
Extending CBS to efficiently solve MAPFW

Noah Jadoenathmisier1
Supervisors: M.M. de Weerdt1 , J. Mulderij1

1Delft University of Technology
N.J.M.Jadoenathmisier@student.tudelft.nl,

{M.M.deWeerdt, J.Mulderij}@tudelft.nl

Abstract

Multi-Agent Path Finding with Way-points
(MAPFW) is the problem of routing agents
through a graph past a set of waypoint to a goal
location, without agents colliding, with the shortest
combined path length. This problem has to the
authors knowledge not been investigated yet even
though it has implications in train scheduling
problems and video game artificial intelligence. In
this paper an extension to Conflict Based Search
(CBS), an algorithm that solves Multi-Agent Path
Finding problems without waypoints, is proposed
to solve MAPFW problems, named CBSW. The
effect of extending the Bypass optimization and
the Prioritizing conflicts optimization for CBS to
CBSW is investigated and a new optimization that
improves the performance of CBSW in corridors
is proposed. CBSW is compared with other
MAPFW solvers that have been developed made
simultaneously, and experimental result show a
large speed up using CBSW on benchmarks with
large maps or many waypoints.

1 Introduction

Multi-Agent Path Finding with Way-points (MAPFW) is an
extension of the Multi-Agent Path Finding problem (MAPF).
MAPF is the problem of finding a set of paths for a set of
agents on a graph from start to goal locations in a way that
the agents never are on the same vertex at the same time,
and never cross the same edge at the same time [1]. In the
MAPFW problem each agent also has a set of waypoint lo-
cations that it has to visit before ending at its goal location.
This paper focuses on optimal solutions. A solution is opti-
mal if the combined length of the paths for all the agents is
minimal. Since MAPF is NP-hard [2], and MAPF is a restric-
tion of MAPFW, it is MAPFW without waypoints, MAPFW
is also NP-hard.

An optimised solver for MAPFW is currently needed because
it can aid in the planning of trains [3]. This is now per-

formed manually, which is very time consuming. An opti-
mized solver could also be used in games for the computer’s
artificial intelligence [4].

The MAPF problem has been deeply researched. Algorithms
created that solve MAPF problems include A*-OD-ID [5],
Branch-and-cut-and-price [6], Multi-label A* [7], Increasing
cost tree search [8] and Conflict Based Search (CBS) [9].
These all have their own strengths and weaknesses. To the au-
thors knowledge no such research has been done yet to solve
the MAPFW problem.

Because of the the promising results that have been achieved
with CBS, and improvements thereof, CBS serves as the
base of the algorithm that is presented in this paper. In the
proposed extension, Conflict Based Search with Waypoints
(CBSW), dynamic programming is used to calculate efficient
heuristics. The Bypass optimization [10] and the Prioritizing
conflicts optimization are used to speed up CBSW. A new op-
timization, the Corridor constraint optimization, is proposed,
that helps with solving train routing problems. The per-
formance is evaluated by comparing it with A*+OD+ID+W
which is a solver based on A* with operator decomposition
and independence detection, and BCP-W which is a solver
based on Branch-and-cut-and-price. Both these solvers have
been developed at the same time as CBSW and are currently
the only other optimal MAPFW solvers [11] [12]. Experi-
mental results show performance gains by using CBSW over
the the A*-OD-ID-W and BCP-W in benchmarks that have
many waypoints, and/or use large graphs.

In this paper, first the MAPFW is explained and a defini-
tion of MAPFW is given. Then CBS, the base algorithm for
CBSW is explained. Next the new low-level solver that han-
dles waypoints is explained. After this, different optimiza-
tions are proposed. Those optimizations are compared in the
experimental results section. In this section CBSW is also
compared to A*+OD+ID+W and BCP-W. Then a reflection
is given about the reproducablility and ethical issues concern-
ing this research. After this the limitations to this paper are
stated. Finally a conclusion and suggestions for future work
are given.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



2 Problem definition

Multi-Agent Path Finding with Waypoints (MAPFW) is an
extension of the Multi-Agent Path Finding problem (MAPF).
In the MAPF problem [1] there is a set of k agents, labeled
a1, . . . , ak and a graph G = (V,E). Each agent ai has a start-
ing location si and a goal location gi. Each agent is required
to move from its start to its goal location. To get there, each
time step every agent can either move to a neighbouring ver-
tex on the graph, or stay on the same vertex. It is not allowed
for two agents, ai, aj to be at the same vertex v at time t. This
is called a vertex conflict, and denoted by 〈ai, aj , v, t〉. It is
also not allowed for two agents to cross the same edge in op-
posite directions in the same time step. This is called an edge
conflict, and with agent ai starting on vertex v and moving
to vertex u, and agent aj starting at vertex u and moving to
vertex v both starting at time t and arriving at time t + 1 is
denoted by 〈ai, ab, v, u, t〉. The extension to MAPF assigns a
set of way-point vertexes wpi = {v1, . . . , vk} to each agent
ai. All agents need to pass all of the waypoints that they are
assigned to on the path to their goal. There are no restrictions
on the order in which the agents need to visit their waypoints.

