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Abstract
The Variable State Independent Decaying Sum
(VSIDS) heuristic is one of the most effective
variable selection heuristics for Conflict-Driven
Clause-Learning (CDCL) SAT solvers. It works
by keeping track of activity values for each vari-
able, which get bumped and decayed based on con-
flict analysis. These activity values usually start out
arbitrarily at zero, which prompts the question if
initializing these values can result in better perfor-
mance.
This paper presents several adaptations of the
VSIDS heuristic specialized for solving the
Resource-Constraint Project Scheduling Problem
with time varying resource availabilities and de-
mands (RCPSP/t). The approach uses domain-
specific knowledge to initialize the activity values
of VSIDS with more relevant values. The ex-
periments presented in this paper show that this
domain-specific knowledge can indeed benefit the
heuristic and can lead to better solve times, allow-
ing the solver to find solutions for 17% more of the
instances and find proven optimal solutions for 5%
more instances of the PSPLIB data set.

1 Introduction
In the resource-constraint project scheduling problem
(RCPSP), a set of activities have to be scheduled while re-
specting a set of precedence and resource constraints with the
goal of minimising the makespan. The RCPSP and its vari-
ants find practical usage in the scheduling of a wide range of
projects. Some examples are construction projects, medical
research projects and aggregated production scheduling [1;
2; 3]. This, together with the fact that the problem has been
shown to be strongly NP-hard [4], has induced a lot of re-
search into efficient algorithms to solve the problem and its
extensions.

Several variants and extensions of the problem have been
studied [5], one of which is the resource-constrained project
scheduling problem with time varying resource availabilities
and demands (RCPSP/t) [2], which is the subject of this pa-
per. A foundation of research into the RCPSP/t has been laid
in a case study by Hartmann [2]. In the paper, Hartmann
discusses a formal mathematical model for the RCPSP/t and
analyses a new heuristic algorithm to solve the problem.
Later, Hartmann also analysed the applicability of different
RCPSP heuristics to the RCPSP/t and adapted a genetic al-
gorithm to the RCPSP/t [3]. More recently the problem was
also included in [6], which discusses an SMT encoding of
the problem. This encoding was the basis for a MAX-SAT
formulation of the problem by Pleunes [7]. With this formu-
lation, Pleunes has shown that a MAX-SAT solver [8] can be
an effective tool for solving the RCPSP/t, outperforming the
SMT-based approach for some large test instances.

These promising results are based on a MAX-SAT solver
with the Variable State Independent Decaying Sum (VSIDS)
heuristic [8], which is a variable selection heuristic for

Conflict-Driven Clause-Learning (CDCL) SAT solvers [9;
10; 11]. It works by keeping track of the activity values for
each variable, always choosing the variable with the highest
activity value when a branching decision gets made. When a
conflict arises it gets analysed and the activity values of re-
lated variables get bumped. Periodically all activity values
also get decayed. These activity values usually start out ar-
bitrarily at zero, which means the initial decisions are made
essentially at random. This prompts the question if it is pos-
sible to initialise the activities with more relevant values to
improve the initial decisions and achieve better performance.

In the past, there have been several papers that have
suggested that domain-specific variations of VSIDS could
achieve better results for some problems. For example [12]
uses a similar technique for the RCPSP. It was able to improve
the performance of the heuristic by employing a hybrid setup,
combining VSIDS with a deterministic branching heuristic.
First, it would run the deterministic branching heuristic then
it would switch to VSIDS after some iterations.

This paper explores several domain-specific adaptations of
the VSIDS heuristic for the RCPSP/t and compares their per-
formance to the standard VSIDS heuristic. The augmented
VSIDS heuristics work by setting the initial activity values
of VSIDS based on properties from the RCPSP/t. Using data
sets from the PSPLIB [13], we will show that we can con-
struct an adapted heuristic that is able to achieve better results
compared to the standard VSIDS heuristic.

With the augmented VSIDS heuristic we were able to find
solutions for 17% more instances and certify the optimal so-
lution for 5% more instances. We also show that the other
similar methods of initialising the values achieve a similar
improvement, with no significant difference between them.

