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SUMMARY

The software development life cycle (SDLC) for a developer has increased in com-
plexity and scale. With the advent of DevOps processes, the gap between develop-
ment and operations teams reduced significantly. Developers are now expected to
perform different roles from coding to operational support in the new model of soft-
ware development. This shift demands the evolution and improvement of software
development practices and deliver products at a faster pace than organizations us-
ing traditional software development and infrastructure management processes. As a
consequence, the demand for more intelligent and context sensitive DevOps tools and
services that help developers increase their efficiency is increasing. A lot of research
went into developing recommenders for DevOps, by leveraging the advancements
made by the recommender system community. However, a lot of existing tools still
work in ‘silos’ and does not take into account a holistic view of DevOps processes and
the data generated at phase of the DevOps lifecycle while making recommendations.

By contrast, in this thesis, we propose a unified framework to develop recom-
menders for DevOps: perform data collection, building the models, deploying them,
and evaluating the effectiveness of such recommenders in large-scale cloud develop-
ment environments quickly and efficiently. We study the effect of such recommenders
on the DevOps processes by performing empirical research and mixed method ap-
proaches (qualitative and quantitative analyses) on each of the deployed recommenders
to better understand the productivity gains and the impact created by them.

Our results show that developers benefit greatly from smart recommenders such as
Nudge, ConE, Orca, and MyNalanda. We also show, through rigorous experiments,
technical action research methods, and empirical analyses that these recommenders
provide as much as 65% gains in terms of change progression and 73% accuracy for
root causing the service incidents automatically. We also conduct large scale surveys
and interviews to support our empirical analysis and quantitative results. Our unified
data framework and the platform we developed for building these recommenders is
generic enough and encourages reusability of vital functions of such recommenders
systems, such as data collection, model training, inference, deployment, and evalua-
tion.
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1
INTRODUCTION

The software development life cycle (SDLC) for a developer has increased in com-
plexity and scale, which induced a fundamental shift amongst software developers
and engineers in the past few years. DevOps, which is the combination of practices,
and tools that increases an organization’s ability to deliver applications and services
at high velocity, accelerated this shift. This shift demands the evolution and improve-
ment of software development practices and delivery of products at a faster pace than
organizations using traditional software development and infrastructure management
processes. Due to greater availability of computing, storage, better tooling, and the
necessity to react, developers are constantly looking to increase their velocity and
throughput of developing and deploying changes. Consequently, there is a great need
for more intelligent and context-sensitive DevOps tools and services that help de-
velopers increase their efficiency while developing and debugging. There is a need
for building recommender systems, which aim at supporting developers in navigat-
ing large information spaces and getting instant suggestions that might be helpful to
solve a particular development task. Given the vast amounts of heterogeneous data
available from the SDLC, such intelligent tools and services (recommenders) can now
be built and deployed at a large scale to help developers achieve their goals and be
more productive.

In this thesis, we develop tools, which we refer to as ‘recommenders’, to help mitigate
various problems that exist in the DevOps lifecycle. We perform empirical research
and mixed method approaches (qualitative and quantitative analyses) on each of the
deployed recommenders to better understand the productivity gains and the impact
created by them. We propose a unified data framework to develop recommenders for
DevOps: performing data collection, building the models, deploying them, and eval-
uating the effectiveness of such recommenders in large-scale cloud development envi-
ronments quickly and efficiently. We also discuss the architecture and implementation
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details of the large-scale data platform, which provides the necessary infrastructure
(back-end systems and front-end bots) to develop and scale these recommenders.

1.1. BACKGROUND AND MOTIVATION
1.1.1. DEVOPS
DevOps is defined as a set of practices and tools that automate and integrate the
processes between software development and operations teams (DEVelopment + OP-
erationS) (Ebert et al., 2016). It emphasizes large-scale systems possibly deployed
in the cloud, continuous integration and deployment, team empowerment, cross-team
communication, and collaboration through rigorous review processes, and technology
automation.

In a traditional software development environment, developers seek to push out
software faster. Operations, on the other hand, know that moving fast could pose a
risk of destabilizing the system. DevOps was created to resolve this dilemma by in-
tegrating all the stake holders associated with software development and deployment
into a coherent and automated workflow with a shared focus, which is rapid deliv-
ery of high-quality software that meets all user requirements while maintaining the
integrity and stability of the entire system (Forsgren et al., 2018).

Under a DevOps model, development and operations teams are no longer ‘siloed.’
Sometimes, these two teams merge into a single team where the engineers work across
the entire software development life cycle — from development and test to deploy-
ment and operations. DevOps teams use tools to automate and accelerate processes,
which helps to increase the speed of deployment, reliability, and efficiency (Bass et
al., 2015).

Figure 1.1: DevOps Lifecycle

Due to the continuous nature of DevOps, the DevOps life cycle exhibits a pat-
tern of an infinite loop, as opposed to a traditional software development lifecycle
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such as a waterfall model. Figure 1.1 shows the phases of DevOps lifecycle1: plan,
build, continuous integration and deployment (CI / CD), monitor, operate, and con-
tinuous feedback. These phases are related to each other. Despite appearing to flow
sequentially, the loop symbolizes the need for constant collaboration and iterative
improvement throughout the entire lifecycle.

1.1.2. RECOMMENDERS IN DEVOPS
Recommendation systems aim to help people find information and make decisions
where they lack experience or can’t consider all the data at hand (M. P. Robillard
et al., 2014). These systems combine many computer science research areas, such as
Information Retrieval (IR), Machine Learning (ML), and Big data systems to proac-
tively tailor suggestions that meet users’ particular information needs and preferences.
Web-based applications are the primary focus area for recommender systems. Ama-
zon.com’s item recommendations, Facebook’s friend recommendations, and movie
recommendations by Netflix are some of the popular recommender systems used in
practice today.

The challenges software developers face today in navigating large-scale informa-
tion and data sources in software development environments have similarities to those
of web-based use cases. For example, an on-call engineer (OCE) working on resolv-
ing an incident in a large-scale cloud service will need to mine an incessant amount
of logs, disparate data sources, and dependency graphs to find out the commit that has
caused the incident.

With the advent of DevOps and large-scale cloud services, there is a substantial
amount of data generated in the process of developing those services and operating
them. Consequently, there is a greater need today to build systems that will help
developers by generating knowledge from information or data. Such systems help
make the DevOps processes efficient and help organizations deliver software at a
faster pace while not losing on reliability.

The software engineering research community has been working on understand-
ing the aspects of Recommender Systems for Software Engineering (RSSE). Projects
like CROSSMINER (Rocco et al., 2021) are an important first step toward under-
standing the aspects of RSSEs such as requirement elicitation, development, and
evaluation of IDE-based RSSEs. Tools such as CodeBroker (Ye & Fischer, 2005)
to help to surface reuse opportunities, Expertise Browser (Mockus & Herbsleb, 2002)
for locating experts, Strathcone (Holmes et al., 2006) to decide what examples to use,
and ParseWeb (Thummalapenta & Xie, 2007) to help decide what call sequences to
make. These are built by bringing the concepts of RSSEs to practice. Beyond provid-
ing support while authoring code, tools that can recommend replacement methods for
adapting code to a new library version (Dagenais & Robillard, 2011) and help during
debugging by finding code and people related to a bug fix (Ankolekar et al., 2006).

Robillard et al argue that recommender systems aim at helping developers find the

1Image courtesy: https://www.atlassian.com/devops
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information they should know about and evaluate alternative decisions, RSSEs span
a wide spectrum of software engineering tasks and practically unbounded amounts
of development data (M. P. Robillard et al., 2014). They lay out a foundation for
the design dimensions of the recommender systems for software engineering com-
prising: the nature of the context, the recommendation engine, output modes, and
cross-dimensional features. Our work is greatly influenced by the foundations laid by
them.

1.2. PROBLEM STATEMENT
1.2.1. CHALLENGES AND OPPORTUNITIES IN DEVOPS
Modern software development life cycles, which are inspired by the DevOps model,
are extremely rapid. Rapid cycles generate more code changes. Many code changes
generate lots of data about these code changes, their development, and their effect on
production. This fundamental shift can be attributed partly to the nature of products
that developers work on, i.e., large-scale cloud services such as Google, Amazon,
Facebook, etc. Partly, this shift can also be attributed to the advanced development
tools and frameworks available today that facilitate rapid prototyping and deploy-
ment, such as cloud platforms, continuous integration, continuous deployment sys-
tems, etc. There is significantly more data generated by these systems, during their
development, testing, and deployment. In this thesis, we seek to explore how to lever-
age that data for the benefit of developers and software engineering processes.

For example, given a set of changes that have been authored and reviewed by engi-
neers in a single repository, one can easily determine the notion of an expert or owner
for a given area of the source code. These concepts can then be leveraged to create
a bot that automatically suggests reviewers and experts that should be included in fu-
ture changes to specific areas of the code (Zanjani et al., 2016). Similarly, we depend
on numerous large-scale services in software services. These services are complex
and extremely dynamic as developers continuously commit code and introduce new
features, fixes, and, consequently, new bugs. Hundreds of commits may enter de-
ployment simultaneously. Therefore, one of the most time-critical, yet complex tasks
towards mitigating service disruption is to localize the bug to the right commit. These
are examples of some of the recommenders that can be built by leveraging the data
generated during the DevOps process.

Researchers have been developing recommender systems to help software devel-
opers and the DevOps processes (Lebeuf et al., 2018; Shull et al., 2007). Most of
these recommenders are developed and deployed in silos. They are limited by their
ability to share the data, modeling or training and deployment infrastructure, and their
ability to transfer the heuristics learned from one system to another. This limits the
ability to quickly build and deploy the recommenders, collect feedback and telemetry,
and iterate over them in large-scale software development environments.

The challenges that come with scaling these recommenders are not well studied
due to the lack of deployment and evaluation under large-scale, realistic industrial
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conditions. Partly, this is due to the fact that a lot of these recommenders are ex-
pensive to build and maintain. Furthermore, the operational costs prevent them from
scaling to thousands of repositories in a fiscally responsible manner. Therefore, we
see a great opportunity to propose, build, and evaluate recommenders in large-scale
industrial settings. In that process, we define the frameworks and systems that help
standardize the process of building, scaling, and democratizing the process of build-
ing such recommenders, which we discuss thoroughly in the rest of the thesis.

1.2.2. RESEARCH GOALS AND QUESTIONS
The goal of this thesis is threefold. First, we seek to provide new recommender sys-
tems to support modern DevOps activities. Second, we target a method and frame-
work for evaluating these recommenders. Third, we aim at offering a generic model
for building such recommenders.

RECOMMENDER SYSTEMS TO SUPPORT MODERN DEVOPS

Building new recommenders to help the DevOps processes and various stakeholders
involved in the DevOps lifecycle operate efficiently is one of the primary goals of the
thesis.

To arrive at such recommenders, we need to develop a deeper understanding of
the problems faced by DevOps practitioners in large-scale cloud development envi-
ronments. We analyze the large amounts of data generated as part of the DevOps
processes. Furthermore, we conduct systematic user studies and interviews with var-
ious stakeholders to understand the problems associated with DevOps in large-scale
cloud environments. Some problems that repeatedly surfaced were related to root
causing service disruptions, delays associated with change progression, information
overload, and satisfying the information needs of developers.

Another important observation we make is that because these recommenders need
to be smart (context-aware, leveraging past data to make a future prediction), they are
extremely data-hungry. Furthermore, these recommenders need a holistic view of the
data generated across the DevOps lifecycle to make better predictions and judgments.
For example, a recommender system for automated bug (incident) localization needs
to have data from the code authoring side (commits, pull requests) and deployment
side (operational logs, stack traces, etc.) In a way, the systems need to replicate the
behaviors or capabilities of DevOps engineers, i.e., developing a holistic understand-
ing of the system.

After developing a deeper understanding of the problem space, challenges, and
opportunities, we developed various recommenders listed below. Figure 1.2 shows
the data platforms we construct off the data collected from the DevOps lifecycle, and
how our solutions fit into the same DevOps lifecycle.

• ORCA (Chapter 2): Helps with automated root causing of incidents by finding
the code change that introduced the bug.
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Figure 1.2: DevOps lifecycle, data platforms, and the solutions

• Nudge (Chapter 3): Helps with accelerating the pull request completion time
by sending timely and context-aware reminders.

• ConE (Chapter 4): Facilitates early intervention for identifying potential merge
conflicts and notifying the developers involved.

• Mynalanda (Chapter 5): Helps developers dealing with information overload
and information discovery by providing a news-feed of their activity.

• Nalanda Recommendations (Chapter 5): Provides recommendations about the
related items (pull requests, work items), and subject matter experts (SMEs)
that will help in accomplishing a task.

EVALUATING RECOMMENDER SYSTEMS
Next to deploying our recommenders, we focus on understanding the effectiveness
of the smart recommenders on the software development and DevOps processes.
This includes proposing the right set of metrics to measure the efficacy of the rec-
ommender. The process of coming up with the metrics that track the improvements
is not trivial. We start by understanding the problem domain and conducting inter-
views with key stakeholders, such as engineering managers, program managers, and
the developers themselves. We perform this exercise in an iterative fashion until it is
clear that the metrics that we are tracking are adding business value and helping us
measure the intended research outcomes.

Furthermore, we also work on understanding the user perception of the useful-
ness and accuracy of the recommendations by employing a mixed-methods approach,
which includes both qualitative and quantitative studies. While metrics reveal one
side of the story, understanding the experience of the developers and the human fac-
tors of employing smart recommenders in their software development workflow re-
quires rich data obtained from methods such as surveys, focus groups, and interviews.
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To that end, we conduct extensive studies about all of our smart recommenders and
pass the feedback from the field back to the design process.

A GENERIC MODEL FOR BUILDING RECOMMENDERS
Lastly, we investigate whether building a scalable data platform and operationalizing
smart recommenders at scale is plausible. We study various aspects of scalable dis-
tributed system designs, and the processes involved in deploying smart recommenders
in a non-intrusive fashion. Thus, we can explore optimal paths toward building such
recommenders. Currently, there exist tools or solutions that solve specific problems
(as explained in Section 1.1.2). Yet unfortunately, these tools cannot leverage the
data ingestion, training, inference, and recommendation infrastructure common to
such tools. To address this, we conduct a deep dive and come up with a design that is
generic enough to build multiple smart recommenders using the same infrastructure.
This not only speeds up the development of recommenders but also yields a better
return on investment by amortizing the fixed costs over multiple tools.

RESEARCH QUESTIONS
To summarize, we aim to address three higher-level research questions.

RQ 1 What are the modalities of recommenders that need to be built to support mod-
ern DevOps?

RQ 2 How to assess the efficacy of smart recommenders and their impact on DevOps
processes?

RQ 3 How to build a general-purpose and scalable data framework for developing
smart DevOps recommenders?

1.3. SOLUTION DIRECTION
1.3.1. DEVOPS RECOMMENDERS IN ACTION
Developing the right set of recommenders that can have a real impact on DevOps pro-
cesses requires a deeper understanding of the problems faced by DevOps practitioners
in large-scale cloud development environments.

We observe that root causing service disruptions or incidents is a major pain for
the developers. In large-scale services there exist so many complex service dependen-
cies. These services are complex and extremely dynamic as developers continuously
commit code and introduce new features, fixes, and, consequently, new bugs. Hun-
dreds of commits may enter deployment simultaneously. Therefore one of the most
time-critical, yet complex tasks towards mitigating service disruption is to localize
the bug to the right commit. To that end, we created ORCA (Online Root Cause
Analysis). We explain details about ORCA in Chapter 2.

Next, we shifted our focus to the left side of the DevOps lifecycle. We observed
that Pull requests and code reviews are a key part of the DevOps processes today.
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However, pull requests can also slow down the software development process when
the reviewer(s) or the author do not actively engage with the pull request. While pull
requests streamline the code review process significantly, they can also slow down the
software development process. For instance, if the reviewers are overloaded and lose
track of the pull request, it might not be reviewed in a timely manner. Similarly, if
the pull request author is not actively working on the pull request and reacting to the
reviewers’ comments, the review process could be slowed down significantly. Hence,
if the pull request’s author and reviewers do not actively engage, the pull requests can
remain open for a long time, slowing down the coding process and possibly causing
side effects such as merge conflicts. To address this, we created Nudge, which is a
large-scale machine learning service that helps make progress on stale pull requests.
We explain details about Nudge in Chapter 3.

As we dig deeper, we started to realize that there exist a plethora of problems in
the code authoring side of the DevOps world. As the shift left movement is growing
in prominence (Colavita, 2016), we focused more on developing recommenders to
strengthen the left side of the DevOps lifecycle.

Modern, complex software systems are being continuously extended and adjusted.
The developers responsible for this may come from different teams or organizations
and may be distributed over the world. This may make it difficult to keep track of what
other developers are doing, which may result in multiple developers concurrently
editing the same code areas. This, in turn, may lead to hard-to-merge changes or
even merge conflicts, logical bugs that are difficult to detect, duplication of work, and
wasted developer productivity. To address this, we built CONE (CONcurrent Edit
detection) service. We explain details about CONE in Chapter 4.

While developing the recommenders for helping developers, we found that a lot
of them are ‘reactive’ i.e., they will start helping the developers after the coding ac-
tivity is completed. We shifted further left to understand the problems associated
with code authoring in the first place. Software development is information-dense
knowledge work that requires collaboration with other developers and awareness of
artifacts such as work items, pull requests, and files. With the speed of development
increasing, information overload is a challenge for people developing and maintain-
ing these systems. Finding information and people is difficult for software engineers,
especially when they work in large software systems or have just recently joined a
project.

To address the challenges associated with satisfying the information needs of soft-
ware developers and information overload, we built Nalanda. Nalanda is a large
socio-technical graph that indexes artifacts of software development (files, pull re-
quests, tasks, etc), relationships that exist between these artifacts, and the associations
that exist between artifacts and software developers. We use this knowledge to make
context-sensitive recommendations about related tasks, pull requests that solved simi-
lar problems, subject matter experts (SMEs). Additionally, we also show the software
development activity of developers, their colleagues, and teammates in one place in
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form of a news-feed-based service. Details about Nalanda are discussed in Chapter 5.
The above observations we made while working closely with various stakeholders

in the DevOps lifecycle form an important basis for the thesis. These specific recom-
menders explained above serve to answer all of our Research Questions and Research
Question 1 (RQ1) in their specific context.

1.3.2. DEVOPS RECOMMENDER EVALUATION
Gauging the impact of a recommender is important, yet challenging. In order to
understand the impact of a recommender, a ground truth needs to be established,
which is not always available or clearly defined. For example, when we make a
recommendation to make progress on a stale pull request, it is almost impossible to
programmatically determine that someone completed that pull request because of our
nudge.

We follow a two-pronged approach for determining the impact of recommenders
on software development practices, which forms the basis for our RQ2.

1. Implicit feedback. We measure the impact of a recommender by looking at the
data. For recommenders like Nudge, it is the number of pull request completed
within X days of nudging where X is a parameter, such as 1 day, 3 days, 7
days, etc. For recommenders like ORCA, we look at the actual root causes of
incidents in the last X months and check how many of them were caught by
ORCA. Similarly, for Nalanda recommendations, we track whether people are
interacting with the recommendations by gathering data about click-through
logs.

2. Explicit feedback. We gather explicit feedback through mechanisms such as
providing a thumbs-up/down button for each recommendation, providing a pro-
vision to enter verbose feedback, etc. Additionally, for recommenders like
Nudge, ConE, and Nalanda, we also conducted large-scale user studies, sur-
veys, and interviews.

1.3.3. A CONCEPTUAL FRAMEWORK FOR DEVOPS RECOMMENDER
SYSTEMS

In order to address the challenges and opportunities discussed in the previous section,
we propose a conceptual framework for DevOps Recommender Systems, inspired
by the Sankie recommender infrastructure discussed by Kumar et al (Kumar et al.,
2019a).

In contrast to the siloed approaches employed so far, we propose a unified perspec-
tive on leveraging the data generated by the software development life cycle (SDLC).
This is a novel and powerful idea. It also enables us to envision impactful scenarios
such as online and automated root causing (Chapter 2) by joining the data generated
in the coding phase of SDLC with the data generated in the deployment and post-
deployment phases. To that end, we propose a unified AIOps (AI-assisted DevOps)
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Figure 1.3: Conceptual framework overview

framework for developing smart recommenders, and methods to measure the impact
of such recommenders on software development practices.

Building large-scale data ingestion and recommendation platform is a non-trivial
task, requiring various components to work in sync. Figure 1.3 shows an overview
of the data model and the recommendation system, which forms the basis for our
Research Question 3 (RQ3). Some of the major components of our framework are
listed below.

1. Data Abstraction Layer — To make the data platform extensible, a data ab-
straction layer is utilized to encode various DevOps concepts like pull requests,
code reviews, builds, alerts, etc. collected from data sources like source code
repositories, code review systems, operational data stores, and incident man-
agement systems.

2. AI / ML Models — We need to train models and learn heuristics from the
data exposed through the data abstraction layer. For that, we leverage machine
learning frameworks, such as Scikit learn (Pedregosa et al., 2011), Tensorflow
(Martín Abadi et al., 2015), and PyTorch (Paszke et al., 2019).

3. Recommenders — The data platform provides recommendations and exposes
rules learned through the training process using a set of self-service APIs.
These APIs can further be integrated into pull requests, incident management
tools, and email-based alerts.
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DESIGN PRINCIPLES
We need to keep certain design principles in mind when designing such a large-scale
data framework and recommendation system for DevOps. Guiding principles for the
framework include.

1. Extensibility — The data platform ingests data from various heterogeneous
data sources like source control, build pipeline, cloud services etc and imple-
mentations like Azure DevOps, GitHub etc. This makes it critical to have a
shared and generalized schema to avoid custom and redundant implementa-
tions.

2. Scalability — The framework needs to be scalable both in terms of data pro-
cessing and, also, onboarding more repositories. For this, we leverage the auto-
scale and elastic capabilities provided by cloud deployment for which we lever-
age Microsoft Azure. Auto-scale allows us to scale the compute nodes up and
down automatically based on the incoming workload, reducing manual effort
and also the COGS (cost of goods served). Using elastic pooling in SQL Azure
allows us to share resources and costs between multiple databases without com-
promising on performance and latency.

3. Real time processing - In the DevOps world, there are several time-critical
events like code reviews, code check-ins, deployments, etc. In order to make
AI-assisted recommendations for these scenarios, data platform bots should
have the ability to process events in real-time (or near real-time) and make
recommendations.

A recommender is a component that provides intelligent and actionable recom-
mendations to engineers and developers. A recommender has three major functions
as explained below.

1. Training: the training aspect of a recommender in the data platform provides
the basic function of gathering data from the database, massaging it, applying
the algorithm of choice, and then persisting the results to the database in a
structured manner.

2. Recommending: Given an item such as a change or a pull request, this func-
tion is responsible for generating recommendations that are applicable to the
given item. For example, based on the historic data of change progression, the
recommender we will discuss in Chapter 3 believes that it is time to nudge the
change blocker to make progress on the pull requests they are blocking. This
specific recommendation will be generated and passed as a comment on the
pull request.

3. Evaluating: Any recommender should support a fundamental concept of eval-
uating the recommender with respect to a set of ground truth data points that
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are either acquired from the data or human encoded. Using the example of a
recommender we will discuss in Chapter 3, if we nudge a change blocker (the
author or the reviewer of a pull request), they may or may not respond. Even
when they respond, it might not be because of the Nudge comment. Therefore,
it is important to understand the impact of the recommendation by devising
a strategy. Some strategies we employed are mixed-method approaches and
randomized A/B testing for evaluating the efficacy of such recommenders.

1.4. RESEARCH METHODOLOGY
1.4.1. TECHNICAL ACTION RESEARCH
In technical action research (Wieringa, 2014), a newly designed artifact is tested in the
field by using it to help a client. Technical action research is like a regular case study
(Runeson & Höst, 2009; Yin, 2008), called ‘single mechanism experimentation’ by
Wieringa, but with the additional goal of actually helping a client in the field.

In technical action research, we follow the ‘design cycle’, i.e. the creation, design,
and validation of artifacts based on requirements and stakeholder goals. Then, we
follow the empirical cycle to investigate artifacts in context and present the different
elements of research problem analysis, research setup, and data analysis. This way
we get to combine action research and design science by starting with a concrete
problem in an organization, then applying an artifact to improve the problem, and
finally reflecting on lessons learned. The aim of these combinations is to reduce the
tension between relevance and rigor. Essentially, the aim of this way of using action
research in design science is to bridge the gap between the idealizations made when
designing the artifact and the concrete conditions of practice that occur in real-world
problems.

Given our ability to deploy our solutions among developers, in production, we are
able to rapidly prototype our solutions and employ technical action research methods
to collect feedback. We then use that feedback to keep improving the efficacy and
accuracy of our recommenders in an iterative fashion.

1.4.2. RECOMMENDATION EFFECTIVENESS
Empirical Software Engineering is a field of software engineering focused on gath-
ering data, through measurements and experiments, to build theories about processes
involved in software engineering. We use a mixed-method approach to answer our re-
search questions, employing surveys, controlled experiments (A/B tests), interviews,
and mining software repositories. In this section we explain the main characteristics
of each research method we used:

• Mining Software Repositories (MSR). MSR is a field of software engineering
research in which researchers extract data from software repositories. We mine
Version Control Systems (VCS), code review systems, Continuous Integration
and Continuous Deployment pipelines (CI / CD), and so on, to extract informa-
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tion about different aspects of the code and how it evolves over time. We then
use that information to perform empirical analyses and A/B tests, which help
us in understanding the impact of our recommenders on software development
practices.

We also define key metrics that help us in tracking the effectiveness of our rec-
ommenders. Some of the metrics we employ are pull request completion time,
time to mitigate incidents, the number of merge conflicts prevented, developer
satisfaction, etc.

• Interviews and Surveys. While researchers can understand what happens in a
software system, understanding why that happens is often not possible by only
observing the data. To obtain richer data to answer this kind of question we use
interviews: we can learn why something happened by talking to developers, we
can ask their opinions on certain behavior, and understand the decision-making
process behind a change. Furthermore, even though interviews are an important
source of information, the results might not be generalizable: hence, we also
employ surveys to challenge and expand our results.

In Chapter 5, we conduct a large-scale survey with 2,000 plus participants. We
intend to understand the usefulness of a news feed-based solution for aggre-
gating the software development activity across repositories that a developer
works in. We also leverage the survey to understand the user perceptions about
various parts of the MyNalanda solution.

• Randomised Control Trial. In this dissertation, we devise and run a ran-
domised control trial. The randomised control trial (RCT) is a trial in which
subjects are randomly assigned to one of two groups: one (the experimen-
tal group) receiving the intervention that is being tested, and the other (the
comparison group or control) receiving an alternative (conventional) treatment
(Kendall, 2003). The two groups are then followed up to see if there are any
differences between them in outcome. The results and subsequent analysis of
the trial are used to assess the effectiveness of the intervention, which is the
extent to which a treatment, procedure, or service does patients more good than
harm. RCTs are the most stringent way of determining whether a cause-effect
relation exists between the intervention and the outcome.

In Chapter 3 we study the effect of one of the recommenders named Nudge:
in this case, the variable being tested is the time it takes to complete pull re-
quests. We test whether the Nudge notifications yielded the intended benefits
of accelerating the pull request completion time.

We employ a series of mixed-methods studies that combine several of the above
techniques to answer one research question. Particularly for validating the accuracy
of survey answers, we triangulate answers in questionnaires corresponding to data
extracted from the Azure DevOps telemetry. For recommenders like Nudge (Chapter
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Table 1.1: Research methods used for each study

Study Chpt. Quant. Analysis Survey Interviews

ORCA 2 yes no yes
Nudge 3 yes no yes
ConE 4 yes no yes
Nalanda (MyNalanda) 5 yes yes yes
Nalanda (Recommendations) 5 yes yes yes

3) we also conduct a randomized trial with the A/B tests. Table 1.1 gives an overview
of which research methods we employed for each of the individual studies.

1.4.3. OPEN SCIENCE
We chose the technical action research approach to prioritize realism and relevance.
This helped us conduct methodical research, operationalize the recommenders, col-
lect feedback, and repeat the loop. This also helped us demonstrate the impact
and benefits of our research to various stakeholders and eventually scale the recom-
menders to thousands of developers.

As a consequence of our deliberate choice to go for a high level of realism and
relevance, that can only be obtained through (technical) action research, we had to
compromise on some aspects of open science. The consequences are that:

1. The tools produced are tightly connected to the Microsoft infrastructure, and
cannot be used in isolation.

2. All data collected is company sensitive and proprietary and cannot be made
publicly available.

Note, however, that the algorithms, methods, and design choices for our tool are
described in substantial detail, enabling replication in either other organizations or in
the open-source domain.

1.5. ORIGIN OF CHAPTERS
Table 1.2 illustrates the connection between the chapters in this thesis and the research
questions. In the following, we detail each chapter.

All chapters, except Chapter 5 of this thesis have been published in peer-reviewed
journals and conferences. As a result, each chapter is self-contained with its back-
ground, related work, and results section. Unless otherwise specified, the first author
is the main contributor to each work. The first three authors contributed equally to
the ORCA work (Chapter 2). The origin of each chapter is explained below:

• Chapter 2 We published the paper ‘Orca: Differential Bug Localization in
Large-Scale Services.’ at USENIX OSDI 2018, with Ranjita Bhagwan, Rahul
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Table 1.2: Relation between research questions and chapters

RQ Description Chapters

RQ1 What are the modalities of recommenders that need to
be built to support modern DevOps?

1, 3, 4

RQ2 How to assess the efficacy of smart recommenders and
their impact on DevOps processes?

2, 5

RQ3 How to build a general-purpose and scalable data
framework for developing smart DevOps recom-
menders?

2, 3, 4, 5

Kumar, Chandra Maddila, Adithya Abraham Philip as co-authors. This paper
has received Jay Lepreau best paper award . The first three authors contributed
equally to this work.

• Chapter 3 We published the paper ‘Predicting pull request completion time:
a case study on large scale cloud services.’ at the European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE) 2019 industry track, with Chandra Maddila, Chetan Bansal,
Nachiappan Nagappan as co-authors.

A subsequent publication, by making substantial improvements to the Nudge
service, with the title ‘Nudge: Accelerating Overdue Pull Requests Towards
Completion’, was accepted at a journal ACM Transactions on Software Engi-
neering and Methodology (TOSEM) in 2022, with Chandra Maddila, Sai Surya
Upadrasta, Chetan Bansal, Nachiappan Nagappan, Georgios Gousios, Arie van
Deursen as co-authors.

• Chapter 4 We published ‘ConE: A Concurrent Edit Detection Tool for Large
Scale Software Development’ as a journal-first paper at ACM Transactions
on Software Engineering and Methodology (TOSEM) in 2021, with Chandra
Maddila, Nachiappan Nagappan, Christian Bird, Georgios Gousios, and Arie
van Deursen as co-authors.

The same paper was also presented at ESEC/FSE 2022 as a journal first paper.

• Chapter 5 A paper with the title ‘Nalanda: A Socio-Technical Graph Platform
for Building Software Analytics Tools at Enterprise Scale’ is under review at
ESEC/FSE 2022 industry track, with Chandra Maddila, Suhas Shanbhogue,
Apoorva Agrawal, Thomas Zimmermann, Chetan Bansal, Nicole Forsgren, Di-
vyanshu Agrawal, and Arie van Deursen as co-authors.
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2
ORCA: DIFFERENTIAL BUG

LOCALIZATION IN
LARGE-SCALE SERVICES

Today, we depend on numerous large-scale services for basic operations such as
email. These services are complex and extremely dynamic as developers continously
commit code and introduce new features, fixes and, consequently, new bugs. Hun-
dreds of commits may enter deployment simultaneously. Therefore one of the most
time-critical, yet complex tasks towards mitigating service disruption is to localize
the bug to the right commit.

This chapter presents the concept of differential bug localization that uses a combi-
nation of differential code analysis and software provenance tracking to effectively
pin-point buggy commits. We have built Orca, a customized code search-engine that
implements differential bug localization. Orca is actively being used by the On-Call
Engineers (OCEs) of a large enterprise email and collaboration service to localize
bugs to the appropriate buggy commits. Our evaluation shows that Orca correctly
localizes 79% of bugs for which it has been used. We also show that it causes a 4x
reduction in the work done by the OCE.

2.1. INTRODUCTION
Orion1 is a large enterprise email and collaboration service that supports several mil-
lions of users, runs across hundreds of thousands of machines, and serves millions
of requests per second. Thousands of developers contribute code to it at the rate of

1Name changed for anonymity
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hundreds of commits per day. Dozens of new builds are deployed every week. Soft-
ware bugs are bound to be common in such a complex and dynamic environment. It
is critical to detect and promptly localize such bugs since service disruptions lead to
customer dissatisfaction and significantly lower revenues (Infonetics, 2016).

When a service disruption happens because of a software bug, the first-step to-
wards mitigating its effect is to localize the responsible bug to the right commit. We
call this commit-level bug localization. This is a non-trivial task since the intense
pace of development demands that multiple commits be aggregated into a single de-
ployment. In addition, commit-level bug localization needs to happen as quickly as
possible so that buggy commits can be reverted promptly thereby restoring service
health. About half of all Orion’s service disruptions are caused by software bugs.

Unfortunately, bug localization in large services such as Orion is a cumbersome,
time-consuming, and error-prone task. The On-Call Engineers (OCEs) are the first
points-of-contact when a disruption occurs, and they are responsible for bug localiza-
tion. Though knowledgeable, on-call engineers can hardly be expected to have com-
plete and in-depth understanding of all recent commits. Moreover, bugs that emerge
after deployment are complex and often non-deterministic. And yet, very few tools
exist to enable OCEs to perform this critical task.

