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Abstract

Traffic congestion i s a  problem of t remendous s ize t hat a ffects many p eople. Using Rein-
forcement Learning to find a  light control policy can ease traffic congestion and decrease travel 
time for vehicles. This paper specifically looks at the effect of using different reward functions for 
training agents. We highlight how the learnabilty of a reward function and its alignment with the 
final goal of the agent are the most important factors when designing a reward definition. Finally 
we propose a reward function to use for future applications.
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1 Introduction
Traffic congestion is a large problem that brings with it enormous cost for the economy and immense frustration
for the people it affects. The European Commission estimates this cost to be around 1% of the European Union’s
entire GDP (Barker, 2001). A viable method to alleviate this problem is by using smart algorithms to control
traffic lights at intersections (Van der Pol & Oliehoek, 2016). One way to achieve this is by using Reinforcement
Learning to learn optimal policies for deciding which lane should have a green light at each moment.

In Reinforcement Learning (RL), a reward function is used to describe the benefit (or reward) of moving
from a certain state to another state by taking a certain action (Sutton & Barto, 1998). By tuning this reward
function, one can prioritise different goals. In the domain of traffic light control, the ultimate goal is to mini-
mize the travel time on a road network or intersection by maximizing the average speed of all cars, as explained
in section 4.1. However, this goal itself can not be used as a reward function, since it can only be calculated
after a simulation is finished. Reward functions need to be calculated at every step of a simulation. To bridge
this problem, prior works researching RL for traffic control have assumed that certain factors, which are con-
tinually observable, are likely to give an estimate of the impact of actions on traffic performance (Van der Pol
& Oliehoek, 2016) (Van der Pol, 2016) (Touhbi et al., 2017). Examples include the average speed of cars in
the area of the intersection or the average time a car has to wait at the intersection. These factors have then
subsequently been used to calculate the reward that should be given to an agent. However, a comprehensive
overview of these different factors, whether they are actually accurate for estimating traffic performance and
what kind of results agents can achieve when using them is missing. This will be surveyed in this paper at the
hand of the following question:
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What effect can different reward functions have on the performance of a Reinforcement Learning system
for traffic light control?

The performance of policies obtained by training with different reward functions will be compared on their
impact on the average speed of all cars in the system. section 4.1 will explain why this is the most suitable met-
ric to answer "What defines success in a traffic control scenario?". Multiple reward functions will be described
in section 4.2 by surveying "Which aspects of traffic can be represented in a reward function?" and using these
aspects or weighted combinations thereof to grant rewards while training. This paper will use reward shaping
techniques, as introduced by Ng, Harada, & Russell (1999), to substantiate the granting of rewards that rein-
force behavior that is aligned with our goal of maximizing average speed. Trained models can be compared
using the SUMO traffic simulator (Behrisch, Bieker, Erdmann, & Krajzewicz, 2011). These comparisons will
be used in section 5 to conclude what influence an expertly designed reward function can have on the learning
speed and final performance of an RL system.

This research differentiates itself from other research in the field by focussing on comparing different reward
functions. In the works of Touhbi et al. (2017) and Van der Pol & Oliehoek (2016), reward metrics are chosen
but no investigation is done to identify whether the chosen metrics actually estimate traffic performance. In the
research done by Tumer & Agogino (2006), cars are used as agents, whereas this research will use intersections
as agents. This shifts the incentives of agents from a selfish focus on a single car to a more social focus of
improving traffic for all participants. Kuyer, Whiteson, Bakker, & Vlassis (2008) focus on rewarding coordi-
nation of multiple intersections, and use a relatively primitive reward function for individual intersections. In
the research by Wiering (2000), minimizing waiting time of cars is used as the ultimate goal. Even though this
metric is continually observable, it is flawed in that it rewards traffic lights that switch between red and green
rapidly. This minimizes cumulative waiting time without creating a desirable traffic situation as explained by
Van der Pol & Oliehoek (2016), and is thus not an ideal reward function.