We will start by giving a formal problem description of the
RCPSP/t as well as the MAX-SAT formulation in section 2.
In section 3 and section 4 we discuss how VSIDS works and
the different heuristics that were implemented with the cor-
responding design choices that were made. Then, we dis-
cuss the experimental setup and the results in section 5 and
section 6. Afterwards, the ethical aspects of the research are
reflected on in section 7 and the results are analysed and com-
pared to previous work in section 8. Finally, in section 9, we
give a summary of the results as well as the prospects of pos-
sible future work.

2 Problem Description
This section covers the formal problem description of the
RCPSP/t as well as the MAX-SAT formulation that is used
by the solver. The RCPSP/t is an extension of the standard
RCPSP. The problem definition in this paper is based on the
version of the problem that was established in [2]. The MAX-
SAT formulation will be based on the formulation from [7].

2.1 RCPSP/t
In the RCPSP, J tasks need to be scheduled, the tasks can-
not be split up into multiple tasks (this is referred to as non-
preemptive scheduling). The duration of a task j will be de-
noted as pj . There are two types of constraints on the sched-
ule: precedence constraints and resource constraints.



Figure 1: A precedence graph for a project with 7 tasks. Tasks 0 and
8 are added to mark the beginning and end of the project. An arrow
between two tasks means one needs to be scheduled before another,
with the value denoting the duration of the task. Adapted from [6].

The precedence constraints are formulated using predeces-
sor sets Pj . Each task can have multiple predecessors, which
means that for each predecessor, the predecessor needs to be
finished before task j starts. There are two additional tasks
that are included in the schedule, j = 0 and j = J+1, which
mark the start and end of the project. They both have a dura-
tion of 0 and precedence constraints in such a way that task 0
always has to be the first task, and J + 1 always has to be the
last task. This means that the makespan of the project will be
equal to the start time of task J + 1. In Figure 1, you can see
an example of a precedence graph with 7 different tasks.

Figure 2: An optimal schedule for an instance of the RCPSP/t with
one resource. The horizontal axis shows the different time slots and
the vertical axis shows the amount of the resource that is available
and demanded. The dotted line shows how much of the resource is
available at any time, while the other shapes show the amount of the
resource that is demanded by each task. Adapted from [6].

The resource constraints are based on K resources that can
be required by tasks. Each resource has a certain capacity. In
the RCPSP/t extension, the capacity of each resource can vary
over time. We will denote the capacity of resource k ∈ [1,K]
at time t ∈ [1, T ] as Rkt. Because Rkt needs to be defined for
the entire duration of the schedule, there is a predefined hori-
zon T , which is the maximal time a schedule can take. If it is
impossible to schedule all tasks in this time span, the instance
will thus be unsatisfiable. The amount of resources each task
requires also varies over time. The amount of resource k, task
j requires will be denoted as rjkt with t ∈ [1, pj ]. An exam-
ple of an optimal schedule for the precedences of Figure 1
can be seen in Figure 2.

We will use yjt ∈ {0, 1} to denote that task j starts at time
t iff yjt = 1. This leads to the following mathematical model:

min

T∑
t=1

t · yJ+1,t (1)

s.t.

yjt ∈ {0, 1} j ∈ [0, J + 1], t ∈ [1, T ] (2)

T∑
t=1

yjt = 1 j ∈ [0, J + 1] (3)

pi +

T∑
t=1

t · yit ≤
T∑

t=1

t · yjt j ∈ [1, J + 1], i ∈ Pj (4)

J∑
j=1

pj−1∑
q=0

rjkq · yj,t−q ≤ Rkt k ∈ [1,K], t ∈ [1, T ] (5)

The objective (1) minimizes the start time of the final task,
thereby minimizing the makespan. Constraints (2) define the
binary variables and constraints (3) make sure each task is
scheduled exactly once. Finally, the precedence and resource
constraints are enforced by (4) and (5) respectively.

