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List of symbols & abbreviations

Symbols

aj = Area of element j in the deformed configuration.
A = Internal virtual work tensor without the constitutive parameter (see Equation (17)).
A
m

= Modified internal virtual tensor work without the constitutive parameter.

A
fr

= Internal virtual work tensor without the constitutive parameter where full rank has been

guaranteed.
A
fr2

= Tensor A
fr

reduced to the linear independent rows only.

b = External virtual work vector.
bm = External virtual work vector corresponding to modified tensor A

m
.

bfr = External virtual work vector corresponding to tensor A
fr

.

bfr2 = External virtual work vector corresponding to tensor A
fr2

.

B = Left Cauchy-Green deformation tensor.

Bj = Left Cauchy-Green deformation tensor of element j.
c1 = Constitutive parameter of the neo-Hookean material model.

cj1 = Neo-Hookean constitutive parameter of element j.
c = Constitutive parameter distribution vector.
cgt = Constitutive parameter distribution vector of the ground truth.
E = Young’s modulus.
F = Deformation gradient tensor.
I = Identity tensor.
I1 = First invariant of the left Cauchy-Green deformation tensor B.
I2 = Second invariant of the left Cauchy-Green deformation tensor B.
j = Element number of the elements throughout a cross-section.
J = Total number of elements throughout a cross-section.
kn = Exponent of virtual displacement field n.
lo = Edge length of element o on the luminal side in the deformed configuration.
n = Virtual displacement field number.
n = Local unit vector normal to the lumen-intima interface.
no = Unit vector normal to the edge of intima element o on the luminal side in the deformed

configuration.
N = Total number of virtual displacement fields.
o = Element number of the elements in the intima bordering the lumen.
O = Total number of elements in the intima bordering the lumen.
p = Hydrostatic pressure.
P = Intraluminal pressure.
Q = In-plane stiffness tensor.

rw = Total number of elements in the wall component.
ri = Total number of elements in the intima component.
rl = Total number of elements in the lumen component.
rc = Total number of elements in the calcified tissue component.
S = Surface area in the deformed configuration.
t = Cross-section thickness.
T = Traction load vector.
u∗ = Virtual displacement field (VDF) vector.
u = Actual displacement field vector.
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V = Volume in the deformed configuration.
x = x-coordinate in the deformed configuration.
y = y-coordinate in the deformed configuration.

∆ = Difference between internal virtual work vector and external virtual work vector.
∆rel = Relative difference between internal virtual work vector and external virtual work. Relative to

the external virtual work vector.
ε = Strain tensor.
θ = Angle by which the cross-sections are rotated.
λ = Eigenvalue.
ν = Poisson’s ratio.
ξ = Cost function.
σ = Cauchy stress tensor.
σj = Cauchy stress tensor of element j.
Φ = Metric indicating the proximity of the calculated constitutive parameter distribution to the

ground truth.
Ψ = Strain energy function.

Abbreviations

CS = Cross-section.
FE = Finite element.
GT = Ground truth.
M = Media.
NC = Necrotic core.
VDF = Virtual displacement field (u∗).
VFM = Virtual fields method.
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Abstract

Atherosclerosis is a lipid-driven inflammatory disease of the arteries. It causes
increased thickness of the intima layer of an artery, due to build-up of, among
others, lipid deposits. Eventually, this could cause rupture of the blood vessel’s
wall, leading to thrombus forming and possibly to clinical events. Clinically, the
degree of stenosis (degree of narrowing of the lumen) is used as a metric for risk
assessment. However, narrow arteries do not necessarily rupture, while wide ar-
teries can still rupture. Since rupture is a mechanical event, (mechanical) stress
in the arteries could be a better metric to assess rupture. Stress could be calculated
through a chosen constitutive model. However, these constitutive models require
patient-specific constitutive parameters, which presently are challenging to obtain.

To retrieve the patient-specific constitutive parameter(s), the Virtual Fields
Method (VFM) could be used. This is a method based on the principle of virtual
work. By minimizing the difference between the internal and external virtual work,
the constitutive parameter(s) can be calculated. In this study, five atherosclerotic
plaques were modeled with a neo-Hookean material model, subjected to intralumi-
nal pressure in a Finite Element (FE) environment. The nodal deformations were
used to apply the VFM in MATLAB. This was done at three levels: level 1 assumed
that, for each model, a single constitutive parameter dictated the stress behavior
of the entire atherosclerotic model. At level 2, the models were divided into four
mechanically relevant components: intima, wall, calcified tissue, and lipid com-
ponent. The ground truth for the constitutive parameter of each component was
unique (120 kPa, 250 kPa, 5 kPa, and 423 kPa for intima, wall, lipid, and cal-
cified tissue component respectively). For each of the components, a constitutive
parameter was calculated. At the last level, the nodes provided by the FE model
were used to create four-noded quadrilateral elements. For each element separately,
a constitutive parameter was calculated. This level presents two sublevels: at the
first sublevel (level 3a), the ground truth for the constitutive parameter of all ele-
ments was set at 100 kPa. At the second sublevel (level 3b), the ground truth for
the constitutive parameter of an element depended on the component the element
belonged to; the elements that belonged to the intima, wall, lipid, or calcified tissue
component had a ground truth value for their constitutive parameter of 120 kPa,
250 kPa, 5 kPa, or 423 kPa, respectively.

The results showed how for the first level, the VFM was able to calculate the
constitutive parameter within 0.2% of the ground truth. For level 2, some of the
atherosclerotic arteries’ components were calculated very accurately (within 2% of
their ground truth), while others differed greatly (by more than 20% of their ground
truth). For level 3a, it was shown how a good initial guess for the minimization
algorithm could produce very accurate results. For level 3b, a good initial guess
was lacking and the minimization algorithm was not capable of finding results that
were in close proximity to the ground truth.

Clinically, the application of the VFM can be an interesting approach for as-
sisting clinicians to decide on intervening. However, this still requires some im-
provements from the current work. The current study serves as a foundation upon
which to build.



1 Introduction

1.1 Atherosclerosis

The human blood vessel consists of three layers: the adventitia, the media, and the intima. These are the
outer, middle, and inner layers, respectively (Figure 1). Atherosclerosis is a disease of the vasculature that

Figure 1: a): Schematic cross-section of a healthy vessel, with the adventitia, media, and intima layers. b):
Schematic cross-section of an atherosclerotic artery. Here the same layers are indicated. As can be seen, the
intima layer is thickened. Modified from [1].

can start at a young age in human life. Those affected with atherosclerosis have an intima layer that is
increased in thickness mainly due to the build-up of lipid, cholesterol, and calcium [2]. At these lesion sites,
also called atherosclerotic plaques, the vessel can eventually occlude or rupture, which could ultimately be
fatal. Figure 2 shows a histological cross-section and a schematic representation of an atherosclerotic artery.
It also shows a section of a healthy carotid artery cross-section. As can be seen, the intima layer relative to
the media layer is much thicker for the atherosclerotic cross-section than the healthy cross-section.

As can be seen, due to the build-up of the necrotic core, the intima layer is much thicker (the necrotic
core is the lipid-rich component). Worldwide, atherosclerosis is the leading cause of mortality and disability
[3]. It can be caused by a high concentration of low-density lipoprotein. However, more often, it is induced
by a low concentration of low-density lipoproteins, accompanied by a risk factor (e.g. smoking, hypertension,
or genetic susceptibility) [3]. The abdominal aorta, coronary arteries, iliac arteries, and carotid bifurcations
are typically most affected [3].

Atherosclerosis can reduce or obstruct coronary blood flow, although this is rarely fatal in absence of
scarring of the heart muscle [3]. However, atherosclerosis can lead to rupture of the intima, which can cause
clinical events. A significant concern with atherosclerosis is that it can grow without showing symptoms.
This can lead to situations of acute clinical events (e.g. ischemic strokes, myocardial infarction) [1, 3]. Plaque
rupture often occurs at the part of the intima separating the necrotic core and the lumen, also called the
fibrous cap. Once rupture occurs here, the highly thrombogenic necrotic core can come into contact with
the blood, which could lead to a heart attack or a stroke [1].
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Figure 2: a): Histological cross-section of a diseased artery. Modified from [1]. b): Schematic representation
of a diseased artery. The necrotic core (NC), intima, media (M), and lumen have been indicated in the
images. Modified from [1]. c) Part of a healthy carotid artery cross-section. It shows how the intima layer
is smaller relative to the media layer for a healthy artery. Modified from [4].

For clinicians, the level of stenosis (the extent of narrowing of the lumen) is used to decide on the risk
for a plaque to lead to a clinical event, where a highly stenotic (narrowed) artery is considered at more risk.
However, the level of stenosis is not sufficient for predicting the risk of rupture, since plaques with a low level
of stenosis (wide arteries) can rupture, while plaques with a high level of stenosis (narrow arteries) might not
rupture at all [2]. As plaque rupture is closely related to acute clinical manifestations [1], a better marker is
needed for risk assessment.

Generally, when the stresses inside a material (caused by some external factor) exceed the material’s
strength, failure of the material occurs. Similarly, when the stresses caused by the blood pressure exceed the
strength of the arterial tissue, rupture occurs. Rupture can occur spontaneously, but sometimes it is caused
by other reasons, such as a temporary increase in emotional or physical stress [1, 3]. Since plaque rupture
is a mechanical event, mechanical indicators, such as stress, might be better markers for the prediction of
plaque rupture. Stress can be calculated through computational modeling. This requires several inputs: the
geometry of the atherosclerotic plaque, the loading and boundary conditions, displacements, and the con-
stitutive model. This is more challenging for atherosclerotic plaques, as their stress response is anisotropic
and heterogeneous in nature. These inputs need to be as accurate as possible for accurate stress identifica-
tion. For atherosclerotic plaques, the geometry can be found through imaging, the loading conditions can
be measured, and the deformations can be measured through imaging. The constitutive model, however,
requires patient-specific constitutive parameters. Currently, these patient-specific constitutive parameters
are challenging to obtain.

