
Decentralized Stochastic Optimal
Control

for a Swarm of Micro Aerial Vehicles

Bianca Bendris

February 2, 2019

F
a
c
u
lt
y

o
f
A

e
ro

sp
a
c
e

E
n
g
in

e
e
ri

n
g

Decentralized Stochastic Optimal
Control

for a Swarm of Micro Aerial Vehicles

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Bianca Bendris

February 2, 2019

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright c Bianca Bendris
All rights reserved.

Delft University Of Technology
Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Decentralized Stochastic Op-
timal Control” by Bianca Bendris in partial fulfillment of the requirements for the degree
of Master of Science.

Dated: February 2, 2019

Readers:
Dr. G. C. H. E. de Croon

Prof. dr. H.J. Kappen

Ir. C. de Wagter

Ir. K. N. McGuire

6

Bianca Bendris Decentralized Stochastic Optimal Control

Acknowledgements

Undertaking this year long thesis project has been a truly challenging experience which would
not have been possible without the support of many people. First of all, I want to thank my
supervisors Guido de Croon and Kimberly McGuire for their contributions of time, ideas and
support throughout the entire thesis. The thesis I am presenting today, would not have been
the same without your guidance. A special mention also goes to Prof. Bert Kappen which
helped me to better understand the mathematical derivations behind the path integral theory.
Thank you for your kind explanations and patience.

A good support system is important if one wants to succeed with such a complex task as
finishing a MSc thesis. I was lucky to be surrounded by friends and house-mates which made
the process a lot easier. You are too many to name one by one, but you have become my
small family in Delft and for that I am truly grateful.

Finally, and most importantly I wish to thank my family for their endless support and en-
couragement. The following words in Catalan go for you:

No hi ha paraules per descriure tot el que el vostre suport i confiança ha significat per mi.
Nomès em queda dir, gràcies mama, Jordi, Ioana i Mart́ı. Aquest treball no haguès estat
possible sense vosaltres.

Decentralized Stochastic Optimal Control Bianca Bendris

ii

Bianca Bendris Decentralized Stochastic Optimal Control

Abstract

There is a continuous demand for swarms of MAVs to perform tasks which cannot be com-
pleted by a single MAV. Tasks which require exploration of large spaces (e.g. environmental
monitoring of lakes, oceans, or crops) or exploring unknown and possibly dangerous environ-
ments (e.g. forest fire detection, infrastructure inspection) would benefit from using a robust,
flexible and scalable swarm of MAVs. Despite the existing demand, multiple open problems
persist on how to control the swarm to guarantee the collective performance. Many existing
solutions approach the formation control problem using optimal control techniques. However,
these often use simplified system models to overcome the curse-of-dimensionality character-
istic to complex systems such as MAVs or are applied in a centralized way, neglecting the
decentralized behavior observed in natural swarms.

To overcome these limitations, a decentralized path integral (PI) control is proposed as an
efficient method to solve a certain class of stochastic optimal control problems. The method
builds upon the recent work on PI control theory. Solidly grounded in the stochastic opti-
mal control theory, this method transforms the computation of the Hamilton-Jacobi-Bellman
(HJB) equation into an approximation problem of a path integral without running into high-
dimensionality problems. The approximation problem is further solved through sampling
methods which are often inefficient and computationally expensive. In this thesis, we pro-
pose a probe enhanced importance sampling (PEIS) technique to guide the sampling process
towards the optimal regions in an efficient way. The resultant PI-PEIS algorithm is used to
solve the formation control problem for a holding and leader-follower task with up to four
MAVs. Simulation and hardware experiments are presented to show the feasibility of the
proposed methodology.

Besides the main research topic, this thesis also includes a review of relevant literature on path
planning and optimal control methods with a special focus on path integral control theory.
Preliminary simulation experiments of the decentralized PI controller and a step-response
analysis of the real platform used for the hardware experiments are also presented.

iv

Bianca Bendris Decentralized Stochastic Optimal Control

Contents

Acknoledgements ii

Abstract iii

Acronyms xi

List of Symbols xi

List of Figures xv

1 Introduction 1

1-1 Motivation . 1

1-2 Objective and research questions . 3

1-3 Document structure . 3

I Scientific Paper 5

II Literature study 23

2 Path Planning 25

2-1 Introduction . 25

2-2 Methods and algorithms . 26

2-2-1 Road maps . 27

2-2-2 Potential fields . 28

2-2-3 Optimization methods . 29

2-2-4 Bio-inspired methods . 29

2-3 Comparison of methods . 30

Decentralized Stochastic Optimal Control Bianca Bendris

vi Contents

3 Optimal Control 31

3-1 Introduction to Optimal Control . 31

3-1-1 Problem complexity . 32

3-1-2 Deterministic Optimal Control . 35

3-1-3 Stochastic Optimal Control . 40

3-2 Solving Optimal Control Problems . 42

3-2-1 Linear Quadratic Problems . 42

3-2-2 Dynamic Programming . 43

3-2-3 Direct methods . 47

3-2-4 Indirect methods . 48

3-3 Stochastic Optimal Control Approaches to Path Planning 50

4 A Path Integral Control 51

4-1 Introduction to Path Integrals . 51

4-1-1 The linear HJB . 52

4-1-2 A Path Integral formulation . 54

4-2 Control computation . 55

4-2-1 Laplace Approximation . 55

4-2-2 Sampling Methods . 56

4-3 Path Integral Control Approaches to Path Planning 57

5 Summary of the Literature 59

III Preliminary experiments 61

6 PI controller simulations for a LF task 63

6-1 Performance analysis . 64

6-2 Runtime analysis . 65

6-3 Sampling efficiency . 67

6-4 Communication sensor . 70

7 Parrot Bebop I step response 73

8 Discussion of preliminary results 75

A Stochastic Optimal Control 77

A-1 The Wiener process . 77

A-2 Îto − Taylor Expansion . 79

B Necessary Conditions for Optimality 81

Bianca Bendris Decentralized Stochastic Optimal Control

Contents vii

C Linear HJB 85

C-1 The log transform . 85

C-2 The Path Integral formulation . 85

D PI algorithm for a LF task 87

Bibliography 93

Decentralized Stochastic Optimal Control Bianca Bendris

viii Contents

Bianca Bendris Decentralized Stochastic Optimal Control

Acronyms

ACO Ant Colony Optimization
ALFURS Autonomy Levels for Unmaned Rotorcraft Systems
AUV Autonomous Underwater Vehicles
BVP Boundary Value Problem
DOF Degrees of Freedom
ESI External System Independence
GA Genetic Algorithms
GNC Guidance, Navigation and Control
GPS Global Position System
GPU Graphics Processing Unit
HJB Hamilton-Jacobi-Bellman
LF Leader-Follower
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
MAV Micro Aerial Vehicle
MCS Motion Capure System
MDP Markov Decision Process
MPC Model Predictive Control
NLP Non-Linear Programming
PDE Partial Differential Equation
PEIS Probe Enhanced Importance Sampling
PI Path Integral
POMDPs Partially Observable Markov Decision Processes
PRM Probabilistic Road Maps
PSO Particle Swarm Optimization
RL Reinforcement Learning

Decentralized Stochastic Optimal Control Bianca Bendris

x Acronyms

RM Road Maps
RRT Rapidly-exploring Random-Tree
RT Real time
RUAS Rotorcraft Unmanned Aircraft System
SDE Stochastic Differential Equation
SOC Stochastic Optimal Control
UAV Unnmanned Aerial Vehicle
UWB Ultra Wide Band

Bianca Bendris Decentralized Stochastic Optimal Control

List of symbols

x(·) state variable
x∗(·) optimal state variable
u(·) control signal
u∗(·) optimal control signal
t time
ti initial time
tf final time
T finite time horizon
f(·) system dynamics
g(·) stochastic process dynamics

C(·) cost function
L(·) instantaneous cost
φ(·) end cost
J(·) optimal cost-to-go
W (·) Wiener process
dw infinitesimal increment of W (·)
υ variance of process noise

S discrete states in MDP framework
a discrete actions in MDP framework
p(·|·) transition probability in MDP framework
R(·) reward function in MDP framework
V (·) value function in MDP framework
π control policy in MDP framework
γ infinite horizon discount factor in MDP framework

H(·) Hamiltonian
λ(·) Lagrangian multipliers
λ∗(·) Lagrangian multipliers when optimal control is applied

Decentralized Stochastic Optimal Control Bianca Bendris

xii Contents

B control transition matrix
q(·) state dependent instantaneous cost function
R control cost weight matrix
λ proportionality constant between the noise variance and the control cost
Ψ(·) desirability function
S(·) Action or cost of a path
W weight of a path
N number of sample trajectories

Ψ̂(·) approximated desirability function
û approximated control signal
uexp exploratory controls used to guide the sampling

Z number of exploratory probes
α degrees around the velocity vector at which the probes are taken
β separation degrees between each probe
pβ◦ probe taken at β◦ from the velocity vector
Vrot matrix of rotated velocities vectors
Urot matrix of rotated control vectors
Riβ rotation matrix for the angle iβ
vbest velocity vector of the minimum cost probe
ubest control vector of the minimum cost probe

pL EN position vector of the leader
vL EN velocity vector of the leader
qL(·) state dependent cost function of leader unit
qF (·) state dependent cost function of follower unit
Ct cost penalty for leader-target distance
Ch cost penalty for leader-target heading deviation
Ccol cost penalty for collision risk between two units
Ccoh cost penalty for non-cohesive flight between leader and followers
Cp cost penalty for parallel flight paths between two units
Cvel cost penalty for flying with a lower velocity than the minimum allowed
Csep reward given for big inter-agent distances
Cout cost penalty for out-of-bounds situations
dout distance outside the boundary area
dmin minimum distance allowed between two units
vmin minimum velocity allowed during the holding pattern
r maximum distance allowed between leader and followers
CPm cross product of velocity vectors between two units
CPthr cross product threshold before considering parallel paths

Bianca Bendris Decentralized Stochastic Optimal Control

List of Figures

2-1 ALFURS (Autonomy Levels for Unmaned Rotorcraft Systems) autonomy levels as
described in (Kendoul, 2013). Acronyms: ESI (External System Independence) . 25

2-2 Path Planning Algorithms classification: Road Maps Voronoi example (Garćıa &
Gómez-Bravo, 2012), Potential Fields example (Daily & Bevly, 2008), Optimiza-
tion Methods line search graph example (How., 2008), Evolutionary Methods (Liao
& Sun, 2001) . 26

2-3 Example of local-minima with an U-shaped obstacle 29

3-1 Ping-pong robot setup developed by (Koç, Maeda, & Peters, 2018) 32

3-2 Leader-follower task complexity classification . 34

3-3 Cost function vs. Optimal cost-to-go function 37

3-4 Optimal state trajectory when optimal control is applied 38

3-5 Deterministic vs. Stochastic task . 40

3-6 Optimal control analytical and numerical methods classification 42

3-7 Value iteration algorithm . 44

3-8 Policy iteration algorithm . 45

3-9 Process of solving an optimal control problem with direct methods 47

3-10 Shooting vs. Collocation methods. (a) Parametrized controls are input over a
time interval T. The states trajectory is obtained through numerical integration in
a single shooting manner. (b) Controls and states are parametrized. The state
trajectory is obtained over the discrete time intervals in a multiple shooting fashion.
(c) Collocation points are added to the discrete controls and states. Constraints
have to be now fulfilled at each collocation point. 48

4-1 Multiple possible trajectories of a particle traveling from A to B 51

Decentralized Stochastic Optimal Control Bianca Bendris

xiv List of Figures

5-1 Comparison table of the main optimal control approaches seen in the literature
study. The green tick mark means that the criterion is taken into account by that
method. The orange exclamation sign represents an existing challenge for that
method, while the red cross means either that no work has been found in literature
of such an implementation, or that it is not possible to incorporate such criterion
within that method. 59

6-1 Leader-follower simulation. The red dot represents the leader, while the two green
dots represent the followers. The concentric circles around the leader mark the
maximum allowed distance (black) and the minimum allowed distance (red). The
planned trajectory over the planning horizon is shown with dashed lines. 63

6-2 In this simulation, Cp = 10, Ccoh = 25, Ccol = 15, Ct = 50, Ch = 2. a) State
cost function for the leader and the two followers. b) XY trajectory of the units.
The two target waypoints are marked with a cross. 65

6-3 Separation error results. a) Number of times the separation constraints have
been violated using the PI controller and a simple random walk. b) Relative
distance between the different MAVs using the PI controller. Areas beyond the
maximum r = 2.5 and minimum dmin = 1.5 separation distance are marked in gray. 66

6-4 Runtime analysis results. a) Running time and mean cost with respect to the
nr. of samples used. In these simulations a constant H = 1 second was used.
Error bars correspond to 5 different random noise realizations. b) Running time
and mean cost with respect to horizon length. Here a constant N = 2000 samples
was used. 67

6-5 In this simulation the following parameters were used: N=1000 samples, H=1 s.
a) Effective Sample Size for the Follower 1. b) Follower 1 sample trajectories for
a high ESS value. The color map indicates each sample’s normalized cost. The
leader and Follower 2 positions are also shown, as well as their planned trajectory
(dashed lines). c) Follower 1 sample trajectories for a low ESS value. 68

6-6 a) Sample trajectories for Follower 1 when the planned controls of the neighboring
units are also communicated. The black arrow indicates the previous commanded
velocity vector. Given the high control inputs applied, the importance sampling
scheme concentrates all the trajectories around the previously taken direction. b)
Sample trajectories for Follower 1. Here, the commanded velocity vector has a
smaller magnitude decreasing the effect of the importance sampling. Now, sample
trajectories are more scattered. 69

6-7 Velocity vector cross product with CPthr = 0.3 a) Without applying the
non-parallel flight constraint b) Applying the non-parallel flight constraint 70

6-8 a) Separation error count vs. sensor update time step dt b) Leader state cost
function vs. sensor update time step dt . 71

7-1 Step response of the Bebop I drone to several forward and backward velocity
commands of 0.5 m/s. The first order approximation used to model this behavior
is also shown. 73

Bianca Bendris Decentralized Stochastic Optimal Control

List of Figures xv

A-1 Example of random walk as the random movement of a particle on a 1D axis . . 77

A-2 Three-dimensional brownian motion simulation for a time interval of 2 seconds
(Wikipedia contributors, 2018) . 78

Decentralized Stochastic Optimal Control Bianca Bendris

xvi List of Figures

Bianca Bendris Decentralized Stochastic Optimal Control

Chapter 1

Introduction

1-1 Motivation

Swarm robotics is a field which studies the problem of coordinating multiple robots to achieve
a common goal. It takes its inspiration from the intelligent behavior observed in social insects
(e.g. bees, ants, wasps) which, as explained in Beni (2005):

“act not just as a group, but show special characteristics such as decentralized
control, lack of synchronicity and simple, (quasi) identical members”

These properties lead to a highly robust, flexible and scalable swarm of insects which is able
to collaboratively perform complex tasks. Having a multi-robot system displaying the same
properties is very appealing. Thus, swarm robotics emerges with the goal of mimicking the
natural swarm behavior and enabling swarm-like properties to multi-robot systems.

Within the range of robotic platforms that could be used to deploy the swarm of robots,
many opt for small and relatively simple ground robots (Minchev et al., 2004; J. Chen et al.,
2015). However, due to the rapid miniaturization of Micro Aerial Vehicles (MAVs), promoted
by the decrease in size and cost of on-board processors and sensors (Floreano & Wood,
2015), MAVs became a suitable platform for multi-robot deployments (Bandyopadhyay et
al., 2017; Quintero et al., 2013; Kushleyev et al., 2013; Michael et al., 2011). Unlike ground
robots, MAVs are not limited to two dimensional movement and are generally faster and more
maneuverable.

Possible applications for swarms of MAVS exploit the mentioned robustness, flexibility and
scalability properties of natural swarms (Şahin, 2005) as well as the agility and speed of
MAVs. They are particularly interesting for tasks which require exploration of large spaces
(e.g. environmental monitoring of lakes, oceans, or crops) or exploring unknown and possibly
dangerous environments (e.g. forest fire detection, infrastructure inspection). These types
of tasks could benefit from the distributed sensing ability of swarms robotics which can be
scaled as desired (scalability) while also taking advantage of the high velocity of MAVs to

Decentralized Stochastic Optimal Control Bianca Bendris

2 Introduction

cover large spaces. Moreover, in case of failure or accident of an individual, the swarm could
reconfigure and adapt to the new situation (flexibility) to successfully complete the task.

Despite the rapid advances on MAV platforms and the existing demand for operative MAV
swarms, multiple open problems persist on how to control the MAV formation to guarantee
a certain collective performance. Towards this goal, many have studied formation control
strategies, as well as collective motion planning and control approaches (Y. Liu & Bucknall,
2018). Existing methods to formation control fall into three main categories: behavior-based,
virtual structures and leader-follower. Due to the inherent formation convergence problem
of behavior-based approaches (Lawton, Beard, & Young, 2003) and the large inter-robot
communication bandwidth required by virtual structure methods (Lewis & Tan, 1997), the
leader-follower (LF) approach is mostly used (Saska et al., 2014; Quintero et al., 2013; Kuriki
& Namerikawa, 2014). The LF approach assigns the role of the leader to one unit while the
others become followers, only required to maintain a desired distance with respect to the
leader. Once the leader’s motion is defined, the formation control problem can be seen as an
extension to the classic tracking problem (Li, Xiao, & Tan, 2004). Consequently, well-known
trajectory tracking techniques can be used to control the LF formation, solving many of the
issues swarm robotics is dealing with. Therefore, within this work, one of the formation
control strategy to be analyzed is the LF flight.

When discussing the collective motion planning and control of an MAV formation several
criteria must be considered. Taking for example the exploration of a cluttered and unknown
environment, feasible paths which avoid inter-robot collisions as well as obstacle collisions
must be planned. Given the low energy resources available on the MAVs, these paths should
also be efficient, optimizing the time and distance traveled. One common way of generating
these efficient paths is by using optimization methods. This method formulates the collec-
tive motion of the MAVs as an optimization problem, following individual constraints (e.g.
maximum velocity) and collective constraints (e.g. minimum distance among MAVs) which
can be solved with optimal control theory. Applying optimal control theory to a system as
complex and non-linear as an MAV while accounting for its inherent stochastic behavior, re-
quires the use of a stochastic non-linear optimal control framework. The challenges of solving
the stochastic optimal control problem for a non-linear system with high-dimensional state
and control spaces are well known among the optimal control community (Stengel, 1994). Its
solution requires solving a second-order, partial differential equation known as the Hamilton
Jacobi Bellman equation for all states and controls. This operation becomes intractable for
high-dimensional systems, such as MAVs.

Recently, a Path Integral stochastic optimal control approach was introduced by Kappen
(2005) which opened the possibility of computing optimal control sequences for a certain type
of non-linear, high-dimensional systems under stochastic effects. This technique replaces the
demanding operation required to solve the HJB equation, with an inference problem which
can be solved by means of sampling from a diffusion process. Since it was firstly introduced,
the path integral (PI) control approach has been applied to a variety of multi-robot, high-
dimensional, stochastic problems (Doerr et al., 2018; Kreuzer & Solowjow, 2018; Gómez et al.,
2015). These implementations showed the feasibility of using a PI control to achieve collective
motion of a team of robots. However, all these implementations followed a centralized strategy,
in which an off-board centralized algorithm was employed to obtain the individual control
commands for each robot (Gómez et al., 2015; Kushleyev et al., 2013; Milutinovi & Lima,
2006; Kuriki & Namerikawa, 2014). With the aim of obtaining a swarm-like behavior for

Bianca Bendris Decentralized Stochastic Optimal Control

1-2 Objective and research questions 3

the MAV formation, a decentralized scheme of the PI controller is be implemented in this
work, meaning that the optimal control sequences will be computed independently and on-
board each MAV. Although the decentralized scheme is appealing for several reasons (e.g.
system robustness), it brings with itself an added complexity as the on-board controller must
be light enough to ensure real-time performance on the limited computational platforms
available on the MAVs. Since the sampling process is one of the most computationally
expensive parts of the algorithm, many have worked towards achieving an efficient sampling
procedure (Ha & Choi, 2016; Kappen & Ruiz, 2016; Arslan, Theodorou, & Tsiotras, 2014;
Menchón & J. Kappen, 2018). Nevertheless, no computational complexity analysis was shown
to demonstrate the feasibility of these methods on-board real platforms.

1-2 Objective and research questions

Based on the arguments provided in Section 1-1, the objective of this work is:

some text
to demonstrate formation flight of a team of MAVs, by means of a

decentralized, stochastic, path integral controller
some text

As mentioned in Section 1-1, one of the main challenges is how to efficiently implement
the path integral controller on-board the MAV which has limited computational resources
available. Therefore, the first research question aims to find:

RQ1: How can the path integral controller be used to achieve formation flight of a team of
MAVs with limited computational resources?

Since the sampling process involved in solving the estimation problem introduced by the
PI control is one of the most computationally expensive parts of the algorithm, the second
guiding research question is:

RQ2: How can useful samples be generated in real-time to obtain an accurate estimation of
the optimal controls used to guide the MAV formation?

1-3 Document structure

The document is divided in three parts. First, the main contributions of this thesis are
collected in the scientific paper presented in Part I. The paper can be read as a stand-
alone document. It provides an introduction to the main concepts discussed and presents
the relevant experimental results performed within this work. The remainder of the thesis
provides background theoretical knowledge for most of the topics examined in this thesis.

Part II provides a literature review on the topics of path planning, optimal control and the
path integral framework. An introduction of the main techniques used for path planning
is given in Chapter 2. From this, motivation for the use of optimization methods, as a
possible solution for the collective motion of a team of MAVs is obtained. Next, a theoretical
introduction to the optimal control framework is presented in Chapter 3. Deterministic and

Decentralized Stochastic Optimal Control Bianca Bendris

4 Introduction

stochastic approaches are discussed, and an overview of the methods used to solve optimal
control problems is presented. In Chapter 4, the path integral control method is described
and methods to solve the path integral control algorithm are given. Part II is closed with a
discussion chapter on the main observations derived from the literature study (Chapter 5).

Part III contains the preliminary experiments which have lied the basis for the main experi-
ments presented in the scientific paper in Part I. In Chapter 6 presents simulation experiments
performed on a LF formation flight task controlled with a decentralized PI controller. Dif-
ferent scenarios are shown in which the performance of the LF flight and the runtime of the
algorithm are analyzed. Next, in Chapter 7, the step response of the Parrot Bebop I platform
used in the hardware experiments is analyzed. A synthesis of these preliminary experiments
is given in Chapter 8.

Finally, detailed derivations and theoretical background of the presented techniques can be
found in the Appendix A,B and C. A description of the code used for the preliminary
simulation experiments is given in Appendix D.

Bianca Bendris Decentralized Stochastic Optimal Control

Part I

Scientific Paper

Decentralized Stochastic Optimal Control Bianca Bendris

1

Decentralized Stochastic Optimal Control for a
Swarm of Micro Aerial Vehicles

MSc Student: Bianca Bendris 1

Supervisors: Kimberly McGuire 2, Guido de Croon 2 and Hilbert Kappen 3

Abstract—In this paper, we model a multi-robot formation planning and control task as an optimization problem, which we solve on-line
and in a decentralized manner using the Stochastic Optimal Control (SOC) framework. Typically, the solution of a SOC problem requires
solving the Hamilton-Jacobi-Bellman (HJB) equation for all system states and controls. However, this operation becomes intractable
when high-dimensional systems are used. In recent years, advances on a certain type of SOC problem, which can be efficiently solved
by sampling from a diffusion process have been presented and are better known as path integral (PI) control. We build upon this theory
and implement a decentralized formulation of the PI algorithm to compute the optimal controls of real Micro Aerial Vehicles (MAVs) flying
in formation using solely on-board computational resources. One challenging aspect of the PI control method is the efficient sampling
of useful trajectories. It is not clear how to guide the samples towards the optimal states. To this end, we propose a probe enhanced
importance sampling (PE-IS) method which performs a coarse exploration of the state space with the objective of identifying an optimal
guiding trajectory around which the samples are taken. The feasibility of the proposed method is shown by means of simulation and
real-hardware experiments with up to four MAVs in an indoor environment.

Index Terms—decentralized, optimal control, path integral, swarm robotics, MAVs

✦

1 INTRODUCTION

Swarms of small-scale robots deployed in large numbers are
particularly interesting for tasks which require exploration
of large spaces (e.g. environmental monitoring of lakes,
oceans, or crops) or the inspection of unknown environ-
ments (e.g. forest fire detection, infrastructure inspection).
The unique characteristics of swarms in terms of robustness,
flexibility and scalability [1] make them more appealing
than single-agent systems. The rapid miniaturization of Mi-
cro Aerial Vehicles (MAVs), enabled by the decrease in size
and cost of on- board processors and sensors [2], favored
the large-scale deployment of these robots and their use
in multi-agent systems. Generally faster and more maneu-
verable than ground robots, many studies involving multi-
agent systems use MAVs as the robotic platform of choice
[3]–[6].

Despite these rapid advances in MAV technology, a large
gap exists between the potential applications of swarms and
generally multi-agent systems and their actual deployment
in real-life. Among others, the motion planning and control
of the entire robot formation remains a challenge when faced
with the characteristic uncertainties and non-linearities of
real systems. Moreover, the common goal, inter-agent in-
teractions and shared information of the formation adds a
new layer of complexity in the planning and control strategy
unseen in single-agent systems.

One common approach to such problems is to define the
formation control as an optimization problem and employ

1 MSc Student, Faculty of Aerospace Engineering, Delft University of Tech-
nology, The Netherlands
2 Supervisor, Faculty of Aerospace Engineering, Delft University of Technol-
ogy, The Netherlands
3 Faculty of Science, Radboud University of Nijmegen, The Netherlands

the theoretical framework of Stochastic Optimal Control
(SOC) to solve it. This method requires solving a non-linear,
stochastic, second-order, partial differential equation (PDE)
known as the Hamilton-Jacobi-Bellman (HJB) equation for
all system states and controls. Discrete-time systems are
typically modeled as Markov Decision Processes (MDPs)
and solved through well-known dynamic programming
methods [4], [7], [8]. In a similar way, continuous systems
can also be discretized and modeled as MDPs. However,
for a continuous system such as the MAV, this discretization
becomes intractable due to the large state and control spaces
in which it operates.

In recent years, progress has been made in solving high-
dimensional SOC problems. A logarithmic transformation
of the optimal cost-to-go function was proposed in [9],
which for certain types of non-linear systems leads to a
linear expression of the HJB equation. The linearity can be
exploited such that the optimal controls can be approxi-
mated through forward sampling of trajectories or paths.
This approach is known as path integral (PI) control and
has lead to numerous successful application in a variety
of fields such as spacecraft attitude control [10], field space
exploration with Autonomous Underwater Vehicles (AUVs)
[11], the control of a team of quad-rotors [12] or even
aggressive driving with ground vehicles [13]. All these
implementations follow a centralized strategy, in which an
off-board centralized computer is employed to obtain the
individual control commands for each robot [5], [12], [14],
[15]. In this paper, a decentralized formulation of the PI
controller is used.

The decentralized scheme has many advantages such as
the increased system robustness and scalability. However,

2

it brings with itself an added complexity as the control
algorithm must be light enough to ensure real-time per-
formance on the limited computational resources available
on the MAVs. One way of mitigating the computational
costs is by combining the PI control with an efficient Model
Predictive Control (MPC) algorithm [11]–[13]. Within the
robotics community, MPC has been used in combination
with other control algorithms as a way of obtaining real-
time motion control of aerial [16], [17], wheeled [18], [19]
and humanoid robots [20], [21]. This approach allows the
calculation of the optimal controls in closed loop over a
receding finite horizon. For the PI control algorithm, this
means that the samples are propagated over a short horizon
time at each time-step and implies that the sampling process
can be efficiently evaluated to compute the optimal controls
in real-time. Yet, depending on the complexity of the task,
many samples might be needed to accurately compute the
optimal controls. Thus, obtaining an efficient sampling strat-
egy is vital for the implementation of the PI control method
in real-time.

Generally importance sampling schemes have been used in
literature to estimate the optimal controls [11], [12], [22],
[23]. This method consists in replacing the diffusion pro-
cess from which samples are taken with another diffusion
process that could lower the variance of the estimate, thus
improving the efficiency of the sampling. Yet, how to choose
an effective importance sampler remains an open question.
A first theoretical analysis on the relation between the sam-
pling efficiency and the accuracy of the obtained optimal
controls is described in [24]. In [25], a cross-entropy method
is used to iteratively improve the importance samplers. A
rapidly-exploring random three (RRT) algorithm is used
in [26] to find a baseline trajectory which can steer the
samples towards a goal region in a configuration space
with obstacles. A similar approach is taken in [23], where
different topology class trajectories are identified and used
as reference to guide the samples in a highly non-convex
state space with multiple obstacles. All these methods have
been validated using only numerical examples without
considering the computational limitations of real platforms.
Moreover, in [23], [26] single-agent examples were shown
which had to move towards a clear goal region disregarding
the added complexities of multi-agent systems.

