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Performance assessment of interpolation 
methods for orbits of altimetry satellites
Julian Zeitlhöfler1*  , Riva Alkahal2, Sergei Rudenko1, Mathis Bloßfeld1 and Florian Seitz1 

Abstract 

Global and regional sea level variations are important indicators of climate change and are derived from accurate sea 
surface height measurements and precisely determined orbits of altimetry satellites. To validate and improve the qual-
ity of these orbits, comparisons with external solutions are important. Since orbit solutions of different institutions are 
not necessarily provided at the same time instants, interpolation is required for comparison. In this study, we inves-
tigate the appropriate interpolation method and its degree to reduce interpolation errors to sub-millimetre levels. 
We also assess the magnitude of errors occurring at transformations when expressing orbit differences not only in 
the terrestrial reference frame (Cartesian coordinates), but also in local orbital and ellipsoidal coordinates. The analyses 
conducted in this study provide good results for Hermite interpolation of degrees 7–11 and Newton interpolation 
of at least degree 9 with a three-dimensional interpolation error of 0.6 mm and a scattering of 0.2 mm on average 
for satellite coordinates given with an accuracy of 1 mm in the SP3 format. These interpolation settings limit transfor-
mation errors between coordinate systems to ±0.01 mm and incorrect mapping of interpolation errors into certain 
components in the target system to ±0.02 mm. The spectral analysis of orbit differences is affected up to 0.1 mm 
in magnitude with appropriate interpolation settings. Extending the number of decimal digits of the satellite posi-
tion and velocity in SP3 files by one digit benefits the orbit comparisons and reduces the interpolation error by 90% 
from 0.6 to 0.06 mm. The results are obtained using piece-wise interpolation and a validity interval inside the interpo-
lation interval to minimise the effects of the Runge phenomenon.

Keywords Orbit interpolation, Altimetry satellite orbits, Jason-2, Hermite, Lagrange, Newton, Cubic spline, 
Interpolation methods
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Graphical Abstract

1 Introduction
Precise orbits of altimetry satellites are the basis for 
investigations related to global, regional, and coastal sea 
level heights and support the determination of sea sur-
face variations to reliably monitor and interpret climate 
change phenomena. The precise orbit determination 
(POD) of altimetry satellites at the sub-centimetre level 
is a prerequisite for these investigations, since it provides 
accurate positions of an altimetry satellite radar in space 
from which the distance to the water surface is measured. 
The analysis of satellite altimetry measurements and the 
POD of these satellites underwent significant progress 
in the last 30 years (International Altimetry Team 2021). 
Based on an analysis of altimetry observations between 
January 1993 and December 2021, the global mean sea 
level rise is quantified to be 3.3  ±  0.3  mm/year, and its 
acceleration is 0.12 ± 0.05 mm/year2 (Guérou et al. 2023). 
Orbit errors, however, still remain the main contributors 
to regional sea level errors (Prandi et al. 2021). Contem-
porary requirements to sea level investigations require 
centimetre and even sub-centimetre accuracy of satellite 
positions (Meyssignac et al. 2023). The accuracy of state-
of-the-art altimetry satellite orbits based on observations 
of the space-geodetic techniques GNSS (Global Naviga-
tion Satellite System) and DORIS (Doppler Orbitogra-
phy and Radiopositioning Integrated by Satellite) is at 
the level of 0.4–1.0 cm for Jason and Sentinel-3 satellites 
(Rudenko et al. 2023).

For further improvement of the satellite orbit quality 
and many applications, such as a careful quantification 
of the radial orbit error (Rudenko et al. 2023), analyses 
of different spacecraft attitude approaches (Bloßfeld 
et al. 2020; Zeitlhöfler et al. 2024), and the development 
of correction models and their respective influences on 
the orbits (Zeitlhöfler et  al. 2023), a comparison and 

validation of internal orbit solutions with those of other 
institutions is important. One possibility to exchange 
satellite orbits is the well-established Standard Product 
3 (SP3) format (Hilla 2010), which provides, amongst 
other optional information, the satellite position and 
velocity with millimetre accuracy. For orbit compari-
sons between different institutions, one has to consider 
specific orbit parameters like the time scale, reference 
frame, or the orbit step size (usually 30 or 60  s for 
altimetry satellite orbits). In most cases—especially 
when orbits are given in different time scales like Coor-
dinated Universal Time (UTC), International Atomic 
Time, or Terrestrial Time—the orbits to be compared 
are not provided at the same epochs. This requires 
interpolating the respective satellite positions (and 
velocities) with sufficient accuracy. In order to obtain 
profound orbit differences originating in the use of var-
ious up-to-date background POD models and to prop-
erly quantify the impact of orbit errors on the global 
and regional mean sea level at the millimetre level, 
one needs to limit the orbit interpolation error to well 
below one millimetre. Furthermore, when comparing 
orbits in coordinate systems other than those provided 
in the SP3 file, transformations are used which  intro-
duce uncertainties in the form of transformation errors.

Comparative studies within the International GNSS 
Service focus on appropriate methods for interpolat-
ing GNSS ephemeris data, which is mainly provided at 
a temporal resolution of 15 min. Neta et al. (1996), Feng 
and Zheng (2005), and Song et al. (2021) discuss poly-
nomial methods as well as cubic splines and trigono-
metric functions and obtain an interpolation accuracy 
at the 1  cm level. Schenewerk (2003) reviews polyno-
mial and trigonometric interpolators for GNSS ephem-
eris with respect to their strengths and weaknesses. The 
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mitigation of discontinuities at the day boundary is dis-
cussed in Song et al. (2021).