2.2 Time window and lower bound
To reduce the search space, a preprocessing step is performed
before the MAX-SAT generation, to determine the starting
windows STW (j) = [ES∗

j , LS
∗
j ] for each task j, consist-

ing of the earliest and latest feasible start times (ES∗
j and

LS∗
j ). These are the earliest and latest times for which a task

can be scheduled to create a feasible schedule. They also
correspond with the earliest and latest feasible finish times
(EF ∗

j = ES∗
j + pj − 1 and LF ∗

j = EF ∗
j + pj − 1), which

similarly are the earliest and latest time a task can still be run-
ning. The earliest start time of the start task will always be
ES0 = 0 and the latest finish time of the final task will be
LFJ+1 = T .

To determine the windows we make use of the method
described in [2]. This method creates start and finish win-
dows where precedence and resource feasibility is taken into
account. For the earliest start times, precedence feasibility
means that we have ES∗

j ≥ max{ES∗
i + pi|i ∈ Pj} and re-

source feasibility means that we have rj,k,t−ES∗
j +1 ≤ Rkt

for all times t ∈ [ES∗
j , ES∗

j + pj − 1]. Similarly, we
have that for the latest finish times we have that LF ∗

j ≤
min{LF ∗

i − pi|i ∈ Pj} and rj,k,t−LF∗
j −pj+2 ≤ Rkt for all

times t ∈ [LF ∗
j − pj + 1, LF ∗

j ].
This step has several benefits. Firstly, it will significantly

reduce the number of constraints necessary to formulate the
problem as well as reduce the search space. Since it is impos-
sible for a feasible schedule to have tasks scheduled outside
their time window, we can ignore all times outside a task’s
window. We do this by removing them as variables and with
them a bunch of constraints. Furthermore, the time windows
can be used to determine a lower bound on the schedule.



Since the final task always needs to be scheduled we can use
its earliest finish time EF ∗

J+1 as a lower bound.

2.3 MAX-SAT formulation

There are two types of constraints in a MAX-SAT problem,
hard constraints, which always need to be satisfied for a fea-
sible solution, and soft constraints, which need to be satisfied
as much as possible. The soft constraints each have a weight,
the goal of the solver will be to satisfy as many soft con-
straints as possible, so as to maximize the sum of the weights
of the satisfied constraints.

The MAX-SAT formulation used by the solver is based on
two types of boolean variables: start variables yjt and process
variables xjt. The variable yjt is true if task i, starts at time t.
The process variables are used to denote that a task is running
at a certain time, variable xjt is true if task j is running at
time t. Using these variables we can construct the MAX-SAT
formulation.

Hard Constraints
The hard constraints are meant to force all solutions to be
feasible schedules, it does not regard the goal of minimizing
the makespan.

The first constraints enforce the tasks to be scheduled in-
side their start time window, make sure all tasks are scheduled
and make sure the process variables are set correctly.

y0,0 (6)∨
s∈STW (j)

yjs ∀j ∈ [1, J + 1] (7)

¬yJ+1,t ∨ ¬yJ+1,t+1

∀t ∈ [ES∗
J+1,

LS∗
J+1 − 1]

(8)

Constraint (6) forces the start task to be scheduled at time 0.
Constraints (7) force all tasks to be scheduled by enforcing
they all have a starting time inside their start time window
and constraints (8) force there to only be one end.

¬yjs ∨ xjt

∀j ∈ [1, J ],

∀s ∈ STW (j),

∀t ∈ [s, s+ pj − 1]

(9)

Constraints (9) force the process variables to be true if they
are within the task duration after the start of the task.

The next constraints enforce the precedence and resource
constraints.

¬yjs
∨

t∈[ES∗
j ,

min (s−pj ,LS∗
j )]

yit

∀j ∈ [0, J + 1],

∀i ∈ Pj ,

∀s ∈ STW (j)

(10)

The precedence constraints are enforced by constraints (10).
If a variable yjs is scheduled all preceding tasks i ∈ Pj need
to be scheduled sufficiently before time s, namely somewhere
in the window [ES∗

j ,min(s− pj , LS
∗
j )].∑

j∈[1,J+1] s.t.
t∈[ES∗

j ,LF∗
j ]

e∈[0,pj−1] s.t.
t−e∈STW (j)

rjke · yj,t−e ≤ Rkt

∀k ∈ R

∀t ∈ [1, T ]
(11)

Constraints (11) enforce resource constraints. For each com-
bination of resource and time, all resource demands are
summed for tasks that are scheduled at that time, these de-
mands should always be less than or equal to the availabil-
ity of the resource at the same time. The constraints are ex-
pressed as less than or equal constraints for simplification,
but they are converted to proper SAT constraints in CNF using
the RDD-1 method from [14]. This method also generates ex-
tra variables, which will be referred to as resource variables.