3 Conflict based search

The basic CBS algorithm consists of two parts, the high, and
low-level algorithm. In the high-level algorithm, a tree is con-
structed. Each node N consists of a solution N.Sol that con-
sists of all the paths of all the agents, a cost N.Cost and a set
of constraints N.Const. There are two types of constraints,
vertex constraints, where agent a is not allowed to be on ver-
tex v at time t, denoted by 〈a, v, t〉 and edge constraints where
where agent a is not allowed to cross an edge (v, u) at time
interval 〈t, t+1〉, denoted by 〈a, v, u, t〉. The root node of the
tree is generated by generating a solution using the low-level
algorithm. This algorithm plans for each agent individually,
and does not take other agents into consideration. The root
does not have any constraints. The cost is calculated by sum-
ming the lengths of all individual paths of all agents. If there
is a conflict between 2 agents, 2 child nodes with constraints
are generated. These constraints prevent the same conflict
from occurring in the child nodes.

In case of a vertex conflict, 〈ai, aj , v, t〉, the child nodes both
have a vertex constraint. Respectively 〈ai, v, t〉 and 〈aj , v, t〉.
In case of an edge conflict 〈ai, ab, v, u, t〉, the child nodes
both have an edge constraint 〈ai, v, u, t〉 and 〈aj , u, v, t〉 re-
spectively. Both child nodes will use the low-level algorithm
again to re-plan the route of the constrained agent honouring
its constraints, including the new constraint. When no more
conflicts are present, a solution is found. Nodes are expanded
in a best first order based on their cost. This ensures that the
solution that is found is optimal.

The low-level algorithm uses A* to find a path for an agent.
The state space contains the location of the agent, and the
time. The time is necessary because the constraints added
to agents are only applicable on a specific time step. The

heuristic used to speed up the search is the length of the short-
est path to the goal from the current position, when ignoring
all the constraints. This heuristic function can be easily pre-
computed and stored in memory for all grid locations and all
goal locations.

The number of nodes that has to be expanded in the high-level
search increases when the number of conflicts that occur be-
cause of the low-level search increases. To reduce the number
of conflicts in the low-level search, a conflict avoidance table
is used. While planning a path for an agent, if two or more
nodes have the same cost, ties are broken by expanding the
node that results in the lowest number of conflicts.

4 A new low-level solver

The low-level algorithm of CBS uses A* to find a path for an
agent, that does not conflict with any of its constraints. This
A* search needs a new state space, since for MAPFW prob-
lems, it is necessary to cross all the waypoints of the agent
before ending at the goal location. Therefore the nodes of the
A* search should contain:

• Time
• Location
• Unvisited waypoints

Adding waypoints to the state space greatly increases the
number of elements in the search space for A* with a fac-
tor of 2n for an agent with n waypoints. Using the heuristic
of traditional CBS, the shortest path length to the goal, even
small problems become infeasible because of this increase in
the number of elements in the search space. Therefore a new
heuristic is needed.

In MAPFW the length of the shortest path to the goal loca-
tion, when ignoring all other agents also includes all the way-
points. Since traditional CBS uses the length of the short-
est path to the goal as its heuristic, ignoring the constraints,
CBSW uses the length of the shortest path that passes all way-
points and ends up at the goal location while ignoring the
constraints as its heuristic.

Given n waypoints, the powerset contains 2n combinations
of unvisited waypoints. The heuristic can therefore not be
pre-computed for all sets of unvisited waypoints for large n,
as this would take to much computing time and memory. It
would also not be beneficial, since in practice most unvisited
waypoint combinations will never be considered.

To solve this problem only the following is pre-computed

• The distance from any location to any goal location
• The distance from any location to any waypoint location

Now, on every step of A*, the heuristic value can be com-
puted using a modified Traveling Salesperson Problem (TSP)



solver [13]. This TSP solver receives a starting waypoint
from the set of unvisited waypoints, the set of unvisited way-
points and the goal location. Then it returns the length of
the shortest path that starts on the starting waypoint, crosses
all the other waypoints and ends at the goal location, while
ignoring other agents.

It is unknown which waypoint should be visited first, but it
has to be one of the waypoints in the open set. Given one
of these waypoints as a candidate for the next waypoint that
should be visited, wp1, the minimum length of the path from
the current positions past all waypoints to the goal, is calcu-
lated by taking the pre-computed minimum distance from the
current position to wp1, and adding to that the minimum path
length from that waypoint past all other waypoints to the goal
location which can be computed with the TSP solver.

This length is calculated for all open waypoints as wp1. The
shortest of these path lengths is the shortest path from the start
to the goal past all waypoints, and is thus used as the heuristic
value.

Algorithm 1: Waypoint heuristic
Result: Heuristic value
Input: current location, unvisited waypoints, goal;
best = inf;
foreach waypoint in open waypoints do

dist = distance(current, waypoint);
dist += TSP(waypoint, open waypoints, goal);
best = min(best, dist)

end
return best

To save on computing time the TSP function is memoized
[14]. This can be done with minimal memory overhead since
this function is called repeatedly mostly with the same argu-
ments. On randomly generated 64 by 64 4-connected grid
based benchmarks with 20% obstacles as described in the re-
sults section. The memoization hit rate can be upwards of
99.9%.

This distance is a lower bound on the total distance that the
agent should still travel when it also needs to avoid other
agents, and therefore can be used as an admissible heuristic.
For problems with many waypoints, but few conflicts, solv-
ing TSP dominates the run-time of the algorithm. Therefore
careful attention should be payed to its implementation. Two
TSP solving algorithms are tested and compared.