1.2 Material characterization and virtual fields method

For material with simple stress-strain behavior, the constitutive parameters could be extracted through
experimental methods. For instance, for metals under small deformations, a tension test could provide a
stress-strain curve, with which the Young’s modulus E could be calculated through the slope of the curve.
For more complex geometries and material models, simple analytical solutions for material characterization
might not be sufficient. A commonly used method for finding constitutive parameters in such cases is the
inverse Finite Element (FE) method. Generally, this occurs by measuring the spatial deformation of an
object, that underwent deformation due to a known load. The next step is to choose a constitutive model,
for which constitutive parameters are required. These are yet unknown, thus an estimation is made (based
on literature). Then, a computer model is made with the same geometry, loading conditions, and boundary
conditions, and the simulation is started. The actual deformation is then recreated in the FE environment
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using the computer model. If the difference between measured displacement and the calculated displacement
(from FE) is below a predefined threshold, the estimated constitutive parameters are accepted. If they do
not match, the estimated constitutive parameters are adjusted and the FE simulation is run again. This is
repeated until the difference in displacements is below the predefined threshold. Once this is the case, the
constitutive parameters are accepted.

The drawback of the inverse FE method is that it is a lengthy process. Each iteration requires a FE
simulation. In FE, the computation time for a single simulation scales by dofα, where dof is the degrees of
freedom of the FE model and α is a constant dependent on the solver [5]. If the object under investigation
is considered in three-dimensional geometry, with many elements, and a complex constitutive model is used,
retrieving the constitutive parameters using inverse FE method could become too time-consuming.

Another method for calculating constitutive parameters is called the Virtual Fields Method (VFM). This
is a method based on the virtual work equation that relates full-field spatial deformation to constitutive
parameters. As this method has spatial deformation as one of its inputs, it can be patient-specific, even
plaque-specific. The goal of the VFM is to calculate constitutive parameters, with which it is possible to
locally calculate stresses inside a material. Furthermore, the VFM does not involve any simulations, therefore
it is much less computationally expensive. This method relies on minimizing the difference between external
virtual work (due to an external loading) and internal virtual work (as a reaction to the external loading).
The VFM has previously been applied for the material characterization of all kinds of materials, such as
fiber composites, metals, and wood [6]. In biomechanics, it has been applied to murine aortas [7, 8, 9, 10],
human aortas [11, 12], human eardrum [13], human optic nerve head [5, 14], and canine left ventricle [15].

The goal of this thesis is to apply the VFM to simplified FE models of atherosclerotic plaques for the
calculation of their constitutive parameter(s).

This was done by first performing FE simulations of several atherosclerotic plaques, where the constitutive
parameters were chosen based on literature. The FE simulations synthetically generated the output of
clinical imaging. The output of the FE simulations (nodal displacements) served as the input for the
numerical application of the VFM performed in MATLAB (R2020a, The Mathworks Inc.), using in-house
written script. This was done at 3 levels. At level 1, the atherosclerotic plaques were assumed to have
a homogeneous constitutive parameter for the entire cross-section. At level 2, the components within the
atherosclerotic plaques behaved according to their own constitutive parameter. At level 3, the atherosclerotic
plaques were divided into elements based on the nodes provided by FE, where four neighboring nodes created
a quadrilateral element. The stress response of each element was dictated by its own constitutive parameter.
At this level, the constitutive parameter of each element was calculated separately. Level 3 was divided
into two sublevels. At level 3a, the ground truths for the constitutive parameter of the elements all had the
same value. At level 3b, the ground truth for the constitutive parameter of an element was dependent on
the component to which that element belonged. I.e. the elements belonging to the intima component all
had the same ground truth for the constitutive parameter, which was different from the ground truth for
the constitutive parameter of elements in the lipid component. These ground truths were defined by the
FE environment when the constitutive parameter of each component was given. At all levels, the result of
applying the VFM should reflect the constitutive parameters given in the FE environment.
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2 Method

2.1 Theory of Virtual Fields Method

The VFM is a method for the calculation of constitutive parameters. It commences from the virtual work
equation. The virtual work equation for a continuum body subjected to (quasi-)static load with negligible
body forces (in a three-dimensional Cartesian coordinate system) is given by [6]:

Internal virtual work︷ ︸︸ ︷∫
V

σ :
∂u∗

∂x
dV =

External virtual work︷ ︸︸ ︷∫
S

T · u∗dS (1)

Here, σ is the Cauchy stress tensor in the deformed configuration (double underlined variables indicate
second-order tensors), u∗ is the Virtual Displacement Field (VDF) vector (single underlined variables indicate
vectors), x is the location vector in the deformed configuration (x = [xy ], with x and y being the location
coordinates), V is the volume of the deformed configuration, T is the traction load vector in the deformed
configuration, and S is the surface area in the deformed configuration. The right-hand side of Equation (1)
is the virtual work done by external forces (external virtual work) and the left-hand side is the virtual work
done internally as a response (internal virtual work).

By choosing a constitutive model, the Cauchy stress tensor σ is defined as a function of spatial variables
and constitutive parameters. This means that the in the expression for virtual work (Equation (1)), there

are 5 terms: constitutive parameters, spatial variables, VDF u∗, its Jacobian ∂u∗

∂x , and traction load vector

T . Thus, to calculate the constitutive parameters, information is required on the latter four. The externally
applied traction load vector T should be known a priori. The spatial variable is calculated by first measuring
full-field displacements, then using these measurements to calculate the right spatial variable. Which spatial
variable is required, depends on the constitutive model. For instance, if an isotropic linear elastic material
model is assumed, the full-field displacement data is used to calculate the strain ε.

In a physical sense, the VDF could be understood as a chosen mathematical expression that dictates
how each material point of an object virtually deforms from the deformed configuration into the virtual
configuration. In this virtual configuration, Equation (1) holds. The requirement for the VDF is that it is
kinematically admissible, i.e. where the actual deformation is equal to zero, the virtual deformation must
also be equal to zero. Note that the VDF u∗ and (actual) full-field displacement u are not related. The VDF
is a chosen mathematical expression, while the full-field deformation u measures how the material points
of an object deform from the reference configuration to the deformed configuration. Strictly speaking, the
VDF need not have a unit of distance. This is because the principle of virtual work (on which the VFM is
based) is not an energy balance, but is equivalent to local equilibrium in combination with force boundary
conditions for a given object. See [6] for further reading.

If the constitutive model contains more than 1 constitutive parameter, a single VDF is not enough. E.g.
for a two-dimensional object modeled as an isotropic linear elastic material, two constitutive parameters
dictate the material’s stress behavior: Young’s modulus E and Poisson’s ratio ν. The constitutive model is
then given by σ = Qε with Q = Q(E, ν), where Q is the in-plane stiffness tensor [6]. In such a case, at least

two VDFs are required, so that two equations are obtained to solve for the two unknowns. If the VDFs are
not a linear combination of one another and they are kinematically admissible, two independent equations
can be created using Equation (1), with which the two constitutive parameters can be calculated. The
VDFs cannot be a linear combination of one another, as they will not be independent, and two independent
equations are required if two unknowns are to be calculated.

2.2 VFM applied to intraluminally pressurized atherosclerotic arteries

In this thesis, the atherosclerotic arteries are modeled as incompressible isotropic materials, that assume
neo-Hookean material behavior. This is because biological tissue comprises about 70% of water (and thus
can be considered incompressible) and the stress behavior of biological tissue does not behave linearly [16].
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To calculate the Cauchy stress tensor σ for this material, the strain energy function Ψ of the incompressible
isotropic neo-Hookean material model must be differentiated w.r.t the first invariant (I1) and second invariant
(I2) of the left Cauchy-Green deformation tensor B [17]:

σ = −pI + 2
∂Ψ

∂I1
B − 2

∂Ψ

∂I2
B−1 (2)

Here, p is the hydrostatic pressure, due to the incompressible behavior of biological tissue, I is the identity
tensor, and B is the left Cauchy-Green deformation tensor, given by:

B = F FT (3)

Here T indicates the transpose and F is the deformation gradient, defined as:

F =
∂x

∂X
(4)

with X the location vector of the reference configuration. The first and second invariants of the left Cauchy-
Green deformation tensor are defined as [17]:

I1(B) = tr(B) = λ1 + λ2 + λ3 (5)

I2(B) =
1

2
[tr(B)− tr(B2)] (6)

where λ1, λ2, and λ3 are the eigenvalues of the left Cauchy-Green deformation tensor B. The strain energy
function for incompressible isotropic neo-Hookean material is defined by [17]:

Ψ = c1(I1 − 3) (7)

Here c1 is the constitutive parameter. Combining Equation (2) and Equation (7) gives the Cauchy stress
tensor for incompressible neo-Hookean materials:

σ = −pI + 2c1B (8)

Rewriting Equation (1) with this constitutive model gives:∫
V

(−pI + 2c1B) :
∂u∗

∂x
dV =

∫
S

T · u∗dS (9)

Here, the traction load vector T is given as:
T = nP (10)

where P is the intraluminal pressure and n is the local unit vector normal to the lumen-intima interface
directed towards the lumen. The hydrostatic pressure p(x, y, z) is non-uniform throughout the cross-section
and is not of importance for the constitutive parameter characterization. Therefore, eliminating this variable

is desirable. By choosing the VDF u∗ such that −pI : ∂u
∗

∂x is equal to zero, the hydrostatic pressure can be

eliminated from the internal virtual work calculation, and thus need not be calculated. This requirement
can be achieved if

tr(
∂u∗

∂x
) = 0 (11)

In further analysis, it is assumed this condition holds, and thus the hydrostatic pressure term is omitted
from the Cauchy stress expression. Section 2.5 gives the VDFs used for which this condition holds.
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2.3 In-silico experiments through FE analysis

To retrieve constitutive parameters of the atherosclerotic plaques, computer models of the atherosclerotic
plaques needed to be made. From histology images of atherosclerotic carotid arteries, two-dimensional FE
atherosclerotic models were obtained. All these two-dimensional FE models operated under plane strain
assumption and contained the four mechanically relevant components: diseased intima, calcified tissue,
lipid, and wall (adventitia + media) [1]. The segmentation of the atherosclerotic plaques and the subsequent
creation of the FE models were performed in previous work [18]. Experiments were performed in a FE
environment (ABAQUS/Standard (Dassault systems)), where the two-dimensional nodal displacements were
the output. The FE simulations represented the experimental full-field displacement measurements. A
pressure load was applied to the lumen at 100 mmHg (13.33 kPa). The FE models were meshed with
quadrilateral elements with an approximate edge length of 50 µm, unless specified otherwise. The FE
models were bounded by fully encastering a single node on the outer edge of the adventitia, i.e. no rigid
body displacements were allowed.

2.4 Constitutive parameter extraction at 3 levels

In this work, constitutive parameter calculation occurred at three levels. At level 1, also called the homoge-
neous approach, the FE models were considered homogeneous. Thus, one constitutive parameter described
the stress behavior of the entire atherosclerotic plaque. In this level, the VFM was applied to calculate a
single constitutive parameter c1 per FE model.

