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ABSTRACT

Opinion dynamics models study how the interaction among people influences the
opinion formation process. In most opinion dynamics models, only one opinion
could exist in the steady state, which is different from the real-life opinion formation
process. In 2009, Shao et al. introduced a non-consensus opinion (NCO) model, which
allows different opinions to coexist in the steady state. This thesis extends the NCO
model by introducing a special type of nodes, Byzantine nodes, to play the role of
dishonest people. The Byzantine NCO model is more in line with the real-world opinion
formation process because it considers that people who express opinions are not always
honest. I build an NCO model simulation algorithm and use this algorithm to perform
simulations on three different network models: small-scall graphs, the Erdős–Rényi
random graph and the scale-free network. In Byzantine node selection, three different
strategies are proposed, according to the degree of the selected nodes. I find a new
steady state for the NCO model: the cyclic steady state. The cyclic behaviour of the NCO
and Byzantine NCO model is discussed, and some networks with a long cycle period
are given. I also introduced a general method to generate networks with extremely
long cycle periods. The other properties of the Byzantine NCO model, such as the
probability of cyclic behavior, the final opinion distribution and the convergence time
are researched. By performing simulations on the network models, I find that the
introduction of Byzantine nodes could help the system to reach a steady state with
a more balanced opinion ratio. The introduction of Byzantine nodes could decrease
the critical threshold of the NCO model and promote the coexistence steady state. A
mechanism in which Byzantine nodes influences the convergence time by influencing
the steady state is suggested.
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1
INTRODUCTION

On November 3, 2020, as the U.S. election was held as scheduled, a big show started,
which drew people’s attention all over the world. The U.S. election is not only a voting
campaign but also a sociological experiment. Scientists have put different ways to
predict the election result, and many have proven effective. In the social dynamics area
[1], we regard it as an opinion dynamics question, which researches opinion formation
process based on complex networks and statistical physics [2], [3]. The design of the
opinion dynamics models is driven by human behavior and includes many elements,
such as individual predisposition, the influence of other people (social networks playing
a crucial role in this respect), and many others. Different models have been developed,
encompassing different elements.

Many opinion dynamics models are based on complex networks. Network science
is widely used in the analysis of complex systems [2]–[8]. A complex network is a graph
consisting of vast numbers of nodes and intricate connections between nodes. Unlike
those with simple designs, complex networks exhibit higher flexibility and more diverse
features that often appear in real-world networks, making it possible to use complex
networks to analyze real-world problems. Many complex systems that are researched
today, such as the Internet, neural networks, brain networks, and social networks, can
be described by using complex networks [7]. Complex networks are an excellent tool
to study social models, where the nodes and links in the network are used to indicate
individuals (agents) and the relation between them.

Shao et al. (2009) proposed a Non-Consensus Opinion (NCO) model, which is an
opinion dynamics model that shows some of the same properties as real social networks
[9]. This thesis researches and expands the NCO model by introducing a new type of
node, the Byzantine node, to the model. The NCO model assumes that all people are
honest, but we always meet rascals who lie and make trouble in real life. In this thesis,
we extend the NCO model to Byzantine NCO model. In the Byzantine-NCO model, the
Byzantine node is introduced, a new type of node that plays the role of a liar in a crowd.

1
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2 1. INTRODUCTION

1.1. OVERVIEW OF PREVIOUS OPINION DYNAMICS MODELS
Most of the traditional opinion models are based on spin models such as Sznajd model
[10], the voter model [11], the majority rule model [12], and social impact model [13]. A
drawback of conventional spin models is that they usually result in an ordered steady
state (consensus steady state), while in real life, different opinions tend to coexist in the
steady state [2], [14].

In 2009, Shao et al. proposed the Non-Consensus Opinion model (NCO model),
which can be used to research the opinion dynamics of a group of people [9]. The NCO
model is based on a complex network, which uses nodes in the network to represent
people and links to show the relationship between those people. Unlike models based
on spin systems, the NCO model allows for non-consensus steady states, which is more
in line with real life. Shao’s et al. study illustrates an important fact that if the number of
people holding the minority opinion is sufficiently large, the minority opinion holders
could form a stable cluster, which the other opinion cannot invade. Shao et al. also
finds that the NCO model shows similar properties as the invasion percolation process
[15], which means this opinion dynamics model is closely related to some well-known
physical phenomena.

Shao’s et al. classic NCO model solves the problem of different opinions not
coexisting in other opinion models; however, it still cannot ideally mimic the opinion
formation process. In 2011, Qian et al. proposed an inflexible contrarian opinion (ICO)
model by introducing some stubborn agents who never change their opinion under any
circumstances [16]. Qian’s study makes the NCO model more relevant to real-life social
networks. In 2013, Qian et al. added a weighting factor to the NCO model and proposed
the NCOW model [14]. The weighting factor W represents the importance of a person’s
opinion in decision-making, where a large w makes one’s opinion hard to change.

1.2. CONTRIBUTION
The main contributions of this thesis are:

1. Extension of the types of nodes in the NCO model by introducing Byzantine nodes.
Byzantine nodes are used to model dishonest people in social networks to match
real-life opinion formation dynamics closely.

2. Discussion of the issue of the cyclic behavior of the NCO model, which has
been ignored in past studies. The introduction of Byzantine nodes gives rise to
many graph patterns with a long cycle period and a general method to generate
long-length cyclic graphs.

3. Analysis of the convergence time of the NCO model and discussed the effect of
different initial parameter settings on the convergence time.

4. Investigation of the relationship between the final opinion fraction and Byzantine
node selection strategies. Description of the balancing effect of Byzantine nodes
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on different opinions in the opinion network.

5. Research and explanation of the effect of the introduction of Byzantine nodes on
the critical threshold. Proposition that the introduction of Byzantine nodes has an
inhibiting effect on the formation of large homogeneous opinion clusters.

1.3. THESIS OUTLINE
The thesis is organized as follows. Chapter 2 introduces the NCO model, Byzantine
NCO model and provides a basic introduction to network science. After that, I provide
a computational method to simulate the NCO dynamics. In Chapter 3 I present the
typical steady-state behavior of the NCO model and introduce a new type of steady
state, the cyclic steady state. Then I gave some cyclic cases with long cycle period and a
general way to generate networks with extremely long cycle period. Besides these, I also
measure the probability of occurrence of cyclic behavior for different initial states. In
Chapter 4, I discuss how the final opinion fraction of the Byzantine NCO model changes
as the number of Byzantine nodes increases and compare the magnitude of the effect of
different Byzantine node selection strategies on the final opinion fraction. In Chapter 5,
I present the effect of the introduction of Byzantine nodes on the convergence time of
the Byzantine NCO model and discuss the relationship between the Hamming distance
between the initial state and the convergence state and the convergence time.





2
BYZANTINE NCO MODEL

2.1. NCO MODEL
The Non-Consensus Opinion(NCO) model is developed to research the opinion
formation process. Most of the previous opinion models lead to a consensus state,
which is not realistic, since in the real opinion dynamics process, competitions
always end with a coexistence result. Consistent with reality the NCO model allows a
non-consensus stable state [16].

The NCO model is based on the assumption that in the opinion formation process,
the agent’s opinion is influenced by his current opinion and the opinion of his friends
represented as the node’s neighbours [9]. More specifically, a node will change its
opinion if and only if the number of its neighbours holding a different opinion is greater
than the number of nodes holding the same opinion plus one (the node’s own opinion).
There are two opinions, denoted as positive opinion σ+ and negative opinion σ−. The
agents could only hold one opinion at a time.

Figure 2.1: Dynamics of the NCO model on a network with N = 9 nodes. The node’s color denotes the opinion
of the node, red means the node holds a positive opinion σ+, blue means the node has a negative opinion σ−.

(a) At t = 0, each node is randomly assigned an opinion, four hold σ+(red), and five hold σ−(blue). Node 1
will change its opinion because it has 3 σ+ neighbor nodes and 1 σ− neighbor node, the local opinion ratio is

σ+ :σ− = 3 : 2. (b) At t = 1, as node 1 changing its opinion, the opinion held by node 2 becomes a local
minority opinion, and node 2 will also change its opinion. (c) At t = 2, all nodes hold the local majority

opinion, and the system reaches a steady state.

5
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Fig. 2.1 gives an example of the dynamics of the NCO model. At t = 0, nine nodes
are randomly assigned two different kinds of opinion, node 1 has three σ+ neighbors
and one negative neighbor, so for node 1, the local majority opinion is the σ+ opinion,
and the opinion of node 1 will convert to a σ+ opinion. At t = 1, as node 1 changes its
opinion, the local opinion ratio of node 2 becomes 4 to 2, so node 2 will also change its
opinion. At t = 2, the opinions of all nodes become local majority opinions. The system
reaches a steady state [9].

The example given in Fig. 2.1 finally reach a fixed steady state with a opinion ratio of
σ+ : σ− = 5 : 3. Once the system reaches a fixed steady state, the states of the nodes in
the network will no longer change. The steady state is only related to the initial state for
a given network, and the same steady state may originate from different initial states, so
the NCO model is deterministic.

2.2. BYZANTINE NCO MODEL
The NCO model assumes that all nodes are honest, but people are not always honest in
real life, and some may deliberately hide their true opinions. To simulate this situation,
I introduce Byzantine nodes to the NCO model.

BYZANTINE NODES

Byzantine nodes are a special type of nodes that declare opinions contrary to their true
opinions. In real social dynamic processes, Byzantine nodes can be used to represent the
bad people who try to mess up in elections, or spies who infiltrate the decision-making
level of a country.

As is shown in Fig. 2.2, like normal nodes, Byzantine nodes decide their opinion
based on local majority opinion.

(a) t = 0 (b) t = 1

Figure 2.2: A demonstration of the behavior of a Byzantine node. Normal nodes are depicted as circles, while
Byzantine nodes are depicted as squares. At t = 0, Byzantine node 0 has 4 σ− neighbors, the local opinion

ratio is σ− :σ+ = 4 : 1, then the Byzantine node 0 changes its opinion.

The difference is that Byzantine nodes do not reveal their true opinions, they lie
about their opinions. As shown in Fig. 2.3, the Byzantine nodes make their neighbors
misjudge their own local majority opinion.
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(a) t = 0 (b) t = 1

Figure 2.3: A demonstration of the behavior of a Byzantine node. At t = 0, node 0 has 4 σ+ Byzantine
neighbors, the real local opinion ratio is σ− :σ+ = 0 : 5. But due to the lying nature of Byzantine nodes, node 0

misjudges the local opinion ratio as σ− :σ+ = 4 : 1, then the Byzantine node 0 changes its opinion.