The orbits of altimetry satellites, however, are generally 
given with a smaller step size and require higher ((sub-)
millimetre) interpolation accuracy than those investi-
gated in the studies mentioned before. Therefore, a sepa-
rate investigation of interpolation methods for altimetry 
satellite orbits is important. Realistically quantifying the 
interpolation errors allows the differentiation between 
orbit differences caused by interpolation errors, trans-
formation errors, and geophysical signals. In the POD of 
altimetry satellites, the user is primarily interested in the 
latter.

In this paper, we investigate the suitability of common 
interpolation approaches and analyse which methods ful-
fil the high demands of (sub-)millimetre accuracy for the 
interpolation of altimetry satellite orbits. Furthermore, 
we relate the magnitude of interpolation and transforma-
tion errors to orbit differences caused by different POD 
approaches. We focus on the transformations between 
the terrestrial reference frame (TRF), in which most 
orbits are given, and the orbital system and ellipsoidal 
coordinates. The transformation between the terrestrial 
and celestial reference frames is not analysed.

This paper is structured as follows: Sect.  2 provides 
an overview of investigated interpolation methods and 
Sect. 3 describes strategies for an effective and accurate 
interpolation result. Section  4 describes the interpola-
tion experiments carried out in the study. The results on 
interpolation errors and the spectral analysis of orbit dif-
ferences are presented in Sect. 5. Finally, conclusions and 
recommendations of our study are given in Sect. 6.

2  Overview of investigated interpolation methods
The choice of the optimal interpolation method depends 
on several factors, such as the required level of accuracy, 
the orbit step size, and the computational complexity. 
An advantage of the cubic spline interpolation method 
is its computational efficiency (de  Boor 1978). A major 
drawback is its limited interpolation accuracy, which is 
analysed in the case of GNSS orbits in Neta et al. (1996), 
Yousif and El-Rabbany (2007), and Song et  al. (2021). 
As discussed in Alkahal (2023), using the spline inter-
polation results in an interpolation error at a centime-
tre level in certain components. A possibility to resolve 
this issue is using the so-called middle-point approach 
(Alkahal 2023), in which both orbit solutions to be com-
pared must have the same step size (resulting in the same 
magnitude of interpolation error) and both solutions are 
interpolated to time instants in between the orbit epochs. 
Despite the reduced interpolation errors by applying this 
approach in the case of spline interpolation, it is still of 
insufficient accuracy. Thus, the cubic spline method is 

not an option for the high demands required at the inter-
polation of altimetry orbits and is not further discussed 
within this study. Since orbit ephemeris data are close to 
periodic, Neta et  al. (1996) applied trigonometric poly-
nomial interpolation but concluded that it is too com-
putationally expensive for practical use. The Chebyshev 
fitting method, as demonstrated by Song et  al. (2021), 
provides good results. The limitations of this method are 
the larger computation time compared to other polyno-
mial methods and a slightly degraded accuracy in the 
Up component (Wang et al. 2018), which is of particular 
importance for altimetry satellites.

Due to these reasons, we focus on Lagrange, Newton, 
and Hermite polynomial interpolation methods. This 
section briefly introduces and gives an overview of the 
methods. Detailed formulae are provided in Burden and 
Faires (2010).

2.1  Lagrange interpolation method
The Lagrange interpolation polynomial of degree n is for-
mulated by Burden and Faires (2010) as follows. For the n 
+ 1 distinct points x0, x1, . . . , xn and their corresponding 
values, which are expressed by function f, a unique poly-
nomial function P(x) with degree n exists:

The polynomial is written as

where Ln,k(x) is the basis function of degree n formulated 
as

which satisfies

δij is the Kronecker delta.

2.2  Newton interpolation method
In the case of equally spaced points x0, x1, . . . , xn , i.e. 
xi = x0 + sh with s = 0, 1, . . . , n and h = xi+1 − xi , which 
is given in our case for orbit position and velocity, New-
ton’s forward divided difference formula is suitable for 
interpolation. According to Burden and Faires (2010), the 
polynomial in this case is

(1)f (xk) = P(xk), with k = 0, 1, . . . , n.

(2)P(x) =

n
∑

k=0

f (xk)Ln,k(x),

(3)Ln,k(x) =

n
∏

i=0,i �=k

x − xi

xk − xi
,

(4)Ln,k(xj) =

n
∏

i=0,i �=k

xj − xi

xk − xi
= δij =

{

1 if i = j,
0 if i �= j.
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using the binomial-coefficient

and the forward difference notation � according to Ait-
ken’s �2 method (Aitken 1927).

The Newton interpolation method is more efficient 
than the Lagrange method, since it does not perform 
recurrent calculations of the polynomial when new 
points are considered. One can only add a new term for 
each new point (Neta et  al. 1996). However, since only 
one interpolation polynomial exists for a chosen set of 
points, the Lagrange and Newton methods yield the 
same results.

2.3  Hermite interpolation method
Since SP3 files contain the orbit velocity, i.e. the first 
derivative of the orbit position, this information can also 
be used for interpolation. The Hermite interpolation 
is known for its capability to include derivatives of the 
original function for the interpolation (Burden and Faires 
2010).

The Hermite polynomial considering values of the 
function f and its first derivative f ′ is of up to degree 2n + 
1 and given as

The functions Hn,k(x) and Ĥn,k(x) use the Lagrange basis 
functions and are defined by

and

Ln,k(x) is the Lagrange basis function (Eq. 3) and L′n,k(x) 
is its first derivative:

Compared to the previously explained methods, an 
advantage of the Hermite interpolation is the smaller 
number of points required to compute the function of 
the same degree (Zheng and Zhang 2020). For interpola-
tion of degree 5, Newton/Lagrange interpolation require 

(5)P(x) = P(x0 + sh) = f (x0)+

n
∑

k=1

(

s

k

)

�k f (x0),

(6)
(

s

k

)

=
s(s − 1) · · · (s − k + 1)

k!
,

(7)

H2n+1(x) =

n
∑

k=0

f (xk)Hn,k(x)+

n
∑

k=0

f ′(xk)Ĥn,k(x).