At level 2, also called the segmentation approach, the FE models were divided into four mechanically
relevant components: the intima component, the wall component, the lipid component, and the calcified
tissue component. A distinct constitutive parameter represented each component. In this level, four consti-
tutive parameters per FE model were calculated using the VFM. In the FE environment, c1,wall = 250 kPa,
c1,intima = 120 kPa, c1,lipd = 5 kPa, and c1,calcifiedtissue = 423 kPa. These values were based on literature
[19, 20] and served as ground truth. The VFM was used to find these values from the nodal displacements.

At level 3, also called the segmentation-less approach, the FE models were divided into many elements.
These elements were created by the nodal points, where four neighboring nodes made up the corners of the
quadrilateral element. Essentially, the mesh created by the FE environment was recreated, and for each
element within the mesh, a constitutive parameter was calculated. The number of elements depended on
the FE model and is included in Appendix 7.1. Each element had its constitutive parameter, thus the VFM
was applied to each element. This level was further divided into two sublevels per FE model. At the first
sublevel (level 3a), the ground truth for the constitutive parameter of all the elements was set at 100 kPa. At
the second sublevel (level 3b), the ground truth for the constitutive parameter of an element was dictated by
the component that element belonged to, where the same values as level 2 were adopted: The ground truth
for elements that belong to the lipid component was 5 kPa; the ground truth for elements that belong to the
calcified tissue component was 423 kPa, etc. Note that in both sublevels, the cross-section was not segmented
into components. In the calculation of the constitutive parameters, elements within the same component
had the freedom to differ from one another (unlike at level 2). Only in the second sublevel, the component
an element belonged to, was used to set the ground truth of that element’s constitutive parameter.

2.5 Virtual displacement fields

For the calculation of the constitutive parameters, (at least) one VDF is required per unknown constitutive
parameter. At level 1, as described above, at least one VDF is required. For level 2, at least four VDFs are
required. For level 3, this is at least equal to the number of elements, which differs per cross-section. On top
of this, the VDFs u∗ for all levels are not allowed to be a linear combination of each other; a superposition
of two (or more) VDFs does not yield a new, independent VDF. Furthermore, to disregard the hydrostatic

pressure tr(∂u
∗

∂x ) = 0 must hold.
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The expression used for VDFs that takes all this into account was:

un∗ =

un∗1
un∗2

 =


x

x2+y2

(
x2

x2+y2

)kn
y

x2+y2

(
x2

x2+y2

)kn
 =


x2kn+1

(x2+y2)kn+1

yx2kn

(x2+y2)kn+1

 (12)

Here n indicates the (integer) number of the VDF and kn is a random value with 1 < kn < 10 associated
with VDF n. To cancel out the hydrostatic pressure p(x, y) in the internal virtual work calculation, it can
be verified that

tr

(
∂un∗

∂x

)
=
∂un∗1
∂x

+
∂un∗2
∂y

= 0 (13)

Proof of this is can be found in Appendix 7.2.
For the VDFs used, it is also required that the denominator cannot be equal to zero (see Equation (12)).

This only happens for x = 0 ∧ y = 0. To make sure this cannot happen, the origin of the coordinate system
was placed inside the lumen. There, no evaluation of the VDFs occurs (see right image in Figure 3), and
thus the denominator in Equation (12) will never be zero.

Besides increasing the number of VDFs by choosing higher n values, the chosen VDFs can be reused
by rotating the entire geometry of the atherosclerotic plaques by a certain angle θ. This changes the
coordinates of the elements at which the internal and external virtual works are evaluated, thereby creating
new independent virtual work equations.

Looking at the expression for the VDFs, it can be seen that for any value of kn, x, and y, the unit of the
VDF is m−1. This is then not a unit of distance. However, this is also not a requirement for the VDFs. It
directly influences the unit of the internal and external virtual work. Here, they did not have unit of work
(Nm), but of pressure (kPa, see next section).

2.6 Numerical calculation

The output of the FE simulations was nodal displacements, with which elements were created. These formed
the input to the calculations of constitutive parameters. These calculations were performed numerically in
MATLAB, thus Equation (1) was discretized as

J∑
j=1

(σj :
∂u∗

∂x

∣∣∣∣
j

)taj =

O∑
o=1

(Pno · u∗|o)tlo (14)

where j indicates the elements in the cross-section (with a total of J elements), o indicates the elements in
the intima that border the lumen (with a total of O elements in the intima bordering the lumen), σj is the

Cauchy stress at the center of element j, u∗|o is the VDF vector evaluated at the center of element o, ∂u
∗

∂x

∣∣∣∣
j

is the Jacobian tensor of the VDF evaluated at element j, t is the thickness of the FE model, aj is the area
of element j in the deformed configuration, lo is the edge length belonging to element o on the luminal side
in the deformed configuration (meaning the edge of element o where traction load vector T is exerted by the
blood). Traction load vector T is replaced by noP (no is the unit vector normal to edge length lo). Filling
in the expression for Cauchy stress for neo-Hookean materials (Equation (8), under the assumption that
hydrostatic pressure is removed by the choice of the VDF) and dividing by thickness t for the two-dimension
geometry of the cross-section gives:

J∑
j=1

(2cj1B
j :

∂u∗

∂x

∣∣∣∣
j

)aj =

O∑
o=1

(Pno · u∗|o)lo (15)
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This expression shows how the unit for the internal and external virtual work is kPa. For instance, on the
right-hand side, the unit for the VDF u∗|o is m−1 (Equation (12)), that of edge length lo is m, and that of
the intraluminal pressure P is kPa. These multiplied give kPa.

If multiple constitutive parameters are to be calculated, multiple virtual displacement fields un∗ are
required and multiple virtual work equations (Equation (15)) are created. This then leads to the following
equation:

Ac = b (16)

where

A =


(2B1 : ∂u

1∗

∂x

∣∣∣∣
1

)a1 . . . (2BJ : ∂u
1∗

∂x

∣∣∣∣
J

)aJ

...
. . .

...

(2B1 : ∂u
N∗

∂x

∣∣∣∣
1

)a1 . . . (2BJ : ∂u
N∗

∂x

∣∣∣∣
J

)aJ


(17)

c =


c11
...
cJ1

 (18)

b =


∑O
o (Pno · u1∗o )lo

...∑O
o (Pno · uN∗

o )lo

 (19)

Here, b is the external virtual work vector and c is the constitutive parameter distribution vector. The cost
function is defined by these three terms:

ξ = (Ac− b) · (Ac− b) (20)

The cost function was minimized by varying the constitutive parameter distribution vector c using linear
least-squares algorithm. The minimization algorithm was restricted such that each calculated constitutive
parameter entry cj1 ≥ 0. The number of rows in tensor A is (at least) equal to the number of constitutive
parameters that need to be calculated. The number of columns is equal to the number of elements created
by the FE nodal points.

For the numerical calculations, Equations (17), (18), and (19) are used to calculate the constitutive
parameters. For levels 1 and 2, Equation (18) was modified to reflect the level’s circumstance. For the level
1, since the constitutive parameter of all the elements were the same, the constitutive parameter distribution
vector c had entries that are all the same: c11 = c21 = ... = cJ1 = c1. Therefore, the constitutive parameter
distribution c looked as follows:

c =


c1
...
c1

 (21)

For level 1 calculations, minimization was not required, as there was only 1 constitutive parameter to
calculate. At level 1, the constitutive parameter was calculated through inversion. Even though there
was only 1 unknown, there were still N VDFs used, and thus N equations were created. The average of
these individual constitutive parameters was then reported as the calculated constitutive parameter of the
cross-section.
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For level 2, the ground truth of an element’s constitutive parameter took one of four distinct values,
depending on the component the element belonged to. The constitutive parameter distribution vector c was
then subdivided into four groups. The wall component, intima component, lipid component, and calcified
tissue component had rw, ri, rl, rc elements respectively. The constitutive distribution vector c then looked
as follows:

c =



cw1
...
cw1
ci1
...
ci1
cl1
...
cl1
cc1
...
cc1



(22)

where for rw elements c1 = cw1 , for ri elements c1 = ci1, for rl elements c1 = cl1, and for rc elements c1 = cc1.
For level 3, the elements had the freedom to attain their own values, thus no modification of Equation

(18) was required. The numerical calculations were performed using a custom-written MATLAB script. This
has been included in Appendix 7.7.

To evaluate the accuracy of a calculated constitutive parameter distribution vector c, a metric is required.
To that end, the following metric was used:

Φ =

∑J
j=1 |c

j
1 − c

j
gt|∑J

j=1 c
j
1

(23)

where cj1 and cjgt indicate the j-th value of the c and cgt vectors respectively, with cgt being the constitutive
parameter distribution of the ground truth.

For Φ = 0, cj1 = cjgt, thus the calculated constitutive parameter distribution is equal to that of the ground
truth. If Φ > 0, the calculated constitutive parameter distribution vector differs from the ground truth. The
larger the value of Φ, the larger the deviation of the calculated constitutive parameters from the ground
truth, with a maximum of Φ = 1.
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3 Results

3.1 Representative cross-section

For the first cross-section, Figure 3a depicts the histology image, from which the schematic model (Figure
3b) and a FE model (Figure 3c) were created. The histology and models were created in previous work [18].
This FE model is a representative case for the other cross-sections. The FE mesh applied to the cross-sections
had an approximated edge length of 50 µm. The creation of other FE models was also performed similarly
[18] and are shown in Appendix 7.1.

Figure 3: a): Stained histology image of atherosclerotic artery cross-section 1. From this cross-section, a
schematic model and FE model were created. b): Schematic model of the components of an atherosclerotic
artery cross-section. The delineated regions all indicate a component. c): FE model of an atherosclerotic
artery. The model was meshed with 17495 four-noded quadrilateral elements (black lines). The components
were color-coded. The calcified tissue component can be seen in green, the wall component can be seen in blue,
the lipid component is seen in gray, and the intima component can be seen in red. The inset shows the border
between the intima component and lipid component. This depicts the individual four-noded quadrilateral
elements in this region.