Our goal is to build a tool that will help OCEs correctly and swiftly localize a bug
to the buggy commit. Over a period of eight months, we studied post-deployment
bugs, their symptoms, the buggy commits that caused them, and the current approach
to bug localization that Orion’s OCEs follow. We made four key observations.

1) Bug localization is time-critical, bug fixing is not. When a bug disrupts a
service, the OCE’s task is to keep the service disruption time to a minimum. She finds
the buggy commit as fast as possible and reverts it rather than wait for the concerned
developer to fix the bug. The reason is that, depending on the complexity of the
bug, the developer may take a long time to fix it. Therefore to keep disruption to a
minimum, it is better to revert the buggy commit first and introduce the fix at a later
time. Thus, fast commit-level bug localization is critical.

2) Rich monitoring infrastructure exists but is insufficient because of uncaptured
dependencies. Since service disruptions are a major concern, developers have cre-
ated thousands of active probes that periodically monitor service-components or API
calls and raise alerts if they fail. Despite this, bug localization is a challenge be-
cause a probe to a component may fail not because of any change to the component
itself, but because of a change to a dependent component. For instance, a server-side
probe failed with an exception Type RecipientId not supported because
a developer made a commit to client-side code that added support for the datatype
RecipientId without adding support on the server-side. To make matters worse,
as the service evolves fast, new dependencies emerge at a rapid rate and no tool can
completely capture all of them.

3) Text-based similarity exists between symptom and cause. We have found that
when a probe detects a bug, a text-based similarity often exists between the unhealthy
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probe name or exception text that it generates and the source-code change that caused
the bug. In the example mentioned in the previous paragraph, the term recipient
occurs in both symptom (the exception text) and cause (added support to the datatype
on client). We also see this similarity in some customer complaints as well which
predominantly use natural language. For instance, a customer recently complained
that “Email ID suggestions for people I know is not working.". The cause for this was
an incorrect change to a function named PeopleSuggest.

4) Bugs may appear much after the buggy commit is made. We observed that
while the symptoms of a bug appear in a current build, the cause may be a commit
deployed in a much older build. These are particularly challenging for the OCE to
localize because they have to investigate, in the worst-case, all commits in the current
build before moving on to investigate an older build. This can significantly lengthen
service disruptions.

Given our goal and requirements, we design a novel search technique that we
call differential bug localization. Using descriptions of the bug as a query, we detect
changes to the abstract syntax tree in the source-code and search only these changes
for text-based similarity. We call this differential code analysis. To find offending
commits in older builds, we introduce a construct called the build provenance graph
that captures dependencies between builds. We designed Orca, a custom code search-
engine that leverages differential bug localization to provide a ranked list of “suspect"
commits.

The Orion service has integrated Orca into its alerting and monitoring processes.
This chapter describes Orca and makes the following contributions:

• We provide a study of post-deployment bugs found in the Orion service and
their characteristics (Section 2.3).

• We introduce differential bug localization, which uses two constructs: differ-
ential code analysis of the abstract syntax tree, and the build provenance graph
(Section 2.4).

• We have designed Orca, a tool that Orion’s OCEs are actively using to localize
bugs (Section 2.5).

• We provide an evaluation of Orca for bugs found in the Orion service (Sec-
tion 2.6).

To the best of our knowledge, ours is the first such study of a bug localization
tool deployed on a large-scale enterprise service. We have evaluated Orca on 33 post-
deployment bugs found in Orion since October 2017. We show that Orca correctly
localizes 26 out of 33 bugs for a recall of 79%. In 25 of the 26 cases, the correct
commit was ranked in the top 5 records shown by our UI (Section 2.6). We also show
that Orca causes a 4x reduction in the work done by the OCE.

We have designed Orca for usability and ease-of-adoption. While this chapter
concentrates on Orion’s deployment of the tool, Orca has been deployed on five other
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services within our enterprise. Our techniques are generic and extend well to other
large services. To make it easy for OCEs to use the tool interactively, we have opti-
mized its performance through multiple caching and preprocessing techniques. Our
user-interface provides results with an average run-time of 5.9 seconds per query.

2.2. RELATED WORK
The Programming Languages, Software Engineering and Systems communities have
extensively studied bug detection, bug localization and debugging. While Orca takes
inspiration from some of this prior work, it targets a fundamentally different applica-
tion space, i.e. large-scale service deployments. Also, Orca is meant to be used by
on-call engineers, not developers.

A bug localization tool for such services needs to be fast: the query response time
should be at most a few seconds since OCEs will use the UI interactively. It should
be general: the techniques should support code in different languages and should
not need an OCE or developer to provide specification. It should be non-intrusive:
the service’s existing coding and deployment practises should not require change.
Finally, it should be adaptive: it should work in an extremely dynamic and changing
environment. We now describe prior work in the area and why they do not satisfy
some or all of these requirements.

IR-based Bug localization techniques (Ashok et al., 2009; Lam et al., 2015; Rao
& Kak, 2011; Rath et al., 2018; S. Wang & Lo, 2016; Youm et al., 2015; Zhou et
al., 2012) use a given bug-report to search, based on textual similarity, for similar
bug reports in the past. For each match, they localize the bug at the file-level, not
at commit-level, to files that have been changed to address similar bug-reports. (S.
Wang & Lo, 2016) presents a structured and detailed study of the various techniques
that are used for information-retrieval based bug localization. They use similar search
techniques over five major concepts: version history, bug reports, stack traces, and
reporter information.

While these techniques are fast, general and non-intrusive, they assume a station-
ary system, i.e. they assume that there is an inherent similarity between the current
version of the system and previous versions. This is fundamentally not true in service
deployments. For instance, Orion experiences a change in module dependencies at
the rate of 1% to 3% every month, and some source-code files consistently change
more than once a day!

Moreover, such studies are usually conducted for software products. Compara-
tively, the work presented in this chapter is different because it focuses on (a) dynamic
deployments of software services, and (b) structured (bugs) and unstructured queries
for localization of the manifested issue. Finally Orca is deployed and being used in
real-time on a large service deployment. To our knowledge, existing bug localization
techniques have not seen such deployment.

Dynamic Analysis techniques are the most commonly used and widely studied
approaches for detecting bugs and issues in software. Testing and automated fuzz
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testing (D. L. Bird & Munoz, 1983; Godefroid et al., 2008) techniques provide an
effective method to automatically generate test cases that produce random inputs for
the underlying software under test. Although these techniques are useful, they are
complementary to our approach. Testing is never complete and does not provide
guarantees about the correctness of the software under test. As a result, in spite of
comprehensive testing, bugs still emerge regularly in service deployments, as we have
noticed with Orion.

To find post-deployment bugs, statistical techniques (Bowring et al., 2002; Chilimbi
et al., 2009; Liblit et al., 2005) were employed to automatically isolate bugs in pro-
grams by tracking and analyzing successful and failed runs of the program. While this
technique holds promise, it is intrusive: it requires fine-grained instrumentation and
a large number of program traces from the service deployment. Given the stringent
performance needs and dynamism in services, we do not have the luxury of utilizing
such techniques.

Delta Debugging techniques (Cleve & Zeller, 2005; Zeller, 2002) help automate
the problem of debugging by providing the debugger or programmer information
about the state of the program in passing and failing runs. The possible search space
of the root cause is systematically pruned by using information from the various runs
and by creating new executions. The ideas in delta debugging rely heavily on pro-
gram slicing (Agrawal & Horgan, 1990; Weiser, 1981). Given its requirements, delta
debugging tends to require a large number of tests and the data from instrumented
programs. Hence, it is intrusive.

Static analysis entails analyzing software without executing the programs in ques-
tion. The analysis may be performed at the level of the source-code itself, or at the
level of the object code that is generated for execution (byte code or binary). Anal-
ysis is performed by automated tools that tend to be rooted in some formal method
such as model checking (Clarke et al., 1999), symbolic execution (McMillan, 1993),
and abstract interpretation (Cousot & Cousot, 1977). Although such techniques have
shown significant promise in the past, performing such analysis on a large scale for
services has proven to be very slow and intractable. Performing program analysis and
verification at smaller scales for individual components is the current limit of such
techniques.

Tools such as Semmle (De Moor et al., 2007) provides a unified framework that
implements various program analysis techniques and correctness checks. In our ex-
perience, Semmle has proven to be somewhat useful for simple situations, but it lacks
generality.

Differential static analysis techniques such as SymDiff (Lahiri et al., 2010) are im-
mediately relevant to the problem discussed in this chapter. But differential analysis
techniques are usually property driven; two versions of the program are analyzed with
respect to a specific correctness property. For example, the analysis may be performed
for asserting differences in the new version w.r.t. null pointer dereferences. We be-
lieve this approach too lacks generality since it is not feasible to enumerate all such
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Figure 2.1: System Development Lifecycle of the Orion Service.

properties of code in large dynamic services with multiple dependent components.
Yet, we do draw inspiration from this work to build Orca’s AST-based differential
analysis,

In addition to previous work (Yuan et al., 2012; Zhao et al., 2017) on bug local-
ization and debugging, previous-work has targetted improving log-based debugging
by making logs richer and more targetted towards diagnosability. We believe such
work is complementary to our approach and Orca can gain significantly with such
techniques that enhance logs.

2.3. OVERVIEW
In this Section, we first describe the system development lifecycle of the Orion enter-
prise email service and the role of the OCE. We next describe the characteristics of
post-deployment bugs in Orion and motivate the approaches we adopt in Orca. We
provide an overview of Orca and its goals, and finally state Orca’s scope.

2.3.1. SYSTEM DEVELOPMENT LIFECYCLE
Figure 2.1 shows Orion’s system development lifecycle (SDLC) and Table 2.1 holds
a summary definition of each term we use for the reader’s convenience. Multiple de-
velopers commit code, where a commit varies in complexity from a small tweak to
a single file to changes to hundreds, even thousands of files. These commits are re-
viewed by one or more reviewers that the developer chooses. After multiple iterations
with the reviewers, the commits are tested using unit, integration, and functional tests.
Periodically, the administrator creates a new build by combining a set of commits. A
build is a unit of deployment of the service and may contain just one, or hundreds of
commits.

Builds are deployed in stages onto rings. A ring is a pre-determined set of ma-
chines on which the same build runs. The build is first deployed onto the smallest
ring, or “Ring 0", consisting of a few thousand machines. When it is considered safe,
the build progresses through multiple rings such as Ring 1 and Ring 2 until it finally
is deployed world-wide. The idea of this staged deployment is to find bugs early in
the life-cycle of deployment.
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Term Definition

Commit Set of file changes made by one developer.
Review Recommendations made by one or more developers for

a commit.
Build Unit of deployment for the service consisting of one or

more commits.
Ring Set of machines onto which a build is deployed.
Probe Periodic checks to functions/APIs to ensure they are

working as expected.
Alert An email- or web-based notification that warns the OCE

of a problem.

Table 2.1: Terms and their definitions

Once the build is deployed to a ring, several tools monitor it. A tool may use
passive or active monitoring techniques, either analyzing logs or sending periodic
probes to a component. It uses anomaly detection techniques to raise an alert that the
OCE receives.

If only the machines running a specific build raise alerts, the OCE concludes that
the build is buggy and she begins bug localization. Roughly half of all alerts in Orion
are caused by bugs. Consequently, bugs are a significant reason for service disruption.
If the alerts are not confined to a particular build, the bug is likely due to other reasons
such as faulty networks or hardware misconfigurations. Root-causing infrastructure
issues is not our focus as several tools already exist for this purpose (M. Yu et al.,
2018; Q. Zhang et al., 2011).

To localize the bug to a commit, the OCE picks the commit that she feels is most
likely to cause an issue and contacts the developer who created it. If the developer re-
sponds in the affirmative that her commit may indeed have caused the bug, the commit
is immediately reverted and the service is restored to a healthy state. Note that the de-
veloper does not necessarily debug or fix the bug before responding to the OCE. If the
developer says that their commit is not responsible for the bug, then the OCE picks the
next most likely commit, and repeats the process until the service becomes healthy.
Note that compared to a novice, an experienced OCE with domain-knowledge may
pick the correct commits more promptly and therefore restore the service much faster.
Orca removes this dependency on experience and domain-knowledge by codifying it
in its search algorithms.

2.3.2. POST-DEPLOYMENT BUGS
Over a period of eight months, we analyzed various post-deployment bugs and the
buggy source-code that caused them. Table 2.2 outlines a few characteristic issues.
The table shows the type of alert, it provides an overview of the symptom, and a
description of the root-cause. It also shows the number of commits (and the number
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of files) that an OCE has to consider while performing bug attribution which, in some
cases is more than 200.

No. Type Symptom Cause Term Simi-
larity

Commits

1 Customer
com-
plaint

"People Sug-
gestion" fea-
ture, that
suggests poten-
tial recipients
for an email,
was not work-
ing for a subset
of users.

A "people ranking" al-
gorithm was incorrectly
modified.

A variable
used the
keyword
suggest
in the
modified
function.

33

2 Probe An email syn-
chronization
problem was
detected.

A buggy commit to
the synchronization
component caused
requests coming only
from web-based clients
to fail.

The probe
contained
the name
of the
synchro-
nization
component,
which was
also in the
directory
path of the
modified
files.

201

3 Probe A worker
process for
a specific
component
started crashing
repeatedly.

Incorrect configuration
changes to the com-
ponent’s environment
caused this. The com-
mit was to a previous
build but bug showed
later only after a large
number of users hit it.

The com-
ponent
name
matched in
the class
name of
modified
code.

201

4 Customer
com-
plaint

Authentication
process for
some applica-
tions that used
REST started
crashing.

A library that these
applications depended
upon was modified but
was not tested for all
applications.

Keyword
auth was
in the path-
name of the
change.

46
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5 Probe Threads were
getting blocked
in processing,
large delays
were noticed
in REST calls
made by a web
service.

Http client code for
the service had been
modified to make some
synchronous calls asyn-
chronous.

The com-
ponent
name
matched a
modified
user-agent
string in the
http client.

18

6 Probe No. of excep-
tions generated
anomalously
high while
migrating
mailboxes

Caused by a code-
change to a mailbox
migration components.

Keyword
migrat
matched in
a function
name in
added code.

12

7 Probe Number of
exceptions in
the log file for
a component
C became
abnormally
high.

Support for a new
datatype was added
in a component that
made an API call to
component C, but C
does not support that
datatype.

The excep-
tion text
for C con-
tained the
datatype.

70

8 Probe CPU Usage
on a set of
machines was
anomalously
high.

Reads and writes to
a dictionary were not
thread-safe. Multi-
ple threads were read-
ing from a dictionary
while it was being mod-
ified, causing a CPU
blowout.

No key-
word
matched.

89

9 Probe POP and IMAP
services started
failing.

Dependencies were
broken when a code
commit changed a
library that the POP
and IMAP services
used.

Keywords
Pop and
Imap
matched
in code
changes.

110

10 Customer
com-
plaint

A client signing
in via OAuth
does not dis-
play calendar.

Client-side implemen-
tation was incompati-
ble with the server-side
commit.

Keyword
OAuth
matched
the symp-
tom and the
server-side
change.

39

Table 2.2: Examples of post-deployment bugs

In general, we have found that bugs fall predominantly into one of the following
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categories:

• Bugs specific to certain environments. Often, a component starts failing be-
cause files implementing that component have a bug (Bugs 2, 5). Usually, the
failures happen only for a specific type of client such as web-based clients, or
in a specific region such as Japan. Tests do not catch the bug since not all
configurations, clients and environments are tested.

• Bugs due to uncaptured dependencies. Dependencies can be of various
types. In Bug 10, a server-side implementation is modified without appro-
priately modifying the client-side code. This happens because developers often
overlook such dependencies as no compile-time tool captures them completely.
Another example of an uncaptured dependency is Bug 4. A commit modifies a
certain library, but unbeknownst to the developer, another component depends
on certain features in the older version of the library and stops working cor-
rectly.

• Bugs that introduce performance overheads. Several probes track perfor-
mance issues. For instance, in Bug 8, a code addition that was not thread-safe
caused CPU overload that slowed down the service. The bug emerges only
when a large number of users use the service. Hence it is not caught in testing.

• Bugs in the user-interface. A UI Feature starts misbehaving, so a customer
complains. An example of this is Bug 1.

2.3.3. ORCA OVERVIEW
Studying these bugs and observing the OCEs gave us valuable insights. We state these
insights, and describe how Orca ’s design is influenced by them.

Often, the same meaningful terms occur both in the symptom and the cause. Ta-
ble 2.2 captures this under the “Term Similarity" column. Some matched terms are
proper nouns such as the component name (Bug 3) or global datatypes (Bug 7). They
can also be commonly used terms such as protocols (Imap in Bug 9) or the function
performed (suggest in Bug 1 and migrat in Bug 6). Given the term similarity
between symptom and cause, we designed Orca as a custom-designed search engine,
using the symptom as the query-text, and giving us a ranked list of commits as results.
Orca searches for the symptomatic terms in names of the modified code by perform-
ing differential code analysis on the abstract syntax tree. We describe this procedure
in Section 2.4.1.

Testing and anomaly detection algorithms do not always find a bug immediately.
A bug may start surfacing in a new build despite being introduced through a commit
to a much older build. Bug 3 in Table 2.2 is an example. We introduce a build
provenance graph to allow Orca to expand its search to older builds from which the
current build has been derived. We describe this in Section 2.4.2.

26



Builds may have hundreds of commits, so manually attributing bugs can be long-
drawn task. For instance, Bug 2 appears in a build that had 201 commits. Bug 3
appears in a build with 160 commits but the root-cause was in the previous build
which had 41 commits. The OCE is faced with the uphill task of analyzing, in these
cases, up to 200 commits before discovering the buggy commit. OCEs often work at
odd hours and are constantly pressed for time. We therefore used various techniques
to make Orca fast, interactive and accurate. We have built an Orca UI and leverage
caching and parallelism to ensure an interactive experience for the OCE. We describe
our optimizations in Section 2.5.

There are thousands of probes in the system, and probe failures and exceptions
are continuously logged. Therefore there is rich data on what symptoms, or potential
queries to Orca look like. This allows us to track frequency of terms that appear in the
queries and use the Inverse Query Frequency (IQF) rather than the Inverse Document
Frequency (IDF) in our search rankings. We explain this further in in Section 2.4.3.

2.3.4. ORCA SCOPE
In this section, we elaborate what Orca does not aim to solve. This is primarily
because existing techniques already address these issues.

Orca does not target issues caused by faults in the infrastructure. Several tech-
niques (Isard, 2007; M. Yu et al., 2018) exist to do this.

Orca does not solve the anomaly detection problem directly as several techniques
already exist for this (Attariyan et al., 2012; Chow et al., 2014). But we do recog-
nize that anomaly detection algorithms are imperfect. Orca’s build provenance graph
helps find bugs even when the anomaly detection algorithm detects a bug well after a
commit introduces the bug.

Orca does not handle bugs where the query does not have any context-specific
information. Notable examples are performance issues, where the symptoms are,
simply, out-of-memory exceptions or CPU-above-threshold exceptions. There exist
other techniques (Chow et al., 2014; Zhao et al., 2014) in the literature which can
debug such issues and therefore, can be used in combination with Orca.

2.4. DESIGN
In this Section, we describe Orca’s differential bug localization constructs in more de-
tail. The input query to Orca is a symptom of the bug. This could be the name of the
anomalous probe, an exception message, a stack-trace, or the words of a customer-
complaint. The idea is to search for this query through changes in code or configu-
rations that could have caused this bug. Thus the “documents" that the tool searches
are properties that changed with a commit, such as names of files that were added,
removed or modified, commit and review comments, modified code and modified
configuration parameters. Orca’s output is a ranked list of commits, with the most
likely buggy commit displayed first.

We first describe two novel constructs that we use for search-space pruning and
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search-space expansion respectively: differential code analysis, and the build prove-
nance graph. Finally we provide a detailed description of the search algorithm.

2.4.1. DIFFERENTIAL CODE ANALYSIS
Orca can search the entire code file to perform bug localization. But this approach
can find false matches and drop Orca’s precision, especially since we have found
that every commit changes, on average, only about 20 lines of source-code per-file
(including file additions), whereas the entire file can consist of hundreds of lines of
code.

We therefore employ differential code analysis within Orca. Differential Analysis
has been studied in the past, albeit mostly at the semantic level (Lahiri et al., 2013).
The goal in prior research has been to identify relevant pieces of the code change that
can potentially cause different behavior in the new version relative to the old version,
but with reference to a specified property, such as null dereference, memory consis-
tency, etc. Such techniques rely on compuationally expensive techniques such as dif-
ferential symbolic execution (Person et al., 2008) and regression verification (Godlin
& Strichman, 2009).

Our approach leans more toward the syntactic than the semantic side. There are
two reasons for this: (a) it is difficult to determine the full set of properties to cap-
ture all bugs in large-scale services, and (b) we would like to avoid the performance
overhead of traditional static analyzers for differential analysis. We use the abstract
syntax trees (AST) of the old and new version of the program to discover relevant
parts of the source that have been added, removed, and modified.

Our analysis finds differences in entities of type class, method, reference, condi-
tion, and loop. We formalize the notion of diffing two ASTs, Ai and A j , as creating a
“difference set" D in the following way. Say ei is the old version of an entity, and e j

the new version. Say t is the type of the entity. Then,

D =



dadded =∀e ∈ A j | t y pe(e) = t ∧e ̸∈ Ai

dr emoved =∀e ∈ Ai | t y pe(e) = t ∧e ̸∈ A j

dchang ed =∀e j ∈ A j | t y pe(e j ) = t ∧e j ∈ Ai

∧e j ̸= ei ∧ t y pe(ei ) = t

ddi f f = ei∆e j | e j ∈ A j ∧ t y pe(e j ) = t∧
ei ∈ Ai ∧e j ̸= ei

Thus, the difference set D captures entities that have been added, removed, or
changed. For all entities in D, we also capture the textual differences between the
two versions of the entity, ddi f f , using the following heuristic. We check if the old
version of the entity ei is also found in the new AST A j . Our heuristic checks for
a “similarly" named entity or declaration as ei . If we find such an entity, we treat
it as a newer version of the entity ei , i.e. e j . We run differential code analysis for
all changed files in a commit. To find term similarity at the file-level, Orca searches
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Figure 2.2: Example fragment of a build provenance graph.

through the difference set of each file.
We would like to point out that our syntactic approach to differential code anal-

ysis is not sound: we may detect changes even though there are none. For instance,
consider the case where a function name changes completely, but the body remains
unchanged. Our algorithm will treat this as a completely new function. While this
could cause a precision drop in Orca since we are including more textual differences
than actually exist, the algorithm does ensure that all changes are captured.

2.4.2. BUILD PROVENANCE GRAPH
In Section 2.3.2, we have shown that a buggy commit to an older build may show
symptoms only in a subsequent build. This could be because an inaccurate anomaly
detection algorithm detects an anomaly too late. It may also be that a subtle bug
manifests only in certain environments or only when a large number of users hit the
service.

To accommodate this scenario, we expand our search to include previous builds
that the symptomatic build is “derived" from. We maintain a build provenance graph
(BPG) that captures dependencies between various builds along the axes of time and
ring ID. Figure 2.2 shows an example fragment of a build provenance graph.

CONSTRUCTION

We now describe how we construct the build provenance graph. The BPG captures
how builds are created and promoted in the different rings. Every build is represented
as B i

r,v , where i is a the build identifier, r is the ring identifier, and v is the version of
the build within a ring.

Say a build spends a certain amount of time in Ring 0. If it is stable and shows
no unhealthy behavior for a while, it is considered for promotion to the next ring.
Build B n

0,0 is one such build. It forks off build B n
1,0 which runs in the next ring,

Ring 1. Since B n
1,0 is directly derived from B n

0,0, any bugs that emerge in B n
1,0 could

potentially be due to commits originally made to B n
0,0. Thus, we introduce an inter-

ring edge between the two builds. Similarly, once a build is considered stable in Ring

29



1, it is forked off to Ring 2. This introduces the inter-ring edge between B n
1,0 and B n

2,0.
We specify an inter-ring edge as:

B i
r,v

R−→ B i
r+1,0,

For a given build identifier i , only one inter-ring edge can exist between two
consecutive rings.

Meanwhile, developers make fresh commits wi thi n each ring too, thereby creat-
ing the next build versions within the same ring. So in the figure, B n

0,1 is derived from
B n

0,0, B n
1,1 from B n

1,0, and so on. Several such intra-ring edges may exist in all rings
though most are in Ring 0 which is the most dynamic and experimental ring.

We represent the intra-ring edges as:

B i
r,v

r−→ B i
r,v+1

At any given time, a vertical line drawn through the graph yields the active build
within each ring at that time. For instance, at time t1, the active builds are B n

0,3, B n
1,1,

and B n
2,0. For ease of explanation, we assume that at any given time there is only one

active build in every ring though in reality there could be many.
We now explain a third edge-type called the back-port edge, shown in Figure 2.2

by dotted arrows. A critical bug that goes undetected may, with time, propagate to a
large number of builds across all rings. Say at time t0, such a bug causes an alert in
build B n

1,1. Say at time t1, using the process described in Section 2.4.2, we localize
the bug to a commit made to the earlier build B n

0,0. The bug is fixed through a new
commit c to the code of B n

1,1, and this generates B n
1,2, with an intra-ring edge between

them.
We can see that since the bug originated in B n

0,0, it also exists in the active builds
within Ring 0 and Ring 2 that have been derived from it, i.e. B n

0,3 and B n
2,0. Conse-

quently we apply the commit c, or we back-port it, to B n
0,3 and B n

2,0. This creates new
builds B n

0,4 in Ring 0 and B n
2,1 in Ring 2. Thus we add two back-port edges with the

label c from B n
1,2 to B n

0,4, and B n
1,2 to B n

2,1.
We now state this mathematically. Let c j be a commit to B i

r,v , and let BP (c j ) be
the set of all builds that c j is back-ported to. Then,

B i
r,v

c j−→ B
′
,B

′ ∈ BP (c j )

Finally, we describe how the identifier i changes in the build provenance graph.
All builds across all rings that have the identifier i are derived originally from B i

0,0.
Thus B i

0,0 is called an origin build. With time, several new commits are applied in
Ring 0. To ensure that these commits are fully deployed across all rings, a subsequent
build from Ring 0 is chosen to be the next origin build. In the figure, this is B n

0,4,
which we rename as B n+1

0,0 , or the next origin build. All subsequent builds are now
derived from this new origin build.
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It can be seen that, barring backport edges, every node in the build provenance
graph has only one incoming edge. This can be either an inter-ring or an intra-ring
edge.

TRAVERSAL
We now describe how Orca uses the build provenance graph to expand its search-
space and find potential buggy commits in older builds. Given a symptomatic build
B i

p,q , the purpose of the traversal is to find a list of candidate commits for the search.
We observe that Ring 0 is the most experimental of all rings. Builds in Ring 0 see

a large number of significant commits. Consequently, our intuition is that, to localize
a bug that appears in B i

p,q , we should search all builds back to the the origin build B i
0,0,

which is in Ring 0. Thus using inter-ring and intra-ring edges, we back-track from
B i

p,q to the origin build B i
0,0. In addition, we also include all back-ported commits to

every build on the same path. Since every build has only one incoming inter-ring or
intra-ring edge, there is only one such path from B i

p,q to B i
0,0. The candidate list of

commits to search will include all commits made to the builds on this path, and the
back-ported commits on the same path.

We now specify this mathematically. Let the candidate list of commits be Γ. Let
P be all the builds in the path from B i

0,0 to B i
p,q . Then,

Γ=⋃
C (B i

r,v )
⋃

c j

where C (B i
r,v ) is the set of all commits made to B i

r,v , and ∃B such that B
c j−→ B i

r,v ,
B i

r,v ∈ P .
We now explain this through an example with Figure 2.2. Say an alert is raised in

B n
2,1. Backtracking from B n

2,1 to B n
0,0 yields the set of commits that are of interest to us

{C (B n
2,1),C (B n

2,0),C (B n
1,0),C (B n

0,0}). To this, we add c, which is a backported commit
from B n

1,2 to B n
2,1, thereby giving us the final list of commits to search in. That is,

Γ= {C (B n
2,1),C (B n

2,0),C (B n
1,0),C (B n

0,0),c}

2.4.3. ALGORITHM
In this Section, we describe Orca’s search algorithm which uses differential code
analysis and the build provenance graph. The Orca search algorithm consists of four
steps: 1) Query pre-processing where we perform tokenization, stemming and stop-
word removal, 2) build graph traversal described in Section 2.4.2, 3) token-matching
in code changes using Differential Code Analysis and 4) ranking and visualization
of results. Our system runs differential code analysis and constructs the build prove-
nance graph in the background periodically so that these tasks do not slow down the
query response time.

Step 1: The search queries are symptoms of the problem, consisting of probe
names, exception texts, log messages, etc. We first tokenize the terms in these symp-
toms by using a custom-built code tokenizer. This tokenizer uses heuristics that we
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have built specifically for code and log messages, such as splitting large complex
strings along Camel-cased or Pascal-cased fragments. We also create n-gram based
tokens since we have found that bi-grams, like ImapTransfer, mailboxSync,
capture important information.

Next, we filter out irrelevant words also called stop-words (Luhn, 1959) from
these symptoms. Previous work has shown that logs have a lot of inherent struc-
ture (Xu et al., 2009). For instance, all exception names have the suffix Exception
and almost all log messages have a timestamp. Unlike conventional search-engines,
even before we built Orca, we had access to about 8 million alerts consisting of probe
names, exceptions and log messages from Orion’s log store. We therefore perform
stop-word removal on these to weed out commonly used or irrelevant terms such
as Exception or timestamps. This step gives us a list of relevant “tokens" in the
symptom. For each token t , we also maintain an Inverse Query Frequency (IQF)
value (Yang et al., 2008) that we call tIQF , obtained by analyzing Orion ’s logs. tIQF

is calculated as (No. of queries/No. of queries in which token t appears). A high
value of tIQF implies that the token t is more important.

Step 2: We traverse the build provenance graph to find all builds related to the
symptomatic build. From each build we discover, we enumerate all the commits that
created the build. This leads us to the next step, which is matching tokens to files for
each commit.

Step 3: Within a given commit C , for each file f and token t in the symptom, i.e
for each tuple T =< f , t >, we search for the token in difference set of the file, D f .
We use T F − IQF (Yang et al., 2008) as a “relevance" score, RC

T , for each tuple. RC
T is

calculated as n∗tIQF where n is the number of times the token t appears in difference
set. This relevance score captures that the tuple < f , t > is more relevant if the token
t is very infrequent (i.e. tIQF is very high), or if it appears many times in f .

We repeat this step for every token and file in the commit. At this point, we have
file-level relevance values. Note though that we perform commit-level bug localiza-
tion. Thus, we now aggregate the relevance values across all files and tokens to get
one relevance value for the commit C , that we call RC . So,

RC =Θ
T

RC
T (2.1)

where Θ is an aggregation function such as such as Max, Avg or Sum. We show in
Section 2.6 that the MAX function provides the best results in our deployment.

Step 4: Finally, Orca returns a list of commits in decreasing-order of their rele-
vance. Along with the commit ID, we also display one representative file-token pair
which has the highest value of RC

T . According to the OCEs we interviewed, showing
the token with the highest relevance value helps them interpret the results better and
increases their confidence in Orca’s results. This is the reason we do not use standard
aggregation techniques such as cosine-similarity (Manning et al., 2008) to aggregate
all token-matches.
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EXAMPLE
We shall use the following example to illustrate how the search algorithm works.
Say commits C1 and C2 create a build B . Say a probe called LdapAuthProbe,
that monitors the LDAP authentication service, starts throwing exceptions of type
AuthFailedException. Let us also say that the bug was caused by commit
C2 that erroneously modified a function named LdapRequestHandler in a class
named LdapService, declared and defined in a file LdapService.cs. Say C1

modified an Imap protocol implementation in a file Imap.cs.
The query to Orca is “LdapAuthProbe AuthFailedException. First, we

tokenize and stem the query, and remove stop-words Failed and Exception.
This yields the tokens Ldap, Auth and Probe. The word Probe occurs very fre-
quently across all symptoms and therefore receives a very low IQF score, whereas
Ldap, being a specific protocol, gets the highest IDF score. Auth, being somewhat
more frequent than Ldap, receives a slightly lower IQF score.

We leave out build graph traversal for the sake of simplicity. Therefore, our list of
candidate commits are only C1 and C2. In our example, the token Ldap will match
both the class name, LdapService, and the function, LdapRequestHandler.
Therefore the value of relevance for this is 2∗ the IDF value of token Ldap. C2 will
also find a match with token Auth. C1, however, does not match any of these tokens.
Our ranking algorithm will therefore choose C2 over C1 and, as the highest-ranked
result, it will show the filename LdapService.cs and token Ldap rather than
Auth.

2.5. IMPLEMENTATION
We have implemented Orca in a combination of C# (using .NET Framework v4.5)
and SQL. Currently, the implementation is approximately 50,000 lines of code. In
this Section, we briefly describe our implementation of Orca, and the various user
interfaces we expose for OCEs.

2.5.1. DATA LOADERS
Since Orca requires information about various different parts of the system – source-
code, builds, deployment information and alerts – a significant part of our imple-
mentation are data loaders for these different types of data. Figure 2.3 shows an
architectural overview of the implementation. At the heart of Orca is a standard SQL
database. This database is populated by data loaders at a predefined frequency. We
now describe the different data loaders we use.

Source Data We implemented loaders for various source-control systems such as
GIT and others internal to our organization. These loaders ingest source-code,
code-versions and histories. The differential code analysis algorithm uses data
from this loader.

Builds Data about builds resides in multiple big-data logs. We have build loaders
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Figure 2.3: Implementation of Orca.

that interface with several big-data logging systems to load build-specific in-
formation into our SQL database. We use this loader to construct the build
provenance graph.

Deployment and Machine Data We load logs created by continuously monitoring
the state of all machines within all rings. The state includes information about
the current status of the machine (healthy/unhealthy), along with the informa-
tion on the build version running on the machine.