The contribution of this paper is twofold. Firstly, a decentral-
ized scheme of the PI control is shown to be computationally
light enough to run on-board real MAV platforms and
compute on-line the optimal controls. To the best of our
knowledge, this has been the first decentralized implemen-
tation of PI control on-board real platforms. Secondly, we
enhance the PI method with a probe exploration technique
with the aim of increasing the efficiency of the sampling
method while keeping the computational complexity of the
algorithm low. By adding an exploration layer previous to
the importance sampling procedure, we seek to guide the
diffusion process towards the optimal state space regions
in a faster way. Moreover, due to the periodic re-planning
enabled by the MPC algorithm, the importance sampling
distribution is continuously adapted.

The structure of the paper is as follows. In Section 2 we
present the main concepts of the SOC theory and we review
the PI control framework as presented in [9]. We then show,
how importance sampling techniques can be used to solve
the inference problem introduced by the PI control method.
Building upon this theoretical knowledge, a probe enhanced
importance sampling technique (PEIS) is proposed in Sec-
tion 3. Section 4 describes the two multi-agent tasks used to
evaluate the resultant PI-PEIS algorithm, namely a holding
pattern and a leader-follower formation flight. The simula-
tion and hardware experimental settings are described next.
Afterwards, we show the main experimental results. These
are divided in two sections: the holding pattern experiments
are presented in Section 5, while the leader-follower exper-
iments are shown in Section 6. Finally, a discussion of the
results is given in Section 8 and conclusions are drawn in
Section 9.

2 PRELIMINARIES

2.1 Stochastic Optimal Control
Consider a continuous time stochastic system of the form:

dx = f(x, u, t)dt + dw (1)

where f(x, u, t) is an arbitrary function describing the con-
trolled system dynamics in terms of the system’s states
x ∈ Rn and controls u ∈ Rm at time t. dw represents
an increment of a Wiener process W (t) with mean zero
and variance 〈dw2〉 = υdt, where υ is a positive definite
covariance matrix.

Let xi be the initial state at time ti and xti→tf the resulting
state trajectory for a given realization of the Wiener process
when the control uti→tf is applied over the finite-time
horizon [ti, tf]. A cost can be associated to this trajectory
as:

C(xi, uti→tf , t) = φ(xtf) +

∫ tf

ti

L(x, u, t)dt (2)

where φ(xtf) represents the terminal cost at time tf and
L(x, u, t) is the immediate cost at time t for being at a state
x and choosing the control u.

The SOC problem consists of finding for each state x the
optimal control u∗, which minimizes the above cost, thus
solving:

J(x, t) = minu(t→tf)

〈
C(x, u(t → tf), t)

〉

u∗(x, t) = argminu(t→tf)

〈
C(x, u(t → tf), t)

〉 (3)

where 〈·〉 denotes the expectation taken over all possible
realizations of the Wiener process. J(x, t) is the expected
optimal cost-to-go at any state x if an optimal trajectory
is followed from that point onwards (t → tf). Applying
Bellman’s optimality principle to this equation results in
the non-linear, second order PDE equation known as the
stochastic Hamilton-Jacobi-Bellman (HJB) equation [27]. In
order to solve the SOC problem and obtain the optimal
controls, this equation has to be solved backwards in time
from tf to ti and for the entire state and control spaces.

3

2.2 Path Integral Control
This section reviews the PI control theory developed in
[9] as a method to solve continuous SOC problems. As
mentioned in the previous section, the solution of such
problems involves computing the stochastic HJB equation
for all system’s states and controls. For systems with high-
dimensional state and control spaces, this operation is very
challenging, as the computational effort required grows
exponentially with the increasing dimensionality.

PI control is one of the methods [28]–[31] proposed to cope
with what is widely known as the curse-of-dimensionality. To
do so, the PI control algorithm assumes a certain type of
continuous time SOC in which the system’s dynamics are
linear in the control (Eq. 4-a) and the control cost is quadratic
(Eq. 4-b).

(a) f(x, u, t) = f(x, t) + Bu
(b) L(x, u, t) = q(x, t) + 1

2u
TRu

(4)

Here, f(x, t) represents the passive dynamics which can be
arbitrary complex and non-linear while B is the control ma-
trix. The immediate path cost L(x, u, t) is divided between
a state cost q(x, t) and a quadratic control cost term, where
R is a positive definite weight matrix. The stochastic HJB
derived for the above system corresponds to the following
equation:

−∂tJ(x, t) = min
u(t→tf)

〈
q(x, t) +

1

2
uTRu+

(f(x, t) + Bu)∂xJ(x, t) +
1

2
∂2
xJ(x, t)υ

〉
x

(5)

To find the minimum of this expression, the gradient inside
the parenthesis is taken with respect to u and set to zero.
Due to the linear-quadratic assumption, an explicit form of
the optimal control can be obtained as:

u∗(x, t) = −R−1BT∂xJ(x, t) (6)

Substituting this expression in Eq. (5) leads to the non-linear,
second order PDE:

−∂tJ(x, t) = − 1

2R

(
∂xJ(x, t)TB∂xJ(x, t)

)
+ q(x, t)

+ f(x, t)∂xJ(x, t) +
1

2
∂2
xJ(x, t)υ

(7)

Solving this PDE for the value of J(x, t) and computing
its gradient to obtain the optimal controls as shown in Eq.
(6) is except for some specific cases (i.e linear-quadratic
(LQ) problems [32], [33]), a challenging task. The PI control
approaches this problem by using a logarithmic transfor-
mation of the optimal cost-to-go in terms of a desirability
function Ψ(x, t). An expression of J(x, t) is obtained as:

J(x, t) = −λlogΨ(x, t) (8)

Under the assumption υ = λBR−1BT where λ is a con-
stant, the non-linear terms in Eq. 7 cancel out, resulting in a
linear expression of the HJB as:

−∂tΨ(x, t) =
(

− q(x, t)

λ
+ f(x, t)∂x +

1

2
∂2
xυ

)
Ψ(x, t) (9)

with boundary condition: Ψ(x, tf) = exp(− 1
λφ(x)). The

assumption υ = λBR−1BT couples the system dynamics
noise with the control, such that both act on the same
subspace and in the same direction but inversely related.
For high noise directions, the control cost is small while for
low noise directions this takes higher values. The intuition
behind this assumption is that in higher noise conditions
the control actions are less reliable. Thus, it would be unrea-
sonable to assign high penalties to such control commands
[22].

Using the Feynman-Kac lemma [34], this linear PDE can be
solved by means of forward sampling of a diffusion process.
Thus, instead of solving the PDE numerically, an explicit
solution of Ψ(x, t) is obtained as the following expectation:

Ψ(x, t) = Eρ(xf ,tf |xi,ti)
{
exp

(
− 1

λ

(
φ(xf)+

∫ tf

ti

q(x, t)dt
))}

(10)
where ρ(xf , tf |xi, ti) represents the probability that a sam-
ple path going from xi → xf is generated by the uncon-
trolled stochastic system dynamics:

dx = f(x, t)dt + dw (11)

conditioned on the start state xi at time ti.

Computing the exact value of Ψ(x, t) remains a challenge as
it implies taking the expectation in Eq. 10 over uncountable
many paths. We can estimate the expected value of Ψ(x, t)
using sampling methods to obtain an approximation of the
optimal control. The following section introduces one of
these techniques.

2.3 Importance sampling

A simple way of achieving an estimate of the desirability
function Ψ̂(x, t) is through Monte-Carlo (MC) sampling.
However, sampling directly from the probability distribu-
tion shown in Eq. (11) can be very inefficient. Many high
cost samples are generated which do not contribute to the
computation of the optimal controls.

To mitigate this problem, importance sampling schemes
have been widely proposed within the path integral com-
munity [12], [23], [35], [36]. Importance sampling is a tech-
nique commonly used to lower the variance of an esti-
mate and increase the sampling efficiency by changing the
diffusion process from which the samples are taken. The
underlying question now is which diffusion process can
improve the sampling efficiency. As proposed in [35], the
controlled system dynamics can be employed:

dx = f(x, t)dt + Buexpdt + dw (12)

where uexp represents the exploring controls from ti → tf
used to guide the samples towards the minimum cost states.
Thus, the samples are now taken around a deterministic
reference trajectory guided by the exploring controls. Draw-
ing N statistically independent random samples from this
diffusion process, we can approximate Ψ(x, t) as:

4

Ψ̂(x, t) =
N∑

n=1

Wn (13)

with:
Wn =

1

N
exp

(
− 1

λ
Scost(xn(ti → tf))

)
(14)

where Scost(xn(ti → tf)) represents the cost of a sampled
path n as given by Eq. (2) and Wn is the weight assigned to
this path. An expression of the estimated optimal controls
can now be formulated in terms of the desirability function
as:

û = uexp +
1

Ψ̂(x, t)dt

N∑

n=1

Wndwn (15)

where dwn is the noise present for a given sample trajectory
n. For a detailed derivation of these equations, the reader is
referred to [9], [23], [37].

Eq. 15 shows how the approximated optimal controls are
found by adjusting the exploring controls used in the sam-
pling procedure. How much the control deviates from the
value of uexp is computed as the average of the noise
directions of all samples weighted by their path cost over
the finite interval ti → tf [35]. This expression reflects the
importance of cleverly choosing the value of uexp. As shown
in [24], uexp can be selected such that the variance of the
optimal control estimation decreases, resulting in a more
efficient sampling procedure. Thus, the closer uexp is of the
optimal control u∗, the more efficient the sampling process
will be.

As explained in Section 1, the PI algorithm can be combined
with a MPC framework to obtain a real-time performance.
This means that the importance sampling process has to
be efficiently performed at every time-step. The amount
of samples used must be sufficient to obtain an accurate
approximation of the optimal control and at the same time
low enough to enable the on-line implementation. Such a
strategy was implemented in [12] to control a group of
MAVs. To guide the samples, the authors first initialized
uexp to zero and took advantage of the constant re-planning
of the MPC to substitute uexp with the optimal controls com-
puted in a previous time step, t − 1. This strategy assumes
that the optimal control computed in a previous time-step
will remain optimal or close to optimality in the following
time-step. This strategy assumes that the optimal control
computed in a previous time-step will remain optimal or
close to optimality in the following time-step. As all sample
trajectories are taken around this previous optimum, the
exploration of the state space is limited, which could be
detrimental for tasks in which fast changes in direction
are required. With this idea in mind, the following section
introduces an enhanced importance sampling procedure.

3 PROBE ENHANCED IMPORTANCE SAMPLING

In this section, a probe enhanced importance sampling
(PEIS) method is proposed as an alternative technique to
achieve a higher exploration of the state space with the
objective of finding an optimal reference trajectory to guide

Fig. 1: a) Importance sampling(IS) method. Trajectories are
sampled from the controlled system dynamics, in which the
exploring controls uexp used are the ones computed in the
previous time step t. An estimate of the optimal control
û(t + 1) is obtained for time t + 1. b) Probe enhanced im-
portance sampling (PEIS) method. Exploration part: probes
are generated α◦ around the current velocity vector v(t) at
β◦ separations (e.g. pβ◦ , p2β◦ , etc). The minimum cost probe
is highlighted in green. Exploitation part: trajectories are now
sampled around the minimum cost probe (green).

the samples and improve the sampling efficiency. With this
aim, the sampling process is divided in two phases: one
focusing on the exploration of the state space and the other
on refining the search by exploiting a smaller local area of
the state space. As mentioned in the previous section, the
PEIS method is used together with a MPC framework. Thus,
both exploration and exploitation processes propagate the
sample trajectories over a finite-time horizon H . The system
is assumed to follow double integrator dynamics.

3.1 Exploration

The first phase consists of taking Z samples or probes
separated β degrees from each other. These probes P , are
taken α degrees around the current motion direction of the
agent v(t) as:

P ∈ [Pmβ◦ , P(m−1)β◦ , ..., Pβ◦ , ..., P−(m−1)β◦ , P−(m)β◦]
(16)

where m = (α/β).

As we wish to control the area of the state space which
is being explored, these probes are propagated along the
time horizon H in a deterministic manner. The simplest
way of generating these probes is through the rotation of
the current velocity vector towards the desired exploration
directions and assuming a constant forward velocity mo-
tion throughout the entire planning horizon. However, this
approach limits the exploration to areas of the state space
which are reachable by the uncontrolled system dynamics,
causing the probes to be far away from the optimal states.
To avoid this problem, the controlled system dynamics are
used instead to generate the probes. Both the exploring
controls uexp and the velocity vector v(t) are rotated by
means of rotation matrices Riβ where i ∈ [1,m] (Algorithm
1).

5

Algorithm 1: ROTATE(vinit, uexp)

Data: m,β
Input: vinit, uexp

Output: Vrot, Urot

1 for i = m,...,1 do
2 Vrot[i] = Riβ · vinit; ; // CW rotation
3 Urot[i] = Riβ · uexp;
4 Vrot[m + i] = R−iβ · vinit; ; // CCW rotation
5 Urot[m + i] = R−iβ · uexp;
6 end
7 Vrot[2m + 1] = vinit; ; // No rotation
8 Urot[2m + 1] = uexp;

Algorithm 2: SELECT(Vrot, Urot)

Data: H,Z
Input: Vrot, Urot

Output: vbest, ubest

1 for z = 1,...,Z do
2 Pz = PROPAGATE(Vrot[z], Urot[z]);
3 Compute the cost Sz with Eq. 2
4 end
5 [Pbest, Pbest index] = min(Sz);
6 vbest = Vrot[Pbest index]
7 ubest = Urot[Pbest index]

Assuming double integrator dynamics, the rotated velocity
vectors Vrot and exploring controls Urot are used to propa-
gate the probes over the finite time horizon H in the desired
directions (Eq. 16). This leads to Z deterministic probes
separated β degrees around the initial direction of motion
as illustrated in Fig. 1(b). Each probe is then evaluated
using the cost function given in Eq. (2) and the minimum
cost probe is selected as shown in Algorithm 2. With this
procedure a rough optimal direction is found which will be
further refined in the exploitation phase.

3.2 Exploitation
The information collected from the exploration of the state
space is used in the second phase of the sampling procedure
to alter the diffusion process so that the samples are now
taken around the minimum cost probe. This is achieved
by substituting the exploring controls uexp in Eq. 12 by the
rotated controls of the minimum cost probe, ubest. Moreover,
it is assumed that the initial velocity vector of the sampling
is equal to vbest. Taking N samples from this new diffu-
sion process allows us to compute the optimal controls as
showed in Eq. 6. Now, the reference trajectory used in the
importance sampling corresponds to the best probe found in
the exploration phase and the optimal controls are found by
refining this reference path. To account for the assumption
taken on the initial velocity vector, a correction factor is
added to Eq. 6 leading to the following expression of the
estimated optimal controls:

û = uexp + (vbest − vinit)/dt +
1

Ψ̂(x, t)dt

N∑

n=1

Wndwn (17)

A comparison between the classical IS and the PEIS method
is schematically depicted in Fig. 1. Using the same number

of samples and the same noise variance, the PEIS method
enables a wider exploration area to be covered which could
steer the samples faster towards the minimum cost states.
Moreover, by first performing a coarse search of the optimal
direction, the exploring controls are improved leading to
an increase in sampling efficiency during the exploitation
phase.

4 DECENTRALIZED MULTI-MAV FORMATION CON-
TROL

This section introduces the multi-MAV formation problem
and the two tasks used to evaluate the decentralized PI
control formulation with the proposed PEIS method. The
experimental settings employed to obtain both simulated
and real-hardware results are also presented.

4.1 Formation control design

Take the stochastic control problem of a team of K agents,
k = 1, ...,K moving in 2D space, each described by the
state vector xk composed of the East-North (EN) positions
and EN velocities of each agent as xk = [pk, vk]

T where
pk, vk ∈ R2. Similarly, the input vector uk is formed of the
EN accelerations where uk ∈ R2. Each agent is assumed to
follow double integrator dynamics:

ẋk(t) =

[
0 1
0 0

]
xk(t) +

[
0
1

]
(uk(t) + dwk) (18)

To achieve a decentralized control scheme, the formation
control problem is approached from the perspective of
one single agent, thus, removing the subscript k for the
state x and control u vectors. This agent observes K − 1
neighbors and receives their corresponding EN positions
and EN velocities such that a relative state vector xrel =
[p1, v1, p2, v2, ..., pK−1, vK−1] is available at time t. The
agent assumes that all its neighbors are moving with a con-
stant velocity in the time interval between two observations.
No communication delays or uncertainties due to actuator
noise are taken into account for the agent’s movement. A
global state vector xg = [x, xrel] can then be defined for
each agent.

Similar to [12], a hierarchical control approach is taken.
The high-level control is given by the PI-PEIS controller
implemented within a MPC framework. The exploration
and exploitation phases are executed at every time-step and
used to compute the optimal EN acceleration commands.
These are then transformed to velocity commands as con-
trols as vcomm(t + dt) = v(t) + û(t)dt. The entire high-level
controller is shown in Algorithm 3.

The output of the PI-PEIS algorithm serves as input to the
low-level controller which is assumed to follow the velocity
command with a first order delay such that:

v̇ = τ−1(vcomm − v) (19)

where τ−1 is a diagonal matrix with the diagonal elements
corresponding to the time delay. To account for this velocity
delay, the agent dynamics are modified as:

6

ẋk(t) =

[
0 −τ−1

0 0

]
xk(t) +

[
0

τ−1

]
(uk(t) + dwk) (20)

As it will be shown in the following sections, the simple first
order model is sufficient to achieve simulation results which
are similar to the ones implemented on our real platforms.
With these settings, we further evaluate the PI-PEIS method
by means of simulation and hardware experiments on two
different multi-MAV formation tasks.

4.2 Task I: Holding pattern

The main goal of the holding pattern task is to maintain
the agents in proximity to a holding waypoint wph, while
ensuring a safe inter-agent distance and a minimum veloc-
ity. This holding task was implemented in a centralized
manner in [12] where it was shown how the resulting
flight formation could be obtained as the optimal solution
of a SOC problem. Here, we demonstrate how the flight
formation can be achieved as the solution of a decentralized
SOC problem and we study the effect of the probes on the
task performance. This task is schematically depicted in Fig.
2.

The agent’s state cost function q(xg, t) for this task is formu-
lated as the sum of the following cost terms:

Holding wp exp(||p − wph||2 − r2)

Collision
∑K−1

k=1 P1(xg)

(
exp(Ccol(dmin

2 − ||p − pk||2))
)

Min velocity P2(xg)

(
Cvel(v

2
min − ||v||2)2

)

Max separation
∑K−1

k=1 −Csep · ||p − pk||2
(21)

where r is the maximum deviation around wph at which
the agent is allowed to be, P1(xg) and P2(xg) represent

Algorithm 3: PI-PEIS algorithm
Data: H,N,K, dt, dw
Input: xg, uexp

Output: vcomm, uexp

1 vrot, urot = ROTATE(v, uexp)
2 vbest, ubest = SELECT(vrot, urot);
3 for n = 1,...,N do
4 Sample paths xn(t → t + H) with Eq. 20
5 where v = vbest and u = ubest

6 end
7 Store the noise realizations dwn

8 for k = 1,...K-1 do
9 Propagate neighbor trajectory pk(t → t + H) with

constant vk
10 end
11 Compute sample cost Sn with Eq. 2
12 Compute sample weight Wn with Eq. 14
13 û = ubest + 1∑N

n=1 Wn

∑N
n=1 Wndwn

14 vcomm = v + ûdt
15 uexp = ubest

16 Save uexp for next time step t+dt

r

dmin

wph rmax

E

N

Fig. 2: Schematic representation of the holding task. Four
drones are given the task of staying at a radius r around wph
while also maintaining a safety distance from each other
marked by the grey area around each drone. The straight
lines connecting the drones represent the communication
scheme of the formation. Each drone, receives the position
and velocity from all its neighbors. The red dashed line
limits the available flying area of the formation to a rmax

distance around the holding waypoint.

the conditional statements applied to the collision avoidance
and the minimum velocity term as:

P1(xg) =

{
1 if ||p − pk||2 < dmin

2

0 otherwise
(22)

P2(xg) =

{
1 if ||v||2 < vmin

2

0 otherwise
(23)

where dmin is the minimum inter-agent distance allowed
and vmin is the minimum velocity permitted. Ccol and
Cvel are the corresponding collision penalty and minimum
velocity penalties applied when the thresholds are crossed.
The conditional statements applied to the collision avoid-
ance and minimum velocity constraints are implemented
with the objective of reducing the number of operations
needed to compute the cost. The last constraint rewards the
situations in which the separation among units is higher by
assigning a negative cost proportional to Csep.

To replicate the real experiment conditions, an out-of-
bounds penalty has also been added to the state cost as:

Out-of-bounds exp(Cout · dout) (24)

where Cout is the penalty applied whenever the agent
is at a distance dout outside the squared boundary area
(red dashed line in Fig. 2). In addition to the state cost,
a quadratic control cost is also applied to this task as
described in Eq. (4) to penalize high values of commanded
controls.

The optimal behavior for this task is that all four agents
move in a circular pattern around the holding waypoint
while maintaining an equal distant from each other. The
radius of the circular pattern is determined by the parameter
r and the minimum velocity of each agent is given by value
of the parameter vmin. For safety reasons, the maximum
velocity is limited by the parameter vmax outside the cost
function.

7

wp2

wp1

dmin

r

v2

v3

vL

rmax

center

E

N

Fig. 3: Schematic representation of the leader-follower task.
The leader drone is depicted in black, while the followers
are depicted in grey. The goal of the leader is to fly towards
the target waypoints (wp1, wp2). The followers have to stay
at a maximum distance r from the leader. Similar to the
holding task, all drones must maintain a safety distance
between each other. The flying area is again restricted to
rmax distance around the center of the arena.

4.3 Task II: Leader-follower flight

The second task is a leader-follower formation flight. In
this scenario, one agent is assigned the role of the leader
while the remaining agents are the followers. The leader’s
task is to fly towards a set of predefined target waypoints.
The followers, which are not aware of the target waypoints,
have to stay within a minimum and maximum distance with
respect of the leader to ensure both collision avoidance and
formation cohesion. A safe distance has to be maintained
among the followers and between each follower and the
leader. Given the decentralized scheme of the formation
control problem, different state cost function are specified
for the leader agent qL(xgL , t), denoted with the subscript
L and for each follower agents qF (xgL , t) denoted with the
subscript F . The leader’s state cost qL(xgL , t) consists of
summing the terms:

Distance target Ct||pL − wpt||2
Heading target Ch(vL × wpt)

Collision
∑K−1

k=1 P1(xg)

(
exp(Ccol(dmin

2 − ||pL − pk||2))
)

(25)
where wpt is the target waypoint given in EN coordinates
which the leader needs to follow at a certain time t and
Ct is the penalty applied for being far from it. Similarly,
a Ch penalty is applied when the leader’s velocity vector
is not pointing towards the target waypoint. The last term,
assigns a Ccol penalty when the minimum allowed distance
between the agents is crossed, thus, when P1(xg) = 1.

The follower’s state cost function qF (xg, t) is described by
the sum of the following terms:

Follow leader P3(xg)Ccoh(r2 − ||p − pL||2)
Collision

∑K−1
k=1 P1(xg)

(
exp(Ccol(dmin

2 − ||p − pk||2))
)

(26)

Fig. 4: Communication scheme: each drone receives its own
position and velocity from the Optirack MCS passing
through the Ground Station computer and sent through the
router. The relative position and velocity of the neighboring
drones is obtained by having the ground station broadcast-
ing the information of all the drones currently tracked by
Optitrack and connected to the same network. Flight control
system: each computes on-board the optimal EN velocities
at 15 Hz and sends these to the low-level controller. A guid-
ance controller calculates the velocity error with respect to
the sent commands and transforms it to angular commands.
These are further given to a stabilization module which
outputs the corresponding actuator commands

P3(xg) =

{
1 if ||p − pL||2 < r2

0 otherwise
(27)

where Ccoh is the cohesion penalty applied to a follower
when the maximum leader-follower separation r is crossed
(P3(xg) = 1). As in the previous cases, a collision avoidance
term is added to ensure a safe distance among the agents.

Similar to the holding task, an out-of-bounds penalty and a
control cost is also applied. The leader-follower scenario is
illustrated in Fig. 3.

4.4 Experimental Set-up
This section describes the setup used to perform the simula-
tion and hardware experiments for the holding and leader-
follower tasks. For the simulation experiments the agents
were modeled as 2D point-mass systems and followed the
dynamics given in Eq. 20. The time discretization used was
△t = 0.05 for the main simulation loop and △h = 0.2 for
the planning loop over the finite horizon H . This time-scale
difference was taken into account when the exploring con-
trols uexp were saved from one time-step to the other. The
communication among agents was assumed to be flawless
and without delay.

For the hardware experiments, the Parrot Bebop I drone
was used. This platform has a P7 Cortex 9 Dual Core CPU
processor and runs the open-source autopilot framework
Paparazzi UAV1. The PI controller is implemented as a

1. http://wiki.paparazziuav.org/wiki/Main Page

8

module of the Paparazzi autopilot which runs on a separate,
slower thread. This module outputs the optimal EN velocity
commands (high-level control) which serve as inputs to the
guidance controller. This layer then outputs the desired an-
gles and thrust setpoints which are further transformed into
actuator commands by the stabilization module (low-level
control). Fig. 4 shows the control hierarchy as implemented
in Paparazzi. As mentioned in Section 4.1, the optimal con-
trols are computed only for the horizontal motion, leaving
the altitude constant. During the hardware experiments, a
constant altitude of 1 m is set. The position and velocity of
the drone are obtained from an Optitrack Motion Capture
System (MCS) available in the indoor arena. This system is
also used to obtain the relative position and velocity of all
neighboring units at a frequency of 20 Hz.

5 EXPERIMENTS: TASK I HOLDING PATTERN

In this section we analyze the performance of the decen-
tralized PI-PEIS algorithm on the holding task described
in Section 4.2. First, simulation experiments are presented.
These provide an overview on how the different probe con-
figurations of the PEIS method affect the performance of the
formation and how this method compares to the standard
IS technique. Next, we show real hardware experiments
with the aim of investigating the feasibility of the proposed
method as a real-time, on-board solution to the holding
problem (Fig. 5).

5.1 Simulation experiments

We have simulated the holding task with four agents for
different probe configurations. In these simulations, a plan-
ning horizon of H = 2 s and N = 100 samples was used.
These values were chosen based on preliminary simulation
experiments, which showed that a holding task performed
with only four agents did not require a high amount of
samples to converge to the optimal behavior. The minimum
velocity allowed was set to vmin = 0.5 m/s while the
maximum velocity was limited to vmax = 1 m/s. The
agents were constrained to maintain a maximum distance

Fig. 5: Four Bebop I drones (indicated by the red circles)
performing a holding task around the center of the arena.
The dashed yellow ellipse approximately indicates a circle
of r = 2.5m.

TABLE 1: Mean state cost corresponding to the holding task
simulation results (Fig. 6a)

Mean state cost
β α = 180◦ α = 360◦

45◦ 0.03 0.12
30◦ -1.21 -0.39
15◦ -1.29 -0.51

no probes 1.57

of r = 2.5 m from the holding point while ensuring a safety
separation of dmin = 1 m.

Fig. 6(a) shows the mean path cost evolution of all four
agents taken over 25 simulations in which different noise
realizations were used. Although all probe configurations,
including the scenario without probes, reach a stable for-
mation, the use of probes decreases the cost attained at
convergence. For these lower cost situations, a higher inter-
agent separation is observed (notice the negative cost values
indicating the reward given for large inter-agent separation
in Eq. 21). Thus, the estimated optimal controls are less
accurate when no probes are employed leading to a less
optimal final configuration.

The use of probes also decreases the convergence time,
specially for values of β = (30◦, 15◦). However, we observe
higher costs during the transition phase (from t = 60 to t =
200) for the configurations in which probes are used when
compared with the one without probes. The reason behind
this observation is that the agents were moving with a lower
velocity than the specified vmin. This is due to the fact that
the PEIS method undergoes several changes in the probe
selection and sometimes commands rapid velocity changes,
which cannot be perfectly followed by the simulated veloc-
ity controller. As expected, this effect is more pronounced
for higher values of β.

When comparing the scenarios with α = 180◦ and α = 360◦

we see that both converge to similar cost values: for β = 45◦

the cost converges to a value of -1.9 and for β = (30◦, 15◦)
to a value of -2.3. The only difference between these two
conditions is a higher cost during the transition phase for
α = 360◦ which is again caused by the changing velocity
commands given to the low-level controller. This causes the
mean cost to be slightly higher for α = 360◦ (Table 1).

To determine the sampling efficiency, we use the Effective
Sample Size (ESS) parameter as in [12]. This is computed
as ESS = 1/

∑N
n=1 W

2
n , where N is the number of sam-

ples used and Wn is the corresponding sample weight.
For this scenario where 100 samples have been used, a
value of ESS = 100 indicates that all samples have con-
tributed equally to compute the optimal controls. A value
of ESS = 1 represents a scenario in which the optimal
controls have been computed in base of only one sample,
reflecting an inefficient sampling. In Fig. 6(b), we can see
a clear advantage in the use of probes. This behavior was
expected as the exploration phase is meant to change the
diffusion process from which the samples are taken in such
a way that more good samples, samples with a low cost are
found. For values of β = 15◦, we see a significant improve-
ment as the selection of slightly rotated probes favors the

9

c)

0 100 200 300 400 500

Iteration Nr.

-90º
-60º
-30º

0º
+30º
+60º
+90º

Drone 1

0 100 200 300 400 500

Iteration Nr.