3.2 Results for level 1: homogeneous approach

At level 1, the atherosclerotic arteries were considered homogeneous structures; the entire cross-section
was dictated by one constitutive parameter. Since only one constitutive parameter was calculated, simple
inversion was sufficient to calculate the constitutive parameter. To account for random errors (e.g. rounding
errors), multiple VDFs were used to calculate the constitutive parameter many times. The average of these
then represented the (definitive) constitutive parameter. In total N = 3.5 ∗ 104 VDFs were used. Table 1
shows the calculated c1 values for level 1. All constitutive parameter values are given in kPa. The ground
truth was set at 100 kPa. As can be seen, the calculated c1 value for each cross-section is very close to the
ground truth value (± 0.2%). For each cross-section, table 1 also gives the Φ (Equation (23)) value for each
cross-section. As these values are very close to zero, it confirms the accurate calculation of the constitutive
parameters.

3.3 Results for level 2: segmentation approach

At the second level, the atherosclerotic arteries were considered heterogeneous arteries, comprising of 4
components. Each component was represented by a distinct constitutive parameter. In this level, the VFM
was applied to retrieve four constitutive parameters. Here, ministration was used to retrieve the constitutive
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Table 1: This table shows the calculated c1 value for the level 1 approach, and the corresponding Φ value for
each cross-section. The c1 values are in unit of kPa. Here, the cross-sections (CS) were assumed to behave
homogeneously. The ground truth was set at 100 kPa. As can be seen, the cross-sections are very close to
the ground truth (GT).

GT CS 1 CS2 CS3 CS4 CS5
c1 100 100.04 100.02 100.18 100.03 100.07
Φ 0 4.00 ∗ 10−4 2.00 ∗ 10−4 1.8 ∗ 10−3 3.00 ∗ 10−4 7.00 ∗ 10−4

parameters. Again, N = 3.5∗104 VDFs were used to create the same amount of virtual work equations. One
of the inputs of the minimization algorithm was the initial guess of the constitutive parameter distribution.
The minimization algorithm started from this initial guess. In this level, the initial guess for each of the
four constitutive parameters was chosen at random between 0 and 1000 kPa. In level 2, the minimization
algorithm was performed 100 times, each time with a different initial guess for all four components. The
average constitutive parameter for each component of each iteration was reported in Table 2. The ground
truth was set at 250 kPa, 120 kPa, 423 kPa, and 5 kPa for the wall component, intima component, calcified
tissue component, and lipid component, respectively. For all cross-sections, the Φ value is also reported in
Table 2.

Table 2: This table shows the calculated c1 values for the level 2 approach and the corresponding Φ value for
each cross-section. Here the cross-sections (CS) behaved heterogeneously, by containing components that had
different ground truths for their constitutive parameters. The ground truth (GT) has also been shown. All
constitutive parameters are given in unit of kPa.

Intima Wall Lipid Calcified tissue Φ

GT 120 250 5 423 0
CS1 136.52 206.06 6.07 623.24 0.2693
CS2 121.05 251.00 5.03 419.81 0.0066
CS3 121.08 241.20 6.62 501.06 0.1030
CS4 120.36 255.87 2.47 408.81 0.0291
CS5 123.08 199.61 5.73 494.03 0.1523

As can be seen, the VFM was able to fairly accurately calculate the constitutive parameter of the
individual components. The intima component was correctly calculated within 15% of the ground truth in
all cross-sections. The wall component was mostly correct within 20% of the ground truth. When it comes
to the lipid component, the relative error can be as large as 50%. However, this was not a large deviation in
absolute terms. The ultimate goal of the VFM was for the absolute error to be small, which was the case.
Lastly, the calcified tissue component showed large deviations from the ground truth. These were as big as
47%. Not only was this large in relative terms, but the absolute error of 200.24 kPa was also considerable.

The Φ values were in agreement with the differences between constitutive parameters and ground truths.
Cross-section 1 had the highest Φ value (Φ = 0.2693), as the c1 value for the calcified tissue component
differed greatly from that of the ground truth and likewise for the wall component. The second highest Φ
value (Φ = 0.1523) was from cross-section 5, due to the calcified tissue and wall component. Then came
cross-section 3 (Φ = 0.1030). This was due to the difference between the calculated c1 value of the calcified
tissue component and that of the ground truth. For cross-sections 2 and 4, the difference between Φ values
was not very big, as their constitutive parameters were in close proximity to one another. These were also
the smallest, as their calculated constitutive parameters were closest to the ground truth.
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3.4 Results for level 3: segmentation-less approach

At the third level, the FE models of the atherosclerotic arteries were subdivided into four-noded quadrilateral
elements. The stress response of each element was dictated by a single constitutive parameter. The VFM was
used to calculate each element’s constitutive parameter. At this level, the number of unknown constitutive
parameters are significantly larger than the previous two levels. The number of VDFs required is dependent
on the size of the cross-section and the approximate edge length of the elements. For the cross-section
shown in Figure 3c, there were 17495 elements, each with an unknown constitutive parameter. Thus for this
cross-section, at least the same amount of VDFs was required. With N = 3.5 ∗ 104 VDFs, this condition
was met for all cross-sections in this level.

Two sublevels are presented.

3.4.1 Level 3a: homogeneous segmentation-less approach

At the first sublevel, every element had the same ground truth value for the constitutive parameter. Here,
that ground truth value for all the constitutive parameters was set at 100 kPa.

For the calculation of the constitutive parameters, it was helpful to make use of the homogeneous character
of the cross-section. A good initial guess was found by starting from the notion that in this case, the entries
in the constitutive parameter distribution vector c (Equation (18)) were all equal, i.e. c11 = c21 = ... = cJ1 = c1.
Therefore, Equation (15) was written as:

c1

J∑
j=1

(2Bj :
∂u∗

∂x

∣∣∣∣
j

)aj =

O∑
o=1

(Pno · u∗|o)lo (24)

Using the nodal displacements, the deformation gradient F was calculated, and subsequently left Cauchy-

Green deformation tensor B = F FT . Also, the nodal displacements allowed for the calculation of each
element’s areas ae and the length lo where the traction load was applied. Any VDF described by Equation

(12) defined u∗|o and ∂u∗

∂x

∣∣∣∣
j

. The traction load vector Pno was evaluated by knowledge of the luminal

pressure (100 mmHg/13.33 kPa) and the unit vector normal to the edge of the intima on the luminal side
created from the nodal displacements. The only unknown was c1, thus simple inversion lead to an initial
guess for the minimization algorithm. This initial guess was called c0j

To minimize random errors (e.g. round-off errors), this was performed for multiple virtual work equations,
using multiple VDFs, which lead to multiple initial guesses c0j . The results of level 3a used in total N =
3.5 ∗ 104 VDFs, with which 3.5 ∗ 104 c0j values were calculated. Averaging over these resulted in the initial
guess c0 for all the elements. Essentially, the outcome of level 1 was used as an initial guess for level 3a.

Figure 4 shows the constitutive parameter distribution vector c calculated for cross-section 1. It shows
the c1 values (vertical axis) against the element number (horizontal axis), where each bar represents the
constitutive parameter of a single element. As can be seen, most of the elements were calculated to have a
value close to the ground truth. The ground truth is depicted by the red dashed line in the same figure. It
shows how each element (horizontal axis) had a ground truth value of 100 kPa (vertical axis). The Φ value
(Equation (23)) was equal to 0.0022. The proximity to zero shows that this was a very good constitutive
parameter distribution. Cross-sections 2,4, and 5 showed a similar constitutive parameter distribution as
Figure 4. Cross-section 3 ranged between 0.99 kPa and 278.3 kPa (see Appendix 7.3 for the bar graph). The
Φ values for cross-sections 2-5 were 7.813 ∗ 10−04, 0.0566, 0.00170, and 0.00180, respectively.
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Figure 4: This bar graph shows the calculated c1 values of all the elements in cross-section 1 for the level 3a
approach. As can be seen, the elements (horizontal axis) mostly hover around a constitutive parameter value
(vertical axis) of 100 kPa. The red dashed line indicates the ground truth.

3.4.2 Level 3b: heterogeneous segmentation-less approach

At the second sublevel, the number of constitutive parameters to be calculated was again equal to the number
of elements. This time, however, the ground truth for the constitutive parameter of an element was dictated
by the component that element belonged to (e.g. the ground truth value for the constitutive parameter
of all the elements in the calcified tissue component was equal to 423 kPa). This has been illustrated in
Figure 3c. As can be seen, the intima (red region) was divided into many elements. For each element in
the intima component, a constitutive parameter was calculated, that has a different ground truth from, e.g.,
the constitutive parameters of the calcified tissue (green region). The red dashed line in Figure 5 shows the
ground truth for this level. As can be seen, the elements are unified into four element groups, separated by
the vertical black lines. The components have also been indicated in the figure. The ground truths for the
elements in the intima component, wall component, lipid component, and calcified tissue component were
set at 120 kPa, 250 kPa, 5 kPa, and 423 kPa, respectively. At this level, the approach did not allow for
a priori knowledge of the grouping of the elements. As there is also no homogeneity in the cross-section,
no useful initial guess was found for the minimization algorithm. Therefore, this had been set as a value
between 0 and 1000 kPa, randomly assigned to each constitutive parameter.

Applying the VFM for this sublevel resulted in the bar graph shown in Figure 5. As can be seen, the
results were not similar in any fashion to the desired result (red dashed line in the same figure), other than
that the calculated c1 values were all positive (which was imposed by the minimization algorithm). The Φ
value was equal to 0.6128. This is very large, compared to the Φ value of level 3a (which was 0.0022).

It appears that the lipid component (elements 14430 to 17143) can be differentiated from the neighboring
element sets (because of its comparatively low constitutive parameter values), however, the c1 values differed
greatly from the ground truth (5 kPa). The values ranged from 0.00 kPa to 657.28 kPa, with an average of
65.00 kPa. For this cross-section, it was clear that those elements made up a component, but the constitutive
parameters that made up the component cannot be accurately calculated. This distinction of the lipid
components is also seen in the other cross-section, except for cross-section 9 (see Appendix 7.4).

Comparing Figure 5 to the ground truth (red dashed line in the same figure), it may appear that the
calcified tissue component could be discerned due to the constitutive parameters being distinctly higher
than that of the lipid component. This, however, was solely due to the order of the components within
this bar graph. If, for instance, the placing of the intima component and the calcified tissue component
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was reversed (i.e. the calcified tissue component would have been next to the wall component), the calcified
tissue component could not have been discerned from the wall component in Figure 5.

The constitutive parameter distributions of the cross-sections 2-5 showed similar results and are included
in Appendix 7.4. Their Φ values were 0.5815, 0.6807, 0.5951, and 0.6999, for cross-section 2 - 5, respectively.