Alerts are loaded from existing databases. Today, Orca supports multiple data sources
for loading alert information.

2.5.2. BACKGROUND ANALYSES
As our data loaders periodically load new data into the SQL database, we periodically
initiate differential code analysis, build provenance graph construction and IQF cal-
culation used in Section 2.4.3. If needed, the frequency of an analysis can be changed
to make it more/less frequent. For example, the IQF calculation runs once a week as
opposed to the other two processes which are run once every hour. Finally, it should
be noted that all analyses that have been developed and deployed within this sys-
tem are agnostic of the data source. The SQL database schema is normalized; thus,
providing the same interface to all analyzers irrespective of the data source.

2.5.3. API IMPLEMENTATION
We now describe the Orca API and its implementation. Each Orca request is pro-
cessed in real-time by the core Orca engine, and results are returned in JSON format.
Clients decide on the relevant parts of the return result and how to display them. We
make use of a Redis Cache (Carlson, 2013) for improving our lookup times associ-
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Figure 2.4: Web based UI of ORCA for Orion.

ated with data that is static. This includes data about the builds, files, source-code,
difference sets, and the build provenance graph. Internally, the Orca system records
all requests made and any feedback provided, which we use for learning and improve-
ment.

All our services, servers, databases, and caches are implemented and operated
using Azure as both a Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) provider.

2.5.4. USAGE

Orca can be used in two ways: OCEs can use it to make ad-hoc queries interactively,
or an alerting infrastructure can query Orca to get a list of suspect commits for an
alert and include it in the alert itself.

For the OCEs, we have built a web-based UI that allows them to enter the details
of their query and view the results. Figure 2.4 shows a screenshot of the UI with
sensitive information removed. We have also built a PowerShell® cmdlet with which
the OCE can interact through a command-line interface.

To integrate Orca with alerting infrastructure, we have built an API that the alert-
ing system can query directly. Currently, this mechanism is being used by multiple
groups that are generating alerts within the Orion group. The web-based UI and
cmdlet tend to be used by OCEs when new information such as log text or exception
text has been discovered after the original alerts were generated.

Today, Orca has been deployed on multiple code-bases for six large-scale services
within our enterprise. The combination of data loaders used in each code-base is
slightly different and unique, but fully operational and functional.
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2.6. EVALUATION
Since its deployment with Orion in October 2017, the Orca API has been used to
debug 558 issues within the Orion service. Unfortunately, there is no central lo-
cation where OCEs retrospectively log information about buggy commits. Thus to
quantitatively evaluate Orca’s accuracy, we interviewed multiple OCEs and manually
analyzed source-code, bug-reports and email-threads. We collated detailed informa-
tion for 33 of these bugs. In this Section, we provide results with this set of 33 bugs.
These bugs vary greatly in characteristics. While some were inadvertently introduced
by a single line-change, others were caused by complex dependencies between com-
ponents.

First, we evaluate Orca’s result quality, i.e. how often it attributes a bug correctly
to the right commit. Next, we evaluate how much effort an OCE saves by using
Orca. Third, we evaluate the performance of Orca and the savings we get by using a
Redis-based cache.

No. of results = 5 No. of results = 10 No. of results = 20
DCA DCA+BPG DCA DCA+BPG DCA DCA+BPG

Agg.fn R MRR R MRR R MRR R MRR R MRR R MRR
MAX 0.70 0.44 0.76 0.46 0.70 0.44 0.79 0.44 0.70 0.46 0.79 0.45
SUM 0.55 0.43 0.61 0.46 0.70 0.45 0.73 0.48 0.73 0.45 0.79 0.48
AVG 0.49 0.33 0.36 0.27 0.61 0.34 0.61 0.34 0.64 0.34 0.67 0.31

Table 2.3: We evaluate differential code analysis alone (DCA) and with build provenance graph
(DCA+BPG). Numbers in parentheses are the number of bugs correctly localized. We evaluate aggre-
gating by MAX, SUM, and AVG.

2.6.1. RESULT QUALITY
To measure the quality of Orca’s results, we interviewed several OCEs about how
they would quantify result quality. Based on these interviews we determined that
it is important that we find the buggy commit in as many cases as possible. This is
captured by the Recall (R), i.e. the fraction of bugs where we found the buggy commit
in any position in our results. The OCEs also told us that they linearly scan the list of
commits that Orca provides, hence the closer the correct commit is to the top, the more
time they save. To capture this, we use the Mean Reciprocal Rank (MRR) (Manning
et al., 2008). MRR is the most suitable metric since we assume there is only one
buggy commit that causes the symptom. MRR is calculated as 1

nΣ
n
i=11/ri , where n

is the number of queries, ri is the rank of the buggy commit for query i . If Orca is
unable to find the correct commit, we assume ri is infinity, i.e. we add 0 to the sum
total.

Table 2.3 shows the results for various combinations of parameters and features.
We have run Orca with differential code analysis, both with and without the build
provenance graph. We have varied the number of results we show in the Orca UI, and
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we have evaluated Orca for different aggregation functions (Θ in Equation 2.1). We
present results with differential code analysis only under “DCA" and the combination
of differential code analysis and the build provenance graph as “DCA+BPG".

To evaluate Orca, we ask three questions:

• How much value does the build provenance graph add? We wanted to un-
derstand in what number of cases the build graph was actually necessary.

• How should we aggregate the file-level relevances to commit-level? Equa-
tion 2.1 in Section 2.4.3 described how we need to aggregate file-level relevance
value into one value at the commit-level. We evaluate three different aggrega-
tion functions: MAX, SUM and AVG.

• How many results should we show in the Orca UI? When asked, the OCEs
mentioned that they would not want to see beyond 10 results for each query.
Hence, we wanted to evaluate what was the trade off between the number of
results shown and the recall and MRR.

We now answer each of these questions in order.
The build provenance graph adds 13% to the recall. Observe the data in bold

in Table 2.3. DCA alone localizes 23 bugs for a recall of 0.7. Adding the build
provenance graph helps us localize 3 more bugs correctly thereby increasing our recall
to 0.79. While at first glance, this may appear to be a small increase, OCEs find it
significantly more difficult to attribute bugs that occur in older builds, and therefore
the value of finding these 3 bugs eases the OCE’s workload considerably. We show
this quantitatively in Section 2.6.2.

The MAX and SUM aggregation functions perform better than AVG. While
the buggy code-changes match some very high-relevance tokens, several lower rele-
vance tokens match these code-changes too. Hence taking the average value across
all matches dilutes the high-value token matches, therefore reducing both recall and
MRR. Such a dilution does not happen if we use MAX or SUM. We choose MAX in
our implementation.

Showing 10 results seems a good trade-off between result quality and UI suc-
cinctness. We evaluated results while setting the number of results shown as 5, 10 and
20. We find that with 10 results we achieve close to our best recall and MRR values.
While showing 20 results gives us slightly better MRR with MAX as the aggregation
function, we decided to keep our results concise and limit the number shown to 10.

With 10 results and using MAX, we obtained a recall of 0.79, i.e. we found the
root-cause in 26 out of 33 cases. The MRR was 0.44. We also studied the matched
terms for these 26 bugs and found that term-similarity serves as a good proxy to
capture different types of bugs. Table 2.2 showed that matched terms fall roughly into
four categories: they either match a component name, a function that the component
performs such as migrat or suggest, datatypes, or protocol names such as Imap.
We found in our case that of the 26 correctly localized cases, in 13 cases the token was
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Figure 2.5: For all 33 bugs, the expected number of commits that the OCE investigates without Orca and
with Orca.

a component name, in 9 cases it captured the function being performed, in 2 cases it
matched a datatype, and in the remaining 2 cases, the match was on a protocol name.
Therefore term-similarity is quite versatile: it helps us catch a variety of bugs.

Of the 7 cases that we could not localize, in 1 case the issue was related to per-
formance. In 2 cases, the problem was because a configuration setting changed that
triggered the use of code that was committed much earlier than our build provenance
graph covered. In future work, we therefore plan to include all configuration settings
in our differential analysis. In the remaining 4 cases, term similarity just did not
capture the high-level semantics of the bug, and static or dynamic analysis may be
required.

2.6.2. REDUCTION OF OCE WORKLOAD
We now investigate the effect of Orca on reducing the OCE’s workload. Given a
bug, an OCE will investigate an average of c/2 commits to localize it, where c is the
number of commits in the buggy build. If the OCE uses Orca, they need investigate
at most r commits, where r is the rank of the correct commit in the results that the
UI shows. If Orca does not find the correct commit, then apart from the 10 commits
that Orca shows, the OCE needs to investigate an additional (c − 10)/2 commits in
expectation.

Figure 2.5 shows the number of commits investigated for all 33 bugs that we
evaluated. Over all 33 bugs, without Orca, the OCE investigates an average of 36
commits. With Orca, she investigates an average of only 8.9 commits. Therefore,
using Orca causes a 4x, or a 75% reduction in the OCE’s workload. For the 26 bugs
Orca localizes, this reduction factor is much higher, i.e. 15.4x. For the 3 bugs that
were caught only because of the build provenance graph, the OCE had to investigate
an average of 111 commits without Orca, and only 2.7 commits with it. This is a 41x
improvement. These numbers point out the benefits that the build provenance graph
gives us, and the benefits overall of using Orca for localization.

2.6.3. PERFORMANCE
Finally, we evaluate the performance of Orca. We run Orca on a 32 core, 2GHz Intel
Xeon E7-4820 CPU with 64 GB memory. We ran all 33 queries in sequence to obtain
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these results. First, we evaluated the effect of the Redis cache on Orca’s average
query response time. Using Redis, the average response time reduced from 12.4
seconds to 5.97 seconds, a gain of 51.8%. Next, we varied the degree of parallelism
in Orca from 32 to 128 using the C# MAXDOP parameter (Russinovich et al., 2012)
and noticed a significant effect on average query response time. With parallelism
set to 32, the average response time is 30.94 seconds, whereas with parallelism of
128, it is 5.97 seconds. Our evaluation shows that there is a significant potential for
parallelizing Orca further, thereby catering to many more queries and providing lower
response times. Therefore we can effectively scale Orca out to more services within
our enterprise without loss in performance.

2.7. CONCLUSION AND FUTURE WORK
In this chapter, we described Orca and the differential bug localization algorithm.
Orca uses differential code analysis and the build provenance graph to find buggy
commits in large-scale services. Orca is deployed with a large email and collaboration
platform. We have shown that Orca finds the correct buggy commits in about 79% of
bugs that we studied. We have also shown that Orca is efficient, accurate and easy to
deploy.

In the future, we intend to work on techniques that will further improve Orca’s
recall. Dealing with performance bugs and configuration-related issues is our imme-
diate next-step. Apart from that, we also intend to try more semantic-level program
analysis techniques within Orca. Finally, we intend to scale out Orca to many other
large-scale services.
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3
NUDGE: ACCELERATING

OVERDUE PULL REQUESTS
TOWARDS COMPLETION

Pull requests are a key part of the collaborative software development and code re-
view process today. However, pull requests can also slow down the software devel-
opment process when the reviewer(s) or the author do not actively engage with the
pull request. In this work, we design an end-to-end service, Nudge, for accelerating
overdue pull requests towards completion by reminding the author or the reviewer(s)
to engage with their overdue pull requests. First, we use models based on effort esti-
mation and machine learning to predict the completion time for a given pull request.
Second, we use activity detection to filter out pull requests that may be overdue, but
for which sufficient action is taking place nonetheless. Lastly, we use actor identifi-
cation to understand who the blocker of the pull request is and nudge the appropriate
actor (author or reviewer(s)). The key novelty of Nudge is that it succeeds in reducing
pull request resolution time, while ensuring that developers perceive the notifications
sent as useful, at the scale of thousands of repositories. In a randomized trial on
147 repositories in use at Microsoft, Nudge was able to reduce pull request resolu-
tion time by 60% for 8,500 pull requests, when compared to overdue pull requests for
which Nudge did not send a notification. Furthermore, developers receiving Nudge
notifications resolved 73% of these notifications as positive. We observed similar re-
sults when scaling up the deployment of Nudge to 8,000 repositories at Microsoft,
for which Nudge sent 210,000 notifications during a full year. This demonstrates
Nudge’s ability to scale to thousands of repositories. Lastly, our qualitative analy-
sis of a selection of Nudge notifications indicates areas for future research, such as
taking dependencies among pull requests and developer availability into account.
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3.1. INTRODUCTION
With the adoption of collaborative software development platforms like GitHub and
Azure DevOps, pull requests have become the standard mechanism for distributed
code reviews. Pull requests enable developers as automated agents to collaboratively
review the code before it gets integrated into the mainline development. Once the
reviewers have signed off on the changes these can be merged with the main branch
and deployed. Pull requests has recently become an active area of research in the
software engineering community. Various aspects of pull requests have been studied,
such as reviewer recommendation (Asthana et al., 2019; Y. Yu et al., 2016), prioritiza-
tion (Van Der Veen et al., 2015), and duplication (Q. Wang et al., 2019). Additionally,
several bots and extensions have been built for platforms like GitHub and Azure Dev-
Ops to automate various software development workflows (Dey et al., 2020; Kumar
et al., 2019b).

While pull requests streamline the code review process significantly, they can
also slow down the software development process. For instance, if the reviewers are
overloaded and lose track of the pull request, it might not be reviewed in a timely
manner. Similarly, if the pull request author is not actively working on the pull re-
quest and reacting to the reviewers’ comments, the review process could be slowed
down significantly. Hence, if the pull request’s author and reviewers do not actively
engage, the pull requests can remain open for a long time, slowing down the coding
process and possibly causing side effects such as merge conflicts. Yu et al. (Y. Yu
et al., 2015) did a retrospective study of the factors impacting pull request completion
times. They found that pull request latency requires many independent variables to
explain adequately, with the size of the pull request and the presence of a continu-
ous integration pipeline as major factors. Long-lived feature branches can also cause
several unintended consequences (“Long-Running Branches Considered Harmful”,
2020). Some of the most common side effects caused by long-lived feature branches
or pull requests are:

• They hinder communication. Pull requests that are open for longer periods of
time hide a developer’s work from the rest of their team. Making code changes
and merging them quickly increases source code re-usability by making the
functionality and optimizations built by a developer available to other develop-
ers.

• In large organizations with thousands of developers working on the same code-
base, the assumptions that a developer may make about the state of the code
might not hold true, the longer they have their feature branches open. The
developers become unaware of how their work affects others.

• Long-lived pull requests cause integration pain. When the code is merged more
frequently to the main branch, integration testing can be done earlier, issues can
be detected faster and bugs can be fixed at the earliest possible moment.
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• Branches that stay diverged from the main branch for longer periods of time
can cause complex merge conflicts that are hard to solve. Dias et al. (Dias
et al., 2020b) studied over 70,000 merge conflicts and found that code changes
with long check-in times are more likely to result in merge conflicts.

• Overdue pull requests prevent companies from delivering value to their cus-
tomers quickly. Organizations can deliver more value to their stakeholders by
releasing new features or bug fixes in the organization’s products or services
earlier if the corresponding code is merged faster.

In order to address these concerns, we designed and deployed Nudge, a service
for accelerating overdue pull requests towards completion. As its name suggests,
Nudge sends a reminder if a pull request is overdue. We carefully designed Nudge so
that it (1) actually achieves faster pull request resolution; (2) minimizes the number of
notifications it sends to avoid disturbing developers unnecessarily; and (3) can operate
at the scale of thousands of repositories and developers.

To realize these objectives, Nudge relies on effort estimation to predict the com-
pletion time for a given pull request. Next, it determines activities and identifies
the actor (the reviewer(s) or the author) blocking the pull request from completion. It
then notifies the identified actor through the comment functionality of the pull request
environment.

To design and build Nudge, we first perform correlation analysis to understand
which factors impact pull request completion time. We look at factors related to the
pull request, its author, the underlying system, the team, and the role of the developer
in the team. Unlike Yu et al. (Y. Yu et al., 2015), we only consider factors that are
known at the time of the pull request creation.

Next, we use effort estimation for predicting the pull request completion time at
the time of pull request creation. Effort estimation models have been long studied
in software engineering research. We build a model for predicting the completion
time of a pull request on the rich body of work in the effort estimation literature.
Prior work (Layman et al., 2008) has focused on effort estimation at the feature and
project level, but not at the level of individual pull requests. We use several metrics
from the defect prediction literature like code churn (Ostrand et al., 2004), reviewer
information (MacLeod et al., 2018), and ownership information (Layman et al., 2008)
to build our pull request lifetime prediction model.

While effort estimation models have been shown to be accurate (Attarzadeh et al.,
2012), they cannot account for contextual and environmental factors such as work-
load of the pull request reviewer(s) of the author. Therefore to improve the noti-
fication precision, we implement activity detection which monitors any updates on
the pull request, such as new commits or review comments, and adjusts the notifi-
cation accordingly. Furthermore, to determine who needs to receive the notification,
we implement actor identification to infer the actor (pull request author or specific
reviewer(s)) who is blocking the pull request from completion.
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To assess to what extent Nudge has been able to meet its objectives, we conducted
a number of experiments. To assess pull request resolution time and developer per-
ception of notifications, we deployed Nudge to 147 repositories, using its telemetry
functionality to collect data for a period of nine months. During this period, Nudge
identified 12,356 pull requests that were taking longer than the time Nudge predicted.
We employed Nudge via a randomized trial by sending a notification to a subset of
8,500 (55%) randomly selected pull requests, thus allowing us to compare their res-
olution time with those for which no notification was sent. Our findings indicate a
reduction of 60.62% in average pull request lifetime thanks to the use of Nudge. The
vast majority (81.53%) of the notified pull requests are closed within a week.

To be able to assess the developer’s perception of the Nudge notifications, we
give users of Nudge recommendations the option to provide feedback, both via a
negative/neutral/positive tick box and an open text field. We find that 73% of the pull
requests received a positive resolution from the developers. We used the open answers
to identify areas for future improvements, such as taking dependencies between pull
requests into account (in case one pull request is blocking another).

To assess the scalability of Nudge, we monitored its deployment on 8,000 differ-
ent systems at Microsoft from January 2021 until December 2021. During this period,
Nudge sent 210,000 notifications authored by 40,000 unique developers. Since this
is an actual deployment, unlike the randomized trial in our experiments, we have
no “untreated” data points to compare to. Nevertheless, we see that 83.65% of the
nudged pull requests are closed within a week, which is consistent with the findings
from the randomized trial. Also, user satisfaction is similar, with 71% of the notifica-
tions receiving a positive resolution. From this, we conclude that the design of Nudge
permits operation at the scale of thousands of repositories and that the positive results
in terms of time reduction and user satisfaction remain valid.

Thus, the novelty of this work lies in the following key contributions:

1. We propose a novel approach to warning developers and reviewers of pull re-
quests when they are running late, combining effort estimation, activity detec-
tion, and actor identification (Sections 3.4–3.6).

2. We design and deploy a scalable implementation of our approach in a tool
called Nudge (Section 3.7).

3. We demonstrate that the use of Nudge leads to a 60% speed-up of delayed pull
requests and that over 70% of the developers warned about their pull requests
appreciate such warnings as positive (Section 3.8).

4. We apply Nudge to 8,000 systems and demonstrate that its benefits remain
present at scale (Section 3.8).

This work is a substantially revised extension of our earlier publication (C. Mad-
dila et al., 2019). New in the present chapter is the use of activity detection and actor
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identification, the evaluation of these, and the discussion of the application of Nudge
to 8,000 systems in the period January–December 2021.

3.2. RELATED WORK
Our research relies on effort estimation techniques to determine the amount of time
needed to decide whether a given pull request can be merged. Software effort esti-
mation is a field of software engineering research that has been studied extensively
in the past four decades (Bettenburg et al., 2015; B. W. Boehm, 1984; Briand et al.,
2000; Chulani et al., 1999; Menzies et al., 2013). Typically, in this line of research,
one tries to predict either the effort needed to complete the entire project or the effort
needed to finish a feature. One of the earliest effort estimation models was the CO-
COMO model proposed by Barry W. Boehm in his 1981 book, Software Engineering
Economics (B. W. Boehm, 1984), which he later updated to COCOMO 2.0 in 1995
(B. Boehm et al., 1995). This work was followed up by Briand et al. (Briand et al.,
1999) who compared various effort estimation modeling techniques using the data set
curated by the European Space Agency. In all these cases a model was built for the
entire software project and effort was estimated for function points. More recently,
Menzies et al. (Menzies et al., 2013) and Bettenburg et al. (Bettenburg et al., 2015)
looked at the variability present in the data and therefore built separate models for
subsets of the data.

More recently there has been interest in predicting pull request acceptance, both
the eventual decision (merge or abort), as well as the time, needed to make the deci-
sion. Soares et al. (Soares et al., 2015), and Tsay et al. (Tsay et al., 2014) looked at
a variety of factors to see which one had an impact on pull request acceptance. More
specifically, Terrell et al. (Terrell et al., 2017) and Rastogi et al. (Rastogi et al., 2018)
looked at gender or geographical location impact on a pull request acceptance. The
work closest to our work is by Yu et al. (Y. Yu et al., 2015), who explored the various
factors that could impact how long it took for an integrator to merge a pull request.
Unlike their study, we do not examine what factors might impact the time taken to ac-
cept a pull request, but rather how much time it would actually take for a pull request
to be accepted. Hence, unlike past papers which were empirical studies on building
knowledge with respect to pull request acceptance, we build a system that will predict
how long it will take to accept a pull request and provide actionable feedback to the
developers leveraging that knowledge.

As shown by various studies (Bettenburg et al., 2015; B. W. Boehm, 1984; Briand
et al., 2000; Chulani et al., 1999; Menzies et al., 2013), effort estimation is a hard
problem. One of the primary reasons that contribute to the errors is changing orga-
nizational dynamics, the landscape of the competition, and ever-changing schedules,
and priorities. Doing effort estimation at the pull request level reduces the uncertainty
and the variability up to some degree.

Our ambition to devise a technique to warn developers about pull request delays
can be viewed as a software development bot. The extensibility mechanisms provided
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by software development platforms like GitHub and Azure DevOps have enabled a
huge ecosystem (“GitHub Marketplace”, 2020) of bots and automated services. It
has also spawned active research (Storey et al., 2020) on understanding and building
bots to assist with various software engineering tasks. Storey et al. (Storey et al.,
2020) have defined a Software Engineering Bot as software that automates a feature,
performs a function normally done by humans, and interacts with humans. Lebeuf
et al. (Lebeuf et al., 2019) have proposed a taxonomy for software bots based on
the environment, the intrinsic properties of the bot, and the bot’s interaction with the
environment. In terms of applications, prior work has focused on improving the code
review process by automating reviewer recommendation (Asthana et al., 2019; Y. Yu
et al., 2016), diagnosing issues (Bansal et al., 2020; Bhagwan et al., 2018; Mehta
et al., 2020), refactoring (Ren et al., 2019; Wyrich & Bogner, 2019), and even intent
understanding of the code changes (S. Wang et al., 2020; S. Wang et al., 2019b).
In this work, we built and deployed Nudge which is a bot for increasing software
development velocity and productivity by accelerating PR completion.

Bots warning about potential delays can be found beyond software development
systems. General workflow management systems such as IFTTT (if-this-then-that)
(Ovadia, 2014) and Microsoft Power Automate (“Microsoft Power Automate”, 2020)
can be used for creating various automation workflows in domains such as smart home
automation (Kumer et al., 2021), healthcare (Faro et al., 2021), and smart mobility
(Menon et al., 2020). One of the biggest challenges with such tools is that they
cannot take into account the complexity associated with internal state changes, and
interactions between various actors in the systems they operate on. Such general
systems are well suited for tasks like sending daily reports or reminders based on
simple logic. For example, a pull request reminder system that is built using Power
Automate (“GitHub”, n.d.) could check if a pull request is active. If it is active, the
system can trigger an email, on a pre-defined cadence, to all the reviewers of the pull
request. While technically speaking such general notification systems could play a
role in the implementation of Nudge, we offer tight integration with the pull request
environment instead. This is not only most natural to the developers involved, but
also enables us to determine the various attributes and state changes happening in
each pull request based on which an alert has to be triggered, as well as the branching
conditions which help determine whom the notification should be redirected to.

3.3. BACKGROUND: A PULL REQUEST’S LIFE CYCLE
In this chapter, we assume a pull request goes through the life cycle as depicted in
Figure 3.1. Based on this, a pull request can be in one of the following states:

Active The pull request has been published by the author. Reviewers are assigned
and the pull request is open for code review.

Waiting for author The reviewer has left review comments and expects the author
to update the code to address them.
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Figure 3.1: The life cycle of a pull request

Approved The reviewer was satisfied with the code changes in the pull request and
approved it to be merged with the main branch. Thus, the author can merge and
finalize, or, optionally, decide additional updates are called for and re-start the
reviewing process from the Active state.

Rejected The reviewers are not satisfied with the code changes and reject the pull
request. The author can attempt additional updates to restart the reviewing
process, but otherwise, the pull request will be rejected.

Merged After the reviewers signed off on the pull request, the author successfully
merged the code into the main branch.

Abandoned The author of the pull request decides to not pursue the code changes
further.

After the pull requested has been merged or abandoned, the pull request is closed
and cannot be re-opened again (developers would need to open a new pull request
instead).

To transition between these states, there are three different actors involved: Au-
thors, reviewers, and non-human actors (bots):

Authors: Authors create a pull request in the first place. They send the pull request
for review and keep working on the pull request by reacting to the review com-
ments by pushing new changes (in the form of commits or iterations). Once all
the reviewers are satisfied, they make the final decision to merge or not merge
a change. They have a significant influence on the pace of the pull request. If
they react to the review comments quickly and resolve them, pull request will
have a better chance of making progress quickly. In Figure 3.1, they can trigger
the transitions labeled with the update event.
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Reviewers Reviewers are added by the authors or any other automation tools (based
on certain conditions) to pull requests. Reviewers have a responsibility to per-
form a thorough code review and provide their feedback. The agenda of the
reviewers is to ensure the quality of the source code stays high and adheres to
the standards imposed by their respective teams or organizations. Reviewers
can be individuals in the same team or people with more experience and ex-
pertise in the area of source code that is being changed or groups that are a
collection of individual reviewers. When a pull request is submitted for a re-
view, reviewers can either approve or reject or make suggestions that need to
be acted upon by the author of the change and resolve the comments made by
the reviewers. By virtue of their role, reviewers can significantly impact the
outcome of the review and the velocity of the pull request. In Figure 3.1, they
can trigger the review transitions.

Non-human actors With the increased use of bots and automation tools, non-human
actors can also play a role in determining the velocity with which change
progression happens. Tools that enforce security and compliance policies or
styling guidelines, or that ensure dependencies are not broken are some of the
examples. Such bots can place comments like a reviewer would, and thus trig-
ger review transitions in Figure 3.1. The non-human actors, which sometimes
act as code reviewers, do not contribute to the time taken to review pull re-
quests. However, they impact the pull request status determination algorithm
(explained in Section 3.6.1) by influencing the pull request state changes.

Pull request life-cycle is a complex process involving several actors and activities.
However, it’s also an important process since inadequate code reviews can result in
bugs and sub-optimal design with both short-term and long-term implications. Prior
work has shown that the size of the code changes has a significant impact on the time
taken for code reviews. However, there are several other factors that can also im-
pact code review time. Baysal et al. (Baysal et al., 2013) found that the reviewer’s
workload and past experience can impact the time taken for code reviews. Further
other organizational (such as release deadlines) and geographical factors (collabora-
tion across multiple time zones) can also influence the speed. While these factors are
critical for faster code reviews but they are hard to change.

Often, developers are working on multiple projects and features at the same time.
They are simultaneously working on code changes while reviewing other people’s
code reviews. So, it’s very common to lose track of pending activities that might be
blocking the pull requests. This problem is further amplified since these code reviews
are spread across multiple repositories. So, in this work, we build the Nudge tool to
provide intelligent reminders to both the authors and the reviewers.
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3.4. NUDGE SYSTEM DESIGN
The side effects manifested by pull requests that are open for longer periods of time,
are prevalent in large organizations like Microsoft, as well as in large open-source
projects. Because of that, there has been a demand inside such organizations for a ser-
vice that can help engineering teams alleviate the problems induced by long-running
pull requests. We designed the Nudge system to address this problem and operational-
ized it across 147 repositories. We then performed a large-scale testing/validation of
the effectiveness of the Nudge system by analyzing various metrics and collecting
user feedback. In this section, we describe the design of the Nudge system in detail.

3.4.1. DESIGN OVERVIEW
The Nudge system consists of three main components: A machine learning-based
effort estimation model that predicts the lifetime of a given pull request, an activity
detection module to establish what the current state of the pull request is, and an actor
determination module to identify who would be need to take action.

Prediction model The Nudge system leverages a prediction model to determine the
lifetime for every pull request. The model is a linear regression model as explained in
Section 3.5. We performed the regression analysis to understand the weights of each
of the features and how they impact the ability of the model to accurately predict the
lifetime for a given pull request. We use historical pull request data to extract some
of the features and the dependant variable (pull request lifetime).

For the repositories where we have enough training data, i.e., at least thousands of
data points (or pull requests), we train a repository-specific model. If the repository
is small or new and it does not have many pull requests that is completed, we use a
global model that is trained on all the repositories’ data. Once the repository matures
and records enough activity, we train a repository-specific model and deploy it. The
models are retrained, through an offline process, periodically, to adjust to the changes
in the feature weights and changing repository dynamics. Every time the model is
retrained, we use a moving window to fetch the data from the last two years (from the
date of retraining) to make sure the training data reflects the ever-changing dynamics
and takes into account the changes happening to the development processes.

Activity Detection The role of the activity detection module is to help the Nudge
system understand if there has been any activity performed by the author or the re-
viewer of the pull request of late. This helps the Nudge system not send a notification,
even though the lifetime of the pull request has exceeded its predicted lifetime. This
module serves as a gatekeeper that gives the Nudge system a ‘go’ or ‘no go’ by ob-
serving various signals in the pull request environment.

Actor Identification The primary goal of this module is to determine the blocker of
the change (the author or a reviewer) and engage them in the notification, by explic-
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Figure 3.2: Nudge Workflow

itly mentioning them. This module comes into action once the pull request meets the
criteria set by the prediction module and the Activity Detection modules. Once the
Nudge system is ready to send the notification, the Actor Identification module pro-
vides information to the Nudge notification system to direct the notification towards
the change blocker.

Nudge Workflow The three modules are combined with a notification system to
form Nudge as shown in Figure 3.2. This results in the following workflow:

1. The Nudge service workflow starts with calculating the effort needed for a pull
request using effort estimation models. When the corresponding batch job is
triggered, it first scans all active pull requests and runs the effort estimation
model (see Section 3.5) to determine the lifetime of a pull request and save it
to a back-end SQL database. The batch job is triggered every six hours.

2. Once a pull request’s actual lifetime crosses the estimated lifetime (using the
effort estimation models), the next module, Activity Detection, is run which
checks for any activity in the pull request environment. If there is an activity
observed in the last 24 hours, the workflow is terminated.

3. Once the activity detection algorithm determines that there was no activity in
the last 24 hours, the Actor Identification algorithm kicks in which determines
the change blockers and dependant actors who should take appropriate actions
to facilitate the movement of the pull requests.

4. Finally, notifications are sent to the list of actors identified in the previous step
in the form of pull request review comments and email messages. By design,
Nudge sends at most one notification per pull request.

3.4.2. KEY DESIGN CONSIDERATIONS
Feature extraction Nudge’s machine learning model needs to extract various fea-
tures for every new pull request to perform inference. There are three classes of
features that constitute the feature vectors:

1. Some features are easy to extract and are readily available in the pull request.
Examples include the day of the week, the length of its description, etc.
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2. Some features can be computed based on the information available in the pull
request. An example is whether the pull request is a new feature or a bug fix.
For this, we run the relevant heuristic algorithm to classify the pull requests
accordingly.

3. Some features are hard to calculate on the fly as they require mining historical
data. Examples include the average lifetime of the pull requests created by an
author or the average lifetime of the pull requests that edit specific area paths
in the source code. For these, we compute their value through a batch job that
runs at a scheduled frequency (every six hours) and that stores the results in
a database. Upon inference, the pre-computed features are queried from the
database and appended to the other two types of features to form the feature
vectors.

Scale Nudge has two primary scale challenges it has to deal with. The first is con-
ducting feature extraction, training, and re-training for over 100 repositories. The
second challenge is inference and sending notifications on live pull requests created
in these repositories. To deal with the first problem, we adopted a strategy to train
the model by pre-computing some of the features beforehand, when the data is in-
gested itself. This helped in reducing the overall training time. The second strategy
we adopted is to not train and build repository-specific models if there is not enough
training data. While this primarily helps us in increasing the model’s accuracy and
efficiency, it also has the effect of reducing the load on the training and retraining
pipeline. We have implemented Nudge using a map-reduce-based big data platform
which will enable us to scale to 1000s of repositories in the future.

Notification presentation We experimented with several versions of the notifica-
tions. The most verbose explained what features the model looks at, what the esti-
mated lifetime for the pull request is, and why we are nudging at a given point in
time. A less verbose version just says “This pull request has been open since N days.
Please take appropriate action.” We also experimented with the format, icon, color,
etc. We experimented with the different designs of the notification by letting real
users try them. Eventually, this helped us come up with a notification that is liked and
approved by the end-users.

