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Foreword

Thousands of spacecraft have been launched into space since the launch of Sputnik
in 1957. We have landed men on the moon, visited planets in our Solar System with
robotic probes, stationed scientists on the International Space Station, established
global telecommunication and navigation systems, and nowadays, we are setting
new goals in exploration, and consequently, despite all the reached accomplished,
we are facing new, as well as old, challenges. Among them, the design of space-
craft structures subjected not only to mechanical, vibrational and acoustic loading,
but also to extreme thermal conditions, requires new analysis techniques, and the
consideration of thermal and structural analyses at the same time.

This book covers the topics necessary to the understanding of the thermoelastic
behaviour of spacecraft structures, describing the essential steps of the analysis and
verification, without missing important aspects such as handling uncertainties in the
thermoelastic analysis process. Each topic is presented in the book with the necessary
background, the up-to-date perspective and the essential theory—practical connection,
thanks to the extensive industrial experience of both authors.

This book will be of immense help to thermal and mechanical engineers who are
looking for concrete answers of their problems and, at the same time, to graduate
students who would like to acquire knowledge in the fascinating world of the space
structures.

October 2020 Chiara Bisagni
Professor of Aerospace Structures

Delft University of Technology

Delft, The Netherlands
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Preface

The authors, Jaap Wijker and Simon Appel, have been working together since
October 1986. In that month, Simon Appel arrived as a trainee at the Space division of
Fokker Aircraft in the group led by Jaap. In those years, the group was running a tech-
nology development activity for ESA-ESTEC of which part of it aimed at developing
an interface between the most important lumped parameter thermal analyser of those
days, SINDA (“Systems Improved Numerical Differencing Analyser”) and the finite
element code used in the structures section at ESTEC, which was ASKA (“Automatic
System for Kinematic Analysis™). In this activity, the foundation was established
of the PAT method, the prescribed average temperature method, that you will find
explained in this book and its implementation in the SINAS software: SINda—ASka.
The mentioned technology development was initiated by Steve Stavrinidis, and the
follow-on developments were run under the supervision of Michel Klein.

Jaap with his team members could be called the founding fathers of the PAT
method. In the years after, Simon matured the implementation of the method in the
SINAS software and the interface with the commonly used finite element tool MSC
Nastran. The tool has been used at ESTEC and at Fokker Space and Systems. These
were the years that Jaap and Simon worked on several thermoelastic problems.

In 2001, Simon joined the company that is called today ATG Europe and has been
supporting ESA-ESTEC since then. An important part of his time has been, and
still is, dedicated to thermoelastic problems and further development of the SINAS
software. Jaap kept working for Fokker Space as it was called in the meantime, but
also started to lecture at the Delft Technical University. Inspired by his students, he
got motivated to write several books on spacecraft structures and related structural
dynamics. Despite his retirement in 2009, Jaap continued writing books and managed
even to obtain his Ph.D. degree.

The never-ending drive of Jaap to share his knowledge and keep on studying made
him to contact Simon to join him writing the book that is now in your hands on the
subject of thermoelastic simulations. It is the subject with which the relationship
between Jaap and Simon started in the 1980s.

Jaap and Simon enjoyed writing this book. They know there is much more to
discuss, and it will never be finished, but at some point, the time is there to share the
results with you as reader.



< Preface

Whether you are a graduate student or an experienced senior thermal or mechan-
ical engineer, Jaap and Simon hope you find some useful information in this book.
They also invite you to send feedback and suggestions that they may consider for a
potential next edition.

Velserbroek, The Netherlands Jaap Wijker
Voorhout, The Netherlands Simon Appel
May 2021
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Perspective

How did the Universe originate, what are its fundamental physical laws and what is
it made of? How does the Solar System work? What are the conditions for planet
formation and the emergence of life within and outside our Solar System? How
can we monitor, understand and preserve the delicate ecosystem of our planet and
how can we protect life on Earth? These are some of the fundamental questions we,
as human beings, are trying to answer since hundreds of years, and these are the
questions the European Space Agency (ESA) is addressing within its world leading
space science programmes and Earth observation missions.