-90º
-60º
-30º

0º
+30º
+60º
+90º

Drone 2

0 100 200 300 400 500

Iteration Nr.

-90º
-60º
-30º

0º
+30º
+60º
+90º

Drone 3

0 100 200 300 400 500

Iteration Nr.

-90º
-60º
-30º

0º
+30º
+60º
+90º

Drone 4

c) d)

e)

f)

g)

h)

= 360º, = 45º

= 360º, = 30º

= 360º, = 15º

= 180º, = 45º

= 180º, = 30º

= 180º, = 15º

no probes

0 500 1000 1500 2000

Iteration Nr.

0

5

10

15

20

25

30

S
y
s
te

m
 c

o
s
t

a)

0 500 1000 1500 2000

Iteration Nr.

0

10

20

30

40

50

60

E
S

S

b)

Fig. 6: Simulation results holding pattern: a) System cost evolution for different probe configurations. b) ESS evolution for
different probe configurations c) 25 trajectories with different noise realizations of four agents performing a holding task
without probes. The initial position is marked with a dot while the holding waypoint is marked by the black triangle. d)
Trajectories corresponding to the PEIS implementation. e-f) Probe selection over time for all four agents corresponding to
one of the 25 noise realization.

circular pattern. However, this behavior is a consequence
of the specific optimal formation geometry and cannot be
generalized to other tasks.

We compare the 2D trajectories of all 4 agents performing
the holding task for a scenario with and without probes
(Fig. 6(c-d)). As the scenario using α = 180◦ has performed
slightly better, only these results will be shown. Moreover,
a value of β = 30◦ is selected. The previously made ob-
servations are reflected in these graphs. We clearly see that
the use of probes decreases the convergence time yielding a
smoother transition towards the circular pattern.
The wider state space exploration enabled by the probes,
allows the agents to start the circling motion earlier in
time choosing either a clock-wise or a counter-clock wise
direction. This is also reflected in Fig. 6(e), where the probe
selection is shown for all 4 drones. We can observe that
before converging to the circular pattern the agents shift
from the 0◦ probe to the +30◦ probe achieving a smoother
transition to the optimal behavior, which in this particular
case is a clock-wise circling pattern. Afterwards, the probes
continue to be used to generate the rotative motion. In
contrast, the decision to start circling is delayed when no
probes are used. This leads to a longer transient period
during which the agents organize themselves to reach the
optimal circling behavior.

5.2 Hardware experiments

We extend the simulated holding task to a hardware do-
main. In this section we present real-hardware experiments
performed with 4 MAVs which illustrate two main aspects
of the system performance. First, we show that the de-
centralized PI controller can be implemented on-board the
real MAV platform and control the multi-MAV formation in

real-time. Secondly, we emphasize the benefits of the PEIS
method over the standard IS.

For these experiments, we use the same settings as imple-
mented for the simulation experiments. Fig. 7(a-b) shows
the trajectories of all 4 drones for the scenario without
probes and the one in which the proposed PEIS method
is implemented with α = 180◦ and β = 30◦. In line with the
simulation results presented in section 5.1, the use of probe
leads to a smoother transition to the optimal circular forma-
tion. Clearly, the transient period is higher when no probes
are used and the drones have to organize and avoid possible
collisions before reaching the optimal configuration. This is
also reflected in Fig. 7(c-f) where the state cost evolution
of each drone is showed. With the exception of Drone 4,
the state cost takes overall higher values for the scenario
without probes (See also Table 2). Similar to the simulation
results, the use of probes causes the drones to have a slightly
slower velocity during the transition phase resulting in a
high peak of the cost function as seen in Fig. 7(c-f) during
the 70-75 seconds of simulation. This behavior is specially
seen for Drone 4, which leads to a lower performance with
respect to the other drones.

TABLE 2: Mean state cost corresponding to the holding task
hardware results (7(c-f))

Mean state cost
Drone nr. PEIS IS

1 -0.09 8.57
2 -1.30 6.77
3 -0.31 4.38
4 4.67 3.15

10

-3 -2 -1 0 1 2 3

East [m]

-3

-2

-1

0

1

2

3

N
o

rt
h

 [
m

]

= 180º, = 30º

-3 -2 -1 0 1 2 3

East [m]

-3

-2

-1

0

1

2

3

N
o

rt
h

 [
m

]

No probes

Drone 1
Drone 2
Drone 3
Drone 4

Drone 1
Drone 2
Drone 3
Drone 4

a)

b)

c) d)

60 80 100 120

Time [s]

-10

0

10

20

30

S
ta

te
 c

o
s
t

Drone 3

= 180º, = 30º

no probes

60 80 100 120

Time [s]

-10

0

10

20

30

S
ta

te
 c

o
s
t

Drone 4
= 180º, = 30º

no probes

60 80 100 120

Time [s]

-10

0

10

20

30

S
ta

te
 c

o
s
t

Drone 1
= 180º, = 30º

no probes

60 80 100 120

Time [s]

-10

0

10

20

30

S
ta

te
 c

o
s
t

Drone 2

= 180º, = 30º

no probes

e) f)

Fig. 7: Hardware results holding pattern: a-b)Trajectories
of 4 Bebop I drones performing the holding task with the
standard IS method and the PEIS method. The initial posi-
tions of the drones are marked with a dot while the holding
waypoint is indicated in black. c-f) State cost evolution of
each drone for both scenarios. The higher initial and end
cost value represent the take-off and landing of each drone.

6 EXPERIMENTS: LEADER-FOLLOWER TASK

In this section, we show the simulation and hardware exper-
iments corresponding to the leader-follower task described
in Section 4.3. Unlike the holding task, the hardware ex-
periments have been performed with four, three and two
drones with the objective of highlighting the benefits of the
PEIS method.

6.1 Simulation experiments
The leader-follower task has been simulated with 4 agents,
for different probe configurations as well as with no probes.
Similar to the holding task, a horizon time of H = 2 s
and N = 100 samples was used. For this task, the leader
is commanded to fly towards target waypoints located at
1.5 m from the center continuously until the end of the
simulation. Followers 1 and 2 have to maintain a r = 2 m
from the leader while Follower 3 must be at a maximum of
r = 2.5 m. These settings are chosen to avoid a very compact
leader-follower formation. Moreover, all agents must ensure
a safety distance of dmin = 1 m among each other and a
maximum velocity of vmax = 0.5 m/s.

The mean state cost of 25 simulations with different noise
realizations is shown in Fig. 8(a) for the leader drone and
in Fig. 8(b) for the follower drones. It can be noticed that
the leader’s state cost evolution does not converge to any
value. Instead, it oscillates from higher values when the
leader is far from the next target waypoint to lower values
when the leader arrives at the target waypoint. Except
for β = 15◦, no major differences are observed between
the scenarios using α = 360◦ and α = 180◦. For some
noise realizations with α = 180◦ and β = 15◦, the leader
reaches the target waypoints with a certain delay, caused
by the position of the followers which fly in front of the

TABLE 3: Mean state cost corresponding to the leader-
follower simulation results (Fig. 8(a-b)).

Leader drone Follower drones
β α = 180◦ α = 360◦ α = 180◦ α = 360◦

45◦ 141.6 142.7 7.5 6.4
30◦ 146.6 138.8 10.0 8.4
15◦ 145.4 145.1 27.1 18.9

No probes 147.5 15.8

leader agent obstructing its movement. This delay lowers
the amplitude of the oscillation seen in Fig. 8(a) for α = 180◦

and β = 15◦. Unlike the holding scenario, the benefit of
using the probes is less noticeable for the leader agent. We
can only see a difference in the leader’s trajectory, which is
achieved with sharper angles compared with the situation in
which no probes are used. This is also seen in Fig. 8(e) where
the periodic turns are reflected by the peaks appearing in the
probe selection.

The probes do manage to lower the cost of the followers
drones for values of β = 45◦ and β = 30◦, while for
β = 15◦, the mean cost is even worse than the scenario using
no probes (Table 3). For this probe configuration, the slower
turns lead to less optimal formation flight. Despite the fact
that not all simulations converge to the same solution, spe-
cially for the follower drones which have a less constrained
cost function, we can observe some differences between the
two methods. For the scenario in which the PEIS method
was employed, we can see how Follower 3 tries to remain in
close proximity with the leader by flying inside the squared
pattern performed by the leader itself (Fig. 8(f)). To do this,
bigger turns need to be performed at a faster rate which is
enabled by the selection of further away probes as seen in
Fig. 8(k). Followers 1 and 2 take outer trajectories in order
to maintain the required minimum distance from the leader
(Fig. 8(d-e)). These paths require less turns and are more
similar to the scenario without probes, which is also shown
by the probe selection presented in Fig. 8(i) and Fig. 8(j)
where mostly the 0◦ probe is selected.

6.2 Hardware experiments

In the previous section we described the probe configu-
ration effect on the performance of a leader-follower task
by means of simulation experiments. In this section, we
present experimental results performed on real platforms
using the settings explained in Section 4.4. We look at three
different leader-follower scenarios. First we recreate the
leader-follower task with four real drones using the same
parameters as in the simulation experiments. As will be
explained later in this section, the relatively unconstrained
cost function of the followers combined with the limited
flying area make the assessment of proposed PEIS method
difficult. Thus, a second and third scenario is implemented
using three and two drones respectively.

We first analyze the leader follower task with four drones.
Fig. 9(a) and Fig. 9(b) show the trajectories flown by these
drones with and without using probes. The paths followed
by the real drones are similar to the ones obtained through
simulation. For the scenario in which probes are used, we
can see how Follower 3 approaches the problem with a

11

Fig. 8: Simulation results of leader-follower task: a) Mean state cost evolution for the follower agents corresponding
to 25 noise realizations. The mean is obtained from 25 different noise realizations. b) State cost evolution for the
follower agents corresponding to 25 noise realizations. c-d) Trajectories of all 4 agents performing the leader-follower
task. For clarity, only 10 noise realizations are plotted. e-h) Probe selection over time of all agents corresponding to
one noise realization.

TABLE 4: Mean state cost corresponding to leader-follower
hardware experiments with 4 drones (Fig. 9)

4 Drones 3 Drones 2 Drones
Drone PEIS IS PEIS IS PEIS IS

L 81.2 80.6 41.5 53.4 38.83 37.62
F1 238.5 159.8 63.7 77.8 1.529 8.94
F2 130.3 918.5 65.0 22.4
F3 194.7 160.5

similar strategy, by flying mostly inside the squared path
performed by the leader. Moreover, we see how the flexible
formation shape allowed by the cost function results in the
followers changing their position around the leader (Fig.
10).

However, when no probes are used the task is not completed
as Follower 2 flies outside the allowed area and is forced to
land (Fig. 9(a)). This does not occur with the proposed PEIS
method as the use of probes enables the drones to perform
faster turns. Despite this improvement, the use of probes
does not manage to decrease the state cost of the drones as
showed in Fig. 9(c-f) (See also Table 4). This is caused by
the saturation of the low-level controller which affects the
yaw control leading to an undesired heading change. The
stabilization module quickly corrects the heading deviation

but affects the reaction capability of the drone by slowing
it down. The result is a worsening in performance of the
leader-follower task as the followers get further away from
the leader when a yaw deviation occurs. This situation
has been also noticed for the scenario in which no probes
are used. Nonetheless, the frequency of yaw deviations is
higher when the probes are employed due to the even
faster changes in velocity commanded. The small flying area
available for the four drones combined with the freedom in
formation shape have contributed to the saturation of the
low-level controller. Therefore, experiments using three and
two drones have been performed with the aim of removing
this undesired effect.

To highlight the difference between the scenario using
probes from the one not using them, we changed the order
of the target waypoints to which the leader drone has to
fly in the experiment performed with only three drones.
Thus, a trajectory requiring faster change in direction has
to be followed by the leader drone and consequently, also
by the follower drones. Fig. 9(g-h) show the obtained paths
for this experiment. At a first sight, we can observe that
when the probes are used the formation completes the task
using less of the available space (Table 5). Regarding the cost
optimization, a slight improvement is seen for the leader

12

-5 0 5

East [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

N
o
rt

h
 [
m

]

No probes

Leader
Follower 1

(4)

(2)

(3) (1)

-5 0 5

East [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

N
o
rt

h
 [
m

]

= 180º, = 30º

Leader
Follower 1

(4)

(1)

(2)

(3)

a)-5 0 5

East [m]

-5 0 5

East [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

N
o
rt

h
 [
m

]

= 180º, = 30º

Leader
Follower 1
Follower 2

(3)

(2)

(1)
(4)

a)

-5 0 5

East [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

N
o
rt

h
 [
m

]

No probes

Leader
Follower 1
Follower 2

(3)

(1)

(2)

(4)

-5 0 5

East [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

N
o
rt

h
 [
m

]

= 180º, = 30º

Leader
Follower 1
Follower 2
Follower 3

(4)

(3)

(2)

(1)

b)

c)

d)

e)

f)

I. Leader-Follower task performed with 4 drones

-5

-4

-3

-2

-1

0

1

2

3

4

5

N
o
rt

h
 [
m

]

No probes

Leader
Follower 1
Follower 2
Follower 3

(3)

(2)

(1)

(4)

a)

II. Leader-Follower task performed with 3 drones

i)

j)

k)

g) h)

n)

o)

l) m)

50 100 150 200
Time [s]

0
400
800

1200

S
ta

te
 c

o
s
t Follower 2

= 180º, = 30º

no probes

50 100 150 200
Time [s]

0
400
800

1200

S
ta

te
 c

o
s
t

50 100 150 200
Time [s]

0
400
800

1200

S
ta

te
 c

o
s
t Leader

= 180º, = 30º

no probes

50 100 150 200
Time [s]

0
400
800

1200

S
ta

te
 c

o
s
t Follower 1

= 180º, = 30º

no probes

= 180º, = 30º

no probes

Follower 3

Leader

= 180º, = 30º

no probes

Follower 1

= 180º, = 30º

no probes

Follower 2

= 180º, = 30º

no probes

Leader

= 180º, = 30º

no probes

Follower 1

= 180º, = 30º

no probes

60 80 100 120

Time [s]

0

50

100

150

200

S
ta

te
 c

o
s
t

60 80 100 120

Time [s]

0

50

100

150

200

S
ta

te
 c

o
s
t

III. Leader-Follower task performed with 2 drones

40 60 80 100 120 140

Time [s]

0

200

400

S
ta

te
 c

o
s
t

40 60 80 100 120 140

Time [s]

0

200

400

S
ta

te
 c

o
s
t

40 60 80 100 120 140

Time [s]

0

200

400

S
ta

te
 c

o
s
t

Fig. 9: Hardware results of leader-follower task: a-b)Trajectories of 4 drones performing a LF task with the PEIS
method and the standard IS method. The initial positions of the drones are marked by the dots. The target waypoints
given to the leader drone are marked with black triangles. c-f) State cost evolution of all drones for both scenarios.

and follower 1 drone. However, follower 2 undergoes yaw
deviations more frequently which is reflected in the cost
function optimization (Fig. 9(i-k)). Both methods manage to
complete the task and maintain the separation constraints
during most of the experiment duration. Unlike the leader-
follower task with four drones, here only the PEIS method
has experienced saturations of the low-level controller.

Finally, a simpler scenario using only 2 drones has been
performed. In this case, the low-level controller experienced
no saturation for neither of the two methods. We can see
in Fig. 9(l-m) the different behaviors taken by the follower
drone. When probes are used, the strategy of the follower
consists of flying in a concentric square shape similar to the

TABLE 5: Area covered by all drones when using the
standard importance sampling (IS) and the proposed PEIS
method.

IS PEIS % difference
4 Drones 22.32 m2 22.92 m2 ↑ 2.6%
3 Drones 17.04 m2 13.08 m2 ↓ 23.2%
2 Drones 9.64 m2 6.32 m2 ↓ 34.4%

one the leader is performing. This allows the follower to
maintain a constant separation from the leader minimizing
perfectly the cost function (Fig. 9(o)). On the other hand,
when no probes are used the follower flies an almost de-
layed trajectory of the leader but still achieves to maintain

13

Fig. 10: Snapshots from the LF flight performed with 4 Parrot Bebop I drones. The leader drone is the one highlighted in
red. Its task consists in flying towards 4 different target waypoints indicated with a cross while maintaining a safe distance
from the followers. The remaining drones try to follow the leader and perform a rotating pattern around the leader.

the desired separation during most of the flight, which is
seen in the relatively low cost values attained.

7 CPU TIME ANALYSIS

As mentioned in Section 1, there is an increasing interest in
the deployment of robot swarms for a variety of tasks, par-
ticularly for small-scale robots which would be less costly
and more agile. However, the decrease in size means also a
decrease in computational power. This section investigates
the effect of a using a smaller processor to run the PI control
method with the proposed PEIS technique. To this end, the
algorithm has been implemented on a 40-gram pocket drone
equipped with a STM32F4 microprocessor (Fig. 11). As the
sampling process is the most computationally expensive
part of the algorithm, different number of samples have
been used. Fig. 12 shows the CPU-time required to com-
pute the optimal controls for one time-step on the pocket
drone and the Bebop I drone. The results correspond to a
simulated follower task with three neighbors. During these
tests the motors were not on but all the remaining modules
and sensors of the MAVs were running on-board.

Fig. 11: Pocket drone used for the computational tests

020406080100 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of samples

0

0.1

0.2

0.3

0.4

0.5

C
P

U
 T

im
e
 (

s
)

Parrot Bebop Drone

Pocket Drone

20 40 60 80 100
0

0.05

0
00.100

Fig. 12: CPU time required by a Parrot Bebob I drone and a
Pocket drone to compute the optimal controls for one time-
step. A follower task with three neighbors is simulated to
obtain these results.

As expected, the microprocessor on-board the pocket drone
runs slower than the Bebop I processor being unable to use
more than 1100 samples, point at which the drone stops
responding and shuts down. In the previous section, using
only 100 samples was shown to be sufficient for the holding
and leader-follower tasks. For this amount of samples, both
platforms require a low computational time enabling the PI
controller to run at a maximum frequencies of 50 Hz and
22 Hz for the Bebop I and pocket drone respectively. These
results indicate that the decentralized PI controller is light
enough to run on-board a pocket drone and provide high-
level control commands in real-time.

8 DISCUSSION

In this work, we studied the use of SOC methods for the
motion planning and control of a multi-agent formation. We
built upon the existing PI control framework [35] to obtain

14

the optimal controls of each agent in a decentralized man-
ner. Motivated by the existing computational limitations
on-board real-platforms, we proposed a probe enhanced
importance sampling scheme to guide the samples towards
optimal state space regions faster and more efficiently than
current methods.

The proposed PEIS method splits the sampling process into
an exploration and an exploitation phase. In Sections 5 and
6 we showed how the choice of the exploration strategy
depends on the optimal formation geometry of each task.
For the holding task, the use of slightly rotated probes
(β = 15◦) was preferred due to the emergent circular pat-
tern. In contrast, the diamond-shaped trajectory followed by
the leader and the sharper turns performed by the followers
favored the selection of probes at 45◦ and 30◦. Although the
β parameter does not influence the maximum rotation angle
which can be selected, it was noticed that the turns were
performed more gradually when lower values of β were se-
lected. This observation made the probe configurations with
β = 15◦ less efficient for tasks in which quick and sharp
turns were needed. Nevertheless, we saw that choosing a
value of β = 30◦ within the simulation experiments lead to
a more optimal formation for both tasks, when compared to
the scenario in which no probes were used.

When comparing the performance of the proposed PEIS
method with the standard importance sampling without
probes, we saw a clear improvement for the holding task. In
this case, the use of probes brought clear benefits in terms
of convergence time and optimality of the final configura-
tion, for both simulation and real-hardware experiments.
With only two possible optimal solutions (circling in a
clockwise direction (CW) or in a counter-clockwise (CCW)
direction), the most challenging part of this task was the
transition period in which the agents had to organize to
reach the optimal configuration. The choice of circling in
CW or CCW direction is consequence of the experimented
symmetry breaking of the optimal control [9], [35]. When this
choice is made depends on the different characteristics of the
problem, such as the time to reach the optimal configuration
or the noise of the system. The use of probes helped in
making the decision earlier in time avoiding possible inter-
agent conflicts.

For the leader-follower task, the comparison between the
two methods gave different results for the leader than for
the followers. On one hand, the leader had to perform
a specific and very constrained trajectory which left little
margin to improvement. Thus, both PEIS and IS methods
had a similar performance. The follower agents on the other
hand, were less constrained allowing the PEIS method to
optimize their trajectories and achieve better results for the
simulation experiments. The use of probes also helped the
followers to perform sharper turns and achieve a more
compact formation flight. We analyzed the probe selection
of the different agents and saw how the probes are used
intermittently, specially in cases in which the most optimal
state space region is not located in the proximity of the
current motion direction. What we can deduce from these
results is that the probes are complementary to the classic
importance sampling. Unlike other exploration methods

which expand a graph into the state space to locate the opti-
mal direction [23], the PEIS method is computationally light,
adding almost no additional cost to the existing importance
sampling method.

When comparing the simulation and hardware experimen-
tal results, not much difference is observed for the holding
task. However, the quick velocity changes commanded for
the leader-follower task lead to the saturation of the low-
level controller when implemented on the real platforms.
For these cases, improving the low-level controller response
to the velocity command is of course a possibility. However,
as with every real-platform, there will always be a certain
delay. Future work on this matter could consider the re-
design of the follower’s cost function. Despite its simplicity,
this cost function is non-smooth, as some constraints are
only applied when a given threshold is crossed. The reason
behind this cost-function design was to reduce the number
of operations required. Yet, this approach could cause in
some situations rapid velocity changes to be commanded.
Future experiments with smoother cost functions could be
performed to study the effect on the low-level controller.

The computational feasibility of the decentralized PI algo-
rithm was demonstrated with the hardware experiments
showed in Section 5 and Section 6. The optimal controls for
each drone were computed with a frequency of 15 Hz using
only the on-board computational resources. Moreover, the
results shown in Section 7 indicate that the PI algorithm
could also be used to control smaller platforms as far as the
number of samples used is kept low.

Although in this work, real-experiments with up to 4 MAVs
have been showed, the decentralized PI-PEIS algorithm is
easily scalable to incorporate more platforms. The only
limitations are imposed by the communication network. As
the Optitrack motion capture system is used to send the po-
sitions and velocities of all neighbor agents, the maximum
number of platforms which can be accurately tracked by
this system determines the size of the experiments. To avoid
this restriction, on-board sensors could be used to deter-
mine the relative positions and velocities of nearby agents.
Preliminary simulation experiments have been performed
in which an Ultra Wide Band (UWB) module was used to
obtain the relative state information. Despite the promising
results obtained, more work is needed to study the effect of
erroneous or delayed packages sent by this module.

9 CONCLUSIONS

This paper extends the recent work on PI control as a
method to efficiently solve stochastic optimal control prob-
lems, to a decentralized formulation and enhances the
sampling procedure with a probe exploration phase. The
resultant PI-PEIS algorithm is applied to the real-time coor-
dination of multiple MAVs in an indoor environment. For
a simple holding pattern scenario, the proposed method
shows better performance, achieving a more optimal forma-
tion than using the importance sampling scheme without
exploration. This was observed for both simulation and
hardware experiments in which four MAVs were used.
In more complex scenarios such as leader-follower flight,
wider state space exploration enabled by the proposed PEIS

15

method lead to a more compact formation flight when three
and two agents were used. When four agent leader-follower
flight was performed, the improvements were mostly no-
ticeable in the simulation experiments. For the hardware
experiments with four MAVs, real-life limitations made the
assessment of the proposed methodology difficult.

The performed experiments put in evidence that the method
proposed in this paper can be successfully implemented
on-board real MAVs achieving real-time performance. Al-
though, future work should address the observed challenges
of implementing the PI-PEIS controller for more complex
tasks, we consider that the probe enhanced exploration
improves the performance of the PI algorithm and is com-
putationally light enough to be executed in real-time.

REFERENCES

[1] E. Şahin, “Swarm robotics: From sources of inspiration to domains
of application,” in Swarm Robotics, E. Şahin and W. M. Spears, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 10–20.

[2] D. Floreano and R. J. Wood, “Science, technology and the future
of small autonomous drones,” Nature, vol. 521, pp. 460–466, 2015.

[3] S. Bandyopadhyay, S.-J. Chung, and F. Hadaegh, “Probabilistic
and distributed control of a large-scale swarm of autonomous
agents,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1103–1123,
2017.

[4] S. A. P. Quintero, G. E. Collins, and J. P. Hespanha, “Flocking
with fixed-wing uavs for distributed sensing: A stochastic optimal
control approach,” in 2013 American Control Conference, June 2013,
pp. 2025–2031.

[5] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards
a swarm of agile micro quadrotors,” Autonomous Robots, vol. 35,
no. 4, pp. 287–300, Nov 2013.

[6] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation
and transportation with aerial robots,” Autonomous Robots, vol. 30,
no. 1, pp. 73–86, 2011.

[7] J. Capitan, L. Merino, and A. Ollero, “Decentralized cooperation
of multiple UAS for multi-target surveillance under uncertain-
ties,” in 2014 International Conference on Unmanned Aircraft Systems
(ICUAS), May 2014, pp. 1196–1202.

[8] A. A. Munishkin, D. Milutinovi, and D. W. Casbeer, “Stochastic
optimal control navigation with the avoidance of unsafe config-
urations,” in 2016 International Conference on Unmanned Aircraft
Systems (ICUAS), June 2016, pp. 211–218.

[9] H. J. Kappen, “Path integrals and symmetry breaking for optimal
control theory,” Journal of Statistical Mechanics: Theory and Experi-
ment, vol. 2005, no. 11, p. P11011, 2005.

[10] B. G. Doerr, R. Linares, and C. D. Petersen, “Spacecraft attitude
control using path integral method via riemann manifold hamil-
tonian monte carlo,” in 2018 Space Flight Mechanics Meeting, 2018,
p. 0204.

[11] E. Kreuzer and E. Solowjow, “Learning environmental fields with
micro underwater vehicles: a path integral—gaussian markov
random field approach,” Autonomous Robots, vol. 42, no. 4, pp.
761–780, Apr 2018.

[12] V. Gómez, S. Thijssen, A. Symington, S. Hailes, and H. J. Kappen,
“Real-time stochastic optimal control for multi-agent quadrotor
swarms,” Robotics and Autonomous Systems. arXiv, vol. 1502, 2015.

[13] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A.
Theodorou, “Aggressive driving with model predictive path in-
tegral control,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 2016, pp. 1433–1440.

[14] D. Milutinovi and P. Lima, “Modeling and optimal centralized
control of a large-size robotic population,” IEEE Transactions on
Robotics, vol. 22, no. 6, pp. 1280–1285, Dec 2006.

[15] Y. Kuriki and T. Namerikawa, “Consensus-based cooperative for-
mation control with collision avoidance for a multi-UAV system,”
in 2014 American Control Conference, June 2014, pp. 2077–2082.

[16] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust
collision avoidance for multiple micro aerial vehicles using non-
linear model predictive control,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2017, pp.
236–243.

[17] K. Alexis, G. Darivianakis, M. Burri, and R. Siegwart, “Aerial
robotic contact-based inspection: planning and control,” Au-
tonomous Robots, vol. 40, no. 4, pp. 631–655, 2016.

[18] Y. Cong, H. Chen, and B. Gao, “Real-time path tracking method
using differential flatness for car-like mobile robot,” International
Journal of Robotics and Automation, vol. 33, no. 6, pp. 584–593, 2018.

[19] S. Raziei and Z. Jiang, “Nonlinear model predictive motion control
of differential wheeled robots,” vol. 2018-July, 2018, pp. 443–450.

[20] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 1168–1175.

[21] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov,
“An integrated system for real-time model predictive control of
humanoid robots,” vol. 2015-February, no. February, 2015, pp. 292–
299.

[22] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, vol. 11, no. Nov, pp. 3137–3181, 2010.

[23] J. Ha and H. Choi, “A topology-guided path integral approach for
stochastic optimal control,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA), May 2016, pp. 4605–4612.

[24] S. Thijssen and H. Kappen, “Path integral control and state-
dependent feedback,” Physical Review E, vol. 91, no. 3, p. 032104,
2015.

[25] H. J. Kappen and H. C. Ruiz, “Adaptive importance sampling for
control and inference,” Journal of Statistical Physics, vol. 162, no. 5,
pp. 1244–1266, Mar 2016.

[26] O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic
stochastic optimal control via incremental sampling-based algo-
rithms,” in 2014 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), Dec 2014, pp. 1–8.

[27] R. F. Stengel, Optimal control and estimation. Dover Publications,
1994.

[28] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential
dynamic programming,” in Advances in Neural Information Process-
ing Systems 20, J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
Eds. Curran Associates, Inc., 2008, pp. 1465–1472.

[29] E. Todorov and W. Li, “A generalized iterative lqg method for
locally-optimal feedback control of constrained nonlinear stochas-
tic systems,” in Proceedings of the 2005, American Control Conference,
2005., June 2005, pp. 300–306 vol. 1.

[30] M. B. Horowitz, A. Damle, and J. W. Burdick, “Linear hamilton ja-
cobi bellman equations in high dimensions,” 53rd IEEE Conference
on Decision and Control, pp. 5880–5887, 2014.

[31] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: A path integral approach,” 2010
IEEE International Conference on Robotics and Automation, pp. 2397–
2403, 2010.