Feedback collection In order to enable ourselves and repository owners to monitor
and evaluate Nudge’s usage and impact, we include a feedback collection mechanism.
We rely on thumbs up/down feedback as well as optional text left by pull request au-
thors and reviewers. A collection pipeline scrapes this feedback automatically per
repository. We also built an internal reporting tool with a dashboard that displays the
feedback at the repository level as well as globally, and which is refreshed automati-
cally when the numbers are updated.
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3.5. PULL REQUEST LIFETIME PREDICTION
To be able to ‘nudge’ developers on overdue pull requests, the Nudge algorithm, first
of all, needs to determine the expected lifetime of the pull request. In this section, we
explain the details of how the data needed to train the lifetime prediction models at
pull request level is mined and how the model is developed, validated, and deployed.
We can broadly classify this activity into the following three steps:

1. Leveraging the rich history of prior work done in effort estimation software
repository mining to determine the factors that impact pull request acceptance
and defect prediction (see (B. W. Boehm, 1984; Briand et al., 1999; Chulani
et al., 1999; Y. Yu et al., 2015) as discussed in Section 3.2), we identify a set of
attributes that needs to be mined for pull requests.

2. We collect data for these selected attributes on multiple repositories, as well as
the actual pull request lifetime data, to establish a training data set.

3. We use the training data set collected in Step 2 to build a pull request lifetime
prediction model and evaluate the performance of the model.

Feature Description Type Corr.
The day of the week when the pull request was
created

Categorical 0.163

The average time for pull request completion by
the developer who initiated it

Continuous 0.159

Total number of required reviewers on the cur-
rent pull request

Discrete 0.131

Is .csproj file being modified? Categorical (Binary) 0.103
The average time for completion for the pull
requests which have the same project paths
changed

Continuous 0.089

Total number of distinct file types that are being
modified

Discrete 0.084

The word count of the textual description of the
pull request

Discrete 0.072

Is the pull request modifying any config. files
or settings

Categorical (Binary) 0.059

Number of active pull requests in the repository Discrete 0.058
Churned LOC per class Discrete 0.055
Total churn in the pull request Discrete 0.039
Number of methods being churned Discrete 0.037
Is this pull request introducing a new feature? Categorical (Binary) 0.033
Number of lines changed Discrete 0.031
Number of distinct paths that are being touched
in the current change

Discrete 0.031
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Number of conditional statements being
touched

Discrete 0.029

Number of loops being touched Discrete 0.028
Number of classes being
added/modified/deleted

Discrete 0.021

Is the PR doing any refactoring of existing
code?

Categorical (Binary) 0.021

Number of references or dependencies (on other
libraries / projects) being changed

Discrete 0.017

Number of files that are being modified in pull
request

Discrete 0.016

Is the pull request making any merge changes
like forward or reverse integration (FIs / RIs)

Categorical (Binary) 0.008

Is the pull request deprecating any old code? Categorical (Binary) -0.001
The word count of the textual title of the pull
request

Discrete -0.001

Whether the pull request is created during busi-
ness hours or off hours?

Categorical (Binary) -0.019

Is the pull request fixing bugs? Categorical (Binary) -0.028
Time spent by the developer in the current team. Continuous -0.031
Time since the first activity in the repository by
the pull request author

Continuous -0.046

Time spent by the developer at Microsoft Continuous -0.056

Table 3.1: Feature description and the correlation between features and the pull request lifetime (sorted in
the descending order of correlation)

3.5.1. CORRELATION ANALYSIS
We performed correlation analysis to understand the factors that are associated with
the lifetime of pull requests and the magnitude of the association. We collected 22,875
completed pull requests from 10 different repositories at Microsoft. These reposito-
ries host the source code of various medium and large-scale services with hundreds
to thousands of developers working in those repositories. We omit any pull requests
whose age is less than 24 hours (short-lived pull requests) or more than 336 hours
(two weeks, long-lived pull requests). The reason for omitting short-lived pull re-
quests is that they do not need to be nudged. We omit long-lived pull requests as they
are outliers, and we do not want the model to learn from poorly handled pull requests
that took too long to complete.

We formulated this as a regression problem where we define a dependent vari-
able (pull request lifetime) and a set of independent variables (the 28 features listed
in Table 3.1). We then used a gradient boosting regression algorithm to perform the
regression analysis and calculate coefficients (listed in Table 3.1). The dependent
variable in our experiment is the pull request completion time, i.e., the time interval
between pull request creation and closing date, in hours. We exclude the 48 weekend
hours from the total completion time to make the experiment reflect the real-world
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deployment scenario where Nudge notifications are not sent on weekends. The fea-
tures we use in our experiment are related to the pull request itself, the author, the
process and churn. Table 3.1 lists all the features we use including their correlation to
pull request completion time.

Out of the 28 features, the four that contribute most to a pull request’s lifetime
include:

Day of the week This is the day of the week on which the pull request is created.
We represent Sunday with 0 and Saturday with 6. A strong positive correlation
with this metric indicates that pull request created later in the week are taking
more time to complete. Pull requests created toward the end of the week stay
idle during the weekend, but, optimistically, reviewers will start to act on them
on Monday. We represent days towards the end of the workweek with higher
values and check if this affects completion time.

Average duration of pull requests created by the author This captures how quickly
a specific author’s pull requests were moving, historically. Developers new to
a particular repository or project may take more time to learn the processes fol-
lowed in the repository. Their changes might be subjected to more thorough
reviews and testing which potentially delays the progression of their pull re-
quests. Over time these developers may become faster in completing their pull
requests.

Number of reviewers of the pull request If more people are actively reviewing a
pull request and are engaged with it, more comments and questions are raised.
Some teams in Microsoft have policies that mandate the comments to be closed
before completing pull requests. So, the pull request author has to go through
the review comments manually and either agree and resolve them or disagree
with them.

Is a .csproj file being edited A .csproj file in C# is a crucial project configuration file
that tracks files in the current project, external package dependencies and their
versions, dependencies among different projects, etc. Modifications to these
files tend to indicate a major activity or structural change in the project. That
includes adding or deleting files, modifying external dependencies or libraries,
bumping up the versions of the dependent libraries or packages, etc.

The four features that help most reduce the lifetime of a pull request include:

Is the pull request a bug fix? In large-scale cloud service development environments
at Microsoft, fixing bugs is prioritized. Incident management processes help in
expediting such bug fixes which result in faster completion of pull requests. We
used the models developed by Wang et al (S. Wang et al., 2019b) to determine
the intent of the pull requests. These are language models which analyze the
pull request title and description to classify the intent. We used these Random
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Table 3.2: Comparison of different prediction models

Algorithm MAE (in hours) MMRE

Least squares 44.32 0.68
Bayesian ridge 46.35 0.71
Gradient boosting 32.59 0.58

Forest models to compute this intent feature along with other features (whether
the pull request is deprecating old code, whether the pull request is performing
refactoring). This helps account for the semantic intent of the pull request in
the lifetime prediction model.

Age of the author in the team This feature captures how familiar a developer is with
the current team, its processes, people, and the product or service the team is
working on. The more time a developer spends in a team, the less difficulty
they will experience in pushing their change through. We get this information
from the human-resources database at Microsoft.

Age of the author in the repository This helps capture the familiarity of a devel-
oper with the repository in which they are making changes, and the build, and
deployment processes of that repository. Although this may sound similar to
the author’s age in the current team just discussed, familiarity with reposito-
ries may vary substantially in heterogeneous teams that work on multiple ser-
vices (especially, microservices). Here, different members of the same team
are mostly making changes that are very specific to the repositories they are ac-
tively engaged in. Our correlation analysis has shown that the more familiar a
developer is with a specific repository, the less time it takes them to merge their
changes made in that repository. We compute this based on when the author
created or reviewed the first pull request in a given repository.

Age of the author in Microsoft This helps capture the seniority of a developer. In-
tuitively, senior people who have more experience tend to make fewer mistakes
and will experience less pushback on their changes. The negative correlation
here indicates that if someone has more experience, it takes them less time
to merge their changes. We get this information from the human resources
database at Microsoft.

3.5.2. PREDICTION MODEL
As indicated, we approach the task of predicting the lifetime of a pull request as a
regression problem. We include most of the features from Table 3.1, dropping the
ones with a very low (absolute) magnitude of correlation. We used 0.008 as a cut-off,

55



thus dropping three features. This helped to speed up the training and inference tasks
without materially impacting the MAE (it dropped by 10 minutes (0.17 hours)).

We then performed an offline analysis and evaluation with multiple popular re-
gression algorithms like least-squares linear regression, Bayesian ridge regression,
and gradient boosting. To compare the regression algorithms, we used two standard
metrics: MAE (Mean Absolute Error), and MMRE (Mean Magnitude of Relative Er-
ror). These metrics are widely used for understanding the performance of regression
tasks. We decided to adopt gradient boosting as it has better accuracy with respect to
both MAE and MMRE. The comparative analysis of the three algorithms, evaluated
against MAE and MMRE is shown in Table 3.2. A detailed discussion on predic-
tion accuracy and its significance in the context of the application we are building is
presented in Section 3.8.

We are not using the prediction outcome (the expected pull request lifetime) for
performing traditional effort estimation tasks, such as sprint or project planning or
budgeting. In the case of the Nudge system, the primary purpose of the model is to
approximate the opportune moment to send a reminder. Therefore, the Nudge system
exhibits more tolerance toward the prediction error.

To make sure all the features reflect recent trends, we use the pull request data
from the past two years each time the model is trained.

For training and evaluation, we use scikit-learn1. We used a standard 10-fold
cross-validation. We followed the standard practice of one time 10-fold cross-validation
(“GitHub”, 2020), without ‘repeated cross-validation’, as follows:

1. We separate the data set into 10 partitions randomly;

2. We use one partition as the test data and the other nine partitions as the training
data;

3. We repeat Step-2 with a different partition than the test data until all data have
a prediction result;

4. We compute the evaluation results through a comparison between the predicted
values and the actual values of the data.

3.6. PULL REQUEST STATUS DETERMINATION
With a mechanism in place to predict the lifetime of a pull request, the next step is
assessing whether there has been any activity or state changes that are taking place in
a pull request. This serves to determine the opportune moment to send a notification
as well as to understand when not to send a notification. To do so, we determine
the current activity and blocking actor in terms of the pull request lifecycle model as
displayed in Figure 3.1,

1https://scikit-learn.org/
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3.6.1. ACTIVITY DETECTION
Using an earlier version of Nudge, we conducted a quantitative study to understand
the impact of not reacting to the activity in a pull request while sending notifications.
We found, through manual inspection, that 86 out of 119 Nudge comments that are
resolved negatively were due to the fact that Nudge did not honor the recent pull
request activity. Later, we talked to some of the developers who were either author-
ing or reviewing those pull requests. The majority of them did not like the Nudge
notifications because they recently interacted with the pull request.

To resolve this problem, Nudge determines the most recent activity in the pull re-
quests. However, pull requests in large organizations can get complex with multiple
actors performing different activities through various collaboration points. We distin-
guish the following collaboration points that trigger the changes to the pull requests
(see also Figure 3.1):

Pull request state changes A state change in a pull request strongly indicates that
one of the actors (author or reviewer) has been acted on the pull request re-
cently.

Comments Once a pull request is submitted for review, reviewers can add comments
to recommend changes or seek clarification on a specific code change. Authors
of the pull request can also reply to the comment thread that is started by the
reviewers if they have any follow-up questions. In addition to placing the com-
ments and replying to them, the actors can also change the status of the com-
ments. Typical statuses are ‘Active’ which means the comment has just been
placed, ‘Resolved’ which means the comment has been resolved by the author
of the pull request by making the changes prescribed by the reviewers, ‘Won’t
fix’ which means the author would like to discard the review recommendation
without addressing it, and, ‘Closed’ which means the comment thread is going
to be closed as there are no more follow up action items or discussions needed.

Updates After a pull request has been created, authors can keep pushing new updates
in the form of commits. These commits are changes that authors are making in
response to review recommendations or improvements the authors themselves
decided to push into the pull request. Under some special circumstances, some-
one other than the author or the reviewer can also push new updates into a pull
request but that is a rare occurrence. New updates or iterations are a very strong
indicator that the author is making progress on the pull request.

The specific action points may vary depending on the provider of the source con-
trol system (GitHub, Azure DevOps, GitLab, etc). However, conceptually the collab-
oration points or concepts remain similar. In the context of this work, we focus on
Azure DevOps, the source control system used by Microsoft’s developers and offered
by Microsoft to third-party customers. We track the activities performed through
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Table 3.3: Classes that explains change blockers and responsible actors

State Class Actor
waiting for

#PRs

Waiting Not all review comments have been ad-
dressed

Author 34

Waiting Pull request needs further discussion Author 47
Approved Pull request has been approved but the

author is not ready to merge it
Author 49

Active Review has not been started yet Reviewer 51
Active Review comments have been addressed

but reviewers have not approved yet
Reviewer 19

these collaboration points to determine the existence of activity in pull requests and
decide whether a Nudge notification should be sent.

Nudge typically sends a notification once the lifetime of a pull request crosses the
predicted lifetime (as predicted by the lifetime prediction model). However, it waits
at least 24 hours before sending a notification, if there has been any activity since
last checked (Nudge pipeline runs once every six hours; details about the pipeline
are explained in Section 3.7) or when state transitions have been observed. Based
on a user study described in Section 3.8, we find that activity detection improves
user experience, reduces false alarms, and thus increases the usefulness of the Nudge
service.

3.6.2. ACTOR IDENTIFICATION
In a pull request, there are different actors involved (as explained in Section 3.3) that
can influence the next state (Approved, Rejected, etc.), and the speed with which a
pull request progresses.

We focus on understanding the human change blockers, i.e., authors and review-
ers, and the extent to which they influence the change progression. We collected 200
pull requests from 20 medium to large to very large repositories and manually ana-
lyzed them to understand for whom they were waiting before they were completed.
These are pull requests whose age is at least 14 days and which have not been com-
pleted yet. We find there are five mutually exclusive classes that explain the cases in
which a pull request is awaiting completion. Table 3.3 lists the classes and the actor
responsible, and the number of pull requests that fall under each class. 70 pull re-
quests (out of 200) are blocked by the reviewers while the remaining 130 are waiting
for the author to make progress.

Encouraged by the findings, we devised an algorithm that helps determine the
actor that needs to be notified to make progress on a given pull request. When there is
an action item pending on the author of the pull request as well as a reviewer, sending
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Figure 3.3: Flowchart to determine the change blockers for active pull requests

notifications to the author is prioritized. The flow chart shown in Figure 3.3 explains
the control flow and how the actors that are responsible for making progress on the
change are determined. The algorithm evaluates various decision points to determine
the blockers of a change. These decision points represent different states that a pull
request, review, or reviewing comments in the pull request take during the lifetime of
a pull request. There are three cases where the author needs to act:

PR is approved A pull request is approved when the reviewers are satisfied with the
changes and have no more comments or concerns about the change. The author
can proceed to merge the change.

Not all review comments are addressed The reviewer has left comments seeking
some clarity or proposing recommendations. The author is responsible to ad-
dress the review comments. Authors typically will have two choices: If they
agree with the review comment, they can resolve it or if they disagree, they can
mark it as ‘won’t fix’. This condition is met if the author has review comments
that need to be addressed.

Author has pending action items The author has addressed the review comments
but the reviewer does not want to approve the changes, because they are not
satisfied with the resolution provided by the author. These pull requests need
further discussion.

In the remaining cases, the reviewers have to act on the pull request to unblock
the change:

Review has not started Upon creating the pull request, authors typically add the re-
viewers that they would like to get a review from for the specific change. The
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Figure 3.4: Nudge Architecture

reviewers are supposed to act on it and provide their comments. If the review-
ers are not acting on the pull request after requesting a review the onus is going
to be on the reviewers to act on the pull request and unblock it.

Review comments are addressed Once the reviewer has provided their review, the
author will act on it and resolve/won’t fix the comments by making necessary
changes. Then the responsibility shifts back to the reviewer to re-verify the
changes and sign off the change. If that is not happening, reviewers are ac-
countable and should be notified to unblock the change.

3.7. IMPLEMENTATION
In this section, we present the details about how the Nudge Service is implemented. It
relies on Azure DevOps, the git-based DevOps solution offered by Microsoft, which
we used to deploy Nudge as an extension.

3.7.1. NUDGE SERVICE ARCHITECTURE
Figure 3.4 shows the Nudge service architecture and gives an overview of various
components involved. Azure DevOps is the existing git environment, which is con-
nected to a collection of workers hosted on Azure. Listed below are the seven steps
(the numbered arrows in the figure) that explain the high-level architecture and inter-
action between various components in the Nudge system:

1. A developer creates a pull request or updates an existing pull request by pushing
a new commit or iteration into it.

2. A pull request creation or update event is triggered through the service hook.

3. A new message is sent to the Azure service bus where it is queued.
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4. An Azure worker picks up the new messages on a first come first serve basis.

5. The workers run effort estimation, activity detection, and actor identification,
storing the results in a database.

6. Based on the outcome of step 5, if the Nudge system decides to send a notifica-
tion, the worker sends a notification using the Azure DevOps APIs in the form
of pull request comments.

7. Azure DevOps sends a notification email to the developer.

Nudge performs inference and recalculates the effort each time a pull request
is updated (Step 2). PR updates can change the structure of the PR completely
(adding/deleting code changes, adding/removing reviewers, etc.), making it impor-
tant to react to them and adjust the pull request lifetime prediction accordingly.

Additionally, if the criteria to send a notification are not met for a given pull
request, the Nudge system will check again in six hours, through an Azure batch job,
to determine if it can send a notification. The Nudge service continues to do that,
every six hours, until the pull request is abandoned or completed.

3.7.2. AZURE DEVOPS
Azure DevOps is a platform providing a git-based version control system. In addition
to repositories, it offers planning tools such as work item and bug report management
and facilitates code review management. It also has features such as build and re-
leases management to facilitate continuous integration and deployment. The Nudge
service is deployed as an extension of Azure DevOps because of the rich collabora-
tion features offered by Azure DevOps. Below are the details about some of the key
features that Azure DevOps offers that helped materialize the Nudge service:

Collaboration points: Azure DevOps offers a rich set of collaboration points through
which third-party services or extensions can interact with pull requests in Azure
DevOps. The collaboration points allow services to add comments on pull re-
quests, add labels to the pull requests, and add or remove reviewers.

Service hooks: Azure DevOps offers service hooks that help any third party service
to listen to the events that are happening inside the pull request environment.
Events can be pull request creation events that are fired through service hooks
when a pull request is created or pull request update events that are fired when
the pull request experiences any updates such as pushing new commits or iter-
ations.

APIs: Azure DevOps exposes a rich set of REST APIs (“Azure DevOps REST API”,
2021) that helps third-party services to access information about various arti-
facts in the Azure DevOps environment. These APIs can be called through
a REST client and return metadata about the pull requests (id, title, author,
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reviewer information, comments, labels, status, commits that are included in
the pull request), commits (title, files changed in a commit), build and release
(status, test outcomes, deployment outcomes).

Votes: Azure DevOps uses a voting mechanism to capture the actions performed
by the reviewers on a pull request. A vote on a pull request can have values
{−10,−5,0,5,10}, corresponding to rejected, waiting for the author, no vote,
approved with suggestions, and approved, respectively.

3.7.3. ACTIVITY DETECTION
We use Azure DevOps’s REST APIs (“Azure DevOps REST API”, 2021) to collect
data that is required to understand if there has been any activity in a pull request.
We gather data about various actions or activities that happen inside a pull request
(Section 3.6.1) to determine if there has been any activity, as follows:

Commit activity: We use Azure DevOps’s GetPullRequestIterationsAsync
API which provides details about all the commits that are ever pushed into a
pull request. We first get a list of all the commits that are pushed and then take
the timestamp of the latest iteration as the latest commit timestamp of a pull
request.

Comment activity: To determine whether there has been any commenting activity
like adding new comments or replying to existing comments, we use Azure
DevOps’s GetThreadsAsync API. This API returns all the comments that
are ever placed in a pull request in the form of threads. We check if any new
threads are created or if any new comments are placed in an existing thread. We
take the maximum of both of them to determine the latest comment activity that
has happened in a pull request. While doing this we exclude any comments that
are placed by system accounts or non-human actors following basic heuristics,
such as accounts that include words like ’system’, ’bot’, ’account’, etc.

State changes in pull requests: Changes in pull request state is another important
signal that helps determine activity in a given pull request. Unfortunately, there
is no direct way of determining state changes in pull requests. We use Azure
DevOps’s GetThreadsAsync API to collect all the comments placed in a
pull request. Comments whose content property contains the word “voted”
indicates that a state change has happened. Azure DevOps uses a voting mech-
anism to capture the actions performed by the reviewers on a pull request. A
voting event in a pull request looks like the following: “User1 voted 10
on PR1234’, which, as explained above, corresponds to approval. We use
such events to determine the last time a pull request’s state has changed.

Nudge sends a notification once the lifetime of a pull request crosses the pre-
dicted lifetime (Section 3.5). However, it waits at least 24 hours before sending a
notification, if there has been any activity observed.
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3.7.4. ACTOR IDENTIFICATION
We rely on Azure DevOps’s REST APIs to collect data for identifying the actors. In
line with Section 3.6.2, we use Azure DevOps as follows:

Check pending action items: To determine if pull request’s author has any pending
action items, we check if the state of the pull request is set to “Waiting on
Author”. We use Azure DevOps’s GetPullRequestReviewersAsync
API to get the votes of all the reviewers.

Check for existence of unresolved comments: The existence of unresolved com-
ments determines whether the blocker of a pull request is the author or the
reviewer. We use Azure DevOps’s GetThreadsAsync API to get all the
threads. We then check for the existence of threads with statuses “Active” or
“Pending”. The presence of threads with any of these two statues indicates that
there are unresolved comments.

Enumerate the list of change blockers: We first use the GetPullRequestReviewersAsync
API offered by Azure DevOps to query the list of reviewers on a given pull
request. We then use the GetThreadsAsync API to determine the list of
all the reviewers who commented on the pull request at least once and whose
comments are resolved by the author of the pull request. We prepare two lists:
reviewers who commented, and all reviewers, and choose one of them to use
based on the state of the pull request. If there are no reviews on a pull request,
we send notifications to the reviewers in the ‘all reviewers’ list. If there has
been a review activity (reviewers placed comments on the pull request), we
prioritize notifications to the reviewers in the list of reviewers who commented.

3.7.5. NUDGE NOTIFICATION
Figure 3.5 shows the screenshot of the Nudge notification. Note that the dependent
actor (in this case the reviewer but not the author) is being “@-mentioned” in the
notification. This triggers a separate email to the reviewer of this pull request asking
them to unblock the pull request. As we can notice, the pull request was created and
had been waiting for the reviewer’s approval for four days. After the Nudge service
tagged the reviewer and pushed them to act on the pull request, the reviewer approved
it and the pull request got completed on the same day.

3.8. EVALUATION
In this section, we describe (1) the experiments we conducted to assess the value of a
pull request level effort estimation system, (2) the value of a system like Nudge that
leverages the effort estimation models to notify developers about their overdue pull
requests, (3) the impact Nudge has on large development teams and organizations,
and (4) the scale at which a system like Nudge can operate. This is reflected in the
following research questions:
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Figure 3.5: Nudge notification, with @Reviewer1 tagged in the reminder

RQ1 What is the accuracy of effort estimation models in predicting the lifetime of
pull requests?

RQ2 What is the impact of a service like Nudge on completion times of pull re-
quests?

RQ3 What are developers’ perceptions about the usefulness of the Nudge service?

RQ4 Can the deployment of Nudge be scaled to thousands of repositories without
sacrificing gains in pull request processing time and user perception?

3.8.1. DATA COLLECTION AND METHODOLOGY
We obtained data from the large-scale deployment of the Nudge service for nine
months on 147 repositories in Microsoft. The data includes telemetry from the Nudge
service using only lifetime prediction as a mechanism (which we will refer to as
Nudge-LT), as well as from the Nudge service extended with activity and actor iden-
tification (which we refer to as Nudge-FULL or just Nudge). The repositories are
owned by various product and service teams and are of different sizes, geographies,
and products. Nudge has made notifications on 8,500 pull requests during the nine-
month time window under study. We discuss the results from Nudge-LT first and
subsequently analyze the effect of the additional heuristics of Nudge-FULL.

For RQ1, we collect historical data from pull requests that are merged. This
gives us the start and end timestamps to help us calculate the lifetime for each pull
request and construct a ground truth data set. We collected 2,875 pull requests from
10 different repositories that have been merged and completed. These repositories
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host the source code of various services. Their number of contributing developers
ranges from a few hundred to a few thousand. This data set is independent of the data
used to train the model (as explained in Section 3.5.2). As for the correlation analysis
(Section 3.5.1), we omit any pull requests whose age is less than 24 hours (short-lived
pull requests) and more than 336 hours (long-lived pull requests).

For RQ1, we also use repositories on which we operationalized Nudge to obtain
feedback from developers on the estimations. We randomly select pull requests for
which we are about to send a Nudge notification and add more details in the notifi-
cation comment. These are details like Nudge model’s predicted lifetime for a given
pull request, how long the pull request has been open past the estimated lifetime by
the Nudge model. Figure 3.6 shows the details about the predicted lifetime of a sam-
ple pull request, as predicted by the Nudge model, and the reason for sending the
notification at a given point in time.

For RQ2, we collect data from the 147 repositories on which we operationalized
Nudge. We collect data on how the lifetime of pull requests is varying between pull
requests which received a Nudge notification and pull requests that did not. We also
collect data about the time it takes for the author of the pull request to either complete
or abandon the pull request after a Nudge notification is sent.

For RQ3, we collect data through our automated pipeline that actively tracks every
single inline reply that is posted by the developers in response to a Nudge notification
and whether they positively or negatively resolved a comment. We do this for all
8,500 pull requests on which we made notifications.

For the 147 repositories on which we deploy Nudge, notifications are sent when a
pull request meets the criteria needed to be nudged, as imposed by the Nudge model
and algorithm. All developers who receive a Nudge notification are given equal op-
portunity to provide feedback in the pull request, either to positively or negatively re-
solve the comment or to provide anecdotal feedback by replying inline to the Nudge
notification. Note that the repositories on which Nudge has been operationalized are
organizationally away from the developers of the Nudge service. The notifications
did not reveal the names or identities of the developers of the Nudge service to avoid
response bias (Dell et al., 2012).

For RQ4, we took advantage of the fact that our initial experiments convinced
Microsoft management to deploy Nudge in production. This enabled us to monitor
Nudge in production at Microsoft during the period January 2021 until December
2021. During this period, Nudge was deployed on 8,000 different systems at Mi-
crosoft. Nudge sent 210,000 notifications authored by 40,000 unique developers. We
collect pull request completion time after notification, as well as the positive/negative
resolutions of pull request recommendations made by Nudge.
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Figure 3.6: A pull request with a lifetime prediction notification in Azure DevOps
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Figure 3.7: MAE distribution

3.8.2. RQ1: WHAT IS THE ACCURACY OF EFFORT ESTIMATION MOD-
ELS IN PREDICTING THE LIFETIME OF PULL REQUESTS?

To answer this research question, we collect metrics that explain how accurate our
prediction model is. We also list the anecdotes we received from the developers about
the accuracy of the prediction model.

Model Evaluation We evaluated our prediction model against standard metrics:
Mean Absolute Error (MAE) and Mean Magnitude of Relative Error (MMRE). For
the pull request level effort estimation model, the MAE is 32.60 hours (Figure 3.7
shows the distribution of MAE) and MMRE is 0.58 ( Figure 3.8 shows the distribution
of MMRE).

To put these numbers in perspective, we have conducted an experiment by con-
sidering the mean lifetime of our training data as the predicted lifetime of every pull
request in our testing data. Our constant model’s MAE is 36.43 hours and MMRE
is 0.68. This means our trained model is 11.8% better in terms of MAE and 17.7%
better in terms of MMRE compared to the constant model.

The MAE of 32.60 hours corresponds to around 1.3 days. The average duration is
107.63 hours or a little over 4 days. For our purposes, for warning developers when
they are late, we consider an average deviation of around a day to be acceptable.

Figure 3.8: MMRE distribution
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User feedback about model’s prediction accuracy We received positive feedback
from the developers of the randomly selected pull requests for which we added more
details about the model prediction as illustrated in Figure 3.6. One of the developers
said:

This was reasonable. This pull request sat stale while doing work for
FHL, so it was untouched for an extended period.

Here, the developer is acknowledging that the model’s prediction (110 hours) is rea-
sonable and, noticeably, provides an explanation for why the pull request is taking
long to wait. As we see in the figure3.6, the developer ended up completing the pull
request within a few hours after the notification was sent. Similarly, another developer
said:

I totally agree with the model saying this pull request should take not
more than 120 hours to complete. The code change is slightly complex
and the estimation seems reasonable.

In this case, the developer is positive about the fact that the model is predicting
the lifetime by taking into account the complexity of the change and giving enough
breathing room for the developers to act on it before nudging them. Another devel-
oper passed feedback by acknowledging the fact that the model adapts to the changes
happening inside the pull request by comparing two of her pull requests.

I see the estimation is 176 hours on this pull request and it was 64 hours
on another pull request of mine where I was editing a lesser number of
files and not pushing critical code changes. I do not know if your model
is taking these facts into account. But, it seems like...interesting!!

This anecdote supports the fact that the model adapts to the pull request in ques-
tion and the users starts to notice that the model is doing a reasonable job in adapting
to the change in context.

3.8.3. RQ2: WHAT IS THE IMPACT OF NUDGE SERVICE ON COM-
PLETION TIMES OF PULL REQUESTS?

To measure the impact of Nudge, we use two metrics to assess whether the Nudge
service is helping developers and yielding the intended benefit:

1. Average pull request lifetime: This is the average of the time difference (in
hours) between pull request creation and closing date. A service like Nudge
is expected to introduce positive effects like reduction in pull request lifetime
by notifying the change blockers about making progress and closing the pull
requests.
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Table 3.4: Comparison of average pull request lifetime (hours)

Service Avg PR lifetime Number of PRs

None 197.2 3856
Nudge-LT 112.6 4117
Nudge-FULL 77.7 4383

2. Distribution of the number of pull requests that are completed within a day,
in three days, within a week, and after a week since Nudge sent a notifica-
tion. This captures to what extent developers are actually reacting to the Nudge
notifications, and if so, how quickly they are reacting.

While measuring and comparing the metrics above, we make sure to nullify the
effects of other variables such as the month of the year (changes move faster in some
months and slower during some), typical code velocity in a given repository (some
repositories naturally experience higher development velocity because of the nature
and critically of the service), team or organization culture (some teams typically are
more agile and ship things faster), etc. Therefore, if we compare pull requests from
two different repositories or from two different time periods, we cannot confidently
say whether an increase or decrease in average lifetime is due to the presence or
absence of the Nudge service or due to other factors explained above. To remedy this,
we set up a randomized trial (A/B, or in fact A/B/C testing) by randomly selecting
one of the three configurations listed below for each pull request:

None: Turn the Nudge service off for a set of randomly selected pull requests.

Nudge-LT: Turn on the basic version of the Nudge service with just lifetime predic-
tion, but without user identification and activity detection.

Nudge-FULL: Turn on the user identification and activity detection features along
with the effort estimation model in the Nudge service.

Table 3.4 displays the average pull request lifetime for each of these configura-
tions. We see a clear decrease in an average lifetime for the pull requests for which
Nudge notifications are sent. The average lifetime of the pull requests on which
Nudge notifications are sent is 112.6 hours which is a 42.9% decrease compared to
the set of pull requests on which we did not send the notification (where the average
lifetime is 197.2 hours). Actor identification and activity detection further brought
the average lifetime down to 77.7 hours which is a reduction of 60.62% in average
pull request lifetime.

In figure 3.9, we plot the distribution of pull requests that are completed within a
working day, three days, a week or more than a week after Nudge sent the notification.
Only 1570 pull requests out of 8500 pull requests (18.47%) have taken more than a
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Figure 3.9: Distribution of completed pull requests after sending a notification

week to close. 81.53% of the pull requests are closed within a week. An important
observation to make is that 2300 pull requests i.e., 27.05% of the pull requests on
which Nudge sent the notification were completed within a day. This distribution
indicates that the majority of the pull requests on which Nudge sends notifications are
completed relatively quickly.

3.8.4. RQ3: WHAT ARE DEVELOPERS’ PERCEPTIONS ABOUT THE
USEFULNESS OF THE NUDGE SERVICE?

To understand whether or not users are favorable towards the Nudge system, we pur-
sue a mixed-methods approach. To that end, we rely on two sources of information:

• For every Nudge notification that is sent, the developers have an option to per-
form one of the following three actions: positively resolve the notification (by
marking it as ‘resolved’), negatively resolve the notification (by marking it as
‘won’t fix’), and provide no response.

• Second, Nudge users can enter an inline reply within a Nudge notification, to
explain their (dis)satisfaction.

We again distinguish between Nudge-LT and Nudge-FULL.

NOTIFICATION RESOLUTION
Table 3.5 shows the number of positive and negative reactions to notifications, both
for Nudge-LT and Nudge-FULL. For the vast majority (93%-97%) the developers
actually provided an explicit verdict.

For Nudge-LT, the majority of verdicts (2062/3891, 53%) were negative. This
suggests that nudges based on lifetime predictions alone are not considered suffi-
ciently helpful.

For Nudge-FULL, by contrast, the vast majority of verdicts (3199/4018, 80%)
were positive. When also including non-responses in the total, the percentage of
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Table 3.5: The difference in percentage of positively resolved notification

Service type
# Positive
responses

# Negative
responses

# Total
responses

# No
responses

# Total
PRs

Nudge-LT 1829 2062 3891 226 4117
Nudge-FULL 3199 882 4081 302 4383

positive resolutions remains high, at 73% (3199/4383). This makes it clear that the
activity detection and actor identification of Nudge-FULL clearly contribute to the
positive perception of Nudge.

Note also that positive feedback of 73% is substantial if we look at it in isolation.
Various studies have shown that users tend to provide explicit negative feedback when
they do not like or agree with a recommendation while not so explicit about positive
feedback (Liu et al., 2019; Steck, 2011). 73% of the developers who received Nudge
notifications explicitly resolving the notifications positively indicates a clear positive
sentiment that the developers exhibit towards the Nudge service.

