create a machine
that does this. However, they realized that this is a hard task
and limited themselves to five pieces. Even with that limita-
tion, they did not manage to finish the research in the time
given [29]. To summarize, both multi-label classification and
LEGO brick classification are implemented, however, the ap-
plication of the first on the second is missing. In this research
a machine will not be created, however, we will attempt to do
what they did not, evaluate multiple pieces at once.

2.3 ResNet Signature
A popular method for these multi-label image classifica-
tion problems is the use of residual networks (ResNet) [11].
ResNet introduced a network which is similar to a plain
convolutional neural network, however, with the addition of
shortcut connections between layers [15]. These shortcut
connections have as a consequence that if the output of a layer
corresponds with the input of two layers further on, an iden-
tity mapping is executed [9]. This reduces the training diffi-
culty and the error rate of the system. Because of this imple-
mentation, a convolutional neural network of up to a thousand
layers could be realized [10]. This was a great achievement
in the world of image classification with deep learning.

2.4 Single Label vs Multi-Label Evaluation
ResNet is one of the image classifiers available right now on
PyTorch that is tested on the large dataset of ImageNet [6].
Alongside ResNet, there are twelve other image classifiers
available. They are tested in [22] which is a challenge to help
set a benchmark for new computer vision image classifiers.
However, these classifiers have been trained on single label
images. The difference between single label and multi label



image classifiers is the way they evaluate the output. A soft-
max layer is usually applied to a single label image classifier
[8]. A softmax layer balances the output. That means that if
the model most likely expects the image to contain a cat, all
other classes are less likely to appear in the image. The out-
put will be in percentages for each class such that at the end,
all percentages add up to a 100%. Each class is represented
as a certain percentage to be the description of the image.
For a multi-label image classifier, however, every class has a
random chance to appear in the image and is mostly not de-
pendent on the other labels. The total amount of percentages
could thus be higher than 100%. Since this research will be a
multi-label image classification problem, the standard models
will be used, however, the softmax layer will be changed.

2.5 Loss Function and Optimizer
Another important feature of the image classifier is which loss
function is being used. This is necessary such that during the
training, the loss can be calculated and parameters within the
model can be tuned for better results [4]. It is used to measure
how well it can predict the expected outcome. Together with
an optimizer, the loss function makes it so that the model can
train to improve. The job of the loss function is to get to a loss
as low as possible, however, throughout the learning process
there are multiple local minima. To make sure that the model
does not get stuck at such a local minimum, the optimizer is
there to look at the bigger picture. In this research we will
be using both a loss function and an optimizer, however, they
will not be the standard ones that PyTorch provides with their
models.

2.6 Classification Networks
For the models themselves, the ResNet, WideResnet and the
ResNext models are currently the top 3 models on PyTorch.
These three models have different signatures. ResNet [9] uses
shortcut connections in the convolutional layers of the net-
work. This makes it such that network could become deeper
than before. WideResNet [28] on the other hand, increases
the amount of features in a convolutional layer in the act of
reducing the depth of the network but increasing the width.
ResNext [27], however, has shown that cardinality is more
important than the width and the depth of a convolutional
neural network. With cardinality, the layer does not have
just one transformation, but instead has an aggregration of
transformations based on the cardinality. The cardinality was
compared to both the width and the depth in [27], and the
results showed that it outperformed both. We will be using
these three models to evaluate the performances.

3 Method
An important part of image classification with deep learning
is the start where the model is trained with thousands of im-
ages with their corresponding labels. It will be important to
provide the right labels accompanying these images. Cur-
rently the models take in images in batches of 16 for example
accompanied by a vector of length 16, representing the labels.
If there are 5 classes, each class will be tied to a number. The
values in the vector of 16 will then each be the number rep-
resenting the image. In our application we change this the

following way. The input would still be in a batch of 16 im-
ages, however, each image is represented with a vector which
is 85 long. Each number representing a unique class. The
vector consists of 0’s and 1’s depending on whether the class
was present in the picture or not. A 0 stands for false while a
1 stands for true.

We did this because we had to change the loss function.
The loss function that is currently being used by the PyTorch
image classifiers is the CrossEntropy loss function. This func-
tion applies a softmax layer at the end. Since we are tackling
a multi-label problem, we do not want this. The loss function
we will use is BCEWithLogitsLoss because this binary loss
function works well on multi-label image classification prob-
lems. This loss function required the labels to be in a vector
of 0’s and 1’s of length equal to the total amount of classes.
The optimizer accompanying this was the SGD because the
SGD does not apply a softmax layer at the end and thus the
representation of each class will not be dependent on the other
classes.