[32] P. L. Kempker, A. C. M. Ran, and J. H. van Schuppen, “A formation
flying algorithm for autonomous underwater vehicles,” in 2011
50th IEEE Conference on Decision and Control and European Control
Conference, Dec 2011, pp. 1293–1298.

[33] M. Bangura and R. Mahony, “Real-time model predictive control
for quadrotors,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11 773
– 11 780, 2014, 19th IFAC World Congress.

[34] B. ksendal, Stochastic Differential Equations: An Introduction with
Applications, 01 2000, vol. 82.

[35] H. J. Kappen, “An introduction to stochastic control theory, path
integrals and reinforcement learning,” in AIP conference proceed-
ings, vol. 887, no. 1. AIP, 2007, pp. 149–181.

[36] E. Theodorou, F. Stulp, J. Buchli, and S. Schaal, “An iterative path
integral stochastic optimal control approach for learning robotic
tasks,” vol. 18, no. PART 1, 2011, pp. 11 594–11 601.

[37] S. Satoh, H. J. Kappen, and M. Saeki, “An iterative method for
nonlinear stochastic optimal control based on path integrals,”
IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 262–276,
2017.

22

Bianca Bendris Decentralized Stochastic Optimal Control

Part II

Literature study

Decentralized Stochastic Optimal Control Bianca Bendris

Chapter 2

Path Planning

2-1 Introduction

To enable unmanned aerial vehicles (UAVs) to perform complex missions (Omidshafiei et
al., 2017; Quintero et al., 2013) without human intervention, a certain level of autonomy is
required. Different metrics and taxonomies for autonomy classification of UAVs can be found
in literature (Kendoul, 2013; Sholes, 2007). Usually, these levels of autonomy are related with
the capabilities of the guidance, navigation and control systems (GNC) of the UAV. Within
the guidance system, path planning capabilities represent the first step towards a mid-level
mission complexity and system independence (Figure 2-1). Leader-follower formation flight is
already a more complex task that involves cooperation among the UAVs. Moreover, uncertain
elements are taken into account as described in Section 1-1. In this scenario, pre-computed
trajectories are not suitable anymore. The path planning problem has to be solved in real-
time in order to cope with the uncertain environment and the collaborative task in which
vehicles need to maintain a safe distance among each other. Thus, there is a growing interest
in developing advanced guidance systems to enable autonomous trajectory generation for
these kinds of complex missions and environments.

0 1 2 3

Figure 2-1: ALFURS (Autonomy Levels for Unmaned Rotorcraft Systems) autonomy levels as
described in (Kendoul, 2013). Acronyms: ESI (External System Independence)

Vehicle path planning is a fundamental problem in robotics which is in general hard to solve as
the number of degrees of freedom increase (Kempker, Ran, & Schuppen, 2011; Jang, Chae, &
Choi, 2017). Typically in a UAV application, the vehicle is modeled as a two to four degrees of

Decentralized Stochastic Optimal Control Bianca Bendris

26 Path Planning

freedom (DOF) system. The motion is performed in three dimensional space while fulfilling
differential constraints and bounded velocities and acceleration values are used (Goerzen,
Kong, & Mettler, 2010). Thus, the planning algorithm needs to solve the vehicle motion
problem and generate feasible and, if possible, optimal paths within the high dimensional
problem space. To account for dynamic, unpredictable environments, these paths must be
computed in real-time.

In this section, the commonly used methods in UAV path planning are going to be reviewed.
As real-time performance is an essential criterion for path planning algorithms, a brief de-
scription of the computational complexity of these techniques will also be given.

2-2 Methods and algorithms

Different classifications of the algorithms used to solve the path planning problem exist
(Kendoul, 2012; Yang, Qi, Xiao, & Yong, 2014; Y. Liu & Bucknall, 2018; González, Pérez,
Milanés, & Nashashibi, 2016). A distinction can be made between deterministic and heuristic
methods, local or global path planners, 2D or 3D path planners and planning with or without
differential constraints (Goerzen et al., 2010).

This section will use a similar classification as given in (Kendoul, 2012) and (Y. Liu & Buck-
nall, 2018). This choice is motivated by the fact that optimization methods, the type of
methods that are going to be used throughout this work, appear as an explicit class in these
classifications. The class of heuristic approaches and methods which take into account un-
certainty mentioned in (Kendoul, 2012), are excluded from this classification as they can
be considered as special cases of the remaining three big classes, namely road maps, poten-
tial fields and optimization methods. In addition, due to their relevance in multi-vehicle
path planning, evolutionary algorithms and bio-inspired methods are added as a fourth class
(Y. Liu & Bucknall, 2018). The classification used in this report is showed in Figure 2-2.

2-2-1 Road maps

Road maps (RM) methods solve the path planning problem by searching for the shortest path
in a given road map or graph. The road map is constructed in such a way that it captures the
problem of planning a trajectory through a given space. Each node of the graph represents
a possible position of the vehicle and each edge corresponds to a collision-free path between
nodes. Obstacles are defined as inaccessible points through which no edge can pass (Zammit
& Van Kampen, 2018). Search algorithms such as Dijkstra’s method, A* or D* (Ferguson,
Likhachev, & Stentz, 2005) can be used to find the best path. Within the road maps methods,
different ways of constructing the graphs exist such as visibility graphs, voronoi diagrams or
probabilistic road maps.

Visibility graphs

Visibility graphs use a simple polygonal representation of the obstacles in the environment and
take the obstacle’s vertices as the graph vertices (Figure 2-3(a)). Edges are drawn between
every pair of vertices if the line connecting them does not intersect with any obstacle. Given a

Bianca Bendris Decentralized Stochastic Optimal Control

2-2 Methods and algorithms 27

Path Planning

Algorithms

Road Maps Potential

Fields

Optimization

Methods

Bio-inspired

Methods

Figure 2-2: Path Planning Algorithms classification: Road Maps Voronoi example (Garćıa &
Gómez-Bravo, 2012), Potential Fields example (Daily & Bevly, 2008), Optimization Methods line
search graph example (How., 2008), Evolutionary Methods (Liao & Sun, 2001)

start and a goal position, edges are also drawn to all obstacle vertices that are ”visible” from
that start or goal position. Every pair of vertices that does not intersect with an obstacle is
said to be visible. Shortest path search algorithms are then used to find the best trajectory.
The obtained trajectory must be first adapted to fulfill all UAV system dynamics constraints
and a safe distance from the obstacles must be ensured before implementing it. Although
this method is generally used in 2D situations, a generalization to a minimum length path
problem for an UAV in 3D space has been implemented in (Schøler, Cour-Harbo, & Bisgaard,
2012).

Voronoi diagrams

Voronoi diagrams divide the plane into polygonal regions each associated with a central point.
The edges separating two regions are equidistant from two or more obstacles or boundaries
of the surrounding area (Figure 2-3(b)). This partition is specially appealing for the path
planning problem because opposite to the visibility graph approach, here the edges are located
as far as possible from the obstacles. Similarly to the visibility graphs, a start and goal
position are defined and connected to the voronoi diagram. The connection is done through
the closest edge from the diagram. A Voronoi-based planner was implemented by NASA
(Howlett, Whalley, Tsenkov, Schulein, & Takahashi, 2007) on their RMAX helicopter to
navigate through a region with known obstacles. This method was also used in combination
with a particle swarm optimization algorithm to obtain multi-UAV cooperative trajectory
planning with time-constraints in (Tong, Chao, Qiang, & Bo, 2012). The Voronoi diagram
was employed to find the initial trajectories which the PSO algorithm would then optimize
to enable synchronized motion.

Decentralized Stochastic Optimal Control Bianca Bendris

28 Path Planning

Probabilistic road maps

Probabilistic road maps (PRM) is one of the
most used RM approach. It is a sample-
based method that generates random points
on a plane and tries to connect these points
to the k-nearest neighbors without intersect-
ing with any obstacle (Figure 2-3(c)). In a
second stage, a start and goal location are
added to the created road map and a search
algorithm is used to find the shortest colli-
sion free path (Kendoul, 2012). This method
can be used as an approximated solution for
large or high-dimensional continuous spaces as
it only takes into account the discrete ran-
domly sampled points for the construction of
the road map (P. Chen & Waslander, 2010).
Although generally it is used for single vehicle
path planning, the integration of PRM meth-
ods with flocking techniques has been demon-
strated in (Bayazıt, Lien, & Amato, 2005). An
improved, iterative counterpart of the PRM al-
gorithm is the Rapidly-exploring Random-Tree
(RRT) method. Instead of randomly sample
the plane, this technique randomly expands a
tree (a directed graph) from the initial point
towards locations where no vertices have been
constructed yet (Goerzen et al., 2010). This
process is repeated until the goal position is
reached. One of the main advantages of this
method is that it can take into account the
system’s dynamics when computing the trajec-
tory. However, these trajectories may still be
suboptimal as was demonstrated in (Karaman
& Frazzoli, 2011).

Goal

Start

a) Visibility graph

b) Voronoi diagram

c) Probabilistic road maps

Start

Start

Goal

Goal

Figure 2-3: Road map techniques

2-2-2 Potential fields

Potential fields methods consider the vehicle as a particle subjected to the force of a potential
field. The force fields can either be attractive forces used to guide the vehicle towards the goal,
or repulsive forces meant to keep the vehicle far from obstacles or other undesired regions.
The potential field is defined across the entire problem space from which the resultant induced
force is then calculated. The vehicle’s movement is generated as a consequence of applying
the induced force (Kendoul, 2012).

One of the advantages of using these type of methods is their low computational re-

Bianca Bendris Decentralized Stochastic Optimal Control

2-2 Methods and algorithms 29

quirements enabling them for real-time planning tasks. However, potential fields ap-
proaches are particularly prone to get trapped in local-minima. Due to its simple
nature, situations in which the induced force equals zero are commonly encountered.
Take for example the case of a MAV flying towards a goal waypoint and facing a U-
shaped obstacle as represented in Figure 2-3. The counteracting forces in this case,

Figure 2-3: Example of local-minima with
an U-shaped obstacle

will trap the vehicle in a point where the induced force
is zero and no movement can be generated (Dudek &
Jenkin, 2010).

Techniques to avoid these situations have been pro-
posed such as using a combination of global and local
planner (Scherer, Singh, Chamberlain, & Elgersma,
2008), formulate new types of fields such as the Har-
monic Potential Fields (Panati, Baasandorj, & Chong,
2015) or employing Fast Marching Methods (FMM) to
construct the potential field based on the propagation
properties of electromagnetic waves (Garrido, Moreno,
& Lima, 2011).

2-2-3 Optimization methods

Optimization methods formulate the path planning problem as an optimization problem in
which a cost function needs to be minimized and where obstacles, vehicle dynamic limits and
mission boundaries are formulated as mathematical constraints (Kendoul, 2012). When com-
pared with previous mentioned techniques (road maps, potential fields), optimization methods
can easily incorporate vehicle’s dynamics constraints when computing the optimal trajectory.
Moreover, while these methods would only compute feasible trajectories, optimization meth-
ods try to find the optimal path for a defined cost function. The main drawback of using these
techniques is the high computational requirements needed to solve the path planning prob-
lem. This is specially problematic in cases where large or high-dimensional state spaces are
used (Stengel, 1986). Ways to cope with this issue have been intensively studied within the
robotics community (Gorodetsky, Karaman, & Marzouk, 2015; E. Theodorou, Stulp, Buchli,
& Schaal, 2011; Vernaza & Lee, 2011) as all robot’s actuation space is generally large, causing
the application of optimization methods to be particularly hard as real-time performance is
required. Despite the broad range of application, three main techniques have been identified
to solve an optimization problem: dynamic programming methods, indirect methods and di-
rect methods (Betts, 1998). A detailed explanation of all these approaches is given in Section
3-1.

2-2-4 Bio-inspired methods

Bio-inspired methods such as genetic algorithms (GA), particle swarm optimization (PSO)
and ant colony optimization (ACO) can be used to find optimal trajectories for path planning
problems (Y. Liu & Bucknall, 2018). Among these, genetic algorithms are the most popular
ones and have been extensively used within the robotics community (C. Liu, Liu, & Yang,
2011; Roberge, Tarbouchi, & Labonte, 2013; Cheng, Sun, & Liu, 2011).

Decentralized Stochastic Optimal Control Bianca Bendris

30 Path Planning

Using a GA approach, possible trajectories are treated as individuals of a population. Similar
to a natural selection scenario, the best individuals of the population are selected to evolve,
mutate and reproduce giving place to new individuals. A pre-defined fitness function is then
used to evaluate the quality of the individuals and select the ones which have a better fitness
value. The selection, mutation, evaluation sequence is repeated through many generations
of populations until convergence is achieved and the optimal trajectory is retrieved from the
best individuals.

It can be noted, that GA are a special case of optimization methods. In this case, the fitness
function is equivalent to the cost function usually defined in optimal control problems. The
main difference is that GA are heuristic search methods through which only an estimate of
the optimal trajectories can be obtained.

2-3 Comparison of methods

Among the previously mentioned path planning techniques, a preference is seen towards
potential fields, optimization methods and bio-inspired methods in multi-vehicle planning
problems. Road map techniques are generally used for single vehicle path planning (Y. Liu
& Bucknall, 2018). From these, potential fields methods and their simple formulation are
generally used as collision avoidance techniques or reactive path planning. They are usually
combined with other methods to enable more complex and collaborative tasks such as leader-
follower flight (Kuriki & Namerikawa, 2014).

Both optimization methods (Kushleyev et al., 2013; Mansouri, Nikolakopoulos, & Gustafs-
son, 2015; Saska et al., 2014) and bio-inspired methods (Kala, 2012; Korayem, Hoshiar, &
Nazarahari, 2016) are capable of computing optimal trajectories for multiple vehicles. How-
ever, evolutionary methods require problem-specific parameters and have no guarantees of
optimality making them less appealing for path planning problems (S. M. LaValle, 2006).
These observations motivate the choice of using an optimization method to solve the path
planning problem for the leader-follower task. Therefore, the following sections will focus
on stochastic optimal control methods and how they are implemented to enable autonomous
path planning capabilities.

Bianca Bendris Decentralized Stochastic Optimal Control

Chapter 3

Optimal Control

This chapter is a brief introduction to the broad field of optimal control with a particular
focus on stochastic optimal control. First an introduction of the general concepts of opti-
mal control and the main fields of application is given. Next, an example of optimal control
implementation in robotic applications is presented and problem complexity aspects are dis-
cussed. The section continues with the mathematical foundation of both deterministic and
stochastic optimal control where the fundamental optimality principle and Bellman equation
are described. A classification of the principal methods of solving an optimal control problem,
namely the Dynamic Programming method, the Indirect Method and the Direct Method is
given. Finally, state-of-the-art techniques to solve stochastic optimal control formulations of
the path planning problem for robotic applications are described.

3-1 Introduction to Optimal Control

To optimally control a dynamic system with respect to some performance criteria is the
objective of many problems arising in a variety of fields (Powell, 2007). Examples ranging
from optimizing the retirement decision problem (Rust, 1989), to vehicle fleet repositioning
(Song & Earl, 2008) or optimal motion planning for robots (S. LaValle & Hutchinson, 1998)
are all problems which can be solved through optimization methods. As described in Powell
(2007), three main communities that have been using and developing these techniques can be
identified:

• Control theory community has applied optimization techniques to well known en-
gineering problems such as the control of chemical plants, power grids or controlling
MAVs (Powell, 2012). Typically, it focuses on continuous time problems with continu-
ous state and control parameters (Powell, 2007). The systems that need to be optimized
usually have complex dynamics and large or high-dimensional state spaces (Bangura &
Mahony, 2014; Todorov & Tassa, 2009). Generally only one system is controlled at the
same time.

Decentralized Stochastic Optimal Control Bianca Bendris

32 Optimal Control

• Operations research community focuses on problems such as the management of
resources, routing and scheduling of individual entities or inventory problems (Powell,
2012). These applications are generally formulated as discrete, stochastic problems
where multiple, simple systems or entities (Song & Earl, 2008) are treated. Therefore,
methods to deal with uncertainty have been exhaustively studied within this community,
culminating in the vast theory of Markov Decision Processes (MDPs).

• Computer science community and particularly artificial intelligence community has
also applied optimization principles to solve a certain class of machine learning prob-
lems known as Reinforcement Learning RL (Powell, 2007). Learning how to play games,
describing animal behavior and even controlling robots are some examples of RL appli-
cations (Powell, 2012). Classic RL formulations also use MDPs as in Operation Research
and thus, have been mainly used to solve discrete, stochastic problems (Abouheaf, Lewis,
Vamvoudakis, Haesaert, & Babuska, 2014).

Despite the wide application range, the underlying concept is similar: one or more agents have
to plan their actions over time subjected to a dynamical system whose states are affected by
those actions while optimizing a desired performance criterion usually formulated as a cost
function (Todorov, 2009).

The same principle can be applied to tasks from our daily life. Take for example a
ping-pong game. The movement of the arm that will send the ball into the opponent’s
side of the net can be seen as an optimal control problem. In this example, the sys-
tem is the human arm. This system follows complex dynamics and has many degrees
of freedom. The cost function that has to be minimized includes, in this case, a path
cost and an end cost. The path cost describes the effort needed to contract the mus-
cles and perform the arm movement, while the end cost reflects the success of the ac-
tion. It will assign a high cost to all cases in which the ball has not reached the op-
ponent’s side of the net. Thus, the optimal arm trajectory which minimizes the cost

Figure 3-1: Ping-pong robot
setup developed by (Koç et al.,
2018)

function is the one that needs the least amount of energy to
perform the action and is still capable to correctly send the
ball into the opponent’s side.

Now imagine that a robot arm attempts to perform the same
action (Koç et al., 2018; Serra, Satici, Ruggiero, Lippiello, &
Siciliano, 2016). Achieving an optimal movement of the robot
arm and guide it to hit a ping-pong ball into the opponent’s
side of the table is a complex task. Implementing optimal con-
trol strategies for systems that need to interact with uncertain
environments (like the robot arm that needs to adapt its move-
ment depending on the ping-pong ball location) or uncertain
system dynamics (the imperfect robot arm actuators cannot
perfectly execute the planned action) increases the complexity
of the problem. These and other variables that affect the com-
plexity of an optimal control problem are described in the next
section.

Bianca Bendris Decentralized Stochastic Optimal Control

3-1 Introduction to Optimal Control 33

3-1-1 Problem complexity

Knowing the amount of computation required by an optimal control algorithm is very im-
portant, especially for control tasks applied to robotics where real-time performance of the
control algorithms is vital. In this section, the main aspects that affect the complexity of a
control task are described.

• Deterministic vs Stochastic. Taking a deterministic or a stochastic approach is a
decision that drastically changes the control approach that must be followed. Determin-
istic approaches assume systems have perfect state information and noiseless actuators.
Stochastic approaches on the other hand, take into account the inherent noise of real
systems. There are two main sources of system noise: noise coming from the actuators
and noise coming from the sensor’s measurements.

Noisy actuators The control commands given to the robotic arm from the previous
example or to a follower UAV that has to maintain a distance from the leader as in
our task, will not result in perfect deterministic movement. Actuator noise coming
from either electrical or mechanical sources will affect the resultant motion making it to
some extent unpredictable (Thrun, Burgard, & Fox, 2005). This means that after each
control input, the system’s states can not be known precisely.

Noisy measurements are a direct consequence of sensor’s limitations. To obtain closed
loop control, the corresponding states need to be measured. These measurements are
not perfect as sensor’s performance is affected by a variety of physical effects such as
thermal or vibrational effects. If system uncertainty is taken into account, a stochastic
or probabilistic approach of the control algorithm is needed. These algorithms must
take into account all possible situations (e.g. the noisy actuator could have moved the
robot in a different position than expected) increasing the complexity of the control
algorithm.

• Low vs High Dimensional Problem High-dimensionality of state and action spaces
is currently one of the most challenging and limiting factors for optimal control algo-
rithms. In order to find the optimal actuator command, classic optimal control ap-
proaches have to compute the cost function for all possible states and actions (Stengel,
1986). This computation is feasible only for low-dimensional problems. When many
possible states and actions are available, this computation increases exponentially mak-
ing the optimal control problem intractable.

High-dimensionality of the problem is inherent when the control algorithm is applied
to a real-system (e.g. robot, UAV) which works with continuous inputs and output
signals. Take for example most robotic applications which span over large continuous
state spaces (e.g. the position and velocity space of the robot arm or of a UAV) or
include multi-dimensional action spaces (e.g. controlling multiple joints of the robot
arm) or a combination of both. Although this is inherently present in continuous-time
systems, it can also be seen in discrete cases (Silver et al., 2017).

Methods to solve the optimal control problem for these cases are presented in Section
3-2.

• Simple vs Complex Systems When solving an optimal control problem, a model
describing how the system evolves over time is needed (Stengel, 1986). In control theory

Decentralized Stochastic Optimal Control Bianca Bendris

34 Optimal Control

this is known as transfer function or system dynamics while in MDP formulations and
model-based RL this represents the transition model. Models are abstraction of the real
word that consider only partial information of the underlying physical processes (Thrun
et al., 2005). This inaccuracy adds additional uncertainty to the control problem,
making the prediction of future states harder. Moreover, complex systems are generally
follow non-linear dynamics which increases the complexity of the control algorithm.

• Total vs Partial state observation As previously mentioned, sensors available to
measure the states are ultimately limited and imperfect. Real sensors have a range
within which measurements can be obtained. This sensor range limits the known envi-
ronment and forces the system to work with partial information. Moreover, some states
can be essentially unobservable or expensive measurement equipment could be needed
to obtain the entire state value (Stengel, 1986). These problems are often encountered
within the robotics community and their solutions are not particularly easy. In these
cases, the control algorithm has to be adapted to work with incomplete information of
the system’s states. The probability of being in one state or another has to be calculated
which increases the complexity of the control algorithm (Thrun et al., 2005).

• Single vs. Multiple agents In principle, optimal control can be extended to N dy-
namical systems by considering N coupled differential equations and by formulating
their cooperative performance as a single cost function. However, the computational
complexity needed to solve the coupled optimal control problem becomes prohibitive
for large values of N (Foderaro & Ferrari, 2010). Thus, when multiple agents or sys-
tems have to be controlled at the same time, as is usually the case for swarm robotics
applications, the control algorithm has to be designed in such a way that it scales with
the number of systems without adding complexity. Distributed control algorithms are
usually used in these cases (Guo & Parker, 2002).

 Stochastic

 High-dimensional

 Complex system

 Partially observable

 Multiple agents

Figure 3-2: Leader-follower task complexity classification

As summarized in Figure 3-2, the leader-follower task described in Chapter 1 requires a
stochastic continuous-time formulation of the optimal control problem that can scale to mul-
tiple complex systems acting in a fully observable environment. These requirements make the
task particularly complex and limit the range of possible algorithms that can be employed.

Bianca Bendris Decentralized Stochastic Optimal Control

3-1 Introduction to Optimal Control 35

3-1-2 Deterministic Optimal Control

System
Dynamics

Cost
Function

Planning
Horizon

Before describing the theoretical framework of stochastic optimal control the-
ory, an introduction to the deterministic optimal control case is presented in
this section. Although no real system can generally be called deterministic, this
assumption simplifies the formulation of the optimal control problem. Follow-
ing the notation used in (Kappen, 2007) a continuous, deterministic system is
considered as following:

ẋ(t) = f(x(t), u(t), t) (3-1)

where the state vector at time t is denoted by x(t), u(t) is the vector of control
variables at time t and f(·) represents the system dynamics as a function of
both states and controls at time t. A fixed initial state is assumed as x(ti) = xi.
For a given task, a cost function over a finite time interval (ti → tf) can be
defined by a path cost and an end cost. When both a path cost and an end cost
are included in the cost function, it is usually referred to a problem of Bolza,
or Bolza form (Betts, 1998). If the cost function contains only a path cost it
is known as a problem of Lagrange, and when only the end cost is considered,
it is known as a Mayer form (Betts, 1998). Using one form or the other, it is
mainly related with the nature of the task itself. Regardless of the form, the cost
function usually includes the desired performance constraints (e.g. minimum
time, minimum energy), limitations of the states or controls (e.g. maximum
velocities, maximum control inputs) and the desired goal (e.g. assigning less
cost for positions closer to the goal waypoint, assigning a negative end cost
when the robot arm hits the ping-pong ball).
Using the Bolza form, the cost function can be written as:

C(xi, ti, u(ti → tf)) = φ(x(tf)) +

∫ tf

ti

L(x(t), u(t), t)dt (3-2)

where φ(x(tf)) is the end cost or the penalty for ending with a certain value of
the state space and L(x(t), u(t), t) is the path cost. The integral over the path
cost function represents the penalty of transitioning from the initial state xi to
the final state xf when the control sequence u(ti → tf) is being applied. The
objective is then to find a control sequence u(ti → tf) that minimizes the above
cost function over the finite time interval.

So far, the controlled time interval has been taken as the finite interval [ti, tf].
However, different options are possible. The length of the controlled time inter-
val is usually known as the planning horizon or time horizon, T. As explained
in (Thrun et al., 2005), three main strategies for choosing the value of T can
be distinguished:

Decentralized Stochastic Optimal Control Bianca Bendris

36 Optimal Control

Greedy
case

Finite
horizon

Receding
horizon

Infinite
horizon

1. T=1. A simple, greedy strategy consists of minimizing the cost function
for the immediate next time step only. Although this approach is less
computationally expensive, it does not take into account the effect of
future actions, beyond the first time step.

2. T = finite. A different approach is to take T higher than one but still finite.
This is known as the finite-horizon case. Here, the optimal control is
calculated for a longer time interval taking into account actions performed
further in the future. The computed control sequence is then applied
to the system in an open-loop fashion without taking into account the
system’s states. The execution of the control algorithm increases linearly
with the value of T making it more difficult to use long planning horizons
when real-time performance is needed.

To benefit from a larger planning horizon while also enabling a closed-loop
control and alleviating the running time requirements, a receding horizon
or Model Predictive Control (MPC) technique can be applied (Stengel,
1986). Using a receding horizon framework translates in calculating the
optimal control for the entire horizon but only applying the first control
input of the computed sequence. At each time step t the optimal control is
computed for the dynamic interval [t, t+ T] where T is generally a finite
value larger than 1 as the goal is to achieve a longer planning horizon
in a more efficient way. This method is constantly re-planning, meaning
that the optimal control is re-calculated at each time step taking into
account the new measured states. The approach follows a closed-loop
scheme as state feedback is included in the computation of the optimal
control inputs. Moreover, in this case the computed optimal control is
time-independent. From the system point of view, nothing will change
from one time step to another. The system faces the same problem over
and over again losing the dependency with time (Kappen, 2007).

3. T = ∞. For the infinite-horizon approach, the optimal control is com-
puted by minimizing the cost function over an infinite amount of time. In
this case, the optimal control is time-independent as at each time step an
infinite amount of remaining time-steps have to be taken into account. So,
as in the receding-horizon case, the system always faces the same problem.
This approach is typically used in reinforcement learning techniques. In
RL problems, a reward function has to be maximized instead of minimiz-
ing a cost function as in control theory. Here, the difficulty consists in
obtaining a finite value of the reward function given the fact that it has
to be calculated for infinite time-steps. A common approach is to use a
discounted factor γ (0 < γ < 1). With γ < 1, future rewards count less
than immediate rewards. In this way, a bounded value of the cost func-
tion can be found. More detailed information on how this infinite-horizon
problems can be solved can be found in (Sutton & Barto, 1998).

Bianca Bendris Decentralized Stochastic Optimal Control

3-1 Introduction to Optimal Control 37

Optimal
cost-to-go

Principle
of
optimality

The optimal control problem is solved when the control sequence u(ti → tf)
that minimizes the cost function C(xi, ti, u(ti → tf)) over the finite-time horizon
[ti, tf] is found (Stengel, 1986). Obtaining this control sequence requires for an
additional function known as the optimal cost-to-go function or value function
defined as:

J(x, t) = min
u(t→tf)

C(x, t, u(t→ tf)) (3-3)

As explained in (Stengel, 1986), the optimal cost-to-go function represents the
cost of being in a state x at a time t and following an optimal control from that
moment onwards. The difference between the optimal cost-to-go function and
the cost function can better be seen if we plot their values from an initial time
t to a final time tf passing through an intermediate time t1 (Figure 3-3).

a) Cost function b) Optimal cost-to-go function

Figure 3-3: Cost function vs. Optimal cost-to-go function

It can be noticed that when the cost function has a maximum value, the optimal
cost-to-go function takes a minimum value. At time t1 for example, the cost
increases due to the accumulation of penalties along the trajectory that took the
system from a state x at t to a state x1 at t1. On the other hand, the optimal
cost-to-go at t1 represents the remaining cost of the trajectory (path cost up to
tf + end cost) if an optimal control is applied from that moment onwards. The
optimal cost-to-go represents a way of comparing how good a control sequence
is. The optimal control sequence will be the one that minimizes the remaining
cost.

To compute the Equation (3-3) for all states along the entire time interval, the
Principle of Optimality developed by Bellman in the early 1950s can be applied
(Bellman, 1957).

Decentralized Stochastic Optimal Control Bianca Bendris

38 Optimal Control

Bellman
equation

The Principle of Optimality simply states:

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an op-
timal policy with regard to the state resulting from the first decision
(Bellman, 1957).