NUDGE-LT USER FEEDBACK

We tried to understand how helpful our suggestions are and whether they are yielding
intended benefits, i.e., driving pull requests towards a terminal state which is com-
pletion or abandonment. We received positive feedback (comments from developers)
and observed that intended actions are taking place on the pull requests. To provide
a glimpse, we list some of the quotes that we received from the developers that are
appropriate to discuss in the context of this chapter. On one of the pull requests, a
developer said

“I agree. Making a few more changes and pushing this pull request
through! Thanks for the notification!”

We then saw this developer acting on this pull request by pinging the reviewers and
driving this pull request towards the completion within eight minutes.

In another pull request, the developer first replied to the Nudge notification saying

“The pipeline is failing and blocking this check-in. Followed up with an
ICM incident and completed the pull request!”

Then, within a day, the pull request was abandoned. Thus, Nudge is not just about
merging approved pull requests quicker, but also about pushing pull requests to a ter-
minal state, including abandonment, and in this way maintaining repository hygiene.

For Nudge-LT, we also received feedback that says the notification is not useful
because it is blocked by a reviewer. For example:
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“The comment does not add any value to me personally because I already
know that the pull request I’ve authored has been open for a long time.
It is not me who is blocking this but the reviewer”

Similarly, For Nudge-LT we see comments about why notification is considered
not useful in cases where the author interacted with the pull request recently by resolv-
ing a comment or pushing a new commit, which we nevertheless ended up nudging
because the lifetime of the pull request was long. One such comment comes from a
developer who she says

“I just resolved the comments on this pull request yesterday. I know
about this one being pending for a while. This is not helpful!”

Both cases were in fact addressed by the actor and activity detection mechanisms
of Nudge-FULL.

NUDGE-FULL USER FEEDBACK
Consistent with the many positive notification resolutions (Section 3.8.4), many users
were positive about the actor identification and activity detection enhancements. While
there were some differences on how long the service should hold itself back before
sending a notification when an activity is seen (24 hours vs 48 hours), we generally
received agreement about the usefulness of these features. When asked about deter-
mining change blockers and “@ mentioning” them in the notification thus eliminating
an extra hop, users stated:

“Yes it’ll be nice for the tool to ping the reviewers instead of having the
person do it.”

“Yes I think that’s handy to notify specific people. I often see someone
"waiting" on a PR for changes, but then forget to revisit and follow up
after changes have been pushed.”

Another user indicated that the algorithm was very accurate in determining the
change blocker for a pull request that he was working on:

“Change blocker was perfectly identified and notified for pull request
731796. You did my job!”

While the deployment of the activity detection and actor identification modules
reduced the negative feedback significantly, there remain cases where the developers
expressed their dislike towards the Nudge notifications. For example:

“This pull request is awaiting on another pull request due to a module-
level dependency. Thanks for the reminder though!”

“I know what I am doing. This is not helpful.”
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“I went on a vacation. I would have liked it if you knew that and did not
nudge me”

Suggestions on how to address this feedback are discussed in Section 3.9.

3.8.5. RQ4: NUDGE AT SCALE
To assess the impact of scaling up to thousands or repositories, we report Microsoft’s
experiences with deploying Nudge in production. The initial deployment of the
Nudge service on 147 source code repositories and the observed efficiency gains and
positive user feedback convinced Microsoft management to deploy Nudge beyond
the original repositories. Thus, we trained and deployed the “Nudge-FULL” config-
uration for 8,000 repositories. From January 2021 until December 2021, the Nudge
service sent notifications on 210,000 pull requests authored by 40,000 unique devel-
opers. This deployment corresponded to an increase by a factor of 50 of in the number
of repositories compared to the initial experiment. This increase was easily handled
by Nudge, thanks to the fact that scalability was a design consideration right from the
start.

We could not perform A/B testing as on the deployment on 147 repositories of the
Nudge service due to administrative and logistical reasons. However, we were able to
collect two important metrics from the large-scale deployment: (1) the positive reso-
lution percentage, and (2) the distribution of pull request that are completed within a
working day, three days, and a week.

We found that 71.5% of the 210,000 Nudge notifications were resolved positively.
This is close to the 73% positive resolution percentage from the Nudge service de-
ployment on 147 repositories. Similar to the small scale deployment, 16.35% of the
pull requests took more than a week to close (formerly 18.47%), and 83.65% of the
pull requests were closed within a week (formerly 81.53%). These numbers indicate
that the findings from RQ1–RQ3 continue to hold true when deployed at the scale of
thousands or repositories.

3.9. DISCUSSION
In this chapter, we presented Nudge, a service for improving software development
velocity by accelerating pull request completion. Nudge leverages machine learning-
based effort estimation, activity detection, and actor identification to provide precise
notifications for overdue pull requests. Our experiments on 8,500 pull requests in 147
repositories over a span of 18 months demonstrate a reduction in completion time by
over 60% (from 197 hours on average to 77 hours) and 73% of the developers reacted
positively to being nudged — numbers that continued to be valid when we scaled up
Nudge to thousands of repositories. In this section, we reflect on these contributions,
assess their limitations, consider design alternatives, and explore future implications
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of our findings.

3.9.1. EXPLICIT COMPLETION TIMES
In our current implementation, pull request completion time is an attribute internal to
Nudge, that is not shared with the pull request authors. An alternative design would
be to let the author use the predictor to get an estimate of how long it would take to
close this pull request, which they then can use to set a deadline for the pull request
completion. We did not pursue this route, because doing this might adversely impact
the pull requests: The prediction might become a self-fulfilling prophecy causing
unnecessary delay (Calikli et al., 2010; Nickerson, 1998). Also, the pull request
process will become unnecessarily complicated since the author and reviewers might
engage in a back-and-forth discussion to decide the deadline.

3.9.2. INTERRUPTIONS
Nudge uses the existing functionality in Azure DevOps to remind the actors by adding
comments to the pull request. These comments would result in email notifications
which can be addressed asynchronously. This lightweight workflow is no different
from other notifications which are sent when a reviewer is added to the pull request
or they add a comment to the PR. Therefore, given the asynchronous nature and also
based on the survey results, we do not believe that Nudge causes significant interrup-
tion for the reviewers. Also, recall that Nudge sends only one Nudge notification per
pull request to minimize repeated interruptions.

Nudge does not reduce the total effort needed to complete a pull request. Instead,
it warns developers that others are waiting for them, suggesting them to prioritize
the work on a given pull request. The cost of this for the nudged developer is that
some other work (ongoing coding activities, opening a new pull request, responding
to another pull request) is delayed, while the nudged pull request is moved forward.
With Nudge, developers can take an informed decision whether to work on the pull
request in question sooner rather than later. In this way, they not just optimize their
own queue of tasks locally, but can take a bigger picture into account, reducing the
number of developers who are waiting for them to take action.

3.9.3. CODE REVIEW QUALITY
In our work on Nudge, we have focused on the calendar time duration of code reviews
since it is deterministic and observable. Furthermore, in an industrial context, such
speed of code reviews is important because of time-bound product release life cycles.
In case of bugs and incidents, faster code reviews can help with faster resolution of
bugs and quicker service restoration.

In this chapter we have assumed that the total amount of effort in a pull request is
not affected by Nudge: tasks are moved earlier in time, but the nature of these tasks
remains the same. In line with that, we argue that the quality of the reviews and code
changes in nudged pull requests is not affected by Nudge. Nevertheless, it could be
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the case that developers feel pressure based on nudges received, and hence rush their
work, and deliver lower quality. On the other hand, it could also be that developers
are able to deliver better work, since handling of the pull request takes place in a
more confined time span, requiring fewer context switches, or context switches that
are closer in time together. We leave a rigorous investigation of the effect of nudging
reviewers and developers on pull request quality as future work.

3.9.4. SIMPLIFYING LIFETIME PREDICTION
An alternative to our learned lifetime prediction model is to work with a simple con-
stant model. We explored this, as stated in Section 3.8.2, by taking the mean of the
pull request lifetime as the estimated lifetime for all pull requests in the population.
While simpler, such a constant approach suffers from the following problems:

1. Nudge has been designed to be operationalized on tens of thousands of repos-
itories, with different characteristics, processes/practices, and ever-changing
dynamics. Thus, even a ‘constant’ model is likely to require different settings
across repositories and periodic re-calibration.

2. The constant model will underestimate complex pull requests, yet overestimate
simple ones. This may undermine the confidence in Nudge’s notifications

3. We conducted informal, small-scale user studies by showing the users the no-
tifications and simulating the timing of the notifications of constant and ac-
tual Nudge-LT models. Developers are inclined toward a model that adapts to
changing workloads (dynamic), customized by user profiles or history, and that
considers the size or complexity of the pull requests.

3.9.5. ADDRESSING NUDGE LIMITATIONS
20% of the Nudge notifications (882/4081) received an explicit won’t fix mark from
the developers. We recognize the following reasons, together with a potential way to
address them.

First, a pull request may be blocked by the progress on another pull request.
Presently we do not take such inter-pull-request dependencies into account. A possi-
ble next step is to scan pull requests for other pull requests mentioned in their discus-
sions, and to consider such dependencies when nudging, putting, e.g., more emphasis
on blocking pull requests, and postponing nudging blocked pull requests until they
are unblocked.

Second, while we have some level of detection to understand if a user is away, it is
limited to detecting weekends and popular public holidays only, at this point. Future
work includes incorporating an algorithm that looks at other data sources to detect
and predict when a user will be away and account for that in the Nudge notifications.

Lastly, the Nudge system, at this point, does not “learn” based on user feedback. If
a user passes negative feedback, Nudge does not use that information to pass that back
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to the model and adjust the parameters. Accounting for the user feedback, structuring
it so that Nudge could leverage it, and determining the opportune moment to send the
Nudge notifications are possible ways to further enrich Nudge.

3.9.6. THREATS TO VALIDITY
INTERNAL VALIDITY
Our qualitative analysis was conducted by reaching out to the developers via Mi-
crosoft Teams. None of the interviewers knew the people that were reached out or
worked with them before. We purposefully avoided deploying Nudge on reposito-
ries that are under the same organization as any of the researchers involved in this
work. As Microsoft is a large company and most of the users of the Nudge service
are organizationally distant from the people involved in building Nudge, the risk of
response bias is minimal. However, there remains a chance that respondents may be
positive about the system because they want to make the developers of Nudge, who
are from the same company happy. Lastly, for the error estimation of the machine
learning models, we have used a single run of the ten-fold cross-validation. Using
repeated cross-validation can result in a more accurate estimation of the performance
of machine learning models.

EXTERNAL VALIDITY
Depending on data availability and API usage policies, the Nudge model can be op-
erationalized on other popular git-based source control systems like GitHub, GitLab,
BitBucket, etc. However, the coefficients or the factors that impact the completion
time of the pull requests, change blockers, etc may vary in those systems. Careful
analysis of large samples of open-source data has to be performed before the Nudge
model is deployed on systems like GitHub. Some of the implementation details such
as the heuristics used for identifying non-human actors will need to be adapted de-
pending on the context. Similarly, in the current implementation, we remove the 48
hours period corresponding to the weekend while computing pull request completion
time, yet this may not be applicable to open-source projects.

The empirical analysis, design and deployment, evaluation, and feedback collec-
tion have been conducted specifically in the context of Microsoft. Given that Mi-
crosoft is one of the world’s largest concentration of developers and developers at
Microsoft use a very diverse set of tools, frameworks, and programming languages,
our research, and the Nudge system will have broader applicability. However, at this
point, the results are not verified in the context of other organizations or the open-
source community.

3.10. CONCLUSION
Pull request is a key part of the collaborative software development process. In this
chapter, we presented Nudge, a service for improving software development veloc-
ity by accelerating pull request completion. Nudge leverages machine learning-based
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effort estimation, activity detection, and actor identification to provide precise notifi-
cations for overdue pull requests. To make the notifications actionable, Nudge infers
the actor, the pull request author or its reviewer(s), who is delaying the pull request
completion.

We have conducted a large-scale deployment of Nudge at Microsoft where it has
been used to nudge over 8,500 pull requests, over a span of 18 months, in 147 repos-
itories. We have also conducted a qualitative and quantitative user study to assess the
efficacy of the Nudge algorithm. Our findings include that 73% of the notifications by
Nudge have been positively acknowledged by the users. Further, we have observed
a significant reduction in completion time, by over 60% on average, for pull requests
which were nudged.

We further scaled out Nudge to 8500 repositories at Microsoft and presented re-
sults from the large-scale deployment. We observe that Nudge service was able to re-
tain a good positive resolution percentage (71.5%) similar to the deployment on 147
repositories (73%). We also observe that 83.65% of the nudged pull requests were
completed within a week similar to the deployment on 147 repositories (81.53%).

At the time of writing, the results reported in this chapter have been the reason for
Microsoft to explore adopting Nudge to a wider set of repositories. Though cultur-
ally very different from Microsoft systems, we also believe Nudge-like functionality
could be beneficial to repositories of many open source systems. From a research
perspective, we see future research in the areas of measuring the impact of shorter or
longer reviewing cycles on reviewing quality, refining the pull request lifetime pre-
diction models, taking inter-repository dependencies into account when nudging, and
estimating reviewer availability to make nudges as meaningful as possible.
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4
CONE: A CONCURRENT EDIT

DETECTION TOOL FOR
LARGE SCALE SOFTWARE

DEVELOPMENT

Modern, complex software systems are being continuously extended and adjusted.
The developers responsible for this may come from different teams or organizations,
and may be distributed over the world. This may make it difficult to keep track of
what other developers are doing, which may result in multiple developers concur-
rently editing the same code areas. This, in turn, may lead to hard-to-merge changes
or even merge conflicts, logical bugs that are difficult to detect, duplication of work,
and wasted developer productivity. To address this, we explore the extent of this prob-
lem in the pull request based software development model. We study half a year of
changes made to six large repositories in Microsoft in which at least 1,000 pull re-
quests are created each month. We find that files concurrently edited in different pull
requests are more likely to introduce bugs. Motivated by these findings, we design,
implement, and deploy a service named ConE (Concurrent Edit Detector) that proac-
tively detects pull requests containing concurrent edits, to help mitigate the problems
caused by them. ConE has been designed to scale, and to minimize false alarms
while still flagging relevant concurrently edited files. Key concepts of ConE include
the detection of the Extent of Overlap between pull requests, and the identification
of Rarely Concurrently Edited Files. To evaluate ConE, we report on its operational
deployment on 234 repositories inside Microsoft. ConE assessed 26,000 pull requests
and made 775 recommendations about conflicting changes, which were rated as use-
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ful in over 70% (554) of the cases. From interviews with 48 users we learned that
they believed ConE would save time in conflict resolution and avoiding duplicate
work, and that over 90% intend to keep using the service on a daily basis.

4.1. INTRODUCTION
In a collaborative software development environment, developers, commonly, work
on their individual work items independently by forking a copy of the code base from
the latest main branch and editing the source code files locally. They then create pull
requests to merge their local changes into the main branch. With the rise of globally
distributed and large software development teams, this adds a layer of complexity due
to the fact that developers working on overlapping parts of the same codebase might
be in different teams or geographies or both. While such collaborative software de-
velopment is essential for building complex software systems that meet the expected
quality thresholds and delivery deadlines, it may have unintended consequences or
‘side effects’ (Accioly et al., 2018; C. Bird et al., 2009; Kalliamvakou et al., 2014;
McKee et al., 2017). The side effects can be as simple as syntactic merge conflicts,
which can be handled by version control systems (Rochkind, 1975) and various tech-
niques/tools (de Souza et al., 2003b; Grinter, 1995; Horwitz et al., 1989), to semantic
conflicts (Fowler, 2020). Such bugs can be very hard to detect and may cause sub-
stantial disruptions (Horwitz et al., 1989). Primarily, all of this happens due to lack of
awareness and early communication among developers editing the same source code
file or area, at the same time, through active pull requests.

There is no substitute to resolving merge or semantic conflicts (or fixing logical
bugs or refactoring duplicate code) when the issue is manifested. Studies show that
pull requests getting into merge conflicts is a prevalent problem (Brindescu et al.,
2019; Brun, Holmes, Ernst, et al., 2011; Kasi & Sarma, 2013a). Merge conflicts have
a significant impact on code quality and can disrupt the developer workflow (Ahmed
et al., 2017; de Souza et al., 2003a; Nieminen, 2012). Sometimes, the conflict be-
comes so convoluted that one of the developers involved in the conflict has to aban-
don their change and start afresh. Because of that, developers often defer resolving
their conflicts (Nelson et al., 2019) which makes the conflict resolution even harder
at a later point of time (Berczuk & Appleton, 2002; Nelson et al., 2019). Time spent
in conflict resolution or refactoring activities is going to take away valuable time and
prohibits developers from fulfilling their primary responsibility, which is to deliver
value to the organization in the form of new functionality, bug fixes and maintaining
the service. In addition to loss of time and money, this causes frustration (C. Bird
& Zimmermann, 2012; Sarma et al., 2003). Studies have shown that these problems
can be avoided by following strategies such as effective communication within the
team (Guzzi et al., 2015), and developing awareness about others’ changes that have
a potential to incur conflicts (Estler et al., 2014).

Our goal is to design a method to help developers discover changes made on
other branches that might conflict with their own changes. This goal is particularly
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challenging for modern, large scale software development, involving thousands of
developers working on a shared code base. One of the design choices that we had to
make was to minimize the false alarms by making it more conservative. Studies have
shown that, in large organizations, tools that generate many false alarms are not used
and eventually deprecated (Winters et al., 2020).

The direct source of inspiration for our research is complex, large scale software
development as taking place at Microsoft. Microsoft employs ~166K employees
worldwide and 58.6% of Microsoft’s employees are in engineering organizations.
Microsoft employs ~69K employees outside of the United States making it truly
multinational (“Microsoft Facts”, 2020). Because of the scale and breadth of the
organization, tools and technologies used across the company, it is very common for
Microsoft’s developers to constantly work on overlapping parts of the source code, at
the same time, and encounter some of the problems explained above.

Over a period of twelve months, we studied pull requests, source control sys-
tems, code review tools, conflict detection processes, and team and organizational
structures, across Microsoft and across different geographies. This greatly helped us
assess the extent of the problem and practices followed to mitigate the issues induced
by the collaborative software development process. We make three key observations:

1. Discovering others’ changes is not trivial. There are several solutions offered
by source control systems like GitHub or Azure DevOps (“Azure DevOps”,
2021; “GitHub”, 2020) that enable developers to subscribe to email notifica-
tions when new pull requests are created or existing ones are updated. In addi-
tion, products like Microsoft Teams or Slack can show a feed of changes that
are happening in a repository a user is interested in. The notification feed be-
comes noisy over time and it becomes very hard for developers to digest all
of this information and locate pull requests that might cause conflicts. This
problem is aggravated when a developer works on multiple repositories.

2. Tools have to fit into developers’ workflows. Making developers install several
client tools and making them switch their focus between different tools and
windows is a big obstacle for adoption of any solution. There exists a plethora
of tools (Biehl et al., 2007; Brun, Holmes, Ernst, et al., 2011a; Sarma et al.,
2003) that aim to solve this problem in bits and pieces. Despite this, usability is
still a challenge because none of them fit naturally into developers’ workflows.
Therefore, they cause more inconvenience than the potential benefits they might
yield.

3. Suggestions about conflicting changes must be accurate and scalable. There
exist solutions which attempt to merge changes proactively between a devel-
oper’s local branch and the latest version of main branch or two developer
branches. These tools notify the developers when they detect a merge conflict
situation (Brun, Holmes, Ernst, et al., 2011a, 2013; Sarma et al., 2003). Such
solutions are impractical to implement in large development environments as
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the huge infrastructure costs incurred by them may outweigh the gains realized
in terms of saved developer productivity.

Keeping these observations in mind, we propose ConE, a novel technique to i)
calculate the Extent Of Overlap (EOO) between two pull requests that are active at
the same time frame, and ii) determine the existence of Rarely Concurrently Edited
files (RCEs). We also derived thresholds to filter out noise and implemented ranking
techniques to prioritize conflicting changes.

We have implemented and deployed ConE on 234 repositories across different
product lines and large scale cloud development environments within Microsoft. Since
deployed, in March 2020, ConE evaluated 26,000 pull requests and made 775 recom-
mendations about conflicting changes.

This chapter describes ConE and makes the following contributions:

• We characterize empirically how concurrent edits and the probability of source
code files introducing bugs vary based on the fashion in which edits to them are
made, i.e., concurrent vs non-concurrent edits (Section 4.3).

• We introduce the ConE algorithm that leverages light-weight heuristics such as
the extent of overlap and the existence of rarely concurrently edited files, and
ConE’s thresholding and ranking algorithm that filters and prioritizes conflict-
ing changes for notification (Section 4.4).

• We provide implementation and design details on how we built ConE as a scal-
able cloud service that can process tens of thousands of pull requests across
different product lines every week (Section 4.5).

• We present results from our quantitative and qualitative evaluation of the ConE
system (Section 4.6).

To the best of our knowledge, this is the first study of an early conflict detec-
tion system that is also deployed, in a large scale, cloud based, enterprise setting
comprised of a diverse set of developers who work with multiple frameworks and
programming languages, on multiple disparate product lines and who are from mul-
tiple geographies and cultural contexts. We have observed overwhelmingly positive
response to this system with a 71.48 % positive feedback provided by the end users:
A very good user interaction rate (2.5 clicks per recommendation that is surfaced by
ConE to learn more about conflicting changes) and 93.75% of the users indicating
their intent to use or keep using the tool on a daily basis.

Our interactions and interviews with developers across the company made us re-
alize that developers find it valuable to have a service that can facilitate better com-
munication among them about edits that are happening elsewhere (to the same files
or functions that are being edited by them) through simple and non-obtrusive notifi-
cations. This is reflected strongly in the qualitative feedback that we have received
(explained in detail in section 4.6).
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4.2. RELATED WORK
The software engineering community has extensively studied the impact of merge
conflicts on software quality (Ahmed et al., 2017; Brindescu et al., 2019), investigated
various methodologies and tools that can help developers discover conflicting changes
through interactive visualizations, and developed speculative analysis tools (de Souza
et al., 2003b; Grinter, 1995; Horwitz et al., 1989). While ConE draws inspiration
from some of this prior work, it is more ambitious, targeting a method that is effective
while not resource intensive, can be easily scaled to work on tens of thousands of
repositories of all sizes, is easy to integrate and fits naturally into existing software
development workflows and tools with very little to no disruption.

A conflict detection system that has to work for large organizations with disparate
sets of programming languages, tools, product portfolio and has thousands of devel-
opers that are also geographically distributed, has to satisfy the requirements listed
below:

• language-independent: the techniques and tooling built should be language-
independent in nature and support repositories that hosts code written in any
programming language and should support new languages with no or minimal
customization.

• non-intrusive: the recommendations passed by the tool should naturally fit into
developer workflows and environment.

• scalable: finally, the techniques proposed and the system should be performant
and responsive without consuming a lot of computing resources and demanding
lot of infrastructure to scale them up.

We now explain some of the prior work that is relevant and explain why they
do not satisfy some or all of the requirements.

Tools based on edit activity. Manhattan (Lanza et al., 2013) is a tool that gener-
ates visualizations about team activity whenever a developer edits a class and notifies
developers through a client program, in real time. While this shows useful 3D visual-
izations about merge conflicts in the IDE itself (thus being non-intrusive and natural
to use), it is not adaptive (it does not automatically reflect any changes to the code
in the visualization, unless the user decides to re-import the code base), not generic
(it works only for Java and Eclipse) and not scalable as it operates on the client side
and has to go through the cycle of import-analyze-present again and again for every
change that is made, inside the IDE environment. Similarly, FASTDash (Biehl et al.,
2007) is a tool that scans every single file that is edited/opened in every developer lo-
cal workspace and communicates about their changes back and forth through a central
server. This is impractical to implement across large development teams. It requires
tracking changes at the client side with the help of an agent program that runs on each
client. Furthermore it then keeps listening to every file edit activity in the workspace,
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then communicating that information with a central server which mediates commu-
nication between different workspaces. This is prone to failures and runs into scale
issues even with a linear increase in developers and pull requests in the system.

Tools based on early merging. Some tools were built upon the idea of attempt-
ing actual merging and notifying the developers through a separate program that runs
on the client (Brun, Holmes, Ernst, et al., 2011a, 2013; Sarma et al., 2003). These
solutions are very resource intensive because the system needs to perform the actual
source code merge for every pull request or developer branch with the latest version
of the main branch (despite implementing optimization techniques like caching and
tweaking the algorithm to compute relationships between changes when there is a
change to the history of the repository). It is not possible to implement and scale
this at a company like Microsoft where tens of thousands of pull requests are created
every week. Additionally, these solutions do not attempt to merge between two dif-
ferent user branches or two different active pull requests but attempt to merge a devel-
oper branch with the latest version of the main branch. This will not find conflicting
changes that exist in independent developer branches and thus cannot trigger early
intervention. Palantir (Sarma et al., 2003) is a tool that addresses some of the per-
formance issues by leveraging a cache for doing dependency analysis. It is, however,
still hard to scale due to the fact that there is client-server communication involved be-
tween IDEs and centralized version control servers to scan, detect, merge and update
every workspace with information about remote conflicting changes. Some solutions
explore speculative merging (Brun, Holmes, Ernst, et al., 2011b; Guimarães & Silva,
2012; Kasi & Sarma, 2013b) but the concerns with scalability, non-obtrusiveness re-
main valid with all of them.

Predictive tools. Owhadi-Kareshk et al. explored the idea of building binary
classifiers to predict conflicting changes (Owhadi-Kareshk et al., 2019). Their model
consists of nine features, of which the number of jointly edited files is the dominant
one. The model has been evaluated on a dataset of syntactic merge conflicts reverse
engineered from git histories. The model’s reported performance in terms of precision
ranges from 0.48 to 0.63 (depending on the programming languages).

While one of our proposed metrics, our Extent of Overlap, is akin to the dominant
feature in Owhadi-Kareshk’s model, unfortunately their proposed approach cannot
be applied in our context. In particular the reported precision is too low and would
generate too many false alarms which would render our tool unused (Winters et al.,
2020). Furthermore, the reported precision and recall are measured based on a gold
standard of syntactic changes. Instead, we target an evaluation with actual develop-
ers, based on a service deployed on repositories they are working with on a daily
basis. As we will see in our evaluation, these developers not only value warnings
about syntactic changes, but also semantic conflicts (Fowler, 2020), or even cases of
code/effort duplication (as explained in Section 4.6.3).

Empirical studies of merge conflicts and collaboration. There exists many
studies that do not propose tools, but study merge conflicts or present methods to
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predict conflicts or recommend coordination. Zhang et al. (F. Zhang et al., 2012)
conducted an empirical study of the effect of file editing patterns on software quality.
They conducted their study on three open source software systems to investigate the
individual and the combined impact of the four patterns on software quality. To the
best of our knowledge ours is the first empirical study that is conducted at scale, on
industry data. We perform analysis on 67K bug reports, from 83K files (in comparison
to the studies conducted by Zhange et al. which looked at 98 bugs, from 2,140 files).

Ashraf et al. presented reports from mining cross-task artifact dependencies from
developer interactions (Ashraf et al., 2019). Dias et al. proposed methods to under-
standing predictive factors for merge conflicts (Dias et al., 2020a), i.e., how conflict
occurrence is affected by technical and organizational factors. Studies conducted by
Blincoe et al. and Cataldo et al. (Ashraf et al., 2019; Cataldo et al., 2006) show the
importance of timely and efficient recommendations and the implications for the de-
sign of collaboration awareness tools. Studies like this form a basis for building solu-
tions that are scalable and responsive (the large-scale ConE service that we deployed
at Microsoft) and their importance in creating awareness of the potential conflicts.

Costa et al. proposed methods to recommend experts for integrating changes
across branches (Costa et al., 2016) and characterized the problem of developers’
assignment for merging branches (Costa et al., 2014). They analyzed merge profiles
of eight software projects and checked if the development history is an appropriate
source of information for identifying the key participants for collaborative merge.
They also presented a survey on developers about what actions they take when they
need to merge branches, and especially when a conflict arises during the merge. Their
studies report that the majority of the developers (75%) prefer collaborative merging
(as opposed to merging and taking decisions alone). This reiterates the fact that tools
that facilitate collaboration, by providing early warnings, are important in handling
merge conflict situations.

4.3. CONCURRENT VERSUS NON-CONCURRENT EDITS IN

PRACTICE
The differences in the fashion in which edits are made to source code files (concur-
rent vs non-concurrent) can cause various unintended consequences (as explained in
section 4.1). We performed large scale empirical analysis of source code edits to un-
derstand the ability of concurrent edits to cause bugs. We picked bugs as a candidate
for our case study because it is relatively easy to mine and generate massive amounts
of ground truth data about bugs and map them back to the changes that induced the
bugs, by leveraging some of the techniques proposed by Wang et al. (S. Wang et al.,
2019a), at Microsoft’s scale. Understanding the extent of the problem, i.e., the side
effects caused by concurrent source code edits in a systematic way, is an essential
first step towards making a case for building an early intervention service like ConE.
This allows us to quickly sign up customers inside the company and deploy the ConE
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system on thousands of repositories, for tens of thousands of developers, across Mi-
crosoft. To that extent, we formulate two research questions that we would like to
find answers for.

• RQ1 How do concurrent and non-concurrent edits to files compare in the num-
ber of bugs introduced in these files?

• RQ2 To what extent are concurrent, non-concurrent, and all edits, correlated
with subsequent bug fixes to these files?

Answering the questions above allows us to assess the urgency of the problem.
The methods, techniques and outcomes used can also be employed to inform decision
makers, when investments in the adoption of techniques like ConE need to be made.

We performed an empirical study on data that is collected from multiple, differ-
ently sized repositories. For our study, we focused on one of the important side effects
that is induced by collaborative software development, i.e., the “number of bugs intro-
duced by concurrent edits”. We chose this scenario as we have an option to generate
an extensive set of ground truth data, by leveraging techniques proposed by Wang et
al. (S. Wang et al., 2019a), to tag pull requests as bug fixes. They employ two simple
heuristics to tag bug fixes: the commit message should contain the words “bug” or
“fix”, but not “test case” or “unit test”. Tagging changes that introduce bugs is not
a practice that is followed very well in organizations. Studies have shown that files
changed in bug fixes can be considered as a good proxy to files that introduced the
bugs in the first place (Kim et al., 2006; Williams & Spacco, 2008). Combining both
ideas we created a ground truth data set which we used in our empirical analysis. We
broadly classify our empirical study into three main steps.

1. Data collection: Collect data using the data ingestion framework that we have
built which ingests meta data about pull requests (author, created/closed dates,
commits, reviewers etc), iterations/updates of pull requests, file changes in pull
requests, and intent of the pull request (feature work, bug fix, refactoring etc).

2. Use the data collected in Step 1 to analyze the impact of concurrent edits on
bugs or bug fixes in comparison to non-concurrent edits.

3. Explain the differences in correlations between concurrently versus non-concurrently
edited files to the number of bugs that they introduce.

For the purpose of the empirical analysis we define concurrently and non-concurrently
edited files as follows:

• Concurrently edited files: Files which have been edited in two or more pull
requests, at the same time, while the pull requests are active. A pull request is
in an ‘active’ state when it is being reviewed but not completed or merged.
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• Non-concurrently edited files: Files which have never been edited in two pull
requests while they both are in active state. So, we are sure that changes made
to these files are always made in the latest version and are merged before they
are edited through another active pull request

4.3.1. DATA COLLECTION
We collected data about file edits (concurrent and non-concurrent) from the pull re-
quest data, for six months, from six repositories. We picked repositories in which
at least 1,000 pull requests are created every month. After reducing the repositories
to a subset, we randomly selected six repositories for the purpose of the analysis.
We made sure our data set is representative in various dimensions like size (small
(1), medium (2), large (3)), the nature of the product (on-prem product (2) vs cloud
service (4)), geographical distribution of the teams (US only (2) versus split between
different countries and time zones (4)), and programming languages (as listed in Table
4.3). We performed data cleansing by applying the filters listed below:

• Exclude PRs that are open for more than 30 days: the majority of these pull
requests are ‘Stale PRs’ which will be left open forever or abandoned at a later
point of time. Studies shows that 70% of the pull requests gets completed
within a week after creation (Gousios et al., 2014).

• Exclude PRs with more than 50 files (this is the 90th percentile for file counts
in our pull request data set). This is one of the proxies that we use to to exclude
PRs which are created by non-human developers that do mass refactoring or
styling changes etc.

• Exclude edits made to certain file types. We are primarily interested in under-
standing the effects of concurrent edits on source code changes as opposed to
files like configuration or initialization files which are edited by lot of develop-
ers through lot of concurrent pull requests, all the time. For the purpose of this
study, we consider only the following file types: .cs, .c, .cpp, .ts, .py, .java, .js,
.sql.

• Exclude files that are edited a lot: For example, files that contain global con-
stants, key value pairs, configuration values, or enums are usually seen in a lot
of active pull requests at the same time. We studied 200 pull requests to un-
derstand the concurrent edits to these files. They typically are in the order of a
few thousands of lines in size, which is well above the median file size. In all
cases the edits are localized to different areas of the files and surgical in nature.
Sometimes, the line numbers of the edits are far away (few thousands of lines
away, at least). Therefore, we impose a filter on the edit count of fewer than
twenty times in a month (90th percentile of edit counts for all source code files)
and exclude any files that are edited more than this. Without this filter, these
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Table 4.1: Distribution of concurrently and non-concurrently edited files per repository

Repo Distinct
number
of con-

currently
edited files

Distinct
number
of non-

concurrently
edited files

Number
of bug fix

pull re-
quests

Percentage
of con-

currently
edited files

Percentage
of non-

concurrently
edited files

Repo-1 3500 4875 4781 41.7 58.2
Repo-2 10470 16879 15678 38.2 61.8
Repo-3 2907 4119 5467 41.3 58.7
Repo-4 5560 7550 8972 42.4 57.6
Repo-5 4110 7569 9786 35.2 64.8
Repo-6 5987 9541 9443 38.5 61.5

Total 32534 50533 54127 39.1 60.9

frequently edited files would dominate the results of the ConE recommenda-
tions thus yielding too many warnings for harmless concurrent edits.