5 TSP solver

5.1 Branch and bound

The first algorithm that was tested to solve TSP uses Branch
and bound [15]. Here, a bidirectional distance matrix is first
generated. This matrix consists of all the distances between
all the unvisited waypoints, and the unvisited waypoints and

the goal location, collectively named cities. The distance
from any city to itself is set to infinity and the distance from
the goal location to any of the waypoints is also set to infinity,
except for the starting waypoint. That distance is set to zero.
This ensures that the shortest tour that is found goes from the
start waypoint, past all the other waypoints to the goal lo-
cation and back to the starting waypoint. Since the distance
from the goal location to the starting waypoint is zero, the
length of this tour is equal to the length of the shortest path
from the starting waypoint past all the other waypoints to the
goal location.

After generating the distance matrix, a search tree is gener-
ated. Every node n, of the tree contains a reduced distance
matrix n.dist, a position n.pos, a cost n.cost and , a depth
n.depth. The cost contained in each node represents a lower
bound on the length of the shortest tour. In the reduced dis-
tance matrix for n the cost are stored of going from each city
to each other city minus the cost that has already been ac-
counted for in n.cost. The position is the latest city that has
been visited, and the depth is the amount of cities that have
already been visited.

In a tour, every city has to be preceded by another city and,
every city must be followed by another city. For every city, n,
a lower bound can be given to the cost of the edge that con-
nects n with the city before n in the tour. This lower bound is
named entern. A lower bound can also be given to the cost of
the edge that connects n with the city after n in the tour. This
lower bound is named exitn. entern is calculated by taking
the lowest value in the row corresponding to n in the distance
matrix. exitn is calculated by taking the lowest value in the
column corresponding to n in the distance matrix.

To reduce a distance matrix distmat, for every city c, enterc
is subtracted from every element in the row corresponding
to c in distmat. This is followed by subtracting exitc from
every column corresponding to c in distmat for every city
c. The reduction cost is the sum of enterc for all cities c
added to the sum of exitc for all cities c.

The root node r of the search tree, contains the result of
reducing the distance matrix as r.dist, and its cost is the
reduction cost of the distance matrix. The position is the
starting waypoint and the depth is zero.

Nodes are expanded in a best first order in terms of their
cost. When expanding a node n, all non-visited cities are
considered. These non-visited cities are found by looking at
n.dist. The non-visited cities are all the cities w for which
the edge in n.dist from n.pos to w does not have a cost
of infinity. For every city u that is not visited yet, a new
node child is generated. The depth of child is d plus one,
and the position of child is u. The reduced distance matrix
n.dist copied to child. All the elements in the column of
n.pos and in the row of u in the distance matrix of child are
set to infinity. This matrix is reduced, with a reduction cost
reduction cost. Finally, the cost of child is set to the sum of
cost, reduction cost, and the value corresponding to going



from n.pos to u in n.dist.

If a node is expanded with a depth equal to the number of
cities, its cost is the solution for the cost of the shortest tour,
and, therefore equal to the length of the shortest path that
starts on the starting waypoint, crosses all the other waypoints
and ends at the goal location.

Algorithm 2: Branch and bound TSP
Result: Length of the shorthest path
Input: node;
queue = PriorityQueue();
queue.put(priority=node.cost, element=node);
do

node = queue.get();
if node.depth == node.dist.size-1 then

return node.cost;
foreach nextPos reachable from node.pos do

nextNode = generateNewNode(node, nextPos);
nextNode.reduceDistanceMatrix();
nextNode.updateCost();
queue.put(priority=nextNode.cost,

element=nextNode);
end

while not queue.isEmpty();

5.2 Dynamic programming

The second algorithm that was tested to solve TSP uses dy-
namic programming [16]. Here a queue filled with nodes is
used to find the length of the shortest path from any way-
point, past all the other waypoints to the goal simultaneously
by working backwards starting from the goal location. All the
distances are stored in a hashmap.

All nodes n, consist of a set of visited waypoints n.visited
and, the last visited waypoint n.last. First for every waypoint
w a node is generated with only w in its set of visited way-
points, and w as its last visited waypoint. Al of these nodes
are also added to the distance hashmap. Here the distance for
every node is given by the distance from the goal location to
waypoint w corresponding to that node.

While the queue is not empty, nodes will be popped from the
queue. Every-time a node n is popped from the queue, a new
set of nodes is generated. This new set of nodes is generated
by first finding the set of nodes that is unvisited, unvisited,
by node n, by taking the difference of the set of all waypoints,
and n.visited. For each waypoint w in unvisited, a new
node is generated. Its set of visited waypoints is the disjunc-
tion of n.visited and w. And the last visited waypoint for
this new node is w.

For every node child in this generated set of nodes, a cost,
new cost, generated by adding the cost of n as stored in the
distance hashmap and, the distance between last visited of
n and n.last. If child is not yet in the distance hashmap it is

added with new cost. If child it already has an entry in the
distance hashmap, the distance in the hashmap is updated to
be the minimum of the old distance and new cost.

When the queue is empty, the length of the shortest path from
any waypoint, past all the other waypoints to the goal is stored
in the distance hashmap. To find the distance starting from
waypoint w, a node is generated that has the set of all way-
points as its set of visited waypoints, and w as its last visited
waypoint. This node used to look up the distance in the dis-
tance hashmap.

6 Bypass optimization

The first optimization for CBSW that has been investigated is
the Bypass optimization [10]. When using the Bypass opti-
mization, CBSW is referred to as CBSW-B. When a conflict
is being resolved, without the Bypass optimization, two new
child nodes are always created and added to the high-level
search tree. This results is a rapid growth of the number of
nodes in the search tree. The Bypass optimization tries to
reduce the number of nodes in the high-level search tree by
avoiding splitting a node into two new child nodes.