What this principle comes to say is that we can divide an optimal control
problem in smaller sub-problems which can be solved separately and further
combined to obtain the overall solution. Take for example the optimal state
trajectory shown in Figure 3-4 which has been obtained by applying first the
optimal control sequence from [t,t1) and then from [t1, tf]. Following the opti-
mality principle, both sub-trajectories will continue to be optimal with respect
to their initial state, (x, t) and (x1, t1) respectively. As this optimality is con-
served, the optimal control sequence can be split and found separately.

State x

Figure 3-4: Optimal state trajectory when optimal control is applied

For the optimal cost-to-go equation, this means that we can split the equation at
any point along the optimal trajectory. Taking as an example the intermediate
point t1 of the cost-to-go function as seen in Figure 3-2, by substituting the
expression of the cost-function (3-2), the (3-3) equation can be rewritten as:

J(x, t) = min
u(t→tf)

(
φ(x(tf)) +

∫ t1

t
L(x(t), u(t), t)dt+

∫ tf

t1

L(x(t), u(t), t)dt

)

= min
u(t→tf)

(∫ t1

t
L(x(t), u(t), t)dt+ min

u(t→tf)

(
(φ(x(tf)) +

∫ tf

t1

L(x(t), u(t), t)dt
))

= min
u(t→tf)

(∫ t1

t
L(x(t), u(t), t)dt+ J(x(t1), t1)

)

(3-4)
In the above equation the minimization interval is split in two, achieving a
recursive expression of the optimal cost-to-go expression. This equation is valid
for any intermediate time t1 (t < t1 < tf) (Kappen, 2007) and is known as
the Bellman equation. What is particularly interesting here is the recursive
property that allows us to solve the initial problem by splitting it in smaller

Bianca Bendris Decentralized Stochastic Optimal Control

3-1 Introduction to Optimal Control 39

Dynamic

Programming

Hamilton
Jacobi
bellman

Optimal
Control

sub-problems. Thus, to calculate the value of J(x, t), we just need to know the
path cost of going from the initial state to the intermediate state x1 at time
t1 and the remaining cost from that state onwards expressed by J(x(t1), t1).
Having J(x, t) given in terms of J(x(t1), t1) which represents a different value
of x at a future time t1, results in having to solve the above equation for all
states x simultaneously. As it is not known which value of x is needed to obtain
the optimal cost-to-go, the function has to be computed for the entire state
space. Moreover, the computation is performed backwards in time due to the
recursive property from tf+1 → t assuming J(x, tf+1) = 0.

Solving an optimal control problem through the recursive Bellman equation
is known as Dynamic Programming. If this method is applied to continuous
time problems, a time discretization is needed. Thus, the value of t1 can be
written as t1 = t + dt where dt is infinitesimally small in the continuous case.
Substituting this into the J(x(t1), t1) expression and using the Taylor series
expansion around t we obtain:

J(x(t1), t1) = J(x(t), t) + ∂tJ(x(t), t)dt+ ∂xJ(x(t), t)dx (3-5)

Now, substituting again Equation (3-5) into the Bellman equation:

J(x, t) = min
u(t→t+dt)

(
L(x(t), u(t), t)dt+J(x, t)+Jt(x, t)dt+Jx(x, t)f(x, u(t), t)dt

)

(3-6)
where the following equality dx = f(x, u(t), t)dt has been used from Equation
3-1.
It can be noticed that now the minimization interval spans over an infinitesimal
time period dt. In the limit case, this will approach zero reducing the mini-
mization interval to a point-wise variable u at time t (Kappen, 2007). Dividing
both sides by dt and taking the limit of dt → 0, the terms can be rearranged
and the equation can be written in a more compact way as:

−Jt(x, t) = min
u

(
L(x, u, t) + Jx(x, t)f(x, u, t)

)
(3-7)

Equation 3-7 is known as the Hamilton-Jacobi-Bellman (HJB) equation due to
the close similarity of this approach with the Hamilton-Jacobi theory in classical
mechanics (Bagchi, 1993).
This equation must be solved with the boundary condition:

J(x, tf) = φ(x(tf) (3-8)

where φ(x(tf) is the end cost as defined in Equation (3-2).
As it can be noticed, the HJB equation is a partial differential equation (PDE)
that as Bellman’s equation, has to be solved for each value of x simultaneously
and backwards in time. The solution of this equation is the optimal cost-to-go
function. If this solution is found, then the optimal control can be found as:

u(x, t) = argmin
u

(
L(x, u, t) + Jx(x, t)f(x, u, t)

)
(3-9)

Decentralized Stochastic Optimal Control Bianca Bendris

40 Optimal Control

something
The optimal control is computed in open-loop. Strategies that allow close-loop
implementations and methods to solve both Bellman’s equation for discrete
cases and the HJB equation for continuous cases are detailed in Section 3-2.

3-1-3 Stochastic Optimal Control

Stochastic
system
dynamics

Wiener
process

Classical robotics usually assume deterministic systems moving in de-
terministic environments (Thrun et al., 2005). Practical applica-
tions however occur in stochastic worlds with noisy systems. Take
for example the simple task of a MAV that needs to plan its
trajectory to reach a goal position as represented in Figure 3-5.

Figure 3-5: Deterministic vs. Stochastic
task

In the deterministic case, the optimal
trajectory would be to just fly straight
through the narrow corridor (Figure 3-5
(a)). An optimal control sequence could
be computed and the system could blindly
follow it without taking any measure-
ments of the states as no uncertainty (nei-
ther from the environment, nor from the
system) could deviate it from the opti-
mal path. However, in uncertain environ-
ments (e.g. wind, moving obstacles) and
with a noisy system (e.g. noisy actua-
tors, noisy measurements) blindly follow-
ing the control inputs will not result in
the same trajectory as in the determin-
istic case. The AV’s real position could
deviate from the predicted one increasing
the risk of colliding with the walls of the
narrow corridor (notice the position error
bounds in Figure 3-5 (b)). In this case, a
safer, longer trajectory is chosen.
In this section, an extension to the deterministic continuous optimal control
problem is given for a system under stochastic effects. The optimal control
equation is going to be re-defined for the case in which the system dynamics
are formulated as a stochastic differential equation. In the general case, the
stochastic differential equation can be formulated as:

dx = f(x(t), u(t), t)dt+ dw (3-10)

where f(·) is an arbitrary function describing the system dynamics and dw
represents an increment of a Wiener process W (t) a with mean zero and variance

aA detailed explanation of the characteristics of Wiener process and its relation with other
well-known stochastic processes is given in Appendix A-1.

Bianca Bendris Decentralized Stochastic Optimal Control

3-1 Introduction to Optimal Control 41

Stochastic
cost
function

Stochastic
optimal
cost-to-go

Stochastic
HJB

〈dw2〉 = υdt, where υ is the variance of the noisy process dynamics which has
been assumed to have no dependency with the system’s states and controls.
Consequently, the cost function is now written as the expectation value over all
possible future realizations of the Wiener process:

C(xi, ti, u(ti → tf)) =
〈
φ(x(tf)) +

∫ tf

ti

L(x(t), u(t), t)dt
〉
xi

(3-11)

where the subscript xi highlights the fact that the expectation (denoted by the
angle brackets) is taken for all stochastic trajectories that start in xi (Kappen,
2007). Similar to the deterministic case, the optimal cost-to-go is defined as:

J(x, t) = min
u(t→tf)

〈
C(x, t, u(t→ tf))

〉
x

(3-12)

The principle of optimality can be applied as described in the previous section
and a recursive stochastic expression of the optimal cost-to-go is obtained as
following:

J(x, t) = min
u(t→tf)

〈∫ t1

t
L(x(t), u(t), t)dt+ J(x(t1), t1)

〉
x

(3-13)

Once again taking t1 = t + dt, the J(x(t1), t1) expression can be expanded as
a Taylor series around t. Applying Îto stochastic calculus rules the function is
expanded to first order in dt and second order in dx as following:

〈
J(x(t+ dt), t+ dt)

〉
= J(x, t) + ∂tJ(x, t)dt+ ∂xJ(x, t)f(x, u, t)dt

+
1

2
∂2xJ(x, t)υdt

(3-14)

The complete derivation of the above formula is given in Appendix A-2. Sub-
stituting equation (3-14) into the recursive expression of the optimal cost-to-go
yields:

−∂tJ(x, t) = min
u(t→tf)

〈
L(x, u, t) + f(x, u, t)T∂xJ(x, t) +

1

2
∂2xJ(x, t)υ

〉
x

(3-15)

Equation (3-15) is the Stochastic Hamilton-Jacobi-Bellman equation. As in
the deterministic case, this equation has to be solved backwards in time for all
states x and with boundary condition J(x, tf) = φ(x). It can be noted, that
for the case in which υ is zero, this equation reduces to the deterministic HJB
equation as the second order term in dx is eliminated. The optimal control u
can be found as:

u(x, t) = arg min
u(t→tf)

〈
L(x, u, t) + f(x, u, t)T∂xJ(x, t) +

1

2
∂2xJ(x, t)υ

〉
x

(3-16)

Decentralized Stochastic Optimal Control Bianca Bendris

42 Optimal Control

3-2 Solving Optimal Control Problems

Given the wide range of applications in which optimal control theory has been used (Rust,
1989; Song & Earl, 2008; S. LaValle & Hutchinson, 1998), it is not surprising to see so many
different methods to solve optimal control problems.

For some of these applications (e.g. optimizing satellite trajectories) accurate solutions are
needed. However, due to the intrinsic nature of optimal control problems, a closed-form
analytical solution is except for some specific cases (Suicmez & Kutay, 2014), rarely obtained.
Most of the techniques, used to solve optimal control problems are numerical. Therefore, in
this section, only the numerical methods are going to be described. Analytical solutions are
going to be briefly mentioned as special cases problems for which closed-form solutions exist.

Among the numerical techniques, a strict classifications is almost impossible. However, big
part of the optimal control community (Betts, 1998; Biral, Bertolazzi, & Bosetti, 2016; Frego,
2014) distinguishes between three main classes: Dynamic programming, Indirect methods
and Direct methods. The following sub-sections will introduce the theoretical background,
the different sub-classes as well as the advantages and disadvantages of each one of these
classes. A complete overview of the classification followed in this report can be seen in Figure
(3-6).

Figure 3-6: Optimal control analytical and numerical methods classification

3-2-1 Linear Quadratic Problems

For systems with linear dynamics and quadratic cost functions, an analytic closed-form so-
lution of the optimal control can be found and thus, the optimal cost-to-go does not have
to be computed (Stengel, 1986). In these cases, the optimal control is given in closed-form
as the solution of a number of coupled ordinary differential (Ricatti) equations that can be
efficiently solved (B. D. Anderson & Moore, 2007). This is known as the Linear Quadratic
(LQ) problem or Linear Quadratic Regulator (LQR) and it is often used within the control
community because many engineering problems can be modeled and solved following this
approach (Kappen, 2007). If Gaussian noise is added to the linear system, the problem is
known as Linear Quadratic Gaussian (LQG) and it is solved in a similar manner.

Bianca Bendris Decentralized Stochastic Optimal Control

3-2 Solving Optimal Control Problems 43

This approach can also be useful for non-linear systems. The nonlinearities can be linearized
around certain points and the LQR or LQG approach can be employed. Some of the ad-
vantages of using this method is that an exact solution of the optimal control can be found.
Moreover, this solution is given as state-feedback enabling closed-loop control.

However, most applications involve systems with non-linear dynamics that cannot be easily
linearized. For these cases, a closed-form solution of the optimal control cannot be found.
Therefore, numerical methods have to be employed.

3-2-2 Dynamic Programming

Using Dynamic Programming techniques, the solution of an optimal control problem is found
by solving the recursive Bellman equation for discrete problems or the HJB equation for
continuous problems. As mentioned in the previous chapter, these equations have to be
solved for the entire state space. By computing the optimal cost-to-go for all states, a global
comparison among all the different possibilities is performed. Thus, this techniques is a
global optimization technique and provides necessary and sufficient conditions that ensure
the optimality of the solution (Stengel, 1986).

Different approaches to solve the recursive Dynamic Programming equation can be taken
depending on the type of problem (discrete vs. continuous, deterministic vs. stochastic).
This section will briefly introduce some of the main approaches seen in literature.

Markov Decision Process Framework

As big part of the Dynamic Programming theory was developed within the Operations Re-
search community, large part of the methods used to solve optimal control problems are
formulated as MDPs. Consequently, these methods solve discrete stochastic problems as usu-
ally encountered in the Operations Research field (e.g. vehicle fleet scheduling, inventory
problems). Nonetheless, this approach can also be used to solve continuous optimal control
problems such as the ones treated within the control theory community. For these cases, the
continuous states and controls have to be discretized and the problem has to be modeled as a
MDP. Before entering into the details of how the optimal control is found with this technique,
an introduction to MDPs and its nomenclature is given.

MDPs provide a way to model the decision making process in discrete stochastic settings.
Unlike control theory problems, the system’s states and actions are discrete. The system
dynamics are now expressed as the probability to transition from state St to a state St+1

when the action at is applied. Instead of minimizing a cost function C(xt, ut) over a finite
horizon, the objective now is to maximize a reward function R(st, at) usually, over an infinite
horizon. Moreover, a control policy is defined as a mapping function that assigns actions to
states. The main goal is to find the optimal policy that will assign the optimal action when
the system is in a given state. Table 3-2-2 summarizes these main nomenclature differences
between the control theory and the MDP framework.

Decentralized Stochastic Optimal Control Bianca Bendris

44 Optimal Control

is a minimum Control Theory MDP Framework

continuous states x discrete states S

continuous controls u discrete actions a

system dynamics f(x, t) transition probability pt(St+1|St, at)
cost function C(xt, ut) reward function R(st, at)

optimal cost-to-go J(xt, ut) value function V (st, at)

- control policy π : St → at
finite horizon T infinite discounted horizon

To obtain the optimal control policy, the main algorithms used within the MDP framework
are value iteration and policy iteration algorithms (Powell, 2007).

Value
Iteration

Policy
Iteration

Value iteration is a direct application of the recursive Bellman equation. It
estimates the value function iteratively by solving Bellman’s equation backwards
in time for all states (Powell, 2007). The value iteration algorithm is showed
in Figure (3-7) for an MDP with discounted infinite horizon (note the discount
factor γ). This algorithm has been proved to converge to its optimal value
(Bellman, 1957). Thus, the optimal value function can be found and further
employed to obtain the optimal policy.

Figure 3-7: Value iteration algorithm

Policy iteration obtains the optimal policy directly rather than finding it by
means of the optimal value function (Powell, 2007). Instead of updating the
value function, this algorithm updates the policy function. As it can be seen in
Figure (3-8), an arbitrary policy is first selected. Then, the policy is evaluated
by computing the value function for all states when the actions described by
this policy are used. The next step is to try to improve the policy. The policy
is iteratively modified for all states with the hope of finding a new improved
policy. If an improvement is achieved, the algorithm updates the old policy and
keeps iterating until no better policy can be found. In terms of convergence,
this approach has been found to arrive to the optimal value earlier than the
value iteration algorithm (Powell, 2007).

Bianca Bendris Decentralized Stochastic Optimal Control

3-2 Solving Optimal Control Problems 45

Figure 3-8: Policy iteration algorithm

Although these algorithms can obtain the optimal policy for systems with a low number of
states and actions, computational problems start to appear when high-dimensional states and
actions spaces are used (Powell, 2007). This observation is everything but new as Bellman it-
self warned about the issues of applying dynamic programming methods to high-dimensional
systems in the early 1950s (Bellman, 1957). He named this problem the curse of dimension-
ality.

Since then, many alternative methods have been developed that try to overcome the limita-
tions of dynamic programming (Powell, 2007; Sutton & Barto, 1998). Knowing that comput-
ing Bellman’s equation backwards in time will increase the computational requirements ex-
ponentially with the number of states, a forward computing method has been proposed. This
approach uses iterative algorithms to approximate the value function. The main differences
between performing a forward dynamic programming or a backward dynamic programming
are as explained in (Powell, 2007) related with:

• Making decisions. When using backward dynamic programming, the recursive Bell-
man equation allowed us to compute the exact value function that was further used to
obtain the optimal control. Now, if we step forward in time, this equation can no longer
be used. Therefore, a new way of achieving the optimal controls or decisions is needed.
What is generally done is to obtain an approximation of the value function and use this
estimate ˜Vt(st) to compute the optimal decisions. This saves us of having to loop over
all possible states to compute the exact value function, but introduces the new problem
of how to obtain a good estimate of the value function.

• Stepping forward in time. Using the optimal decision found with the approximated
value function, a forward step in time can now be made from s0 to s1. However, it
is not known how the stochastic effects will affect the system in this future time step.
Therefore, we need a way to represent this missing information that arrived between
t=0 and t=1. To solve this problem, samples of this random information are needed.
The easiest way to obtain them is by modeling the stochastic variable and sample from
this modeled distribution.

Decentralized Stochastic Optimal Control Bianca Bendris

46 Optimal Control

If we can approximate the value function and we can obtain samples of the missing informa-
tion, we can step forward in time repeatedly and evaluate the performance of our decisions.
The step forward is repeated until we reach the end of a finite time horizon. After that, the
process is again repeated with different samples and the performance is compared with the
previous iteration. The optimal decisions or actions are found by repeatedly trying different
actions and keeping track of the ones which worked best.

This strategy has been used in a variety of fields and it has been referred to with a diver-
sity of names such as forward dynamic programming (Kuffner, Nishiwaki, Kagami, Inaba,
& Inoue, 2001), iterative dynamic programming (Field & Stepanenko, 1996), heuristic dy-
namic programming (Qiao, Harley, & Venayagamoorthy, 2009), neuro-dynamic programming
(Bertsekas & Tsitsiklis, 1995) or reinforcement learning (Sutton & Barto, 1998) within the
computer science community. The differences among these methods usually lie in the type
of value function approximation used: lookup tables or aggregation techniques (Bertsekas &
Castanon, 1989), parametric representations which require an initial design of the value func-
tion as a collection of features or basis functions the weight of which must be estimated (e.g.
support vector regression (Bethke, How, & Ozdaglar, 2008)) or nonparametric ones which
avoid the manual feature design and use observations to obtain a local approximation of the
value function (e.g. neural networks1 (Prokhorov & Wunsch, 1997)). However, they can all
be grouped into what is commonly known as approximated dynamic programming techniques
(Powell, 2007).

Linear HJB

For continuous-time optimal control problems, a different approach has been proposed recently
(Kappen, 2005) to overcome the curse of dimensionality. It consists of providing a linear
expression for the stochastic HJB equation through which the direction of computation can be
inverted. As in the discrete case, a forward time computation for a special type of continuous-
time system can be achieved, eliminating thus, the loop over the entire state space. A more
detailed explanation can be found in Chapter 4 of this report.

Other

Other methods to overcome the curse of dimensionality consist in achieving a low-rank tensor
representation2 of the system model or the HJB expression. The computational require-
ments needed for this method scale linearly with increasing dimensionality of the state space
(Gorodetsky et al., 2015). In addition, some explore the relationship of duality between
non-linear stochastic systems and estimation techniques to solve optimal control problems
(R. P. Anderson & Milutinović, 2014; Todorov, 2008). This relationship is well-known for
LQG problems as Kalman discovered (Kalman, 1960) but has been quite difficult to extend
for non-linear systems.

1Note that neural networks do need estimate parameters. Here it is categorized as nonparametric because
no initial parametric model of the value function is needed.

2These methods convert a multidimensional function (e.g. the HJB) into a multidimensional array or tensor
with the objective of reducing its dimensions and ease the computational requirements needed to solve the
optimal control problem.

Bianca Bendris Decentralized Stochastic Optimal Control

3-2 Solving Optimal Control Problems 47

3-2-3 Direct methods

Figure 3-9: Process of solving an optimal control problem with direct methods

Direct methods solve the continuous-time optimization problem by applying a parametrization
of the control and state spaces. Once the parametrization is performed, the optimal control
problem can be written as a Non-Linear Programming (NLP) problem which can be solved
with off-the-shelf software.3 To obtain a NLP formulation of the optimal control problem
different techniques can be used (Figure 3-9). The main differences lie in the variables to
be parametrized (e.g. control and states) and how the continuous system dynamics are
approximated (Biral et al., 2016). Among these techniques, two main classes are identified:

• Shooting methods represent one of the most simple ways of formulating an opti-
mization problem. Their early applications involved the task of hitting a target with a
cannonball, hence explaining the origin of the name (Betts, 2010). In this simple task,
an initial quantity of gunpowder and an initial angle were chosen to try to reach the
target. If the target was not reached, these simple control variables were adjusted iter-
atively until the target was reached optimizing for example the amount of gunpowder
used.

For a more complex optimal control problem, this translates in parameterizing the
control space and using gradient descend methods to iteratively update the parameters
in order to minimize a certain cost function. If the optimal control problem is defined
over a finite time interval T, starting from an initial guess of the control parameters,
the system dynamics differential equations are solved via numerical integration. At the
end of the interval, the boundary or end cost condition is checked. These steps are
repeated until the end error is minimized (Betts, 2010). As the iteration is performed
in one step, from time ti to tf , this method is known as single shooting method.

In the single shooting method the initial guess has an important effect on the final error
at time tf . To overcome this problem multiple shooting methods have been proposed.
Unlike single shooting methods, multiple shooting divides the integration interval in
several segments. In this way, the initial guess errors are propagated over a smaller
time interval before they are modified again at the beginning of the following segment.
A comparison between the two methods is given in Figure 3-10 (a)-(b).

• Collocation methods follow a similar procedure as shooting methods; however, now
both states and control spaces are parametrized and the continuous time differential
equations describing the system dynamics are converted into algebraic constraints that
must be satisfied at each collocation point (Figure 3-10 (c)). This approach increases
the number of variables of the NLP problem. However, the sparse structure of the NLP
can be exploited alleviating thus the complexity of the problem.

3Some of the commonly used software are: IPOPT, KNITRO, WORHP (Paiva, 2014)

Decentralized Stochastic Optimal Control Bianca Bendris

48 Optimal Control

a) Single shooting

states

control

T

Tb) Multiple shooting

states

control

Tb) Collocation method

k-th segment

Collocation points

states

control

Figure 3-10: Shooting vs. Collocation methods. (a) Parametrized controls are input over a time
interval T. The states trajectory is obtained through numerical integration in a single shooting
manner. (b) Controls and states are parametrized. The state trajectory is obtained over the
discrete time intervals in a multiple shooting fashion. (c) Collocation points are added to the
discrete controls and states. Constraints have to be now fulfilled at each collocation point.

3-2-4 Indirect methods

Using indirect methods, the optimal control is found by satisfying a set of optimality con-
ditions instead of minimizing a cost function as in Dynamic Programming methods. This
approach of optimal control is related to the field of calculus of variations and is by far
the oldest one when compared to Dynamic Programming or Direct methods. It first ap-
peared in the early 17th century when Johan Bernoulli applied calculus of variations theory
to solve the optimal path problem of a particle traveling in a gravitational field (Passenberg,
2012). However, it was the Russian mathematician Lev Pontryagin and his coworkers that
in 1956 formulated the necessary optimality conditions for an optimal solution to be found
(Passenberg, 2012).

Pontryagin
Minimum
Principle

His theory, also known as Pontryagin’s Minimum (or Maximum) Principle is
based on the fact that necessary and sufficient conditions have to be satisfied
to ensure the optimality of a solution. If necessary conditions are satisfied,
the cost function is stationary, meaning that small perturbations of the control
input should have small effects that will vanish in time on the cost function
(Stengel, 1994). For a given continuous-time system:

ẋ(t) = f(x(t), u(t), t) (3-17)

Bianca Bendris Decentralized Stochastic Optimal Control

3-2 Solving Optimal Control Problems 49

Necessary
Conditions
For
Optimality

Minimum
Principle

Boundary
Value
Problem

the following cost-function has to be minimized over the fixed interval [ti, tf]

C(ti, xi, u(ti → tf)) = φ(x(tf)) +

∫ tf

ti

L(x(t), u(t), t)dt (3-18)

For this system, the necessary conditions for optimality are:

λ̇T = −∂H
∂x

λT = − ∂φ
∂x

∣∣∣
t=tf

∂H
∂u = 0

(3-19)

where λ describes the Lagrange multipliers of a constrained optimization in
which the system dynamics Equation (3-17) is the equality constraint. The H
represents the Hamiltonian defined as:

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT (t)(f(x(t), u(t), t) (3-20)

A complete derivation of the necessary conditions for optimality is given in
Section B.
If a trajectory is found to satisfy these necessary conditions, this trajectory is
called an extremal because it still remains to determine if it is a minimum or
a maximum of the cost function. To resolve this ambiguity, higher-order sensi-
tivity evaluation can be performed. For example, if the control perturbations
applied at any time the fixed time interval [ti, tf] can only increase the cost,
then we know that the stationary solution is a minimum (Stengel, 1994). This
condition is expressed as:

H(x∗(t), u∗(t), λ∗(t), t) ≤ H(x∗(t), u(t), λ∗(t), t) (3-21)

where x∗(t) is the optimal state trajectory, u∗(t) is the optimal control tra-
jectory and λ∗(t) is the corresponding Lagrange multipliers vector. Equation
(3-21) represents the Minimum Principle of optimality and gives necessary and
sufficient conditions to find the optimal solution. The optimal control problem
can then be written as:

x(ti) = xi initial value
ẋ(t) = f(x(t), u(t), t), t ∈ [ti, tf] state equation

λ̇T = −∂H
∂x t ∈ [ti, tf] adjoint equation

∂H
∂u = 0 t ∈ [ti, tf] control equation

λT = − ∂φ
∂x

∣∣∣
t=tf

adjoint final value

(3-22)

Thus, through indirect methods, an optimal trajectory is achieved when the
above set of equations are fulfilled simultaneously with the boundary constraints
defined at ti and tf . In this case the the optimality conditions leads to a two-
point Boundary Value Problem (BVP). The BVP can be solved analytically for
some special cases of optimal problems with linear systems and quadratic cost

Decentralized Stochastic Optimal Control Bianca Bendris

50 Optimal Control

Pontryagin
Minimum
Principle

functions but in most situations numerical methods have to be implemented
to iteratively obtain the solution of the BVP (Passenberg, 2012). Similarly to
direct methods, shooting and collocation techniques can be used to obtain a
NLP formulation of the optimal control problem. However, here the state and
adjoint variables must be initially guessed and the state and adjoint differential
equations must be integrated over time. Unlike direct methods where the ini-
tialization errors are mitigated through multiple shooting techniques, here this
initialization remains problematic. The main difficulty is to guess the value of
the adjoint variable which has no physically intuitive interpretation. This is one
of the main reasons why indirect methods are harder to implement and thus
less used in literature. They require a deeper knowledge of the optimal control
problem to formulate the adjoint equations.

3-3 Stochastic Optimal Control Approaches to Path Planning

Among the methods explained in Section 3-2, LQG strategies are mostly employed for accurate
trajectory following, in which the trajectory is already given. Despite seeing some approaches
which study the combination of both control and planning methods using LQG and RRT
methods (Berg, Abbeel, & Goldberg, 2011), the linear-quadratic assumption limits its use for
complex non-linear systems. When comparing direct and indirect methods, a clear preference
for direct methods is noticed. As the software designed to solve NLP problems in direct
methods is continuously improving, it becomes increasingly easier to implement an optimal
controller without much knowledge of the underlying control theory. This method has been
applied to control 16 MAVs flying in formation in (Kushleyev et al., 2013) by solving a
Mixed-Integer Quadratic Program. Similarly, a Sequential Convex Programming problem was
solved to control another formation of 16 MAVs while avoiding static and dynamic obstacles
(Alonso-Mora, Montijano, Schwager, & Rus, 2016). Despite the easy implementation, these
methods require state and controls discretization and are generally implemented off-board, in
a centralized manner.

Within the large range of Dynamic Programming methods, most approaches model the op-
timal control problem as a MDP which can be solved via value iteration or policy iteration
algorithms (Munishkin, Milutinović, & Casbeer, 2016). Generally, the systems are considered
to have observable states over the entire environment, but POMDPs have also been used
to model partially-observable system states (Capitan, Merino, & Ollero, 2014). The classic
MDP formulation that still requires backward computation of value function, is known to
be computationally expensive when high-dimensional states and controls are used. Approxi-
mated dynamic programming methods have been proposed as one of the alternatives to try
to overcome this problem. Examples of such implementations can be found in (Tassa, Erez,
& Smart, 2008; Todorov & Li, 2005). An alternative is the recent line of investigation into
linear HJBs. Successful implementations have been shown for high-dimensional systems in
combination with a MPC strategy (Gómez et al., 2015), with low-tensor representation of sys-
tem dynamics (Horowitz, Damle, & Burdick, 2014) or within a RL framework (E. Theodorou,
Buchli, & Schaal, 2010b).

Bianca Bendris Decentralized Stochastic Optimal Control

Chapter 4

A Path Integral Control

4-1 Introduction to Path Integrals

Path integral techniques were first used within the field of quantum mechanics to provide
an alternative method to compute the probability of a particle being in a particular state
(Feynman, 1948; Perepelitsa, n.d.). Given a particle traveling from a point A to a point B
(Figure 4-1), Feynman proved that the state evolution over time of the particle while traveling
from A to B could be computed as a sum over all possible trajectories that the particle could
take to go from A to B. This is known as the path integral formulation of quantum mechanics
(Feynman, 1948).