Figure 5: This bar graph shows the calculated c1 value of all the elements in cross-section 1 for the level
3b approach. As can be seen, the elements (horizontal axis) all had varying constitutive parameter values
(vertical axis). It did not resemble the red dashed line, which was the ground truth. The black vertical lines
delineate the figure into four groups of elements. Each group represents the elements in the corresponding
component, e.g. the calcified tissue (CT) component can be found in the most-right group.
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4 Discussion

4.1 Discussion results level 1

For the first level, it is clear that the results were very close to the ground truth. At most the calculated
constitutive parameter differed by 0.18 kPa. This is an error smaller than 0.2% compared to the ground truth.
This accuracy means the VFM successfully retrieved the constitutive parameter value of the cross-sections.

4.2 Discussion results level 2

At this level, the results were fairly satisfactory, as most calculated c1 values were within 20 kPa of the
ground truth. Some components differed very much from the ground truth (> 75 kPa). For example, the
calcified tissue of cross-section 1 differed 200.24 kPa from the ground truth.

Further analysis showed that if the kn values for the VDFs (Equation (12)) were allowed to range from
1 < kn < 60, the results improved, as demonstrated in Table 3.

Table 3: This table shows the calculated c1 values for the level 2 approach, where the kn value in the VDFs
(Equation(12)) was allowed to range from 1 < kn < 60. The reported c1 values are in unit of kPa. The
ground truth (GT) is also included. For each cross-section, the Φ value is also included.

Intima Wall Lipid Calcified tissue Φ

GT 120 250 5 423 0
CS1 123.55 241.10 5.16 442.40 0.0394
CS2 120.49 250.47 4.95 421.59 0.0030
CS3 120.90 243.08 6.05 510.38 0.1093
CS4 120.05 251.80 5.32 418.51 0.0084
CS5 121.46 227.58 5.31 455.91 0.0705

As can be seen, almost all entries had values closer to the ground truth compared to the corresponding
entries in Table 2. Some changed slightly, while others got more than 10% closer to the ground truth.
Only a few differed greater from the ground truth than the corresponding entries in Table 2, but none of
them significantly (< 10 kPa). This improvement was also seen in the Φ values. The Φ value of cross-
section 3 increased by 0.0063, which is a small increase. The other Φ values all decreased by 0.2344, 0.0036,
0.0207, and 0.0818 for cross-section 1,2,4, and 5, respectively. This shows that the role the exponent plays
is not insignificant. It is not entirely clear why this change of range resulted in (much) better results. This
improvement implies further detailed investigation may shed some light on why this is the case and perhaps
yield a strategy for choosing optimal exponents.

Furthermore, even though the constitutive parameters were much closer to the ground truth, the difference
between the ground truth and the calculated constitutive parameter could still be large. For the calcified
tissue component of cross-section 3 for instance, the difference between the ground truth and the calculated
constitutive parameter was 87.38 kPa.

4.3 Discussion results level 3

4.3.1 Level 3a

For level 3a it was clear that the results have mostly been accurately calculated. As can be seen in the bar
graph (Figure 4), the values were near 100 kPa. Figure 6 shows a histogram of all the calculated constitutive
parameters. As can be seen, all constitutive parameters were within 4 kPa of the ground truth, indicated
by the red dashed line.
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Figure 6: Histogram of the calculated constitutive parameters for level 3a. Each bar represents a range of
0.05 kPa. All elements attained a value close to the ground truth of 100 kPa (indicated by the red dashed
line). The range for the constitutive parameters is between 97.5 kPa and 101.5 kPa.

The reason the constitutive parameters were not (exactly) 100 kPa is likely due to the difference between
the calculated internal virtual work vector and external virtual work vector:

∆ = Acgt − b (25)

The minimization algorithm minimizes the cost function ξ (Equation (20)), which contains the internal
virtual work vector and the external virtual work vector. If these two are not equal, there could be a
constitutive parameter distribution with a lower ξ value than the ground truth. This can occur as the
internal virtual work and external virtual work are approximated by sums, rather than calculated exactly
through integrals (Equations (1) and (14)). Since the initial guess was reasonably close to the ground truth,
the resulting calculated constitutive parameter distribution resembled the ground truth.

The role of the initial guess for the minimization algorithm is an important one and is demonstrated in
Figure 7. This figure shows what the calculated constitutive parameter distribution would look if the initial
guess for each element in the minimization algorithm was chosen at random between 0 and 1000 kPa, instead
of using the knowledge of the homogeneous cross-section to find a good initial guess. As can be seen, the
constitutive parameter distribution did not resemble the ground truth (red dashed line in Figure 7). In such
a scenario, the Φ value was equal to 0.7255. This is a large increase compared to the scenario where a good
initial guess was used. Then, the Φ value was equal to 0.0022.

For the discussion on level 3a, cross-section 1 is used as a representative case. The discussion points also
hold for cross-sections 2, 4, and 5. For cross-section 3, the range in c1 values was bigger (between 0.99 kPa
and 278.3 kPa, see Appendix 7.3). This was most likely due to the condition number, the ∆, and the initial
guess. The initial guess for the minimization algorithm was retrieved from Table 1. In Table 1, cross-section
3 has the biggest deviation from the ground truth. This bigger range is also reflected in the Φ values. These
were 0.00220, 7.813 ∗ 10−04, 0.0566, 0.00170, and 0.00180 for cross-sections 1-5, respectively. The Φ value of
cross-section 3 is at least 25 times larger than that of the others, but it is still close to 0. This signifies that
there are still lots of constitutive parameters close to the ground truth; 85% of the entries are within 10 kPa
of the ground truth.

Furthermore, there is the condition number. The condition number is calculated by the ratio of the
largest singular value to the lowest singular value of a second-order tensor. The singular values of any
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second-order tensor D can be found by taking the square root of the eigenvalues of the DTD tensor. The
condition number indicates the sensitivity of a second-order tensor between the input and output. In other
words, if the condition number is high, that means that a small change in the input can give a large change
in the output. Here, the input was the initial guess. Since the condition number of tensor A for cross-section

3 was 5.84 ∗ 1018, this small deviation from the ground truth was enough to result in a larger range in the
calculated constitutive parameters.

Lastly, there are ∆ and ∆rel. ∆ is the difference between internal and external virtual work vector
(Equation (26)), and ∆rel is the difference between internal virtual work and external virtual work, relative
to the external virtual work. In terms of subscripts:

∆rel,n =
∆n

bn
(26)

The n-th entry of ∆rel is given by the n-th entry of ∆ divided by the n-th entry of b. ∆ and ∆rel were an
order of magnitude larger than that of the other cross-sections (see Figure 25 in Appendix 7.5 and Figure
27 in Appendix 7.6). If the errors are larger, the initial guess less accurate, and the condition number is
high, it is more difficult for the minimization algorithm to find a correct distribution than for the other
cross-sections.

If the best value of Table 1 was used as an initial guess (which was 100.02 kPa, as it was closest to the
ground truth), the range of the constitutive parameter distribution vector would be smaller (between 53.59
kPa and 148.64 kPa). The Φ value was then decreased to 0.0331.

Figure 7: This bar graph shows the calculated constitutive parameter distribution vector c distribution if
the initial guess to the minimization algorithm was chosen at random between 0 and 1000 kPa for each
constitutive parameter. As can be seen, the calculated c1 values varied much and were not close to the
ground truth value of 100 kPa. The ground truth is shown by the red dashed line.

4.3.2 Level 3b

For level 3b, as can be seen in Figure 5, the results were not similar to the ground truth (red dashed line
in the same figure). This is possibly due to three reasons: the difference between the internal virtual work
vector and external virtual work vector, the rank, and the condition number. The discussion on level 3b is
represented by cross-section 1, though it also holds for cross-sections 2-5.
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∆ and ∆rel:

First, there is the difference between the internal virtual work vector and external virtual work vector
∆ (Equation (25)), and the relative difference between the internal virtual work vector and external virtual
work vector ∆rel(Equation (26)).

Ideally, each entry in ∆ (and thus ∆rel) should be zero, but here they were not, due to the discretization
of the integrals into sums (Equations (1) and (14)). For the constitutive parameter distribution calculated
in Figure 5, the ∆ and ∆rel have been depicted in Figure 8. It shows the ∆ and ∆rel for each VDF used.
As can be seen in the figure, both values were very low. Thus it can be expected that the ∆ and ∆rel did
not play a significant role in the inaccurate calculation of the constitutive parameter distribution. Also, if
a good initial guess is possible, level 3a showed that an accurate calculation of the constitutive parameter
distribution is possible, despite having ∆ and ∆rel distribution in the same order as level 3b (see Appendix
7.5 for ∆ and ∆rel of level 3a).

Figure 8: This figure depicts ∆ and ∆rel for cross-section 1 at level 3b. The top plot depicts the difference
vector ∆ (Equation (25)). As can be seen, the difference between the internal and external virtual work
(vertical axis) is small for all VDFs (horizontal axis). The unit of ∆ is kPa, see Section 2.5 for the details of
this. The bottom plot depicts the relative difference vector (Equation (26)). The relative difference (vertical
axis) also is small for all VDFs (horizontal axis).

Rank :

Next, the rank could explain the difference between c and cgt. The rank of a second-order tensor is the
number of rows (or columns) in a second-order tensor that is independent of the other rows (or columns),
i.e. the number of rows (or columns) that is not a linear combination of the other rows (or columns). In
terms of the VFM, if tensor A (Equation (17)) has rows that are a linear combination of other rows, this
means that the one VDF is a linear combination of other VDFs.

For tensor A that was used to create Figure 5, the rank was 1127, meaning A tensor had (only) 1127
independent rows. As there are 17495 elements in this cross-section, full rank would have been attained at
a rank of 17495.

It is not clear why tensor A is rank-deficient. Looking at the VDFs (Equation (12)), it is clear that from
one VDF to the next, the difference is the exponent value kn. Since between two VDFs, the difference is in
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the exponent, and not a factor, this (inherently) should dispel any notion of linear dependency. Furthermore,
each entry within tensor A is subjected to element-specific properties (the left Cauchy-Green deformation
tensor entries, the derivative of the VDF are calculated at the center of an element, and lastly the area is
also element-specific, see Equation (17)).

Condition number :

Other than the rank, the condition number may also have an impact on the calculation of the constitu-
tive parameter distribution. The condition number is calculated by the ratio of the largest singular value
to the lowest singular value of a second-order tensor and indicates the sensitivity of a second-order tensor
between the input and output. The tensor A that lead to the creation of Figure 5 had a condition number

of 3.33 ∗ 1018. Such a high condition number means that if the initial guess (input) is too far from the
ground truth, the minimization algorithm was not able to find the ground truth (output). At level 3b, the
initial guess for the constitutive parameters was chosen as random values between 0 and 1000 kPa for each
constitutive parameter. This was not sufficiently close to the ground truth for the minimization algorithm
to find the ground truth.

