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A B S T R A C T   

Actual evapotranspiration (ETa) plays a crucial role in the water and energy cycles of the earth. An accurate 
estimate of the ETa is essential for management of the water resources, agriculture, and irrigation, as well as 
research on atmospheric variations. Despite the importance of accurate ETa values, estimating and mapping them 
remains challenging due to the physical and biological complexity of the ET process. As a novel approach for 
rapid and reliable estimation of ETa, the present study develops automated deep learning (AutoDL) models that 
incorporate a metaheuristic optimization algorithm for image processing, architectural design, and hyper-
parameter tuning. The proposed AutoDL models integrate three different spatial and channel attention mecha-
nisms, including a novel activated spatial attention mechanism (ASPAM), with the U-Net architecture. Bypassing 
the need for meteorological inputs, the proposed framework uses Moderate Resolution Imaging Spectrometer 
(MODIS) products and Digital Elevation Model (DEM) data as inputs. To evaluate the performance of the models, 
they are applied to three study areas in the United States with various climatic characteristics. According to the 
results, during the spring and summer, when the target values have higher certainty, the estimations are highly 
promising, with R2 as high as 0.91 and MAPE as low as 6.40%. Furthermore, the proposed ASPAM module 
improves the accuracy of ETa estimations compared to attention gate (AG) and squeeze and excitation (SE) 
attention modules. The results also indicate that the MODIS raw products and derived vegetation and water 
indices can predict ETa within a reliable range of accuracy, with the addition of DEM data marginally enhancing 
the models' performance. The automatic workflow of this model makes it significantly easy to use, contributing 
to its applicability and generalizability for enhancing atmospheric research.   

1. Introduction 

Actual evapotranspiration (ETa) is a fundamental component of the 
hydrological cycle (Su et al., 2022). Approximately 60 to 90% of the 
total precipitation returns to the atmosphere through ETa (Dayal et al., 
2021; Fisher et al., 2017). Moreover, ETa is the primary consumer of 
incoming solar energy and plays a vital role in the Earth's energy cycle 
(McCulloch, 1976; Mu et al., 2011). Therefore, understanding the dis-
tribution of ETa on a large scale is essential for various practices such as 
management of agriculture, and water resources, and assessment of 

atmospheric variables including relative humidity, net radiation, and 
wind speed (Wang et al., 2021; Ahmadi et al., 2022). Despite its 
importance, the accurate and reliable measurement of ETa remains 
challenging (Mementi and Choudhury, 2007), primarily due to the 
complex interplay of factors including radiation, atmospheric evapora-
tive demand, soil moisture, and its spatial variation at different scales 
(Amatya et al., 2016; Gowda et al., 2008). 

In general, the methods for estimating ETa can be classified into two 
main groups: direct measurement and modeling (Chen et al., 2016). 
Direct measurements, including the observations from weighing 
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lysimeters, large aperture scintillometers (LAS), and eddy covariance 
(EC) systems (Li et al., 2017), are considered the most reliable methods 
for estimating ETa (Abtew and Melesse, 2013; Tanny et al., 2008). 
However, these approaches are costly and labor-intensive, require 
expert personnel, and usually offer data for limited durations. Further-
more, scaling up observational ETa data is a complex and multidimen-
sional process, posing challenges for direct methods (Gebremedhin 
et al., 2020), limiting their application to short-term observations, and 
validation of indirect approaches (Rahimpour and Rahimzadegan, 
2021). 

In contrast to measurement methods, ETa modeling based on remote 
sensing (RS) technology offers a unique advantage by providing 
consistent and economically viable estimations at various scales, 
ranging from daily to yearly and from regional to global (Zhuang et al., 
2021; Tang et al., 2010; Rahimpour and Rahimzadegan, 2021). In 
particular, the availability of numerous satellite-based sensors in recent 
years has significantly contributed to the development of new RS-based 
approaches (Doulabian et al., 2021; Sahraei et al., 2023). Among these 
methods, energy balance-based methods (Bastiaanssen et al., 1998a; Su, 
2002) are not only more widely used (Wang et al., 2014) but are also 
recognized for their superior performance compared to other methods 
(Assouline and Mahrer, 1993; Lenters et al., 2005; Winter et al., 2003). 

Among the mentioned models, the recently developed operational 
simplified surface energy balance (SSEBop) model (Senay et al., 2013) 
offers distinct benefits in terms of simplicity and operational applica-
tions for large-scale ETa estimation (Senay, 2018). The innovative aspect 
of the SSEBop model is that, under clear-sky conditions, it uses a pre-
defined boundary where each pixel has a unique differential tempera-
ture (dT), eliminating the need for manual selection of hot and cold 
pixels (Chen et al., 2016). Despite its simplifications, the SSEBop-ETa 
product has demonstrated satisfactory performance and maintained 
comparable accuracy level to models such as SEBAL and METRIC across 
diverse landscapes (Chen et al., 2016; Weerasinghe et al., 2020; Ji et al., 
2019; Chen et al., 2016; Senay, 2018). However, similar to other energy- 
based models, the SSEBop model has certain drawbacks. It all require a 
resource-intensive integration of various meteorological datasets, lacks 
the ability to incorporate spatial dependencies among variables, and 
demands expertise for implementation, further hindering their wide-
spread adoption and convenience of use. These limitations emphasize 
the necessity for an expedient method for large-sale ETa estimation 
based on an integrated dataset. 

In recent years, as a result of the promising ability of deep learning 
(DL) to address complex regression problems (Rabiei et al., 2021; Yang 
et al., 2020), some studies have applied DL variants for ET estimation 
(Babaeian et al., 2022). For instance, Yan et al. (2023) utilized an energy 
balance method as the benchmark to train a long short-term memory on 
weather data from different meteorological stations for estimating 
reference ET. Although they achieved promising results, their model still 
relies on data from multiple sources and is limited to local applications. 
To overcome the challenges of large-scale applicability, a few studies 
have used global-scale data from various sources as inputs (Wang et al., 
2023) and ETa derived from an energy-based model as the target vari-
able. However, these approaches still require data from multiple sour-
ces, demand expertise for implementation, and encounter difficulties 
incorporating spatial dependencies among variables. 