2 Background
2.1 Reinforcement learning
In reinforcement learning, an agent is trained to map a state to an optimal action to perform, in such a way
that total reward over the long term is maximized. Every timestep t, an agent receives information about (a
representation of) the current state st of the environment. It then takes an action a to arrive in state st+1. Doing
so, the agent receives reward rt. A learning agent tries to find an optimal policy π : S 7→ A to maximize the
discounted cumulative reward function Rt =

∑∞
k=0 γ

krt+k+1, with 0 < γ < 1 as the discount function. The
value of a state-action pair Qt(s, a) is called the Q-value, which a q-learning algorithm estimates with iterative
Bellman updates Qt+1(s, a) = Qt(s, a) + a[yt −Qt(s, a)], with target yt = r + γmaxa′ Qt(s

′, a′)
Deep Q-Learning algorithms (DQN) use deep neural networks to estimate the value of these State-action pairs.
This is used to allow larger or even continuous state-spaces, which would otherwise be too large to have all
possible Q-values memorized or stored. In turn, DQNs allow for using images to represent states.

2.2 Reward functions in reinforcement learning
The reward function R defines what reward R(s, a, s′) is given to an agent when transitioning from state s to
state s′ by taking action a. This reward is calculated by examining the state of the environment and granting
reward based on the quality of said state. When designing a basic reinforcement learner for path-finding, reward
could for example be granted when an agent reaches the goal location. In more complex scenarios, multiple
aspects of the state are examined to determine the value of being in said state. This is then used to calculate
the appropriate reward for moving from a certain state to another state by performing an action. There exist
multiple aspects of the state of the environment (e.g. the average speed cars are currently driving, the cumulative
waiting time of all cars currently in the system) that can be represented in the reward function. By choosing
which aspects are represented, and how heavily to value them, one can choose what kind of behavior should be
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reinforced and what kind of behavior penalized. Thus selecting different aspects with different relative weights
will lead to a different optimal policy π : S 7→ A.

2.3 Reward shaping
Shaping rewards, as introduced by Ng et al. (1999), are additional rewards that are granted to actions that do not
achieve a goal immediately, but nonetheless improve the state of the environment. They are used when there is
no specific metric available that can be used to optimize for, or when rewards would otherwise be too sparse.
In the case of this paper, reward shaping will be used to create reward functions that are strongly aligned with
improving average speed in the system. The average speed of the system can not be used as a reward metric
itself, since it can only be calculated after a simulation is done. This is too sparse of a signal for training agents,
which need to be able to calculate the reward for possible actions during every step of a simulation.
When optimizing a policy for Markov Decision Process M = (S,A, T, γ,R) by adding shaping rewards,
optimization is done on MDP M ′ = (S,A, T, γ,R′), with R′ = R+ F . This means that the actual reward an
agent receives is given byR(s, a, s′)+F (s, a, s′), where F (s, a, s′) = r for some value r when moving in the
direction of a goal, and F (s, a, s′) = 0 otherwise. This shaping reward F can be used for guiding agents in a
more informed way towards a preferable state. Shaping reward F is called "potential-based" when the optimal
policy πM′ in M ′ is also an optimal policy in M .

2.4 Learnability of reward
The learnability of a reward describes how well the reward an agent receives can be attributed to the action an
agent performs, as opposed to other events that impact the environment. In a multi-agent scenario, it is also used
to determine how much a reward is dependent on a certain agents action compared to the actions performed by
other agents (Tumer & Agogino, 2006). A strict formula for the learnability of rewards can not be given for
this single-agent research, as that would necessitate total knowledge of how every aspect of a state was formed
by all actions of the agent combined with influence from the environment. This information is not available
since the environment is randomized to counter overfitting, and thus no deterministic causal links can be made.
Learnability of a reward can however be estimated by analyzing how the amount of reward gained from a policy
changes depending on actions of an agent. Such an analysis is performed in section 6.

3 Reinforcement learning for traffic light control
Following the work done by Van der Pol & Oliehoek (2016), we will try to find an optimal reward definition
for applying RL to the problem of controlling traffic lights at an intersection. We use SUMO (Behrisch et al.,
2011) for testing and verifying results.