Finally, some redundant constraints are added.

¬xjt ∨ xj,t+1 ∨ yj,t−pj+1

∀j ∈ [0, J + 1],

∀t ∈ [EC∗
j ,

LC∗
j − 1]

(12)

Constraints (12) are not strictly necessary but have been
shown to improve the solve times of the MAX-SAT solver
[15].

Soft Constraints
Now we have constraints to get feasible schedules, we add
soft clauses so the MAX-SAT solver can find a schedule with
a minimised makespan. We do this by adding a weighted
constraint for every possible start time of the end task, with
decreasing values, such that it is beneficial for the end task
to be scheduled as early as possible. I.e. we add con-
straints yJ+1,ES∗

J+1+t with weight |STW (J + 1)| − t for
t ∈ [1, |STW (J + 1)|].

3 MAX-SAT solvers
This section gives an overview of the MAX-SAT solver that is
used in this research. First, the basics of how the MAX-SAT
solver works will be explained as well as where heuristics
come into play. Then one of the most used heuristics and
the heuristic on which this research is based, VSIDS, will be
explained.

3.1 CDCL
Before we can look at the effect of heuristics we have to
know the basics of how a MAX-SAT solver works. For
this research, the in-house MAX-SAT solver of the faculty
was used. It is based on Conflict Driven Clause Learning
or CDCL, a method first proposed by Marques-Silva and
Sakallah [10; 9] and Bayardo and Schrag [11], which in turn
is based on the DPLL algorithm already introduced in the
1960s [16; 17].



The DPLL algorithm can be described in several steps.
First, it selects a literal and assigns a truth value to it, which
literal gets selected is determined by the variable selection
heuristic. Then it uses unit propagation to simplify the re-
maining clauses. In this step, it recursively checks if there are
any clauses with only one unassigned literal, which means
there is only one value which makes the clause satisfied, at
which point it assigns that value to the variable. Whenever
a conflict is encountered, i.e. some clauses become impos-
sible to satisfy, it backtracks to the last decision. When all
variables are satisfied it has found a feasible solution.

The main way the CDCL algorithm improves on the DPLL
algorithm is by allowing backtracks to backtrack to earlier
decision levels. After it has performed unit propagation and
it has encountered a conflict, the conflict is analysed and used
to ”learn” a clause that prevents that conflict from occurring.
This analysis also finds the appropriate level to backtrack to,
this can possibly jump over several irrelevant decisions.

3.2 VSIDS
An important factor for the efficiency of the solver is which
variables are chosen as branching decisions [18]. Different
branching heuristics can result in considerable differences in
solve times. Many solvers (including the in-house solver, but
also for example MiniSat [8]) make use of the Variable State
Independent Decaying Sum (or VSIDS) heuristic, introduced
by Chaff [19], which uses a dynamic order of variables based
on activity.

The VSIDS heuristic works by first attaching an activity to
each variable initialized at 0. Every time a clause is learned in
the conflict analysis step of CDCL, the variables correspond-
ing to that clause get bumped, meaning their activity value is
increased. After a conflict, all the activity values are decayed,
which means they get divided by a constant. Each time a
branching decision is made the variable with the highest ac-
tivity gets chosen. Ties are usually decided randomly.

The result of this heuristic is that the solver typically
chooses variables that have recently appeared in conflicts.
This is believed to benefit the solver because these conflicts
are what drive the search process for difficult problems. Fur-
thermore, the heuristic can be implemented with a relatively
low overhead, which means only a little time is spent during
the branching decision.