Every time a node n with a conflict c is considered, if one
of the generated child nodes is a helpful bypass to n, only
that node is inserted into the high-level search tree. The other
child node is discarded.

Node bp is a valid bypass to node n with conflict c, if bp does
not have conflict c, n.Cost == bp.Cost and bp is consistent
will all of the constraints of node n.

Node bp is a useful bypass to node n with conflict c, if bp is
a valid bypass to n in respect to conflict c and the number of
conflicts in bp is strictly smaller than the number of conflicts
in n.

If a useful bypass bp is found, because the parent node of bp
had the lowest cost in the high-level search tree and bp has
the same cost as his parent node, bp has the lowest cost of all
the nodes in the high-level search tree. Because of this, it is
possible to directly consider bp as the next node in the high-
level search. This is repeated until no bypasses are found
anymore.

7 Corridor constraints optimization

CBS performs well on problems where few conflicts occur. If
there are one wide corridors in a problem, where two agents
want to pass the corridor from opposite sides, lots of conflicts
occur drastically limiting the performance of CBS.

A way to model train tracks using MAPFW problems, is to
use corridors. This is because there can not be two trains
passing a train track from opposite sides, just like there can
not be two agents passing a MAPFW corridor. There can



be multiple trains on the same track, for example if they are
moving in the same direction just like multiple agents can be
in the same MAPFW corridor at the same time.

To enable CBSW to solve problems with corridors more ef-
ficiently, the corridor constraint optimization is proposed.
When using the corridor constraints, CBSW is referred to as
CBSW-C. This optimization has two parts. The first part is to
find all the corridors in a the MAPFW problem that is being
solved. This part is done as a pre-processing step and only
has to be done once. The second part is to add a new type of
constraint to child nodes when a conflict occurs in a corridor.

7.1 Finding corridors

To find all the corridors in a MAPFW problem, first all grid
cells that are empty are considered. A grid cell is empty if it
does not contain a wall, agent starting point, agent waypoint
or agent goal location. For each of these empty cells, the
number of direct neighbours that are a wall is counted. The
direct neighbours are the cells above, below, left and right
of a cell. Every MAPFW problem is considered to be com-
pletely surrounded by a layer of cells that are walls. A set
candidates is then filled with all empty cells that have at
least two neighbours that are a wall.

After creating the candidates set, an empty set of corridors,
corrs, is initialized. A corridor is a set of cells that are all
direct or indirect neighbours. Two cells a and b in a set s are
indirect neighbours when there is another cell c in s such that
a is a (indirect) neighbour to c and b is a (indirect) neighbour
to c.

All cells in candidates are added to corrs one by one. When
adding cell a, if there are corridors in corrs that have a cell
that directly neighbours a, all corridors in corrs that have a
cell that directly neighbours a are merged, and a is added to
that set. If no such corridor exist in corrs, a set containing
only a is added to corrs.

For every corridor, the end points are found. This is done by
finding the two cells in the corridor that only have one direct
neighbour in the corridor. If no two such cells are found,
the corridor is discarded. This only happens when a corridor
forms a loop.

When the two endpoints of a corridor with cells cells set,
are found, the corridor is ordered. A new ordered list
cells orderedlist is used for this. It is initialized with one
of the end points of the corridor as its only element. While
cells set is not empty, the only cell in cells set that is
a direct neighbour to the last cell in cells orderedlist is
moved from cells set to cells orderedlist. When cells set
is empty, cells orderedlist contains all the cells of the cor-
ridor such that all two cells that are next to each other in
cells orderedlist are direct neighbours.

Given a ordered list l representing a corridor and a cell c that
is a member of l, it is possible to calculate the distance from

(a) Two agents attempt to move
to the same vertex

(b) A conflict occurs

(c) If the red (right) agent is al-
lowed to cross the corridor first,
the green (left) agent has to
move out of its way

(d) The red agent needs to move
away from the entrance

(e) The green agent can move
into the corridor

(f) The green agent can cross the
corridor

Figure 1: Example of a corridor conflict and its resolution

both endpoints of l to c. For the endpoint in the head of l, this
is done by taking the position of c in l. For the endpoint in
the tail of l, this is done by subtracting the position of c in l
from the length of l minus one.

7.2 New constraints

When a conflict is being resolved, and this conflict occurs in
a corridor this is called a corridor conflict. When a corridor
conflict is found, a new constraint, called an exit constraint,
is added to the conflicting agents. This constraint uses the
fact that it is not possible for both agents to cross the corri-
dor starting from opposite sides at the same time. Exit con-
straints enforce that an agent can not cross a corridor com-
pletely without constraining it to much. An exit constraint
prevents an agent a form leaving cor, with endpoints entr
and exit, at exit between time ts and te, if it entered cor at
entr. This constraint is denoted by 〈a, cor, exit, ts, te〉.

To guarantee optimally, four child nodes bust be generated
when a corridor conflict is being resolved. In every child
node one of the conflicting agents gets an exit constraint, and
one, possibly the same agent gets a vertex or edge constraint
depending on the nature of the conflict. This gives four com-
binations, and therefore four child nodes.

The ts is set to the time of the conflict. te is set as the time
of the conflict plus the distance from the conflict location to
the entrance used by a of the corridor, plus the length of the
corridor plus two (In case of an edge conflict that occurs in
a corridor, the conflict time plus one is used here). This te is
chosen because that is the earliest time that a is able to exit the
corridor on exit if the other agent crosses the whole corridor
first. To get to the end of the corridor the other agent still



needs to travel the distance from the conflict location to the
entrance used by a as seen in Figure 1c. Then it needs to move
out of the way for a to be able to move into the corridor as
seen in Figure 1d,1e. This takes two time steps. Finally agent
a needs to cross the whole corridor which takes as many time
steps as the corridor is long as can be seen in Figure 1f.