We started with a data set of 208,556 pull requests. As bug fixes is our main
concentration for the empirical analysis, we removed all the pull requests that are not
bug fixes. That reduced the data set to 67,155 pull requests (32.2% of the pull requests
are bug fixes). Then we applied other filters mentioned above, which further reduced
the data set to 54,127 pull requests (25.95%). Table 4.1 shows the distribution of
concurrently and non-concurrently edited files per repository.

4.3.2. RQ1: CONCURRENT VERSUS NON-CONCURRENT BUG IN-
DUCING EDITS

We take every (concurrently or non-concurrently) edited file, and check whether the
nature of the edit has any effect on the likelihood of that file appearing in bug fixes
after the edit has been merged. We compare how the percentage of edited files that
are seen in bug fixes (within a day, a week, two weeks and a month), varies with the
nature of the edit (concurrent vs non-concurrent).

Figure 4.1 shows the impact of concurrent versus non-concurrent edits on the
number of bugs being introduced. Across all six repositories, the percentage of bug
inducing edits is consistently higher for concurrently edited files (blue bars) than for
non-concurrently edited ones (orange bars).

4.3.3. RQ2: EDITS IN FILES VERSUS BUG FIXES IN FILES
We use Spearman’s rank correlation to analyze how the total number of edits, con-
current edits, and non-concurrent edits to files each correlate with the number of bug
fixes seen in those files.
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Figure 4.1: Graphs showing how the percentage of files seen in bug fixes (within a day, a week, two weeks
and a month) is changing. Blue and orange bars represent concurrently and non-concurrently edited files,
respectively.
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Table 4.2: Spearman rank correlation analysis for total edits, concurrent edits, non-concurrent edits vs bug
fixes.

Repo
Total Edits to

Bug Fixes
Concurrent Edits to

Bug Fixes
Non-Concurrent Edits

to Bug Fixes

Repo-1 0.145∗∗∗ 0.298 ∗∗∗ 0.034 ∗∗
Repo-2 0.072∗∗∗ 0.140 ∗∗∗ 0.057 ∗∗
Repo-3 0.140 ∗ 0.330 ∗ 0.120 ∗
Repo-4 −0.077∗∗∗ 0.451 ∗∗∗ −0.461 ∗∗∗
Repo-5 0.164∗∗∗ 0.472 ∗∗∗ 0.091 ∗∗∗
Repo-6 0.084 ∗∗ 0.196 ∗∗∗ 0.005 ∗

***p < 0.001, **p < 0.01, *p < 0.05

While Figure 4.1 shows that more concurrently edited files are seen in bug fix pull
requests (compared to non-concurrently edited ones), this might also be because these
files are frequently edited and seen in bug fix pull requests naturally. To validate this,
we performed Spearman rank correlation analysis for each file that is ever edited with
respect to how many times it is seen in bug fixes (the numbers of data points from the
six repositories are listed in Table 4.1):

• The total number of times a file is seen in all completed pull requests vs the
number of bug fixes in which it is seen

• The total number of times a file is seen in concurrent pull requests vs the num-
ber of bug fixes in which it is seen

• The total number of times a file is seen in non-concurrent pull requests vs the
number of bug fixes in which it is seen

The results are in Table 4.2. We observe that concurrent edits (third column)
consistently are correlated with bug fixes, more so than non-concurrent edits (column
4) and all edits (column 2). For all repositories except Repo-4, there exists almost no
correlation between non-concurrent edits (column 4) and bug fixes.

For Repo-4, frequently edited files are not necessarily the ones seen in more bug
fixes: there exists a negative correlation between total edits (column 2) and the num-
ber of bug fixes. However, files that are concurrently edited (column 3) do have a
positive correlation with the number of bug fixes.

The variety in the correlations can be explained by the fact that concurrent editing
is just one of many factors related to the need for bug fixing. Other factors might
include the level of modularization, developer skills, the test adequacy, engineering
system efficiency, and so on.

90



4.4. SYSTEM DESIGN
Backed by the correlation analysis suggesting that concurrent edits maybe prone to
causing issues. Also, there exists a huge demand from engineering organizations,
inside Microsoft, for a better tool that can detect conflicting changes early on and
facilitate better communication among developers, we moved forward to materialize
the idea of ConE into reality. We then performed large scale testing and validation by
deploying ConE on 234 repositories. Details about the implementation, deployment
and scale-out are provided in section 4.5.

In this section we describe ConE’s conflict change detection methodology, algo-
rithm and system design in detail. We will use the following terminology:

• Reference pull request is a pull request in which a new commit/update is pushed
thus triggering the ConE algorithm to be run on that pull request.

• Active pull request is a pull request whose state is ‘active’ when the ConE
algorithm is triggered to be run on a reference pull request.

A key design consideration is that we want to avoid false alarms. In the current
state of the practice developers never receive warnings about potentially harmful con-
current edits. Based on this we believe it is acceptable to miss a few warnings. On
the other hand, giving false warnings will likely lead to rejection of a tool like ConE.
For that reason, ConE has several built-in heuristics that are aimed at reducing such
false alarms.

Due to the nature of the problem, the domain we are operating in, and the algo-
rithm we have in-place, it is possible to see notifications that are false alarms. One of
the design choices that we had to make was to minimize the false alarms by making
it more conservative. A side effect of this is our coverage (number of pull requests
for which we send a notification) will be lower. Studies have shown that, in large
organizations, tools that generate many false alarms are not used and eventually dep-
recated (Winters et al., 2020). However, recent techniques proposed by Brindescu
et al. (Brindescu et al., 2020), can potentially aid in facilitating a decision by deter-
mining the merge conflict situations to flag, based on the complexity of the merge
conflict.

4.4.1. CORE CONCEPTS
ConE constantly listens to events that happen in an Azure DevOps environment (“Azure
DevOps”, 2021). When any new activity is recorded (e.g., pushing a new update
or commit) in a pull request, the ConE algorithm is run against that pull request.
Based on the outcome, ConE notifies the author of the pull request about conflict-
ing changes. We describe two novel constructs that we came up with for detecting
conflicting changes and determining candidates for notifications: Extent of overlap
(EOO) and the existence of ‘Rarely Concurrently Edited’ files (RCEs). Next, we
provide a detailed description of ConE’s conflict change detection algorithm and the
parameters we have in place to tune ConE’s algorithm.
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EXTENT OF OVERLAP (EOO)
ConE scans all the active pull requests which meet our filtering criteria (explained in
section 4.3.1) and for each such pull request (reference pull request) calculates the
percentage of files edited in the reference pull request that overlap with each of the
active pull requests.

Extent of Overlap= | Fr ∩Fa −Fe |
| Fr |

∗100

where Fr = Files edited in reference pull request, Fa = Files edited in a given active
pull request, Fe = Files excluded i.e., files that are not of types listed in the paragraph
below. The idea is to find the percentage of items that are commonly edited in multiple
active pull requests and create a pairwise overlap score for each of the active and
reference pull request pairs. Intuitively, if the overlap between two active pull requests
is high, the probability of them doing duplicate work or causing merge conflicts when
they are merged is also going to be high. We use this technique to calculate the
overlap in terms of number of overlapping files for now. This can be easily extended
to calculate the overlap between two active pull requests in terms of number of classes
or methods or stubs if that data is available.

A milder version of EOO is used by the model proposed by Owhadi-Kareshk et al
(Owhadi-Kareshk et al., 2019), which looks at the number of files that are commonly
edited in two pull requests when determining conflicting changes. While calculating
extent of overlap it is important to exclude edits to certain file types whose proba-
bility of inducing conflicts is minimal. This helps in reducing false alarms in our
notifications significantly. Based on a manual inspection of 500 randomly selected
bug fix pull requests, by the first three authors, we concluded that concurrent edits
to initialization or configuration files are relatively safe, but that concurrent edits to
source code files are more likely to lead to problems. Therefore, we created an al-
low list based on file types as shown in Table 4.3. As can be seen, this eliminates
around 6.4% of the files. Note that such an allow list is programming language-
specific. When ConE is to be applied in different contexts, different allow lists are
likely needed.

RARELY CONCURRENTLY EDITED FILES (RCES)
These are the files which typically are not edited concurrently, recently. Usually all
the updates or edits to them are performed, in a controlled fashion, by a single person
or small set of people. Seeing RCEs in multiple active pull requests is an anomalous
phenomenon. For example, a file foo.cs is always edited by a given developer, through
one active pull request at any point. The ConE system keeps a track of such files and
tags them as RCEs. In the future, if multiple active pull requests are seen editing this
file simultaneously, ConE flags them. Our intuition is that, if a lot of RCEs are seen
in multiple active pull requests, which is unusual, changes to these files should be
reviewed carefully and everyone involved in editing them should be aware of others’
changes.
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Table 4.3: Distribution of file types seen in bug fixes

File type Percentage On ConE allow list?

.cs 44.32 yes

.cpp 18.55 yes

.c 11.27 yes

.sql 6.20 yes

.java 5.36 yes

.js 3.98 yes

.ts 3.79 yes

.ini 0.20 no

.csproj 0.04 no
others 6.29 no

Table 4.4: Number of Bug Fixes with RCEs and No RCEs

Edit type Count Percentage

Bug fix PRs with no RCEs 1617 78.3
Bug fix PRs with at least one RCE 446 21.7

We performed an empirical analysis, from our shadow mode deployment data
(as explained in Section 4.5.2), to understand how pervasive RCEs really are. As
explained in Table 4.4, 21.7% of bug fixes contains at least one RCE in them while
the total number of RCEs in these repositories is just 2%. Based on this data and
anecdotal feedback from developers, we realized that concurrent edits to RCEs is an
unusual activity which should not be seen a lot. But, if observed, it should be notified
to all the developers involved.

For building the ConE system, we ran the RCE detection algorithm that looks at
the pull requests that are created in a repository within the last three months from
when the algorithm runs. The duration can be increased or decreased based on how
big or how active the system is. This process, after each run, creates a list of RCEs.
Once the initial bootstrapping is done and a list of RCEs is prepared, that list is used
by the ConE algorithm when checking for the existence of the RCEs in a pair of pull
requests. The RCE list is updated and refreshed once every week, through a separate
process. The process of detecting and updating RCEs is resource intensive. So, we
need to strike a balance between how quickly we would like to update the RCE list
versus how many resources we need to throw at the system, without compromising
the quality of the suggestions. We picked one week as the refresh interval through
multiple iterations of experiments. This process guarantees that the ConE system
reacts to the changes in the rarity of concurrent edits, especially the cases where
an RCE becomes a non-RCE due to the concurrent edits it experiences. The steps
involved in creating and updating RCEs are listed below.
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Creating the RCE list:

1. Get all the pull requests created in the last three months from when the algo-
rithm is run. Create a list of all the files that are edited in these pull requests by
applying the filters explained in the paragraph above on file types.

2. Prepare sets of pull requests that overlap with others. Prepare a list of files
edited in the overlapping pull requests by applying the filters explained in the
paragraph above on file types.

3. The list of files created in step-1 minus the list of files created in step-2 consti-
tutes the list of rarely concurrently edited files (RCEs).

Updating the RCE list:

4. Remove files from the RCE list if they are seen in overlapping pull requests
when the algorithm is run the next time. Because, if they are seen in overlap-
ping pull requests, they will not be qualified to be RCEs anymore.

5. Refresh the list by adding the new RCEs discovered in the latest edits, when
the algorithm is run again.

4.4.2. THE CONE ALGORITHM
ConE’s algorithm to select candidate pull requests that developers need to be notified
about primarily leverages the techniques explained above: Extent of Overlap (EOO)
and existence of Rarely Concurrently Edited files (RCEs). Together these serve to
reduce the total number of active pull requests under consideration, in order to pick
the pull requests that need to be notified about. The ConE algorithm consists of seven
steps listed below:

Step 1: Check if the reference pull request’s age is more than 30 days. Studies
have shown that pull requests which are active for so long may not even be completed
(Gousios et al., 2014). Exclude all such pull requests.

Step 2: Construct a list of files that are being edited in the reference pull request.
While constructing this set, we exclude any files of types that are not in the allow list
from Table 4.3.

Step 3: Construct a set of files that are being edited in each of the active pull
requests, using the methodology mentioned in Steps 1 and 2. One extra filter that we
apply here is to exclude PRs which are being interacted by the author of the reference
pull request. If the author of the reference pull request is already aware of this pull
request there is no need to notify thems.

Step 4: Calculate the extent of overlap using the formula described in section
4.4.1. For every pair of reference pull request PRr and active pull request PRa1,
calculate the tuple Tea1 = 〈PRr, PRa1, E1〉, where E1 is the extent of overlap between
the two pull requests. Do this for all the active pull requests with respect to a reference
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pull request. At the end of this step we have a list of tuples, Tea = [〈PR1, PR7, 55〉,
〈PR1, PR12, 95〉, 〈PR1, PR34, 35〉....].

Step 5: Check for the existence of rarely concurrently edited files (RCEs) and
the number of RCEs between each pair of reference and active pull request. Create
a tuple Tr = 〈PRr, PRa1, R1〉 where PRr is the reference pull request, PRa1 is active
pull request and R1 is the number of RCEs in the overlap of reference and active pull
requests. Do this for all reference and active pull request combinations. At the end of
this step we have a list of tuples, Tra = [〈PR1, PR7, 2〉, 〈PR1, PR12, 2〉, 〈PR1, PR34,
9〉....]

Step 6: Apply thresholds on the values for extent of overlap and the number of
RCEs, as explained in section 4.4.3. For example, we can apply a threshold that we
select the pull requests whose extent of overlap is greater than 50% OR there should
be at least two RCEs. We go through the list of tuples that we have generated in
Steps 4 and 5 above and apply the thresholding criteria.

Step 7: Apply a ranking algorithm to prioritize the pull requests that need to
be looked at first if multiple pull requests are selected by the algorithm. We rank
candidate pull requests based on the number of RCEs present and then by the extent
of overlap. This is because RCEs being edited through multiple active pull requests
is an anomalous phenomenon which needs to be prioritized.

4.4.3. DEFAULT THRESHOLDS AND PARAMETER TUNING
In this section we describe the thresholding criteria, and the rationale that needs to be
applied while choosing parameter values for large scale deployment. The parameters
that we have in place are: the extent of overlap (EOO), the number of rarely concur-
rently edited files (RCEs), the window of time period (i.e., the number of months to
consider for determining RCEs), and the total number of file edits in the reference
PR.

In line with our objectives, we are searching for parameter settings that find actual
conflicts, yet minimize false alarms. Furthermore, we target settings that are easy to
explain (e.g., “this PR was flagged because half of the files changed it are also touched
in another PR”).

Threshold for EOO: For Extent of Overlap, we explored what would happen if
we put the threshold at 50%: if at least half of the files edited in another pull re-
quest, consider it for notification. To assess the consequences of this, we randomly
selected 1654 pull requests, which have at least one file overlapped with another pull
request. This data set is a subset of the data collected to perform empirical analy-
sis on concurrent edits (see Section 4.3). We manually inspected each of these 1654
pull requests to make sure the overlap we observe is indeed correct. Our empirical
analysis (see Table 4.5), shows that 50% of the pull requests have an overlap of 50%
or less. Thus, this simple heuristic eliminates half of the candidate pull requests for
notification, substantially reducing potential false alarms, and keeping the candidates
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Table 4.5: Distribution of extent of overlap (EOO)

Percentage of overlap
(range)

Number of PRs

0-10 309
11-20 223
21-30 137
31-40 87
41-50 25
51-60 359
61-70 92
71-80 21
81-90 23
91-100 378

Figure 4.2: Distribution of the number of PRs
with a given number of RCEs

Figure 4.3: Distribution of the number of PRs
with a given number of overlapping files.

that are more likely to be in conflict.

Threshold for RCEs: For RCEs we again followed a simple rule: if the active-
reference pull request pair contains at least two files that are modified in them, which
are always edited in isolation, select the active pull request as a candidate. As shown
in Figure 4.2, the majority of the pull requests contains fewer than two RCEs. To be
conservative, we imposed a threshold on RCE ≥ 2, i.e., to select a PR as a candidate,
that pull request needs to have at least two RCEs that are commonly edited between
the reference and active pull requests.

Number of overlapping files: Assume a developer creates a pull request by editing
two files and one of them is also edited in another active pull request. Here EOO is
50%. This means this pull request qualifies to be picked as a candidate for notification.
Editing just one file in two active pull requests might not be enough to reasonably
make an assumption about the potential of conflicts arising. Therefore, we impose
a threshold on the “number of files” that needs to be edited, simultaneously, in both
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Figure 4.4: ConE System design: Pull requests from Azure DevOps are listened to by the ConE change
scanner, suggestion generator, notification engine, and decorator

pull requests. As a starting point, we imposed a threshold of two, i.e., every candidate
pull request should have more than two overlapping files (in addition to satisfying the
EOO condition of >= 50%). We plotted the distribution of the number of overlapping
files in Figure 4.3. As shown in Figure 4.3, the number of PRs (on the Y-axis) drops
sharply after the number of overlapping file edits is two. Therefore, we picked two as
the default threshold.

Threshold Customization: In addition to the empirical analysis, we collected ini-
tial feedback from developers working with the production systems through our shadow
mode deployment (Section 4.5.2). One of the prominent requests from the developers
was to enable the repository administrators to change the values of the parameters ex-
plained above based on the developer feedback. Therefore, we provided customiza-
tion provisions to make ConE system suit each repository’s needs. Based on the
pull request patterns and needs of the repository, system administrators can tune the
thresholds to optimize the efficacy of the ConE system for particular reporsitories.

4.5. IMPLEMENTATION AND DEPLOYMENT
4.5.1. CORE COMPONENTS AND IMPLEMENTATION
The core ConE components are displayed in Figure 4.4. ConE is implemented on
Azure DevOps (ADO), the DevOps platform provided by Microsoft. We chose to de-
velop ConE on ADO due to its extensibility that allows third party services to interact
with pull requests through various collaboration points such as adding comments in
pull requests, a rich set of APIs provided by ADO to read meta data about pull re-
quests, and service hooks which allow a third party application to listen to events such
as updates that happen inside the pull request environment.

Within Azure DevOps, as shown in the left box of Figure 4.4, ConE listens to
events triggered by pull requests, and has the ability to decorate pull requests with
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notifications about potentially conflicting other pull requests. The ConE service it-
self, shown at the right in Figure 4.4, runs within the Azure Cloud. The ConE change
scanner listens to pull request events, and dispatches them to workers in the ConE sug-
gestion generator. Furthermore, the scanner monitors telemetry data from interactions
with ConE notifications. The core ConE algorithm is offered as a scalable service in
the Suggestion Generator, with parameters tunable as explained in Section 4.4.3.

The ConE Service is implemented using C# and .NET 4.7. It has been built on top
of Microsoft Azure cloud services: Azure Batch (“Azure Batch”, 2020) for compute,
Azure DevOps service hooks for event notification, Azure worker roles and its service
bus for processing events, Azure SQL for data storage, Azure Active Directory for
authentication and Application Insights for telemetry and alerting.

4.5.2. CONE DEPLOYMENT
We selected 234 repositories to pilot ConE in the first phase. Some of the key at-
tributes based on which the repository selection process has taken place are listed
below:

• Prioritize repositories where we have developers and managers who volun-
teered to try ConE, since we expect them to be willing to provide meaningful
feedback.

• Include repositories that are of different sizes (based on the number of files
present in them): very large, large, medium, and small.

• Include repositories that host source code for diverse set of products and ser-
vices. That includes client side products, mobile apps, enterprise services,
cloud services, and gaming services.

• Consider repositories which have cross-geography and cross-timezone collab-
orators, as well as repositories that have most of the collaborators from a single
country.

• Consider repositories that host source code written in multiple programming
languages including combinations of Java, C#, C++, Objective C, Swift, Javascript,
React, SQL etc.

• Include repositories which contain a mix of developers with different levels of
experience (based on their job titles): Senior, mid-level and junior.

We enabled ConE in shadow mode on 60 repositories for two months (with a
more liberal set of parameters to maximize the number of suggestions we generate).
In this mode we actively listen to pull requests, run the ConE algorithm, generate
suggestions, and save all the suggestions in our SQL data store for further analysis,
without sending the notifications to the developers. We generated and saved 1200
suggestions by enabling ConE in this mode for two months. We then went through
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Figure 4.5: ConE notifications that a pull requesthas significant overlap with another pull request.

the suggestions and the telemetry collected to optimize the system before a large scale
roll out.

The primary purpose of shadow mode deployment is to validate whether opera-
tionalizing a service like ConE is even possible at the scale of Microsoft. Further-
more, it allowed us to check whether we indeed can flag meaningful conflicting pull
requests, and what developers would think of the corresponding notifications. The
telemetry we collected includes the time it takes to run the ConE algorithm, resource
utilization, the number of suggestions the ConE system would have made, etc. We
experimented with tuning our parameters (explained in subsection 4.4.3) and their im-
pact on the processing time and system utilization. This helped us in understanding
the scale and infrastructure requirements and overall feasibility.

We collected feedback from the developers by reaching out to them directly. We
have shown them the suggestions we would have made if the ConE system was en-
abled on their pull requests, format of the suggestions and the mode of notifications.
We iterated over the design of the notification based on the user feedback before set-
tling on the version of the notification as shown in Figure 3.5.

After multiple iterations of user studies and feedback collection, on the design,
frequency, and the quality of the ConE suggestions as validated by the developers
participated in our shadow mode deployment program, we turned on the notifications
on 234 repositories.
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4.5.3. NOTIFICATION MECHANISM
We leveraged Azure DevOps’s collaboration points to send notifications to develop-
ers. A notification is a comment placed by our system in Azure DevOps pull requests.
Figure 4.5 shows a screenshot of a comment placed by ConE on an actual pull request.
It displays the key elements of a ConE notification: a comment text which provides a
brief description of the notification, the id of the conflicting pull request, the name(s)
of the author(s) of the conflicting pull request, files that are commonly edited in the
pull requests, a provision to provide feedback by resolving or not fixing a comment
(marked as “Resolved” in the example), and the option to reply to the comment inline
to provide explicit written feedback.

While ConE actively monitors every commit that is being pushed to a pull request,
it will only add a second comment on the same pull request again if the state of the
active or the reference pull request is significantly changed in subsequent updates and
ConE finds a different set of pull requests as candidates for notification.

In a ConE comment, elements like pull request id, file names, author name are
actually hyperlinks. The pull request id hyperlink points to the respective pull re-
quest’s page in Azure DevOps. The file name hyperlink points to a page that shows
the diff between the versions of the file in the current and conflicting pull requests.
The author name element, upon clicking, spins up a chat window with the author of
the conflicting pull request instantly. When people interact with these elements by
clicking them, we track those telemetry events (which is consented by the users of
the Azure DevOps system, in Microsoft) to better understand the level of interaction
developers are having with the ConE system.

4.5.4. SCALE
The ConE system has been deployed on 234 repositories in Microsoft. The reposito-
ries have been picked based to maximize the diversity and variety of the repositories
in various dimensions as explained in Section 4.5.2. Since enabled in March 2020, un-
til September 2020 (when we pulled the telemetry data) ConE evaluated 26,000 pull
requests which were created in all the repositories on which ConE has been enabled.
Within these 26,000 pull requests, an additional 156,000 update events (commits on
the same branch, possibly affecting new files) occurred. Thus, ConE had to react to
and process a total of 182,000 events that were generated, within Azure DevOps, in
those six months. For every update, ConE has to compare the reference pull request
with all active pull requests that match ConE’s filtering criteria. In total ConE made
a total of approximately two million comparisons.

The scale of operations and processing is expected to grow as we onboard new
and large repositories. The simple and lightweight nature of the ConE algorithm com-
bined with the scalable architecture and efficient design, and its engineering on Azure
cloud has given us the ability to process events at this scale with a response rate of
less than four seconds per event. The time it takes to process an event end to end, i.e.,
receiving the pull request creation or update event, running the ConE algorithm and
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Figure 4.6: Distribution of notifications per repository

passing the recommendations back (if any) has never taken more than four seconds.
ConE employed a single service bus queue and four worker roles in Azure to handle
the current scale. As per our monitoring and telemetry (resource utilization on Azure
infrastructure, processing latency, etc.) ConE still had bandwidth left to serve the next
hundred repositories of similar scale with the current infrastructure setup.

4.6. EVALUATION: DEVELOPERS PERCEPTIONS ABOUT

CONE’S USEFULNESS
Out of the 26,000 pull requests under analysis during ConE’s six month deployment
(Section 4.5.4), ConE’s filtering algorithm (Section 4.4.2) excluded 2,735 pull re-
quests. In the remaining 23,265 pull requests, ConE identified 775 pull requests to
send notifications to (3.33%). In this section, we evaluate the usefulness of these 775
notifications.

All repositories were analyzed with the standard configuration; No adjustments
were made to the parameters. Though the service is enabled to send notifications
in 234 repositories, during the six-month observation period, ConE raised alerts on
just 44 distinct repositories. As shown in Figure 4.6, the notification volume varies
between repositories.

4.6.1. COMMENT RESOLUTION PERCENTAGE
ConE offers an option for users to provide explicit feedback on every comment it
placed, within their pull requests. Users can select the “Resolved” option if they like
or agree with the notification, and the “Won’t fix” option if they think it is not useful.
A subset of users were given instructions and training on how to use these options.
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Figure 4.7: Number of positive (Resolved), negative (Won’t Fix), and neutral (Active) responses to ConE
notifications

The notification itself also contains instructions, as shown in Figure 3.5. A user can
choose not to provide any feedback by just leaving the comment as is, in the “Active”
state. Through this we collect direct feedback from the users of the ConE system.

Figure 4.7 shows the distribution of the feedback received. The vast majority
(554 out of 775 for 71.48 %) of notifications was flagged as “Resolved”. For 147
(18.96%) of the notifications, no feedback was provided. Various studies have shown
that users tend to provide explicit negative feedback when they do not like or agree
with a recommendation, while tend not be so explicit about positive feedback (Liu et
al., 2019; Steck, 2011). Therefore, we cautiously interpret this as neutral to positive.

We manually analyzed all 74 (9.5%) cases where the developers provided negative
feedback. For the majority of them, the developer was already aware of the other
conflicting pull request. In some cases the developers thought that ConE is raising a
false alarm as they expect no one else to be making changes to the same files as the
ones they are editing. When we show them other overlapping pull requests that were
active while they were working on their pull request, to their surprise, the notification
were not false alarms. We list some of the anecdotes in subsection 4.6.4.

4.6.2. EXTENT OF INTERACTION
As discussed in Section 4.5.3, a typical ConE notification/comment has multiple el-
ements that a developer can interact with: For each conflicting pull request, the pull
request id, files with conflicting changes, and the author name are shown. These are
deep links. Developers can just take a look at the comment and ignore it or interact
with it by clicking on one of the “clickable elements” in the ConE notification. If the
user decides to pursue further clicking on one of these elements, that action is also
logged as telemetry (in Azure AppInsights).

From March 2020 to September 2020, we logged 2170 interactions on 775 com-
ments that ConE has placed, which amounts to 2.8 clicks per notification on aver-
age. Measured over time, as shown in Figure 4.8, the number of interactions and the
“clicks per notification” are clearly increasing as more and more people are getting
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Figure 4.8: Number of notifications (orange), and number of interactions (blue) with those notifications,
per month. As developers become more familiar with ConE, they increasingly interact with its notifications

used to ConE comments, and are using it to learn more about conflicting pull requests
recommended by ConE.

Note that the extent of interaction does not include additional actions developers
can take to contact authors of conflicting pull requests once ConE has made them
aware of the conflicts, such as reaching out by phone, walking into each other’s office,
or a simple talk at the water cooler.

4.6.3. USER INTERVIEWS
The quantitative feedback discussed so far captures both direct (comment resolution
percentage) and indirect (extent of interaction) feedback. To better understand the
usefulness we directly reached out (via Microsoft Teams, asynchronously) to authors
of 100 randomly selected pull requests for which ConE placed comments. The user
feedback for these 100 pull requests is 45% positively resolved, 35% won’t fix, and
20% no response. The interviewers did not know these authors, nor had worked
with them before, also because the teams working on the systems under study are
organizationally far away from the interviewers.

The interview format is semi-structured where users are free to bring up their
own ideas and free to express their opinions about the ConE system. We posed the
following questions:

1. Is it useful to know about these other PRs that change the same file as yours?

2. If yes, roughly how much effort do you estimate was saved as a result of find-
ing out about the overlapping PRs? If not, is there other information about
overlapping PRs that could be useful to you?

3. Does knowing about the overlapping PRs help you to avoid or mitigate a future
merge conflict?
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Table 4.6: Distribution of qualitative feedback responses

Category # of responses

Favorable
I’d love to use ConE 25 (52.08%)

I will use ConE 20 (41.67%)
Unfavorable I don’t want to use ConE 3 (6.25%)

4. What action (if any) will you likely take now that you know about the overlap-
ping PRs?

5. Would you be interested in keeping using ConE which notifies you about over-
lapping PRs in the future? (Note that we aim to avoid being too noisy by not
alerting if the overlapping files are frequently edited by many people, if they
are not source code files, etc.)

We did not receive the responses in a uniform format directly based on the struc-
ture of the questions. We used Microsoft Teams to reach out to the developers and
the questions are open ended. Therefore, we could not enforce a strict policy on the
number of questions the respondents should answer and on the length of the answers.
Some of the participants answered all questions, while some answered only one or
two. Some respondents were detailed in their response, while some were succinct
with ‘yes’ or ‘’no’ answers. Some of the respondents provided a free-form response,
with an average word count of just 47 words per response. So, we could not calculate
the distribution of responses for all questions. However, we see that for question-
5, there were responses. We coded and categorized the responses we received for
question-5 as explained below.

The first three authors, together, grouped the responses that we received (48 out of
100), until consensus was reached, into two categories: Favorable (if the users would
like to continue using ConE, i.e., the answer to question 5 is along the lines of ‘I will
use ConE’ or a ‘I’d love to use/keep using ConE’) and Unfavorable (users do not find
the ConE system to be useful and do not want to continue using it.). Table 4.6 shows
the distribution of the feedback: 93.75% of the respondents indicated their interest
and willingness to use ConE.

4.6.4. REPRESENTATIVE QUOTES
To offer an impression, we list some typical quotes (positive and negative) that we
received from the developers. In one of the pull requests where we sent a ConE
notification notifying about potential conflicting changes, a developer said:

"I wasn’t aware about other 2 conflicting PRs that are notified by ConE.
I believe that would be very helpful to have a tool that could provide
information about existence of other PRs and let you know if they perform
duplicate work or conflicting change!!"
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It turned out that the other two developers (the authors of the conflicting pull requests
flagged by ConE) are from entirely different organizations and geographies. Their
common denominator is the CEO of the company. It would be very difficult for the
author of the reference pull request to know about the existence of the other two pull
requests without ConE bringing it to their notice.

Several remarks are clear indicators of the usefulness of the ConE system:

"Yes, I would be really interested in a tool that would notify overlapping
PRs."

"Looking forward to use it! Very promising!"

"ConE is such a neat tool! Very simple but super effective!"

"ConE is a great tool, looking forward to seeing more recommendations
from ConE"

"This is an awesome tool, Thank you so much for working to improve our
engineering!"

"It is a nice feature and when altering files that are critical or very com-
plex, it is great to know."

Some developers mentioned that ConE helped them saving time and/or effort sig-
nificantly by providing early intervention:

"ConE is very useful. It saved at least two hours to resolve the conflicts
and smoke again"

"This would save a couple of hours of dev investigation time a month"

"ConE would have saved probably an hour or so for PR <XYZ>"

We also received feedback from some developers who expressed a feeling that a
tool like ConE may not necessarily be useful for their scenarios:

"For me no, I generally have context on all other ongoing PRs and work
that might cause merge issues. No, thank you!"

"For my team and the repositories that I work in, I don’t think the benefit
would be that great. I can see where it could be useful in some cases
though"

"It’s not helpful for my specific change, but don’t let that discourage you.
I can see how something like ConE be definitely useful for repositories
like <XYZ> which has a lot of common code"
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Table 4.7: Distribution of quantitative feedback based on size of the repository

Feedback Large repositories Small repositories Total

Positively resolved 404 (77.69%) 150 (58.82%) 554 (71.48%)
Won’t fix 33 ( 6.34%) 41 (16.08%) 74 ( 9.54%)
No response 83 (15.96%) 64 (25.10%) 147 (18.96%)

Total 520 (67.09%) 255 (32.90%) 775 (100.0%)

Another interesting case we noticed is, ConE’s ability to help in detecting duplica-
tion of work. ConE notified a developer (D1) about an active pull request authored by
another developer (D2). After the ConE notification was sent to D1, they realized that
D2’s pull request is already solving the same problem and D2 made more progress.
D1 ended up abandoning their pull request and pushed several code changes in D2’s
pull request, which was eventually completed and merged. When we reached out to
D1, they said:

"Due to poor communication / project planning D2 and I ended up work-
ing on the same work item. Even if I was not notified about this situation,
I would have eventually learned about it, but that would have costed me
so much time. This is great!"

Though we do not observe scenarios like this frequently, this case demonstrates
an example of the kind of potential conflicts ConE can surface, in addition to flagging
syntactic conflicts.

4.6.5. FACTORS AFFECTING CONE APPRECIATION
After analyzing all the responses from our interviews, analyzing the pull requests on
which we received ‘Won’t Fix’ and interviewing respective pull request authors, we
identified the following main factors as to what makes a developer incline towards
using a system like ConE.