With our “time-machine” Planck and his astronomy observer companion
Herschel, we changed our view of the Universe, by revealing the relic radiation
left by the Big Bang to an unprecedented level of accuracy, measuring fluctuations
in temperature of a few millionth of degree, hence tracing the birth of stars and
the evolution of galaxies throughout time. Gaia, the billion-star surveyor, has been
making precise measurements of the positions, motions and characteristics of stars
in order to create a three-dimensional map of our Milky Way and explore the past and
future evolution of the Galaxy. PLATO will soon hunt Sun—Earth analogue systems in
relatively nearby stars, identifying and studying thousands of exoplanetary systems,
with emphasis on discovering and characterising Earth-sized planets in the habitable
zone of their parent star. Closer to us, the Copernicus Earth observation programme
is taking the pulse of our planet and is providing decision-makers with indisputable
data in order to understand global changes and intervene effectively to resolve them.

These are some of the most recent missions ESA has developed in an attempt to
shed light in the understanding of the Universe and our home, the Earth. They have
posed exceptional challenges to the thousands of European engineers and scientists
working in industry, academia and in the agency for the development, the verification
and the operation of these scientific jewels. Space is probably the most demanding and
hostile operational environment in which human engineering products are required to
function. Without any repair or maintenance option, space structures shall guarantee
years of performances reaching incomparable levels of accuracy and stability of the
telescopes and optical instruments on-board. And, this shall be ensured despite the
very demanding mechanical loading during launch and separation and the prohibitive
temperature environment and fluctuations encountered in-service.
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Although more and more the design of our space and Earth exploring satellites is
driven by thermomechanical performances, hardly any textbooks or university classes
are devoted to this fundamental discipline. Many good references exist addressing
spacecraft thermal analysis and control, and also, a vast amount of literature can
be found on the different satellite structural engineering subjects. However, these
sources only cover the relevant topics within the context of the respective disci-
plines. In some cases, the interaction with the other subject is briefly discussed, but
mainly from the perspective of their own domains. Moreover, the thermal and struc-
tural disciplines for the development of spacecraft structures and payloads have been
traditionally supported by two distinct entities in most space engineering organisa-
tions, and in addition, both disciplines are using different analysis methodologies
and associated numerical tools.

Thermomechanical and thermoelastics analyses aim to predict the deformations
and the stresses affecting a structure or a component due to temperature fields
and variations. In order to have a complete understanding of the problem, the two
above-mentioned disciplines need to be addressed in a synergistic and cross-sectorial
manner. A structural finite element model for thermoelastic predictions of a structure
under a given thermal environment cannot be precisely established without a detailed
knowledge of the temperature fields described by the thermal model. Conversely, a
thermal engineer needs to have an adequate understanding of what are the temperature
results and the resolution required by the structural model for reliable analysis.

The present book aims at capitalising the vast experience of the authors in the
field of thermoelastic predictions applied to spacecraft structures and provides a
coherent approach to solve practical and real-life problems. While analysing the
different modelling and verification objectives of the thermal and structural domains,
the authors address the current state-of-the-art approaches and limitations for both
analyses and provide a suitable and verified method for addressing both disciplines
in a synergistic fashion. This also includes specific numerical tools for transferring
results from the structural to the thermal numerical environment and vice versa.

The book is most welcome in the space community and will provide a unique
guidance to senior and the younger generation of engineers involved in the struc-
tural and thermal analyses of sophisticated spacecraft structures and instruments.
It can constitute a sound basis for the building of a dedicated European Coopera-
tion for Space Standardisation (ECSS) standard related to thermoelastic analysis and
verification, ultimately leading to more performing space missions, improving our
understanding of the Universe and contributing to a better life on our planet.