Among the various classes of DL, the fully connected neural network 
(FCNN) (Long et al., 2015) offers several advantages over traditional 
patch-wised convolution neural networks (CNNs), including improved 
spatial preservation, reduced parameters, and the ability to capture 
multi-scale features (Xu et al., 2021). Specifically, the U-Net architec-
ture, a specific variant of FCNN models characterized by an 
encoder-decoder structure (Minaee et al., 2021), demonstrates superior 
computational efficiency and enhanced ability to capture spatial corre-
lations, resulting in improved accuracy compared to CNNs (Maggiori 
et al., 2017; Stoian et al., 2019). While the U-Net has been extensively 
applied for image classification and segmentation tasks, its potential for 

large-scale ETa estimation in regions with diverse climatologies remains 
unexplored (Taccari et al., 2022). 

In practice, spatial dependencies are commonly observed among 
atmospheric variables. As a result, incorporating an attention mecha-
nism (Ding et al., 2019) that focuses on the most informative spatial 
points and disregards the less relevant ones may further holds the po-
tential to enhance estimation from spatial feature sequences (Chen et al., 
2018; Ding et al., 2019). Nonetheless, studies have yet to examine its 
potential in the context of hydrological forecasting and regression (Chen 
et al., 2020; Ding et al., 2019). We hypothesize that, inspired by the self- 
activated internal attention (SAINA) module (Alizadeh et al., 2021), a 
novel attention mechanism that uses matrix multiplication instead of 
more commonly used convolution blocks or Harmon multiplication in 
attention mechanism operations can better capture spatial dependencies 
by involving a greater number of arrays in matrix computations. How-
ever, to our knowledge, no such attention module has been developed or 
evaluated in the context of U-Net-based models. 

Automated DL (AutoDL), an emerging field within the realm of DL, 
offers simplified DL model development and interpretation through 
automating workflow processes (Prasad et al., 2022; Li et al., 2022a, 
2022b). This automation facilitates its implementation and expands the 
usage of DL models among a diverse set of researchers (Polonskaia et al., 
2021). Consequently, in this study, we design a novel approach for ETa 
estimation based on AutoDL models that eliminates the need for manual 
intervention throughout the entire process (Li et al., 2022a, 2022b). A 
crucial step in this approach involves the utilization of an optimization 
algorithm to determine the optimal architecture and hyperparameters of 
the DL model (Ma et al., 2020). The present study employs a meta-
heuristic algorithm known as Harris Hawks Optimization (HHO) (Hei-
dari et al., 2019), which has demonstrated high efficiency in identifying 
optimal values (Setiawan et al., 2021). 

According to the above, the main objective of this research is to 
develop an AutoDL attention-based U-Net model optimized by HHO for 
the integrated, efficient, and reliable estimation of daily ETa on a large 
scale as an alternative to traditional energy-based models. In this regard, 
we propose a novel Activated Spatial Attention Mechanism-U-Net 
(ASPAM-U-Net) and compare its ETa estimation performance to that of 
AG-U-Net, SE-U-Net, and a Simple-U-Net. Since direct measurements 
such as Eddy covariance are sparsely distributed and cannot fully cap-
ture the spatial features of ETa at large scales, similar to previous studies 
(Li et al., 2022a, 2022b; Yan et al., 2023), we use an energy-based model 
(SSEBop) as the target variable of our developed models. By eliminating 
the need for meteorological variables, we rely solely on the optical and 
thermal observations of the MODIS satellite to address the problem of 
reliance on multiple data sources. We use several deterministic evalua-
tion metrics to evaluate the performance of these models across different 
regions and months of the year to assess their performance under 
different types of climatology, weather, and surface conditions. 

This assessment also addresses the following research questions: To 
what extent can an optimization algorithm enhance model perfor-
mance? How effectively do spatial and channel attention mechanisms 
improve deterministic ETa prediction? How are the forecast errors 
related to the hydro-climatic conditions in the study areas? And finally, 
which types of inputs have the most significant impact on the model's 
performance? 

The structure of this paper is outlined as follows: Section 2 details the 
materials and methods, encompassing the data collection procedures 
and descriptions of the study regions. Section 3 presents the results and 
discussion on the comparative evaluation study. Section 4 summarizes 
the findings and offers recommendation for future studies. 

2. Materials and methods 

2.1. Data collection and study regions 

In this study, three groups of data were utilized for mapping to the 
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target dataset of SSEBop-ETa, including (1) optical and thermal bands 
collected by the MODIS sensor, (2) a set of derived vegetation- and 
water-based indices, and (3) topographical parameters derived from a 
digital elevation model (DEM). To ensure a more comprehensive eval-
uation, the model was applied to three different regions covering all 
months of the year to capture the impact of temporal and spatial climate 
dynamics on the performance of the proposed methodology. The details 
of the collected data and study regions are provided in the following sub- 
sections. 

2.1.1. Input variables 
A suite of MODIS satellite image products was acquired from the 

Land Processes Distributed Active Archive Center website as the main 
inputs of the models. These inputs were classified into three groups, as 
follows: 

The first group of data consisted of 12 thermal and optical bands, 
including Terra MODIS surface reflectance bands 1 through 7, as well as 
three bands providing information on azimuth angle, solar zenith angle, 
and view zenith angles. These bands were collected from the MOD09A1 
Version 6 product. This dataset is an 8-day composite, where each pixel 
comprises the best observation chosen over eight days. Two additional 
bands in this group are thermal bands 31 and 32, collected from the 
MOD11A2 Version 6 product. Each pixel value in these bands in this 
product represents a simple average of the corresponding pixels 
collected within the eight days. 

The second group contained a series of indices derived from the first 
group of data and a MODIS-based land use map inclduing: the leaf area 
index (LAI) and the fraction of photosynthetically active radiation 
(FPAR) from the MOD15A2H Version 6 product; the yearly FAO-LCCS2 
land use layer (all at 500 m resolution); percent of pixels not vegetated, 
and percent of pixels non-tree vegetated, all three from the MOD44B 
Version 6 Vegetation Continuous Fields yearly product; and land surface 
temperature (LST) from the MOD11A2 product. Additionally, 15 vege-
tation- and water-based indices (Table 1) were computed using surface 
reflectance bands 1 through 7 to further enhance the accuracy of the DL 
models, where NIR denotes near infrared. 

As the final data group, five parameters based on elevation were 
derived from the Shuttle Radar Topographic Mission (SRTM) DEM 
product (SRTMGL3 DEM), including slope, flow direction, flow accu-
mulation, flow length, and elevation. 