3.1 Training
The models used in this research were all implemented with
PyTorch [18]. To create these models, all of the same mod-
ifications have been made. Due to performance issues, the
ResNet, ResNext and WideResnet of 50 layers have been
used. While training all of the models will use the same loss
function, BCEWithLogitsLoss, and the same optimizer, SGD.
The optimizer will have an initial learning rate of 0.1 which
will be divided by 10 for every 20 epochs. The optimizer
will have a momentum of 0.9 and a weight decay of 1e-5.
Before processing the images, the images will be normalized
according to the normalization used for all the PyTorch mod-
els. To calculate the accuracy and validation accuracy during
the training, the F1-score will be used. A sigmoid will be ap-
plied to the output such that the 85 classes’ appearance are
represented with a percentage. The threshold applied to the
models will be 50%. This means that if the number after the
application of the sigmoid is bigger than 0.5, it has a bigger
than 50% chance to appear in the scene and will thus be seen
as one of the present objects. Furthermore, all of this will be
done on the pretrained models. The only modification made
to the models themselves are that the final layers are changed
to a layer that has 85 output nodes. All of the models will be
implemented in PyTorch and the same tweaks will be made
for each of the models currently available on the official web-
site of PyTorch.

3.2 Evaluation
To evaluate the results, a convention similar to what was
used in [22] will be adhered to, the top-1 error. [9; 27;
28] also used this metric to evaluate their models. The top-
1 error means the percentage of the results in which the top
prediction was not the correct result. To transform this to a
multi-label image classification metric, the exact match ratio
metric will be used to evaluate the models. This is compara-
ble to the single label classification version because the dif-
ference between the evaluation of single label and multi-label
image classifiers is that the answer for the latter can also be
partially correct. To circumvent this problem to decide how



much must be correct to consider the final result to be correct,
the exact match ratio (MR) is a metric that only counts the re-
sult as correct if every prediction is correct. It is calculated
with the following formula:

MR =
1

n

n∑
i=1

I(Yi = Zi). (1)

The n represents the amount of images, the Yi represents the
predicted vector of labels of the ith image and Zi represents
the ground truth for the ith image. The I is the indicator func-
tion. Accompanying this metric, the precision, recall and F1-
score will also be used. The same symbols are used as in the
MR and the symbols have the same meaning. The precision
is used to calculate which percentage of the correct answers
were returned and is calculated the following way,

P =
1

n

n∑
i=1

|Yi ∩ Zi|
|Zi|

. (2)

The recall calculates which percentage of the predicted an-
swers were correct and is calculated with

R =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi|

. (3)

The final metric used, the F1-score

F1 =
1

n

n∑
i=1

2|Yi ∩ Zi|
|Yi|+ |Zi|

, (4)

is the harmonic mean between the two meaning it takes into
account both the precision and the recall scores [23]. These
metrics combined, give a clear overview of how the mod-
els perform, which is why we chose for these four. These
metrics also give an easy overview in the context of LEGO
bricks. These four measures will be applied to the three types
of datasets individually and then the results of the datasets
will be compared to each other.

4 Experimental Setup and Results
We will perform experiments on three custom-made datasets:
the synthetic dataset, cut and paste dataset and the real
dataset. These datasets will each have 85 classes, each repre-
senting a certain LEGO brick and the datasets will be as bal-
anced as possible. We will conduct a total of five experiments
and each experiment will be performed on three classification
models to compare the results. For all five experiments, the
models will be trained on the same circumstances with a mi-
nor change for every experiment. For these experiments there
were a total of three models trained for every dataset so 18
training sessions. Judging by the accuracies, losses, valida-
tion accuracies and validation losses in figures 2 and 3, the
models did not improve that much after 20 epochs. Thus we
chose to train the models for 40 epochs and use those states
to evaluate the performance of the models.

Datasets
There will be a total of six different datasets out of the three
types of datasets. Due to the time constraint of this problem,

only 3000 real images can be taken by hand. The process of
how these images have been taken can be found in [13]. Since
this was a lengthy process however, another way of testing the
models was necessary. That is why synthetic data had to be
generated to train the models while the real data was in the
process of being made.