Figure 2.4: Dynamics of the Byzantine NCO model on a network with N = 9 nodes. The node’s color denotes
the opinion of the node, red means the node holds a positive opinion σ+, blue means the node has a negative

opinion σ−. At t = 0 to t = 6, the normal nodes 3,4,5 change their opinion accroding to their local majority
opinion. At t = 7, the Byzantine nodes 1, 2 change their opinion, then node 3’s local majority opinion changes
from negative to positive due to the lying nature of Byzantine nodes. At t = 8, the graph show the same state

as initial state. The graph will repeat the previous dynamics.

Fig. 2.4 shows the dynamics of the Byzantine NCO model on a network with N = 9
nodes, where node 1 and node 2 are Byzantine nodes and the rest of the nodes are
normal nodes. At t = 0 every node is randomly assigned an opinion. Node 4 has three
negative neighbor nodes and one positive neighbor node, but since node 1 and node
2 are Byzantine nodes, they will lie to node 4, who will mistakenly believe that he has
three positive neighbor nodes and one negative neighbor node. Then node 4 will think
the local majority opinion is positive and change its opinion to positive. At t = 1, as
node 4 comprising, node 5 will also change its opinion. At t = 2, as both nodes 4 and
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5 change their opinions, nodes 1 and 2 will find that the local majority opinion has
become positive; they will also change their opinions. At t = 3, because node 1 and 2
changed their opinion and pretended they held the negative opinion, node 5 will be
misled and change its opinion. At t = 4 to t = 7, the state of each node in the network
will continue to change. At t = 8, as the opinion of node 3 changes, the state of the
network changes to the same state as at t = 0, and the same process will repeatedly
happen without stopping, and the system will never reach a stable state. I refer to the
phenomenon occurring in this example as cyclic behavior. The lengith of the cycle in
this example is 8. The cyclic state is a special kind of steady state. Unlike the fixed steady
state, the cyclic steady state does not converge to a particular state but keeps changing
between several states. The cyclic behavior of Byzantine NCO model is a research focus
of this thesis.

2.3. NETWORK SCIENCE
Before introducing the simulation method, I first introduce the following essential
knowledge of network science. Network science is a science that studies the global and
local properties of networks. This part introduces some knowledge about graph theory
and some fundamental metrics to study network properties I used in this project [17].

2.3.1. GRAPH THEORY

ADJACENCY MATRIX

The adjacency matrix is a matrix notation representation of the graph G . We use the
matrix elements to illustrate the presence of links between nodes [17]. For a network
with N nodes, its adjacency matrix (Eq. (2.1)) is an N ×N matrix, where the element ai j

(Eq. (2.2)) in the matrix denotes the connection between node i and node j .

A =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN ,1 aN ,2 · · · aN ,N

 (2.1)

where,

ai , j =
{

1, if node i is connected to node j

0, otherwise
(2.2)

Figure 2.5: Example graph with N = 9, L = 13
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The adjacency matrix of the example graph with N = 9, L = 13 shown in Fig. 2.5 is
given as

A =



0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 1 0
1 1 1 0 1 0 0 1 1
0 1 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0


(2.3)

For undirected networks, like Fig. 2.5, the adjacency matrix is symmetric, but for
directed networks, the adjacency matrix is asymmetric. The values of the diagonal
elements of this adjacency matrix are all 0, which means that there are no self-loops in
this network.

DEGREE

The degree di of node i is defined as the number of neighbours for node i in the network
[18]. The degree of node i follows from the adjacency matrix as

di =
N∑

j=i
ai j (2.4)

The degree is one of the most straightforward measures of the importance of a node.
The larger the degree of a node, the more neighbouring nodes it has and thus the more
nodes it can directly influence. There are many other measures of node importance,
such as closeness, betweenness, and eigenvector centrality [19], [20], which are not used
in this project.

2.3.2. NETWORK MODELS
Network science research starts with studying some simple networks with specific
simple properties, such as regular networks and purely random networks. As technology
advances and application scenarios become more complex, networks with simple
structures are increasingly incompetent to meet the needs of network research. The
study of network science has entered the era of complex networks, which refers to
networks with many nodes and complex structures, such as small-world and scale-free
networks. In this project, I mainly used the Erdős–Rényi random graphs [21] and
scale-free networks [22].

ERDŐS–RÉNYI RANDOM GRAPH

In a random graph G(N , p), there are N nodes in the graph, and every pair of nodes is
connected with a probability p. The probability that the node in the graph has degree k
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is

Pr(deg (v) = k) =
(

N −1
k

)
pk (1−p)N−1−k (2.5)

which follows a binomial distribution. The mean value of the degree of the nodes for
this type of graph is

< k >= (N −1)p (2.6)

For ER graphs, there is a threshold pconnected = ln(N )
N [21]. If p is smaller than the

threshold, then there is a high probability that the network is disconnected. If p is larger
than the threshold, then there is a high probability that the network is connected [23].

SCALE-FREE NETWORK

The degree distribution of the SF network follows a power-law distribution which is
denoted as

Pr(D = k) ∝ k−λ (2.7)

Barabási and Albert proposed a way to generate power-law network in 1999 [24], [25],
which are known as the Barabasi-Albert (BA) networks. The specific algorithm is as
follows:

1) Starting from a small network G0 (this network has n0 nodes and E0 edges), new
nodes are added into G0 one by one.

2) Suppose the original network already has n nodes (s1, s2, · · · , sn). Every time when
a new node sn+1 is added, m(m < n) links from this new node are connect to the
original n nodes.

3) The newly added node are connected to existing nodes according to the degree of
the nodes. For a node si of degree di , the probability of a new node establishing a
link with it is

pi = di∑n
j=1 d j

(2.8)

In this thesis we define a SF network with three parameters N , λ and kmi n , where N
is the number of nodes in the network, λ is the exponent of the degree distribution and
kmi n is the minimum value of the nodes’ degree.

2.4. SIMULATION METHOD
The simulation of Byzantine NCO model dynamics is the process of deriving the state of
each node in the network at the next time slot based on the current state of each node
in the network using the knowledge of network science. Here I use state vectors v⃗s (2.9)
to represent the state of individual nodes in the network and Byzantine vectors v⃗B (2.11)
to describe whether the node is a Byzantine node or a normal node.

v⃗s =
[
s1 s2 · · · sN

]T
(2.9)
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where,

si =
{

1, if node i holds a positive opinion

−1, if node i holds a negative opinion
(2.10)

v⃗B = [
b1 b2 · · · bN

]T
(2.11)

where,

bi =
{

1, if node i is a normal node

−1, if node i is a Byzantine node
(2.12)

At a certain time t = t0, given the state vector v⃗s (t0) and the Byzantine vector v⃗B (t0),
we know that the state that each node declared can be represented as the declared vector
v⃗d (2.13) which is the Hadamard product of v⃗s (t0) and v⃗B (t0)

v⃗d = v⃗s ◦ v⃗B = [
b1 · s1 b2 · s2 · · · bN · sN

]T
(2.13)

Figure 2.6: Example graph with N = 9, NB = 2

Fig. 2.6 gives a example graph with N = 9 nodes, L = 13 links and NB = 2 Byzantine
nodes. The v⃗s , v⃗B and v⃗d of the example graph are

v⃗s (t0) = [
1 −1 −1 −1 −1 1 1 −1 −1

]T
(2.14)

v⃗B (t0) = [
1 −1 1 1 1 1 1 1 −1

]T
(2.15)

v⃗d (t0) = [
1 1 −1 −1 −1 1 1 −1 1

]T
(2.16)

At each time slot, the nodes in the graph adjust their opinions according to the opinions
of their neighbor nodes. To get the state of each node in the network at the next moment,
we need to know how each node is connected. The adjacency matrix provides us with
this information. Each column of the adjacency matrix includes information about the
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neighboring nodes of the node corresponding to that column. We can derive a local
majority opinion for each node in the graph based on the adjacency matrix, the state
vector, and the declared vector denoted as

v⃗LMO = si g n(A · v⃗d + v⃗s ) = [
o1 o2 · · · oN

]T
(2.17)

where,

oi =


1, if the local majority opinion for node i is positive opinion

−1, if the local majority opinion for node i is negative opinion

0, If the number of positive and negative opinions is equal

(2.18)

where A, v⃗s and v⃗d are the adjacency matrix, the state vector and the declared vector,
respectively. The local majority opinion of the example graph shown in Fig. 2.6 is

v⃗LMO(t0)

= si g n(A · v⃗d (t0)+ v⃗s (t0))

= si g n(



0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 1 0
1 1 1 0 1 0 0 1 1
0 1 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0


·



1
1
−1
−1
−1
1
1
−1
1


+



1
−1
−1
−1
−1
1
1
−1
−1


) =



0
−1
−1
−1
1
1
1
−1
−1



(2.19)

The symbols of the elements in the local majority opinion vector show the local
majority opinion of the nodes in the network. The state of each node at the next time
slot t0 +1 can be inferred from the state of each node at the current time slot to and the
local majority opinion.

si (t0 +1) =


1, if oi is 1

−1, if oi is -1

si (t0), if oi is 0

(2.20)

The state vector v⃗s,t0+1 of the example graph Fig. 2.6 at the next time slot is

v⃗s (t0 +1) = [
1 −1 −1 −1 1 1 1 −1 −1

]T
(2.21)

This is the simulation method of the dynamics of the Byzantine NCO model, by which
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we can get all the states of the network from the initial to the convergence by iteration.
For the fixed steady state, the steady state condition is

v⃗s (ti+1) = v⃗s (ti ) (2.22)

For the cyclic steady state with cycle period C , the steady state condition is

v⃗s (ti+C ) = v⃗s (ti )

and

v⃗s (ti+ j ) ̸= v⃗s (ti ), ∀ j ∈ [1,C −1]

(2.23)

where C is the cycle length.
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CYCLIC BEHAVIOR

Imagine that Country A discovers that Country B has launched an intercontinental
nuclear missile at itself, and the leaders of Country A have one hour to decide whether
to launch a nuclear counterattack. Some of the leaders of Country A support an eye for
an eye, while others do not want to drag humanity into destruction. Unfortunately, the
leader of country A has a spy from country B. From a spy’s point of view, the best way to
interfere with A’s decision is to keep the two factions in a constant tug-of-war, unable
to make a decision in favor of their country within an hour. If the spy had studied the
Byzantine NCO model he would have thought of using cyclic behavior to achieve this
purpose.

A significant contribution of this project is the research on the cyclic behaviour of
the NCO model. In this chapter, I will introduce and discuss typical steady states of
Byzantine NCO models, give some examples of the Byzantine NCO model with a very
long cycle period, and provide a general method for generating graphs with extremely
long cycle periods.

3.1. TYPICAL STEADY STATES OF BYZANTINE NCO MODEL

In traditional NCO models, researchers believe that the opinion network eventually
reaches a fixed steady state. In the fixed steady state, the opinion of each node in
the network becomes fixed, and the opinion network shows a state of consensus(all
nodes are of the same opinion) or coexistence(both different opinions exist). This
perception holds in most cases, but in rare cases, the opinion of some nodes in the
opinion network does not reach a fixed state for some specific initial state, and the
whole network constantly oscillates between several states. I refer to this phenomenon
as cyclic behaviour.