2.1.2. Target variable 
ETa, as the target of the models, was obtained from the website 

https://earlywarning.usgs.gov/ssebop. This database covers the entire 
continental United States (CONUS) and provides daily ETa estimates 
generated by the SSEBop model at 900 m resolution. This dataset utilizes 
8-day available MOD11A2 LST data from MODIS, and ETa is interpo-
lated between each of the 8 days. Accordingly, the presented approach 
estimates daily ETa which may further be accumulated and averaged 
over monthly or seasonal intervals. All the mentioned data were ac-
quired from 09-30-2003 to 09-22-2019. 

The SSEBop model (Senay et al., 2013) was developed to estimate 
ETa across various temporal and spatial scales, using remotely sensed 
observations and climatological data. This model assumes that available 
net radiation (Rn) drives most of the surface energy balance process and 
that variations in land surface temperature (LST) can be used to quantify 
changes in ETa (Senay et al., 2013; Zhuang et al., 2021). Consequently, 
the surface energy balance equation can be used to calculate dT by 
substituting Rn for the sensible heat (H) when H is assumed to be 
maximal, and the latent heat flux (LE) and ground heat flux (G) are 
assumed to be negligible on a daily time scale (Bastiaanssen et al., 
1998b; Senay et al., 2013). A detailed description of the algorithm can 
be found in Senay et al. (2013). 

2.1.3. Study areas 
To ensure a comprehensive evaluation of DL models, three regions in 

the CONUS were selected to represent distinct climatological types ac-
cording to the Köppen climate classification. The locations of all these 
regions are depicted in Fig. 1 (a), and their exact coordinates are pre-
sented in Fig. 1 (b). The first study area, located in the southeastern 
CONUS, is characterized by a hot and humid subtropical climate. The 
second region, located in the northeastern CONUS, features a humid 
continental climate with mild to hot summers. The third study area, 
situated in the western regions of the CONUS, is characterized by either 
low humidity or high temperatures and a combination of cold semi-arid, 
cold desert, hot/warm summer Mediterranean, and humid continental 
mild/hot summer. Each region spans the same land area, providing an 
equal and comparable number of samples for training and validating the 
DL models. 

2.2. Image processing 

A series of preprocessing steps was essential before integrating the 
collected data into the DL models. Therefore, all datasets were initially 
cropped based on the regions of interest. Then, the missing values in 
each raster file were filled using the average of the remaining pixels in 
that file for each input variable. Next, a bilinear resampling algorithm 
was applied to match the resolution of the inputs with the resolution of 
the SSEBop-ETa product (900 m). Then, each raster file was reshaped 
into 1400 smaller 32 by 32 images to expedite the execution of DL 
models. Subsequently, all datasets were stored in the HDF5 format to 
facilitate efficient retrieval for future analysis. 

Since the intention was to examine the effects of monthly weather 
dynamics, the datasets were organized into 12 different HDF5 files, each 
containing four daily modeled ETa for a specific month of the year. To 
address the misalignment between the beginnings of the Gregorian 
calendar months and the start of seasons in the Northern Hemisphere 
(spring, summer, autumn, and winter beginning on March 20, June 21, 
September 23, and December 21, respectively), the seasons were divided 
into three-month intervals according to the aforementioned dates. 
Consequently, each month had data available for four days, except for 
the seventh and twelfth months, which contained data for three days. 

Table 1 
Equations of vegetation- and water-based indices used in the second data group.  

Index Description Formula 

NDVI 
Normalized Difference Vegetation 
Index 

(NIR − RED)
(NIR + RED)

RDVI Renormalized Difference Vegetation 
Index 

(NIR − RED)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|NIR + RED|

√

DVI Difference Vegetation Index (NIR − RED)

IPVI Infrared Percentage Vegetation Index (NIR)
(NIR + RED)

NLI Nonlinear vegetation index 
(
NIR2 − RED

)

(
NIR2 + RED

)

OSAVI Optimized Soil Adjusted Vegetation 
Index 

1.5 × NIR − RED)
(NIR + RED + 0.16)

TDVI Transformed Difference Vegetation 
Index 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.5 +
(NIR − RED)
(NIR + RED)

√

VARI Visible Atmospherically Resistant 
Index 

(NIR − GREEN)

(NIR + GREEN − BLUE)
EVI Enhanced Vegetation Index 2.5 × (NIR − GREEN)

NIR + 6 × RED − 7.5 × BLUE + 1 
Cig Chlorophyll Index – Green (NIR)

(GREEN)
− 1 

RVI Ratio Vegetation Index (NIR)
(RED)

SIWSI 
Shortwave Infrared Water Stress 
Index 

(NIR − BAND6)
(NIR + BAND6)

NDI7 Normalized Difference Index 7 (NIR − BAND7)
(NIR + BAND7)

NDWI Normalized Difference Water Index (GREEN − NIR)
(GREEN + NIR)

SAVI Soil-Adjusted Vegetation Index 1.5×
(NIR − RED)

(NIR + RED + 0.5)
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The descriptions of the months are provided in Table 2. 
In the next step, 15 indices were computed based on the data pre-

sented in Table 1 to improve the performance of DL models. Finally, the 
first 12 years of data were designated for training, the following two 
years for validation, and the final two years for testing the models. To 
automate the entire workflow of the present study, all the mentioned 
steps were implemented using the Python programming language. 

2.3. Methodology 

2.3.1. Deep learning attention mechanisms 
In a deep CNN-based architecture, spatial information can often be 

lost due to cascading convolution and non-linearity in the high-level 
output mapping (Cui et al., 2021). To address this issue, we utilized 
and compared three distinct attention mechanisms to identify and 
extract pertinent spatial information more effectively. Attention mech-
anisms are effective in capturing contextual information and enhancing 

long-range dependency modeling (Li et al., 2021b). 
In computer vision tasks, attention mechanisms are categorized into 

spatial attention and channel attention. Spatial attention mechanisms, 
such as Attention Gate (AG), are used to emphasize target locations and 
suppress irrelevant areas. In this study, AG was employed to capture 
spatial relationships and potentially improve DL models for ETa esti-
mation. Channel attention mechanisms, such as Squeeze and Excitation 
(SE), selectively weight feature map channels to improve prediction 
accuracy (Li et al., 2021a). The incorporation of the SE mechanism in 
this research may enhance the representational capacity of the U-Net 
model and improved ETa estimations. The detailed mathematical 
equations and structure of AG and SE can be found in the respective 
articles (Hu et al., 2018; Schlemper et al., 2019). More importantly, in 
addition to implementing the AG and SE mechanisms, in this study, we 
developed a new attention mechanism and incorporated it into the 
U-Net architecture to capture spatial dependencies more effectively 
within the U-Net framework. The subsequent section will detail the 
structure of the developed attention mechanism. 