3.1 Model
We describe the problem as finding an optimal policy πM for some Markov Decision Processs (MDP) M =
(S,A, T, γ,R) where S represents the state space, A is the action space, T is the transition function, γ is the
discount value and R is the reward function.
State space: We describe the state around an intersection as a binary matrix containing the positions of vehicles
in the lanes surrounding the intersection. The matrix also includes information about the position and current
state (Green/Yellow/Red) of traffic light in the intersection.
Action Space: The agent decides whether to give a green light to one lane or the other on each time step.
Transition Function: The transitions when going from st to st+1 are defined by SUMO and depend on the
state of lights in environment and the location of cars on step t.
Discount Value: γ ∈ (0, 1] defines the discount of importance given to older rewards.
Reward function: Multiple reward definitions will be used and compared as explained in section 4.2.
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3.2 Traffic Scenario
For training and evaluation, a computer simulation of a traffic scenario is used. This scenario consists of a
certain road network with some number of intersections, as well as presets for how many cars pass through the
area at a given time. The scenario used in this research is a basic grid intersection, shown in Figure 1, where
two road cross each other with a single set of traffic lights. The amount of cars that pass into the intersection
and their corresponding routes are generated in a random fashion based on two random variables, car_tm and
car_pr. Every timestep between t = 0 and t = car_tm, a car has a chance equal to car_pr of spawning, with
a route that includes passing the intersection. This traffic load is randomized so the agent can not overfit on a
set input and develop a control policy which only works on that exact input set. Overfitting happens when the
model of some learner loses abstraction and is highly tuned to the exact input dataset. This leads to the model
having an unrealistic accuracy when working with data from the dataset it was trained on and performing worse
on data it was not trained on (Hawkins, 2004).

Figure 1: A graphic overview of the scenario used for training and evaluation

3.3 Experimental Setup
To identify the effect of different reward definitions, the following testing setup was created: A certain reward
definition would be used as the reward function of an agent trained over the course of 2000 episodes on the
basic traffic scenario. Every tenth episode is an evaluation episode, and a reward function is used that returns
the average speed of all cars during that episode. This reward can only be used in evaluation and not in training
since it is too sparse, only granting reward on the very last step of the episode. It can nonetheless be used in
episodes when the agent is not learning, to evaluate the policy is has learned so far. The reward functions tested
are discussed at length in section 4. After those episodes of training, the agent is evaluated for 150 episodes on
three factors:

• What is the average speed of all cars in the scenario when using pure exploitation of the learned policy?

• How well is the actual reward given by said agent aligned with the ultimate goal of maximizing average
speed?

• Did the agent converge to a policy or stay unstable?

The number 2000 for training episodes was chosen after trial and error, since most agents converged before
2000 episodes have passed. Agents that did not converge to a policy after 2000 episodes would most likely
never experience convergence. 150 evaluation episodes were chosen because it is a large enough number to
mitigate fluctuations caused by the random car spawning, which can sometimes be more favourable to agents.

3.4 Variability of Results
Reinforcement learning, especially when utilizing a DQN system, is a technique which can yield highly variable
results on the same problem. Not only the reward function, but also the memory size, freeze rate, exploration
rate, observation range, stack size and state representation can severely impact the result. The values used for
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these parameters in the experiments performed were held constant (except for the reward function) and can be
found in appendix B. Also, using randomized inputs to avoid overfitting of the model on the exact values of
the input dataset can add some randomness to results. Many graphs in this paper use trendlines showing the
moving average of values attained instead of plotting the real values. The moving average shows the average
value of the past n results for a window size of n. For highly variable results with a steadily improving average,
the moving average will give better insight into the actual progress by filtering out the fluctuations in individual
episodes. Whenever moving averages are used, standard deviation of the window mean σ is mentioned.

4 Reward Definition optimization
4.1 Defining success in a traffic setting
The ultimate goal when controlling traffic lights is to maximize the average speed of all vehicles.
Evaluation Performance: The average speed of all vehicles in the system
This can be computed by taking the average speed of each individual vehicle, and subsequently taking the av-
erage of all these values:

1. Average speed of a single vehicle:

Siavg =

Tiexit∑
t=Tienter

Sit
T iexit − T ienter

(1)

2. Average speed of all vehicles:
N∑
i=1

Siavg
N

(2)

Definition of symbols used:

• N is the number of vehicles on the lanes the agent controls

• T ienter is the timestep on which vehicle i entered the simulation

• T iexit is the timestep on which vehicle i left the simulation

• Sit is the speed of vehicle i at time t

The average speed of all vehicles in the system is a suitable metric because it gives the same importance
to each vehicle, and it is inversely proportional to the average travel time in the intersection. This means
that maximizing this average speed will minimize the average time needed to travel through the intersection
controlled by the agent. Any traffic situation that would be seen as undesirable (driving slowly, standing still,
repeatedly speeding up and braking to standstill) will decrease the average speed of vehicles. Furthermore,
it is robust since it can not be tricked by traffic lights flipping the light rapidly, which is a problem when
minimizing waiting time (Wiering, 2000). To compare the performance of different agents we will always
compare them on the average speed of all vehicles, which will be referred to as "average speed" or otherwise as
"eval performance" to indicate the performance of an agent during evaluation. However, the metric of average
speed can not be used for the actual training of agents. An agent needs to be able to map a reward value to
every state transition during every step of training, and the average speed of all vehicles in the system can only
be calculated after the entire episode of training is finished. Because of this, there is a need for metrics that can
be calculated for any state of the environment at every timestep, whose values estimate the average speed of all
vehicles.
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4.2 Metrics for estimating traffic success
Metrics to use as reward definitions were selected based on former research and a general understanding of
the traffic control problem to estimate which metrics might be indicative of an intersection performing well (or
poorly). Multiple metrics and combinations of metrics were drafted to be tested against each other.

The Speed Change metric grants rewards when vehicles speed up, and punishes the system for vehicles braking.
When using a reward definition that corresponds to a certain metric, reward can be given in two ways. Directly
using the performance metric as reward function (real rewards), or giving fixed rewards (penalties) when the
metric is above (below) a certain threshold (bounded rewards). To gain insight into which method yields the
best results, this metric was tested in two ways; a function where the positive/negative reward given was directly
related to the speedup/slowdown of vehicles, and a function where a vehicle speeding up or slowing down gave
a set reward.

RealSpeedChange : rt =

N∑
i=1

rsci =

N∑
i=1

Sit − Sit−1 (3)

BoundedSpeedChange : rt =

N∑
i=1

bsci =

N∑
i=1


0 Sit > Sit−1

−0.5 Sit = Sit−1

−1 Sit < Sit−1

(4)

Where N is the number of vehicles on the lanes the agent controls and Sit is the speed of vehicle i at time t.

In the work by Van der Pol & Oliehoek (2016), a reward function was introduced that combines the met-
rics of Delay (d), Hard Brakes (e), Jams (j) and Waiting Time (w), in addition to a constant penalty of -1 for
flipping the traffic light (c) (to discourage rapid switching). Similar metrics are present in the work by Touhbi
et al. (2017).

• Delay is defined as 1 - vehiclespeed
allowedspeed

, giving a higher penalty for a lower speed.

• Hard Brakes are defined as moments when a vehicle’s speed changes quickly (at a deceleration of more
than 4.5m/s).

• Jams are moments when multiple vehicles are standing still bumper to bumper. Jams were not investi-
gated in this paper since they were very rarely observed and their occurrence correlated very strongly
with a high waiting time in the system.

• Waiting Time is given as a reward of -0.5 for vehicles standing still for a single timestep, and a reward
of -1 for vehicles standing still for more than that.

In addition to the individual metrics, the combination of factors as described by Van der Pol & Oliehoek (2016)
was drafted, using different weights for each metric to account for the fact that the Jams metric was not used.
The resulting reward functions look like:

Delay : rt =

N∑
i=1

di =

N∑
i=1

1− Sit
Siallowed

(5)

HardBrakes : rt =

N∑
i=1

ei =

N∑
i=1

{
−1 Sit − Sit−1 ≤ −4.5
0 otherwise

(6)

WaitingT ime : rt =
N∑
i=1

wi =
N∑
i=1


−1 Sit = 0 ∧ Sit−1 = 0

−0.5 Sit = 0 ∧ Sit−1 > 0

0 otherwise

(7)

ParameterCombination : rt = 0.1c+ 0.2

N∑
i=1

ei + 0.3

N∑
i=1

di + 0.3

N∑
i=1

wi (8)
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Where N is the number of vehicles on the lanes the agent controls.

After promising results from the Speed Change and Waiting Time metrics, a combined metric using both
values was introduced.