4 VSIDS for the RCPSP/t
This section gives an overview of the different adaptations of
VSIDS that were studied in this paper.

A disadvantage of VSIDS is that the activity values are
all equal at the start of the search, which means the initial
decisions are random, and result in a lot of conflicts with-
out learning a lot of useful clauses. An approach to solve
this problem is by combining VSIDS with another heuris-
tic, using the other heuristic for the first branching decisions
then switching to VSIDS after some activity values have been
set, a method that has already seen success for the standard
RCPSP in [12]. Another method is to set the initial activity
values to values other than 0, based on the RCPSP/t instance
information. This is the approach of the heuristic that we will
consider.

The variables used in the encoding can be divided into
three kinds of variables: start variables, process variables and
resource variables (as explained in subsection 2.3). The far
majority of the variables are resource variables, but we ex-
pect they are usually not very good to select since each of
them only appears in a few clauses. Our VSIDS adaptation
will focus on the start variables because these variables di-
rectly influence the satisfiability and makespan.

Several ways of setting the activity values of the start vari-
ables were considered. The simplest possible adaptation is
where all initial values of the start variable activities are set
to a constant c while keeping all other activities at 0. This
will effectively result in the heuristic always selecting start
variables at the beginning of the search. Once enough con-
flicts have arisen and the start variables have decayed and the
other variable have been bumped, the other variables will also
be considered.

The other methods that are considered are methods where
the activities are set using slightly more complex methods
which are often considered for other scheduling problems.
Firstly, setting the activity values based on the size of the start
time window. Either initialising the largest windows with the
highest values, referred to as LWH, or with the smallest win-
dows initialised with the highest values, referred to as SWH.
We also considered methods based on the position of the vari-
able inside the start window. Either initialising the earliest
variables of the window with the highest values, referred to
as ESH, or the latest, referred to as LSH.

5 Experimental Setup
This section covers the experimental setup used to evaluate
the new heuristic. To properly evaluate the performance of
the different heuristics we ran experiments based on the data
from PSPLIB [13]. A detailed explanation of how the test
instances were generated can be found in [2].

In total, the PSPLIB contains twelve test sets for the
RCPSP/t, six sets with projects consisting of 30 tasks (la-
belled J30t1 through J30t6), and six sets with projects con-
sisting of 120 tasks (labelled J30t1 through J30t6). For our
analysis, we make use of the J120t set because the projects in
the J30t set were found to be too small to reliably compare
the heuristics. The J120t set consists of 6 · 600 = 3600 in-
stances. Due to time constraints, we were not able to run all
experiments on the full data set, some experiments were run
on a randomly selected subset of the experiments.

There are four main parameters used to generate the test
sets, PR, P r, FR and F r [2]. PR and P r are probabilities
that control whether a reduction is applied to a resource avail-
ability or demand respectively. Parameters FR and F r con-
trol by how much they are reduced. The values for the param-
eters can be found in Table 1. For example, for J120t1, each
availability Rkt is set to FR · Rkt = 0 with a probability of
PR = 0.05 and kept at Rkt with a probability 1−PR = 0.95.
And similarly, each demand rjkt is set to F r · rjkt = 0 with
a probability of P r = 0.05 and kept at rjkt with probability
1− P r = 0.95.

The experiments were run on the DelftBlue supercomputer
[20] with a memory limit of 32GB. For each instance, the



Table 1: Parameters used in the generation of the different test sets
J120t1 through J120t6 [2].

Set no. 1 2 3 4 5 6

PR & P r 0.05 0.1 0.2 0.05 0.1 0.2
FR & F r 0 0 0 0.5 0.5 0.5

time limit was set at 60s. During the experiments, all solu-
tions that were found that improved over the previous best
makespan were logged with the time at which they are found.

6 Results
In this section, we use figures and tables to show the results
and make observations based on the data. First, the experi-
ments on the full data set are shown using the standard VSIDS
heuristic and the simple augmented heuristic with c = 104.
Then some experiments are shown that compare the aug-
mented heuristic to other variants with different values of c
and different initialisation methods.