Figure 4-1: Multiple possible trajectories of a particle traveling from A to B

The possibility of applying a similar formulation to obtain the optimal state trajectory for
a particular type of continuous-time stochastic control problems was recently introduced by
Kappen (2005). His work shows how assuming a certain structure of the system dynamics,
a linear stochastic HJB equation can be obtained and further expressed in terms of a path
integral. The optimal control is then computed as the sum of contributions of all possible
state trajectories of the system over a finite time interval. A similar formulation was also
showed for discrete-time problems (Todorov, 2009).

Decentralized Stochastic Optimal Control Bianca Bendris

52 A Path Integral Control

In the following sections, the derivation of the linear HJB as well as the path integral formula-
tion of the optimal control problem is showed. Finally, methods for solving the path integral
are explained.

4-1-1 The linear HJB

Linear in
the
control

Quadratic
in the
control

Explicit
control

Obtaining a linear expression of the HJB equation has been demonstrated in
(Kappen, 2005) for continuous-time stochastic systems with linear dynamics
and quadratic cost in the controls u. The linearity translates in having the
f(x, u, t) function from Equation (3-10) as:

f(x, u, t) = f(x, t) +Bu (4-1)

where f(x, t) denotes the passive dynamics and can be arbitrary complex and
B is the control matrix.
Next, the quadratic relation of u is expressed in the path cost function L(x, u, t)
from Equation (3-11) as:

L(x, u, t) = q(x, t) +
1

2
u(t)TRu(t) (4-2)

where q(x, t) is an arbitrary function of x and t and R is a positive definite
matrix.
Recall the stochastic HJB expression (3-15) from Section 3-1-3. If we now derive
the HJB for the above system we obtain:

−∂tJ(x, t) = min
u(t→tf)

〈
q(x, t)+

1

2
uTRu+(f(x, t)+Bu)∂xJ(x, t)+

1

2
∂2xJ(x, t)υ

〉
x

(4-3)
As explained in (Kappen, 2005), an explicit expression of the control u can now
be derived due to the linear-quadratic relation of u. Thus, taking the gradient
of the expression inside the parenthesis (4-3) with respect to u and set it to zero
we obtain the following expression of the optimal control:

u∗(x, t) = −R−1BT∂xJ(x, t) (4-4)

Equation (4-4) can be interpreted as the optimal control u∗(x, t) moving the
system towards the direction of the minimum optimal cost-to-go J(x, t). It can
be noticed that the optimal control is proportional to the negative direction
of the gradient of the optimal cost-to-go, projected on the state space x and
weighted with the inverse of the control cost matrix R (E. A. Theodorou, 2011).
Substituting this expression in Equation 4-3 results in a non-linear, second order
PDE of the HJB as the following one:

Bianca Bendris Decentralized Stochastic Optimal Control

4-1 Introduction to Path Integrals 53

Desirability

function

Log
Transform

Control
and
noise
relation

−∂tJ(x, t) = − 1

2R

(
∂xJ(x, t)TB∂xJ(x, t)

)
+q(x, t)+f(x, t)∂xJ(x, t)+

1

2
∂2xJ(x, t)υ

(4-5)
To compute the optimal control, this PDE must be solved for the value of J(x, t)
and then, compute its gradient as showed in Equation (4-4). As explained in
Section 3-2, except for some specific cases (e.g. LQ problems), solving this
PDE is challenging, specially when high dimensional state spaces are used. As
has been found in (Kappen, 2005; Todorov, 2009), an alternative method to
solve the PDE can be used if a desirability function Ψ(x, t) exits, such that the
optimal cost-to-go can be written as follows:

J(x, t) = −λlogΨ(x, t) (4-6)

where λ is a constant. As will be explained in the following section, the desir-
ability function Ψ(x, t) can be efficiently computed by sampling from a diffusion
process. Thus, the curse of dimensionality can be avoided if we use the relation
of Equation (4-6). This logarithmic transformation has its origin in the field
of quantum mechanics. A more detailed explanation of this analogy is given in
Appendix C-1.
Taking the corresponding gradients of the new optimal cost-to-go expression
(4-6) and assuming that υ = λBR−1BT , the HJB equation can be re-written
in terms of Ψ(x, t) as:

−∂tΨ(x, t) =
(
− q(x, t)

λ
+ f(x, t)∂x +

1

2
∂2xυ

)
Ψ(x, t) (4-7)

Nonlinear terms successfully cancel out due to the assumption made and Equa-
tion (4-7) is now linear in Ψ(x, t). Similar to previous HJB expressions, this
equation must be computed backwards in time and fulfill the end-cost constraint
Ψ(x, tf) = exp(− 1

λφ(x)).

Obtaining this linear expression of the HJB has added the constraint of having
the matrices υ and BR−1BT proportional with proportionality constant λ. As-
suming B as an identity matrix, we can see that υ is inversely proportional to
the control matrix R (υ ≈ R−1). Intuitively, this can be seen as having expen-
sive controls (R is large) in low noise directions and cheap control (R is small)
in high noise directions (Kappen, 2005). This means that only small control
inputs are allowed in low noise directions, with the limiting case of no control
being allowed at all in noiseless directions. Therefore, to fulfill this constraint
but avoid the imposed control restrictions, the control and the noise should
operate in the same dimension (Kappen, 2005).

Decentralized Stochastic Optimal Control Bianca Bendris

54 A Path Integral Control

4-1-2 A Path Integral formulation

Feynman
Kac
Lemma

Path
Integral

Path
cost

The second order, linear HJB equation (4-7) obtained in the previous section
has the same structure as the Kolmogorov backward equation a and thus, it can
be solved applying the Feynman-Kac lemma (Kappen, 2005; E. A. Theodorou,
2011). The Feynman-Kac lemma gives a connection between stochastic differ-
ential equations (SDE) (or diffusions) and PDEs; allows a probabilistic solution
of a PDE to be found by means of forward sampling of a diffusion process
(E. A. Theodorou, 2011). Applying this method, the direction of the computa-
tion can be inverted and Equation (4-7) can now be solved by going forward in
time from ti to tf .
As seen in the paper of Satoh, Kappen, & Saeki, 2017; E. A. Theodorou, 2011;
Horowitz, 2014, the Feynman-Kac formula can be applied to find an explicit
solution of the Equation (4-7) as the following expectation:

Ψ(x, t) = Eρ(xf ,tf |xi,ti)
{
exp
(
− 1

λ

(
φ(xf) +

∫ tf

ti

q(x, t)dt
))}

(4-8)

where ρ(xf , tf |xi, ti) represents the probability that a sample path going from
xi → xf is generated by the uncontrolled stochastic system dynamics:

dx = f(x, t)dt+ dw (4-9)

conditioned on the start state xi at time ti.
To numerically implement this method, a time discretization of the above for-
mula is needed. Partitioning the finite time interval from ti to tf into n divisions
of equal length ε with tj = t+ (j − 1)ε, x0 = xi, xn = xf , the expectation can
now be written as a path integral as:

Ψ(x, t) =
1

(
√

2πυε)n

∫
dx1...dxnexp

(
− 1

λ
S(x0:N)

)
(4-10)

where

S(x0:n) = φ(xn) +
n−1∑

j=0

εq(xj , tj) +
n−1∑

j=0

R

2

(xj+1 − xj
ε

− f(xj , tj)
)

(4-11)

Equation (4-10) is an integral over discrete paths x0:n ∈ (x0, x1, ..., xN) all start-

ing at x0. The paths are weighted by exp
(
− 1
λS(x0:N)

)
where S(x0:n) represents

the Action or cost of the path. A complete derivation of the Equations (4-10)
and (4-11) is given in Appendix C-4.
Arriving to this result allows us to avoid the curse-of-dimensionality present in
the backward computation of the stochastic HJB.

aThe Kolmogorov backward equation is a second order, linear PDE addressing the problem
of the probability of a system being in a state x at time t and reaching a state x1 at a future time
t1 (t < t1). This equation has to be solved backwards in time from t1 to t (E. A. Theodorou,
2011).

Bianca Bendris Decentralized Stochastic Optimal Control

4-2 Control computation 55

Optimal
cost-to-go

Optimal
Control

Now, the optimal cost-to-go is approximated by the desirability function Ψ(x, t)
which can be obtained more efficiently by computing expectation values under
a forward diffusion process. In the limit ε → 0 a compact form of the optimal
cost-to-go function can be obtained as:

J(x, t) = −λ
∫

[dx]xexp
(
− 1

λ
S(x(ti → tf))

)
(4-12)

where
∫

[dx]x is taken over all paths starting in x and S(x(ti → tf)) is the same
expression as in Equation (4-11) in which the sum in the exponent becomes
now an integral as ε

∑n−1
j=0 →

∫ tf
ti

(Kappen, 2005).
Consequently, the optimal control is obtained as in Equation (4-4) by combining
Equation (4-6) and (4-10):

u∗(x, t) = −υBT∂x log Ψ(x, t) (4-13)

where the relation λ−1 = Rυ has been used.
This new expression of the optimal control tries to maximize the exponentiated
value of Ψ(x, t) while in the former optimal control formulation (4-4), the system
was steered towards state spaces that minimizes the optimal cost-to-go J(x, t).
This change is a result of the exponential relation between the J(x, t) and Ψ(x, t)
functions as Ψ(x, t) = exp(−λ−1J(x, t)). In this case, a lower value of the J(x, t)
will result in a higher value of Ψ(x, t). Therefore, sampled paths with higher
costs will contribute less to the optimal control value u∗(x, t) (E. A. Theodorou,
2011).
Computing the value of Ψ(x, t) needed to obtain the optimal control sequence
is generally not possible as it implies integrating over uncountably many paths.
However, there exist other methods that can obtain an approximated value
Ψ̂(x, t). How to obtain this approximation to finally compute the optimal con-
trol sequence is treated in the following section.

4-2 Control computation

Approximating the path integral in order to compute the optimal control as described in
Equation (4-13) can generally be done using three different methods (Kappen, 2005). In
presence of low noise, a Laplace approximation technique can be used. When noise is higher,
sampling methods such as Monte Carlo sampling or variational methods can be employed.
Although both sampling methods and variational methods (Kleinert, 2009) can in theory be
used to approximate the path integral, no application of the latter one for optimal control
problems has been found in literature. Thus, in this section, only the Laplace approximation
and sampling methods are described.

4-2-1 Laplace Approximation

For small noise situations (e.g. υ is small), the optimal control can be computed using the
Laplace Approximation to recover the indirect method formulation based on the Pontrya-
gin Minimum Principle (Section 3-2-4) used for deterministic cases (Kappen, 2005). This

Decentralized Stochastic Optimal Control Bianca Bendris

56 A Path Integral Control

approach considers an arbitrary path as the sum of the classical or deterministic path and
some fluctuations caused by the small noise. The cost of the path S(x0:N) is approximated
with a second order expansion around the deterministic path. When this approximation is
substituted in Equation (4-10), we obtain a n-dimensional Gaussian integral which can be
solved analytically. Thus, the path integral is now replaced by a Gaussian integral centered
on the path that minimizes the Action (Eq. 4-11).

This method can achieve good results in situations in which low noise is present (Kappen,
2005). However, it is not accurate enough for cases in which the noise is higher. Although
not included in this report, a complete explanation of this method can be found in (Kappen,
2005).

4-2-2 Sampling Methods

A different approach to obtain an approximated value of Ψ(x, t) consists of taking N trajec-
tory samples from the diffusion process described by the uncontrolled system dynamics (Eq.
4-9). The sampling procedure can be performed in different manners (e.g. Monte Carlo sam-
pling, Metropolis-Hasting sampling, etc.). In the following subsections the simplest sampling
method (Monte Carlo sampling) will be described. Moreover, as the problem of having a
low sampling efficiency is well-known when using naive Monte Carlo sampling, improvement
techniques are also presented.

Naive Monte Carlo Sampling

The simplest Monte Carlo sampling consists in running the diffusion process (Eq. 4-9) N
times, to obtain N statistically independent random samples which will provide an empirical
estimate of Ψ(x, t) as:

Ψ̂(x, t) =
1

N

N∑

i=1

exp
(
− 1

λ
Scost(xi(ti → tf))

)
(4-14)

with:

Scost(xi(ti → tf)) = φ(xf) +

∫ tf

ti

q(x, τ)dτ (4-15)

where τ = (xi, ..., xf) represents a sampled path. By taking the derivative of Ψ(x, t) with
respect to the state x as shown in Equation (4-13) and substituting Ψ(x, t) by its estimate
Ψ̂x, t as defined in Equation (4-14), an expression of the approximated optimal control û can
be obtained as:

ûdt =
1

Ψ̂(x, t)

N∑

i=1

1

N
exp
(
− 1

λ
Scost(xi(ti → tf))

)
dwi(t) (4-16)

where dwi(t) is the noise present for a given trajectory i. A more intuitive interpretation of
Equation (4-16) is that now the optimal control is obtained by averaging the noise directions
of all samples at time t, weighted by their path cost over the finite interval ti → tf . An
extended derivation of Equation (4-16) can be found in Kappen (2005).

Bianca Bendris Decentralized Stochastic Optimal Control

4-3 Path Integral Control Approaches to Path Planning 57

Importance sampling

The naive Monte Carlo sampling procedure can be quite inefficient (Kappen & Ruiz, 2016). It
is not hard to imagine that many of the paths sampled from the uncontrolled system dynamics
will not result in good paths, which are paths with a low cost. As the states are propagated
over time according to the system dynamics, the added noise component will generate many
undesired, high cost paths. The precision of the estimated Ψ̂(x, t) will depend on the variance
of the noise. This is a well-known problem of sampling methods (Landau & Binder, 2014).
The simplest step towards an improvement of the sampling procedure is to use importance
sampling (Kappen & Ruiz, 2016).

The idea behind importance sampling is simply to choose a different diffusion process from
which to sample that can lower the variance of the estimation and thus, increase the efficiency
of the sampling (e.g. with equal number of samples N, obtain a higher accuracy of the
approximated control). Moreover, a relation has been found between the efficiency of the
sampling and the accuracy of optimal control approximation (Kappen & Ruiz, 2016), which
shows that better samplers (in terms of efficiency) result in better controllers. Thus, the
problem of computing the optimal controls is now transformed into the problem of achieving
an efficient sampler.

A straightforward solution described in Kappen (2005) is to first obtain a deterministic control
trajectory with the Laplace approximation and afterwards, define a new diffusion process
around this deterministic solution. In this way, the new diffusion process is guided in the
direction of the deterministic trajectory, eliminating many irrelevant samples (e.g. samples
going in the opposite direction of the goal). Although this can be a good-enough option for
some tasks, determining which is the best diffusion process from which to sample is still a
challenge. It is not clear how to improve the sampling efficiency, thus, many samples are
usually needed to obtain a good approximation of the optimal control. This observation
could be a problem for real-time, on-board implementations in which limited computational
resources are available.

4-3 Path Integral Control Approaches to Path Planning

Path Integral control has been recently applied to a variety of applications such as spacecraft
attitude control (Doerr et al., 2018), field space exploration with Autonomous Underwater
Vehicles (AUVs) (Kreuzer & Solowjow, 2018), controlling a team of quad-rotors (Gómez
et al., 2015) or even aggressive driving with ground vehicles (Williams, Drews, Goldfain,
Rehg, & Theodorou, 2016). Despite the initial open-loop formulations of PI control, all these
applications use the computed optimal control in a close-loop scheme. One way of obtaining
this is by applying a MPC control setting (Williams, Aldrich, & Theodorou, 2017; Gómez
et al., 2015; Williams et al., 2016). In this way, the PI algorithm is used to find open-loop
optimal control sequences over the planning horizon while only applying the first control
input of the sequence. The main difficulty of this approach is the fact that the PI algorithm
must constantly run at each time-step over the entire planning horizon. This means that the
sampling generation and evaluation has to be performed at the same frequency. Moreover, if
the system has complex dynamics, generating the needed amount of samples and still being
able to perform real-time control might be challenging. One solution is to take advantage of

Decentralized Stochastic Optimal Control Bianca Bendris

58 A Path Integral Control

the recent development in parallel computation by using a Graphical Processing Unit (GPU)
(Williams et al., 2017; Williams, Rombokas, & Daniel, 2015). Although this approach is very
appealing, a decentralized control implementation must run on-board the MAVs and most
quadrotors are not equipped with a GPU. Moreover, tiny MAVs, weighting just 50 grams,
have very limited computing and energy resources, making this approach infeasible.

A different option is to use a hierarchical control scheme in which a simplified model of the
system dynamics (e.g. point mass) is used for the sampling procedure (high-level control) and
a more accurate model is used in the low-level controller (Gómez et al., 2015). This approach is
combined with an importance sampling scheme to obtain a more efficient sampling method by
using samples from the controlled system dynamics. Starting from an initial control strategy,
the PI algorithm is used to obtain an optimal control increment. This way, the initial control
is updated and improved at each iteration. As the control improves, the sampling from the
controlled system dynamics also becomes more efficient, lowering the probability of picking a
high-cost sample (Gómez et al., 2015). Using this importance sampling scheme, we obtain a
feedback system in which the accuracy of the controls affects the sampling efficiency.

Path integral control has also been used as a policy improvement technique for control pol-
icy search in RL (E. Theodorou, Buchli, & Schaal, 2010a). This off-line PI algorithm is
implemented iteratively to find parametrized control policies, which can then be applied as
feedback control.

Based on our observations on the earlier mentioned implementations, it is clear that PI control
can successfully be used to solve high-dimensional stochastic control problems. However, cer-
tain difficulties are still present. It is not obvious how to achieve an efficient sampling method
and how path integral control can be used for decentralized, on-board applications. With the
objective of implementing the path integral controller on-board a swarm of MAVs with low
computational resources, a similar approach as presented in Gómez et al. (2015) will be taken.
However, here a decentralized approach will be used. Preliminary experiments are presented
in the following section with the aim of benchmarking the computational requirements of this
method.

Bianca Bendris Decentralized Stochastic Optimal Control

Chapter 5

Summary of the Literature

In the introduction chapter of this preliminary report, motivation for the use of MAVs swarms
flying in LF formation was given as a possible solution to large area exploration tasks or
dangerous tasks such as forest fire detection. From this starting point, the main objective
of this work was set to demonstrate LF flight of a team of MAVs to study the use of a
decentralized, stochastic, path integral controller as a possible solution to multi-agent path
planning and control. To gain insights on how this control approach compares with the
current state-of-the-art, an extensive literature study was performed on the existing optimal
control methods for multi-agent formations.

LQG

high-dimensionality

stochasticity

optimality

computationally e�cient

non-linearity

multi-robot system

X

high-dimensionality

stochasticity

optimality

computationally e�cient

non-linearity

multi-robot system

X

!

PI controlDirect methodsDynamic Programming Indirect methods

!

high-dimensionality

stochasticity

optimality

computationally e�cient

non-linearity

multi-robot systemX

high-dimensionality

stochasticity

optimality

computationally e�cient

non-linearity

multi-robot system

X

!

high-dimensionality

stochasticity

optimality

computationally e�cient

non-linearity

multi-robot system

!

Figure 5-1: Comparison table of the main optimal control approaches seen in the literature
study. The green tick mark means that the criterion is taken into account by that method. The
orange exclamation sign represents an existing challenge for that method, while the red cross
means either that no work has been found in literature of such an implementation, or that it is
not possible to incorporate such criterion within that method.

To compare the different optimal control methods, multiple criteria can be derived from the
formulation of the objective alone. As mentioned, the implementation is meant for a MAV
platform, which is a high-dimensional, non-linear system. Due to the weight limitations,
MAVs are known to have low energy resources which, in turn, limit the computational plat-
forms that can be carried on-board. Thus, the path planning and control algorithm has to
be able to plan optimal paths which optimize the time, distance or energy consumption of a
certain task (optimality). Moreover, as the chosen implementation scheme is decentralized,
the control algorithm has to run on-board the MAV using only the computational resources
available, which are generally low (computationally efficient). Furthermore, an entire team

Decentralized Stochastic Optimal Control Bianca Bendris

60 Summary of the Literature

of MAVs (multi-robot system) has to be controlled to fly in formation in a real environment
(stochastic). This translates in the need of a scalable algorithm which can cope with the
inherent of the MAV.

With the goal of summarizing the main findings of the performed literature review on optimal
control methods, Figure 5-1 is presented. Using the previously mentioned criteria, the different
optimal control methods are evaluated. While acknowledging that the picture shown in this
figure does not reflect the entire landscape of existing optimal control approaches, it provides
an overview of the most used ones.

As observed, Dynamic Programming methods from which the PI control approach branches
off, has similar challenges regarding the required computational complexity. However, the PI
control manages to overcome the curse of dimensionality. It must be noted that Dynamic
Programming comprises a vast number of techniques, some of which also try to avoid the high-
dimensionality issue as explained in 3-2-2. However, most applications found in literature use
an MDP framework to model the stochastic optimal control problem and employ value or
policy iteration algorithms to solve it, which, cannot cope with high-dimensional systems.
The remaining methods presented in Figure 5-1 are either not suitable for non-linear systems
or encounter difficulties when applied to stochastic, multi-robot systems.

The main challenge that still needs to be faced by the PI control method is the computational
efficiency. Although its use has been demonstrated in formation control experiments with real
MAV platforms (Gómez et al., 2015), no on-board implementation has been attempted yet.
Towards this goal, further preliminary experiments are presented in the following part of this
report.

Bianca Bendris Decentralized Stochastic Optimal Control

Part III

Preliminary experiments

Decentralized Stochastic Optimal Control Bianca Bendris

Chapter 6

PI controller simulations for a LF task

For a better understanding of the PI control algorithm and based on the observations from
the literature study included in Part I, several scenarios of a LF formation flight controlled
with the PI algorithm have been simulated. In these scenarios, the LF formation consisted
of one leader and two followers. The goal of the formation is to fly from an initial position
towards a set of predefined target waypoints. The location of the target waypoints is only
known by the leader unit. The followers are not aware of the collective goal. They only use
their relative distances from the leader to navigate from one point to another. Figure 6-1
illustrates the described LF scenario in which two target waypoints are given.

WP_1

WP_2

Figure 6-1: Leader-follower simulation. The red dot represents the leader, while the two green
dots represent the followers. The concentric circles around the leader mark the maximum al-
lowed distance (black) and the minimum allowed distance (red). The planned trajectory over the
planning horizon is shown with dashed lines.

For these simulations, both leader and followers were modeled as simple 2D point-mass sys-
tems following double integrator dynamics. Each unit’s state vector x is composed of its
East-North (EN) positions and EN velocities, as well as the communicated relative positions
and velocities of the remaining neighboring units. For example, the leader’s state vector is
given by x = [pL, vL, xrel], where xrel contains the relative positions and velocities of the

Decentralized Stochastic Optimal Control Bianca Bendris

64 PI controller simulations for a LF task

followers as xrel = [p1, v1, p2, v2] and p, v ∈ R2. Similarly, each unit input vector u consists of
its EN accelerations where u ∈ R2.

To obtain the local control inputs of each member of the formation a separate PI controller
is used. The cost function to be optimized by each PI controller is different, depending on
the role of the unit. For the leader unit, the state dependent cost function is given by:

qL(x, t) = Ct||pL − wpt||2 + Ch(vL × wpt) +

K−1∑

i=1

exp(Ccol(dmin
2 − ||pL − pi||2)) (6-1)

where Ct is distance penalty for not reaching the target waypoint wpt and Ch is the penalty
for having a heading deviation. A safety distance dmin, is defined and a cost penalty Ccol is
applied for all followers K − 1, whenever this distance is crossed.

The cost function of the followers is constructed in a similar way but without including any
target related penalties. Moreover, a cohesion penalty Ccoh, meant to keep the followers in
formation with the leader is included. A penalty for flying parallel paths Cp is also added.
The follower’s cost function is then defined as:

qF (x, t) =

K−1∑

i=1

(
exp(Cp × (CPthr − CPi)) + exp(Ccol(dmin

2 − ||p− pi||2))
)

+ exp(Ccoh × (r2 − ||p− pL||2))
(6-2)

where CPm is the absolute value of the cross product of velocity vector between the follower
and another unit i and Cp is the cost penalty applied whenever this value crosses the threshold
given by CPthr. A cohesion penalty Ccohesion is applied when the relative distance between
the leader and one of the followers is bigger than the maximum allowed, r.

In-line with the observations of Part I, a MPC scheme is implemented to obtain closed-loop
controls and an importance sampling scheme is used to increase the efficiency of the sampling
procedure. Moreover, actuator noise is taken into account and modeled as Wiener noise with
variance ν.

6-1 Performance analysis

To evaluate the PI controller performance, the cost functions of the leader and the followers
are analysed. For this, a LF task has been simulated using N = 2000 samples and a finite
planning horizon of H = 2 seconds. We show the resulting cost function of each unit and
their corresponding flown trajectories in Figure 6-2. As observed, the leader’s cost function
is increasing after each target waypoint selection and clearly decreasing as the leader is ap-
proaching the target. The followers state cost functions have overall a smaller value which
only increases at particular moments when the imposed separation distances are violated.
This can be seen in Figure 6-2, where the PI controller applies a high penalty to Follower 1
when this gets outside the cohesion radius of the leader. A closer look to the separation error

Bianca Bendris Decentralized Stochastic Optimal Control

6-2 Runtime analysis 65

0 100 200 300 400 500
0

20

40

60

80

100

120

140

Time [s]

S
ta

te
co

st

a)

Leader
Follower 1
Follower 2

0 5 10
0

2

4

6

8

10

12

14

16

X coordinate

Y
co

or
d

in
at

e

b)

Leader
Follower 1
Follower 2

Figure 6-2: In this simulation, Cp = 10, Ccoh = 25, Ccol = 15, Ct = 50, Ch = 2. a) State
cost function for the leader and the two followers. b) XY trajectory of the units. The two target
waypoints are marked with a cross.

is given in Figure 6-3, where a comparison is made with a random walk scenario (Figure 6-3a)
and the relative distance between units is measured over the entire simulation time (Figure
6-3b). As observed, the PI controller can satisfy the imposed separation constraints for most
of the simulation time. When compared to the random walk implementation, we see that
the number of times in which the separation error has been violated is significantly higher.
This is caused not as much by the collision distance violation, but because the cohesion of the
group is clearly not fulfilled in the simple random walk scenario, causing the large separation
errors between the leader and the followers as seen in Figure 6-3a.

6-2 Runtime analysis

Before implementing the PI algorithm on-board a MAV with limited computational resources,
the runtime of the algorithm must be measured off-line. This measure will determine the
maximum frequency at which the optimal controls can be generated. The main parameters
affecting the algorithm’s runtime are the number of samples used and the length of the
planning horizon. A higher number of samples will increase the number of operations needed
to compute the optimal controls, as more possible trajectories would need to be simulated
and evaluated. Similarly, a longer planning horizon implies having to propagate each sample
for a longer period of time, increasing again the number of operations.

To investigate the relation between the number of samples and the horizon length with the
runtime of the algorithm, we have varied these parameters and measured the runtime as

Decentralized Stochastic Optimal Control Bianca Bendris

66 PI controller simulations for a LF task

Figure 6-3: Separation error results. a) Number of times the separation constraints have
been violated using the PI controller and a simple random walk. b) Relative distance between
the different MAVs using the PI controller. Areas beyond the maximum r = 2.5 and minimum
dmin = 1.5 separation distance are marked in gray.

shown in Figure 6-4. All results presented here are obtained using a 2.3GHz Core-i5 Quad
Core desktop PC. For each scenario, the mean cost of the formation over the entire simulation
time is also calculated.

As expected, the running time increases linearly with both the number of samples (correlation
coefficient = 0.9997) and the length of the planning horizon (correlation coefficient = 0.9999).
On the other hand, the performance of the task represented here by the mean cost, does
not follow the same relation. The mean cost is approximately constant when the number
of samples are increased. The fact that the simulated LF task does not have a very high
complexity can explain this, allowing the PI controller to optimize the cost function while
using a low number of samples as seen in Figure 6-4a.

For the horizon time, we can see that the PI controller needs a certain planning period to
obtain a better task performance. With horizon lengths lower than 0.5 seconds, the mean
cost is high, which indicates a bad performance of the LF task. In these cases, the leader is
not flying towards the target waypoint. As all planned trajectories are short because they
are propagated over a small planning horizon, none takes the leader significantly closer to the
target waypoint. Thus, all are assigned a similar cost. This situation changes as the horizon
length is increased, observing an almost constant performance from 0.9 seconds onwards.

These results indicate that an implementation of the PI controller on-board a real MAV
platform could achieve real-time performance if a low number of samples and a relatively low
horizon length is selected. However, it must be taken into account that these simulations
were performed assuming a simple MAV model. When using the real platform, more samples
could be needed to achieve a similar performance as the controller would have to compensate
for the inherent uncertainties of the MAV.

Bianca Bendris Decentralized Stochastic Optimal Control

6-3 Sampling efficiency 67

x 103

x 102

a) b)

M
e
a
n
 c

o
s
t

M
e
a
n
 c

o
s
t

M
e
a
n
 c

o
s
t

M
e
a
n
 c

o
s
t

x 102

Figure 6-4: Runtime analysis results. a) Running time and mean cost with respect to the nr.
of samples used. In these simulations a constant H = 1 second was used. Error bars correspond
to 5 different random noise realizations. b) Running time and mean cost with respect to horizon
length. Here a constant N = 2000 samples was used.