WaitingT ime+ SpeedChange : rt = 0.1c+ 0.5

N∑
i=1

bsci + 0.5

N∑
i=1

wi (9)

5 Results
5.1 Metric Reward Correlation
The following section contains reward correlation graphs. These figures show a scatter plot where each episode
of training represents a blue dot, with its x-axis value representing the reward the agent got during said episode,
and the y-axis value representing the average speed of cars during said episode. The red line is a 2nd degree
polynomial automatically fitted to the dataset using a least squares equation. This graph can be used to compare
how well the reward an agent receives is proportional to the actual average speed of all cars. A straight diagonal
line means that more reward being granted directly contributes to a higher average speed of cars, which is ideal.
This means that optimizing the agent’s policy to maximize reward gained also directly optimizes the average
speed in the system. Such a reward definition would be a perfect potential-based shaping reward. To identify
which reward functions are accurate at estimating the average speed of the system, all reward functions used
where plotted in this way.
The first functions tested in this way were the Real Speedchange and Bounded Speedchange functions discussed
in section 4.2. In literature, it is more common to use rewards for individual observations that are bounded
r ∈ (−1, 0). This test shows the correlation between reward given by the Real Speed Change function and the
average speed at the end of the episode. It also shows this information for Bounded Speed Change function.

(a) Real Speedchange Reward correlation (b) Bounded Speedchange Reward Correlation

Figure 2: The reward correlation of Real Speedchange and Bounded Speedchange

Figure 2 shows that the bounded reward function has a much stronger correlation between the average speed
in the system (y-axis) and the reward the agent receives (x-axis) than the real function. The real, unbounded
function suffers from a lot of noise since a single car entering the system and speeding up can compensate for
multiple slow driving cars having to stop because of a bad agent action. This suggests that bounded rewards,
which have a stronger correlation with the average speed metric used in evaluation, should yield better results
when used for training agents. This same noise also diminishes the learnability of the unbounded metric. Fig-
ure 5 confirms this in the sense that a more steady convergence can be observed for the Bounded Speed Change
metric (5a), whereas the Real Speed Change metric (5b) does not see consistent improvement after the first
dozen of episodes. It also suffers from unpredictabilty since the training rewards received remain unstable.
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For all other reward definitions used, the correlation between reward gained from the reward function and
actual average speed in the system was investigated following the same method.

(a) Delay Reward correlation
(b) Hard Brakes Reward Correlation

Figure 3: The reward correlation of Delay and Hard Brakes

It becomes apparent from Figure 3 and Figure 4 that Delay (3a), Waiting Time (4a) and the Parameter
Combination (4b) reward functions all have rewards that estimate the performance of the agent in total average
speed to a certain degree of accuracy. This can be seen in the fact that a higher reward per episode correlates
strongly with a higher total average speed. For Hard Brakes (3b), there seems to be no apparent correlation
between the reward given to the agent and the performance of the system. This suggests that using the Hard
Brakes metric as a reward function for training an agent is unlikely to give a good result. This was later
confirmed by the fact that the Hard Brakes metric as a reward function achieved the very worst average scores,
as can be seen in Section 5.3.

(a) Waiting Time Reward correlation (b) Parameter Combination Reward Correlation

Figure 4: The reward correlation of Waiting Time and Parameter Combination

5.2 Metric Training Performance
The training patterns of agents are shown in Figure 5. Agents were trained with the reward function listed for
2000 episodes (as described in detail in section 3.3). When an agent manages to quickly increase the reward it
gains per episode, followed by a period during which its reward stays relatively stable, it has almost certainly
converged to a policy. This is desirable as it means the agent can consistently respond to input in a proper
manner and thus run the traffic in its intersection smoothly. Agents that do not seem to converge, such as the
agent using the Delay metric as a reward (figure 5c) stay unpredictable and keep changing their policy.
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(a) Bounded Speed Change, σ = 115 (b) Real Speed Change, σ = 81

(c) Delay, σ = 387 (d) Waiting Time, σ = 165

(e) Parameter Combination, σ = 141 (f) Waiting Time + Speed Change, σ = 222

Figure 5: Moving average (window size = 100) of training performance for different reward metrics
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5.3 Metric Evaluation Performance
Arguably the most important information, the change in average speed performance during training is shown
in Figure 6. The average and best scores achieved during evaluation of the learnt policy is shown in Figure 7.
Agents did not use the average speed in the system as a reward function during training, as it can only be
calculated at the end of an episode. Agents optimized for different reward functions that were assumed to
estimate the performance in terms of total average speed.