15
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3.1.1. FIXED STEADY STATES

The fixed steady state is the most common steady state. When the NCO model is in a
fixed steady state, the opinion of each node in the network will be fixed, and no more
changes will occur. The NCO model reaches a fixed steady state if and only if all nodes in
the network satisfy that the number of the neighbor nodes that hold the same opinion
as this node plus one is more than the number of nodes that have the opposite opinion,
the condition is denoted as

∀n ∈ S−1 : 1+δ(n)S−1 ≥ δ(n)S+1

∀n ∈ S+1 : 1+δ(n)S+1 ≥ δ(n)S−1

(3.1)

where S−1, S+1 are the sets of nodes holding positive and negative opinions, and
δ(n)S−1 , δ(n)S−1 are the number of nodes connect to node n in this two sets.

For the Byzantine NCO model, since Byzantine nodes are always lying, this statement
will become: the Byzantine NCO model reaches a fixed steady state if and only if all
nodes in the network satisfy that the number of the neighbor nodes that declare to
hold the same opinion as this node plus one(the node’s own opinion) is more than the
number of nodes that declare to have the opinion contrary to this node, denoted as

∀n ∈ S−1 : 1+δ(n)Sd ,−1 ≥ δ(n)Sd ,+1

∀n ∈ S+1 : 1+δ(n)Sd ,+1 ≥ δ(n)Sd ,−1

(3.2)

where S−1, S+1 are the sets of nodes holding positive and negative opinions, Sd ,−1

and Sd ,−1 are sets of nodes declaring a positive or negative opinions, and δ(n)Sd ,−1 ,
δ(n)Sd ,+1 are the number of nodes connect to node n in Sd ,−1 and Sd ,+1 sets.

If the state of the network at a specific time slot does not satisfy this condition, then
the network either has not yet converged or is in a cyclic steady state.

According to the presence of the two different opinions, the steady states can be
divided into two categories:

1. The consensus steady state, where all the nodes in the network are holing the same
opinion.

2. The coexistence steady state, where both of the two different opinions are existing
in the network.
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(a) Consensus (b) Coexistence Steady state

Figure 3.1: A demonstration of consensus and coexistence steady state

3.1.2. CYCLIC STEADY STATES

Cyclic behaviour refers to the phenomenon that in the dynamics of the NCO model,
several different states appear cyclically so that the state of the system can never
converge to a fixed state, like Fig. 3.2. and Fig. 3.3. Here we regard this behavior of the
Byzantine NCO model as a special kind of steady state, namely a cyclic steady state.

The cycle period C of the cyclic steady state is defined as the smallest positive integer
that satisfies any state st in the cycle is the same as the state after C iterations st+C ,
denoted as

st = st+C ∀st in the cycle (3.3)

Cyclic behavior occurs in both the NCO and Byzantine NCO model, with the
difference that the NCO model has a cycle with length of only two (I have not found
examples with cycle periods longer than two, but do not exclude the possibility that they
exist). The Byzantine NCO model can exhibit cyclic behavior with an extended cycle
period. Cyclic behavior can be viewed as another kind of steady state.

CYCLIC STEADY STATES OF THE NCO MODEL

The NCO model exhibits cyclic behavior (with a cycle length of 2) if we can separate
the nodes into four groups: two oscillatory groups SO− , SO+ and two static groups S−1,
S+1. The size of groups SO− ,SO+ can not be 0, but the size of two static groups S−1, S+1

can. During the oscillations, nodes in the static groups do not change their opinion,
whereas nodes in the oscillatory groups keep flipping their opinion at every time step.
The constraints are as follows:

∀n ∈ S+1 : δ(n)S−1 > δ(n)S+1 +
∣∣δ(n)SO+ −δ(n)SO−

∣∣+1

∀n ∈ S−1 : δ(n)S+1 > δ(n)S−1 +
∣∣δ(n)SO+ −δ(n)SO−

∣∣+1

∀n ∈ SO+ : 1+δ(n)SO+ ≥ δ(n)SO− + ∣∣δ(n)S+1 −δ(n)S−1

∣∣
∀n ∈ SO− : 1+δ(n)SO− ≥ δ(n)SO+ + ∣∣δ(n)S+1 −δ(n)S−1

∣∣
(3.4)

where δ(n)S−1 , δ(n)S+1 , δ(n)SO+ , δ(n)SO− are the number of nodes connect to node n in
these 4 groups.
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Figure 3.2: A demonstration of the cyclic steady states in the NCO model. S−1, S+1 are the static groups, and
SO− , SO+ are oscillatory groups.

A demonstration of the cyclic steady states in the NCO model is shown in Fig 3.2.
Group S+1 and S−1 are two oscillatory groups that hold different views, SO+ and SO−
are two static groups. At the time t = 0, all nodes in the group S+1 hold the positive
opinion. However, the number of its neighboring nodes holding a negative opinion is
larger than that holding a positive opinion plus one, so they have a tendency to turn
into negative opinions; the group S−1 is the opposite. At time slot t = 1, group S+1 and
S−1 both changed their opinions, but this has also led to a change in the local majority
opinion. Then at the next time slot, they will change back to the same state as at t = 0.

CYCLIC STEADY STATES OF THE BYZANTINE NCO MODEL

Unlike normal nodes, Byzantine nodes always declare a local minority opinion. Normal
nodes drive the network to a consensus state, while Byzantine nodes drive the network
to a balanced opinion state. When the network converges to the positive opinion
consensus state, the sudden change of Byzantine nodes’ opinions will drive the network
to converge to the negative opinion consensus state, making it easier for the network to
oscillate between two opinions. This property of Byzantine nodes makes the Byzantine
NCO model more prone to cyclic behavior and exhibits longer cycle lengths.

Fig 3.3 shows a schematic plot of the dynamics of a cyclic case with a cycle period
of 8. I find that at t = 3, as Byzantine nodes 1, 2 change their own opinions, the local
majority opinion of node 5 changes and nodes 5, 4, 3 start to converge to negative
opinions. However, once the network reaches a local consensus, the Byzantine node
will change its opinion, and the network will turn to a positive consensus.
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Figure 3.3: A demonstration of the cyclic steady states in the Byzantine NCO model for a network with 9
nodes. The node’s color denotes the opinion of the node, red means the node holds a positive opinion σ+,

blue means the node has a negative opinion σ−. At t = 0 to t = 6, the normal nodes 3,4,5 change their opinion
accroding to their local majority opinion. At t = 7, the Byzantine nodes 1, 2 change their opinion, then node
3’s local majority opinion changes from negative to positive due to the lying nature of Byzantine nodes. At

t = 8, the graph show the same state as initial state. The graph will repeat the previous dynamics.

3.2. CYCLIC CASES WITH LONG CYCLE PERIOD

Cyclic behaviour in the Byzantine NCO model is significantly richer than the NCO
model, and to my best knowledge, there is no general rule to determine the cycle length
for a given initial condition. I have found some fascinating cases in studying cyclic steady
states, and select a few to show in this section.

SUN GRAPHS

We consider so called sun graphs, defined on 2N nodes. To construct the sun graph,
I start with a ring graph, consisting of N Byzantine nodes. Then N normal nodes are
added, such that each normal node connects to two adjacent Byzantine nodes, see Fig.
3.4. As initial condition, one Byzantine node and a normal node it is connected to, has
the negative opinion. All other nodes start with the positive opinion, see Fig. 3.4.
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Figure 3.4: A demonstration of the sun graph with N = 13

Figure 3.5: The output time series of sun graph cases in 3.4. The black color indicates a negative opinion and
white color indicates the positive opinion

Fig. 3.4 shows an example of a sun graph with a cycle length of 52, and Fig. 3.5 shows
the dynamics of this example. It can be shown that the cycle length for sun graphs with
2N nodes satisfies

C ycleLeng th =
{

2N if N is an even number

4N if N is an odd number
(3.5)

The advantage of the sun graph is we can generate arbitrary networks with a cycle period
of 4n(n > 2,n ∈ Z+) in this way. However, using this method to generate long-period
cyclic graphs is very inefficient because the number of nodes required to generate a long
cycle is very large.

This construction is very inefficient because the period of the sun graph increases
linearly with the number of nodes, which means if we want to generate a network with a
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period of 4n, at least 4n or 2n nodes is needed, half of which are Byzantine nodes.

SMALL PATTERNS

To find cyclic behavior with long periods, I first thought of performing exhaustive
operations on some small-scale networks. The number of operations in the exhaustive
enumeration operation is vast. I take small-scale graphs with N = 9 nodes and L =
18 links to simulate and find periodic networks with long periods. There are 33366
isomorphic different graphs with N = 9 nodes and L = 18. These graphs are generated
from the programs called Nauty and Traces, see [26]. At the beginning I select i nodes to
hold a σ− opinion and 9− i nodes to hold a σ+ opinion. There are(9

i

)= 9!

i ! · (9− i )!
(3.6)

different combinations for each number i . Thus, for each graph we have

9∑
i=0

(9
i

)= 512 (3.7)

different initial states. So does the Byzantine nodes settings, which means we need to
do 8746696704 (512×512×33366) simulations. It is very resource-intensive to exhaust
all initial settings directly. Fortunately, there is a lot of redundancy, and we can save
computational resources by reducing the redundancy in the algorithm. The redundancy
comes from two main issues:

1) Repetitive operations caused by the symmetry of positive and negative opinions
are an important source of operational redundancy. The symmetry of positive and
negative opinions means that each initial state has an initial state symmetrical
to it, and nodes in these two initial states have exactly opposite opinions. The
dynamics of these two initial states with opinion symmetry also shows opinion
symmetry. For the example in Fig. 3.6

(a)

(b)

Figure 3.6: A demonstration of two symmetric dynamics

If I have the dynamics of Fig. 3.6(a) as follows

v⃗0 :
[
1 1 1 1 −1 −1 −1

]
=⇒ v⃗1 :

[
1 1 1 1 1 −1 1

]
=⇒ v⃗2 :

[
1 1 1 1 1 1 1

]
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there must be a symmetric version as well

v⃗0 :
[−1 −1 −1 −1 1 1 1

]
=⇒ v⃗1 :

[−1 −1 −1 −1 −1 1 −1
]

=⇒ v⃗2 :
[−1 −1 −1 −1 −1 −1 −1

]
2) Repeated operations of the known convergence process also contribute to

operational redundancy. A state s1 may already be present in the dynamics with a
certain initial state s0, so the dynamics simulation with this state as the initial state
will result in unnecessary duplicate operations. For example

(a)

(b)

Figure 3.7: The probability of occurrence of cyclic behavior for Graphs with N = 7, L = 10

if we already have the dynamics in Fig. 3.7(a)

v⃗0 :
[
1 1 −1 −1 1 −1 1

]
=⇒ v⃗1 :

[
1 1 −1 1 1 1 1

]
=⇒ v⃗2 :

[
1 1 1 1 1 1 1

]
there is no need to operate dynamics with the initial state s1 in Fig. 3.7(b)

=⇒ v⃗1 :
[
1 1 −1 1 1 1 1

]
=⇒ v⃗2 :

[
1 1 1 1 1 1 1

]
I adopt the following strategy to reduce the number of operations:

1) Operate only on half of the initial state space (for the case of N=9, L=18 diagram,
that is, only the initial states with 0 to 4 negative nodes is calculated)

2) If a state already occurs in the dynamics of a previous state, the state is no longer
simulated.