The synthetic data was made with the help of a 3D mod-
elling program called Blender [5]. The goal of the synthetic
data was to be as realistic as possible compared to the real
data. To this end, the same constraints and settings were
adapted. A constraint of the real data was that there could
only be up to 13 LEGO bricks in a single image. The same
constraint was put upon the synthetic data. A second point
that was taken into account was that the same backgrounds
were used as in the real data. This was done by taking real
images of just the backgrounds and using them as the back-
ground for the synthetic data. For the synthetic dataset, there
was no real constraint as to how much data could be generated
except for the time constraint. This resulted in the generation
of 5000 synthetic images. Since the real data was only 3000
images big, two synthetic datasets had been created. One was
to evaluate the performance of the models on the synthetic
dataset. This dataset was 5000 large. The other one was 3000
big to try to keep the comparison with the real data as even as
possible.

The third dataset was the cut and paste dataset. This is an-
other method for creating a synthetic dataset. The creation of
this data can also be found in [13] Since this data is created by
cutting out LEGO bricks from real images and pasting them
on real background, this dataset also has the real world effects
applied to the images. This means that the deterioration of the
bricks for example can also be seen in this type of data. Other
aspects like the reflection of the light for example is less re-
alistic, this is an aspect that is handled well in the synthetic
dataset. The cut and paste dataset will have three datasets in
total. One will be 3000 big to compare with the real data. The
other two will be of size 5000 and 10000.

All the dataset will be split into 80% for the training, 10%
for the validation and 10% for the test dataset. This is a
common division so as to maintain a large set to train on
while still having enough data to validate and evaluate on [7].
While training, the training dataset will be fed to the models
in batches of 16 images, however, every time the the whole
training set is traversed, the batches will be randomized.

Experiment 1: Synthetic Dataset
The first experiment will have a synthetic dataset of 5000 im-
ages. In this experiment we will be comparing the perfor-
mance of the models in a synthetic data environment. The
synthetic data will be generated with Blender and with the
use of the physics engine random bricks of up to 13 will be
generated into a scene. These will be dropped onto a plane
with a random background and a render will be taken from a
random angle facing the bricks.

The constraints of this dataset will be as follows: all of
the images used will be cropped to 384x256 (width x height)
pixels, such that the aspect ratio of the LEGO bricks can be
maintained. Furthermore, the data fed to the models while
training will be in batches of 16 and the labels accompanying



Training and Validation Accuracies and Losses of ResNet and ResNext

Figure 2: The losses, accuracies, validation losses and validation accuracies of the ResNext and ResNext model on the three different types
of datasets. The acc stands for accuracy and for the synthetic and cut and paste data, the graphs seem to behave as they should, however, for
the real data this does not seem to be the case.

Training and Validation Accuracies and Losses of WideResnet

Figure 3: The losses, accuracies, validation losses and validation
accuracies of the ResNext and ResNext model on the three different
types of datasets. The accuracy rises up to 80% for the synthetic data
and cut and paste data, but does not rise that much for the real data.
The same goes for the loss, the loss drops by much for the synthetic
data and cut and paste data, but not as much for the real data.

them will be a batch of 16 vectors of 0’s and 1’s with a length
of 85, representing all classes. If the brick is in the image, the
accompanying label will be a 1, else it will be a 0. Finally, the
model will be trained for 40 epochs meaning that every image
will be trained on 40 times. The purpose of this experiment is
to research how well multi-label classifiers work on synthetic
images when the situation is perfect. That means when the
bricks are in perfect shape and the colors are consistent. The
question accompanying this experiment will be “How well do
multi-label image classifiers perform on near perfect data?”

In Table 1 we can see the results of the three chosen mod-
els. In [26] for example, multiple different multi-label im-
age classifiers have been tested on three benchmark datasets.
The F1-scores of the classifiers in [26] were approximately
between 40% and 60%. Compared to these numbers, the
three models modified for this research perform very well on
LEGO bricks with an approximate F1-score of 91%. In par-
ticular, the models are performing well when having to return
most of the results, but in the process also return wrong pre-
dictions. This can be seen due to the fact that the precision is
higher than the recall. The exact match ratio also shows that
the models do not perform that well yet on returning exactly
the correct results. The exact match ratio for the modified
models, however, is approximately 50%. The pretrained ver-
sions on PyTorch have a top-1 error of approximately 20%
meaning an approximate accuracy of 80%. Compared to this,
the models do not perform that well for the exact match ra-
tio. A note on this however is that the exact match ratio is
very strict. This means that if an image would have predicted