(8)Hn,k(x) =
[

1− 2(x − xk)L
′
n,k(xk)

]

L2n,k(x)

(9)Ĥn,k(x) = (x − xk)L
2
n,k(x).

(10)L′n,k(x) = Ln,k(x)

n
∑

m=0,m�=k

1

x − xm
.

six points, whereas Hermite interpolation only requires 
three, since one data point contributes both the function 
and first derivative values. In addition, Hermite interpo-
lation experiences less impact on the interpolated results 
due to effects related to the Runge phenomenon (for 
details, see the next section).

3  Strategies for effective and accurate 
interpolation results

One disadvantage of polynomial interpolation methods 
is the high computational effort, especially for polyno-
mials of high degrees. Another disadvantage—and this 
is more distinct in the case of equidistant spacing of 
supporting points—are the large differences between 
the interpolation polynomial and the original function 
(de  Boor 1978). These interpolation errors scale with 
increasing polynomial degrees and are largest at both 
ends of the interpolation interval. This effect is known 
as the Runge phenomenon (Dahlquist and Björck 2008). 
In contrast to large values at the interval edges, the 
interpolation errors remain small in the central part. 
The application of piece-wise polynomial interpolation 
resolves both limitations. Another measure, the choice 
of Chebyshev points (de Boor 1978), is not possible in 
our case, since we have an equidistant, preset spacing 
of supporting points.

Figure  1 illustrates the piece-wise interpolation 
approach and how it is used in this study. The orbit 
information in the form of position and velocity is pro-
vided at equidistant supporting points and is temporally 
separated by a particular number of seconds (step size). 
For the interpolation of a certain point, a subset of sup-
porting points is selected in that way to place the inter-
polation point in the central part of the interval and to 
satisfy the demanded number of points the interpola-
tion degree requires. This selection of points is called 
an interpolation interval or window. The window’s cen-
tral part is the so-called validity interval (coloured area 
of the respective window in Fig.  1). The validity inter-
vals of adjacent windows adjoin each other but do not 
overlap. All interpolation points located within one 
validity interval are interpolated using the same inter-
polation polynomial expressed by the supporting points 
which form the window. After processing the interpo-
lation points, the window is moved forward, and the 
next interpolation points are processed. This approach 
is called moving window (or  “Walk-along  interpola-
tion” in other literature; Feng and Zheng 2005). As dis-
cussed in Horemuz ̆ and Andersson (2006), the size of 
the validity interval can be extended depending on the 
interpolation method and degree.
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4  Experiments on interpolation accuracy
This section briefly introduces each of the six experi-
ments carried out to determine suitable methods and 
settings for highly accurate interpolation, assess inter-
polation and transformation errors, and analyse the 
consequences of such errors on the interpretation of 
orbit differences.

The basis for most experiments described hereafter is 
a 3-day covering orbital arc of Jason-2 with a tempo-
ral resolution of one second. This orbit is the reference 
orbit. The corresponding SP3 file contains the orbit 
data (position and velocity) in the TRF in Cartesian 
coordinates (XYZ) and in the time scale UTC. The orbit 
is computed using DGFI-TUM’s POD software DOGS-
OC (DGFI-TUM Orbit and Geodetic Parameter Esti-
mation Software − Orbit Computation; Bloßfeld 2015) 
using satellite laser ranging observations and similar 
options as listed in Zeitlhöfler et  al. (2023). Based on 
this reference orbit, three non-reference orbits with 
temporal resolutions of 30, 60, and 120 s are created by 
choosing the respective data.

Figure 2 illustrates the processing steps, concomitant 
data, and experiments related to the following inves-
tigations. The top box represents the reference (RO) 
and non-reference (NO) orbits, which are given in the 
TRF in Cartesian coordinates. First, orbit positions are 
interpolated to the epochs being in the middle of each 
non-reference solution using the orbit information 
of the respective non-reference solution, i.e. the time 
instants of the first non-reference orbit are 00:00:00, 
00:00:30, 00:01:00,  ..., and the interpolated epochs are 
00:00:15, 00:00:45, 00:01:15, ... in the format hh:mm:ss. 
The interpolation methods used are Lagrange, Newton, 
and Hermite of different degrees. The other non-refer-
ence solutions are treated in the same theoretical man-
ner. The interpolated orbit position is then compared to 
the (error-free) position of the reference orbit resulting 
in three-dimensional (3D) orbit differences expressed 
in XYZ coordinates. Analysing these orbit differences 
implies which interpolation method and polynomial 
degree are required to obtain sufficient interpolation 
accuracy at the sub-millimetre level (Experiment 1).

Since the orbital system, which is composed of the 
radial, transverse, and normal (RTN) directions, is the 
usual frame to express and compare orbit differences of 
altimetry satellites, we transform the component-wise 
XYZ orbit differences ( �XYZ ) into component-wise 
RTN orbit differences ( �RTN ) using the formulae

where RRTN
XYZ is the rotation matrix from the Cartesian to 

the local orbital coordinate system

(11)�RTN = R
RTN
XYZ ·�XYZ,

which is according to Montenbruck and Gill (2000) com-
posed of the unit vectors

The vectors r and v contain the orbit position and veloc-
ity of the reference solution in the TRF, respectively. 
Thus, the orbit differences in RTN are expressed in the 
orbital system of the reference solution.