2.3.1.1. Activated spatial attention mechanism (ASPAM). We hypothe-
size that utilizing matrix multiplication can more effectively capture 
spatial dependencies among feature channels by including more arrays 
in matrix computations compared to the convolutional operations or 
Hadamard multiplication used in SE and GA. Inspired by the SAINA 
attention mechanism, a self-attention module initially proposed for time 
series analysis by Alizadeh et al. (2021), we developed a novel activated 
spatial attention mechanism (ASPAM) for image regression tasks within 
the U-Net architecture. In general terms, given a query (Q) and a set of 
key-value pairs (K), this attention mechanism can be characterized by 
computing a weighted sum of values (V) based on the query and the 
corresponding keys. Similar to AG, ASPAM takes two inputs: the up- 
sampling feature or gating signal (G) to generate both the query (Q) 
and value (V) matrices, and the corresponding input feature (F) to 

Fig. 1. Illustration of the location of three distinct study areas used in this study. Figure (a) represents the major basin boundaries and climates based on the Köppen 
climate classification within the CONUS. Study areas has been choosen such that reflect distinct types of climatology with the same land area. Figure (b) shows in 
more detail the coordinates of study areas as well as their land cover types based on the annual LAI classification. 

Table 2 
Detail on the monthly division of available data.  

Seasons Order of Months Day of Year 
(based on the Gregorian calendar) 

Spring 
1 81, 89, 97, 105 
2 113, 121, 129, 137 
3 145, 153, 161, 169 

Summer 
4 177, 185, 193, 201 
5 209, 217, 225, 233 
6 241, 249, 257, 265 

Autumn 
7 273, 281, 289 
8 297, 305, 313, 321 
9 329, 337, 345, 353 

Winter 
10 361, 1, 9, 17 
11 25, 33, 41, 49 
12 57, 65, 73  
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compute the key (K) matrix. Accordingly, the proposed attention 
mechanism (Fig. 2) can be expressed as follows: 

G = [G1‚G2‚…‚Gc](c×x×y)

F = [F1‚F2‚…‚Fc](c×x×y)

Q = sigmoid
(
G(c×x×y) ⊗ Wq(c×x×y)

)

K = tanh
(
F(c×x×y) ⊗ Wk(c×x×y)

)

V = G(c×x×y)

S(c×x×y) = softmax
(
sigmoid

(
Q ⊗ KT) )

O(c×x×y) = V ⊗ S (1)  

where Wq and Wk are trainable weights, S represents the attention score 
matrix, O is the output (or, in other words, the attended gating signal 
matrix), and ⊗ denotes the matrix multiplication operator. The indices c, 
x, and z represent the dimensions of matrices and are the given values 
for the number of channels and dimensions of images, respectively. 

Similar to SAINA attention, we observed that applying the sigmoid 
and hyperbolic tangent functions prior to computing Q, K, and S can lead 
to decreased training and validation errors. We reason that these func-
tions can enhance the calibration of the output values. It is worth noting 
that the x and y dimensions should be equal in these operations. 
Furthermore, the matrix multiplication operation is performed channel- 
wise for 3D matrices, resulting in a matrix with the same dimensions as 
its multipliers. However, in contrast to the SAINA module, we used the 
input feature (F) to compute the key matrix and employed matrix 

multiplication instead of Hammond multiplication in Eq. (1) to capture 
spatial dependencies more effectively. 

2.3.2. ASPAM-U-Net architecture 
The Fully Convolutional Neural Network (FCNN) (Tran, 2016) has 

been used for various image segmentation tasks, with the U-Net being a 
prominent variant that has demonstrated significant accuracy im-
provements in image analysis (Cui et al., 2021). The U-Net combines 
low-level features with high-level semantic representation (Asgari 
Taghanaki et al., 2021) through its encoder and decoder, while the skip 
connection between the encoder and decoder ensures that the U-Net 
maintains the full input image context. Thus, the U-Net architecture was 
employed in this study to improve the input images' robustness to dis-
turbances, mitigate overfitting, and reduce ETa estimation training time. 

More importantly, to enhance the capability of U-Net in capturing 
spatial dependencies, we integrated ASPAM modules into its architec-
ture (Fig. 2), with the number of modules varying based on the opti-
mization of model depth (2–4 layers). Hyperparameters were optimized 
using a metaheuristic optimization algorithm (OA), facilitating the 
process of architecture depth and other hyperparameter fine-tuning. 
Fixed hyperparameters across all models included transpose convolu-
tion kernel size (2,2), 2 × 2 max pooling, and batch size of 128, the latter 
optimized for accuracy, GPU memory, and performance. The number of 
filters in the convolution layers doubled in the encoder and halved in the 
decoder, reaching one feature at the final layer. Two dropouts and a 
batch normalization layer with Tanh activation were incorporated into 
each encoder and decoder segment to reduce the model's sensitivity to 
initialization parameters and provide regularization. (Wang et al., 
2021). The AG and SE modules were incorporated into U-Net based on 
the architectures developed by John and Zhang (2022) and Rundo et al. 

Fig. 2. Schematic representation of the spatial attention-based U-Net and the detailed structure of the novel activated spatial attention mechanism (ASPAM). ASPAM 
takes the up-sampling feature as the gating signal from the encoding part and the input feature as the key from the decoding section. The architecture proceeds by 
concatenating the output matrix with the input feature. 
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(2019), respectively, with the SE modules of the encoder from the latter 
article excluded. 

2.3.3. Harris Hawks optimization (HHO) 
Hyperparameter tuning is a critical step in developing DL algorithms, 

as optimized parameters can significantly enhance the model's perfor-
mance. Nonetheless, despite the increasing use of DL models in hy-
drology, the prevailing practice remains experimental trial-and-error 
and reliance on recommended values (Li et al., 2021b). These ap-
proaches, however, can be time-consuming and do not account for the 
combined effects of hyperparameters (Sameen et al., 2020), which could 
be problematic when comparing the performance of several models 
(Alizadeh et al., 2021). 