Developers who found the ConE notifications useful: These are the developers
who typically work on large services with distributed development teams across mul-
tiple organizations, geographies and time zones. They also tend to work on core
platforms or common infrastructure (as opposed to the ones who make changes to the
specific components of the product or service). To corroborate this, the first author
classified the repositories into large and small manually, based on the size and the ac-
tivity volume in those repositories. We then, programmatically, categorized the 628
responses based on their repository sizes. The results, in Table 4.7), show that for
large repositories developers are positive for 77.69% (404/520) of the cases, whereas
for small repositories this is 58.82% (150/255).
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Developers who found ConE not so useful: These developers are the ones who
work on small micro services or small scale products and typically work in smaller
teams. These developers, and their teams, tend to have delineated responsibilities.
They usually have more control over who makes changes to their code base. In-
terestingly, there were cases where some of these developers were surprised to see
another active pull request, created by a different developer, from a different team
sometimes, which was editing the same area of the source code as their pull request.
This could be a result of underestimating the pace with which service dependencies
are introduced, product road maps change, and codebases are re-purposed in large
scale organizations.

4.7. DISCUSSION
In this section we describe the outlook and future work. We also explain some of the
limitations of the ConE system and how we plan to address them.

4.7.1. OUTLOOK
One of the immediate goals of the ConE system is to expand its reach beyond the
initial 234 on which it is enabled, and eventually on every source code repository
in Microsoft. Furthermore, in the long run, Microsoft may consider offering ConE
as part of its Azure DevOps pipeline, making it available to its customers across
the world. Likewise, GitHub may consider to develop a free version of ConE as an
extension on the GitHub marketplace for the broader developer community to benefit
from this work.

As explained, ConE is expected to generate false alarms because of the fact that
it is a heuristics based system.To improve the system and reduce the number of false
alarms at this point, ConE checks for very simple but effective heuristics (see Sec-
tion 4.4.2) and conditions to flag conflicting changes that causes unintended conse-
quences. We offer three configuration parameters (see Section 4.4.3), that help us
make the solution effective by striking a suitable balance between the rate of false
alarms and coverage, and customize the solution based on individual repository needs.

To further improve precision, we would like to investigate the options that let us
go one level deeper from file level to, e.g., analyze actual code diffs. Understanding
code diffs and performing semantic analysis on them is a natural next a step for a
system like ConE. Providing diff information across every developer branch is funda-
mentally expensive, so it is not offered by Azure DevOps, the source control system
on which ConE is operationalized, nor by other commercial or free source control
systems like GitLab or GitHub. A possible remedy is to bring the diff information
into the ConE system. This involves checking out two versions of the same file,
within ConE, and finding differences. This has to happen in real-time, in a scalable
and language agnostic fashion.

Once we have the diff information, another idea is to apply deep learning and code
embeddings to develop better contextual understanding of code changes. We can use
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the semantic understanding in combination with the historical data about concurrent
and non-concurrent edits to develop better prediction models and raise alarms when
concurrent edits are problematic.

ConE was found to be useful by facilitating early intervention about the potential
conflicting change. However, this does not fully solve the problem i.e., fixing the
merge conflicts or merging the duplicate code. Exploring auto-fixing of conflicts or
code duplication as a natural extension to ConE’s conflict detection algorithm will
help in alleviating the problems caused by the conflicts and fixing them in an auto-
mated fashion.

4.7.2. THREATS TO VALIDITY
Concerning internal validity, our qualitative analysis was conducted by reaching out
to the developers via Microsoft Teams, asynchronously. None of the interviewers
know the people that were reached out neither worked with them before. We pur-
posefully avoided deploying ConE on repositories that are under the same organiza-
tion as any of the researchers involved in this work. As Microsoft is a huge company
and most of the users of the ConE service are organizationally distant from the inter-
viewers, the risk of response bias is very minimal. However, there is a small chance
that respondents may be positive about the system because they want to make the
interviewers, who are from the same company, happy.

Concerning external validity, the empirical analysis, design and deployment, eval-
uation and feedback collection are done specifically in the context of Microsoft. The
correlations we reported in Table 4.2 can vary based on the setting of the organization
in which the analysis is performed. As Microsoft is one of the world’s largest con-
centration of developers, and developers at Microsoft uses very diverse set of tools,
frameworks, programming languages, our research and the ConE system will have a
broader applicability. However, at this point the results are not verified in the context
of other organizations.

4.8. CONCLUSION AND FUTURE WORK
In this chapter, we seek to address problems originating from concurrent edits to
overlapping files in different pull requests. We start out by exploring the extent of the
problem, establishing a statistical relationship between concurrent edits and the need
for bug fixes in six active industrial repositories from Microsoft.

Inspired by these findings we set out to design ConE, an approach to detect con-
currently edited files in pull requests at scale. It is based on heuristics like the extent
of overlap and the presence of rarely concurrently edited files between pairs of pull
requests. To make sure the precision of the system is sufficiently high, we deploy var-
ious filters and parameters that help in controlling the behavior of the ConE system.

ConE has been deployed on 234 repositories inside Microsoft. During a period
of six months, ConE generated 775 notifications, from which 71.48 % received pos-
itive feedback. Interviews with 48 developers showed 93% favorable feedback, and
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applicability in avoiding merge conflicts as well as duplicate work.
In the future, we anticipate ConE will be employed at substantially more sys-

tems within Microsoft. As ConE has been deployed and found to be useful by the
developers in a large and diverse (in terms of programming languages used, tools,
engineering systems, geographical presence, etc) organization like Microsoft, we be-
lieve the techniques and the system has applicability beyond Microsoft. Furthermore,
we see opportunities for implementing a ConE service for systems like GitHub or
GitLab. Future research surrounding ConE might entail improving its precision by
learning from past user feedback or by leveraging diffs without sacrificing scalability.
Beyond warnings, future research could also target automating actions to be taken to
address the pull request conflicts detected by ConE.
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5
NALANDA: A

SOCIO-TECHNICAL GRAPH
PLATFORM FOR BUILDING

SOFTWARE ANALYTICS
TOOLS AT ENTERPRISE

SCALE

Software development is information-dense knowledge work that requires collabo-
ration with other developers and awareness of artifacts such as work items, pull
requests, and file changes. With the speed of development increasing, information
overload, and information discovery are challenges for people developing and main-
taining these systems. Finding information about similar code changes and experts is
difficult for software engineers, especially when they work in large software systems
or have just recently joined a project. In this chapter, we build a large-scale data plat-
form named Nalanda platform to address the challenges of information overload and
discovery. Nalanda contains two subsystems: (1) a large-scale socio-technical graph
system, named Nalanda graph system, and (2) a large-scale index system, named
Nalanda index system that aims at satisfying the information needs of software devel-
opers.

To show the versatility of the Nalanda platform, we built two applications: (1) a soft-
ware analytics application with a news feed named MyNalanda that has Daily Active
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Users (DAU) of 290 and Monthly Active Users (MAU) of 590, and (2) a recommenda-
tion system for related work items and pull requests that accomplished similar tasks
(artifact recommendation) and a recommendation system for subject matter experts
(expert recommendation), augmented by the Nalanda socio-technical graph. Initial
studies of the two applications found that developers and engineering managers are
favorable toward continued use of the news feed application for information discov-
ery. The studies also found that developers agreed that a system like Nalanda artifact
and expert recommendation application could reduce the time spent and the number
of places needed to visit to find information.

5.1. INTRODUCTION
Building software is a highly collaborative process that requires awareness of the
activities by many different stakeholders and interaction with many different artifacts
such as files, pull requests, and work items. At the same time, large-scale software
development creates lots of data about how people work with each other and with
software artifacts. As a consequence, finding information can be hard, especially
when software engineers work on large software projects with thousands of files and
team members. A lot of times this knowledge about software development activity
and expertise is hidden in the form of software development process data and the
interaction map between stakeholders and artifacts. This data is hard to mine and
represent in a form that allows practitioners to build applications on top of this data.
This is primarily due to the scale at which this data is generated and the fact that this
data is scattered across disparate data sources and systems. Therefore, it is hard to
take full advantage of this data and extract hidden knowledge, without employing a
plethora of tailored tools, customized for each source control system and the software
development environment.

Socio-technical data that captures social and technical aspects of software de-
velopment (Sarma, Maccherone, Wagstrom, & Herbsleb, 2009) is often captured in
graph structures. For example, the Hipikat tool builds a project memory from past ac-
tivities to support newcomers with software modification tasks (Cubranic et al., 2005).
In 2010, the Codebook framework was introduced with a focus on discovering and
exploiting relationships in software organizations to support inter-team coordination
(Begel et al., 2010). Codebook provided a graph and a query language to support a
wide range of applications: find the most relevant engineers, find out why a recent
change was made, and general awareness of engineering activity (Begel & Zimmer-
mann, 2010). Codebook was built for a single team with 420 developers only.

With the advent of cloud services, the scale at which software development hap-
pens and the volume of data generated during the software development process in-
creased significantly (Ma et al., 2019; Potvin & Levenberg, 2016). To address the
challenges that come with scale, in this chapter, we present a large-scale software
analytics data platform named Nalanda1 which is built on top of the software de-
velopment activity data and the artifacts. Nalanda builds a socio-technical graph at
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enterprise scale, with thousands of repositories. Additionally, the Nalanda index sys-
tem, helps with the search and recommendation of software development artifacts and
the experts. Nalanda stores its graph in a native graph database and optimizes heav-
ily to query complex relationships so that software analytics applications can operate
directly on the graph via cloud services and a high degree of performance.

The Nalanda platform, which is a generic and enterprise scale software analytics
data platform consists of two subsystems: the Nalanda graph system, which pro-
vides a large scale socio-technical graph of software data, and the Nalanda index
system, which is an enterprise scale index system that can be used to support a wide
range of software engineering tasks such as recommendation and search. Nalanda
scales to enterprise-scale data from 6,500 repositories. The socio-technical graph
has 37,410,706 nodes and 128,745,590 edges. The index system contains 8,079,748
documents.

To show the versatility of the Nalanda platform, we describe two tools that have
been built on top of the Nalanda platform and deployed at Microsoft: A software
analytics news feed application built on top of the Nalanda graph system named My-
Nalanda, and a novel recommendation system (Nalanda artifact and expert recom-
mendation application) leveraging the socio-technical graph for ranking the recom-
mendations.

The goal of this chapter is to describe the design, implementation, and deploy-
ment of the Nalanda graph system, the index system, and two successful applications
(MyNalanda and the Nalanda artifact and expert recommendation application) built
and deployed at Microsoft. We also share details about the extensive analyses and
user studies that we conducted to evaluate the perceived usefulness of MyNalanda
and Nalanda artifact and expert recommendation application from our deployments
at Microsoft. Additionally, we share insights from building the Nalanda platform,
MyNalanda, and the Nalanda artifact and expert recommendation application.

To that end, we explain the construction of the Nalanda graph system in Section
5.2 and the index system in Section 5.3. We explain the applications built leveraging
these two systems i.e., MyNalanda in Section 5.4 and the Nalanda artifact and expert
recommendation application in Section 5.5.

5.2. BUILDING THE NALANDA GRAPH
Key challenges in the construction of the Nalanda Graph are scale and consistency.
In this section, we lay out what content we store in the Nalanda graph, from which
sources we collect the data, and how we ensure that the graph is kept up to date and
consistent as hundreds of thousands of events from thousands of repositories arrive
on a daily basis.

1Nalanda is named after an ancient university and knowledge center located in India. It is famous for its
huge corpus of scriptures, books, and knowledge repositories.
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Figure 5.1: Nalanda’s Graph Schema

5.2.1. NALANDA’S GRAPH SCHEMA
The schema of the Nalanda graph is shown in Figure 5.1. The nodes represent the
actors or entities involved in the software development life cycle, while the edges
represent the relationships that exist between them.

Each node in the Nalanda graph has a type associated with it and attributes specific
to that node type, as listed in Figure 5.1. The central node is the Pull Request, which
has incoming edges from Author, Reviewer, Work item, and Repository nodes, and
has a outgoing edges to File nodes changed by the pull request. A developer takes
the role of an author when they make source code changes and submit pull requests
and they assume the role of a reviewer when they perform code reviews. These are
represented as user nodes in the Nalanda graph with different edge types but are listed
here as two different nodes in Figure 5.1 for clarity. For File nodes, different types
are distinguished, including source code, configuration, and project files. Files are
edited by the authors via pull requests. Files are represented as nodes in the Nalanda
graph with a second-order relationship established between the user and file nodes
via a Pull request node.

Edges in the Nalanda graph represent the relationships between various actors and
entities. Like nodes, edges can be of different types and can have properties associ-
ated with them. An edge is created between an author node and a pull request node
when a developer creates a pull request. Similarly, an edge is established between the
reviewer and the pull request nodes when a developer is assigned a code review. A
linked to edge is created when developers link a pull request to a work item, com-
monly done in Azure DevOps (“Azure DevOps”, 2021) to connect earlier, related,
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Figure 5.2: Nalanda’s data collection and graph construction architecture

pull requests to new issues. Likewise, a parent of edge is created between two work
items if they are linked by the developers with a parent-child relationship in Azure
DevOps. Finally, a reports to edge is created between two user nodes if one of them
is the reporting manager of the other.

5.2.2. DATA COLLECTION AND GRAPH CONSTRUCTION
The Nalanda platform architecture is shown in Figure 5.2. The primary source of
data for the Nalanda graph is Azure DevOps. Instead of directly crawling the Azure
DevOps system for data, we leverage an intermediate data source called CloudMine
(Czerwonka et al., 2013). The Nalanda platform takes the raw event data from Cloud-
Mine and processes it to create the nodes and edges of the Nalanda graph. The graph
can be queried using the APIs we provide, or directly by means of the graph query
language Gremlin (“Gremlin query language”, 2021).

The platform builds upon Azure (“Azure services”, 2021): key services used in-
clude Azure batch, Azure CosmosDB, Azure SQL Server, Azure Blob Storage, and
Lens explorer (“Lens Explorer”, 2021). As shown in Figure 5.2, the Nalanda platform
is built using two independently operated pipelines: a data aggregation pipeline and a
graph construction pipeline, as explained below.

NALANDA’S DATA AGGREGATION PIPELINE

As indicated as step 1 in Figure 5.2, the data aggregation pipeline is responsible for
fetching data from different data sources (most notably CloudMine) and making it
available for the graph construction pipeline to process.

We use Lens Orchestrator (“Lens Explorer”, 2021) for orchestration and schedul-
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ing purposes. Lens has the ability to connect to multiple data sources and systems and
move data around. In the aggregator pipeline, Lens first connects to the CloudMine
data store (which is hosted on Cosmos (“Azure services”, 2021)) and executes Scope
scripts to gather data from various data streams, such as the pull request stream, the
work item stream, the code review stream, etc. Lens saves the aggregated data in
the form of CSV files in Cosmos. Then, Lens connects to Azure Blob Storage to
temporarily store these CSV files for further processing. This intermediate store is
required as CloudMine does not allow any other service (except Lens) to connect to
and access the data files for security and compliance reasons.

Additionally, we use the Lens job scheduling utilities to configure a job in Lens
to run once every eight hours to pull the latest data from CloudMine and save it to the
Azure Blob Storage.

NALANDA’S GRAPH CONSTRUCTION PIPELINE
Once the data is available in Azure Blob Storage, we process it using an Azure batch
job to construct the Nalanda graph (Steps 2 and 3 in Figure 5.2). We use Azure
CosmosDB as our graph data store.

When the batch job discovers new data files as generated by the aggregation
pipeline, it updates the pipeline registry with new file information. This includes
file names, size, timestamp, whether the file contains data from the bootstrap or the
incremental stream, file processing status, processing duration, etc. The pipeline reg-
istry is a SQL database whose purpose is to serve as a transactional store for the graph
construction pipeline. We create one row in the pipeline registry database for every
file discovered. After the new data is downloaded, for each data file the corresponding
node and edges are added to, deleted from, or updated in the Nalanda graph. Once all
data for a file is read, its registry status is set to “completed”.

The graph construction pipeline operates in two modes: bootstrap mode and in-
cremental mode.

Bootstrap mode. This mode helps ingest all of a repository’s data, from repository
creation time until when it is run. Typically, we run this mode for a repository when
it is being onboarded onto the Nalanda graph platform for the first time.

Incremental mode. This mode helps keep the data in the Nalanda graph updated
without needing to read the massive original streams of CloudMine (whose size is in
the orders of hundreds of Terabytes), using the incremental streams offered instead
(with sizes in the order of tens of Gigabytes). We run the incremental pipeline once
every eight hours.

These separate modes offer the flexibility to bootstrap any new or existing repos-
itory data in an independent and asynchronous manner. Furthermore, the separation
of bootstrap and incremental pipelines offers substantial performance improvement
in terms of run time and resource utilization, as illustrated in Table 5.1.

Refreshing the data by querying the original streams of CloudMine each time the
pipeline is run, takes 28 hours for 6,500 repositories. As the incremental streams
are substantially smaller, each incremental job finishes in 20 minutes, yielding an
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Table 5.1: Comparison of pipeline run time and number of records with the increase in number of reposi-
tories

Mode Run time # Records to process

350 repos 6500 repos 350 repos 6500 repos

Bootstrap 9 hrs 28 hrs 1.05M 7.41M
Incremental 10 min 20 min 10K 57K

improvement of 98.8% in pipeline run time, for each pipeline run. Note that for an
increase of the number of repositories by a factor of 20, the run time for the bootstrap
mode was increased by a factor of 3 only. This is an effect of the careful design and
implementation of the data pipeline by massively parallelizing the data processing
code and enabling distributed processing on multiple Azure batch nodes.

5.2.3. DATA CONSISTENCY AND SELF-HEALING
The Nalanda graph platform is a distributed system that works with multiple external
data sources and large-scale data processing systems, which are prone to introduce
data inconsistencies. Data gaps can manifest due to various factors related to infras-
tructure and availability of the CloudMine crawlers.

Detecting and remediating data gaps in such a massive distributed system is not
a trivial task. We devised a novel self-healing system that detects data gaps and con-
sistency issues proactively and performs self-healing. This helps the pipeline to guar-
antee data consistency irrespective of the failures manifested in external data sources
such as CloudMine. The self-healing system uses the pipeline registry to monitor
pipeline states and can switch from incremental to bootstrap mode if this is warranted.

When an incremental pipeline is run, the timestamp of the oldest record to be
processed is compared with the timestamp of the last successful pipeline run. If the
difference between these timestamps is bigger than three days (the period for which
incremental streams hold their data), this means a data gap has occurred. To address
this, the bootstrap mode is triggered for the repositories involved, and ongoing incre-
mental pipelines are halted. Furthermore, the pipeline registry is updated to indicate
that bootstrapping is taking place, thereby locking new incremental jobs.

5.2.4. SCALE
The Nalanda graph has been designed to accommodate thousands of repositories.
At the time of writing, it holds the software development activity data from 6,500
repositories at Microsoft. We ingest data starting from January 1, 2019, or from more
recent repositories when their first pull request is created.

To keep its graph up to date, the Nalanda platform processes 500,000 events per
day. These events include new pull requests, updates or commits on those pull re-
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Table 5.2: Nalanda node and edge types and their prevalence

Node type Count

file 14,537,998
text 12,104,427
pull request 7,568,949
work item 3,067,754
user 131,578
repository 6,500

Total nodes 37,410,706

Edge type Count

changes 65,706,621
reviews 39,447,635
creates 7,569,086
contains 7,337,036
linked to 7,094,597
parent of 843,728
comments on 746,887

Total edges 128,745,590

quests, pull request state changes, code review assignments, and code review com-
ments. At the time of writing, the Nalanda graph contains 37 million nodes and 128
million edges as detailed in Table 5.2.

5.3. INDEXING NALANDA FOR INFORMATION RETRIEVAL
Many nodes in the Nalanda Graph contain text. To facilitate search over such text at
the Nalanda scale, we need to create appropriate indexes. The actual indices needed
may depend on the specific applications built on top of the Nalanda graph. In this
section, we discuss the indices we create and how we ensure they remain up to date
at scale.

For every search, we use the BM25 algorithm (Robertson et al., 1992) for de-
termining text similarity between a query and documents (pull requests, work items,
...) and ranking the results. BM25 is a bag-of-words model developed based on the
probabilistic retrieval framework (“The Probabilistic Relevance Framework: BM25
and Beyond”, 2009). For a given query Q containing keywords q1,...,qn, the BM25
score for a document D is:

score(D,Q) =
n∑

i=1
IDF(qi ) · f (qi ,D) · (k1 +1)

f (qi ,D)+k1 · (1−b +b · |D|
avgdl )

(5.1)

where f (qi ,D) is qi ’s term frequency in the document D, IDF(qi ) is qi ’s inverse
document frequency, |D| is the length of the document D in words, and avgdl is the
average document length in the text collection from which documents are drawn. k1

and b are free parameters. We use standard recommended values (b = 0.75, k1 = 1.2)
for these constants (Schütze et al., 2008).

5.3.1. THE NALANDA ARTIFACT INDEX
The Nalanda artifact indexfacilitates search through pull requests and work items.
We index the metadata, titles, and descriptions of the artifacts (pull requests and work
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items). The metadata consists of elementary properties, namely project name, repos-
itory name, and organization name.

The corpus used by the Nalanda artifact index comprises two types of documents:
pull requests and work items. We index the metadata, titles, and descriptions of the
artifacts (pull requests and work items). The metadata consists of elementary proper-
ties, namely project name, repository name, and organization name.

The Nalanda artifact indexcan be used to find relevant pull requests given a work
item, feature, technical, or functional concept. Furthermore, with this index com-
pleted pull requests and work items can be used as a template and inspiration to solve
similar problems. They provide code samples, expose code review comments, and
help as informal documentation to learn the best practices. Additionally, they help
understand the team or project-specific processes involved in getting such pull re-
quests completed.

5.3.2. THE NALANDA EXPERT INDEX
The Nalanda expert index is built to map subject matter experts (SMEs) to technical
and functional skills. Experts can be of two types: functional and technical. Func-
tional experts have expertise in specific functionality of a software product or service,
such as the query optimizer in an RDBMS product or the ranker in a search engine
product. Technical experts have expertise with a technology concept such as socket
programming in Java.

The Nalanda expert index relies on a collaborative software development plat-
form like Azure DevOps to mine and associate expertise with people. We match pull
requests and work items (as also used for the artifact index) to their authors and con-
tributors. The process of building the Nalanda expert index consists of the following
steps:

1. Find all pull requests and work items completed by a developer and extract key
phrases from them.

2. Create a document using the data from step 1, which is the representation of a
developer’s skills.

3. Repeat steps 1-2 for every developer and builds the corpus for the expert index

Similar to the Nalanda artifact index, we use the BM25 algorithm for querying
the expert index corpus. The intuition is that if a developer makes frequent code
changes related to a topic (functional or technical), they must be knowledgeable in
that topic area. We represent the frequency of a topic in a developer’s activity as term
frequency in the BM25 index. Therefore, the more a topic appears in the document
corpus constructed for that developer, the more weight that topic is given.

We leverage the Nalanda socio-technical graph for re-ranking the search results
returned by the artifact and expert indices. A detailed analysis of the impact of em-
ploying the Nalanda graph in refining the search results is discussed in Section 5.5.3.
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5.3.3. SCALE
Building indices such as the artifact and expert index at scale is an expensive oper-
ation. We carefully crafted the system design to make the Nalanda index creation
and refresh pipelines robust and tolerant to failures (details about implementation are
explained in Section 5.5.2). The Nalanda search system has been built as a cloud-
native service. This enables us to scale out the system horizontally with the increase
in data and query volume. This also helps us in meeting high uptime Service Level
Agreements (SLAs) requirements to move to production. Currently, the artifact index
contains 8,018,320 documents and the expert index contains 61,428 documents.

We ingest data from 6,500 repositories. Our index data refresh pipeline, which
runs once every week, completes in 65 minutes on average. The graph data refresh
pipeline, which runs every 8 hours and finishes in 18 minutes. We optimized the API
service to return the response in 1.7 seconds in accordance to the SLA requirements.

5.4. NALANDA APPLICATIONS (I): THE MYNALANDA

PORTAL
The Nalanda graph and indexing platform can be used to build many applications to
support software development teams and organizations in their daily work. The first
application we discuss is MyNalanda, an online news feed in production at Microsoft,
in which developers and managers alike can monitor ongoing software development
activities.

5.4.1. MYNALANDA MOTIVATION
The motivation behind MyNalanda is that it is common practice for developers to
work on multiple work items or pull requests at once. It is also common practice for
developers at Microsoft to work on multiple source code repositories simultaneously.
Microsoft does not have many large mono-repositories, but a lot of small or medium
sized repositories. Keeping track of one’s work items in their repository or across
multiple repositories is a difficult and time consuming task. Moreover, these tools
operate in a workitem-centric fashion, i.e., the primary goal of the tool is to search
for and find a work item one is interested in.

By contrast, MyNalanda is a developer-centric news feed. Upon login, MyNa-
landa shows the activity (pull request, work item, code review) of a developer, from
multiple repositories, in their homepage. Additionally, MyNalanda enables develop-
ers to discover what their teammates and other collaborators are working on without
the hassle of going to different Azure DevOps repositories.

5.4.2. THE MYNALANDA HOMEPAGE
For a user, the central hub in MyNalanda is their homepage. An example of such
a MyNalanda homepage is shown in Figure 5.3. Its information is organized in the
following sections:
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Figure 5.3: The MyNalanda homepage

News feed: The centralized news feed (‘F’ in Figure 5.3) is located in the middle
of the page. The news feed shows events such as updates in pull requests, code review
comments, and pull request status changes from all the repositories a developer works
in. For managers, the news feed provides updates from their reports’ activity.

User details: This section (‘A’ in Figure 5.3) provides details about develop-
ers, such as name, email address, job title, and their expertise (extracted from their
software development activity data). This helps in facilitating easy discovery of de-
velopers’ skills and their current projects.

Active items: There are separate sections for active repositories, pull requests,
work items, and code review requests (‘B’-‘E’ in Figure 5.3). Users of MyNalanda
can prioritize the discovery of updates from these items by following or unfollowing
them.

Related people: This section (‘G’ in Figure 5.3) visualizes who a developer col-
laborates with and how local software development communities are formed. A de-
veloper’s collaborators include others who work together with the developer on a
coding task or work item, or who are either being reviewed by that developer, or who
are involved in reviewing a developers’ pull request.

Search box: The search box (‘H’ in Figure 5.3) can be used to find developers
and discover their activity. It also can help with searching for technical and functional
concepts by leveraging the Nalanda artifact and expert indices (as explained in Section
5.3).

All elements in MyNalanda, such as pull requests, work items, people, and repos-
itories have embedded URLs which take them to the corresponding item in Azure
DevOps. This makes it easy for developers to navigate between MyNalanda and
Azure DevOps.

Additionally, MyNalanda facilitates integration of other machine learning recom-
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menders due to its extensible architecture. For example, overdue pull request are
indicated with a subtle warning icon in the active pull requests section. This is pow-
ered by the Nudge machine learning models (C. S. Maddila et al., 2021).

5.4.3. MYNALANDA USAGE
MyNalanda leverages the graph representation of the data (the Nalanda graph) and its
schema design to navigate efficiently through complex relationships and find the con-
tent presented in various sections. As a result, the MyNalanda homepage including
the news feed and the other sections loads in less than a second. As quoted by one of
the MyNalanda users “It is simple, blazing fast to load, adapts to screen size”.

Based on organic growth alone, MyNalanda reached 290 Daily Active Users
(DAU), and 590 MonthlyActive Users (MAU), in the first six months of deployment
of the Beta version at Microsoft.

5.4.4. MYNALANDA EVALUATION: PERCEIVED USEFULNESS
To evaluate how developers and engineering managers perceive the usefulness of My-
Nalanda, we follow a mixed method research design involving interviews and sur-
veys. With increasing sources of development-related information available, there
remains an open question about how they want to access and integrate information
about their own development activities and the development work done by their peers,
and if current platforms are adequate. Through this evaluation we assess how MyNa-
landa matches the corresponding information needs.

EVALUATION SETUP

Semi-structured Interviews. We conducted interviews to investigate information
discovery and overload, and if users might use an interface like MyNalanda. Partici-
pants included five developers and two engineering managers; seven participants were
men and zero were women. Semi-structured interviews were conducted remotely, and
ranged from 30-45 minutes. Interview topics included interest in accessing informa-
tion about their own and peers’ development activity, information overload and how
they typically get information (in both in-office and work-from-home contexts). We
then showed a deployed version of MyNalanda and asked for reactions including if
they would like it, what information they would find useful, and where they would
want to see it. If the interviewee was an engineering manager, they were also asked
what information they would be interested in seeing related to their team’s work.

Immediately following the interviews, notes were taken by the interviewer to aug-
ment the transcription and interviews were coded for emergent themes. Following
each subsequent interview, themes were revisited to see if any codes should be com-
bined or separated. Once no new themes emerged (i.e., theoretical saturation), we
concluded our interview phase. After seven interviews, themes remained consistent.
Finally, we reviewed notable excerpts from all interviews and organized the themes
by topic.
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Surveys. Following interviews, we conducted surveys to validate and quantify the
themes that emerged. Survey participants included full-time employees who were
developers or engineering managers. While their work spanned various areas across
Microsoft, all had contributed to at least one of the 6,500 repositories included in
the Nalanda Graph, which allowed participants to access their MyNalanda homepage
during the survey.

We designed our survey based on themes that emerged during our interviews, re-
sulting in a 19-item instrument that took a median of 8.5 minutes to complete. Partic-
ipants were shown their MyNalanda newsfeed (with their own development activity)
and given the survey. Topics included demographics, usefulness of information in-
cluded in their MyNalanda feed, information pain points and privacy concerns, and
current and anticipated work location (e.g., office or work-from-home). We included
items asking about usefulness of MyNalanda information, and preferences for possi-
ble features (based on jobs-to-be-done). We asked where respondents would like to
see MyNalanda integrated (if at all), and their comfort level in sharing their devel-
opment activity through something like MyNalanda. The full survey instrument is
available online at research.microsoft.com (C. Maddila et al., 2021).

The survey was sent to 2,000 people in total (1,400 developers and 600 engi-
neering managers) with 144 responses (92 developers and 44 engineering managers),
resulting in an 8% response rate after considering the 10% out of office responses.
Our low response rate could be due to the fact that the survey is not a trivial one to fill
in (cognitively and time it takes to complete the survey) and/or because we did not
offer any incentives for participation. Of those respondents, 92 (67.65%) were de-
velopers (including software development engineers, senior software engineers, etc.)
and 44 (32.35%) were engineering managers (including software engineering man-
ager, software engineering lead, etc.). Our respondents included five women (6.17%),
73 men (90.12%), one who preferred to self-describe (1.32%), and two who preferred
not to answer (2.63%). They reported an average of 10.15 years working at Microsoft,
ranging from 0.6 to 29.9 years (standard deviation 7.13).

RESULTS OF THE STUDY

We first present findings from our semi structured interviews, with each noted as
developer (D) or engineering manager (EM). We then present our survey results.

Interviews. Participants expressed two themes related to information needs: inte-
gration and overload. Information integration was echoed by many interviewees; we
define this as having development-related information for self and others integrated
into a single, easy-to-access interface. P1 (EM) and P2 (D) discussed easily linking
design docs and associated artifacts like pull requests. P1 (EM) discussed the useful-
ness of graphic summaries for their teams’ development activity across time periods;
this reflects consolidation via visualization. P2 (D) called out that the ability to see
detailed information about peers’ work is helpful when coordinating work, and is not
readily available.
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Table 5.3: MyNalanda survey Feedback

Feature
Cumulative

(n=85)
Developers

(n=63)

Engineering
Managers

(n=22)

Active pull requests (C) 55.3% 55.6% 54.5%
Active code review requests (E) 48.2% 49.2% 45.5%
Active repositories (B) 44.7% 46.0% 40.9%
Active work items (D) 34.1% 34.9% 31.8%
Feed (F) 28.2% 34.9% 9.1%
User Details (A) 24.7% 27% 18.2%
Related people (G) 20% 23.8% 9.1%

P5 (D) spoke about viewing the information in different ways to deal with infor-
mation overload and ensure they were not missing things: using a ‘Most recent’ view
for chronologically-ordered information, an algorithmic ‘Relevance’ view to com-
bine information across teams, and team-only view to further filter. This speaks to
strategies they use to ensure keep up on development-related information both within
and across teams they collaborate with. Similar sentiments were expressed by other
interviewees.

Surveys. Based on themes from our interviews, we developed survey items to eval-
uate information integration and overload. We asked participants to rate how useful
each feature of MyNalanda was (including development activity, the news feed, and
collaborators) on a five-point Likert-type scale ranging from 1= Not at all useful to 5=
Extremely useful. All items were optional; of those who took the survey, 85 answered
questions about MyNalanda features (63 developers and 22 engineering managers).
This allowed us to capture participant reactions to a real integrated information plat-
form instead of a hypothetical one.

Table 5.3 lists the accumulated percentages of “Extremely useful” (Likert=5) and
“Very useful” (Likert = 4) for each feature. Here, we see that Active pull requests
(55.6% and 54.5% among developers and engineering managers, respectively) and
Active code review requests (49.2% and 45.5% among developers and engineering
managers, respectively) are the highest rated features, with User details (27.0% and
38.2% among developers and engineering managers, respectively) and Related People
(23.8% and 9.1% among developers and engineering managers, respectively) rated
the lowest.