A third type of coordinates for the interpretation of 
orbit differences are ellipsoidal coordinates (latitude ϕ , 
longitude � , and height h). While we transformed the 
orbit differences themselves in the previous case, this 
approach is based on the transformation of orbit posi-
tions from Cartesian to ellipsoidal coordinates (https:// 
gssc. esa. int/ navip edia/ index. php/ Ellip soidal_ and_ Carte 
sian_ Coord inates_ Conve rsion; latest access: 11 October 
2024) and subsequent computation of orbit differences in 
ellipsoidal coordinates ( �ϕ�h).

To detect possible errors or systematics in both trans-
formation approaches, we determine the norm and sta-
tistical values of orbit differences expressed in the three 
coordinate systems and compare the values before and 
after the transformations (Experiment 2).

In Experiments 1 and 2, the interpolation epoch is 
located exactly in the middle of its corresponding validity 
interval. In reality, this situation is not necessarily given, 
but the position can vary within the validity interval. In 
order to determine, on the one hand, whether the validity 
interval can be extended and according to which general 
rule, and on the other hand, whether there arise certain 
systematics inside the interpolation interval for differ-
ent interpolation methods and degrees, we interpolate 
an orbit position at each second within the interpolation 
window in Experiment 3. Besides analysing interpolation 
errors in Cartesian coordinates, we transform the orbit 
differences into the orbital system to evaluate possible 
patterns in that frame.

Apart from analysing the solutions’ orbit differences 
themselves, the spectral analysis of the differences is also 
of particular interest, since it reveals systematic long-
term and short-term signals in the data. In Experiment 
4, we use the Lomb–Scargle periodogram (Lomb 1976; 
Scargle 1982) to determine any impact of the interpo-
lation and transformation on the results of the spectral 
analysis. This analysis is based on the three non-refer-
ence orbits derived from the 1-s orbit and focuses on the 
orbit differences in the Cartesian and orbital coordinate 

(12)R
RTN
XYZ =









e
T
1

e
T
2

e
T
3
,









,

(13)e1 =
r

|r|
, e2 = e3 × e1, e3 =

r × v

|r × v|
.

https://gssc.esa.int/navipedia/index.php/Ellipsoidal_and_Cartesian_Coordinates_Conversion
https://gssc.esa.int/navipedia/index.php/Ellipsoidal_and_Cartesian_Coordinates_Conversion
https://gssc.esa.int/navipedia/index.php/Ellipsoidal_and_Cartesian_Coordinates_Conversion
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systems. This enables to examine whether specific inter-
polation setups create artificial oscillations in the orbit 
differences. As in Experiments 1 and 2, the moving win-
dow approach is used.

Since the orbit information is given at the 1-mm level 
in SP3 files (six decimal digits), the interpolation accu-
racy might stagnate at a certain level and cannot be 
improved by choosing other interpolation settings. In 
Experiment 5, we increase the number of decimal digits 
from six to seven and eight and examine whether these 
changes benefit the interpolation results. Therefore, we 

use the non-reference solutions with temporal resolu-
tions of 60 and 120 s.

After the analysis of artificial solutions based on the 
1-s orbit, we relate the interpolation and transforma-
tion errors to the magnitude of orbit differences based 
on real data in Experiment 6. Therefore, we compare 
two orbits of Jason-2 computed at different institu-
tions. The first solution is provided by the French space 
agency Centre National d’Études Spatiales (CNES) 
and is based on the Precise Orbit Ephemeris-F (POE-
F) orbit standards (ftp:// ftp. ids- doris. org/ pub/ ids/ 
data/ POD_ confi gurat ion_ POEF. pdf; latest access: 11 

Table 1 Average (avg) and standard deviation (std) values of three-dimensional orbit differences in Cartesian coordinates (XYZ)

The values are based on using the Newton and Hermite interpolation methods of different degrees and different temporal step sizes of the orbits. The plus sign 
indicates similar results for next-higher degrees. The unit is millimetre
aSeven instead of six (default) decimal digits in the SP3 file; bEight instead of six (default) decimal digits in the SP3 file

Degree Temporal step size of the reference and non-reference solutions

≤ 30 s 60 s 120 s

avg std avg std avg std

Newton 5 0.61 0.23 1.18 0.36 66.62 3.66
6 0.62 0.24 0.62 0.23 3.88 0.96
7 0.62 0.24 0.61 0.23 0.83 0.40

8 0.63 0.24 0.62 0.23 0.76 0.35

9+ 0.62 0.24 0.62 0.23 0.72 0.31

Hermite 5 0.57 0.21 0.57 0.21 2.72 0.39
7+ 0.56 0.21 0.56 0.20 0.57 0.21

7+a 0.06 0.02 0.06 0.02 0.07 0.03

7+b 0.01 0.01 0.03 0.01 0.05 0.02

Fig. 1 Illustration of the moving window approach. Interpolation points are interpolated in that window, whose validity interval they are located in. 
This example refers to Hermite interpolation of degree 7 and/or Newton interpolation of degree 3

ftp://ftp.ids-doris.org/pub/ids/data/POD_configuration_POEF.pdf
ftp://ftp.ids-doris.org/pub/ids/data/POD_configuration_POEF.pdf
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October 2024). The second solution is computed at 
DGFI-TUM using DOGS-OC with a similar setup of 
physical background models. However, some mod-
els differ, e.g. POE-F uses the Finite Element Solution 
2014 (FES2014) ocean tide model (Lyard et  al. 2021), 
while DGFI-TUM uses the empirical ocean tide model 
(EOT11a; Savcenko and Bosch 2012). The resulting 
orbit differences are a combination of all computation 

setups realised differently for both solutions, e.g. differ-
ent background models, orbit integration approaches, 
treatment and choice of observations, and other 
aspects. Both orbits cover the manoeuvre-free period 
between 21 December 2008 and 3 May 2009 and have a 
step size of 60 s. Based on the findings of the preceding 
experiments, we use Hermite interpolation of degree 7 
applying piece-wise interpolation.