Figure 6: Change of Evaluation Performance during Training (moving average, window size = 50)

Figure 7: Average and best performance during Evaluation

6 Discussion
Most metrics show convergence to some policy over the course of training, which can be observed when the
training reward an agent receives stabilizes after some number of training episodes. The metric of Delay
(Figure 5c) does not converge, which leads it to achieve the 2nd lowest average speed (as seen in Figure 7).
Not reaching convergence suggests that the learnability of this metric is not high enough. When learnability is
low, the agent can not tell how to choose actions that optimize reward, making it difficult or impossible to find
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a policy that consistently produces high reward. This can be explained by the fact that the delay between an
agent’s action (flipping the light) and the speeds of cars going up is rather large.

After observing low convergence of the Delay metric, a small scale custom scenario was created to investi-
gate its learnability. Figure 8 shows the reward granted by the Delay and Bounded Speed Change metrics when
five vehicles that are waiting at a traffic light get a green light. Figure 8 highlights that when an agent decides to
switch which lane has a green light, it takes a number of timesteps (during which the light is orange), and then
the vehicles on the new lane get to drive. However, it also takes these cars an additional couple of timesteps
to accelerate to their maximum speed. After this acceleration is done, these cars keep granting rewards every
timestep, since they are driving their maximum speed. This means that the reward gained from performing an
action could be 10 or more timesteps in the future. Vehicles also keep contributing reward long after they have
stopped being impacted by the agent. This is hard to optimize a policy for, since a large chunk of agent reward
will be granted by cars that are not being directly impacted by the agent anymore. When comparing to a metric
like Bounded Speed Change (Figure 5a), the impact of the delay from flipping the lights is halved because cars
do start braking immediately when the light turns orange. Braking means speed going down, and these cars
immediately start contributing negative reward. Additionally, cars start contributing their maximum positive
reward as soon as they start driving and stop contributing reward after they have left the intersection and are
cruising at the speed limit again. This concentrates any reward given to the system around cars that are either
braking for a red light or speeding up when the light turns green, which are both closely linked to the agent’s
action. The learnability of the Waiting Time (Figure 5d) metric is high for this same reason, since the only cars
contributing anything to the reward function are cars waiting at the traffic light.

(a) Delay metric (b) Bounded Speed Change metric

Figure 8: Reward delay and noise for Delay and Bounded Speed Change metrics

From these results one can tell that agents using a reward function with a high learnability leads to more
steady convergence to a policy. Learnability is defined by how much the reward an agent receives is dependent
on the action it takes as opposed to environmental noise. Thus when learnability is high, agents can observe
how their actions influence the reward they receive and more selectively pick actions that have high reward
potential. Secondly, the results suggest that reward functions where the reward granted is strongly correlated
with the total average speed achieve better results in terms of this average speed when agents converge to a
policy. Thus, a good reward function is one that combines learnability with strong correlation to average speed.

The learnability of some reward function is difficult to directly calculate, as that necessitates being able to
attribute every aspect of every observable state to the actions of the agent or to environmental factors or some
combination thereof. It is thus more viable to theorize, like done above, whether a reward function has a high
learnability or not. Correlation of granted rewards with the goal of maximizing average speed, on the other
hand, can be calculated and observed quite easily, like was performed in section 5.1. The next section of this
paper will explain how in further research, machine learning techniques could be used to find a reward function
whose reward is perfectly correlated with maximizing average speed.
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7 Future work
7.1 Runtime constraints
A strong -or even direct- correlation between reward granted by an agent and the average speed in the system
guarantees that optimizing an agent’s policy for high reward also directly optimizes the average speed of ve-
hicles. This is an ideal potential-based shaping reward. In this research, the correlation between a function’s
reward values and the average speed in the system are determined empirically. Simulations were performed
where both the reward value granted and the average speed in the system were saved. A scatter plot can then be
made to get a graphical overview of how well a reward function estimates the total average speed. This gives a
good visual overview but is far from conclusive for a number of reasons. First of all, there is a lot of variance in
results achieved by a DQN when optimizing for traffic control. Even when using a very small traffic scenario
with relatively predictable vehicle routing, an agent using the same reward function can converge to multiple
different policies or none at all. Furthermore, training and testing an agent is very computationally heavy.