Experiment 1: Evaluation on 500 synthetic images

ResNet ResNext WideResnet
Total images 500 500 500
Total labels 3403 3403 3403
True Positives 2860 2999 2869
False Positives 177 107 127
False Negatives 543 404 534
Exact Match Ratio 45.4% 54.6% 44.4%
Precision 94.5% 96.4% 95.7%
Recall 87% 90.4% 87.4%
F1-score 90.1% 92.9% 90.9%

Table 1: The results of the three modified classifiers ResNet,
ResNext and WideResnet on 5000 synthetic images. There are a
total of 500 synthetic images which are tested on and together they
have 3403 labels. Out of those the true positives amount to the cor-
rectly predicted results, the false positives amount to the labels pre-
dicted as correct but are in fact not correct and the false negatives
amount to the ground truth labels which were not predicted. From
the three results it is clear that the ResNext model performs better
than the ResNet and WideResnet. However, judging by the numbers
themselves, the number are really high so that means that the models
perform well on synthetic data where the state of the bricks, lighting,
etc. are “perfect”.

9 out of 10 labels correctly, it would have still been seen as
incorrect. From this experiment we can deduct that the modi-
fied image classifiers do perform well on LEGO bricks when
the bricks are in near perfect condition. This means when the
bricks have their original shape, color, and reflection of light.

Experiment 2: Cut and Paste Dataset
The second experiment that will be conducted is on the cut
and paste dataset of 5000 images. Once again all of the im-
ages will be resized to 384 by 256 pixels and the models will
be fed images in batches of 16. The accompanying labels
will be in a vector of 85 and the model will be trained for
40 epochs. The purpose of this experiment is to test how the
models work on another type of synthetic data, namely syn-
thetic data in which the LEGO bricks are more realistic. Since
the cut and paste data consists of bricks which are cut from
real images, the deterioration and recoloring of the bricks are
also taken with them to the new images. The question we
will try to answer is “How do multi-label image classifiers
perform on somewhat realistic LEGO bricks?”

The results of the modified ResNet, ResNext and WideRes-
net models can be seen in Table 2. The results are once again
really good and the precisions seem to be higher than the re-
calls. The ResNext models performs better than the other
models which also corresponds to the fact that the ResNext
model is the best performing model on PyTorch. The exact
match ratio, however, is approximately the same as for the
evaluation on the synthetic data, which was not that high. The
results are even higher when compared to the synthetic data.
Since the test set consists of images that have never been seen

Experiment 2: Evaluation on 5000 cut and paste images

ResNet ResNext WideResnet
Total images 500 500 500
Total labels 3421 3421 3421
True Positives 2957 3052 2995
False Positives 98 54 70
False Negatives 464 369 426
Exact Match Ratio 47.4% 52.8% 49.4%
Precision 97% 98.4% 97.6%
Recall 88.7% 91.1% 89.7%
F1-score 92.2% 94.3% 93.1%

Table 2: The results of the three classifiers ResNet, ResNext and
WideResnet on 5000 cut and paste images. The precision, recall
and F1-score for the three classifiers are really high meaning that in
almost all of the images, the classifiers are able to classify most of
the bricks present. From the exact match ratio, however, it can be
concluded that the models do not work that well yet on predicting
the exact correct bricks.

before by the model, this means that the models are able to
perform at least just as well on synthetic LEGO bricks as on
LEGO bricks which have a more realistic condition regarding
the state of the bricks.

Experiment 3: Evaluation of 300 real data images

ResNet ResNext WideResnet
Total images 300 300 300
Total labels 2076 2076 2076
True Positives 285 323 219
False Positives 398 356 436
False Negatives 1791 1753 1857
Exact Match Ratio 1.8% 1.8% 1.8%
Precision 35% 42.5% 30%
Recall 14.5% 16.4% 11.8%
F1-score 18.8% 21.4% 14.8%

Table 3: The evaluation of the three modified image classifier on
real data. There are a total of 300 real images and the true positives
are really low when compared to the total amount of labels. The
results are between the 14 and 22%. This means that results from
this experiment were low. The exact match ratio is also really low.
Only 1.8% images out of the 300 images had the exact ground truth
as the prediction.