Fig. 2 Diagram of processing steps and experiments to investigate the interpolation accuracy of altimetry satellite orbits. RO and NO refer 
to the reference and non-reference orbits, respectively. XYZ are Cartesian coordinates, RTN the orbital system, and ELL ellipsoidal coordinates
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5  Results
This section summarises the results obtained in the 
Experiments 1−5 and in the comparison of the DGFI-
TUM and CNES orbits (Experiment 6).

5.1  Experiment 1: Interpolation accuracy

Experiment 1 aims to assess the interpolation method, 
in combination with its polynomial degree, necessary to 
obtain precisely interpolated orbits. Table  1 shows the 
results within this experiment for the Newton and Her-
mite interpolation methods using degrees 5 to 9+ and 
5 and 7+, respectively. The plus sign indicates similar 
results for next-higher degrees. The Lagrange interpola-
tion method is not listed, since it produces, due to the 
uniqueness of the interpolation polygon inside an inter-
polation interval, results identical to the Newton method, 
which is computationally more efficient than Lagrange.

The orbit differences between the reference orbit and 
the interpolated non-reference orbit depend on the fol-
lowing factors: the step size of the interpolating orbit, 
the choice of the interpolation method, and the choice 
of its degree. The analysis of the 3D orbit differences 
using the standard deviation and average values allows to 
express the amplitude of scattering and possible offsets, 
respectively.

We first focus on all rows except the last two in Table 1. 
For an orbit step size of up to 30 s, Newton and Hermite 
interpolation provide similar results for all degrees with 
slight advantage for the Hermite method. The scattering 
is about 0.2 mm and the average 3D interpolation error 
is about 0.6 mm. The results are in the same range for an 
orbit step size of 60 s with an exception for the Newton 
interpolation of degree 5. This degree is insufficient for 
orbit ephemeris data separated by 60  s, since it intro-
duces larger interpolation errors and increased scattering 
(bold values). This effect even intensifies for a step size 
of 120  s, where more than 3.6  mm scattering and a 3D 
orbit error of more than 66 mm on average arise. Degree 
5 is also insufficient for Hermite interpolation and results 
in 0.4 mm scattering and 2.7 mm interpolation error on 
average. With degrees 7+ for Hermite and 8+ for New-
ton, the results are in similar ranges as for the other step 
sizes.

The investigations indicate that degree 8 for the New-
ton interpolation and degree 7 for Hermite interpolation 
are suitable for reaching sub-millimetre accuracy when 
comparing satellite orbits of up to 120 s step size.

5.2  Experiment 2: Transformation accuracy
After investigating the choice of interpolation settings, 
we highlight the uncertainties of expressing orbit differ-
ences in other coordinate systems via transformations in 

Experiment 2. Whereas the orbit differences were ana-
lysed in the 3D space in the previous experiment, we now 
focus on the individual components. These are the direc-
tions in the TRF (XYZ), the components in the orbital 
system (RTN), and ellipsoidal coordinates ( h�ϕ).

Despite the transformation of either the orbit differ-
ences from Cartesian into local orbital coordinates or 
the transformation of Cartesian orbit positions into 
ellipsoidal coordinates with subsequent computation of 
orbit differences, the norm of the orbit differences has 
to be identical and preserved in all three systems. This is 
independent of the interpolation method and degree. To 
verify this necessity, we compare the norm of orbit dif-
ferences after applying Hermite interpolation of degree 
7 to orbits with a temporal resolution of 60 s. Since the 
orbits used are still based on the 1-s solution, the result-
ing interpolation error is zero in an ideal case.

Figure 3 displays in the top row the norm of the orbit 
differences, i.e. the interpolation error, in Cartesian coor-
dinates and its corresponding histogram for a period of 
three days. Most values are between 0.25 and 0.85  mm 
with an average of about 0.6  mm (this magnitude of 
error has already been determined in Experiment 1, cf. 
Table 1). The blue- and red-coloured dots in the bottom 
plot express the deviations of the norm in the local orbital 
and ellipsoidal coordinates from the black-coloured val-
ues, respectively. In other words, it is the transformation 
error. The histograms of both approaches are very simi-
lar and show a maximum transformation error of about 
0.01 mm, which is two orders smaller than the interpola-
tion error and certifies a negligible transformation error.

With verified preservation of the 3D orbit differences 
during transformations, we analyse possible redistribu-
tions of interpolation errors to individual components 
due to transformations. To show the consequences of 
inappropriate and appropriate interpolation settings on 
individual components, we use Newton interpolation of 
degree 5 with temporal resolutions of 120 and 30 s. This 
is of special interest for the radial direction, since it is 
the most important for satellite altimetry and is directly 
related to altimeter measurements and the derived prod-
ucts. Figure 4a shows the effects of using Newton inter-
polation with insufficient degree 5 and a step size of 
120  s. The interpolation error in XYZ acts as an oscil-
lation around the average value 0 with an amplitude of 
approximately 30−50  mm in each component. The 3D 
error is 66  mm (cf. Table  1). After the transformation 
into the orbital system and to ellipsoidal coordinates, 
the magnitudes of the oscillations reduce to approxi-
mately 5−20  mm, but a large offset of over 60  mm in 
absolute value arises in the radial and height directions. 
This means that an inappropriate interpolation degree 
introduces an error constantly acting in one direction 
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and suggests an offset between two orbits which is actu-
ally not present. We want to stress that, depending on 
the interpolation method and its degree as well as the 
choice of supporting points, the component affected 

differs and is not always the radial direction. Using New-
ton interpolation of degree 5 with a step size of 30 s leads 
to clearly smaller values for both the component-wise 
averages and the standard deviations (cf. Fig. 4b). Also in 