3) Use trees to store all dynamics of a graph to save memory resources. For example,
for the graph in Fig. 3.8(a), we have trees like Fig. 3.8(b)
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(a) A demonstration graph (b) Trees of the graph

Figure 3.8: A demonstration graph and the trees of this graph.

This strategy cuts out enough redundant operations. In this way we can save about
80% of computing time.

Figure 3.9: The long-cycle pattern table for graphs with N = 9, L = 18
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By exhaustive operations I obtain many patterns with long periods. I show several
examples of long cycle periods in Fig. 3.9. The longest cycle period is 50.

SPECIAL GRAPHS

In the course of studying the Byzantine NCO model, I found a diamond graph D7

(shown in Fig. 3.10).

Figure 3.10: The diamond graph D7

The unique feature of this diamond graph is that all normal nodes in this graph are
at the threshold of changing opinions, when the diamond graph is at a fixed steady state.
As the dynamics in Fig. 3.11 shows, a slight perturbation can cause nodes 1 or 5 to
change their opinions. Then a chain reaction will occur, with nodes 2, 3, and 4 changing
their opinions one after another, eventually causing the opinions of the whole pattern to
change.

Figure 3.11: The dynamics of the cycle of the special diamond graph

Using this property of special patterns, we can generate networks with long cycles by
chaining several D7. More specifically, we chain the outer nodes in the middle (nodes
1 and 5 in Fig. 3.10) of a diamond graphs with the another diamond graph and chain
several diamond graphs one by one, like Fig. 3.12.

Figure 3.12: A demonstration of how the different diamond graphs chain together
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Fig. 3.13 shows a network with 7 D7, and the cycle length of this network is 136. There
is only one node in the graph holdingσ+ opinion(red) at initial state, and the other nodes
are all holding a σ− opinion(blue).

Figure 3.13: A demonstration graph with 7 D7 whose cycle length is 136

After 195 iterations, the example graph will finally reach a cyclic steady state with a
cycle length of 136. The dynamics of the cycle of this example network are depicted in
Fig. 3.13 is

Figure 3.14: The dynamics of the cycle of the demonstration graph in Fig. 3.13

When studying the cycle period of such networks, a mistake in connecting two D7

graphs led us to another configuration with a long cycle period, which is shown in Fig
3.15. The cycle length of this type of network tends to become longer if we add more
"mistakes"; for example, the network with 6 D7 and two mistakes has a cycle length of
190, for which the dynamics are shown in Fig 3.16, but for the network without mistakes,
the cycle length is 102.

Figure 3.15: The special graph model with M +E D7 and E mistakes
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Figure 3.16: A demonstration of a graph consists of 6 D7 and 2 mistakes

The cycle periods of special cases are so complex that we cannot obtain a general
formula for their cycle period. I have simulated the dynamics of this type of network and
got the following cycle periods depicted in Table 3.1. As is shown, the largest cycle period
in this table is 22131760, which occurs in the network with 21 D7 and one mistake. Also,
I find that the cycle length of this type of network does not increase linearly with the
number of D7. I hope that future researchers will solve the mystery of the cycle lengths
of this type of network.

Number of D7(M+E) 2 3 4 5 6 7 8
Cycle length 10 1 20 26 102 136 28
Convergence time 5 16 6 88 17 195 159
Cycle length(E = 1) 1 1 1 38 1178 520 174
Cycle length(E = 2) 1 10 1 190 664 366
Cycle length(E = 3) 1 10 1 190 170
Number of D7(M+E) 9 10 11 12 13 14 15
Cycle length 3372 28 2615 4644 179 1113 28
Convergence time 577 313 173 7890 10228 443 6706
Cycle length(E = 1) 5388 864 11832 612 45918 110490 56022
Cycle length(E = 2) 402 4796 9514 24620 38360 69602 61308
Cycle length(E = 3) 1 7152 1490 6320 89974 26449 93278
Number of D7(M+E) 16 17 18 19 20 21 22
Cycle length 18 179 5682 28 126 28 3769654
Convergence time 1325 17710 343,632 56256 160442 3198374 631058
Cycle length(E = 1) 756 179 347177 179 6620424 722301 22131760
Cycle length(E = 2) 566850 390278 1952400 314951 76835 5000520 8229700
Cycle length(E = 3) 128010 89352 255249 918374 1138078 1207604 11880976

Table 3.1: Cycle length for graphs consisting of concatenated diamond graphs D7

Due to the special network’s long period and convergence time, I often meet memory
errors during simulations. For example, for the network with 34D7, the convergence
time is about 280000000. I had to optimize the data type of the network state to reduce
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the space complexity of the algorithm. The detail of the optimized algorithm is given in
the Appendix A.

3.2.1. COMBINED NETWORK

In addition to the long-period patterns found through simulation, I also developed
a network combination method that can generate long-period networks. In network
combination we combine several different networks with different cycle periods into
one connected network. Network combination is based on the idea that longer-cycle
networks can be generated by combining different component networks with different
cycles without breaking the cyclic behavior of each component network.

If we want to combine m graphs G1,G2, ...,Gm with cycle periods C1,C2, ...,Cm ,
the cycle period CGc of the combined network is the least common multiple
lcm(C1,C2, ...,Cm). The proof is as follows:

sG1 (t +x1C1) = sG1 (t )

sG2 (t +x2C2) = sG2 (t )

· · ·
sGm (t +xmCm) = sGm (t )

(3.8)

where C1,C2, ...,Cm are the cycle period of graphs G1,G2, ...,Gm and x1, x2, ..., xm

∈N+.

The combined network follows:

sGc (t +Cc ) = sGc (t ) (3.9)

where Cc is the cycle period of the combined network Gc . Since the combination does
not break the cyclic behavior of each component graphs, there exist x1, x2, ..., xm ∈ N+
such that

x1C1 =Cc

x2C2 =Cc

· · ·
xmCm =Cc

(3.10)

which means Cc is the common multiple of C1,C2, ...,Cm . Because Cc is the smallest
positive integer that satisfies the above conditions, the cycle period of the combined
network Cc is the least common multiple l cm(C1,C2, ...,Cm).
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Figure 3.17: Two separate networks with cycle length 23 (left) and cycle length 44 (right).

If I simply consider as the combination the union of G1,G2, ...,Gm , witghout any
connections between the different graphs Gi , then lcm(C1,C2, ...,Cm) is the cycle period
of the resulting, disconnected, network. However, adding links between the component
graphs might break the cyclic behavior.

Fig 3.17 gives two networks with cycle periods of 23 and 44, respectively. By
connecting these two patterns, we can obtain a network with a longer cycle period,
which equals the least common multiple of the cycle periods of the individual networks
[27]. In most cases, the cyclic conditions of the component graphs with long cycle
period are very demanding. Adding nodes or connections can easily break the cyclic
behavior of the component graphs. Thus, simple adding a link between any two nodes
in the networks, such as done in Fig. 3.18, can break the cyclic behaviour of the second
component graph, and the state of the nodes in the second component graph become
fixed. The cycle period of Fig. 3.18 is 23.

Figure 3.18: A demonstration of direct combined network

We came up with a way to solve this problem by adding mirrors. More specifically, by
adding a mirror of each component network, where the mirror holds an opposite state
vector to neutralize the effect of each component network on the cyclic behaviour of the
other component network, like Fig. 3.19 shows.
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Figure 3.19: A demonstration of the combination of two graphs in Fig. 3.17. The cycle period is 23×44 = 1012.

Using this approach to combining networks, we do not need to consider the
impact of adding connections on the cyclic behavior of the component graphs. We
can indiscriminately adding connections between the component graphs and their
mirrors. We just need to make sure that the connections are added symmetrically to the
component graphs and their mirrors. Any component graph group can be connected in
this way.

Using the network combination, we can generate networks with ultra-long cycle
periods. For example, as is shown in Fig 3.20, a combined network is established by
combining five patterns with cycle periods 17, 19, 21, 23, 50 and their mirrors. The cycle
period of the combined network is lcm(17,19,21,23,50) = 7800450.

Figure 3.20: The combination network of the 5 graph patterns with a cycle period of 7800450.
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Figure 3.21: The combination network of two sun graphs with cycle periods 20 and 52. The cycle period of this
network is 260.

The cycle period of the combined network is the least common multiple of the cycle
period of each component graphs. The sun graphs provides us with networks with a
cycle period of 4n(n ≥ 2,n ∈Z), where n can be any integer number. The least common
multiple of prime numbers is the product of them. If we combining m sun graphs with
cycle periods 4n1, 4n2,...,4nm , where n1, n2,...,nm are all prime numbers, we obtain a
combination network with a cycle period of l cm(4n1,4n2, ...,4nm) = 4 ×∏m

i=1 ni . The
example in Fig. 3.21, gives a combination network of two sun graphs with cycle periods
20 (4×5) and 52 (4×13). The cycle period of this combination network is 260 (4×5×13).
The sun graph provides us with an infinite number of primes. Therefore, using network
combinations we can efficiently generate networks with infinitely long cycle period.

3.3. OCCURRENCE OF CYCLIC BEHAVIOR

The introduction of Byzantine nodes not only produces long cycles but also changes
the conditions for the occurrence of cyclic behavior. In Fig. 3.22, I plot the occurrence
probability of occurrence of cyclic behaviour pc ( f ) versus the initial σ− opinion fraction
f for a different number of Byzantine nodes NB . I find that for the traditional NCO
model, cyclic behavior is more likely to occur when the number of positive and negative
opinions is balanced. As the number of Byzantine nodes increases, the peak of the curve
begins to move to the left and right sides. For NB ≥ 3, the peak of the curve moves to the
leftmost and rightmost sides, which means cyclic behavior is more likely to occur when
one opinion prevails in the initial state.
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(a) No-Byzantine nodes (b) 1 Byzantine node

(c) 2 Byzantine nodes (d) 3 Byzantine nodes

(e) 4 Byzantine nodes (f) 5 Byzantine nodes

(g) 6 Byzantine nodes (h) 7 Byzantine nodes

Figure 3.22: The probability of occurrence of cyclic behavior for all graphs with N = 7 nodes and L = 10 links.
(There are 132 isomorphic different graphs obtained by using nauty and Traces [26].)
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In order to test our findings, I further extend the study to some larger-scale
networks. I perform simulations on ER networks with N = 100, p = 0.047 (the threshold
of connection pc is 0.04605. I set p a value larger than pc to guarantee that the network
is connected.) and SF networks (with N = 100, λ = 3 and kmin = 2). NB nodes are
randomly selected to be Byzantine nodes, and initial opinion σ− and σ+ are randomly
assigned to all the N nodes with a fraction of f and 1− f respectively ( f = n/N , where
n is the number of σ− nodes) at time t = 0. Then I perform the simulation until the
steady state is reached. For every initial opinion fraction value f , 20000 simulations are
performed and the number of times cyclic behavior occurs is recorded.