High condition number and good initial guess:

A high condition number and good initial guess were exemplified at level 3a, where tensor A had a very

high condition number, at 1.96 ∗ 1018 (in the same order as at level 3b). This time, a sufficiently close initial
guess resulted in a solution that is similar to the ground truth (red dashed line vs bars in Figure 4).

For level 3b, finding a decent initial guess requires at least knowledge of the grouping of the elements
into components, such as at level 2. Then, just like at level 2, the elements could be grouped into their
components, and within a component, a homogeneous constitutive parameter can be calculated. If for all
components the (homogeneous) constitutive parameters are calculated, this then serves as an initial guess at
level 3b for all elements belonging to their respective component. In essence, if the grouping of the elements
into components is known, the procedure is to use the output of level 2 as an input for level 3b.

If the values found in Table 2 for cross-section 1 were used as initial guesses, then the resulting constitutive
distribution is depicted in Figure 9. As can be seen, in such a case the calculated constitutive parameter
distribution c showed the grouping of the elements (four distinct groups of elements can be identified by their
c1 value). The average constitutive parameter for each element group was calculated as 135.96 kPa, 205.57
kPa, 6.45 kPa, and 589.27 kPa for the intima component, wall component, lipid component, and calcified
tissue component, respectively. It seemed that the elements did not change much relative to the initial guess.
This was due to the condition number being very high. This caused many local minima in the cost function
ξ for the minimization algorithm to find. This again shows that in the presence of a large condition number,
an accurate initial guess is required. If, for instance, the initial guess was retrieved from cross-section 1 in
Table 3, the calculated constitutive parameter distribution seemed more aligned with the ground truth, see
Figure 10. Here, the average values were 123.49 kPa, 241.07 kPa, 5.19 kPa, and 441.19 kPa for the intima
component, wall component, lipid component, and calcified tissue component, respectively. This was much
closer to the ground truth (120 kPa, 250 kPa, 5 kPa, and 432 kPa respectively). This improvement was also
reflected in the Φ value of each constitutive parameter distribution. For Figure 9, this value was 0.1956,
while for Figure 10 this was 0.0353, which is a large reduction.
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Figure 9: This bar graph depicts the calculated constitutive parameter distribution for cross-section 1 (Figure
3), where the initial guess for the minimization was provided by Table 2 CS1. The red dashed line indicates
the ground truth. The vertical lines divide the constitutive parameter distribution into four groups of ele-
ments. Each group of elements constitutes a component (intima, wall, lipid, or calcified tissue (CT)). These
components have been indicated in the figure.

Figure 10: This bar graph depicts the calculated constitutive parameter distribution for cross-section 1 (Fig-
ure 3), where the initial guess for the minimization was provided by Table 3 CS1. The red dashed line
indicates the ground truth. The vertical lines divide the constitutive parameter distribution into four groups
of elements. Each group of elements constitutes a component (intima, wall, lipid, or calcified tissue (CT)).
These components have been indicated in the figure.
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Low condition number and random initial guess:

If the grouping of the elements into components is not known, the condition number must be lowered
to get an accurate constitutive parameter distribution. To illustrate how a tensor A with a low condition
number would perform, a modified A tensor is created:

A
m

= A
m

= A+ I (27)

where I is the identity tensor (the identity tensor was appended with rows at the bottom containing zeros
as tensor A was not square). For cross-section 1, the modified tensor A

m
had a condition number of 2.59

and attained a rank of 17495. The condition number of A
m

was significantly lower than that of the original

tensor A (which was 3.33 ∗ 1018). Since there are 17495 constitutive parameters to calculate, A
m

attained
full rank.

Next, also the external virtual work vector b needed to be modified, as the modified internal virtual work
vector A

m
cgt no longer was equal to the (original) external virtual work vector:

bm = A
m
cgt (28)

Using these modified tensor A
m

and the modified external virtual work vector bm in the minimization
algorithm lead to the constitutive parameter distribution depicted in Figure 11. As can be seen, the distri-
bution calculated was very similar to the ground truth, even though the initial guess for each constitutive
parameter was set at a random value between 0 and 1000 kPa. This was also represented by its Φ value
(Equation (23)), which was equal to 4.60 ∗ 10−9. This illustrates the importance of the condition number
and rank.

Figure 11: This bar graph shows the constitutive parameter distribution if modified tensor A
m

and modified
external virtual work vector bm are used. The initial guess for each c1 parameter in the minimization
algorithm was set as a random value between 0 and 1000 kPa. The ground truth for such an approximate
element size is represented by the red dashed line. As can be seen, the calculated constitutive parameters and
the ground truth overlap much. The vertical lines divide the constitutive parameter distribution into 4 groups
of elements. Each group of elements constitutes a component (intima, wall, lipid, or calcified tissue (CT)).
These components have been indicated in the figure.

The reason the condition number is drastically lowered by adding the identity tensor has to do with
the definition of the condition number and the entries of the A tensor. In the case of the A tensor that
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created Figure 5, the A tensor had a size of 35000 x 17495. This means there are 35000x17495 = 6.12 ∗ 108

entries. The vast majority of these entries (95.8%) had values between −0.5 ∗ 10−4 and 1.0 ∗ 10−4, while
the maximum absolute entry was 1.4 ∗ 10−3. This showed that the entries of tensor A were all small. If
an identity tensor (with relatively large entries in the main diagonal) was added to such a tensor, the other
entries were ’overshadowed’ in their influence on the singular values. The singular values were then mostly
dictated by the identity tensor, and by extension also the condition number. As the singular values of an
identity tensor are all equal to 1, the modified tensor A

m
was expected to have a condition number close to

1. In a mathematical sense, the singular values of tensor A
m

is calculated by taking the square root of the

eigenvalues of tensor A
m
AT
m

. If tensor A
m
AT
m

mostly has small values on the non-main diagonal entries,
and 1 plus a small value on the main diagonal, this is then approximately a square identity tensor, with
singular values close to 1. The largest singular value divided by the smallest singular value (which is equal
to the condition number) should then be close to 1.

Rank vs. condition number :

It was already shown that the influence of ∆ (Equation (25)) and ∆rel (Equation (26)) did not play
a large role in the accurate calculation of the constitutive parameters due to their magnitude. It is then
interesting to see which of the remaining two, rank or condition number, is more important. It should be
noted that in the presence of a good initial guess, neither are necessary, as was shown in Figure 4. For the
rest of this discussion, it was assumed the initial guess for each constitutive parameter was chosen at random
between a value of 0 and 1000 kPa.

To investigate the influence of condition number and rank, two scenarios were to be tested: one where
the condition number was high and the rank was full, and one where the condition number was low, while
the rank was not full.

A method was found to deliver the first scenario. By including many more VDFs than unknowns, full
rank was achieved. The tensor A where full rank was achieved in this manner was called A

fr
and the

corresponding external virtual work vector was called bfr. This was unfeasible when the elements in a
cross-section had an approximate edge length of 50 µm as it was too computationally expensive. Changing
the edge length to an approximate size of 400 micrometers drastically reduced the computational cost and
allowed the investigation of this method. For cross-section 1, this translated to a cross-section with 420
elements. Using N = 1 ∗ 105 VDFs, full rank was reached, thus tensor A

fr
had a rank of 420 after applying

this method. Afterwards, the rows that spanned this very large tensor A
fr

and the corresponding rows in

the external virtual work vector bfr components were selected to create a new tensor A
fr2

and external

virtual work vector bfr2. This resulted in a second-order tensor of size 420x420 with rank 420 and condition

number 4.04 ∗ 1011, and a vector of size 420x1.
Figure 12 depicts the calculated constitutive parameter distribution when tensor A

fr2
and virtual external

work vector bfr2 were used in the minimization algorithm. The initial guess for each constitutive parameter
was set at a random value between 0 and 1000 kPa. The ground truth is depicted in the same figure as a
red dashed line. As can be seen, even though a full rank was achieved, the calculated constitutive parameter
distribution did not resemble the ground truth. This is due to the large condition number. If the condition
number is large, there are lots of local minima in the cost function ξ. The minimization algorithm can get
’stuck’ in such a local minimum. This leads to the conclusion that in the absence of a good initial guess, full
rank by itself is not enough for accurate constitutive parameter calculation.

In the second scenario, the condition number is to be low while the A should be rank-deficient. No method
was found that allowed for this. This was probably because the two properties are mutually exclusive: if
the condition number is low, it implies full rank for tensor A. This could be explained as follows: If any

second-order tensor D is rank-deficient, the second-order tensor E = DTD is also rank-deficient. This then
means that some eigenvalues λ are zero. The condition number is defined as:

cond(E) =

√
λmax√
λmin

(29)
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Figure 12: This bar graph shows the constitutive parameter (vertical axis) distribution for elements (hori-
zontal axis) of cross-section 1 if many more VDFs are used compared to the number of unknowns. For this
cross-section, the approximate element size was set at 400 µm. The ground truth for such an approximate
element size is represented by the red dashed line. The vertical lines divide the constitutive parameter distri-
bution into four groups of elements. Each group of elements constitutes a component (intima, wall, lipid, or
calcified tissue (CT)). These components have been indicated in the figure.

As λmin goes to zero, cond(E) goes to infinity. It is therefore not possible to have a low condition number
while the rank is deficient.

From these two scenarios and the fact that the best c distribution (based on Φ values) was calculated
when the condition number was low (condition number of A

m
was 2.59), it is concluded that a low condition

number is required for accurate constitutive parameter calculations (in absence of a good initial guess).
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5 Recommendations

For level 3b, based on the successful calculation of the constitutive parameters using tensor A
m

and vector
bm, it can be helpful to engineer tensor A such that the main diagonal contains relatively large values. This
would create a tensor that resembles an identity tensor, and thus ensure a low condition number.