Fig. 3 Transformation results for Hermite interpolation of degree 7 applied to orbits of 60 s step size. Top: norm of orbit differences in Cartesian 
coordinates. In this case, the norms of differences are simultaneously the interpolation errors, since the values are zero for error-free interpolation. 
Bottom: deviation of the norm of orbit differences obtained after applying transformations into the local orbital coordinate system (RTN) 
and ellipsoidal coordinates ( h�ϕ ). The plots on the right side are the histograms of the values on the left

Fig. 4 Component-wise standard deviation and average values of the orbit differences in Cartesian coordinates (XYZ), the orbital system (RTN), 
and ellipsoidal coordinates (h, � , ϕ ). The interpolation method is Newton’s divided differences, the polynomial degree is 5, and the orbit step size is a 
120 s and b 30 s
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this case, interpolation errors affect the radial and height 
components most, but now with just an offset of about 
−0.015  mm. This is accurate enough for plausible orbit 
comparisons. The similar values for the standard devia-
tions of approximately 0.38 mm imply a homogeneously 
distributed interpolation error on each component.

5.3  Experiment 3: Runge phenomenon
In both previous experiments, the interpolation epoch is 
located in the middle of the interpolation interval. How-
ever, this is not the usual situation, but the requested 
epoch can be anywhere in the window in real-data com-
parisons. To assess the interpolation error depending on 
the position inside the interval, we interpolate an orbit 
position at each second for different interpolation meth-
ods, degrees, and step sizes. The left and right columns 
in Fig. 5 are based on step sizes of 120 and 60 s, respec-
tively. Rows 1 and 3 contain results using Newton and 
rows 2 and 4 using Hermite interpolation. Figure  5a–d 
use degree 5 and e–h degree 9. The three panels in each 
subfigure show from top to bottom the component-wise 
orbit differences in Cartesian coordinates (XYZ), in the 
orbital system (RTN), and the 3D interpolation error 
with a smoothing moving mean. A major difference 
between the interpolation methods Newton and Hermite 
and common to all panels is the smaller number of sup-
porting points required when using Hermite interpola-
tion (rows 2 and 4).

We first discuss the left column of Fig.  5. As already 
shown in Experiment 1, Newton interpolation of degree 
5 applied to an orbit of a temporal resolution of 120  s 
causes large interpolation errors (approximately 66  mm 
on average). The 3D interpolation error is—apart from 
supporting points, where the interpolation error is zero 
by nature—smallest at the epochs close to the mid-
dle of the interpolation interval (between 00:04:00 and 
00:06:00 in Fig. 5a). Due to the Runge phenomenon, the 
errors increase the closer the interpolation epoch is to 
the limits of the window. As demonstrated in Experi-
ment 2, the large disadvantage of an insufficient interpo-
lation degree is the mapping of interpolation errors into 
a single component. This can affect the radial direction 
(blue curve in Fig. 5c), which is of utmost importance for 
altimetry missions. Both other directions are affected to 
a lesser extent. Using Hermite interpolation of degree 
5 (Fig.  5c) clearly reduces the 3D interpolation error 
throughout the window from up to 350 to 3 mm. While 
in this case the largest errors occur in the Y component, 
the error distribution, in general, strongly depends on 
the choice of supporting points and shows no clear sys-
tematic pattern. In other windows, the X and Z compo-
nents are most  affected. However, the radial direction 
shows again  the largest interpolation errors. As shown 

in Experiment 1, increasing the interpolation degree 
for both methods from 5 to 9 provides suitable results 
(Fig. 5e, g). Using degree 9 limits the interpolation error 
in all components and 3D to less than 1 mm in the mid-
dle of the interpolation interval. However, the Newton 
method again experiences the effects of the Runge phe-
nomenon. Reducing the step size of supporting points 
from 120 to 60  s (right column of Fig.  5) significantly 
reduces the interpolation errors for degree 5. The aver-
age errors in the central part of the interval are for New-
ton and Hermite interpolation of degree 5 about 1  mm 
and 0.6 mm, respectively, and of degree 9 about 0.6 mm 
for both methods. These values coincide with those in 
Table 1.

This experiment shows that the interpolation error is 
relatively constant inside the interpolation window for 
Hermite interpolation of low degrees, whereas the New-
ton method is highly affected by the Runge phenomenon 
in all cases. However, the Hermite method also experi-
ences the Runge phenomenon with increasing interpo-
lation degrees. For temporal resolutions of 30, 60, and 
120 s, the 3D interpolation errors increase to more than 
1  mm at the window edges when using Hermite inter-
polation of degree 13. Thus, we recommend degrees up 
to 11. The experiment also indicates that the validity 
interval can theoretically be extended for both methods. 
However, since the behaviour of the interpolation error 
cannot be generalised and the error is smallest in the cen-
tre of the interval, we recommend interpolations in the 
middle of the window despite a slightly increased compu-
tation time due to a higher number of interpolation poly-
nomial determinations.

5.4  Experiment 4: Spectral analysis
A further important aspect is whether the interpolation 
of orbit positions introduces artificial signals of specific 
periods into the orbits. This should be avoided to prevent 
misinterpretation in the orbit comparisons. To determine 
possible consequences due to interpolation, we spectrally 
analyse the orbit differences using the Lomb–Scargle per-
iodogram (Lomb 1976; Scargle 1982). We choose degrees 
5, 7, and 9 of Hermite and Newton interpolation meth-
ods, as well as temporal resolutions of 60 and 120 s. As 
in Experiment 3, we analyse the components individually 
for periodic behaviour and use the non-reference solu-
tions and the moving window approach.