Byzantine node settings include the number of Byzantine nodes and the selection
strategy. I design the Byzantine nodes selection strategies according to the degree of
the nodes. Byzantine nodes can cause their neighbouring nodes to misjudge their local
majority opinion. The nodes with higher degree have more neighbors, which means
they can influence more nodes. To find out the magnitude of the effect of the degree
of Byzantine nodes on the behavior of the Byzantine NCO model, I take three different
strategies to lay out the Byzantine nodes:

1) Strategy I: Randomly select NB nodes to be Byzantine nodes.

2) Strategy II: Select NB nodes with highest degree to be Byzantine nodes.

3) Strategy III: Select NB nodes with lowest degree to be Byzantine nodes.

From Fig. 3.23(a), I find that the pc ( f ) curve has a peak at f = 0.5, and the network
show a cyclic behavior in the interval (0.36,0.66), which roughly overlap with the
coexistence interval (which is introduced in Chapter 4). Outside this interval the
network tends to reach a consensus steady state, where only the majority opinion exist.
When only one opinion exists at the steady state, no cycles can occur.

For NB ≤ 70, the probability of occurrence of cyclic behavior is less than 2% for any
initial opinion fraction f . As the number of Byzantine nodes increases, the interval
of occurrence of cyclic behaviour expands to both sides, and the peak of the curve
gradually moves to f = 0 and f = 1. When all nodes in the network are Byzantine nodes,
the network reaches a cyclic steady state in all cases in the interval f ∈ [0,0.2) and the
interval f ∈ (0.8,1]. In this interval, most of the nodes in the network start with the same
opinion. Due to the lying nature of Byzantine nodes, most of the nodes in the network
will misjudge the local majority opinion and thus change their opinion, at which the
changed opinion becomes the majority opinion again. The node’s opinion will continue
to change, oscillating between the two opinions and reaching a cyclic steady state.

In the convex part of the curve, the initial state of the ratio of these two opinions
is balanced, and there is no absolute majority of opinions. In this state, the network is
more stable and has a larger possibility to not oscillate.
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(a) No Byzantine nodes (b) 30 Byzantine nodes

(c) 80 Byzantine nodes (d) 100 Byzantine nodes

Figure 3.23: The probability of occurrence of cyclic behavior for ER networks with N = 100, p = 0.047, and the
placement of Byzantine nodes following Strategy I.

Figure 3.24: The probability of occurrence of cyclic behavior with a different number of Byzantine
nodes(different line colours) for ER networks with N = 100, p = 0.047, and the placement of Byzantine nodes

following Strategy I.
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Figure 3.25: The probability of occurrence of cyclic behavior with a different number of Byzantine nodes for
SF networks with N = 100, kmin = 2,λ= 3, and the placement of Byzantine nodes following Strategy I.

Fig. 3.24 and Fig. 3.25 show that when the number of Byzantine nodes is larger than
70, the probability of occurrence of cyclic behavior increases significantly. For NB ≤ 70,
the probability of occurrence of cyclic behavior is less than 5% for any f .

Figure 3.26: The probability of occurrence of cyclic behavior with a different number of Byzantine
nodes(different line colours) for ER networks with N = 100, p = 0.047, and the placement of Byzantine nodes

following Strategy II.
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Figure 3.27: The probability of occurrence of cyclic behavior with a different number of Byzantine nodes for
SF networks with N = 100, kmin = 2,λ= 3, and the placement of Byzantine nodes following Strategy II.

Fig 3.26 and Fig 3.27, indicate that selecting nodes with high degree as Byzantine
nodes can better induce cyclic behavior than randomly selecting nodes as Byzantine
nodes.

Figure 3.28: The probability of occurrence of cyclic behavior with a different number of Byzantine
nodes(different line colours) for ER networks with N = 100, p = 0.047, and the placement of Byzantine nodes

following Strategy III.
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Figure 3.29: The probability of occurrence of cyclic behavior with a different number of Byzantine nodes for
SF networks with N = 100, kmin = 2,λ= 3, and the placement of Byzantine nodes following Strategy III.

Finally, Fig 3.28 and Fig 3.29, show that Strategy III is less effective than Strategy I
in promoting the cyclic behavior. Fig 3.29 shows that unless the two nodes with the
largest degree in the network become Byzantine nodes, the pc ≤ 0.2 for f ∈ [0,1], and
the system can still reach a fixed steady state in most cases.

The above experiments show that nodes with a high degree have a greater impact
on the probability of occurrence of cyclic behavior. For the same number of Byzantine
nodes, taking strategy II has the greatest impact on the probability of occurrence of
cyclic behavior. For ER networks, the degree distribution follows a binomial distribution
and the degree of most nodes is concentrated around the mean degree value. However,
for the SF network, the degrees of nodes in the network follow a power-law distribution,
with most nodes having low degrees and a small number of nodes having very high
degrees. Comparing ER and SF networks, the difference in degree between different
nodes in SF networks is larger, and the difference in the experimental results when
different strategies are taken is more significant.

Take the nuclear war story. For country B, they should bribe the more influential
leaders in the decision-making hierarchy of country A who have more connections with
other leaders and the spies should declare an opinion opposite to the local majority
opinion. For country A, they need to ensure that key leaders, which are the leaders who
can influence most of the other leaders, are not bought off, or build a more balanced
leadership structure, where there are not a few leaders who can decide the big picture
alone.



4
OPINION DISTRIBUTION AT

STEADY STATE

It does not always seem feasible to keep the decision-makers in Country A in a constant
tug-of-war. Interfering with the outcome of a vote so that the decision-makers cannot
make a decision in the interest of country A is also a very effective way to attack. The
introduction of Byzantine nodes impacts the final opinion fraction, which can be used
to develop attack and defense strategies.

For the NCO model, the final opinion fraction is an essential element of steady-state
behavior because the final opinion fraction reflects which opinion is the majority
opinion in the steady state. As mentioned in the previous sections, the NCO model
has two opinion kinds of distributions when reaching steady state: consensus and
coexistence. In the consensus state, all nodes in the network will hold the same opinion,
while in the coexistence state, both opinions can coexist.

Shao et al. finds that there is a critical threshold of consensus and coexistence [9].
When the ratio of minority opinions in the initial state is less than this critical threshold,
the network tends to reach a consensus. In contrast, the minority and majority opinions
tend to coexist when it is greater.

This chapter explores the effect of the introduction of Byzantine nodes on the final
opinion fraction and studies the critical threshold in the Byzantine NCO model.

4.1. FINAL OPINION FRACTION
The NCO model is a model used to study opinion formation. One of the essential
elements I am concerned about for opinion formation is the number of people holding
each of the two different opinions at steady state.
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The final opinion fraction is defined as the percentage of the number of nodes
holding a specific opinion among all nodes when the NCO model reaches a steady state,
denoted as

F = nσ/N (4.1)

where nσ is the number of nodes holding σ opinion (nσ− and nσ+ are the number
of nodes holding negative and positive opinions, respectively). Here I set σ to be the
negative opinion σ−.

For the cyclic steady state, the final opinion fraction is the mean value of the opinion
fraction of each state in the cyclic steady state, denoted as

F =
∑C

i=1 nσi /N

C
(4.2)

where C is the length of the cycle and nσi is the number of nodes holding σ opinion
at the i th state in the cycle.

Figure 4.1: Plot of the fraction of σ− nodes F (dashed line) in steady state as a function of f for an ER network
with N = 105 and p = 4×10−6. This figure is a copy of the plot in Shao’s et al. paper. [9]

Shao et al. found that the fraction of one opinion at steady state F is positively
correlated with the fraction of that opinion f at the initial state, which is not difficult to
understand. What is surprising in Shao et al.’s study is that F does not increase smoothly
with increasing f but increases smoothly in small increments before increasing sharply
at some point with increasing f as Fig 4.1 shows.

In order to study the opinion distribution at steady state, I first set a certain number
of nodes in the network to be Byzantine nodes. At the beginning, two opinions (denoted
asσ− andσ+) are randomly assigned to all nodes: nodes are assigned a negative opinion
σ− with an initial opinion fraction f and positive opinion σ+ with an initial opinion
fraction 1− f [28], [29]. Then, the number of σ− nodes at steady state is measured.
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4.1.1. EXHAUSTIVE RESEARCH ON GRAPHS WITH N=7, L=10

I performed an exhaustive research on 132 small size graphs(N=7, L=10) with different
initial state and Byzantine nodes settings [26].

Figure 4.2: Violin plot of graphs with N = 7, L = 10 and NB = 0, the orange line shows the average value of F
for different f , the red area shows the distribution of F for different f . The white point is the median of F for

different f .

Fig. 4.2 shows the distribution of the number of nodes with the negative opinion
σ− at a steady state for the Non-Byzantine-node network. The orange curve and the
red violin plot show the mean value and distribution of F at different f . I find that F
is a monotonically increasing function of f with a symmetry around ( f ,F ) = (0.5,0.5).
For f ∈ {0,1/7,2/7}, the σ− is the minority opinion, graphs tend to reach a positive
consensus, and only a few cases reach a consensus. For f ∈ {3/7,4/7}, the majority
opinion and minority opinion are close in number, and the coexistence is reached in the
majority of cases. There is a sharp increase for F at f ∈ {2/7,3/7}; the tendencies have
also changed from consensus to coexistence.

From Fig. 4.3, I find that as more and more Byzantine nodes are added to the graph,
the mean curve of F becomes flatter and flatter, which means the graphs are more
likely to reach a coexistence stable or cyclic steady state. I also find that the correlation
between f and F becomes weaker with increasing Byzantine nodes. As is shown in Fig.
4.3(e), even if there are no σ− nodes initially( f = 0), there are still many cases that reach
a steady state where the majority opinion is σ−.
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(a) 1 Byzantine node (b) 2 Byzantine nodes

(c) 3 Byzantine nodes (d) 4 Byzantine nodes

(e) 5 Byzantine nodes (f) 6 Byzantine nodes

(g) 7 Byzantine nodes

Figure 4.3: Violin plot of graphs with N = 7, L = 10 and different number of Byzantine nodes
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From Fig. 4.3(d) I find that when there is a significant number of Byzantine nodes in
the network, due to the lying nature of Byzantine nodes, the majority opinion presented
by the network is the opposite of the real majority opinion, causing the opinion to flip
and the initial majority opinion to become the minority opinion.