The entries in tensor A are made up of the left Cauchy-Green tensor B, the area a, and the Jacobian of

the VDF ∂u∗

∂x . Within a column in tensor A, the former two are the same for each row, and the only term that

differs is the latter. Thus, within a column, the only way to influence the values in the rows is by influencing
∂u∗

∂x . Taking a closer look on the first column of tensor A (which is evaluated at the center of the first element),

it must mean that B1
11
∂u1∗

1

∂x + 2B1
12
∂u1∗

1

∂y +B1
22
∂u1∗

2

∂y is large compared to B1
11
∂un∗

1

∂x + 2B1
12
∂un∗

1

∂y +B1
22
∂un∗

2

∂y for
n > 1. This could be achieved by making sure the Jacobian of the first VDF has got high values at the
center of element 1, while the other VDFs have got low values for their Jacobian at the center of element
1. Note that the first VDF is also applied to the other elements in the first row of tensor A. The first VDF
must thus be such that the first column in the first row has a relatively high value compared to the other
columns in the first row. Basically, VDF q should have high Jacobian values at element w for q = w, and it
should have low Jacobian values at elements q 6= w.

One of the requirements for the VDFs was that the trace of the Jacobian of the VDFs should be zero. In
the entries of tensor A, the two terms in that trace are multiplied by left Cauchy-Green tensor components:

B11
∂u∗1
∂x +B22

∂u∗2
∂y . B11 and B22 are often close to one another in value, thus their total contribution often is

small. Since these left Cauchy-Green tensor components are more complex to control, it could be beneficial

to focus on the term
∂u1∗

2

∂y to control the entries in tensor A. One method to influence the entry could then

be to engineer
∂u1∗

2

∂y such that it would then have relatively high values compared to the other components
in the main diagonal of tensor A.

From the discussion for level 2, it is apparent that the exponent kn plays a significant role in the calcula-
tion of accurate constitutive parameters. In the discussion, going from 1 < kn < 10 to 1 < kn < 60 changes
the constitutive parameters of level 2 drastically. Understanding and predicting which exponent range leads
to more accurate results could greatly increase the accuracy of the constitutive parameter calculation.

The current constitutive model should be considered as a starting point. It is not accurate to describe
heterogeneous, anisotropic atherosclerotic plaques with an isotropic constitutive model. Thus, it is rec-
ommended to expand to other constitutive models that are more representative of atherosclerotic plaques.
A Holzapfel constitutive model or a Fung constitutive model could be more accurate, as these allow for
anisotropy. These have previously been applied to murine ascending aorta [7, 8, 9] and a human ascending
aorta [10].

An expansion of the current study is to check for heterogeneity within a component. At level 3b, each
element within a component had the freedom to attain its own constitutive parameter. However, the ground
truth of all elements within a component was the same. In reality, this is not accurate. Any component has
heterogeneity within the component, as it is structurally not homogeneous. Therefore, having heterogeneity
within a component would be one step closer to actual atherosclerotic plaques. This could be an interesting
level 3c. This would making a good initial guess more challenging.
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6 Conclusion

This study was focused on the characterization of constitutive parameters for two-dimensional FE atheroscle-
rotic plaques using the VFM. The goal was to expand from a homogeneous approach to a segmentation-less
element-wise approach. It was shown how up until the segmentation-less approach the VFM can be (very)
successful in calculating the constitutive parameters. As soon as the deformed nodes are used to create
elements, of which the constitutive parameters are calculated in a heterogeneous setting (level 3b), the ap-
plication of the VFM is not accurate in calculating the constitutive parameters. In absence of a good initial
guess, tensor A (Equation (17)) must have a lowered condition number for this method to achieve acceptable
results.

Presently, there are still some hurdles to overcome before the VFM could be used in clinical applications.
While finding a method that could lower the condition number of tensor A for a heterogeneous segmentation-
less approach (level 3b) would be a major step forward, the current models (geometry, constitutive model,
VFM) need to be expanded to more accurately represent atherosclerotic plaques. These more accurate
models would allow for calculations of constitutive parameters that better represent the atherosclerotic
plaques, with which more accurate stress distribution can be found. Once the current hurdles are overcome,
and the models better represent the atherosclerotic plaques, the next step would then be to use experimental
deformation data, rather than synthetically created in a FE environment. The present study, however,
provides a foundation upon which to build.
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[11] Jin-Hwan Kim, Stéphane Avril, Ambroise Duprey, and Jean-Pierre Favre. Experimental characterization
of rupture in human aortic aneurysms using a full-field measurement technique. Biomechanics and
modeling in mechanobiology, 11(6):841–853, 2012.
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7 Appendix

7.1 Histology, schematic, and FE model cross-sections

Figure 13: Left: Stained histology image of an atherosclerotic artery cross-section 2. From these cross-
sections, schematic and finite element models are created. Middle: Schematic image of the components of
an atherosclerotic artery cross-section. The delineated regions all indicate a component. Right: FE model of
an atherosclerotic artery. The model was meshed with 28509 four-noded quadrilateral elements (black lines).
The components are color-coded. The calcified tissue component can be seen in green, the wall component
can be seen in blue, the lipid component is seen in gray, and the intima component can be seen in red. This
image also shows the origin of the coordinate system.

Figure 14: Left: Stained histology image of an atherosclerotic artery cross-section 3. From these cross-
sections, schematic and finite element models are created. Middle: Schematic image of the components of
an atherosclerotic artery cross-section. The delineated regions all indicate a component. Right: FE model of
an atherosclerotic artery. The model was meshed with 20381 four-noded quadrilateral elements (black lines).
The components are color-coded. The calcified tissue component can be seen in green, the wall component
can be seen in blue, the lipid component is seen in gray, and the intima component can be seen in red. This
image also shows the origin of the coordinate system.
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Figure 15: Left: Stained histology image of an atherosclerotic artery cross-section 4. From these cross-
sections, schematic and finite element models are created. Middle: Schematic image of the components of
an atherosclerotic artery cross-section. The delineated regions all indicate a component. Right: FE model of
an atherosclerotic artery. The model was meshed with 22952 four-noded quadrilateral elements (black lines).
The components are color-coded. The calcified tissue component can be seen in green, the wall component
can be seen in blue, the lipid component is seen in gray, and the intima component can be seen in red. This
image also shows the origin of the coordinate system.

Figure 16: Left: Stained histology image of an atherosclerotic artery cross-section 5. From these cross-
sections, schematic and finite element models are created. Middle: Schematic image of the components of
an atherosclerotic artery cross-section. The delineated regions all indicate a component. Right: FE model of
an atherosclerotic artery. The model was meshed with 30770 four-noded quadrilateral elements (black lines).
The components are color-coded. The calcified tissue component can be seen in green, the wall component
can be seen in blue, the lipid component is seen in gray, and the intima component can be seen in red. This
image also shows the origin of the coordinate system.
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7.2 Proof trace of Jacobian of the VDFs used is equal to zero.

This section shows how the trace of the Jacobian of the VDFs used is equal to zero. The VDFs are written
as:

un∗ =

[
un∗1
un∗2

]
=


x2kn+1

(x2+y2)kn+1

yx2kn

(x2+y2)kn+1

 (30)

Next, the Jacobian of these VDFs is equal to:

∂un∗

∂x
=


∂un∗

1

∂x
∂un∗

1

∂y

∂un∗
2

∂x
∂un∗

2

∂y

 (31)

The trace of this tensor simply reads:

tr(
∂un∗

∂x
) =

∂un∗1
∂x

+
∂un∗1
∂y

(32)

The first partial derivative gives:

∂un∗1
∂x

=
∂ x2kn+1

(x2+y2)kn+1

∂x
=
x2kn((2kn + 1)y2 − x2)

(x2 + y2)kn+2
(33)

The second partial derivative

∂un∗2
∂y

=
∂ yx2kn

(x2+y2)kn+1

∂y
= −x

2kn((2kn + 1)y2 − x2)

(x2 + y2)kn+2
(34)

This shows how
∂un∗1
∂x

= −∂u
n∗
2

∂y
(35)

and thus showing that the trace of the Jacobian of the VDFs must be equal to zero, for any x, y, kn, as long
as x2 + y2 6= 0. This has been ensured by placing the origin of the coordinate system in the lumen.
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7.3 Level 3a results Cross-section 2-5

Figure 17: This bar graph shows the calculated c1 values of all elements in cross-section 2 for the level 3a
approach. As can be seen, the elements (horizontal axis) mostly hover around a constitutive parameter value
(vertical axis) of 100 kPa. The red dashed line indicates the ground truth.

Figure 18: This bar graph shows the calculated c1 values of all elements in cross-section 3 for the level 3a
approach. As can be seen, the elements (horizontal axis) sometimes have a larger or smaller constitutive
parameter value (vertical axis) than the ground truth (red dashed line).
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Figure 19: This bar graph shows the calculated c1 values of all elements in cross-section 4 for the level 3a
approach. As can be seen, the elements (horizontal axis) mostly hover around a constitutive parameter value
(vertical axis) of 100 kPa. The red dashed line indicates the ground truth.

Figure 20: This bar graph shows the calculated c1 values of all elements in cross-section 5 for the level 3a
approach. As can be seen, the elements (horizontal axis) mostly hover around a constitutive parameter value
(vertical axis) of 100 kPa. The red dashed line indicates the ground truth.
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7.4 Level 3b results Cross-section 2-5

Figure 21: This bar graph shows the calculated c1 values of all elements in cross-section 2 for the level
3a approach. As can be seen, the elements (horizontal axis) all have varying constitutive parameter values
(vertical axis). It does not resemble the red dashed line in any way, which is the ground truth. The black
vertical lines delineate the figure into four groups of elements. Each group represents the elements in the
corresponding component, e.g. the calcified tissue (CT) component can be found in the second-from-right
group, and the lipid (L) component can be found in the most-right group.

Figure 22: This bar graph shows the calculated c1 values of all elements in cross-section 3 for the level
3a approach. As can be seen, the elements (horizontal axis) all have varying constitutive parameter values
(vertical axis). It does not resemble the red dashed line in any way, which is the ground truth. The black
vertical lines delineate the figure into four groups of elements. Each group represents the elements in the
corresponding component, e.g. the calcified tissue (CT) component can be found in the most-right group.
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Figure 23: This bar graph shows the calculated c1 values of all elements in cross-section 4 for the level
3a approach. As can be seen, the elements (horizontal axis) all have varying constitutive parameter values
(vertical axis). It does not resemble the red dashed line in any way, which is the ground truth. The black
vertical lines delineate the figure into four groups of elements. Each group represents the elements in the
corresponding component, e.g. the calcified tissue (CT) component can be found in the second-from-right
group, and the lipid (L) component can be found in the most-right group.