Even though the branching factor is increased from two to
four, in practice often some of the child nodes get a signifi-
cantly higher cost because of the stricter constraints. These
child nodes will therefore not be expanded before all nodes
with a lower cost have been expanded. This reduces the num-
ber of extra nodes in the search graph that get added because
of the higher branching factor.

8 Prioritizing conflicts

The third optimization that has been investigated is the Prior-
itizing conflicts optimization [17]. Here an extension for this
optimization that works with MAPFW problems is proposed.
The performance of CBSW is highly dependant on the order
in which conflicts are chosen to be resolved in the high-level
algorithm. Without the Prioritizing conflicts optimization the
first conflict that is found is used. It is better to prioritize con-
flicts that can not be resolved without adding cost to the solu-
tion, called cardinal conflicts. To identify cardinal conflicts,
the primary data structure that is used in Increasing Cost Tree
Search, called a multi-value decision diagram (MDD) is used
[8]. A MDD is a directed acyclic graph, in which all paths
that lead an agent to its goal within a given budget are stored.

The way that an MDD efficiently stores all paths is by using
layers. Every layer contains a node for all possible states that
an agent can be in, in the time-step corresponding to the depth
of the layer. All nodes, with state s, except for the node in
the final layer, are connected to all nodes in the next layer
which have a state that can be reached from s. For MAPF
problems the state only contains the location of an agent. For
MAPFW problems states also contain the set of waypoints
that has already been visited.

The first layer of a MDD for agent a, contains a single node,
startNode. The position of a in the state of this node is
the starting position of a. For MAPFW problems the set of
visited waypoints is empty for the state of this node. The last
layer of a MDD for a also contains a single node, goalNode.
The position of a in the state of this node is the goal location
of a. For MAPFW problems the set of visited waypoints in
the state of this node is the set containing all the waypoints of
a.

In order to construct an MDD for an agent a, a depth limited
breadth first search is performed starting from a state with the
start position of a, and an empty set of visited waypoints. The
depth limit is set to the cost of the path of a in the high-level
search. During this search every time a node is explored, the
TSP based heuristic function is used to check if the length of
the shortest path past all the waypoints that are not yet visited

Figure 2: An example of a randomly generated maze of size 16×16
with three agents and five waypoints per agent including the paths
of an optimal solution

in the state of that node, to the goal location is longer than
there are time steps left before the depth limit is reached. If
the shortest path is longer than there are time steps left before
the depth limit is reached, the node is discarded. This reduces
the number of nodes that are generated that do not lead to the
goalNode before the depth limit is reached.

When all nodes have been generated all nodes in the last layer
are discarded except for goalNode. When this is done, all
nodes that do not lead to another node, except for goalNode,
are discarded. This is done by looping over all layers in a
backwards order starting at the second to last layer.

When in this MDD the layer that corresponds to a time-step
contains only one node, or all the nodes in that layer contain
the same location in their state, a can not be on any other loca-
tion on that time-step without increasing the length of its path.
If the conflict location is, on the time of the conflict the only
location that that can be used without increasing the length of
the path for both agents, the conflict is a cardinal conflict. If
no cardinal conflicts are found, conflicts where at least one of
the agents has to use the conflict location at the time of the
conflict, called semi-cardinal conflicts, are prioritized.

9 Experimental results

To assess the performance of CBSW extensive experiments
are performed using a variety of different benchmarks. First
the results of comparing different versions of CBS based
MAPFW solvers, using different improvements are reported.
Then the results of comparing CBSW with A*-OD-ID-W



Figure 3: Comparison of the calculation time of the TSP solvers

and Branch-and-cut-and-price-W are shown. The A*-OD-
ID-W algorithm is implemented by Steven Siekman and the
Branch-and-cut-and-price-W algorithm is implemented by
Andor Michels.

All benchmarks have been run on a 14 core Intel(R) Xeon(R)
Gold 6248 CPU running at 2.50GHz with 8GB of ram.
CBSW and A*-OD-ID-W have been implemented in Python
3.8 and Branch-and-cut-and-price-W has been implemented
in C++.

9.1 Benchmarks

To assess the performance of MAPFW solvers, randomly
generated grid benchmarks have been used. In these bench-
marks, agents are randomly placed in a n × n 4-connected
grid. All the agents are assigned a random set of waypoint
locations, and a random goal location assigned to them. 20%
of the grid is filled with obstacles. An example of such a ran-
domly generated map is Figure 2. 4-connected grids are of-
ten used for MAPFW benchmarks and closely resemble real-
world path-finding problems [18].

When using randomly generated benchmarks, a seed is used
to ensure that all solvers get exactly the same benchmarks.
To show the difference between CBSW with and without the
corridor optimization, a maze with a single corridor is used.