Fig. 4.4 gives an example of the introduction of Byzantine nodes reversing the
majority opinion in a graph. The graph reaches a steady state and the majority opinion
changes from σ+ to σ−.

Figure 4.4: A demonstration case, where the introduction of Byzantine nodes reverses the majority opinion.

Fig. 4.3(a) to Fig. 4.3(d) show that for f = 0 the main lobe of the violin plot is around
F = 0, which means that for graphs with a few Byzantine nodes, the graph still tends
to reach a consensus state when one opinion holds an absolute majority position.
However, as the number of Byzantine nodes increases, it becomes increasingly difficult
to reach a consensus state, which means that coexistence is more stable than consensus
for the Byzantine NCO model.

Even when all nodes in the network are Byzantine nodes, as shown in Fig. 4.3(g),
almost all cases reach a coexistence fixed steady state or cyclic steady state, and very few
reach a consensus steady state. In the Byzantine NCO model, the nodes in the graph
cannot correctly judge their local majority opinion since Byzantine nodes will confuse
other nodes. Therefore, for the Byzantine NCO model, coexistence is a more stable state
than consensus when a significant number of the nodes are Byzantine.

As the number of Byzantine nodes increases, the mean and median of F
corresponding to different f get closer to 0.5, suggesting that the introduction of
Byzantine nodes plays a role in balancing the number of nodes holding different
opinions in the graph.

4.1.2. SIMULATIONS ON ER AND SF NETWORKS

I also perform simulations on some bigger network models, such as ER networks and SF
networks with N = 100 to verify whether the above findings are still valid.
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(a) ER network Strategy I (b) SF network Strategy I

(c) ER networks Strategy II (d) SF networks Strategy II

(e) ER networks Strategy III (f) SF networks Strategy III

Figure 4.5: The final opinion fraction F for different initial opinion fraction f with NB from 0 to 100, Strategy
I, II, III

Fig. 4.5(a) and Fig. 4.5(b) show that, like small-scale graphs, as the number of
Byzantine nodes increases, the F ( f ) curve of ER and SF networks becomes flattened,
which indicates that the introduction of Byzantine nodes could balance the ratio of the
two opinions in the network. When the number of Byzantine nodes is greater than 60,
the F ( f ) curves for ER network becomes almost a horizontal curve, indicating the final
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opinion fraction F has no relation with the initial opinion fraction f .

When a certain opinion prevails in the network, Byzantine nodes holding the
majority opinion will declare the minority opinion due to the lying nature of Byzantine
nodes. This affects the opinion of its neighboring nodes, shifting their opinion to the
minority opinion, thus making the majority opinion less dominant. Based on the above
analysis, I conjecture that for a network with a significant number of Byzantine nodes,
the consensus state is unstable. Thus for the Byzantine NCO model, the coexistence
steady state or the cyclic steady state is the more likely steady state. In the coexistence
steady state, the number of the two opinions is closer. In the cyclic steady state, the final
opinion fraction of the two opinions will also be closer since the nodes in oscillation
always change to the local majority nodes. Therefore, the final opinion fraction of the
Byzantine NCO model will be closer to 0.5, and the F ( f ) curve will be more horizontal
than that of the NCO model.

Nodes with a larger degree have more neighboring nodes, which means they have
a stronger influence, and it is reasonable to assume that selecting nodes with a higher
degree as Byzantine nodes have a stronger effect on the final opinion fraction. In order
to verify this argument, I compute the F − f curve for strategy II and strategy III and draw
Fig. 4.5(c) to Fig. 4.5(f). I also find that for SF networks, adopting different strategies has
a larger impact on the final opinion fraction F . The degree of the ER network follows
a binomial distribution, and the differences in its degree between different nodes are
small. In contrast, the degree of the SF network follows a power law distribution, so a
small number of nodes in the network having a very high degree and most nodes have
a low degree, which leads to a more pronounced difference in the change of the curve
when different strategies are taken.

Figure 4.6: The final opinion fraction F as a function of initial opinion fractions f for ER network with N = 100,
p = 0.047 and NB = 30 for three different Strategies (Strategy I: blue; Strategy II: orange; Strategy III: green)
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I find that both for the ER and SF networks, the curve for strategy II is denser at the
F ( f ) curve with NB = 100 while the curve for strategy III is denser at the F ( f ) curve with
NB = 0, which indicates that when strategy II is taken, the impact of Byzantine nodes
is more obvious. In Fig. 4.6, I have selected the F ( f ) curves for NB = 30 under the
three different strategies, the curve for strategy II is closer to the horizontal line F = 0.5,
indicating that the balancing effect of strategy II is more significant than the balancing
effect of strategies I and III.

4.2. CRITICAL THRESHOLD
In the NCO model, different opinions are existing in the form of clusters, where the
nodes in a cluster holds the same opinion. In the consensus steady state, there is only
a majority opinion cluster. In the coexistence steady state, there will be several σ− and
σ+ clusters in the network. Shao et al. suggest that, when the number of one opinion is
above a certain critical threshold fc , even when the opinion is still the minority, a large
spanning cluster forms [9]. Once the cluster is formed, it becomes stable and cannot
be penetrated by the other opinion. Below the critical threshold fc , only the majority
opinion could exist in a stable way, and the network reaches a consensus state.

Figure 4.7: Plot of the normalized size of the largest cluster s1, the second largest cluster s2 and the final
fraction of σ− nodes F for a ER network with N = 100 and p = 0.047

Fig. 4.7 shows s1, s2 and F , where s1 = S1/N and s2 = S2/N are the normalized largest
and second largestσ− cluster. The critical threshold fc can be characterized by the sharp
peak of s2. For f < fc , the size of the σ− cluster follows a power law distribution: n ∼ s−τ,
with τ= 2.5 where s is the cluster size and τ is the scaling exponent. Once f exceeds fc ,
the size of the largest and second largest cluster diverges, where the size of the largest
cluster keeps increasing but the second largest cluster S2 follows S2 ∼ | f − fc |−γ, where
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fc is the critical threshold and γ is a scaling exponent [15].

Figure 4.8: Plot of the normalized size of the largest cluster s1, the second-largest cluster s2 and the final
fraction of σ− nodes F for a ER network (N = 100, p = 0.047) with NB = 0 and NB = 20

The introduction of Byzantine nodes will impact the critical threshold. Byzantine
nodes could help balance the number of nodes holding different opinions at the steady
state by increasing the proportion of the minority opinion. In the Byzantine NCO model,
minority opinions are more likely to form stable clusters. Fig. 4.8 shows the plots of F , s1

and s2 for the NCO model with 20 Byzantine nodes and without Byzantine nodes. I find
that the critical threshold fc for the NCO model with Byzantine nodes is smaller than for
the NCO model with no Byzantine nodes.

As the number of Byzantine nodes increases, the critical threshold fc will keep
moving to the left until it reaches 0. We denote the value of the number of Byzantine
nodes NB when the critical threshold value reaches zero as NB ,c . For NB < NB ,c , the
Byzantine NCO model still tend to reach a consensus steady state in f ∈ (0, fc ) and
f ∈ (1− fc ,1), where only the majority opinion could exist in a stable way. For NB > NB ,c ,
the Byzantine NCO model tends to reach a coexistence steady state for all f . When
NB = NB ,c , the derivative of the s2 curve at f = 0 is 0. For strategy I, NB ,c is 42, which
means that the network will hardly reach a consensus steady state when 42 nodes are
randomly selected to be Byzantine nodes.
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(a) NB ≤ 42 (b) 42 < NB < 60

(c) NB ≥ 60

Figure 4.9: Plot of the normalized size of the largest cluster s2 for a ER network with different number of
Byzantine nodes

Continuing to add Byzantine nodes, I find that the s2 curve no longer has a sharp
peak in f ∈ [0,1], the largest minority cluster s1 could stably exist for all f . The network
tends to reach a coexistence steady state for any initial opinion fraction. When the
number of Byzantine nodes is larger than 60, the peak of S2 curve doesn’t lie at f = 0
again. When the number of Byzantine nodes is greater than 60, the probability of
cyclic behaviour occurring around f = 0 and f = 1 will be significantly increased, the
scattered clusters are not yet formed when the cycle occurs, and nodes holding the same
opinion connect to form a large but unstable cluster. Therefore when NB > 60, s2( f ) is a
convex function. I also find that the maximum value of s1 becomes smaller and smaller,
indicating that the maximum size of the largest clusters in the network becomes smaller.
The introduction of Byzantine node nodes prevents the formation of large majority
opinion clusters. Fig. 4.10 shows that the maximum value of s1 becomes smaller as the
number of Byzantine nodes increases, which means that large majority opinion clusters
are not allowed to exist when there are a significant number of Byzantine nodes. When
NB > 60, s1( f ) shows a peak that doesn’t lie on f = 0 because of the increased number of
times the cyclic behavior occurs.
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Figure 4.10: Plot of the normalized size of the largest cluster s1 for a ER network with different number of
Byzantine nodes

Different Byzantine node selection strategies have different degrees of influence on
the S2 curve. For strategy II and strategy III, NB ,c is 34 and 54, respectively, which means
that the network will have difficulty reaching a consensus steady state when the 34 nodes
with the highest degree in the network become Byzantine nodes, but for the nodes with
the lowest degree, this value is 54. Comparing the figures in Fig. 4.11 and Fig. 4.12, I
find that strategy II has a more pronounced effect on S2 curves. The S2 curves of strategy
II are denser at NB = 100, and the S2 curves of strategy II are denser at NB = 0, which
means strategy II shows a more significant influence on the S2 curve.

Figure 4.11: Plot of the normalized size of the second largest cluster s2 for a ER network with different number
of Byzantine nodes and the placement of Byzantine nodes following Strategy II.



4

48 4. OPINION DISTRIBUTION AT STEADY STATE

Figure 4.12: Plot of the normalized size of the second largest cluster s2 for a ER network with different number
of Byzantine nodes and the placement of Byzantine nodes following Strategy III.

(a) Strategy I (b) Strategy II

(c) Strategy III

Figure 4.13: Plot of the normalized size of the largest cluster s2 for a SF network and the placement of
Byzantine nodes following 3 different Strategies.
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From Fig. 4.13, I find that the variation of the s2 curve is very different when different
Byzantine selection strategies are adopted. For the SF network, when Strategy III is
taken, the critical threshold changes very slowly. There are many nodes with a very low
degree in the SF network, which only have very little impact on the system. The degree
of different nodes in the SF network varies very much [30]. The large differences in the
degrees of different nodes in the SF network lead to large differences in the simulation
results when different strategies are selected. This further illustrates that nodes with high
degree are more important than nodes with a low degree in the Byzantine NCO model.