Experiment 3: Real data
The third experiment will be with real data. The real dataset
will be 3000 images big. To keep the models from return-
ing overfitted results, we made sure to only include images
in the validation and test set that are not trained on. The rea-
son we handpicked the validation and test dataset is because
the data itself was be shot by hand following a certain script
[13]. This measure was taken so that we could make sure that



Experiment 4: Evaluation on real, trained on synthetic and cut and paste

Synthetic vs Real Cut and Paste vs Real
Models ResNet ResNext WideResnet ResNet ResNext WideResnet

Total images 300 300 300 300 300 300
Total labels 2076 2076 2076 2076 2076 2076
True Positives 625 691 519 805 737 763
False Positives 985 867 996 629 566 664
False Negatives 1451 1385 1557 1271 1339 1313
Exact Match Ratio 1.4% 3.6% 1.2% 4% 3% 4.4%
Precision 37.8% 44.8% 32.4% 59.2% 55.7% 56.4%
Recall 29.4% 36% 25.4% 42.7% 37.8% 41.5%
F1-score 32.2% 38.7% 27.5% 48.3% 43.9% 46.8%

Table 4: Evaluations on a real dataset when trained on a synthetic or cut and paste dataset. For both situations the evaluation is done with 300
real images with a total of 2076 labels. On average the evaluations when trained on cut and paste is higher when compared to the synthetic
dataset. TThe percentages for the precision, recall and F1-score are higher. This means that on average when the model is trained on cut and
paste data, that is is able to return more of the correct answers and more correct answers compared to wrong answers.

the data was balanced at the end. The balance of data is im-
portant because if a class is overrepresented while training,
the model is more likely to output that class. This experi-
ment will be the most meaningful for this research, since this
experiment will be conducted on real data. All of the afore-
mentioned constraints for the synthetic and cut and paste data
also apply for the real data. The results of this experiment
will show whether the current state of the art actually per-
forms well enough. The question for this experiment will be
“How well does the current state of the art in image classifi-
cation perform on LEGO bricks?”

The results as can be seen in Table 3 are not that great.
When compared to the models in [26], the F1-scores are ap-
proximately twice as low. The exact math ratio is also low
which means that either the models are not good enough yet
to evaluate real data or there was an external factor influenc-
ing the results.

Experiment 4: Synthetic & Cut and Paste Data vs
Real Data
The fourth experiment will be a combination of the synthetic
data, cut and paste data and the real data. Each dataset will
consists of 2400 training images, 300 validation images and
300 test images. In this case the models will be trained on
synthetic data and cut and paste data and tested with real data.
This is to test whether the real life situations have a big im-
pact on the performance of the model. Real life situations
can be the state of the LEGO bricks for example. Another
reason to test this is to see if the synthetic and cut and paste
data are representative for the real data. In the synthetic data,
each brick will be perfect in size shape and color. In real life,
however, it could be the case that the quality the brick has de-
teriorated meaning that the shape has somewhat changed or
that the color has changed. For cut and paste data the lighting
will be really unrealistic and this might also have an effect on
the performance. The question accompanying this research
will be “Are the results from the synthetic and cut and paste
data representative for the performance on real data?”

The results in Table 4 show that the models perform better
on real data when trained on cut and paste data than when
trained on synthetic data. The exact match ratio is also really
low with a maximum of 4% meaning that in the best case,
only labels from 12 out of 300 images were predicted exactly.
Overall the ResNext model seems to perform the best when
trained on synthetic and tested on real, however, for the cut
and paste it is performing the worst. The modified models
when trained on cut and paste, however, have scores of ap-
proximately 40 to 50%. When comparing these numbers to
the numbers in [26], they almost fall in the same range since
the scores in the paper are approximately 40% to 60%. The
results when trained on synthetic data, however, do perform
worse when compared to the models in the paper. Judging
by these results, the modified models perform decently well
when trained on synthetic or cut and paste data and evaluated
on real data.

From experiment 4 we can also conclude that experiment 3
had an external factor that influenced the performance of the
modified models. Due to time constraints, the real data was
shot according to a script. To save time, the script gave the
same combination of bricks and backgrounds 3 times. This
caused the models to overfit on the data and perform not that
well the evaluation.