To address this, a reliable and fast optimization algorithm is essential 
for developing an AutoDL-based model that encompasses all phases, 
from image processing to the automatic determination of the best ar-
chitecture and optimal hyperparameters. Accordingly, we employed the 
Harris Hawks Optimization (HHO), a novel swarm algorithm introduced 
by Heidari et al. (2019). Despite its demonstrated superiority over other 
optimization algorithms (Moayedi and Mosavi, 2021a, 2021b), the 
application of HHO in the domain of atmospheric and hydrologic pre-
dictions has yet to be extensively investigated. 

HHO mathematically simulates Harris's hawk hunting tactics, 
involving exploration, surprise, hunting, and modification of chase 
patterns based on the dynamics of the situation and the prey's escape 
behaviors. HHO, similar to other optimization methods, encompasses 
stages of exploration, and exploitation as well as a transitional phase. 

Detailed mathematical information about this algorithm can be found in 
the article written by Heidari et al. (2019). 

2.3.4. Framework of U-Net-based models 
The main objective of this study is to propose a new method for large- 

scale estimation of daily ETa through AutoDL models. This approach 
aims to automate the ETa extraction process while ensuring accuracy 
comparable to energy-based models such as SSEBop. Both methods use 
MOD11A2 LST as input data. However, the AutoDL models differ from 
the SSEBop model in that they do not require the utilization of meteo-
rological input data from multiple sources. Instead, they use the MODIS 
products as described in Section 2.1.1 facilitating data collection pro-
cedure. By learning to simulate the structure of the SSEBop model, the 
AutoDL models can eliminate the need for auxiliary inputs and automate 
the ETa estimation process. 

The flowchart of AutoDL models is illustrated in Fig. 3. After per-
forming the required data preprocessing for the three main types of 
inputs, as detailed in Section 2.1.2, the initial 12 years of data was 
selected for training, followed by 2 years for validation, with the final 
two years (09-30-2017 to 09-22-2019) allocated for testing the DL 
model's performance for each month and study area. The HHO was run 
for five iterations to determine the optimal set of hyperparameters and 
architecture. The initial population for the algorithm was set to 5 based 
on experimental trial. The hyperparameters of each model were opti-
mized for the first month of the year and the first study area, and the 
optimized sets were applied to the other months and study areas. Table 3 
presents the optimized hyperparameters and their corresponding search 

Fig. 3. Illustration of the AutoDL model framework for actual evapotranspiration (ETa) estimation, employing the novel ASPAM-U-Net architecture in conjunction 
with the Harris Hawks optimization (HHO) algorithm for hyperparameter fine-tuning. Data was preprocessed and segmented for monthly DL training across study 
areas. Using the initial hyperparameter optimizations, the most effective U-Net-based architecture was selected per month, based on the evaluation metrics. 
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spaces. The best model for each month was then selected from four U- 
Net-based architectures based on evaluation metrics. The process was 
repeated for the remaining months and study areas. 

2.3.5. Evaluation Metrics 
The performance of four AutoDL models was evaluated across 

different climatology types and temporal windows throughout the year 
to reflect the impact of weather fluctuations. Daily ETa predictions were 
combined to provide a monthly assessment. Several metrics were used to 
evaluate the accuracy of the models. The primary accuracy measures for 
deterministic estimation included Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and coefficient of determination 
(R2). 

MAE and MAPE are more meaningful when the overall impact of 
errors is proportional to the increases in error, with MAPE providing the 
error in percentage form, making it easier to interpret across different 
cases. MAE and MAPE can be written as: 

MAE =
1
n
∑n

i=1

[⃒
⃒ETp

i − ETm
i

⃒
⃒
]

(2)  

MAPE =
1
n

∑n

i=1

[⃒
⃒ETp

i − ETm
i

⃒
⃒
]

ETm
i

(3)  

where ETp
i indicates the ith pixel ET prediction, ETm

i represents the 
modeled ET, and n is the total number of pixels in a test raster. 

Another important metric, R2, indicates the extent to which the 
model explains the variance in the dependent variable. An R2 value of 
one signifies a highly accurate forecast, while an R2 value of zero implies 
that the model cannot explain any variation in the outcome. In cases 
where the chosen model performs worse than a simple horizontal line, 
R2 may be negative. The R2 can be calculated using Eq. (4): 

R2 = 1 −
RSS =

∑n

1

(
ETp

i − ETm
i

)2

TSS =
∑n

1

(
ETm

i − ETm
)2

(4)  

where RSS stands for the residual sum of squares, TSS denotes the total 
sum of squares, and ETm = 1

n
∑n

i=1ETm
i is the mean of modeled ET. 

RMSE (Root Mean Square Error) penalizes larger errors and is more 
favorable for evaluating the performance of models for extreme values. 
The RMSE can be formulated as Eq. (5): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

1

(
ETp

i − ETm
i

)2

n

√
√
√
√

(5)  

3. Results and discussion 

A total of four AutoDL models, including three with spatial and 
channel attention mechanisms, were employed using the HHO algo-
rithm and validated across three distinct study areas within the CONUS 
throughout the year to assess their performance under varying clima-
tological conditions for daily ETa estimation. As discussed in Section 
2.1.1, the models were primarily constructed using MODIS satellite 
optical and thermal data, eliminating the reliance on ancillary meteo-
rological information. The models were trained using outputs from the 
SSEBop, an energy-based model for ETa estimation. The performance of 
the models was evaluated on a monthly and six-monthly basis by 
averaging daily ETa estimates. 

The development of an AutoDL model depends on the implementa-
tion of a robust optimization algorithm. Fig. 4 depicts the results ob-
tained from the application of HHO in determining the best set of DL 
hyperparameters. As illustrated in Fig. 4, the initial populations yielded 
higher validation and training errors as they were randomly selected. As 
the algorithm proceeded through subsequent iterations, the errors pro-
gressively decreased, ultimately reaching the optimum set. As a result, in 
comparison to the best values in the first iteration, the HHO reduced the 
validation error (normalized MAE) by 18.03%, 17.34%, 5.79%, and 
15.28% for the ASPAM, AG, SE, and Simple-U-Net models, respectively. 
Therefore, as an effective metaheuristic optimization algorithm, HHO 
could facilitate and expedite the process of hyperparameter tuning. 