Based on this, we conclude that the active items (pull requests, code review re-
quests, repositories, and work items) are the most valued features of MyNalanda, and
that user details are primarily of interest to engineering managers.
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Figure 5.4: Nalanda recommendations in Azure DevOps

5.5. NALANDA APPLICATIONS (II): ARTIFACT AND EX-
PERT RECOMMENDER

When a developer is working on a work item or feature, finding the relevant pull
requests and code samples is one of the biggest pain points for developers (C. Mad-
dila et al., 2021). The intensity of the problem multiplies in large organizations with
teams working on multiple source code repositories. Similarly, finding functional and
technical experts in large organizations is a difficult task. A lot of times, this involves
the developers to mine git history, going through wiki pages, design documents, etc.

The Nalanda artifact and expert recommendation application implements a rec-
ommendation plug-in for Azure DevOps (AzDO) (“Azure DevOps”, 2021). When
a new work item is assigned to a developer, the plug-in triggers an API call to the
Nalanda search API. The client passes the necessary input parameters, such as the
search query (work item title and description), the work item owner, and the reposi-
tory metadata. Upon receiving the results (artifact and expert recommendations), the
client add recommendations to the work item page (in Azure DevOps). A sample
work item recommendation page from live deployment (Beta version) is shown in
Figure 5.4. Besides, through its easy-to-use APIs, the Nalanda artifact and expert
recommendation application system powers other applications such as the search box
in MyNalanda (as explained in Section 5.4.2).

When a work item or an issue is assigned to a developer, the Nalanda artifact and
expert recommendation application uses a combination of title and description of the
assigned work item as an input search query and provides recommendations about
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work items or pull requests that accomplished similar tasks. Additionally, the system
also provides a list of subject matter experts whom a developer can reach out to seek
help while working on that work item.

5.5.1. THE NALANDA RANKING ALGORITHM
To construct the Nalanda Expert and Artifact recommenders, we devised a ranking
algorithm consisting of three steps: 1) querying the artifact index (see Section 5.3.1)
to get the relevant pull requests and work items, 2) querying the expert index (see
Section 5.3.2) to get a list of relevant experts, and 3) re-ranking the results using the
Nalanda graph. To that end, we take the following steps:

Step 1: We first construct a query as a combination of the title and description
of the work item. Then, we tokenize the query using heuristics that we built for the
software engineering domain, such as splitting strings into camel-cased or pascal-
cased tokens. We also create n-gram based tokens since we found that bi-grams and
tri-grams, such as ImapTransfer and MailboxSyncEngine, capture important
information. Next, we filter out stop words (Luhn, 1960).

We employ the BM25 algorithm, which takes care of prioritizing important to-
kens using Inverse Document Frequency (IDF) scores. It assigns more weight to the
documents with a higher overlap with the search query tokens (term frequency), and
calculates a relevance score as shown in Equation 5.1.

Step 2: We query the expert index, which contains one document per person.
These documents contain the tokens mined from a developer’s pull requests and work
items history. We perform the same pre-processing explained in Step 1 on the query.
The BM25 index returns a ranked list of experts.

Step 3: A heuristics-based filtering scheme is used to filter out results with rele-
vance scores below a threshold. We determine the threshold empirically to set it at the
75th percentile of the relevance score distribution. We determined this value based
on a series of experiments to optimize the accuracy of the results while reducing the
size of the results set that is passed to the next step.

Step 4: We use the Nalanda socio-technical graph to assign proximity scores
based on the edge distance between the person performing the search and the results
returned by the BM25 index (obtained from Step-3). The proximity score is the length
of the shortest path between two nodes. We use the proximity score to re-rank the
results. For example, the proximity score is 1 if a pull request, work item, or people
node is 1-edge away from a developer node, in their shortest path.

Step 5: We then pick the top-k results from the results set and return them to the
user. Items that have a higher BM25 relevance score and are in close proximity to
a developer are ranked higher. Furthermore, we use proximity score to break the tie
between results where relevance scores are the same.

5.5.2. IMPLEMENTATION
We implemented the Nalanda search system on the Azure platform, with an emphasis
on scalability to thousands of repositories. The underlying architecture is visualized
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Figure 5.5: Nalanda artifact and expert recommendation application architecture

in Figure 5.5.

NALANDA INDEXERS

The backbone of the recommendation system is the batch jobs creating and contin-
uously updating the indices and the socio-technical graph, as discussed in Section
5.3 and shown at the bottom of Figure 5.5. We leverage CodeMine (Czerwonka et
al., 2013) to help us with aggregating source control system data from thousands of
repositories.

We rely on Azure Cognitive Search (ACS) (“Azure Cognitive Search”, 2021),
which provides BM25 as a service, to store and access the indices. This helps us in
alleviating the problems associated with service maintenance, uptime, and scale-out.

SEARCH API
Given the indices and the socio-technical graph, the Nalanda Search API (shown in
the middle of Figure 5.5) implements the search algorithm from Section 5.5.1. Each
search query (typically initiated by the users in MyNalanda or through Azure Dev-
Ops) passed to the Nalanda search API is processed in real-time. The mean response
time for the API call is 1.7 seconds.

The Nalanda API service asynchronously saves telemetry to an Azure SQL database
without impacting the query performance. The telemetry includes the search query,
user metadata, search results, click logs, and the API response time. We use this
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Table 5.4: Evaluation Data Summary

Artifact Recommendation Expert Recommendation

Index data Pull request title and descrip-
tion, socio-technical graph

Pull request title and descrip-
tion, socio-technical graph

Test set Work Item title and description Internal StackOverflow ques-
tions

Ground truth Pull requests linked to the work
item

People who answered the post
and people who have answered
at least five other questions with
the same tag as the post

Data set 80K randomly sampled work
items from the 6,500 reposito-
ries

10K randomly sampled ques-
tions and answers from Stack-
Overflow

information to evaluate engagement and to improve the performance of the Nalanda
search system and the API service.

5.5.3. QUANTITATIVE EVALUATION
To understand the efficacy and usefulness of the Nalanda artifact and expert recom-
mendation application, we conduct a large-scale offline evaluation and a user study.

EXPERIMENT SETUP
We randomly sample 80,000 work items from the 6,500 repositories such that there
are at least 10 work items selected from each repository. Subsequently, we use the
title and description of each of these work items as the input to the Nalanda search
API. We expect the right pull requests and people to be returned from the search API.

Since a recommendation system like ours does not exist in the company, we do
not have a ground truth to conduct a large-scale evaluation. Therefore, we rely on
the pull requests manually tagged by developers to the work items in Azure Dev-
Ops to build the evaluation dataset. To create the ground truth dataset for the expert
recommendations, we leverage the private instance of StackOverflow deployed at Mi-
crosoft. Details about the index, ground truth, and test sets used for these experiments
are shown in Table 5.4.

RESULTS
We use two commonly used metrics for recommender systems: 1. Top K accuracy,
which measures the number of times the correct item is found in the top K recom-
mendations 2. Mean Reciprocal Rank (MRR), which calculates the reciprocal of the
rank at which the first relevant document was retrieved (Craswell, 2009).

Table 5.5 shows the results from the evaluation for different values of K. We can
see that incorporating more attributes of the pull request, such as its title and descrip-
tion, improves both the MRR and accuracy considerably. Furthermore, re-ranking
the results using the Nalanda graph also substantially improves the recommendations.
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Table 5.5: Evaluation and Comparative study for Artifact Recommendation

K = 3 K = 5 K = 10
Indexed Properties Accuracy MRR Accuracy MRR Accuracy MRR
pull request metadata 0.26 0.23 0.29 0.28 0.32 0.30
pull request attributes
+ pull request title 0.38 0.36 0.43 0.41 0.51 0.48
+ pull request description 0.49 0.47 0.53 0.51 0.60 0.59
+ socio-technical graph 0.71 0.71 0.74 0.73 0.78 0.77

Table 5.6: Evaluation and Comparative study for Expert Recommendation

K = 3 K = 5 K = 10
Indexed Properties Accuracy MRR Accuracy MRR Accuracy MRR
pull request metadata 0.35 0.30 0.39 0.33 0.43 0.38
pull request attributes
+ pull request title 0.51 0.46 0.54 0.49 0.59 0.53
+ pull request description 0.60 0.54 0.64 0.59 0.69 0.61
+ socio-technical graph 0.63 0.60 0.69 0.63 0.75 0.67

Similar improvements can be noticed for the expert recommendation task too (Table
5.6).

5.5.4. USER PERCEPTION
We conducted a user study among developers regarding the usefulness of the recom-
mendations. We selected ten participants (identified as P1–P10) from Microsoft to
evaluate the recommendations on their recently completed work items.

PARTICIPANTS AND PROTOCOL
We conducted semi-structured interviews, which were conducted remotely, and ranged
from 15-30 minutes. The average experience of the subjects is 7.7 years in the com-
pany and ranged from 10 months to 21 years.

We employ a one-group pretest-posttest pre-experimental design (Campbell &
Stanley, 1963). We used the Likert scale (Robinson, 2014) for rating the responses.
The respondents can provide their responses on a 1 to 5 scale, ranging from ‘strongly
disagree’ to ‘strongly agree’. We posed them the questions listed below.

When you are working on a work item, how useful would the recommendations be
in completing the work item (on a scale of 1 to 5):

1. You are going to refer to the work items and pull requests recommended as
inspiration and informal documentation on accomplishing the work item.

2. You would likely reach out to the recommended people for consultation on
accomplishing the work item.

RESULTS
Do the users feel work item, pull request, and expert recommendations are use-
ful? The participants expressed that the Nalanda recommendation system can be a
great value addition to the software development process. 60% of the participants
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Figure 5.6: Participants’ evaluation of the Nalanda system

rated ‘agree’ or ‘strongly agree’ when asked whether they find the artifact recom-
mendations useful and 40% responded favorably to the expert recommendations.

Through question 2 we measure the difference between the expectations the par-
ticipants had of a hypothetical recommendation system with the Nalanda artifact and
expert recommendation application. This question measures the dependent variable
for the user study (introduction of the Nalanda system). In Figure 5.6, the radar chart
shows some differences between the participants’ original expectations and their per-
ception of the Nalanda recommendations.

These differences can be observed better in Figure 5.7, in which the averages
of the rating are shown. The difference in expectation versus perception was more
apparent with the expert recommendations compared to the artifact recommendations.

To offer an impression, we list some typical quotes (positive and negative) that
we received from the developers.

“A tool like this will help greatly to understand the processes involved in
pushing my changes through.”

“It is great to see the recommendations about people to talk to. My team
is large, mostly remote, and I am new. So this is very helpful.”

“Finding people to talk to has never been a problem for me as I have
been working in the same org for a while.”

5.6. DISCUSSION
5.6.1. OUTLOOK
In the future, we anticipate both the Nalanda graph system and MyNalanda to be
scaled out significantly inside Microsoft in terms of the number of repositories and
users. Furthermore, we see opportunities for implementing the Nalanda graph plat-
form as a service on top of the open-source software development data mined from
systems like GitHub.
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Figure 5.7: Expectations and perceptions of the Nalanda system

We also expect the Nalanda artifact and expert recommendation application to be
employed at substantially more software development systems at Microsoft. Simi-
lar to MyNalanda we see opportunities to implement the Nalanda artifact and expert
recommendation application in open source systems such as GitHub. Future research
could entail including other types of useful recommendations such as internal and ex-
ternal documentation, tutorials, and recommendations from question-answer forums.

The rich socio-technical data in the Nalanda graph in combination with advances
in deep learning and Graph Convolutional Networks (GCNs), hold promise for appli-
cations such as neural reviewer recommendations by leveraging the socio-technical
structures. The Nalanda graph system lays the foundation to bring various techniques
from the graph representation world (“Graph Neural Network Techniques”, 2021),
such as link prediction, social network analysis, etc. into the software engineering
and analytics domain.

5.6.2. THREATS AND LIMITATIONS

INTERNAL VALIDITY

Conducting trustworthy experiments on data collected from thousands of repositories
is challenging especially due to the problems of avoiding data leakage and obtaining
credible ground truth. In our experiments, we addressed this (see Table 5.4). While
our results are highly promising and an important first step, more experiments are
needed to better understand the true nature of the graph’s contribution to expert and
artifact recommendation.

The risk of response bias is minimal in all our studies because all the participants
of the user study are organizationally distant from the people involved in building this
system. However, there remains a small chance that people in the user study may be
positive about the system because they want to make the developers who are from the
same company motivated and happy.
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EXTERNAL VALIDITY

The context of our evaluation and user studies is a software development company
with a large number of developers. These developers work on a portfolio of prod-
ucts across many contexts and domains. By conducting a user study within one sin-
gle company, we were able to control for factors like culture, tooling, frameworks,
and programming languages. However, our results may not be generalizable across
all developers in all contexts. Hence, our results are not verified in the context of
other organizations or the open-source community. Therefore, our findings may be
limited and warrant further research. Future work could investigate user interfaces,
integrating our findings with design guidelines that span usability and technical and
organizational complexity (Jaferian et al., 2008).

5.7. RELATED WORK
Graph Representations Hipikat (Cubranic et al., 2005) is one of the earliest works
to build a graph for software development entities like tasks, file versions, and docu-
ments, using a fixed schema. It was built to onboard new hires quickly by providing
easy access to relevant artifacts. Codebook (Begel et al., 2010) builds a prototype
graph consisting of various software development entities. The data was mined from
software repositories for a single team at Microsoft. Bhattacharya et al. (Bhattacharya
et al., 2012) use graph representation of source code and bug tracking information to
construct predictors for software engineering metrics like bug severity and mainte-
nance efforts. Other applications of graph representations of software artifacts include
visualizing relationships among project entities (Sarma, Maccherone, Wagstrom, &
Herbsleb, 2009) and extracting changes in variability models (Dintzner et al., 2018).
Compared to all this work, the scale of the Nalanda graph is significantly larger with
37M nodes and 128M edges, and Nalanda has been designed to be actively used in a
production setting.

Source Control Dashboards GitHub offers a dashboard for developers on its home-
page (“GitHub personal dashboard”, 2021). It displays the repositories, active pull
requests, and issues (work items). A key limitation of the GitHub dashboard is that
one cannot see the activity of another developer. In contrast, MyNalanda helps find
the complete development activity of any developer. Another difference is the “Team
feed” in MyNalanda, which displays the development activity of all the developers in
a team. This helps the discovery of the items worked by other team members.

Information Needs Ko et al. (Ko et al., 2007) studied information needs in colo-
cated development teams. Fritz and Murphy (Fritz & Murphy, 2010) provide a list
of questions developers ask for the most frequently sought-after information within a
project. Information needs have also been studied in the context of change tasks (Sil-
lito et al., 2008), inter-team coordination (Begel et al., 2010) and software analyt-
ics (Begel & Zimmermann, 2014; Buse & Zimmermann, 2012; Huijgens et al., 2020)
Through its applications, Nalanda can efficiently address most information needs re-
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lated to people, code, and work items. For example, the answer to questions such as
“Who is working on what” and “What are coworkers working on right now” is easily
available in the MyNalanda application.

Artifact Recommendation systems for software developers Recommendation sys-
tems for software engineering aim at assisting developers with activities such as code
reusability, writing effective bug reports, etc. (M. Robillard et al., 2010). Tools like
CodeBroker (Ye & Fischer, 2002) help in finding the relevant code samples extracted
from the standard Java documentation generated by Javadoc from Java source pro-
grams and deliver the suggestion to the Emacs editor. Anvik et al. (Anvik et al.,
2006) proposed a semi-automated method to assign bug reports to reporters based on
their expertise using a machine learning algorithm. Mockus and Herbsleb(Mockus &
Herbsleb, 2002) used quantity as a measure of expertise. The tool is presented in the
form of HTML pages with search engine and hierarchical navigation. Fu et al.(Fu
et al., 2017) used the node2vec algorithm to convert file entities within projects into
knowledge mappings. They proposed four features to capture the social relationships
between developers. Devrec(X. Zhang et al., 2017), a developer recommendation
system, mines development activities of developers in GitHub and StackOverflow to
recommend collaborators for a given project. Hammad et al (Hammad et al., 2020)
use keywords from the textual content of commits. Each expert is associated with the
extracted keywords for a recommendation. On the other hand, Canfora et al (Can-
fora et al., 2012) use mailing lists and versioning systems to recommend experts for
newcomers joining a software project. Compared to these approaches, the Nalanda
artifact and expert recommendation application is designed to be highly scalable and
provide responses in real time.

5.8. CONCLUSION
In this chapter, we seek to build a large scale software analytics data platform named
Nalanda with two subsystems (the Nalanda graph systemand the Nalanda index sys-
tem). The Nalanda graph system consists of a socio-technical graph encompassing
the entities, people, and relationships involved in the software development life cy-
cle. The Nalanda index system is an enterprise scale index system that can be used
to support a wide range of software engineering tasks such as recommendation, and
search.

We built the Nalanda graph system using software development activity data
from 6,500 source code repositories. The graph consists of 37,410,706 nodes and
128,745,590 edges. To the best of our knowledge, it is the largest socio-technical
graph built to date using private software development data. Similarly, the Nalanda
index system contains 8,018,320 documents in its artifact index and 61,428 docu-
ments in its expert index with data ingested from 6,500 repositories at Microsoft.

The Nalanda platform and its applications (MyNalanda and Nalanda artifact and
expert recommendation application) help in developing awareness of each other’s
work, and building connections between developers across repositories, while offer-
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ing mechanisms to discover information while managing information overload. We
also seek to address the problems of information discovery by finding related work
items and experts for software developers.

Based on organic growth alone, MyNalanda has Daily Active Users (DAU) of 290
and Monthly Active Users (MAU) of 590. A preliminary user study shows that 74%
of developers and engineering managers surveyed are favorable toward continued use
of MyNalanda for information discovery. The Nalanda artifact and expert recom-
mendation application, with the help of the socio-technical graph for customization,
lifted the accuracy of artifact recommendations by 30.45 percentage points to 0.78. In
a study with ten professional software developers, participants agreed that a system
like Nalanda artifact and expert recommendation application could reduce the time
spent and the number of places needed to visit to find information.

In the future, we anticipate both the Nalanda graph system and MyNalanda to
be scaled out significantly inside Microsoft in terms of the number of repositories
and users. We believe the systems and the techniques have applicability beyond Mi-
crosoft. Furthermore, we see opportunities for implementing the Nalanda graph plat-
form as a service on top of the open-source data mined from platforms like GitHub.
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6
CONCLUSION

The goal of this dissertation is to help make the DevOps lifecycle efficient by de-
veloping recommenders that aid various stakeholders in the DevOps lifecycle. To
that end, we develop recommenders such as ORCA, Nudge, ConE, MyNalanda, and
Nalanda Recommendations and propose methods to measure the impact of such rec-
ommenders in terms of efficiency gains. We also propose a general-purpose uni-
fied framework that helps in paving the path to develop more such recommenders
by significantly reusing various functionalities or modules of the recommender sys-
tem development, such as data collection, training, inference, recommendation, and
evaluation.

6.1. CONTRIBUTIONS
In this dissertation, we make the following main contributions:

In Chapter 2, we present our work on automated differential bug localization,
‘Orca: Differential Bug Localization in Large-Scale Services.’ This results in:

• An algorithm, implemented in the tool ORCA, that helps developers and oper-
ations staff quickly root causing the incidents or bugs that caused outages in an
automated fashion.

• Evidence that light-weight IR-based (Information Retrieval) bug localization
techniques can be applied at scale without compromising on performance

• Evidence that our general-purpose and unified data framework is powerful in
building such applications at scale by bringing the data from the left (code
authoring or inner loop) and right (deployment or outer loop) side data from
the DevOps lifecycle into a single place
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In Chapter 3, we present our work based on ‘Predicting pull request completion
time: a case study on large scale cloud services and ‘Nudge: Accelerating Overdue
Pull Requests Towards Completion.’ This results in:

• A new modality of effort estimation, i.e. performing effort estimation at pull
request level

• A deeper understanding of the factors that impact the change progression

• An algorithm to programmatically detect the dependent actors and engage the
right change blockers in the nudge notifications

• A framework for detecting activity in a pull request by consuming various sig-
nals and actions generated in the pull request environment

• Evidence that predicting the pull request completion time is a possibility and
operationalizing such machine learning models at a large scale can be done

• Evidence that systems such as Nudge, which are built using the pull request
level effort estimation prediction models, are accurate with their predictions

• Demonstrating the ability of the impact of Nudge on development practices and
change velocity through mixed-methods approaches

In Chapter 4, we presented ‘ConE: A Concurrent Edit Detection Tool for Large
Scale Software Development’. This results in:

• Evidence that changes localized to specific files have a high probability of caus-
ing merge conflicts in large software code repositories

• Empirical analysis that explains the characteristics of changes that has a poten-
tial to cause merge conflicts when merged with the main branch

• Statistical evidence that a model like ConE can accurately predict the occur-
rence of such merge conflicts

• Evidence that developers are inclined towards using tools like ConE and con-
suming the recommendations made to avoid future merge conflicts, which is a
major waste of their time

• Mixed methods approach to help understand the impact and reception of tools
like ConE

In Chapter 5, we presented ‘Nalanda: A Socio-Technical Graph Platform for
Building Software Analytics Tools at Enterprise Scale.’ This results in:

• A general-purpose graph data platform that captures the interactions between
various artifacts and developers involved in the software development process
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• A Socio-Technical graph that consists of the knowledge of expertise, owner-
ship, and social interactions between code authors, pull requests, code review-
ers, source code files, etc.

• MyNalanda, which is a news feed for discovering individual and team activity
of software developers and helps in dealing with the problems of information
overload and information discovery

• A system for recommending the related tasks and subject matter experts (SMEs)
for software developers leveraging the socio-technical graph

• Large scale studies (survey and interviews) that aim at understanding the re-
ception of software developers towards such applications and recommender
systems

6.2. REFLECTION ON THE RESEARCH QUESTIONS
In light of our findings, in this section, we answer the research questions defined in
Section 1.2.2.

6.2.1. RESEARCH QUESTION 1: WHAT ARE THE MODALITIES OF
RECOMMENDERS THAT NEED TO BE BUILT TO SUPPORT MOD-
ERN DEVOPS?

Our studies with hundreds of software developers have shown that problems associ-
ated with information discovery are real in large software development environments.
For example, a task such as finding the commit that caused an incident involves dig-
ging through the incessant amounts of log files, querying different data sources, and
talking to different people. The intensity of the problem goes up with other influ-
encing factors such as the severity of the incident, the complex dependency chain of
microservices, etc. Similarly, there exist issues with pushing stale pull requests to-
wards completion. Finding a simple piece of information such as the change blocker
(author or reviewer of the pull request) requires an engineering manager or a project
manager to go through the history of the pull request and review comments.

During code authoring, software developers need to refer to many documents,
such as wiki pages, or design docs. It is also common for some teams to follow a
more informal documentation culture and the knowledge is confined to few experts.
In that case, finding who can help with a task is not trivial. It is a herculean task for a
developer to find tasks or pull request that solved similar problems for inspiration or
use them as a guide. The intensity of these problems grows with developers moving
across teams or companies.

By conducting a deeper analysis of the needs of various stakeholders, the sce-
narios, and the problem space, we developed a solid understanding of the problems
associated with information needs of software developers. With that background, we
developed a series of recommenders to help alleviate the problems mentioned above.
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To address the incident root causing problem, we designed a novel search tech-
nique that we call differential bug localization. Using descriptions of the bug as a
query, we detect changes to the abstract syntax tree in the source code and search
only these changes for text-based similarity. Similarly we designed Nudge, a ma-
chine learning service for accelerating overdue pull requests towards completion. As
its name suggests, Nudge sends a reminder if a pull request is overdue. To help
with developing awareness about potential conflicting changes, we developed ConE.
It sends recommendations to developers involved in a potential merge conflict.

To address the problems associated with information needs, we build a large-scale
data platform named Nalanda to address the challenges of information overload and
discovery. Nalanda uses a socio-technical graph to provide context-sensitive recom-
mendations about similar tasks, pull requests, subject matter experts.

Our research has shown that designing and deploying recommenders such as
ORCA, Nudge, CONE in large-scale DevOps environments is practical and use-
ful. One of the contributing factors for the positive reception of these tools is that
they shield the developers from the technology aspects and methods. For example,
we employed techniques from fields such as information retrieval, machine learning,
software engineering, program analysis while designing these recommenders. How-
ever, the audience of the recommendations need not be aware of the complexity of
methods and implementation details. We focused a lot on user experience, presenta-
tion, latency and scalability using these factors as guiding principles while conducting
our research. The methods we devised to satisfy these requirements such as IR-based
bug localization, pull request level effort estimation, and light-weight merge conflict
prediction are the results of such thinking.

6.2.2. RESEARCH QUESTION 2: HOW TO ASSESS THE EFFICACY
OF SMART RECOMMENDERS AND THEIR IMPACT ON DEVOPS
PROCESSES?

Gauging the impact of a recommender is extremely important, but can be challenging.
For example, to measure the accuracy of an auto root causing service, we need a
ground truth dataset of root causes. This sometimes is a big culture change for teams
who are not used to documenting root causes before closing incidents. Similarly, to
understand the impact of a reminder service such as Nudge, we need to come up with
careful strategies that eliminate the effect of other confounding factors. Complexity
only goes up with adding factors such as geographically distributed teams, complex
dependency chains of services, or disparate development practices followed by teams
in the same company.

While this is challenging, it is possible to devise methods and inculcate practices
(sometimes, cultural changes) to perform evaluation of such recommenders. How-
ever, being intentional about developing methods for conducting evaluation is an im-
portant consideration. For example, conducting A/B testing or performing telemetry
analysis cannot be done unless we build them when we operationalize the recom-
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menders. At the same time, a one-size-fits-all approach will not work for evaluating
such a diverse set of recommenders. Though there exist general evaluation compo-
nents, such as user studies or surveys, we came up with methods and techniques to
evaluate each recommender in their own specific.

We use mixed-methods approaches to evaluate the impact of our recommenders
on software development practices. We use the implicit feedback mechanism to quan-
titatively evaluate the efficacy at scale. We also conduct randomized trial experiments
to evaluate the impact of a certain recommender while leaving all the confounding
factors untouched. While through quantitative methods we can understand what hap-
pens in a software system, understanding why that happens is often not possible by
only observing the data. To obtain richer data to answer this kind of questions, we
use interviews, user studies, focus groups, etc.

Being intentional and focused on evaluation is beneficial in many ways. It helped
us assess the merit of our methods, in a practical setting, and iteratively improve im-
portant metrics such as accuracy, precision, recall, etc. It also helped us with gauging
the user sentiment, perceived usefulness, and helped us in devising methods that are
relevant. For example, when evaluating ORCA, we used quantitative methods to mea-
sure the efficacy of ORCA. We obtained an accuracy of 70%, for top-10 results, in
the beginning. Later, we found that developers find our service not that useful because
the majority of the correct root causes were listed at or after the fifth position. we then
started tracking another metric named MRR and worked towards bringing it to 0.44 (a
root cause is guaranteed to be found within top-3 results). The way we achieved this
is fundamentally changing our algorithm to include a build provenance graph while
performing the search. This is an example of how evaluation under practical settings
mixed with early user feedback has driven the research methods and outcomes.

With the same spirit and focus on evaluation mind, we devised various methods
for evaluating other recommenders such as Nudge, CONE, Nalanda recommenda-
tions. For Nudge, we collect data from 147 repositories. We noticed that the average
lifetime of the pull requests on which Nudge notifications were sent was 112.6 hours
which is a 42.9% decrease compared to the set of pull requests on which we did
not send the notification (where the average lifetime is 197.2 hours). Similarly, for
Nalanda artifact and expert recommendation application, the accuracy of artifact rec-
ommendations was 78%. We also employ methods like a one-group pretest-posttest
experimental design where 60% of the participants rated ‘agree’ or ‘strongly agree’
when asked whether they find the artifact recommendations useful.

We conclude that there is no prescribed method to measure and improve the rec-
ommendation accuracy. As explained, we take several standard methods and cus-
tomize them as per the need of the hour. We employ the relevant methods based on
the modality of the recommender, the feasibility to conduct large-scale experiments
and studies, and the aspects of the recommender we are interested in gaining a deeper
understanding of. We believe this diligent selection of methods and tailor-making
them as per the need is efficient and inspires future research, and help practitioners
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and researchers developing such recommenders and tools.

6.2.3. RESEARCH QUESTION 3: HOW TO BUILD A GENERAL-PURPOSE
AND SCALABLE DATA FRAMEWORK FOR DEVELOPING SMART
DEVOPS RECOMMENDERS?

When developing the recommenders, we realized that the infrastructure used by many
of these recommenders have patterns in common such as ingesting source control data
(commit, pull request histories), extracting attributes from them, learning rules, train-
ing models, passing recommendations, gathering telemetry and feedback. We wanted
to investigate whether building a data platform that is generic and scalable is possible.
Generalizability is not something that becomes important only in the implementation
phase. We have to be intentional about it while conducting our research and devising
methods. For example, the attributes we use for developing the CONE model are a
subset of what we use for developing the Nudge machine learning model. The rules
we learn and save when running the Nudge model are leveraged in the MyNalanda
application for raising alerts for overdue pull requests.

Our decision to make the data platform generalizable significantly accelerated the
development and deployment of our recommenders. We reused a lot of components
across recommenders. For example, when we first built ORCA, we built a scalable
infrastructure that ingests pull request and commits data from the source control sys-
tems, normalizes the data, and materializes that into a relational database system. We
also built an API layer for the client services to consume the recommenders. When
building Nudge, we reused the data platform but with some customizations to collect
the extra data we need to train the machine learning models.

While building the Nalanda socio-technical graph and the artifact, expert indices
we used the same design principles. Generally, building large-scale socio-technical
graphs, with millions of nodes and edges, is a non-trivial activity, which needs a lot of
careful design and implementation. Because of the generic nature of the data platform
we built for ORCA, Nudge, and CONE, we were able to spin up the graph platform
in just 3 months of time.

Similarly, the framework and the API layer we built for passing recommendations
for recommenders such as ORCA and Nudge are reused for ConE, and Nalanda rec-
ommendations. We created a general-purpose evaluation framework and controlled
experimentation platform for Nudge, which was then used by ConE, MyNalanda, and
the Nalanda recommendation systems.

In our experience, the rigor, impact and iteration speed of methods can be in-
creased greatly with reusing the components as much as possible. This also involves
being intentional about the generalizability of methods, and evaluation frameworks.
Designing the data framework and applications (recommenders) goes hand-in-hand
and one influences how the other is conceived or built. This also has an auxiliary
side effect of rapid prototyping and helps with early feedback loops. When con-
ducting research and proposing methods, dealing with infrastructure and data issues
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is sometimes considered the least interesting part. Doing it the right way helps us
with focusing on the research and methods while keeping the issues involved with
infrastructure away.

6.3. CONCLUDING REMARKS
In this dissertation, we show that DevOps is a complex and collaborative process.
DevOps involves deploying large-scale systems, possibly in cloud environments, con-
tinuous delivery of new features and functionality, many people working together, and
feedback flowing from development to operations (and vice versa) in a loop.

Because of the nature and the complexity involved in the DevOps processes, the
success of DevOps processes requires employing smart tools or recommenders, which
are either proactive or reactive in nature. These recommenders pass useful recom-
mendations to mitigate, alleviate, and streamline the DevOps processes. However,
building such smart recommenders is not a trivial task due to the huge volumes of
data, disparate and siloed nature of the data sources, the complexity involved in oper-
ationalizing such recommenders at scale, the nonexistence of methods to evaluate the
impact of such recommenders, and the socio-technical and human aspects involved
in the perception and success of such recommenders.

Online root-causing tools such as ORCA has shown significant promise and set
a direction toward developing lightweight bug localization techniques. In the future,
we anticipate more research happening in the direction of employing lightweight tech-
niques for bug localization. Dealing with performance bugs and configuration-related
issues could be a natural next step. Apart from that, we also anticipate the develop-
ment of more semantic-level program analysis techniques within Orca.

Similarly, recommenders like Nudge have shown that pull request level effort es-
timation models can be built and operationalized at scale. We observed a significant
reduction in completion time when Nudge is employed, by over 60% on average,
for pull requests which were nudged. Recommenders like ConE, to detect concur-
rently edited files in pull requests at scale, are proven to be effective in developing
awareness and preventing accidents. During a period of six months, ConE generated
775 notifications, from which 71.48 % received positive feedback. Interviews with
48 developers showed 93% favorable feedback and applicability in avoiding merge
conflicts as well as duplicate work.

We believe that Nudge-like and ConE-like functionality could be beneficial to
repositories of many open source systems. From a research perspective, we see future
research in the areas of measuring the impact of shorter or longer reviewing cycles on
reviewing quality, refining the pull request lifetime prediction models, and improving
the precision of recommenders like ConE by learning from past user feedback or by
leveraging diffs without sacrificing scalability.

Dealing with information overload and satisfying the information needs of devel-
opers in the ever-changing and rapid world of DevOps is a perennial problem. The
Nalanda platform and its applications (MyNalanda and the Nalanda artifact and expert
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recommendation application) help in developing awareness of each other’s work, and
building connections between developers across repositories, while offering mecha-
nisms to discover information while managing information overload. We also seek
to address the problems of information discovery by finding related work items and
experts for software developers. In the future, we anticipate both the Nalanda graph
system and MyNalanda to be scaled out in many DevOps environments (corporations
and open source systems alike). We believe the systems and the techniques have
applicability beyond a single company. Furthermore, we see opportunities for imple-
menting the Nalanda graph platform as a service using open source data from, e.g.,
GitHub.

Finally, the unification of the left and right sides of the data (from code author-
ing, and code reviewing to incident management) enabled applications like ORCA,
which otherwise are impossible to materialize. Similarly, a large part of our success
can be attributed to the generic and scalable nature of the data platform and the de-
sign principles we followed. This approach significantly accelerated the development
and deployment of our recommenders. We reused a lot of components across rec-
ommenders. This enabled us to not worry about the infrastructure once it was built
and deployed. We were able to focus on the scenarios, the algorithms, and machine
learning models, devise methods to evaluate the impact of our recommenders, and
finally make the large-scale DevOps processes efficient.
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