6-3 Sampling efficiency

One of the most important metrics for any sampling based method is the sampling efficiency.
For real-time performance, an efficient sampling procedure is very important, as the goal is
to achieve the best approximation of the optimal controls using the lowest number of samples
possible. For the LF task, sampling is used within the planning loop to generate possible
trajectories and evaluate them, to determine which is the optimal direction that must be
followed by each unit of the formation. Here, the objective is to have all samples converging
towards the same direction, preferably the optimal one. To measure the convergence of the
sampling procedure, the Effective Sample Size (ESS) metric is used as defined in Gómez et
al. (2015). This is computed as ESS = 1/

∑N
k=1w

2
k, where N is the number of samples used

and wk is the corresponding sample weight. This weight is computed as shown in Appendix
D and a softmax function is applied to normalize its value between 0 and 1, 0 being assigned

Decentralized Stochastic Optimal Control Bianca Bendris

68 PI controller simulations for a LF task

to the highest cost sample and 1 to the lowest cost sample. The value of ESS then ranges
between 1 and N. Values closer to 1 indicate a poor convergence, implying that the optimal
direction and thus, the optimal controls are dominated by one single sample. This situation
occurs when all samples have a very high cost. Then all sample weights are zero except for
the lowest cost sample which is has a weight of 1. On the other hand, values closer to N
indicate that all N samples contributed to determine the optimal controls (e.g. all samples
have the same cost).

0 50 100 150 200 250 300 350 400 450 500

Time [s}

0

200

400

600

E
S

S

182

192

a)

b) c)

Figure 6-5: In this simulation the following parameters were used: N=1000 samples, H=1 s. a)
Effective Sample Size for the Follower 1. b) Follower 1 sample trajectories for a high ESS value.
The color map indicates each sample’s normalized cost. The leader and Follower 2 positions are
also shown, as well as their planned trajectory (dashed lines). c) Follower 1 sample trajectories
for a low ESS value.

Figure 6-5 shows the change in ESS value for the entire simulation time, as well as the sample
trajectories of a follower unit (Follower 1), for different values of ESS. When the convergence
of the sampling is high (ESS high), we can see that many sample trajectories have low cost.
Therefore, all these low cost samples will have a high weight and will contribute to the
computation of the optimal controls. In situations in which only a few samples have a low
cost (Figure 6-5c), the ESS takes a lower value as less samples are used to compute the optimal
controls.

This change in ESS value is partly due to the relative location and velocity of the neighboring
units and how their respective planned trajectories are obtained. In these simulations, the
planned trajectories of the neighboring units are obtained by simply linear integrating their
initial positions over the planning horizon. Thus, each unit assumes that the other units
will move with a constant velocity straight ahead from their communicated positions. This
simple assumption of the future trajectory of the neighboring units affects the weighting of
the samples. As seen in Figure 6-5c, the planned trajectory of the second follower is pointing

Bianca Bendris Decentralized Stochastic Optimal Control

6-3 Sampling efficiency 69

slightly upwards than in a previous time step (t=182). As a result, the cost of all samples
that would take the units too close to each other is now higher, leaving a thin area of low
cost samples. These situations are continuously encountered along the entire simulation,
making the ESS value to change as seen in the top graph. If the planned trajectory of
neighboring units could be better approximated, the weighting procedure would also be more
accurate, possibly increasing the ESS convergence. One way of improving the accuracy of
the planned trajectories is by also communicating the control inputs among the members of
the formation (Kappen, 2007). This, would then allow the computation of more accurate
planned trajectories of neighboring units at the expense of requiring higher communication
bandwidth to send the additional information. Figure 6-6a shows how such a scenario affects
the sample trajectories of Follower 1. We can observe how a more accurate assumption of
the other units trajectories increases the sampling convergence. Now, Follower 1 can foresee
the turn in the trajectory of the other follower and can assign a low cost value to a higher
number of samples.

Figure 6-6: a) Sample trajectories for Follower 1 when the planned controls of the neighboring
units are also communicated. The black arrow indicates the previous commanded velocity vector.
Given the high control inputs applied, the importance sampling scheme concentrates all the
trajectories around the previously taken direction. b) Sample trajectories for Follower 1. Here,
the commanded velocity vector has a smaller magnitude decreasing the effect of the importance
sampling. Now, sample trajectories are more scattered.

Besides the accuracy of the neighboring units planned trajectories, the ESS is also affected
by the importance sampling scheme. To decrease the number of irrelevant samples, in these
simulations possible trajectories are sampled from the controlled system dynamics. This
method is thus, highly dependent on the value of the optimal control inputs applied to each
unit. When the control inputs are small, the system is less controlled making the importance
scheme less efficient. When the control inputs are higher, the importance sampling has a
stronger effect and samples are only taken around the optimal direction. This difference can
be seen in Figures 6-6a and 6-6b where the commanded velocity vector at the previous time
step is marked with a black arrow. When the applied control inputs are higher, the sample
trajectories are concentrated around the previous optimal direction. With a less controlled
system (Figures 6-6b), the sample trajectories are more scattered and the number of irrelevant
directions increased. As a result, the ESS value decreases.

Decentralized Stochastic Optimal Control Bianca Bendris

70 PI controller simulations for a LF task

6-4 Communication sensor

As explained in Chapter 1, the deployment of multi-robot systems introduces additional
challenges not present in single-robot systems. To safely enable LF formation flight with
the MAVs, inter-robot collision avoidance must be performed by the on-board PI controller.
This requires precise and frequent knowledge of the relative positions between the MAVs.
This information could be obtained using external localization systems such as the Global
Position System (GPS) in outdoor environments or a Motion Capture System (MCS) in indoor
environments. However, the low accuracy of the GPS and its uneven signal reception make
it unreliable for determining the short inter-robot distances within the swarm. Moreover, a
realistic indoor environment will not be equipped with a MCS. Thus, an on-board solution is
generally preferred.

Among the proposed on-board solutions, (e.g. radio based, camera-based, infra-red based
(Navarro & Mat́ıa, 2013), in this work, an approach as taken in Helm et al. (2018) is going
to be followed. In their work, the relative localization between the units of a LF formation
was enabled with an on-board Ultra Wide Band (UWB) range sensor. To achieve the inter-
robot localization, they observed that the LF formation was constrained to fly non-parallel
trajectories. This was implemented in their work through the design of a flight path which
avoided parallel configurations. Building upon their work, here, this constraint will be added
to the control algorithm, making the controller responsible now, for avoiding parallel flight
trajectories. To test its effect on the LF task performance, a scenario in which the LF
formation performs a straight, long flight towards a single target waypoint is simulated.

0 0.5 1 1.5 2
0

50

100

Cross product of velocity vectors

C
o
u

n
ts

a)

F1-F2

0 0.5 1 1.5 2
0

50

100

Cross product of velocity vectors

C
o
u

n
ts

b)

F1-F2

Figure 6-7: Velocity vector cross product with CPthr = 0.3 a) Without applying the
non-parallel flight constraint b) Applying the non-parallel flight constraint

Using a CPthr = 0.3, a comparison is made in Figure 6-7 between applying the non-parallel
constraint or not. When the constraint is applied (Figure 6-7b), the PI controller tries to
minimize the situations in which the absolute value of the cross product of velocity vectors is
higher than the imposed threshold while still fulfilling the other restrictions (e.g. separation
distances). As observed, these situations are not completely avoided. However, perfect parallel

Bianca Bendris Decentralized Stochastic Optimal Control

6-4 Communication sensor 71

0.04 0.1 0.2 0.3
0

200

400

600

Sensor update dt [s]

S
ep

ar
a
ti

o
n

er
ro

r
co

u
n
t

a)

0 100 200 300 400 500
0

5

10

Time [s]

S
ta

te
co

st

b)

dt = 0.04 s
dt = 0.1 s
dt = 0.2 s
dt = 0.3 s

Figure 6-8: a) Separation error count vs. sensor update time step dt b) Leader state cost
function vs. sensor update time step dt

flight is only achieved when the cross product is zero. Thus, here the 0.3 threshold is taken
as a safety measure. Moreover, and what is perhaps more important is that values lower than
CPthr are never maintained for periods longer than 0.5 seconds. Next to that, it was also
noted that even if the non-parallel flight constraint is not applied, the formation does not
follow prolonged parallel paths. This is a result of not having the followers constrained to fly
in a rigid pose with respect to the leader. As only the distance with respect to the leader is
constrained, a higher flexibility of the formation structure is allowed.

Another interesting observation from the work of Helm et al. (2018), is the effect of the sensor
update frequency on the localization error. It was noticed that the UWB sensor used to obtain
the relative position of the MAVs experimented sudden drops in the update frequency, which
caused the localization error to increase. To test the effect of these frequency drops on the
LF task performance, we simulated scenarios in which with a probability of 10%, an update
frequency drop was experimented. Figure 6-8b shows the relation between the sensor update
time step dt and the number of times the separation limits have been violated. As expected,
the separation limits are more often crossed when the sensor update frequency is lower (higher
time step dt). To better understand how the cost function is affected in these situations, Figure
6-8a shows the leader’s state cost function as a function of the sensor update frequency. It
can be noticed that a controller delay is experimented for higher sensor time steps, but this
is still able to minimize the cost function at the expense of a lower performance of the LF
formation.

Decentralized Stochastic Optimal Control Bianca Bendris

72 PI controller simulations for a LF task

Bianca Bendris Decentralized Stochastic Optimal Control

Chapter 7

Parrot Bebop I step response

In this chapter, we analyze the step response of the Bebop I drone to motivate the assumption
used in the scientific paper presented in Part I where a first order delay was used to model the
real velocity controller. To this end, experiments in which the Bebop I drone was commanded
to fly with a forward and backward direction of 0.5 m/s are presented.

110 120 130 140 150

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

V
N

 (
m

/s
)

1st order model

Vel
cmd

Vel
output

Figure 7-1: Step response of the Bebop I drone to several forward and backward velocity com-
mands of 0.5 m/s. The first order approximation used to model this behavior is also shown.

Fig. 7-1 shows the commanded velocity input, the step response of the Bebop I drone and
the first order approximation used. Taking the transfer function of the first order delay as:

H(s) =
1

τs+ 1
(7-1)

Decentralized Stochastic Optimal Control Bianca Bendris

74 Parrot Bebop I step response

a value of τ = 1 was used to approximate the step-response of the real platform. This value
was chosen empirically. Observing Fig. 7-1, we see that the model used does not match the
drone’s step response perfectly. However, as shown in the real-experiments presented in the
scientific paper, this simple approximation is sufficient to control the MAV formation.

Bianca Bendris Decentralized Stochastic Optimal Control

Chapter 8

Discussion of preliminary results

Based on the preliminary experiments results presented in Chapter III, it is possible to con-
clude that a decentralized PI controller can be employed to guide and control a LF formation
flight under the conditions described in the previous chapter. With the defined cost functions
for the leader and the followers, the formation could successfully fly towards two predefined
target waypoints. A safety distance was maintained among the members of the formation al-
though not for the entire simulation time. In several occasions, the allowed separation among
units was briefly crossed. This could be easily overcome by applying a higher cost penalty to
collision events. However, a very constrained task could deteriorate the performance of the
PI controller as more samples would now be needed to compute the optimal controls.

Regarding the computational time needed for the PI controller to obtain the optimal controls,
multiple LF flight tasks were simulated and the runtime of the algorithm was measured. The
simulated scenarios differed in the number of samples or the planning horizon length which
was considered. The results showed a linear increment of the runtime when these two variables
were increased. However, the computational time was small, reaching a maximum value of
only 0.035 seconds for the scenario in which 2000 samples and a horizon length of 5 seconds
was used. The small runtime observed, makes us believe that real-time performance could
indeed be achieved on-board a real MAV platform with limited computational resources.

Besides the runtime of the algorithm, the performance of the task was also measured. Due to
the relatively simple task, the performance remained constant with the number of samples,
since the MAVs where able to fly towards the two target waypoints using only 100 samples.
For small planning horizons (< 0.5s), the leader was not able to find the optimal direction
towards the target waypoints leading to a strong decrease in performance. Although higher
cost penalties could be assigned to force the leader to steer towards the target and therefore
improve the performance using even shorter planning horizons, the computation time that
could be saved does not compensate the risks that come with it. Using very short planning
horizon would mean to have a similar behavior to a reactive controller, which only reacts to
nearby stimuli. Therefore, given the low increase in computational time, a planning horizon
of at least one second is recommended.

Decentralized Stochastic Optimal Control Bianca Bendris

76 Discussion of preliminary results

Despite the fact that the LF task could be performed with a relatively small amount of sam-
ples, more complex tasks involving a higher number of units or a more restrictive formation
structure will require a higher number of samples. In these cases, it becomes important to
have an efficient sampling procedure, in which all samples converge towards the optimal di-
rection. From the experiments performed, we noticed that the sampling convergence (ESS)
varies during the simulation time, taking higher values when more samples with low cost,
good samples, are found and lower values when less of these samples are encountered. This, is
strongly related with the relative position of the neighboring units and how their planned tra-
jectories are computed. A lower number of good samples generally reflects a very constrained
situation in which many cost penalties are being applied. Although this could indeed be the
case for a complex task, it was observed that the inaccuracy of the planned trajectories of
the neighboring units plays a big role in the resulting sampling convergence. It was showed
how a more accurate computation of the planned trajectories could improve the sampling
convergence by communicating also the control inputs among the units. However, the limited
communication bandwidth of the on-board UWB sensor has to be taken into account and
therefore a trade-off must be established.

We have also seen how the importance sampling scheme affects the sampling convergence.
Using the controlled system dynamics to obtain the sample trajectories is beneficial for the LF
scenario described here. We saw that the sampling area is concentrated around the previous
optimal direction when the applied optimal controls take a big enough value. This eliminates
many irrelevant samples and smooths the trajectory. Nonetheless, it could be argued that
this strategy is not always the ideal one. Its effectiveness varies according to the optimal
control values. Moreover, for an exploration task with unknown obstacles, using this strategy
combined with a short planning horizon could result in dangerous situations. The MAVs could
get too close to an obstacle and due to the importance sampling applied, would not be able
to steer away, as all samples would be taken around the previous control input (e.g. straight
away). This situation could be avoided if the radius of obstacle detection is big enough or
with a longer planning horizon.

Finally, some aspects of the on-board communication sensor were tested and the effect of the
non-parallel flight constraint on the PI controller performance was analyzed. The parallel
paths were avoided by the PI controller, reducing the number parallel vectors encounters
by 20% while still maintaining the imposed separation constraints. Moreover, parallel paths
were never prolonged for more than 0.5 seconds. Despite the promising results, the potential
sensor errors combined with the intrinsic actuator delay of a real MAV platform presented
in Chapter 7, could lead to a lower performance of the PI control algorithm. As the main
objective of this thesis is to prove the real-time capabilities of a decentralized PI control
algorithm, an external MCS is going to be used to obtain the relative localization among the
MAVs.

Bianca Bendris Decentralized Stochastic Optimal Control

Appendix A

Stochastic Optimal Control

A-1 The Wiener process

Many stochastic algorithms use Wiener processes to mathematically model the random effects
present in stochastic control problems (Gorodetsky et al., 2015; Huynh, Karaman, & Frazzoli,
2016; Fu & Topcu, 2015). A Wiener process is a continuous-time stochastic process also called
Brownian motion. To better understand what a Wiener process is and how it is related to
the physical effect known as Brownian motion, a brief description of random walks is firstly
needed.

Random walks

A random walk is a discrete stochastic process that predicts the value of a system at time t to
be equal to the value of the last period plus a stochastic white noise component. One simple
example of random walk is a particle located at the origin of a discrete one dimensional axis.
At time n = 0 the particle can move either forward +1 or backward -1 with probabilities
p and q = 1 − p respectively (Bhattacharya & Waymire, 2009). In this case the discrete
stochastic process would be the sequence of independent displacements of the particle over
the one-dimensional axis (Figure A-1).

0 2 3-2-3-4 1-1 4

+1

-1

+1 +1

-1

Figure A-1: Example of random walk as the random movement of a particle on a 1D axis

Decentralized Stochastic Optimal Control Bianca Bendris

78 Stochastic Optimal Control

Brownian motion

The continuous analog of this type of stochastic process is the Brownian motion. Brow-
nian motion is a continuous time stochastic process that describes the random motion of
a solute particle immersed in a fluid, liquid or gas as a consequence of it’s collision with
the molecules of the fluid, liquid or gas (Bhattacharya & Waymire, 2009). This continu-
ous stochastic motion is a limiting form of the random walk. To better understand this
relation, a similar example as given in (Bhattacharya & Waymire, 2009) is going to be
followed. Let’s take for example one particle immersed in a fluid that undergoes an aver-
age of f collisions per second with the molecules of the fluid. To simplify the problem, it
is assumed that the particle can only move on a one dimensional axis like in the case of
the random walk. Thus, with every collision, the particle can only move +δ or −δ with
probabilities p and q = 1 − p respectively. In this simplified scenario, the particle in the
fluid performs an one-dimensional random walk with step size δ. Let’s continue to assume

Figure A-2: Three-dimensional brownian
motion simulation for a time interval of 2
seconds (Wikipedia contributors, 2018)

that the fluid is contained in a very large recipient
making the random walk unrestricted by any bound-
ary. Then, at time t > 0 the particle will have suffered
n = tf independent displacements. The position of
the particle at a certain time t, (t > 0) is calculated
as the sum of all the independent random displace-
ment. This, by the central limit theorem is approx-
imately Gaussian (Bhattacharya & Waymire, 2009).
As f → ∞ the mean of the Gaussian converges to
tµ and the variance converges to tσ2. Thus, the dis-
placement of the particle at time t > 0 is Gaussian
with mean tµ and variance tσ2. It can be noticed that
the Gaussian has a direct relationship with the time.
This reflects the fact that further in time, it is harder
to estimate the position of the particle. Both the drift
µ and the diffusion σ2 increase with time. When the
drift is zero and the diffusion coefficient is one the
motion is known as the standard Brownian motion.

Wiener process

The relation of Brownian motion with the Wiener pro-
cess W (t) comes from the mathematical result of Norbert Wiener, which first formulated that
the path of a particle immersed in a fluid can be taken as continuous. The Wiener process is
thus, a mathematical representation of the physical phenomena known as Brownian motion.
Likewise it is a continuous-time stochastic process with the following properties:

1. Independence. Increments of W (t) are independent. As explained in the Brownian
motion example, the particle movement can be described as the sum of independent
displacements. Therefore, taking W (t)−W (s) is independent of W (τ) where τ < s for
any 0 ≤ s ≤ t.

2. Normal increments. W (t)−W (s) ≈ N(0, t−s) considering a standard Brownian motion.

Bianca Bendris Decentralized Stochastic Optimal Control

A-2 Îto − Taylor Expansion 79

3. Continuity. W (t) is a continuous function

A-2 Îto − Taylor Expansion

The general stochastic differential equation describing the stochastic system dynamics is :

dx = f(x(t), u(t), t)dt+ g(x(t), u(t), t)dw (A-1)

To obtain the Hamilton-Jacobi-Bellman equation for the stochastic case, the optimal cost-to-
go function J(x, t) at time t1 = t+ dt is approximated via a Taylor expansion:

〈
J(x(t+ dt), t+ dt)

〉
= J(x, t) + Jt(x, t)dt+ Jx(x, t)dx+

1

2
Jxx(x, t)dx2

+
1

2
Jtt(x, t)dt

2 +
1

2
Jxt(x, t)dxdt+ higher order terms

(A-2)

where Jx, Jt, Jxx, Jtt and Jxt represent partial derivatives of the optimal cost-to-go function
J(x, t).

From equation (A-1) the following expressions can be derived and written in compact form:

(dx)2 = f2dt2 + g2dw2 + 2fgdtdw dxdt = fdt2 + gdwdt (A-3)

Substituting the expressions in (A-3) into (A-2) we obtain:

〈
J(x(t+ dt), t+ dt)

〉
= J(x, t) + Jtdt+ Jx(fdt+ gdw) +

1

2
Jxx
(
f2dt2 + g2dw2 + 2fgdtdw

)

+
1

2
Jttdt

2 +
1

2
Jxt
(
fdt2 + gdwdt

)
+ higher order terms

(A-4)

Now, applying the standard Îto differential rules (Handel, May 2007):

dt2 = 0 dw2 = dt dwdt = 0 (A-5)

the Taylor expansion can be further simplified as:

〈
J(x(t+ dt), t+ dt)

〉
= J(x, t) + Jtdt+ Jxfdt+

1

2
Jxx
(
g2dt

)
(A-6)

Decentralized Stochastic Optimal Control Bianca Bendris

80 Stochastic Optimal Control

Bianca Bendris Decentralized Stochastic Optimal Control

Appendix B

Necessary Conditions for Optimality

The necessary conditions for optimality are derived using the theory of Calculus of Variations.
This branch of mathematics uses variations (small changes in function) to find maxima and
minima of functions of continuous variables. Thus to derive these conditions, an expression of
the cost-function when small control perturbations have been applied is obtained. A similar
derivation as used in (Stengel, 1994) is presented in this section.

As before, given the deterministic continuous-time system dynamics:

ẋ(t) = f(x(t), u(t), t) (B-1)

And the cost-function that the optimal solution must minimize:

C(xi, ti, u(ti → tf)) = φ(x(tf)) +

∫ tf

ti

L(x(t), u(t), t)dt (B-2)

To take into account the system dynamics in the minimization, an augmented cost-function
is defined as:

CA(xi, ti, u(ti → tf)) = φ(x(tf)) +

∫ tf

ti

L(x(t), u(t), t) + λ(t)
(
f(x(t), u(t), t)− ẋ(t)

)
dt (B-3)

where Lagrange multipliers contained in the constant adjoint vector λ are used to augment
the cost function with the equality constraint:

f(x(t), u(t), t)− ẋ(t) = 0 (B-4)

Because equation B-4 must be satisfied over the entire time interval, it is adjoined to the inte-
grand term of the cost function. This expression can be written in terms of the Hamiltonian
H:

Decentralized Stochastic Optimal Control Bianca Bendris

82 Necessary Conditions for Optimality

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT (t)(f(x(t), u(t), t) (B-5)

Substituting equation B-5 in B-3 we obtain:

CA(xi, ti, u(ti → tf)) = φ(x(tf)) +

∫ tf

ti

H(x(t), u(t), λ(t), t)− λT (t)ẋ(t)dt (B-6)

Separating the integrals and using integration by parts, the following augmented cost-function
is obtained:

CA(xi, ti, u(ti → tf)) = φ(x(tf)) + [λT (ti)x(ti)− λT (tf)x(tf)]

+

∫ tf

ti

H(x(t), u(t), λ(t), t) + λT (t)ẋ(t)dt
(B-7)

As previously defined, a stationary solution will be the one with zero effect of control variations
on the cost function. Applying calculus of variations theory, the first order variations of the
cost function’s components can be defined as:

∆(·) =
∂(·)
∂u

∆u+
∂(·)
∂x

∆x(∆u) (B-8)

where ∆x(∆u) represents the effect of the control variations on the system states. Applying
equation B-8 to B-7 we obtain:

∆C =
([∂φ
∂x
− λT

]
∆x(∆u)

)∣∣∣∣
t=tf

+
[
λT∆x(∆u)

]∣∣
t=ti

+

∫ tf

ti

[∂H
∂u

∆u+
[∂H
∂x

+ λ̇T
]
∆x(∆u)

]
dt

, ∆C(tf) + ∆C(ti) + ∆C(ti, tf)

(B-9)

where ∆u(t) is a small variation of the controls. If a trajectory satisfying the necessary
conditions for optimality must have a stationary cost function in presence of control variations,
it is clearly seen that all three terms in equation B-9 must be equal to zero.

It can be assumed that the initial control does not affect the initial state conditions, so
∆C(ti) = 0. Moreover, the adjoint vector λ can be chosen as:

λ̇T = −∂H
∂x

(B-10)

subject to terminal conditions:

λT = − ∂φ

∂x

∣∣∣∣
t=tf

(B-11)

Bianca Bendris Decentralized Stochastic Optimal Control

83

If moreover, the following conditions is fulfilled:

∂H
∂u

= 0 (B-12)

then all three terms ∆C(tf),∆C(ti) and ∆C(ti, tf) are zero. Equations B-10,B-11 and B-12
form the set of necessary conditions for optimality. An optimal trajectory is achieved when
these equations are fulfilled simultaneously with the boundary constraints defined at ti and
tf .

Decentralized Stochastic Optimal Control Bianca Bendris

84 Necessary Conditions for Optimality

Bianca Bendris Decentralized Stochastic Optimal Control

Appendix C

Linear HJB

C-1 The log transform

To obtain the linear HJB expression, the optimal cost-to-go function J(x, t) has been sub-
stituted by a logarithmic expression of Ψ(x, t) also called the desirability function. This
logarithmic transformation has its origin in the field of quantum mechanics, where a similar
expression is used to decompose a wave function that satisfies the Schrödinger equation,Ψ as
an amplitude and a phase (Feynman, Hibbs, & Styer, 2010):

Ψ =
√
ρexp(iJ/~) (C-1)

where ~ is the Planck constant and ρ satisfies a Fokker-Planck equation and J satisfies a HJB
equation. As explained in Kappen (2005), Equation C-1 can be related with the logarithmic
transformation used in Chapter 4. The main difference is that only the J, HJB equation
appears in the equation used here. When applying this logarithmic transformation within
the field of optimal control, ρ, satisfying the Fokker-Planck equation, is used as an alternative
to computing the HJB equation, whereas in the quantum mechanics field, both ρ and J are
computed together.

C-2 The Path Integral formulation

Before deriving the path integral formulation of equation (4-8), we must discuss how the prob-
ability of a path traveling from xi → xf under the uncontrolled system dynamics is defined.
To obtain an expression of ρ(xf , tf ;xi, ti), the connection between the SDE of the uncon-
trolled dynamics and a forward PDE is exploited. As explained in (E. A. Theodorou, 2011)
both PDEs and SDEs formulations represent the same physical process, in this case a forward
diffusion. The main difference is the fact that the PDE formulation gives a macroscopic view
of the process while the SDE formulations approaches it in a microscopic view. Thus, the

Decentralized Stochastic Optimal Control Bianca Bendris

86 Linear HJB

SDE defining the uncontrolled dynamics can be written as a forward PDE defined by the
Fokker-Planck equation1, also known as the forward Kolmogrov equation. The transition
probability for a single time step (ε = xj → xj+1) that satisfies the Fokker-Planck equation
is a Gaussian defined as:

ρ(xj+1, tj+1ε|xj , tj) =
1√

2πυε
exp
(
− ε

λ

[R
2

(xj+1 − xj
ε

− f(xj , tj)
)])

(C-2)

with variance σ2 = υε and mean value x+f(x, t)ε. Recall from Section 3-1-3 that the process
noise (dw) included in the uncontrolled system dynamics is modeled as a Wiener process
follows a Gaussian distribution with mean zero and variance proportional to the time step, it
can be noted that the Gaussian’s variance is also proportional to the time step ε. As the mean
of the noise is zero, the transition probability has a mean defined only by the deterministic
system dynamics equal to x + f(x, t)ε. To obtain equation C-2, the relation υ−1 = R/λ has
been used.

The probability of a sample path going from xi → xf can now be written as a product of n
infinitesimal transition probabilities over a time step ε as:

ρ(xi, ti;xf , tf) =

∫ ∫
dx1, ..., dxn−1ρ(xf , tf ;xn−1, tn−1)...ρ(x2, t2;x1, t1)ρ(x1, t1;xiti)

=
(1√

2πυε

)n ∫
exp
(
− ε

λ

[R
2

(xj+1 − xj
ε

− f(xj , tj)
)]) (C-3)

with tj = t + (j − 1)ε, x0 = xi and xn = xf . Combining equation (C-3) and equation (4-8)
we obtain the path integral formulation as:

Ψ(x, t) =
1

(
√

2πυε)n

∫
dx1...dxnexp

(
− 1

λ
S(x0:N)

)
(C-4)

where

S(x0:n) = φ(xn) +

n−1∑

j=0

εq(xj , tj) +

n−1∑

j=0

R

2

(xj+1 − xj
ε

− f(xj , tj)
)

(C-5)

1The Fokker Planck equation is a PDE that describes the time evolution of the probability density function
of a stochastic variable (E. A. Theodorou, 2011).

Bianca Bendris Decentralized Stochastic Optimal Control

Appendix D

PI algorithm for a LF task

The LF task has been implemented using PI control as explained in Chapter 4. The pseu-
docode of this algorithm is presented in this section. For a better understanding of the code,
all functions used in the main program are presented separately. Both the main program 1 and
the functions used within it, have an input, output and data parameters. The parameters
specified within the data block are constant and common to all algorithms.

Algorithm 1 is the main program. It runs the main simulation loop, initializes the units (M)
and calls the different sub-functions.

Algorithm 2 simply shifts over time the controls used for importance sampling Ũ to obtain
the new exploring controls U. This shift is needed because the Ũ controls were calculated dt
seconds ago and need to be shifted in time.

Algorithm 3 takes the position and velocity of the units at time t and initialized a number of N
samples with those values as X and V. Initially the cost of all samples (S) is zero. Moreover,
a random noise vector for all samples and for the entire planning horizon H is initialized.
Finally the communicated position (x comm) and velocity (v comm) of the units for which
the controls are not being calculated is initialized.