3.1. AutoDL model's goodness of fit evaluation 

Fig. 5 presents a comparative analysis of the R2 values for four DL 
models across three study areas over the course of 12 months. All models 
evaluated in the three study areas exhibited notably high R2 values 
during the first half of the year, maintaining errors within an acceptable 
range (Chen, 2016; Singh and Senay, 2015). This is particularly 
remarkable considering that meteorological data were not utilized and 
that there were differences in processing methods between input and 
output variables, as discussed in Section 2.1.1. 

Study area 1 is characterized by a hot, humid subtropical climate and 
is mainly covered by evergreen broadleaf forests (41.8%), shrubland 
(30.6%), and needle-leaf forests (21.26%), based on the annual LAI 
classification. In the study area, although all models exhibited similar R2 

patterns during the first six months, ASPAM-U-Net outperformed other 
models with a 17.5% accuracy improvement in the third month and 
5.5% overall. Its R2 values ranged from 0.65 to 0.82, surpassing the 
minimum and maximum values of other models. Subsequent best per-
formances were observed by the AG-, Simple-, and SE-U-Net models, in 
that order. 

Study area 2 features a humid continental mild/hot summer climate 
and consists of 57.93% shrublands, 18.42% savannas, and 8.82% 
broadleaf croplands. Similar to study area 1, it has a relatively flat 
topography but cooler temperatures in general. Similar to previous re-
gions, the ASPAM-U-Net outperformed others by increasing accuracy by 
4.3% during the first half of the year, with R2 values ranging from 0.53 
to 0.79, slightly lower than the prior area. The highest maximum R2 

values were achieved by the ASPAM-U-Net, followed by the AG-, Sim-
ple-, and SE-U-Net models in a similar order as the previous case. 

Study area 3 encompasses a combination of cold semi-arid and desert 
climates, summer Mediterranean climates, and humid continental 
summer climates and is comprised of 62.44% shrublands, 12.94% 
broadleaf croplands, and 8.03% broadleaf forests. Unlike the previous 
two areas, this region exhibits greater topographical and climatological 
variety. Except for the second month, all models demonstrated compa-
rable performance, where, in contrast to study areas 1 and 2, the AG-U- 
Net surpassed others, followed by the Simple-, ASPAM-, and SE-U-Net 
models. The AG-U-Net improved the R2 by 6.87% during the first half 
of the year, achieving the highest minimum and maximum values (0.59 
and 0.91). 

Table 3 
Details on the hyperparameters of each DL model and their corresponding range.  

Hyperparameters Range ASPAM- 
U-NET 

AG- 
U- 
NET 

SE-U- 
NET 

Simple- 
U-NET 

Dropout [0.2, 0.5] ✓ ✓ ✓ ✓ 
Kernel Size (3,3), (5,5) ✓ ✓ ✓ ✓ 
Filters (of the First 

Layer) 16,32,48,64 ✓ ✓ ✓ ✓ 

Filters 16,32,48,64 ✓ ✓ ✓ ✓ 

Learning Rate [0.00001, 
0.005] 

✓ ✓ ✓ ✓ 

Architecture Depth [1,3] ✓ ✓ ✓ ✓ 
Intermediate 

Channels 1 16,32,48,64 – ✓ – – 

Intermediate 
Channels 2 16,32,48,64 – ✓ – –  
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In contrast to the elevated R2 values observed during the first six 
warm months, the values of R2 were lower and near zero during the 
second colder half of the year in all study areas, particularly from the 8th 
to the 11th months. This phenomenon aligns with findings from Xu et al. 
(2019). Evaluating the performance of SSEBop, Xu et al. (2019) found 
that this model exhibits larger uncertainties in the colder months of the 
year. These uncertainties are attributed to inaccuracies in satellite- 
retrieved LST, resulting in substantial errors in SSEBop-ETa calcula-
tions (Xu et al., 2019). Accordingly, lower reliability and R2 values 
during the latter half of the year can ratify the hypothesis that colder 
months lead to increased uncertainty in the target variable (SSEBop- 
ETa), thereby complicating the establishment of meaningful relation-
ships between input variables and the target variable for DL models. This 
can elucidate the higher R2 values observed in study area 3 compared to 
study area 1 and in study area 1 compared to study area 2, as study area 
3 features warmer and drier climates, followed by study areas 1 and 2. 
This pattern positively influenced the certainty of the target SSEBop-ETa 
variable. 

Considering the potential impact of cold weather on MODIS LST 
data, some studies have excluded observations from the cold months (Ji 
et al., 2019). Similarly, the present study confines the analysis to the first 
six warmer months of the year, when LST and SSEBop-ETa are presumed 
to exhibit high certainty. 

3.2. Monthly performance evaluation 

Fig. 6 compares the distributions of absolute error (AE) and absolute 
percentage error (APE) for four DL models across three study areas 
during the first six months of the year. In the first study area, the 
ASPAM-U-Net outperformed others, showing lower AE and APE values 
in the 25th, 50th, and 75th percentiles, where other models exhibited a 

similar performance. This model reduced AE and APE errors by 8.35% 
and 11%, respectively, with lower extreme error values compared to the 
other models in most cases. Consistent with the result of R2, the highest 
accuracy was observed during the 4th and 5th months, corresponding to 
the hottest months in the Northern Hemisphere. The ASPAM-U-Net 
maintained the range of average AE and APE (MAE and MAPE) be-
tween 6.38 and 16.36%, and 0.38–0.53 mm per day (mm/d), respec-
tively, yielding the lowest maximum and minimum values for the 
specified metrics. 

In the second study area, all models produced comparable results, 
with the ASPAM-U-Net reducing MAE and MAPE by 5.7% and 9.3%, 
respectively. Analogous to the first study area, the ASPAM-U-Net ach-
ieved the lowest 25th, 50th, and 75th percentiles for both AE and APE in 
most months, followed by the AG-, Simple-, and SE-U-Net models, while 
error results were substantially lower in the 4th and 5th months. The 
ASPAM-U-Net exhibited the narrowest variation range for the MAPE 
metric (7.02–37.56%). For MAE, this range spanned from 0.40 mm/ 
d (by ASPAM-U-Net) to 0.73 mm/d (by AG-U-Net). In comparison to 
previous study areas, these ranges were higher, likely attributable to the 
colder temperatures in study area 2, leading to decreased certainty in 
SSEBop-ETa values, as hitherto discussed. 