This means that accurately testing the impact of small tweaks, such as changing the individual importance
of different factors in a combined reward function, is unfeasible. To gain insight into the effect of such a change,
multiple DQN agents using the new configuration have to be trained and tested for thousands of episodes to filter
out variations and randomness. Due to the high runtime involved with such a method of analysis, techniques like
Sequential Model-based Bayesian Optimization as described in the work by Snoek et al. (2012) and extended
on by Feurer et al. (2015) are not computationally feasible.

7.2 Linear regression on empirical data
To circumvent runtime constraints, a setup is needed where the training and testing of an agent is not needed
to analyze the correlation between its reward and the average speed. In the final phase of this research, such
a setup was devised. Results are limited, but to inform future research into this area, details will be described
in this section. Using the same setup as described in section 3.3, an agent controls the intersection using a
fixed-time policy. This means that one lane has a green light for 20 timesteps, the light switches to yellow for
3 timesteps and then the other lane has a green light for 20 timesteps, followed by yellow again. This pattern
continually repeats itself. A fixed time strategy is chosen as it is highly predictable, and is likely to expose the
traffic environment to most possible situations that would also occur when an agent would be controlling the
intersection. In prior research, an agent with a fixed time policy is often used as a baseline to compare agent
performance to (Shelby, 2004). This agent was put in charge of controlling the intersection for 3000 episodes,
during which data was collected to determine:

1. The average speed during an episode

2. The reward values that would be granted to an agent by the four most promising reward metrics at the
end of every episode (the Light Flip, Waiting Time, Bounded Speed Change and Delay metrics)

If the actual average speed could be expressed as some linear combination of reward values granted by different
functions, there must exist some combination of individual weights that could be combined to form a reward
function that is directly correlated with average speed. If this combination exists, it can be found using Linear
Regression on a large enough dataset. Linear Regression is used to determine how one or more so-called
response variable(s) change when predictor variable(s) are varied (Weisberg, 2005). Since this method of
analysis is not the main focus of this research, linear regression itself will not be investigated in great depth.
For readers wanting to know more, the work by Weisberg (2005) is extensive and contains many explanations
and practical advise.

7.3 Setup
Using the PyTorch framework (Paszke et al., 2019), a simple neural network for linear regression was created.
An entry i in the input dataset looked like:

([ci, wi, bsci, di], ASi) (10)
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Symbols used:
• ci is the reward granted by the Light Flip penalty metric at the end of episode i
• wi is the reward granted by the Waiting Time metric at the end of episode i
• bsci is the reward granted by the Bounded Speed Change metric at the end of episode i
• di is the reward granted by the Delay metric at the end of episode i
• ASi is the average speed in the system during episode i
The neural network model was trained to predict the average speedASi of a certain episode i by multiplying

the values of the input set by some weights [wc, ww, wbsc, wd] while adding bias term B to predict ASi like

PredictedASi = B + (wc ∗ ci) + (ww ∗ wi) + (wbsc ∗ bsci) + (wd ∗ di) (11)

to minimize the Mean Squared Error (MSE) over the entire dataset as calculated by

MSE =

I∑
i=0

(PedictedASi −ASi)
2

I
(12)

where I is the number of episodes in the dataset.

After running this model for 10000 epochs of training, the MSE was reduced to MSE <= 0.0001. The
resulting weights and bias term can be found in appendix C, Table 4.

However, when training an agent with a reward function using the metrics and individual weights as cal-
culated by the linear regression model, agent performance was sub-par, achieving an average speed of 0.1213,
and the correlation between the reward given by the function and the actual average speed was inverse, meaning
higher reward resulted in slightly lower average speed. This most likely means that the model came up with
weights to overfit on the dataset, and the resulting weights do not achieve noteworthy performance in any other
setting. This can be seen in Figure 9.