Algorithm 4 computes the cumulative cost of all samples which will be further used to obtain
the controls for the leader unit. First, the velocities and positions of the samples are being
propagated. Then, the cost function penalizes for being too far away from the target waypoint
as well as having a heading not pointing towards it. Moreover, a control penalty is added as
a function of R and dξ.

Algorithm 5 computes the cumulative cost for all samples used to obtain the controls for
the follower units. Similar to Algorithm 4, the velocities and positions of the samples are
propagated. However, in this case, the cost function penalizes for being too far way from the
leader (Ccohesion) as well as being too close to other units (Ccollision). Moreover, the non-
parallel constraint is implemented so followers are penalized (Cparallel) whenever the cross
product between their velocity vector and other’s units velocity vector is smaller than a
certain threshold (cross pr thr). A control penalty is also added in this case.

Decentralized Stochastic Optimal Control Bianca Bendris

88 PI algorithm for a LF task

Algorithm 6 simply steps the system forward in time. This procedure takes into account the
inherent noise of the system’s actuators and adds a certain random noise component to the
velocity vector.

Algorithm 1: Main

Data: N,H, dh, T, dt, R, ν,M, penalties, constraints
Input: x0, v0
Output: x, v, u

1 Compute iT = T/dt, iH = H/dh, stdv = sqrt(ν ∗ dh), λ = R ∗ ν ;
2 Define initial positions x0,velocities v0 and goal waypoints wp ;

3 Initialize: x, v, Ũ ; // Ũ → [iH × 2M]
4 for t=1,...,iT do

5 U = shift(Ũ) ; // Shift controls with dt
6 for m=1,...,M do
7 [X,V,S,dξ,x comm,v comm] = init samples(x[t][m],v[t][m]);
8 if unit = 1 then
9 [S] = compute cost leader(X,V,S,U,x comm,v comm,wp,data) ; // Compute

sample’s cost

10 end
11 else
12 [S] = compute cost follower(X,V,S,U,x comm,v comm,wp,data);
13 end
14 W = compute weight(S,λ) ; // Assign sample weights
15 for h=1,...,H do
16 ũ[h][m] = U [h][m] + Σn(W∆dξ[h])/(dhΣnW) ; // Approximate optimal control
17 end
18 Save controls for importance sampling;

19 end
20 [x, v] = step(x, v, ũ) ; // step system forward
21 if wp reached then
22 take the following wp as the goal wp
23 end

24 end

Algorithm 2: shift

Data: iH, dh, dt,M
Input: Ũ
Output: U

1 U = Ũ ;
2 for m=1,...,M do
3 for h=1,...,iH-1 do
4 U [m][h] ∗= (dh− dt)/dt; ; // Substract dt
5 U [m][h] += U [m][h+ 1]∆dt/(dh− dt); ; // Propagate dt proportionally

6 end
7 U [m][iH]∗ = (dh− dt)/dh;

8 end

Bianca Bendris Decentralized Stochastic Optimal Control

89

Algorithm 3: init samples

Data: υ, dh, dt,N, h,M
Input: x[t][m], v[t][m]
Output: X,V, S, dξ, xcomm, vcomm

1 U = Ũ ;
2 for n=1,...,N ; // for all samples
3 do
4 S[n] = 0 ;
5 X[n] = x[t][m];
6 V [n] = v[t][m];
7 for h=1,..,iH do
8 dξ[n][h] ∼ ℵ(0, ν∆dh);
9 end

10 Obtain communicated position and velocity of other units x comm, v comm ;

11 end

Algorithm 4: compute cost leader

Data: iH, dh,N,wp,R
Input: X,V, S, U, xcomm, vcomm,wp
Output: S

1 for n=1,..,N do
2 for h=1,...,iH do
3 V [n] = V [n] + U [h]dh+ dξ[n][h]; ; // U[h] is constant for all samples
4 X[n] = X[n] + V [n]dh; ; // propagate X,V
5 Compute target distance Dtarget;
6 S[n] += Cdist ∗Dtarget ∗ dh ; // Distance to target cost
7 Compute target heading Htarget;
8 S[n] += Chead ∗Htarget ∗ dh ; // Heading deviation cost
9 S[n] += U [h]∆(U [h]dh/2 + dξ[n][h])R ; // Control cost

10 end

11 end

Decentralized Stochastic Optimal Control Bianca Bendris

90 PI algorithm for a LF task

Algorithm 5: compute cost follower

Data: iH, dh,N,wp,R, cross pr thr, collision distance, cohesion distance
Input: X,V, S, U, xcomm, vcomm,wp
Output: S

1 for n=1,..,N do
2 for h=1,...,iH do
3 V [n] = V [n] + U [h]dh+ dξ[n][h] ; // U[h] is constant for all samples
4 X[n] = X[n] + V [n]dh; ; // propagate X,V
5 for unit in M-1 do
6 Compute distance Dunit, cross product velocity vector Crossunit;
7 if Crossunit ¡ cross pr thr then
8 S[n] += Cparallel ∗ Crossunit ∗ dh ; // Parallel flight cost
9 end

10 if Dunit ¡ collision distance then
11 S[n] += Ccollision ∗Dunit ∗ dh ; // Collision cost
12 end
13 if Dunit ¿ cohesion distance then
14 S[n] += Ccohesion ∗Dunit ∗ dh ; // Cohesion cost
15 end

16 end
17 S[n] += U [h]∆(U [h]dh/2 + dξ[n][h])R ; // Control cost

18 end

19 end

Algorithm 6: step

Data: t, ν, dh,M
Input: x, v, ũ
Output: x, v

1 for m=1,...,M ; // for all units
2 do
3 dξ[m][t] ∼ ℵ(0, ν∆dh);
4 ; v[m][t+ 1] = v[m][t] + u[m][t]dt+ dξ[m][t];
5 x[m][t+ 1] = x[m][t] + v[m][t]dt;

6 end

Bianca Bendris Decentralized Stochastic Optimal Control

91

An explanation of the notation used in the algorithms is given below.

N number of samples
H horizon time in seconds
dh time increment for the planning loop
iH number of discrete steps for the planning loop
T simulation time in seconds
dt time increment used in the simulation loop
iT number of discrete steps for the simulation loop
M number of units (MAVs) used
υ variance of the process noise
R control cost scaling
x0 initial position of the units
v0 initial velocity of the units
wp target waypoints given to the leader unit
x position of the units over all simulation time
v velocity of the units over all simulation time
x comm communicated position of the other units
v comm communicated velocity of the other units
U controls for all units and time horizon

Ũ controls for all units and time horizon used for importance sampling.
Initialized with zeros.

ũ approximated optimal controls for all units and all simulation time
S cumulative cost over time of all samples
dξ random noise for all samples and all planning horizon
X position vector of all samples at certain time t
V velocity vector of all samples at certain time t
W weight vector for all samples
cross pr thr cross product threshold allowed to consider that two velocity vectors are

not parallel
collision distance minimum distance allowed between two units before consider it as a

collision
cohesion distance maximum distance allowed between the followers and the leader to en-

sure the cohesion of the group
Dunit distance between two units
Cparallel penalty assigned to samples with parallel velocity vectors of two units
Ccollision penalty assigned to samples beyond the collision distance threshold
Ccohesion penalty assigned to samples beyond the cohesion distance threshold

Decentralized Stochastic Optimal Control Bianca Bendris

92 PI algorithm for a LF task

Bianca Bendris Decentralized Stochastic Optimal Control

Bibliography

Abouheaf, M. I., Lewis, F. L., Vamvoudakis, K. G., Haesaert, S., & Babuska,
R. (2014). Multi-agent discrete-time graphical games and reinforcement
learning solutions. Automatica, 50 (12), 3038 - 3053. Available from
http://www.sciencedirect.com/science/article/pii/S0005109814004282

Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016, May). Distributed multi-
robot formation control among obstacles: A geometric and optimization approach with
consensus. In 2016 IEEE international conference on robotics and automation (icra)
(p. 5356-5363).

Anderson, B. D., & Moore, J. B. (2007). Optimal control: linear quadratic methods. Courier
Corporation.

Anderson, R. P., & Milutinović, D. (2014). Stochastic optimal enhancement of distributed
formation control using kalman smoothers. Robotica, 32 (2), 305–324.

Arslan, O., Theodorou, E. A., & Tsiotras, P. (2014, Dec). Information-theoretic stochastic
optimal control via incremental sampling-based algorithms. In 2014 ieee symposium on
adaptive dynamic programming and reinforcement learning (adprl) (p. 1-8).

Bagchi, A. (1993). Optimal control of stochastic systems. Prentice-Hall, Inc.

Bandyopadhyay, S., Chung, S.-J., & Hadaegh, F. (2017). Probabilistic and distributed control
of a large-scale swarm of autonomous agents. IEEE Transactions on Robotics, 33 (5),
1103-1123.

Bangura, M., & Mahony, R. (2014). Real-time model predictive control for
quadrotors. IFAC Proceedings Volumes, 47 (3), 11773 - 11780. Available from
http://www.sciencedirect.com/science/article/pii/S1474667016434890 (19th
IFAC World Congress)

Bayazıt, O. B., Lien, J.-M., & Amato, N. M. (2005). Swarming behavior using probabilistic
roadmap techniques. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 112–125).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Bellman, R. (1957). Dynamic programming. Princeton University Press.

Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears
(Eds.), Swarm robotics (pp. 1–9). Berlin, Heidelberg: Springer Berlin Heidelberg.

Berg, J. van den, Abbeel, P., & Goldberg, K. (2011). Lqg-mp: Optimized path planning

Decentralized Stochastic Optimal Control Bianca Bendris

94 Bibliography

for robots with motion uncertainty and imperfect state information. The International
Journal of Robotics Research, 30 (7), 895-913.

Bertsekas, D. P., & Castanon, D. A. (1989, Jun). Adaptive aggregation methods for infinite
horizon dynamic programming. IEEE Transactions on Automatic Control , 34 (6), 589-
598.

Bertsekas, D. P., & Tsitsiklis, J. N. (1995, Dec). Neuro-dynamic programming: an overview.
In Proceedings of 1995 34th IEEE conference on decision and control (Vol. 1, p. 560-564
vol.1).

Bethke, B., How, J. P., & Ozdaglar, A. (2008, Dec). Approximate dynamic programming
using support vector regression. In 2008 47th IEEE conference on decision and control
(p. 3811-3816).

Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of
guidance, control, and dynamics, 21 (2), 193–207.

Betts, J. T. (2010). Practical methods for optimal control and estimation using nonlinear
programming (Vol. 19). Siam.

Bhattacharya, R. N., & Waymire, E. C. (2009). Stochastic processes with applications
(Vol. 61). Siam.

Biral, F., Bertolazzi, E., & Bosetti, P. (2016). Notes on numerical methods for solving optimal
control problems. IEEJ Journal of Industry Applications, 5 (2), 154–166.

Capitan, J., Merino, L., & Ollero, A. (2014, May). Decentralized cooperation of multiple
UAS for multi-target surveillance under uncertainties. In 2014 international conference
on unmanned aircraft systems (ICUAS) (p. 1196-1202).

Chen, J., Gauci, M., Li, W., Kolling, A., & Groß, R. (2015, April). Occlusion-based co-
operative transport with a swarm of miniature mobile robots. IEEE Transactions on
Robotics, 31 (2), 307-321.

Chen, P., & Waslander, S. (2010). Kinodynamic motion planning for holonomic UAVs in
complex 3D environments.

Cheng, Z., Sun, Y., & Liu, Y. (2011). Path planning based on immune genetic algorithm for
uav. In (p. 590-593).

Daily, R., & Bevly, D. M. (2008). Harmonic potential field path planning for high speed
vehicles. 2008 American Control Conference, 4609-4614.

Doerr, B. G., Linares, R., & Petersen, C. D. (2018). Spacecraft attitude control using path
integral method via riemann manifold hamiltonian monte carlo. In 2018 space flight
mechanics meeting (p. 0204).

Dudek, G., & Jenkin, M. (2010). Computational principles of mobile robotics. Cambridge
university press.

Ferguson, D., Likhachev, M., & Stentz, A. (2005). A guide to heuristic-based path plan-
ning. In Proceedings of the international workshop on planning under uncertainty for
autonomous systems, international conference on automated planning and scheduling
(icaps) (pp. 9–18).

Feynman, R. P. (1948, Apr). Space-time approach to non-relativistic quantum mechanics.
Rev. Mod. Phys., 20 , 367–387.

Feynman, R. P., Hibbs, A. R., & Styer, D. F. (2010). Quantum mechanics and path integrals.
Courier Corporation.

Field, G., & Stepanenko, Y. (1996, Apr). Iterative dynamic programming: an approach to
minimum energy trajectory planning for robotic manipulators. In Proceedings of IEEE
international conference on robotics and automation (Vol. 3, p. 2755-2760 vol.3).

Bianca Bendris Decentralized Stochastic Optimal Control

Bibliography 95

Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small autonomous
drones. Nature, 521 , 460-466.

Foderaro, G., & Ferrari, S. (2010, Dec). Necessary conditions for optimality for a dis-
tributed optimal control problem. In 49th IEEE conference on decision and control
(cdc) (p. 4831-4838).

Frego, M. (2014). Numerical methods for optimal control problems with application to au-
tonomous vehicles. Unpublished doctoral dissertation, University of Trento.

Fu, J., & Topcu, U. (2015). Computational methods for stochastic control with metric
interval temporal logic specifications. In Decision and control (cdc), 2015 IEEE 54th
annual conference on (pp. 7440–7447).

Garćıa, D. A. L., & Gómez-Bravo, F. (2012). Vodec: A fast voronoi algorithm for car-like
robot path planning in dynamic scenarios. Robotica, 30 , 1189-1201.

Garrido, S., Moreno, L., & Lima, P. U. (2011). Robot formation motion planning using
fast marching. Robotics and Autonomous Systems, 59 (9), 675 - 683. Available from
http://www.sciencedirect.com/science/article/pii/S0921889011000959

Goerzen, C., Kong, Z., & Mettler, B. (2010). A survey of motion planning algorithms from the
perspective of autonomous UAV guidance. Journal of Intelligent and Robotic Systems,
57 (1-4), 65.

Gómez, V., Thijssen, S., Symington, A., Hailes, S., & Kappen, H. J. (2015). Real-time
stochastic optimal control for multi-agent quadrotor swarms. Robotics and Autonomous
Systems. arXiv , 1502 .

González, D., Pérez, J., Milanés, V., & Nashashibi, F. (2016, April). A review of motion
planning techniques for automated vehicles. IEEE Transactions on Intelligent Trans-
portation Systems, 17 (4), 1135-1145.

Gorodetsky, A., Karaman, S., & Marzouk, Y. (2015). Efficient high-dimensional stochastic
optimal motion control using tensor-train decomposition. In (Vol. 11).

Guo, Y., & Parker, L. E. (2002). A distributed and optimal motion planning approach for
multiple mobile robots. In Proceedings 2002 IEEE international conference on robotics
and automation (cat. no.02ch37292) (Vol. 3, p. 2612-2619).

Ha, J., & Choi, H. (2016, May). A topology-guided path integral approach for stochastic
optimal control. In 2016 ieee international conference on robotics and automation (icra)
(p. 4605-4612).

Handel, R. van. (May 2007). Lecture notes in stochastic calculus, filtering,and stochastic
control. Princeton University.

Helm, S. van der, McGuire, K. N., Coppola, M., & Croon, G. C. de. (2018). On-board range-
based relative localization for micro aerial vehicles in indoor leader-follower flight. arXiv
preprint arXiv:1805.07171 .

Horowitz, M. B., Damle, A., & Burdick, J. W. (2014). Linear hamilton jacobi bellman
equations in high dimensions. 53rd IEEE Conference on Decision and Control , 5880-
5887.

How., J. (2008). Principles of optimal control. (Massachusetts Institute of Technology: MIT
OpenCourseWare,https://ocw.mit.edu)

Howlett, J., Whalley, M., Tsenkov, P., Schulein, G., & Takahashi, M. (2007, 01). Flight
evaluation of a system for unmanned rotorcraft reactive navigation in uncertain urban
environments. , 1 , 507-523.

Huynh, V. A., Karaman, S., & Frazzoli, E. (2016). An incremental sampling-based algorithm

Decentralized Stochastic Optimal Control Bianca Bendris

96 Bibliography

for stochastic optimal control. The International Journal of Robotics Research, 35 (4),
305-333.

Jang, D.-S., Chae, H.-J., & Choi, H.-L. (2017). Optimal control-based UAV path plan-
ning with dynamically-constrained TSP with neighborhoods. 2017 17th International
Conference on Control, Automation and Systems (ICCAS), 373-378.

Kala, R. (2012). Multi-robot path planning using co-evolutionary genetic program-
ming. Expert Systems with Applications, 39 (3), 3817–3831. Available from
http://www.sciencedirect.com/science/article/pii/S0957417411014138

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal
of basic Engineering , 82 (1), 35–45.

Kappen, H. J. (2005). Path integrals and symmetry breaking for optimal control theory.
Journal of Statistical Mechanics: Theory and Experiment , 2005 (11), P11011.

Kappen, H. J. (2007). An introduction to stochastic control theory, path integrals and
reinforcement learning. In AIP conference proceedings (Vol. 887, pp. 149–181).

Kappen, H. J., & Ruiz, H. C. (2016, Mar 01). Adaptive importance sampling for control and
inference. Journal of Statistical Physics, 162 (5), 1244–1266.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research, 30 (7), 846-894.

Kempker, P. L., Ran, A. C. M., & Schuppen, J. H. van. (2011, Dec). A formation flying algo-
rithm for autonomous underwater vehicles. In 2011 50th IEEE Conference on Decision
and Control and European Control Conference (p. 1293-1298).

Kendoul, F. (2012). Survey of advances in guidance, navigation, and control of unmanned
rotorcraft systems. Journal of Field Robotics, 29 (2), 315–378.

Kendoul, F. (2013). Towards a unified framework for UAS autonomy and technology readi-
ness assessment (ATRA). In Autonomous Control Systems and Vehicles (pp. 55–71).
Springer.

Kleinert, H. (2009). Path integrals in quantum mechanics, statistics, polymer physics, and
financial markets. World scientific.

Koç, O., Maeda, G., & Peters, J. (2018). Online optimal trajectory generation for robot table
tennis. Robotics and Autonomous Systems.

Korayem, M. H., Hoshiar, A. K., & Nazarahari, M. (2016, dec). A hybrid co-evolutionary
genetic algorithm for multiple nanoparticle assembly task path planning. The Interna-
tional Journal of Advanced Manufacturing Technology , 87 (9-12), 3527–3543. Available
from http://link.springer.com/10.1007/s00170-016-8683-4

Kreuzer, E., & Solowjow, E. (2018, Apr 01). Learning environmental fields with micro under-
water vehicles: a path integral—gaussian markov random field approach. Autonomous
Robots, 42 (4), 761–780.

Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Footstep planning
among obstacles for biped robots. In Proceedings 2001 IEEE/rsj international confer-
ence on intelligent robots and systems. expanding the societal role of robotics in the the
next millennium (cat. no.01ch37180) (Vol. 1, p. 500-505 vol.1).

Kuriki, Y., & Namerikawa, T. (2014, June). Consensus-based cooperative formation control
with collision avoidance for a multi-UAV system. In 2014 american control conference
(p. 2077-2082).

Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V. (2013, Nov 01). Towards a swarm of
agile micro quadrotors. Autonomous Robots, 35 (4), 287–300.

Bianca Bendris Decentralized Stochastic Optimal Control

Bibliography 97

Landau, D. P., & Binder, K. (2014). A guide to monte carlo simulations in statistical physics.
Cambridge university press.

LaValle, S., & Hutchinson, S. (1998). Optimal motion planning for multiple robots having
independent goals. IEEE Transactions on Robotics and Automation, 14 (6), 912-925.

LaValle, S. M. (2006). Planning algorithms. Cambridge university press.
Lawton, J. R. T., Beard, R. W., & Young, B. J. (2003, Dec). A decentralized approach to

formation maneuvers. IEEE Transactions on Robotics and Automation, 19 (6), 933-941.
Lewis, M. A., & Tan, K.-H. (1997, Oct 01). High precision formation control of mobile robots

using virtual structures. Autonomous Robots, 4 (4), 387–403.
Li, X., Xiao, J., & Tan, J. (2004, Aug). Modeling and controller design for multiple mo-

bile robots formation control. In 2004 IEEE international conference on robotics and
biomimetics (p. 838-843).

Liao, Y.-H., & Sun, C.-T. (2001, May). An educational genetic algorithms learning tool.
IEEE Transactions on Education, 44 (2), 20 pp.-.

Liu, C., Liu, H., & Yang, J. (2011). A path planning method based on adaptive genetic
algorithm for mobile robot. Journal of Information and Computational Science, 8 (5),
808-814.

Liu, Y., & Bucknall, R. (2018). A survey of formation control and motion planning of multiple
unmanned vehicles. Robotica, 1–29.

Mansouri, S. S., Nikolakopoulos, G., & Gustafsson, T. (2015, Nov). Distributed model
predictive control for unmanned aerial vehicles. In 2015 workshop on research, education
and development of unmanned aerial systems (RED-UAS) (p. 152-161).

Menchón, S., & J. Kappen, H. (2018, 05). Learning effective state-feedback controllers through
efficient multilevel importance samplers. International Journal of Control , 1-8.

Michael, N., Fink, J., & Kumar, V. (2011). Cooperative manipulation and transportation
with aerial robots. Autonomous Robots, 30 (1), 73-86.

Milutinovi, D., & Lima, P. (2006, Dec). Modeling and optimal centralized control of a
large-size robotic population. IEEE Transactions on Robotics, 22 (6), 1280-1285.

Minchev, Z., Manolov, O., Noykov, S., Witkowski, U., & Riickert, U. (2004, June). Fuzzy
logic based intelligent motion control of robot swarm simulated by khepera robots. In
Intelligent systems, 2004. proceedings. 2004 2nd international IEEE conference (Vol. 1,
p. 305-310 Vol.1).

Munishkin, A. A., Milutinović, D., & Casbeer, D. W. (2016, June). Stochastic optimal control
navigation with the avoidance of unsafe configurations. In 2016 international conference
on unmanned aircraft systems (ICUAS) (p. 211-218).

Navarro, I., & Mat́ıa, F. (2013, sep). An Introduction to Swarm Robotics. ISRN Robotics,
2013 , 1–10.

Omidshafiei, S., Agha–Mohammadi, A., Amato, C., Liu, S., How, J. P., & Vian, J. (2017).
Decentralized control of multi-robot partially observable Markov decision processes us-
ing belief space macro-actions. The International Journal of Robotics Research, 36 (2),
231-258.

Paiva, L. T. d. F. R. (2014). Numerical methodes for optimal control and model predictive
control. Unpublished doctoral dissertation, Universidade do Porto (Portugal).

Panati, S., Baasandorj, B., & Chong, K. (2015). Autonomous mobile robot navigation using
harmonic potential field. In (Vol. 83).

Passenberg, B. (2012). Theory and algorithms for indirect methods in optimal control of
hybrid systems. Unpublished doctoral dissertation, Technische Universität München.

Decentralized Stochastic Optimal Control Bianca Bendris

98 Bibliography

Perepelitsa, D. V. (n.d.). Path integrals in quantum mechanics. Citeseer.
Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimension-

ality (Vol. 703). John Wiley & Sons.
Powell, W. B. (2012). Ai, or and control theory: A rosetta stone for stochastic optimization.
Prokhorov, D. V., & Wunsch, D. C. (1997, Sep). Adaptive critic designs. IEEE Transactions

on Neural Networks, 8 (5), 997-1007.
Qiao, W., Harley, R. G., & Venayagamoorthy, G. K. (2009, June). Coordinated reactive power

control of a large wind farm and a statcom using heuristic dynamic programming. IEEE
Transactions on Energy Conversion, 24 (2), 493-503.

Quintero, S. A. P., Collins, G. E., & Hespanha, J. P. (2013, June). Flocking with fixed-wing
uavs for distributed sensing: A stochastic optimal control approach. In 2013 american
control conference (p. 2025-2031).

Roberge, V., Tarbouchi, M., & Labonte, G. (2013). Comparison of parallel genetic algorithm
and particle swarm optimization for real-time UAV path planning. IEEE Transactions
on Industrial Informatics, 9 (1), 132-141.

Rust, J. P. (1989). A dynamic programming model of retirement behavior. In The economics
of aging (pp. 359–404). University of Chicago Press.

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application.
In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Saska, M., Vonásek, V., Krajńık, T., & Přeučil, L. (2014). Coordination and navigation
of heterogeneous MAV–UGV formations localized by a ’hawk-eye’-like approach under
a model predictive control scheme. The International Journal of Robotics Research,
33 (10), 1393–1412.

Scherer, S., Singh, S., Chamberlain, L., & Elgersma, M. (2008). Flying fast and low among
obstacles: Methodology and experiments. The International Journal of Robotics Re-
search, 27 (5), 549-574.

Schøler, F., Cour-Harbo, A. la, & Bisgaard, M. (2012). Generating approximative minimum
length paths in 3D for UAVs. In Intelligent vehicles symposium (iv), 2012 IEEE (pp.
229–233).

Serra, D., Satici, A. C., Ruggiero, F., Lippiello, V., & Siciliano, B. (2016). An Optimal
Trajectory Planner for a Robotic Batting Task: The Table Tennis Example. In ICINCO
(2) (pp. 90–101).

Sholes, E. (2007). Evolution of a UAV autonomy classification taxonomy. In Aerospace
Conference, 2007 IEEE (pp. 1–16).

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017).
Mastering the game of go without human knowledge. Nature, 550 (7676), 354.

Song, D.-P., & Earl, C. (2008). Optimal empty vehicle repositioning and fleet-sizing for two-
depot service systems. European Journal of Operational Research, 185 (2), 760-777.

Stengel, R. F. (1986). Stochastic optimal control: Theory and application. John Wiley and
Sons.

Stengel, R. F. (1994). Optimal control and estimation. Dover Publications.
Suicmez, E., & Kutay, A. (2014). Optimal path tracking control of a quadrotor uav. In

(p. 115-125).
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1)

(No. 1). MIT press Cambridge.
Tassa, Y., Erez, T., & Smart, W. D. (2008). Receding horizon differential dynamic program-

Bianca Bendris Decentralized Stochastic Optimal Control

Bibliography 99

ming. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Advances in neural
information processing systems 20 (pp. 1465–1472). Curran Associates, Inc.

Theodorou, E., Buchli, J., & Schaal, S. (2010a). A generalized path integral control approach
to reinforcement learning. Journal of Machine Learning Research, 11 (Nov), 3137–3181.

Theodorou, E., Buchli, J., & Schaal, S. (2010b). Reinforcement learning of motor skills in
high dimensions: A path integral approach. 2010 IEEE International Conference on
Robotics and Automation, 2397-2403.

Theodorou, E., Stulp, F., Buchli, J., & Schaal, S. (2011). An iterative path integral stochastic
optimal control approach for learning robotic tasks. In (Vol. 18, p. 11594-11601).

Theodorou, E. A. (2011). Iterative path integral stochastic optimal control: Theory and
applications to motor control. University of Southern California.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.
Todorov, E. (2008, Dec). General duality between optimal control and estimation. In 2008

47th IEEE conference on decision and control (p. 4286-4292).
Todorov, E. (2009). Efficient computation of optimal actions. Proceedings of the national

academy of sciences, 106 (28), 11478–11483.
Todorov, E., & Li, W. (2005, June). A generalized iterative lqg method for locally-optimal

feedback control of constrained nonlinear stochastic systems. In Proceedings of the 2005,
american control conference, 2005. (p. 300-306 vol. 1).

Todorov, E., & Tassa, Y. (2009). Iterative local dynamic programming. In (p. 90-95).
Tong, H., Chao, W., Qiang, H., & Bo, X. (2012). Path planning of UAV based on voronoi

diagram and dpso. In (Vol. 29, p. 4198-4203).
Vernaza, P., & Lee, D. (2011). Learning dimensional descent for optimal motion planning in

high-dimensional spaces. In (Vol. 2, p. 1126-1132).
Wikipedia contributors. (2018). Brownian motion — Wikipedia, the free encyclopedia. Avail-

able from https://en.wikipedia.org/w/index.php?title=Brownian-motion ([On-
line; accessed 15-May-2018])

Williams, G., Aldrich, A., & Theodorou, E. A. (2017). Model predictive path integral control:
From theory to parallel computation. Journal of Guidance, Control, and Dynamics,
40 (2), 344–357.

Williams, G., Drews, P., Goldfain, B., Rehg, J. M., & Theodorou, E. A. (2016). Aggressive
driving with model predictive path integral control. In Robotics and automation (icra),
2016 IEEE international conference on (pp. 1433–1440).

Williams, G., Rombokas, E., & Daniel, T. (2015). Gpu based path integral control with
learned dynamics. arXiv preprint arXiv:1503.00330 .

Yang, L., Qi, J., Xiao, J., & Yong, X. (2014). A literature review of UAV 3D path planning.
In Intelligent Control and Automation (WCICA), 2014 11th World Congress on (pp.
2376–2381).

Zammit, C., & Van Kampen, E.-J. (2018). Comparison between a* and rrt algorithms for UAV
path planning. In 2018 aiaa guidance, navigation, and control conference (p. 1846).

Decentralized Stochastic Optimal Control Bianca Bendris

100 Bibliography

Bianca Bendris Decentralized Stochastic Optimal Control