In contrast to the prior study areas, in study area 3, the AG-U-Net 
generated superior performance, followed by the Simple-, ASPAM-, 
and SE-U-Net models. The AG-U-Net decreased MAE and MAPE by 
12.43% and 14.76%, respectively, achieving the lowest 25th, 50th, and 
75th percentiles for both AE and APE in the majority of cases. Following 
a similar trend to previous regions, the 6th month exhibited the smallest 
variation range for AE and APE, followed by the 5th and 4th months. The 
AG-U-Net achieved the lowest minimum and maximum values for MAPE 
and MAE, ranging between 15 and 29.17%, and 0.22–0.38 mm/d, 
respectively. AE values and ranges in this region were smaller compared 

Fig. 4. Performance analysis of Harris Hawks optimization algorithm utilized for the fine-tuning of U-NET-based models based on MAE values of training and 
validation data. Initially, random population selections resulted in high errors. As the algorithm iterated, validation errors notably reduced, proving its efficacy in 
hyperparameter tuning. 
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to previous regions, possibly due to the lower vegetation coverage, 
resulting in reduced ETa values. On the other hand, since this region 
features warmer climates, the models were expected to produce low 
values for APE. Xu et al. (2019) noted that SSEBop exhibits higher 
relative uncertainties in the western CONUS as compared to the eastern 
CONUS, which may be attributed to the complex terrain in the western 
mountainous regions. Moreover, models tend to generate larger un-
certainties in ETa estimation over arid, semi-arid, and bare land areas 
(Chen et al., 2016). 

3.3. Six-month spatial performance analysis 

Fig. 7 illustrates the average ETa maps generated by AutoDL models 
for the three study areas over a six-month period. A comparison of the 
estimated ETa maps with the corresponding SSEBop-ETa revealed 
similar spatial patterns for the investigated regions, indicating that the 
DL models effectively captured the spatial variability of ETa. The ETa 
variabilities (mean ± standard deviation) for the study areas 1 through 3 
were 5.24 ± 0.66, 3.79 ± 0.55, and 1.69 ± 1.21 mm/d, respectively. In 

study area 3, the diverse climate and topography coupled with sparse 
vegetation resulted in a broad ETa variability, whereas study area 1, 
with its dense vegetation and warmer climate, exhibited the highest 
average ETa. Overall, all AutoDL models maintained the average and 
standard deviation values closely aligned with the target benchmarks, 
while the ASPAM-U-Net, followed by the AG-U-Net achieved superior 
accuracy. 

By comparing Fig. 7 with Fig. 1 (b), it can be inferred that the land 
cover type had a strong correlation with the ETa magnitude. In all study 
areas, urban areas and grasslands experienced lower ETa values, fol-
lowed by savannas, whereas water bodies and evergreen needleleaf 
forests had the highest ETa. Furthermore, in study area 2, croplands 
demonstrated moderate ETa, while in study area 3, shrublands and non- 
vegetated lands displayed small ETa values. As a result, in addition to 
temperature, estimated ETa values revealed a correlation with vegeta-
tion density, as represented in the DL models by indices such as the 
NDVI. 

Fig. 8 illustrates the spatial variation in MAPE, RMSE, and MAE er-
rors for the four DL models across all study areas. By comparing the 

Fig. 5. Comparative analysis of monthly coefficient of determination (R2) values among four DL models across three distinct study areas over a 12-month timeframe. 
In the first half of the year, all models exhibited high R2 values across all study areas, with ASPAM-U-Net notably outperforming in areas 1 and 2. Inaccuracy in 
satellite-derived LST and subsequent SSEBop-ETa calculation in colder months introduced uncertainty and lowered R2 values in this time of the year, complicating 
meaningful DL model input-target relationships. 
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results in this figure with Fig. 1 (b) for study areas 1 and 2, it can be 
inferred that water bodies, urban areas, grasslands, and savannas 
exhibited the highest values of errors, particularly in terms of MAE and 
RMSE, while areas covered by deciduous and evergreen broadleaf for-
ests, evergreen needleleaf forests, and crop fields demonstrated the 

highest accuracy. This implies that in these two similar regions (in terms 
of stable climatic and topographical conditions), the models demon-
strated enhanced performance in ETa estimation over areas with high 
canopy density. Still, in both study areas, the ASPAM-U-Net not only 
reduced the extreme values of errors but also achieved lower average 

Fig. 6. Boxplot representation of Absolute Error and Absolute Percentage Error metrics among four DL models across three distinct study areas during the first six- 
months of the year. In study areas 1 and 2, ASPAM-U-Net surpassed other models in AE and APE. Accuracy peaked during warmer months in each area. Study area 2 
had higher MAE due to its colder temperature, while study area 3 had higher APE values due to a more complex terrain. 
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errors. Specifically, as depicted in Fig. 9, the ASPAM-U-Net had average 
MAPE, RMSE, and. 

MAE values of 10.17%, 0.573 mm/d, and 0.43 mm/d in study area 1, 
and 24.58%, 0.82 mm/d, and 0.575 mm/d in study area 2, respectively, 
which was lower than the other models. 

In study area 3, the highest values of MAPE, RMSE, and MAE were 
primarily associated with water bodies, urban areas, and savannas, 
while grasslands, evergreen needleleaf forests, and crop fields experi-
enced moderate values of errors. However, in contrast to previous re-
gions, areas with minimal to no canopy coverage (i.e., shrublands and 
non-vegetated areas) exhibited the highest accuracy. This observation 
indicates that, in addition to canopy density, the overall regional 
climatology also influences models' performance. In this region, the AG- 
U-Net demonstrated superior performance with average RMSE, MAE, 
and MAPE values of 0.69 mm/d, 0.37 mm/d, and 21.48% respectively, 
followed by the Simple-, ASPAM-, and SE-U-Net. 

By comparing Fig. 1 (b), Fig. 7, and Fig. 8, it can be inferred that 
despite the absence of a concrete relationship between the magnitude of 
error and ETa values, both exhibit a strong correlation with land cover 
types. Furthermore, according to the monthly and average six-month 
analysis of the results, incorporating spatial attention mechanisms in 
the U-Net architecture proved to be efficient improving the performance 
in all study areas, validating the hypothesis that incorporating spatial 
dependencies among input variables into the DL models is effective. 
More importantly, the developed ASPAM mechanism successfully out-
performed other DL models in two out of three study areas and exhibited 
comparable performance in study area 3. 