9.2 Comparison of versions of CBSW

First the two TSP solvers are compared. Both the Dynamic
programming TSP solver as the Branch and bound TSP solver
are benchmarked on randomly generated TSP problems. Both
solvers solved TSP problems with 10 to 18 cities. For each
number of cities each solver solved 10 problems, and the av-
erage time is reported in figure 3. No times are reported for
the Branch and bound TSP solver for 17 or 18 cities, because
given the available memory of 8GB, instances with more than
16 cities could not be solved using the Branch and bound

(a) Comparing CBSW-B and CBSW-BC on a logarithmic scale

(b) Performance of CBSW-BC with a trend line on a linear scale

Figure 4: Nodes expanded in the high-level search on increasingly
long corridors

based TSP solver. It can be seen that regardless of the number
of cities, the Dynamic programming based TSP solver out-
performs the Branch and bound based TSP solver. Because
of this, the Dynamic programming based TSP solver is used
in CBSW.

Second, The difference between CBSW with and without the
Bypass optimization is investigated. CBSW with the By-
pass optimization is used to solve a set of randomly gen-
erated benchmarks. The percentage of conflicts that can be
bypassed is recorded. On 1000 conflicts, 51% could be by-
passed. There is no extra overhead to the algorithm when us-
ing the Bypass optimization, because in the worst case, when
no bypass is found, the same happens as in CBSW without the
Bypass optimization. When a bypass is found only one child
node is added to the high-level search tree, and therefore the
search is faster. Because of this the Bypass optimization is
used in CBSW. To make extra clear in the other comparisons
that the Bypass optimization is used CBSW, CBSW with the
Bypass optimization is referred to as CBSW-B.

CBSW-B is compared with CBSW-BC (CBSW with both the
bypass and the corridor optimizations) in Figure 4. A log-
arithmic scale is used to show the number of nodes that are
expanded in the high-level search tree. The benchmark used



Figure 5: Problems solved within the time limit on random 32× 32
maps with 13 waypoints per agent and 2 to 12 agents

Figure 6: A corridor maze of length 6

Figure 7: Benchmarks completed with a 20 second timeout with 10
agents on a 16× 16 map with an increasing number of waypoints

(a) 16× 16 maps

(b) 32× 32 maps

(c) 64× 64 maps

Figure 8: Benchmarks completed with a 20 second timeout with 10
waypoints per agent with an increasing number of agents on three
map sizes

to test both solver consists of a single one wide corridor with
an agent on both sides, and on both sides of the corridor there
are three empty spaces for the agents to move around in. Both
agents their goal location is on the opposite side of the cor-
ridor. An illustration of such a benchmark with a corridor of
length six is shown in Figure 6.

Without the corridor optimization the number of nodes that is
expanded grows exponentially with the length of the corridor.
The exact amount of nodes that is expanded is 4 × 2n where
n is the length of the corridor. This exponential growth can



be seen in Figure 4a. In Figure 4b only the number of nodes
that are expanded using CBSW-BC is shown. It can be seen
that the number of expanded nodes grows linearly in respect
to the corridor length. There is some variation from the trend-
line. This happens because when choosing nodes to expand
in the high-level search, when two or more nodes have the
same cost, ties are broken randomly.

The overhead of finding the corridor locations, and checking
whether or not conflicts occur in a corridor is very minimal.
Regardless of the length of the corridor, these extra calcula-
tions take less then a millisecond of time during the whole
solve of the benchmark. Because of the improvements that
the corridor optimizations bring to CBSW, in the comparison
with other MAPFW solvers, CBSW-BC is used.

To asses the performance impact that the Prioritizing con-
flicts optimization has on MAPFW, first the number of nodes
that is expanded in the high-level search algorithm is com-
pared between CBSW without the Prioritizing conflicts opti-
mization and CBSW with the Prioritizing conflicts optimiza-
tion (CBSW-PC). On 100 randomly generated benchmarks
on 32 × 32 grids with two to five agents and five waypoints
per agent, CBSW expanded an average of 10.65 nodes and
CBSW-PC expanded an average of 7.85 nodes. This shows
that the Prioritizing conflicts optimization decreases the num-
ber of expanded nodes by 26%.

Even though the number of expanded nodes is reduced, the
performance of CBSW-PC is worse than the performance of
CBSW. In Figure 5, the number of randomly generated prob-
lems with 2 to 12 agents and 5 waypoints per agent on a
32×32 grid within a timeout is shown. Only problems solved
by both solvers within 20 seconds are considered. The line
for CBSW is consistently higher than the line for CBSW-PC.
This indicates that within a given time limit CBSW solves
more problems than CBSW-PC. The bumps in the graph are
there because maps with a varying number of agents are used.

Experimental results on the same set of 32× 32 benchmarks
shows that the prioritization of conflicts causes 35% over-
head. This explains why the performance of CBSW-PC is
worse than the performance of CBSW. A large contributing
factor to this overhead is the heuristic calculation used to cre-
ate the MDDs. This heuristic is needed because, the cre-
ation of an MDD with a budget of b and waypoints wp on
a size × size grid can expand up to size × size × b × 2wp

nodes. The heuristic is shown to be effective in practice in
limiting the number of expended nodes.

Because the performance of CBSW-PC is worse than the per-
formance of CBSW because of the added overhead, in the
comparison with other algorithms, the Prioritizing conflicts
optimization is not used.

9.3 Comparison with other algorithms

CBSW is compared with A*+OD+ID+W and Branch-and-
cut-and-price-W. First it is assessed how the performance of

the solvers changes on benchmarks with an increasing num-
ber of waypoints per agent. The grids used are 32 × 32 and
all benchmarks use 10 agents. For every tested number of
waypoints, all solvers are given the same set of 50 randomly
generated challenges, it is shown in Figure 7 how many of
these 50 challenges each solver was able to solve within 20
seconds per challenge.