The periodograms in Fig. 6 show the results for 60 and 
120 s. The first two and last two panels refer to Hermite 
and Newton interpolation, respectively. Columns 1 and 
3 present the values for the X (circle), Y (square), and Z 
(triangle) coordinates. Columns 2 and 4 use the same 
symbols for the radial, transverse, and normal compo-
nents in the orbital system. The symbol colours black, 
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Fig. 5 Component-wise and 3D interpolation errors in the Cartesian (XYZ) and orbital (RTN) coordinate systems for different degrees and step 
sizes. Each subfigure covers one interpolation interval. An orbit position is interpolated at each second within the interval. Note the different scales 
of the y-axis in (a–c). a Newton, degree 5, 120 s; b Newton, degree 5, 60 s; c Hermite, degree 5, 120 s; d Hermite, degree 5, 60 s; e Newton, degree 9, 
120 s; f Newton, degree 9, 60 s; g Hermite, degree 9, 120 s; h Hermite, degree 9, 60 s
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red, and blue indicate the interpolation degrees 5, 7, and 
9, respectively, and the symbol size refers to the orbit step 
size. The two vertical lines mark Jason-2’s full and half 
orbital periods ( Torb ) of approximately 112 and 56  min, 
respectively. Note the logarithmic scale of both axes.

Interpolation degree 5 (black symbols) introduces in 
the case of step size 120  s significant periodic signals 
in all components and for both methods. The maxi-
mum values in each system are 2.7 mm (Z) and 1.2 mm 
(N) for Hermite and 66.4 mm (Z) and 29.3 mm (N) for 
Newton interpolation. The periods are always the full or 
half orbital period. Increasing the interpolation degree 
reduces the maximum amplitudes to the sub-millimetre 
level. While the orbital period does not appear for Her-
mite of degree 7, Newton requires degree 9 to avoid these 
periods. With degree 9 (blue symbols), the periods are 
randomly below 30  min with amplitudes between 0.04 
and 0.09 mm.

For a temporal resolution of 60 s, the artificial interpo-
lation signals and orbital periods only occur in the case 
of Newton interpolation of degree 5 (small black sym-
bols on both panels on the right). For Hermite interpola-
tion, the X and Z components are affected (black circle 
and triangle on the left). Degree 7 is sufficient for both 
methods to resolve this issue and to obtain interpolation 
results with unbiased spectral analysis.

This analysis demonstrates the consequences of insuf-
ficient choice of interpolation settings on the spectral 
analysis of orbit differences. Inappropriate interpolation 
results weaken the plausibility and lead to wrong conclu-
sions in orbit difference analysis.

5.5  Experiment 5: Number of digits in the SP3 format
As demonstrated in the previous experiments, the 
3D interpolation error is, despite higher interpolation 

degrees, about 0.5 to 0.6 mm on average. One limitation 
of achieving better interpolation results, and thus more 
reliable orbit comparisons, is the accuracy of the basis 
information, i.e. the number of digits provided in the SP3 
files. We identify the orbit position as the current main 
limiting factor, which is given in the unit kilometre on the 
millimetre level with default six decimal digits.

To investigate the effects of increasing the number of 
digits for the position and velocity information in SP3 
files, we use Hermite interpolation of degree 7 for step 
sizes of 30, 60, and 120 s. Table 1 shows the 3D interpola-
tion error for the default SP3 settings in line 7 and those 
for extended seven and eight decimal digits in the last 
two lines. For all three temporal resolutions, the aver-
age and standard deviation values of the interpolation 
error decrease by about 90% to approximately 0.06 and 
0.02  mm, respectively, when using seven instead of six 
decimal digits, i.e. by providing satellite coordinates and 
velocities with an accuracy of 0.1  mm and 10−5 mm/s, 
respectively. The extension to eight digits is further ben-
eficial and yields values between 0.01 and 0.05 mm, but 
this is a minor improvement compared to the previous 
case. This clearly demonstrates the advantages and ben-
efits for orbit comparison when applying small adjust-
ments to the current SP3 format.

5.6  Experiment 6: Orbit comparison
After quantifying interpolation and transformation 
errors when comparing precisely determined orbits, we 
relate these errors to the differences between two orbits 
with a temporal resolution of 60  s using Hermite inter-
polation of degree 7. The minimum number of seconds 
between both orbits is 27  s (close to the possible maxi-
mum of 30  s), e.g. the orbital epochs of one orbit are 
00:00:00, 00:01:00,  ... and of the other orbit 00:00:27, 

Fig. 6 Periodograms of the spectral analysis of orbit differences based on interpolated orbit information. The first two panels refer to the Hermite 
interpolation and both last panels to the Newton method. Columns 1 and 3 show the components XYZ (TRF) and columns 2 and 4 the direction 
in the orbital system (radial, transverse, normal). The symbol size and colour denote further settings like the step size and interpolation degree, 
respectively. The vertical lines refer to the orbital period Torb (and its half ) of Jason-2, which is approximately 112 min (56 min)
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00:01:27,  ... (hh:mm:ss). The panels on the left of Fig.  7 
show the orbit differences between the DGFI-TUM and 
POE-F Jason-2 orbits, and the panels on the right the 
respective periodograms. Most orbit differences are up to 
5 cm in the radial and normal directions and up to 10 cm 
with some extreme values of several decimetres in the 
transverse direction. The standard deviations reflect the 
scattering of the time series, and the small average values 
indicate a good overall mean accordance of both orbits. 
The periodograms show a prominent peak in all compo-
nents at Jason-2’s orbital period of about 112  min. It is 
the period with the largest amplitude in the radial and 
normal directions with 0.42 and 0.75  cm, respectively, 
whereas a diurnal period with the amplitude of 1.13 cm 
dominates in the transverse direction. The component’s 
periodograms and the amplitude values of up to about 
1 cm emphasise the importance of appropriate interpola-
tion settings since erroneous settings cause amplitudes of 
up to several millimetres (cf. Fig. 6). A major aspect for 
the comparably large difference between the orbits in this 
comparison are the observations used. The DGFI-TUM 
orbit is based on SLR observations, the CNES orbit on 
DORIS and GNSS. We do not want to further examine 
the potential sources of the depicted orbit differences at 
this point but rather relate the magnitude of interpola-
tion and transformation errors to the differences.