Fig. 9 presents the scatter plots comparing the six-month average 
values of predicted ETa with SSEBop-ETa for all DL models across study 
areas. The average R2 values across all regions were closely aligned, 
ranging from 0.79 (by SE-U-Net) to 0.85 (by the ASPAM-U-Net). This 
result indicates that all models generally demonstrated comparable 
performance. In the first two study areas, the ASPAM-U-Net exhibited 
the highest R2, followed by the AG-, Simple-, and SE-U-Net models, 
while in study area 3, the AG-U-Net outperformed the others, followed 
by the Simple-, and ASPAM-U-Net models. This pattern is consistent 
with the monthly analysis. Although the data are diverse across all study 
areas, the highest density of values is near the diagonal line, indicating 
that the majority of points had high accuracy. 

Based on the results, the main objective of the present study, pro-
posing an AutoDL model for large-scale daily ETa estimation as an 
alternative to energy-based models has been successfully achieved. 
However, further validation of the model using measured data such as 

Eddy covariance ETa, was beyond the scope of this study (Babaeian 
et al., 2022; Yan et al., 2023), and is recommended for future studies. 

3.4. Sensitivity analysis 

As described in the image processing section, the data were catego-
rized into three groups: raw bands, derived indices and products, and 
DEM-derived products. To assess the influence of each group on model 
accuracy and identify the most influential group, a Gaussian noise with a 
standard deviation (σ) equal to 5% of σ of each feature was added to four 
distinct combinations of these data groups: i) a combination of the first 
and third groups; ii) a combination of the second and third groups; iii) 
the first group of data alone; and iv) the second group of data alone. 
These combinations were applied to the first and fourth months in all 
three study areas as inputs for the ASPAM-U-Net model. Fig. 10 presents 
the test data results for four distinct metrics. In all scenarios, the model's 
performance was reduced compared to the utilization of all three data 
sets without perturbation, indicating that utilizing all three data groups 
with the lowest uncertainty is necessary to achieve the highest accuracy. 

Based on Fig. 10, the third data group (DEM-derived products) dis-
played slight sensitivity to the introduced noise. This suggests that these 
features might hold less significance in the modeling framework. On the 
other hand, the second dataset was noticeably more vulnerable to added 
noise, consistently showing higher sensitivity than the first data group 
across all study areas, especially in terms of the R2 metric. However, the 
reduction in accuracy was not consistent, varying both by study location 
and month of the year. The higher sensitivity of this group of data might 
be attributed to the physical correlation between vegetation and water 
indices with ETa, especially the LST. In other words, understanding the 
vegetation and moisture characteristics of a surface is expected to 
contribute to the ETa of that surface. 

4. Summary and conclusion 

In this paper, a novel data-driven framework for mapping ETa is 
proposed. It is shown that, contrary to classic energy-based models, the 
proposed methodology overcomes the challenges associated with 
acquiring multi-source meteorological data by utilizing only optical and 
thermal products of MODIS and DEM-derived data while providing 
comparable accuracy. The main contributions of this research are 
summarized as follows: 

Fig. 7. Comparison of spatial variability in six-month mean values of modeled ETa and SSEBop-ETa. Each subplot's lower-right corner displays the corresponding 
mean value ± standard deviation of ETa, expressed in millimeters per day (mm/d). Estimated ETa and SSEBop-ETa showed similar spatial patterns, demonstrating DL 
models' effectiveness in capturing ETa variability. Study areas showed varied ETa due to climate and vegetation, yet AutoDL models consistently aligned 
with benchmarks. 
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Fig. 8. Maps illustrating the spatial distribution of six-month mean MAPE, MAE, and RMSE errors compared to SSEBop model output from the four DL models across 
all study areas. Each pair of consecutive rows displays the spatial variability of MAPE, MAE, and RMSE for a particular study area. In study areas 1 and 2, ASPAM-U- 
Net minimized extreme errors and had lower average metrics, while in study area 3, AG-U-Net was superior. 
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• Development of an AutoDL framework for large-scale ETa estimation 
utilizing HHO and Python packages that automates the entire process 
from importing raw images to saving trained FCNN models: this is 
especially helpful because, despite the acceptable performance of 
energy-based and DL models, their development (e.g., architectural 
design and hyperparameter tuning in DL) requires expert knowledge. 
Efforts like the present study can facilitate the application of inno-
vative DL methodologies in atmospheric and hydrology studies and 
contribute to the generalizability of the developed models. 

• Presenting the ASPAM-U-Net as a novel U-Net model that in-
corporates an activated spatial attention mechanism based on matrix 
multiplication into the U-Net model as well as comparing its per-
formance to other attention mechanisms (AG and SE) and the simple 
U-Net model: the ASPAM-U-Net model generally demonstrated 
improved accuracy in ETa estimation through a more effective 
incorporation of spatial dependencies.  

• Evaluation of the aforementioned models across three hydro- 
climatologically distinct regions throughout the year revealed their 
suitability for ETa estimation, particularly during spring and summer 
when ETa products exhibit lower levels of uncertainty.  

• Analysis of the effect of various inputs on model performance 
through sensitivity analysis: this analysis showed that the derived 

vegetation and water indices and raw bands of the MODIS instru-
ment played a more significant role compared to DEM data for ETa 
mapping. 

The main limitation of the current study, similar to all data-driven 
approaches, is the models' susceptibility to the uncertainty of the 
target ETa parameter rather than the capabilities of developed AutoDL 
models. Consequently, training the models with more accurate target 
values derived from other more reliable ETa mapping models is rec-
ommended. Although excluding meteorological inputs simplified the 
ETa estimation, incorporation of such data in subsequent studies could 
potentially enhance the models' accuracy. Based on the promising re-
sults of the present study, higher-resolution ETa mapping can be ach-
ieved by using high resolution satellites with thermal infrared data (e.g. 
Landsat) as inputs and incorporating new fine-resolution ETa products, 
such as ECOSTRESS satellite data, for future studies. Similarly, the 
current 8-day temporal resolution of this approach can be further 
enhanced using data with higher temporal resolution. 
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