(a) LR Model Weight combination Reward Correlation (b) LR Model Weight combination Training results

Figure 9: Training performance of an agent trained using the weights found by LR and Correlation
of reward with average speed

7.4 Possible improvements
The linear regression model described above was introduced in the final phase of this research, mainly as a proof
of concept. Deeper exploration of using regression for finding suitable weights is needed before conclusions
can be drawn. Possible improvements to the model would include logging the reward achieved by the selected
reward functions on every timestep instead of only at the end of the episode to detect how each timestep
contributes to the average speed at the end of the episode. Furthermore, a larger dataset with more diverse
policies controlling the traffic light could be used to reduce the risk of overfitting.
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8 Conclusion
When embarking on this research, the central question was whether we could create a reward function that
estimates the average speed performance of an agent. This is needed because, in the problem of traffic light
control, the ultimate goal as explained in section 4 is to minimize travel time. Since this goal (favourable state)
can fundamentally not be used as a reward function since it can not be calculated at every step of the simulation,
every reward function used is trying to estimate it. A good reward definition for the traffic light control problem
is thus a reward that is highly aligned with the goal, so that a policy that optimizes it also optimizes for travel
time. A perfectly potential-based shaping reward function would be one where there is a fully linear correlation
between the reward gained from the function and the average speed in the system. Such a reward function was
not found in this research, but suggestions and proof-of-concept analysis was done in section 7 on how such a
function could potentially be found.

8.1 The Optimal Reward Definition
In this research, no single "one size fits all" perfect reward definition was found. However, a recommendation
can still be made. When designing a reward function for any kind of reinforcement learning setting, the learn-
ability of the reward function and its alignment with the ultimate goal are the most important. Learnability
was analyzed by looking at how steadily agents using a reward function would find convergence. A higher
rate of convergence suggests a function with higher learnability. When a function would not cause an agent to
converge, investigation was done manually by exploring the reward signal in different states of the environment
to conclude what could hamper learnability. Alignment with the goal, in this research expressed as a correlation
between reward gained from a function and the average speed of vehicles, could be systematically investigated.
Most metrics discussed had quite strong correlations with average speed. The metric of Real Speedchange,
although it performed well occasionally, was discounted on account of its low correlation and unpredictable
rate of convergence.

WaitingT ime+ SpeedChange : rt = 0.1c+ 0.5

N∑
i=1

bsci + 0.5

N∑
i=1

wi (13)

In this research, the reward definition that ultimately had the best combination of stability and performance
is the definition described above in Equation 13, as drafted in section 4.2, which combines the Waiting Time,
Bounded Speedchange and Light Flip Penalty metrics. This reward definition achieved the 3rd highest average
speed in the empirical tests (Figure 7), and by far the strongest convergence (Figure 5f). This is a new and
more scientifically founded definition than was available in prior research, where reward definitions are not
extensively compared for performance.

9 Responsible Research
This research paper surveys the effect of employing different methods of Reward Specification when using Re-
inforcement Learning to optimize the Traffic Light Control problem. All tests and experiments were performed
as simulations only, in the publicly available SUMO (Behrisch et al., 2011). The traffic loads used in said
simulations were created randomly based on parameters. The simulations performed by SUMO only simulate
cars, and do not take into account any information about the driver, car type, model or make. The code used for
running the experiments is available on request from Delft University of Technology, and was inspired by pub-
licly available research papers referenced throughout this work. The seed used to generate randomness in the
experiments is available in Apendix B. The results in this paper should be fully reproducible by any researcher,
granted code access is given by Delft University of Technology.
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A Test Results

Table 1: Average and best performance during evaluation of agents with different reward functions

Test Results - Grid Scenario Average speed Best speed
Bounded Speed Change .175 .222
Real Speed Change .174 .229
Waiting Time + Speed Change .165 .217
Waiting Time .154 .214
Delay + Hard Brakes + Waiting Time .138 .187
Delay .119 .184
Hard Brakes .119 .193

B Parameters

Table 2: DQNAgent parameters

Parameter Value
num_frames 4
gamma .0.99
learning_rate 2.5-4
batch_size 32
train_frequency 1
epsilon 0.1
double_dqn True
encoder_type large
memory_size 25000
freeze_interval 25000

Table 3: Grid Environment parameters

Parameter Value
car_tm 100
car_pr 0.2
env seed gridenv-2000
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C Linear Regression Model Results

Table 4: Linear regression model

Parameter Value
wc -9.5125e-06
ww 7.3750119e-04
wbsc -1.0657244e-03
wd -3.3444860e-05
B 0.15374058
Evaluation average speed 0.1213
Mean Squared Error 0.00008
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