6.1 Simple VSIDS augmentation
In Table 2 you can see the number of proven satisfiable and
optimal instances. We see a significant difference in the num-
ber of solutions that were proven satisfiable as well as the
number of instances that were proven optimal. Using VSIDS
the solver was able to prove satisfiability for 2402 of the 3600
instances, while the augmented VSIDS heuristic was able to
prove satisfiability for 2806 instances, an increase of roughly
17%. It was also able to prove optimality for more instances,
1743 compared to 1660, an increase of roughly 5%.

Although the solver with the augmented VSIDS heuristic
solves more instances overall, it does not perform better uni-
versally. On 26 instances, the solver with the standard VSIDS
heuristic was able to prove optimality, while the solver with
the augmented VSIDS heuristic was unable to. And on an-
other 62, the solver with the standard VSIDS was able to find
a solution while the solver with the augmented VSIDS heuris-
tic did not.

Table 2: Number of proven optimal and satisfiable instances found
using standard VSIDS and augmented VSIDS and the percentage of
increase between them.

VSIDS aug. VSIDS Increase
#sat #opt #sat #opt sat opt

j120t1 405 284 461 303 14% 7%
j120t2 460 354 533 370 16% 5%
j120t3 534 464 585 479 10% 3%
j120t4 318 190 387 197 22% 4%
j120t5 319 184 409 198 28% 8%
j120t6 366 184 431 196 18% 7%
total 2402 1660 2806 1743 17% 5%

We also observe a difference between the different data
sets. Both algorithms perform better in sets 1, 2 and 3, with
FR = F r = 0 than in sets 4, 5 and 6, with FR = F r = 0.5.
But we can see that augmented VSIDS also improves more

compared to regular VSIDS on sets 4, 5 and 6, finding solu-
tions for roughly 23% more instances, but only 13% for sets
1, 2 and 3.
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Figure 3: The number of first solutions and optimal solutions found
over time for the original VSIDS and the augmented VSIDS.

In Figure 3, we see that as expected, the augmentation
mostly has an effect at the beginning of the search. In the
first 5s it is able to find a lot more solutions than the standard
heuristic, but after these 5 seconds, it slows down.

6.2 Other variants
In Table 3 you can see experiments that were run for the aug-
mented VSIDS heuristic with different values for the start
variable activities c. They were all run on the same subset
of 180 instances of the J120 set. You can see that while there
is a big difference with c = 0 compared to the other values of
c, all values c > 0 achieved very similar results.

Table 3: Number of proven satisfiable and optimal instances found
for different values of c out of 180 instances.

c 0 1 10 102 103 104 105 106 107 108 109 1010

#sat 114 142 140 144 144 140 141 141 139 144 141 145
#opt 82 84 83 86 85 83 85 85 85 83 83 86

In Table 4 you can see the results of an experiment with
negative values for c. Negative values of c essentially have
the same result as initialising all variables except the start
variables. You can see that this does not seem to change the
results significantly compared to c = 0.

Table 5 shows the results of experiments using the differ-
ent methods to initialise the start variables as described in
section 4. The different methods seem to have no significant
difference in performance compared to the simple method of
setting all start variable activities to a constant.



Table 4: Number satisfiable and proven optimal instances found for
different values of c, including negative values, out of 500 instances.

c −104 −1 0 1

#sat 323 328 319 385
#opt 230 237 232 242

Table 5: Number of satisfiable and proven optimal instances found
for different variants of the augmented VSIDS. Details about the
different variants can be found in section 4

.
mode c = 0 c = 104 ESH LSH LWH SWH

#sat 317 384 372 382 383 376
#opt 233 241 240 242 239 243

7 Responsible Research
This section reflects on the ethical aspects of this research and
discusses the reproducibility of the methods used.

To make sure the results are reproducible, all methods have
been thoroughly explained throughout the report and all nec-
essary information has been made public. The data sets that
were used are publicly available in PSPLIB [13]. How the
data sets were converted to WCNF encodings can be found
in subsection 2.3. And, the heuristics that were compared in
this research are explained in detail in section 4, so they can
easily be implemented by someone who wants to validate the
results.