For benchmarks with less than eight waypoints per agent
BCP-W can be seen to outperform CBSW. This can be ex-
plained by comparing CBS and BCP (the non-waypoint ver-
sions). On MAPF problems BCP outperforms CBS [6]. The
difference in programming language also affects the relative
performance here in favour of BCP-W.

On benchmarks with eight to twelve waypoints, CBS out-
performs BCP-W and A*+OD+ID+W. This can be explained
by the difference in the way that CBSW and BCP-W han-
dle waypoints. BCP-W needs to re-compute the heuristic,
which also uses TSP, more often. Solving TSP with more
waypoints takes exponentially longer. Therefore adding more
waypoints quickly increases the time that BCP-W needs to
solve MAPFW problems. Because of the efficient memoiza-
tion of the heuristic function in CBSW, the increase in the
number of waypoints has less effect on CBSW.

On benchmarks with more than 12 waypoints, the per-
formance of CBSW quickly drops off, and with 14 way-
points the success-rate drops to 0%. The performance of
A*+OD+ID+W is lower than the performance of CBSW re-
gardless of the number of waypoints, but for problems with
10 or more waypoints, A*+OD+ID+W outperforms BCP-W.
This is because A*+OD+ID+W is also capable of efficiently
memoizing the results of its heuristic function. The success-
rate of A*+OD+ID+W also drops to 0% at 14 waypoints. For
both CBS-W and A*+OD+ID+W this can be explained, be-
cause at 14 waypoints, the time needed to solve TSP in the
heuristic function for just one agent is 2.2 seconds. For 10
agents the time needed is thus 10 × 2.2 = 22 seconds. This
means that it takes more time to compute the solutions to
the TSP problems then there is timeout on the benchmark.
Because both CBSW and A*+OD+ID+W need to calculate
those heuristic values, problems with 14 or more waypoints
could not be solved within a 20 second time limit.

Second it is assessed how the size of the maps used and
the number of agents affects the performance of CBSW,
A*+OD+ID+W and BCP-W. Three benchmarks are used for
this. All benchmarks use 10 waypoints per agent, because
that is the number of agents for which the three solvers had
the most similar performance based on the previous bench-
mark. The three benchmarks use maps of 16 × 16, 32 × 32
and 64× 64 respectively. The results can be seen in Figure 8.
Here it is also reported for each number of agents, how many
out of 50 challenges each solver was able to complete with a
20 second timeout.

On 16 × 16 benchmarks, CBSW and BCP-W perform
very similarly as can be seen in Figure 8a. Both algo-



rithms linearly solve less and less problems as the number
of agents increases. Both CBSW and BCP-W outperform
A*+OD+ID+W on this benchmark regardless of the number
of agents. The challenge with the largest number of agents
that CBSW completed within the 20 seconds timeout has 13
agents.

On 32 × 32 benchmarks, CBSW outperforms both
A*+OD+ID+W and BCP-W as can be seen in Figure 8b.
Both CBSW and A*+OD+ID+W perform better on 32 × 32
maps than on 16× 16 maps, while BCP-W performed worse.
The number of agents in the hardest challenge that CBSW
solved on this benchmark was 17.

On 64 × 64 benchmarks, CBSW also outperforms both
A*+OD+ID+W and BCP-W as can be seen in Figure 8c. The
performance of both CBSW and A*+OD+ID+W increased
again while BCP-W performed worse on these larger maps.
The number of agents in the hardest challenge that CBSW
solved on this benchmark was 21. On these 64×64 maps, the
performance difference between CBSW and A*+OD+ID+W
is relatively small.

The increase in the performance of CBSW on larger maps
can be explained by the decrease in the number of conflicts
on larger maps. The less conflicts occur the better CBSW
performs.

The small difference in performance between CBSW and
A*+OD+ID+W on large maps can also be explained by the
decrease in the number of conflicts on larger maps. If no con-
flicts occur, both CBSW and A*+OD+ID+W use A* to plan
a path for all agents independently.

10 Responsible Research

To make this research reproducible, all source code for
CBSW is made publicly available on GitHub. Together with
Steven Siekman, we have made a website showing all results
including more detailed graphs: mapfw.nl. This website has
an API that can be used to automatically benchmark MAPFW
solvers and an interface to design new benchmarks. To fur-
ther improve the reproducibility of this research, and to al-
low further research, we have also released a Python client
library. This library can be used to run all benchmarks on the
mapfw.nl website, including the benchmarks that have been
used in this paper. Both the website, and the client library
provide tools for analysing the results of the benchmarks.

Extra attention is given to make sure that users of the client
library only submit valid results. This is achieved by per-
forming lots of checks in the client library that give warnings
to the user when something appears to go wrong. An exam-
ple of this is that some benchmarks have a default timeout.
If the user explicitly requests another timeout from the client
library, this will result in a warning.

All algorithm timing is handled by the client library, to make

sure that the timing methodology is consistent between all
users of the client library. To speed up test times, support for
running benchmarks on multiple cores is present as well as
options to enable profilers to profile your algorithm.

11 Limitations

All the implementations of CBSW used in this paper have
been made in an interpreted language, Python 3.8. This made
implementing CBSW faster, but the run-time of the algo-
rithm is longer then if a compiled language was used. The
difference in run-time between interpreted and compiled lan-
guages can be 4 orders of magnitude on some problems [19].
Therefore this paper shows the relative difference between the
different optimizations to CBSW solvers, and does not give
much inside to the performance that can be achieved using
these algorithms in production code using a compiled lan-
guage.