May 2021 Tommaso Ghidini
Head of the Structures, Mechanisms

and Materials Division

European Space Agency

The Hague, The Netherlands
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Acronyms and Abbreviations

Abbreviations

ASM Aerospace Specification Metals

AU Astronomical unit

CNES Centre National d’Etudes Spatiales

CPPT Centre-Point Prescribed Temperature method
CSA Canadian Space Agency

CTE Coefficient of thermal expansion

DOF Degree of freedom

ECSS European Cooperation for Space Standardisation
ESA European Space Agency

ESTEC European Space Technology Center

FE Finite element

FEA Finite element analysis method

FEM Finite element model

FoS Factor of safety

GMM Geometric mathematical model

HST Hubble Space Telescope

IDW Inverse distance weighting

IR Infrared

JAXA Japan Aerospace Exploration Agency
KARI The Korean Aerospace Research Institute
KSASS Korean Society Aeronautical Space Science
LEOP Launch early orbit phase

LHS Latin hypercube sampling

LoS Line of sight

LPM Lumped parameter method

MCRT Monte Carlo ray tracing

MCS Monte Carlo sampling

MoS Margin of safety

MPC Multipoint constraint
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XXii Acronyms and Abbreviations

NAFEMS National Agency for Finite Element Methods and Standards

NASA National Aeronautical and Space Administration
PAT Prescribed average temperature

PCB Printed circuit board

PCL MSC.Patran Command Language

PEM Point estimates moments

RBE Rigid body element

RF Radio frequency

SM Service mission

SRC Standardised regression coefficient

STOP Structural, thermal and optical performance
SWOT Surface Water Ocean Topography

TMM Thermal mathematical model

TN Thermal node

TRP Temperature reference point

Symbols

A Area, cross-section (mz)

a Radius (m), constant, coefficient, [A ]-matrix term
[B] Interpolation matrix

b Radius (m), width (m)

C Heat capacitance

[C] Conduction matrix

CTE Coefficient of thermal expansion (n/m/°C, m/m/K)
cp Specific heat (J/kg/°C, J/kg/K)

°C Centigrade ( degree Celsius)

E Energy (W)

[E] Unitary diagonal matrix

[D] Elasticity tensor

E Young’s modulus (Pa)

F Force (N), view factor

(Fr) Equivalent thermal load vector

F(x) Function of x

F(x, y) Functionofx, y

F Hottel’s total view

f Frequency (Hz)

G Shear modulus (Pa), conductance (W/°C,K)

Gye Solar constant (W/m?)

Gy, Transformation matrix

GL Conductor, thermal conductance coefficient (W/°C,K)
GR Radiative conductor

h Height, thickness (m), convective heat transfer coefficient (W/m/°CK)



Acronyms and Abbreviations XXiii

Panel height

Second moment of area (m*), integral
Joules, Jacobian, thermal functional
Kelvin

Stiffness matrix

Conduction matrix

Conductivity coefficient (W/m/K, W/m/°C)
Normal distribution

Length (m)

Reference length (m)

Log normal distribution

Discrete mass (kg)

Equivalent thermal moment (NM)
Mass matrix

Modal effective mass (kg)

Number of samples

Pressure (Pa)

Thermal force (N)

heat transfer rate

Solar constant (W)

Heat flux (W/m?)

Heat flow vector

Radius (m)

Distance (m), resistance (°C/W, K/W), residual, Rayleigh quotient
Temperature (°C, K)

Reference temperature (°C, K)

Time (s), thickness (m)

Radius (m)

Displacement m, stochastic variable
Uniform distribution

Strain energy

Matrix of coefficients (MPC equations)
Displacement (m)

Volume (m?), coefficient of variation
Watts

Deflection (m)

Coordinate, variable

Coordinate, variable

Stochastic variable
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Acronyms and Abbreviations

Coefficient of thermal expansion (m/m/K, m/m/°C)

(Thermal) Expandability (m/m/°C), thermal stress modulus (Pa), constant
Sensitivity index

(Thermal) Emittance (-), emissivity, (engineering) strain (m/m)
Kronecker delta

Displacement (m), differential operator, virtual (displacement)
Difference, evaluated (temperature), prescribed displacement
Isoparametric coordinate, dummy variable

(Ensemble) average value

Bond thickness (m), isoparametric coordinate, dummy variable
Lamé modulus (Pa), constant

Lagrange multiplier

Poisson’s ratio (-)

Potential energy

Component stress tensor (Pa)

Boltzmann constant (W/m2/K*), standard deviation, constant
Angle

Shear stress (Pa)

Rigid body mode

Probability function

Trial function, (nodal) shape function

Eigenvalue
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