The raw data that was collected during our experiments can
be found in a public repository1, so they can be analysed and
critiqued by anyone. They have not been altered in any way,
and by using the full data set we have made sure the data was
not cherry-picked and accurate conclusions could be drawn
from them.

8 Discussion
The experiments show that the augmented VSIDS heuristic
does improve the results of the solver compared to the stan-
dard VSIDS heuristic. Looking at Figure 3 it is likely due
to the solver choosing better variables at the beginning of the
search, seeing as that is when it is finding more solutions.
The bigger increase of solutions in sets 4, 5 and 6 might be
due to them having comparatively more resource variables.
This is because the resource availabilities and demands are
only halved instead of being set to zero. These extra re-
source variables could be the reason these sets are harder to
solve, but also increase the effect of the augmentation since
the augmentation works by increasing the activity values of
start variables compared to process and resource variables.

Curiously we see very little difference in the way we set
the start variable activities, with both different values for c
and completely different initialisation methods. For different
values of c, it does not seem to matter as long as c is bigger
than 0. This probably means that the very first decisions have
the biggest influence since this is when these heuristics still
behave equally. This could be because after the first conflicts

1https://github.com/t-lenssen

arise, the start variable values might increase more than the
other values anyway, so having them start even higher has
little impact. This would also explain why setting the start
variables activities also has little impact since they would then
also just influence the very first decisions.

Setting the value of c negative, which essentially has
the same effect as increasing the other variable activities,
achieves very similar results to c = 0 and does not seem to
hurt the performance any further. This could be because there
are many more resource variables than start variables, thus
when c = 0 VSIDS is already far more likely to first select re-
source variables and it would not change much if c < 0. If the
first variables that get selected have the biggest influence on
the performance, this small difference in performance would
thus make sense.

If we compare our results to the previous exact results in
[6], we see that our method using MAX-SAT does not per-
form as well as their method using SMT for finding solutions.
They were able to find a solution for nearly all instances of
J120t even with very little time, while the MAX-SAT solver
with the augmented heuristic was only able to find solutions
for 2806 instances out of 3600. For finding optimal solutions,
however, the results are closer to the SMT method. We found
1743 optimal solutions, while [6] was able to find 1932 op-
timal solutions for 60s per instance. It is important to note
however that this might not be an accurate comparison since
both experiments were run in different environments.

9 Conclusions and Future Work
In this paper, we have analysed an adaptation of the VSIDS
heuristic for the resource-constraint project scheduling prob-
lem with time-dependent resource availabilities and demands
(RCPSP/t). By setting initial values for the VSIDS activ-
ity values, we designed a problem-specific heuristic for the
RCPSP/t. The experiments showed that the adapted heuris-
tic allowed the solver to find more solutions in the same time
span, finding solutions for 78% of the instances and finding
the optimal solution for 48% of the instances compared to
66% and 46%, respectively, for the standard VSIDS heuris-
tic.

We also analysed in which way the new heuristic improves
on the standard VSIDS heuristic. We found that it mostly
improves the beginning of the search and that after a while
it does not have any significant effect. We also found it
increases the performance the most for the test sets with
FR = F r = 0.5.

We also compared different methods of initialising the start
variable activities to see if we would be able to achieve further
improvement, but we saw very little difference. Both chang-
ing the constant that we set the activity values to, and using
totally different initialisation methods, seem to have very lit-
tle effect on the performance.

Future research could explore if the initial values could be
improved further. While we did test some different methods
in this research and saw very little difference, there are many
other ways to initialise the variables that could have a signifi-
cant effect. Other potential improvements to VSIDS could be
changing the bump amount per variable based on the problem

https://github.com/t-lenssen


information. It would also be interesting to see the results
of using a different heuristic for the first decisions and then
swapping to VSIDS later.

Another area for future research could be using a similar
method to improve VSIDS for other RCPSP extensions, and
possibly other totally different problems. A lot of problems
can be solved with MAX-SAT solvers. If you were able to
generalise the way we choose initial activities it might be pos-
sible to achieve similar improvements for other problems as
well.
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