According to the previous experiments, the orbit dif-
ferences of up to several centimetres contain an average 
3D interpolation error of about 0.6  mm at each epoch 
(cf. Table  1 and top of Fig.  3). Since the differences are 
shown in the orbital coordinate system, they also con-
tain a transformation error of up to 0.01 mm in 3D. The 

distribution of the total error (interpolation and trans-
formation) to each of the three components varies and 
depends on the choice of supporting points and orbit 
geometry. The latter aspect refers to the highly dynamic 
character of an altimetry satellite orbit. It is influenced 
by changes in the Earth’s time-variable gravity field, the 
atmospheric drag, Earth’s albedo and infrared radiation 
and solar radiation pressure, and experiences at entries 
into and exits from the Earth’s shadow accelerations in 
certain directions. The effects cause subtle variations in 
the determined orbit, and as mentioned in Schenewerk 
(2003), a too small interpolation degree is not capable of 
considering these variations, whereas a too high degree 
exaggerates these variations and increases the interpola-
tion error.

6  Conclusions
The comparison of orbits with external solutions is 
important for quality checks and validation. Since inter-
nal and external orbits are not necessarily given at the 
same time instants, one orbit has to be interpolated to 
the epochs of the other. To obtain reliable orbit differ-
ences, purely induced by differences in measurements, 
models, and computation approaches used in POD and 
not affected by interpolation errors, the expected inter-
polation error should be preferably zero. In this article, 
we assess, based on several experiments, the interpo-
lation method and degree required to obtain accurate 
interpolation results at the sub-millimetre level for 
altimetry satellite orbits. We use the Hermite and New-
ton interpolation methods with varying degrees applied 

Fig. 7 Comparison of an orbit solution computed at the DGFI-TUM and a solution provided by CNES based on POE-F orbit standards. The panels 
on the left side show the orbit differences and graphs on the right the respective periodograms
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to orbits of different temporal resolutions. The expres-
sion of orbit differences in different coordinate systems 
requires transformations of either the orbit differences 
or satellite positions, which is accompanied by trans-
formation errors. We quantify the interpolation and 
transformation errors and determine their influence 
on individual components and the spectral analysis of 
orbit differences.

Orbits of altimetry satellites are usually provided with 
a temporal resolution of 30 or 60  s and are distributed 
using the SP3 format. We conduct experiments for step 
sizes of 30, 60, and 120  s to also cover lower temporal 
resolutions. The experiments show that suitable inter-
polation results, i.e. minimised interpolation errors, are 
obtained using degrees 7−11 for Hermite and at least 
degree 8 for Newton interpolation. Too low degrees 
cause large interpolation errors, and too high degrees 
are computationally expensive and very much affected 
by the Runge phenomenon (extreme differences between 
the original function and the interpolation polynomial 
towards the edges of the interpolation interval). The 
recommended degrees induce an average 3D interpola-
tion error of 0.6  mm with an error scattering of about 
0.2 mm. The Hermite interpolation slightly outperforms 
the Newton interpolation in accuracy and computational 
efficiency.

The transformation process of orbit differences into 
other coordinates induces 3D transformation errors of up 
to ±0.01 mm. This indicates a sufficient retention of the 
orbit differences norm when applying transformations. 
A rather uncontrollable aspect is the mapping of orbit 
differences into certain components at transformations. 
This depends on the interpolation settings (method and 
degree) and the orbit geometry. The choice of appropri-
ate degrees minimises these effects to about ±0.02 mm.

The Hermite and Newton interpolations are differently 
affected by the Runge phenomenon. Since the Hermite 
method includes the function derivatives (in our case 
the orbit velocity), the effects are limited with sufficient 
interpolation settings to about ±1 mm inside the interpo-
lation interval. In contrast, for the Newton method, one 
must use piece-wise interpolation, i.e. the moving win-
dow approach, and only interpolate points in the central 
region of the window to avoid large interpolation errors.

The spectral analysis of orbit differences also empha-
sises the necessity to choose appropriate interpolation 
settings. Too low degrees (like degrees below 8 for New-
ton and below 7 for Hermite interpolation) introduce 
systematics at the satellite’s orbital period of several mil-
limetres. This might cause misleading interpretations of 
orbit differences. Sufficient interpolation degrees reduce 
the amplitude of erroneously introduced periods to val-
ues up to 0.1 mm for random periods up to 30 min.

The choice of suitable interpolation settings prevents 
misinterpretation of real-data comparisons. Both the 
direct comparison of orbit differences and extended 
analyses (e.g. spectrally) benefit, since the investigated 
parameters are often at the millimetre level.

Increasing the accuracy of position and velocity data in 
SP3 files to 0.1 mm and 10−5 mm/s, respectively, reduces 
the interpolation error by 90% from 0.6 to 0.06 mm and 
the scattering of interpolation errors decreases from 0.2 
to 0.02 mm. This significant improvement clearly benefits 
the comparison of altimetry orbits, for which a highly 
accurate radial component is of the largest interest. Thus, 
we recommend revising the SP3 file format and extend-
ing the number of decimal digits of the position and 
velocity values at least by one digit to seven (0.1 mm for 
the position and 10−5 mm/s for the velocity).

The investigations in this article prove good interpola-
tion results when applying orbit interpolation and trans-
formation of orbit differences with appropriate settings. 
Consideration of the recommendations made within this 
study limits the uncertainties to the sub-millimetre level.
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