(a) Strategy I (b) Strategy II

(c) Strategy III

Figure 4.14: Plot of the normalized size of the largest cluster s1 for a SF network and the placement of
Byzantine nodes following 3 different Strategies.

Take the nuclear war story. When there are several influential leaders (high degree
nodes) in the decision making level of country A (like the SF network model), as long
as these influential leaders are not bought by the enemy, the decision making level can
still make the decision in favor of the country A. But if country B bribes these influential
leaders, it will be a disaster for country A. Therefore it is safer for country A to build a
power structure like the ER network.





5
CONVERGENCE TIME OF THE

BYZANTINE NCO MODEL

When the number of spies infiltrated into country A by country B is small, it will be
difficult for the spies to influence decisions in country A. At this point, the spies can
influence the timeliness of the decision by extending the decision time. If country A
fails to make a nuclear counterattack within one hour, country B’s nuclear bomb will
destroy country A’s nuclear counterattack capability. This relates to the convergence
time problem of the Byzantine NCO model we introduce in this chapter, and spies can
adopt strategies to extend the convergence time to achieve their aims.

5.1. CONVERGENCE TIME
Convergence time is another property of the Byzantine NCO model that we are
interested in. We find that the introduction of Byzantine nodes can increase the
convergence time of the network to some extent, which attackers can exploit to extend
the decision time of the crowd.

CONVERGENCE TIME Tc

Convergence time is the number of iterations required for the NCO model to converge
from the initial state to a steady state. The convergence time for the example graph given
in Fig. 5.1 is 2 , because it takes two iterations to reach a steady state from the initial state.

Figure 5.1: Dynamics of the NCO model on a network with N = 9 nodes.
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A cyclic steady state is different from a fixed steady state in that cyclic steady states
contains multiple states. Therefore, for the cyclic steady state, the convergence time is
defined as the number of iterations used for the NCO model to converge from the initial
state to the first appearance of a state in the cyclic steady state. The convergence time
for the example graph in Fig. 5.2 is 0, because the initial state is part of the cycle.

Figure 5.2: Dynamics of the Byzantine NCO model on a network with N = 9 nodes.

HAMMING DISTANCE D
The Hamming distance between two vectors is the number of positions at which
corresponding symbols are different, denoted as

D(v⃗t , v⃗t ′ ) =
N∑

i=0
d(i ) (5.1)

where

d(i ) =
{

0 if v⃗t [i ] = v⃗t ′ [i ]

1 if v⃗t [i ] ̸= v⃗t ′ [i ]
(5.2)

Compared with the initial opinion, Node 1, 3, 4 change their opinions at steady state.
Thus, the Hamming distance between initial and final state for the example in Fig. 5.3 is

D(v⃗t0 , v⃗t3 ) = 3 (5.3)

We conjecture that the convergence time is positively related with the Hamming
distance between the initial and converged states. Fig. 5.3 and Fig. 5.4 give two cases
with different convergence time. The case in Fig. 5.3 has a longer D , which means much
nodes in the graph change their opinions at the steady state. At each iteration, one node
in the system changes its opinion. Thus it takes a longer time to make this convergence
process. For the case in Fig. 5.3, D is small, and so is Tc . If the difference between the two
states is large, the initial state requires multiple transformations to reach the steady state.
To verify this conjecture, we measure the convergence time and compute the Hamming
distance of different networks under different strategies.
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Figure 5.3: Dynamics of the Byzantine NCO model on a graph with N = 9 nodes, Tc = 3, D = 3.

Figure 5.4: Dynamics of the Byzantine NCO model on a graph with N = 9 nodes, Tc = 1, D = 1.

5.2. EXHAUSTIVE RESEARCH ON GRAPHS WITH N=7, L=10
5.2.1. THE CONVERGENCE TIME FOR GRAPHS WITH DIFFERENT NUMBER

OF BYZANTINE NODES
I perform exhaustive research on all the 132 graphs with N = 7, L = 10, where all the
possible initial states and Byzantine nodes settings are taken into consideration. Then I
record the convergence time Tc and draw the plot of Tc as a function of Byzantine nodes
number NB in Fig. 5.5 to study the impact of the introduction of Byzantine nodes on the
convergence time Tc .

Figure 5.5: Plot of convergence time Tc as a function of Byzantine nodes number NB for graphs with N = 7,
L = 10
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From Fig. 5.5, we find that as the number of Byzantine nodes increases, the average
convergence time first increases, reaches a peak at NB = 4, and then decreases. To
further study the convergence time of the Byzantine NCO model, I draw the plot of
convergence time Tc and Hamming distance D as a function of initial opinion faction
f . To investigate the relationship between Tc and D , I compute the Pearson correlation
coefficient between Tc and D , which can be calculated as follows:

ρTc ,D = E(Tc ·D)−E(Tc ) ·E(D)√
E(D2)− (E(D))2 ·

√
E(T 2

c )− (E(Tc ))2
(5.4)

(a) 0 Byzantine node (b) 1 Byzantine nodes

(c) 2 Byzantine nodes (d) 3 Byzantine nodes

Figure 5.6: Plot of the convergence time Tc and Hamming distance D between initial and final state as a
function of initial σ− opinion fraction

Fig. 5.6 and Fig. 5.7 give the Tc ( f ) and D( f ) curves when different number of
Byzantine nodes are added. We find that these two curves are similar in shape. The
convergence time Tc shows a high correlation with the Hamming distance D between
the initial state and steady state.
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In Fig. 5.6, we see that for NB ∈ {0,1,2,3}, the D( f ) curve has a shape of high in
the middle and low on the sides. In Chapter 4, I showed that the network tends to
reach a consensus steady state when the number of Byzantine nodes is small. Take
0 ≤ f ≤ 0.5, when f is close to 0, the network tends to reach a consensus state, and the
Hamming distance between the initial state and the steady state increases with f . When
f is around 0.5, the network still tends to reach a consensus state or a coexistence state
where one opinion is in the absolute majority, and the Hamming distance is large, so
the convergence time is long.

As the number of Byzantine nodes increases, the tendency changes from reaching
a consensus state to a coexistence state. When NB = 4, the difference between D
corresponding to different f is smaller, so the correlation coefficient between Tc and
D is small. When NB > 4, the network tends to reach a steady state with equal positive
and negative opinions. Thus the middle part of the curve is low, and the sides are high.

(a) 4 Byzantine nodes (b) 5 Byzantine nodes

(c) 6 Byzantine nodes (d) 7 Byzantine nodes

Figure 5.7: Plot of the convergence time Tc and Hamming distance D between initial and final state as a
function of initial σ− opinion fraction

After studying graphs with N = 7, L = 10, we found that the convergence time is
highly correlated with the Hamming distance between the initial state and the steady
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state. The setting of Byzantine nodes influences the steady state, which determines the
Hamming distance between the initial state and the stable state. This is the mechanism
by which the introduction of Byzantine nodes affects the convergence time.

5.3. RESEARCH ON ER AND SF NETWORKS

Extending the study to larger-scale networks, we use ER and SF networks as experimental
subjects and adopted the three different Byzantine nodes selection strategies mentioned
in the previous chapter for the study, and obtained the following experimental results.

From Fig. 5.8, like the small-size graphs, we find that the convergence time increases
and then decreases with the increase of Byzantine nodes, and the curve peaks at NB = 56.

Figure 5.8: Plot of convergence time Tc as a function of Byzantine nodes number NB for ER network and the
placement of Byzantine nodes following Strategy I.

Fig. 5.9 depicts the convergence time Tc and the Hamming distance D for different
numbers of Byzantine nodes. When NB = 0, the Tc ( f ) and D( f ) curves have an "M"
shape, and the peak of the curve is near the critical threshold. This further validates
our conjecture that the convergence time Tc is influenced by the Hamming distance
D between initial and steady state. When f ∈ (0, fc )∪ (1− fc ,1), the network tends to
reach a consensus steady state, thus the closer the value of f is to fc , the greater the
Hamming distance D between the initial state and the convergence state, and the longer
the convergence time Tc . When f ∈ ( fc ,1− fc ), the network tends to reach a coexistence
steady state. In f ∈ ( fc ,0.5], the probability of the network reaching a consensus
decrease with the increase of f . The network is least likely to reach a consensus steady
state at f = 0.5, and the average Hamming distance between the initial state and the
convergence state is relatively small, so the convergence time in f = 0.5 is shorter than
in f ∈ ( fc ,0.5)∪ (0.5,1− fc ).
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(a) 0 Byzantine nodes (b) 40 Byzantine nodes

(c) 56 Byzantine nodes (d) 80 Byzantine nodes

(e) 100 Byzantine nodes

Figure 5.9: Plot of convergence time Tc as a function of initial σ− opinion fraction f with different number of
Byzantine nodes and the placement of Byzantine nodes following Strategy I
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(a) Strategy I (b) Strategy II

(c) Strategy III

Figure 5.10: Plot of convergence time Tc as a function of initial σ− opinion fraction f on ER network and the
placement of Byzantine nodes following three different strategies.

With the increase of the number of Byzantine nodes, the Hamming distance between
the initial state and the convergence state increases continuously, and the convergence
time also increases, and the convergence time reaches the maximum when NB = 56. At
this point, the range of D and Tc is smaller, so the D curve and Tc curve are rough, and
D shows a negatively correlation with Tc . From then on, like the graphs with N = 7,
L = 10, the network gradually takes the shape of high in the middle and low on the sides.
When there are a large number of Byzantine nodes in the network, the Tc ( f ) curve has
an "M" shape, which is different from the shape of the D( f ) curve. This is because the
probability of cyclic behavior is greatly increased, and when calculating the Hamming
distance, we consider that the state of non-stationary nodes is different from the initial
state, so the Hamming distance is larger.
From Fig. 5.11, when we adopt different Byzantine nodes selection strategies, the impact
of Byzantine nodes on the convergence time is also different. The peak of the Tc ( f ) curve
of strategy II corresponds to a smaller f than that of strategy I, indicating that with the
same number of Byzantine nodes, the Byzantine nodes have a greater impact on the
convergence time when strategy II is adopted. Byzantine nodes have less impact on
convergence time when strategy III is adopted.
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(a) Strategy II (b) Strategy III

Figure 5.11: Plot of convergence time Tc as a function of Byzantine nodes number NB for ER network and the
placement of Byzantine nodes following Strategy II and III.

(a) Strategy I (b) Strategy II

(c) Strategy III

Figure 5.12: Plot of convergence time Tc as a function of initial σ− opinion fraction f on SF network and the
placement of Byzantine nodes following three different strategies.
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Fig. 5.12 gives the Tc ( f ) curves of SF network with a different number of Byzantine
nodes for three different strategies. It is worth noting that the convergence time of the SF
network is longer compared to the ER network, especially when strategy III is adopted.