A*-OD-ID-W was also made in Python 3.8, and therefore
the comparison between CBSW and A*-OD-ID-W gives a
good indication of the difference between the two algorithms.
Branch-and-cut-and-price-W was implemented in C++, and
therefore not only algorithmic differences influenced the re-
sults of the benchmarks. Especially for easier benchmarks the
difference in programming languages can make a big differ-
ence in the results of the benchmark.

The Bypass optimisation should not affect the optimally of
the solutions generated by CBSW since in [10], it is said that
that the bypass optimisation does not impact optimally. There
is however no formal proof of this in this paper. Experimen-
tal results give no indication to believe that this optimization
effects optimality, but a formal proof is still needed.

12 Conclusion

Adding waypoints to MAPF increases the difficulty of the
problem. Using dynamic programming to calculate efficient
heuristics, enables CBSW to decrease the amount of work
that has to be done in the low-level solver. The Bypass opti-
mization provides a large speedup on general problems, and
the Corridor optimization provides a large speedup in prob-
lems with one wide corridors. The Prioritizing conflicts op-
timization does not improve the performance of CBSW be-
cause it adds a lot of overhead. As demonstrated empirically
on standard benchmarks, CBSW has better performance on
benchmarks that use many waypoints, or have large maps,
than A*+OD+ID+W and BCP-W, and on small maps with a
small number of waypoints BCP-W outperforms CBSW.

13 Future Work

Future work should (1) Investigate extending other optimal
MAPF solvers to solve MAPFW problems. (2) Investigate

mapfw.nl
mapfw.nl


the effects of different and more advanced TSP solvers. (3)
Investigate the effect of re-writing CBSW in a compiled lan-
guage.

References

[1] Roni Stern et al. “Multi-agent pathfinding: Definitions,
variants, and benchmarks”. In: Twelfth Annual Sympo-
sium on Combinatorial Search. 2019.

[2] Jingjin Yu and Steven M LaValle. “Structure and in-
tractability of optimal multi-robot path planning on
graphs”. In: Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence. 2013.

[3] Jesse Mulderij et al. Train Unit Shunting and Servic-
ing: a Real-Life Application of Multi-Agent Path Find-
ing. 2020. arXiv: 2006.10422 [cs.MA].

[4] David Silver. “Cooperative Pathfinding.” In: AIIDE 1
(2005), pp. 117–122.

[5] Trevor Scott Standley. “Finding optimal solutions to
cooperative pathfinding problems”. In: Twenty-Fourth
AAAI Conference on Artificial Intelligence. 2010.

[6] Edward Lam et al. “Branch-and-cut-and-price for
multi-agent pathfinding”. In: Proceedings of the
Twenty-Eighth International Joint Conference on Arti-
ficial Intelligence (IJCAI-19), International Joint Con-
ferences on Artificial Intelligence Organization. 2019,
pp. 1289–1296.

[7] Florian Grenouilleau, Willem-Jan van Hoeve, and
John N Hooker. “A Multi-Label A* Algorithm for
Multi-Agent Pathfinding”. In: Proceedings of the In-
ternational Conference on Automated Planning and
Scheduling. Vol. 29. 1. 2019, pp. 181–185.

[8] Guni Sharon et al. “The increasing cost tree search for
optimal multi-agent pathfinding”. In: Artificial Intelli-
gence 195 (2013), pp. 470–495.

[9] Guni Sharon et al. “Conflict-based search for optimal
multi-agent pathfinding”. In: Artificial Intelligence 219
(2015), pp. 40–66.

[10] Eli Boyrasky et al. “Don’t split, try to work it out:
Bypassing conflicts in multi-agent pathfinding”. In:
Twenty-Fifth International Conference on Automated
Planning and Scheduling. 2015.

[11] Steven Arend Pieter Siekman. “Extending A* to solve
multi-agent pathfinding problems with waypoints”. In:
TU Delft Repository (June 2020).

[12] Andor Michels. “Multi-agent pathfinding with way-
points using Branch-Price-and-Cut”. In: TU Delft
Repository (June 2020).

[13] Gilbert Laporte. “The traveling salesman problem:
An overview of exact and approximate algorithms”.
In: European Journal of Operational Research 59.2
(1992), pp. 231–247.

[14] Donald Michie. ““Memo” functions and machine
learning”. In: Nature 218.5136 (1968), pp. 19–22.

[15] AH Land and AG Doig. “An automatic method of
solving discrete programming problems. Economet-
rica. v28”. In: (1960).

[16] Stuart Dreyfus. “Richard Bellman on the birth of dy-
namic programming”. In: Operations Research 50.1
(2002), pp. 48–51.

[17] Eli Boyarski et al. “ICBS: improved conflict-based
search algorithm for multi-agent pathfinding”. In:
Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence. 2015.

[18] Peter Yap. “Grid-based path-finding”. In: Conference
of the Canadian Society for Computational Studies of
Intelligence. Springer. 2002, pp. 44–55.

[19] Juan-Julián Merelo-Guervós et al. “Ranking the Per-
formance of Compiled and Interpreted Languages in
Genetic Algorithms”. In: (2016).

https://arxiv.org/abs/2006.10422

	Introduction
	Problem definition
	Conflict based search
	A new low-level solver
	TSP solver
	Branch and bound
	Dynamic programming

	Bypass optimization
	Corridor constraints optimization
	Finding corridors
	New constraints

	Prioritizing conflicts
	Experimental results
	Benchmarks
	Comparison of versions of CBSW
	Comparison with other algorithms

	Responsible Research
	Limitations
	Conclusion
	Future Work