Experiment 5: Cut and Paste Data 10.000 Images
It is generally known for image classification that more data is
better [2]. With the following experiment we want to inves-
tigate whether the performance on real data becomes better
when it is trained on twice as much cut and paste data. This
dataset will contain 10.000 cut and paste images of which
8000 will be used for training and 1000 for validation. With
this experiment we will be able to find out if the models do
indeed work better when more data is present. The question
accompanying this experiment will be, “Do models trained
on more cut and paste data also perform better on real data?”

We can see in Table 5 that the models do perform relatively



Experiment 5: Trained on 10.000 cut and paste images, evaluated on
300 real images

ResNet ResNext WideResnet
Total images 300 300 300
Total labels 2076 2076 2076
True Positives 993 947 942
False Positives 778 857 775
False Negatives 1083 1129 1134
Exact Match Ratio 7.2% 7% 8%
Precision 59.7% 55.9% 57.5%
Recall 52.5% 50.2% 51.6%
F1-score 54.9% 52.2% 53.4%

Table 5: Evaluation on 300 real images when trained on a dataset of
10.000 cut and paste images. Generally the precision, recall and F1-
scores seem reasonably high. The models are able to predict almost
half of the labels correctly but in the process also predict almost the
same amount incorrectly. The exact match ratio is low when it is
compared to the top-1 error of the standard models on PyTorch.

well when compared to the models in [26]. The exact match
ratio, however, is relatively low. The models also output more
correct results than wrong results, however, the numbers are
quite close. The models also not predict correct labels more
often than prediction the correct ones. This causes the preci-
sion to be higher than the recall. Overall the F1-score of the
models when trained with more data cut and paste data, per-
forms better on real data. There is an approximate increase of
6 to 8%.

Results and Discussion
Overall the modified models seem to perform really well on
the synthetic data and cut and paste data. The models perform
less well on real data, however, from the experiments and fig-
ures 2 and 3 we can conclude there there was another factor
influencing the performance of the models, namely the data.
With these results, we can say that the current state of the art
in multi-label image classification applied on LEGO bricks
performs decently well but there is room for improvement.

A limitation of the models, as well as a limitation for image
classification in general, is the data used for the models. The
experiment with the real data was not that big. Not only was
it not big, every image also appears three times with a slight
difference. This causes the models to overfit, giving really
bad statistics while evaluating.

5 Responsible Research
All the data used for this research can be ethically justified.
The real data that is used to test the models is shot with a
camera by other students researching a similar topic. In this
research I have indirectly worked together with four other stu-
dents, Berend Kam, Hiba Abderrazik, Rembrandt Oltmans
and David Cian. We worked together with Berend in the
sense that my model was tested on real data which was part of
his research. However, thousands of images had to be taken
by hand so he got help from Hiba and David who also needed
it for their research. The cut and paste data has also been

generated by Berend Kam. The synthetic data was initially
developed by Rembrandt Oltmans but the improved by David
with Hiba’s and my help. David and Hiba also needed the
synthetic data for their own research.

This research is reproducible in the sense that all of the
code and saved states of the models are available on [24]. The
data used for this research is available on the storage servers
of the TU Delft. All other resources like the models used are
available for the public on the official website of PyTorch. To
mimic the model We have used for this research, the PyTorch
models have to be tweaked according to the things mentioned
in this paper. If all of these conditions are met, this research
can be reproduced with similar results.

6 Conclusion and Future Work
We modified three of the current best performing single la-
bel image classifiers to work on multi-label problems. We
changed the output layers of those to work on LEGO brick
instances. We also used a different loss function and this en-
abled us to properly evaluate the performances of the models
on LEGO brick images.

In this research we used the the pretrained models ResNet,
ResNext and WideResnet of only 50 layers. The official web-
site of PyTorch had models with more layers available, how-
ever during the research we got poor results because the mod-
els would overfit on the type of input data and underperform
on the other data. To overcome this problem, the pretrained
models with fewer layers were chosen. Future work could in-
stead work on finding the ideal values for the optimizer and
the learning rate or even find another way of implementing
these models.

We evaluated the current state of the art in image classifi-
cation on LEGO bricks. Three types of datasets were created
for this purpose, a synthetic dataset, a cut and paste dataset
and a real dataset. The models modified for this research per-
formed really well on the synthetic and cut and paste dataset,
however, performed poorly on the real dataset. When the
models were trained on the synthetic or cut and paste dataset
and evaluated on the real dataset, the latter also outperformed
the former. Finally, the modified models also showed that
training on more data, gives better results at the end.
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