(a) Strategy I (b) Strategy II

(c) Strategy III

Figure 5.13: Plot of convergence time Tc as a function of Byzantine nodes number NB for SF network and the
placement of Byzantine nodes following Strategy I, II and III.

For the convergence time of SF networks, the difference caused by adopting different
strategies is obvious. Introducing a small number of Byzantine nodes can significantly
affect the convergence time when Strategy II is adopted. However, the maximum value
of the convergence time is larger when Strategy III is adopted.

When there are only a small number of spies from country B in country A, if the
spies in country B want to interfere with the decision-making time in country A, they
can always declare a local minority opinion as the Byzantine nodes do.



6
CONCLUSIONS AND FUTURE WORK

This chapter summarizes my findings and proposes some suggestions for future
research.

6.1. CONCLUSIONS
This research extends the NCO model with Byzantine nodes and introduced the
Byzantine NCO model. After that, the typical steady state, steady-state behavior, and
Byzantine-NCO model dynamics are studied. In order to achieve this, I first designed
a simulation method to simulate the dynamics of the Byzantine-NCO model. After
verifying the validity of this simulation method, simulations were performed on some
experimental networks using this method. Some small-scale networks and classical
network models were used to study the dynamics under different initial parameter
settings. The initial parameter settings include the initial opinion assignment and the
Byzantine node setting, where some specific nodes are set up as the Byzantine nodes
and two opinions denoted as σ− and σ+ are randomly or intentionally assigned to all
nodes in the network at a certain fraction.

In Chapter 3, I presented two typical steady states of the Byzantine NCO model:
fixed steady state and cyclic steady state. In the fixed steady state, where all nodes in
the network hold a local majority opinion, the state of the network stops changing.
In the cyclic steady state, the network will cycle through several different states. Each
state in the cyclic steady state is unfixed, where not all the nodes hold a local majority
opinion. Some network patterns with long periods were found by an exhaustive study
of small-scale networks. Some types of networks with long periods were given and
a method was proposed to generate networks with ultra-long periods by combining
different networks. I found that the introduction of Byzantine nodes affects the
occurrence of cyclic behavior. When there are no or only a few Byzantine nodes in the
network, the cyclic behavior occurs mainly when the initial opinion fraction f is close to
0.5. In contrast, when there are a significant number of Byzantine nodes in the network,

61



6

62 6. CONCLUSIONS AND FUTURE WORK

the cyclic behavior occurs mainly when the initial opinion fraction f is close to 0 or 1.

In Chapter 4, simulations were performed on different types of experimental
networks with different initial settings and the fraction of different opinions in the
steady state were measured to analyze the steady-state behavior of the Byzantine NCO
model. I found that as the number of Byzantine nodes increases, the number of the
two opinions in the steady state becomes closer and the correlation between the final
opinion score and the initial opinion fraction becomes weaker. Shao et al. finds there
is a critical threshold fc in the NCO model, which is the threshold of system consensus
and coexistence steady state. I found that the introduction of Byzantine nodes could
change the critical threshold and make it easier for the system to reach a consensus
steady state.

In Chapter 5, I measured the convergence time of the Byzantine NCO model and
found a high correlation between the convergence time and the Hamming distance
between the initial state and the steady state. The convergence time of different network
models when different Byzantine node selection strategies are discussed. A mechanism
that the Byzantine nodes influence the convergence time by influencing the steady state
is revealed.

6.2. FUTURE RESEARCH
The Byzantine NCO model is a very worthwhile model with a lot of valuable but
unexplored research in this thesis. The following are the research problems that I did
not fully investigate during our research due to time constraints.

1. Long-cycle Graphs

In Chapter 3 I introduced some graphs with long cycle periods and gave a method
to generate networks with an extremely long cyclic period. However, this method
can only generate networks based on the combination of the patterns I have
found, and therefore cannot generate networks of arbitrary length. It would
be very interesting research to construct a general method that can efficiently
generate networks of an arbitrary cycle period.

2. Taking more Byzantine nodes selecting strategies

In this thesis, I only tried three strategies according to the degree of the node.
There are many other measures of the importance of a node in the network,
such as betweenness, closeness and eigenvector centrality. Selecting Byzantine
nodes based on these properties can help us better understand the importance of
different nodes in the Byzantine NCO model.

3. Taking more network models



6.2. FUTURE RESEARCH

6

63

In this thesis, only three network models were discussed. Further research can
be performed on more network models, such as spatial modular networks and
small-world networks.

4. Extending the study of Byzantine NCO models to application areas

In this thesis, we discussed the dynamics of the NCO model on some toy networks
but did not put it into practice. Researching the dynamics of the NCO model on
the real-world network would be very exciting.
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[23] P. Erdős, A. Rényi, et al., “On the evolution of random graphs,” Publ. Math. Inst.
Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[24] A.-L. Barabási, “Scale-free networks: A decade and beyond,” Science, vol. 325,
no. 5939, pp. 412–413, 2009.

[25] N. Schwartz, R. Cohen, D. Ben-Avraham, A.-L. Barabási, and S. Havlin,
“Percolation in directed scale-free networks,” Physical Review E, vol. 66, no. 1,
p. 015 104, 2002.

[26] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal of Symbolic
Computation, vol. 60, pp. 94–112, 2014, ISSN: 0747-7171. DOI: https://doi.org/
10.1016/j.jsc.2013.09.003.

[27] D. G. Wells, Prime numbers. Wiley Hoboken, 2005.

[28] S. Galam, “Contrarian deterministic effects on opinion dynamics:“the hung
elections scenario”,” Physica A: Statistical Mechanics and its Applications, vol. 333,
pp. 453–460, 2004.

[29] C. Borghesi and S. Galam, “Chaotic, staggered, and polarized dynamics in opinion
forming: The contrarian effect,” Physical Review E, vol. 73, no. 6, p. 066 118, 2006.

[30] E. López, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Anomalous transport in
scale-free networks,” Physical Review Letters, vol. 94, no. 24, p. 248 701, 2005.

[31] B. Preneel, “Cryptographic hash functions,” European Transactions on
Telecommunications, vol. 5, no. 4, pp. 431–448, 1994.

https://doi.org/https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/https://doi.org/10.1016/j.jsc.2013.09.003


A
APPENDIX A

This appendix shows the optimized algorithm mentioned in Chapter 3 in detail. For
networks with a short convergence time, we can directly use the list type to store the
state vectors of the network. When the convergence time is longer, we can reduce the
memory consumption by converting the state vectors to binary numbers. For example,
for a network with N=378, the memory required to store a state vector directly as a list
is 3304 bytes, and the memory needed after conversion to binary numbers is 76 bytes.
This method has been very good at saving memory, but it still does not satisfy the need
for memory saving when the convergence time of the network is extremely long, so we
need more efficient memory saving methods.

We can compress the memory by encoding the state vector. During the simulation
of the Byzantine NCO model, the simulation stops as soon as we find two identical state
vectors in the dynamics, so that not all possible states appear in the dynamics, which
means that we only need to encode the states that occur in the dynamics. The code
length is:

L(C (x)) = ⌈
log2Ns

⌉
(A.1)

where Ns is the number of states appearing in the dynamics, equal to the cycle length
plus the convergence time.
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Figure A.1: A demonstration of the cyclic steady states in the Byzantine NCO model for a network with 9
nodes. The node’s color denotes the opinion of the node, red means the node holds a positive opinion σ+,

blue means the node has a negative opinion σ−. At t = 0 to t = 6, the normal nodes 3,4,5 change their opinion
accroding to their local majority opinion. At t = 7, the Byzantine nodes 1, 2 change their opinion, then node
3’s local majority opinion changes from negative to positive due to the lying nature of Byzantine nodes. At

t = 8, the graph show the same state as initial state. The graph will repeat the previous dynamics.

For example, for the network in Fig. A.1, a total of eight states appear in its dynamics,
so based on the previous analysis, we don’t need to store a state vector as a list:

v⃗0 :
[−1 −1 1 1 −1 −1 1 −1 −1

]
(A.2)

or a binary number of length 9:

v0 : 001100100 (A.3)

but a binary number of length 3 (Log28 = 3) as:

v0 : 000 (A.4)

This approach is more efficient but has the drawback: it requires us to predetermine the
value of Ns and leave a certain amount of redundancy in the encoding space. However,
this approach does not always work, especially when the value of Ns is large. To solve
this problem, I came up with a way to compress data using hash functions.

A hash function is any function that is used to map data x of arbitrary size to
fixed-size values y .

H(x) = y (A.5)
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The hash function in Python could encrypt arbitrary data to a 36-byte string. For two
different state vectors v⃗1 and v⃗2, the hash value of these two data y1 and y2 should be
different. For example, for a network with N = 378, there are

v⃗1 :
[−1 −1 −1 · · · 1 1 1

]→ y1 = H(v⃗1) =−4898185504147061392

v⃗2 :
[−1 1 −1 · · · 1 −1 1

]→ y2 = H(v⃗2) = 6274575924978181886
(A.6)

One problem with using hash functions to compress data is that when the number of
encrypted messages is close to or larger than the domain of the hash function, a collision
occurs, where for two different data s1 and s2, the corresponding hash values y1 and y2
are the same [31]. For instance, if we have Ns larger than 2288, the domain of hash values
will be used up, there must be a collision. The solution to this problem is to check one
more step when determining if the network has converged. We originally check whether

v⃗B ,ti+L = v⃗B ,ti (A.7)

holds to determine whether the network has converged, but now to check whether

v⃗B ,ti+L = v⃗B ,ti andv⃗B ,ti+L+1 = v⃗B ,ti+1 (A.8)

which is equivalent to extending the domain of the hash without taking up additional
memory.


	Preface
	Introduction
	Overview of previous opinion dynamics models
	Contribution
	Thesis outline

	Byzantine NCO Model
	NCO Model
	Byzantine NCO Model
	Network Science
	Graph Theory
	Network Models

	Simulation Method

	Cyclic Behavior
	Typical Steady States of Byzantine NCO Model
	Fixed Steady States
	Cyclic steady states

	Cyclic cases with long cycle period
	Combined Network

	Occurrence of cyclic behavior

	Opinion Distribution at Steady State
	Final Opinion Fraction
	Exhaustive Research on Graphs with N=7, L=10
	Simulations on ER and SF networks

	Critical Threshold

	Convergence Time of the Byzantine NCO model
	Convergence Time 
	Exhaustive Research on Graphs with N=7, L=10
	The Convergence Time for graphs with Different Number of Byzantine Nodes

	Research on ER and SF Networks

	Conclusions and Future Work
	Conclusions
	Future Research

	Appendix A