Figure 24: This bar graph shows the calculated c1 values of all elements in cross-section 5 for the level
3a approach. As can be seen, the elements (horizontal axis) all have varying constitutive parameter values
(vertical axis). It does not resemble the red dashed line in any way, which is the ground truth. The black
vertical lines delineate the figure into four groups of elements. Each group represents the elements in the
corresponding component, the calcified tissue (CT) component can be found in the second-from-right group.
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7.5 ∆ and ∆rel for level 3a cross-section 1

Figure 25: This figure depicts ∆ and ∆rel for cross-section 1 at level 3a. The top plot depicts the difference
vector ∆ (Equation (25)). As can be seen, the absolute difference between them is small. The bottom plot
depicts the relative difference vector (Equation (26)). The relative difference also is small. The unit of ∆ is
kPa, see Section 2.5 for the details of this.

Figure 26: This figure depicts ∆ and ∆rel for cross-section 1 at level 3b. The top plot depicts the difference
vector ∆ (Equation (25)). As can be seen, the absolute difference between them is small. The bottom plot
depicts the relative difference vector (Equation (26)). The relative difference also is small. This is the same
figure as shown in Section 4.3.2. Comparing this figure to the one above, it is clear that ∆ for level 3a is in
the same order as ∆ for level 3b. The same holds for the ∆rel of both sublevels. The unit of ∆ is kPa, see
Section 2.5 for the details of this.
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7.6 ∆ and ∆rel for level 3a cross-section 3

Figure 27: This figure depicts ∆ and ∆rel for cross-section 3 at level 3a. The top plot depicts the difference
vector ∆ (Equation (25)). The bottom plot depicts the relative difference vector (Equation (26)). This figure
shows how ∆ and ∆rel are an order of magnitude larger than cross-section 1’s ∆ and ∆rel. The unit of ∆
is kPa, see Section 2.5 for the details of this.
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7.7 MATLAB script

The MATLAB script is divided into two. One set of scripts is meant for level 1 and 3a, while the other is
meant for level 2 and 3b. The ”dataload” files reference input and report files, created by ABAQUS.

7.7.1 Level 1 and 3a

main.m :

1

2 % clc
3 clear
4 % close all
5

6 c = fix(clock); totaltime=tic; disp([' Simulation started on ' ...
7 ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ,num2str(c(5))])
8

9 % % version 5 = Geo 5, 50 micron homogeneous
10 % % version 6 = Geo 6, 50 micron homogeneous
11 % % version 7 = Geo 7, 50 micron homogeneous
12 % % version 8 = Geo 8, 50 micron homogeneous
13 % % version 9 = Geo 9, 50 micron homogeneous
14

15

16 delt = 1000; % 1000 for KPa, 1 for MPa
17 P = 0.01333*delt;
18

19

20 minfield = 1;
21 field =100;
22 rots = 350;
23 fact = 9;
24 addpv = 1;
25 powervec = addpv+(fact*rand(rots*(field-minfield+1),1));
26

27 for version = 5:9
28 c = fix(clock); disp([' Version ', num2str(version), ' started at ' ...
29 ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ,num2str(c(5))])
30 dataloadlevel1
31

32 MaxRot=180-(180/(rots+1));
33 Delta = zeros(rots*(field-minfield+1),1); IV ...

W=zeros(rots*(field-minfield+1),length(Elset)); EVW=zeros(rots*(field-minfield+1),1);
34 clearvars 'IVW2'
35

36 for i = 1:rots;from = (i-1)*(field-minfield+1)+1; to = ...
(i-1)*(field-minfield+1)+field-minfield+1;

37 rotnr = i;
38

39 theta = ((i-1)/rots)*MaxRot ;
40

41 R = [cosd(theta), -sind(theta); sind(theta) cosd(theta)];
42

43 coordn = R*[x';y']; COORDn = R*[X';Y'];
44 xn=coordn(1,:)'; yn = coordn(2,:)'; Xn=COORDn(1,:)'; Yn=COORDn(2,:)';
45

46 [Delta(from:to,1), IVW(from:to,:),EVW(from:to,1),¬] ...
=Encalc4 2(xn,yn,Xn,Yn,lumn,Elset,field,minfield,delt,gt,powervec,rotnr,P) ;

47

48 end
49

50

51

52 %% Cvalue calculation level 1
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53

54 IVW2(:,1) = sum(IVW,2);
55 cvalsLevel1{version} = EVW./IVW2 ;
56

57 cvalavgLevel1(version) = mean(cvalsLevel1{version});
58

59 disp([' Level 3a: For Geo',num2str(version),', the c1 value found is ', ...
num2str(cvalavgLevel1(version)), ' kPa '])

60

61

62 %% Cvalue calculation level 3a
63 % zeroth case is taken from section above.
64

65 options = optimoptions(@lsqlin,'Algorithm','trust-region-reflective');
66 lb=zeros(length(Elset),1);
67 ub=[];
68

69

70 x0 = cvalavgLevel1(version)*ones(length(Elset),1);
71 [xvals,res,¬,flag]=lsqlin(IVW,EVW,[],[],[],[],lb,[],x0,options);
72

73 disp([' Lsqlin finished, now saving '])
74

75

76 cvalues level3a{version} = (xvals);
77 figure('keyPressFcn', @keyPressFcn);
78 bar(cvalues level3a{version});
79 title(['Geo',num2str(version)])
80 savename = "workspace version"+num2str(version)+" Including IVW";
81 save(savename, '-v7.3')
82 c = fix(clock); disp([' version ', num2str(version), ' finished at ' ...
83 ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ,num2str(c(5))])
84 end
85 c = fix(clock); disp([' Total simulation time = ', num2str(toc(totaltime)),...
86 ' seconds and finished on ',num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)) ...
87 ,' at ',num2str(c(4)) ,':' ,num2str(c(5)),])
88

89

90 %% Discussion
91 % The following section is commented out, as it is not necessary to have
92 % when runing the code for results. Uncomment for discussion plots.
93 % make sure to have the workspace mats in the current folder. Also make
94 % sure to have dataloadlevel2.m in here.
95

96

97 %%%%%%%%%%%%%%%%%%%%%%%%% Running Geo 5 (= cross section 1) again, but this time with
98 % random initial guess.
99

100 % x0level3a random ini = delt*rand(length(Elset),1);
101 % ...

[xvalslevel3a random ini,reslevel3a random ini,¬,flaglevel3a random ini]=lsqlin(IVW,EVW ...
...

102 % ,[],[],[],[],lb,[],x0level3a random ini,options);
103

104 %%%%%%%%%%%%%%%%%%%%%%%%%

dataload1.m :

1 if version==5 % Geo 5 homogeneous 50 micron
2

3 Name input file='Geo5homo0050.inp';
4 report='Geo5homo0050report.rpt';
5 StartRowAllNodes=18; EndRowAllNodes=17832; Startreport=20; Endreport=17834;
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6 lumn=[
7 4, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627 ...
8 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643 ...
9 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659 ...

10 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675 ...
11 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691 ...
12 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707 ...
13 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723 ...
14 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739 ...
15 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755 ...
16 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771 ...
17 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787 ...
18 788, 789];
19 lumn=[lumn lumn(1)];
20 Geo5elset0050
21 gt=0.1*ones(length(Elset),1);
22

23

24 elseif version==6 % Geo 6 homogeneous 50 micron
25

26 Name input file='Geo6homo0050.inp';
27 report='Geo6homo0050report.rpt';
28 StartRowAllNodes=18; EndRowAllNodes=28961; Startreport=20; Endreport=28963;
29 lumn=[2, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515 ...
30 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531 ...
31 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547 ...
32 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563 ...
33 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579 ...
34 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595 ...
35 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611 ...
36 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627 ...
37 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643 ...
38 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659 ...
39 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675 ...
40 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691 ...
41 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707 ...
42 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723 ...
43 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739 ...
44 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755];
45 lumn=[lumn lumn(1)];
46 Geo6elset0050
47 gt=0.1*ones(length(Elset),1);
48

49

50

51 elseif version==7 % Geo 7 homogeneous 50 micron
52

53 Name input file='Geo7homo0050.inp';
54 report='Geo7homo0050report.rpt';
55 StartRowAllNodes=18; EndRowAllNodes=20672; Startreport=20; Endreport=20674;
56 lumn=[2, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373 ...
57 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389 ...
58 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405 ...
59 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421 ...
60 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437];
61 lumn=[lumn lumn(1)];
62 Geo7elset0050
63 gt=0.1*ones(length(Elset),1);
64

65

66

67 elseif version==8 % Geo 8 homogeneous 50 micron
68

69 Name input file='Geo8homo0050.inp';
70 report='Geo8homo0050report.rpt';
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71 StartRowAllNodes=18; EndRowAllNodes=23361; Startreport=20; Endreport=23363;
72 lumn=[ 2, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437 ...
73 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453 ...
74 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469 ...
75 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485 ...
76 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501 ...
77 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517 ...
78 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533 ...
79 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549 ...
80 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565 ...
81 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581 ...
82 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597 ...
83 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613 ...
84 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629 ...
85 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645 ...
86 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661 ...
87 662, 663, 664, 665];
88 lumn=[lumn lumn(1)];
89 Geo8elset0050
90 gt=0.1*ones(length(Elset),1);
91

92

93 elseif version==9 % Geo 9 homogeneous 50 micron
94

95 Name input file='Geo9homo0050.inp';
96 report='Geo9homo0050report.rpt';
97 StartRowAllNodes=18; EndRowAllNodes=31147; Startreport=20; Endreport=31149;
98 lumn=[
99 2, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459 ...

100 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475 ...
101 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491 ...
102 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507 ...
103 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523 ...
104 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539 ...
105 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555 ...
106 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571 ...
107 572, 573, 574, 575, 576, 577, 578, 579, 580, 581];
108 lumn=[lumn lumn(1)];
109 Geo9elset0050
110 gt=0.1*ones(length(Elset),1);
111

112

113 else
114 error('version number is not correct')
115

116 end
117

118 [¬,X,Y]=LoadAllNodesFun(Name input file,StartRowAllNodes,EndRowAllNodes);
119 [¬,x,y]=LoadAllDefNodesFun(report,Startreport,Endreport);

LoadAllNodesFun.m:

1 function ...
[nodecoordinates,X,Y]=LoadAllNodesFun(Name input file,StartRowAllNodes,EndRowAllNodes)

2 %% Loading input geometry
3

4 % % This interesting function reads the input file.
5

6

7 %% Initialize variables. Outside geometry
8 filename = Name input file;
9 delimiter = ',';

10 %The first and the last line of the nodes in the ABAQUS input file:
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11 startRow = StartRowAllNodes;
12 endRow = EndRowAllNodes;
13

14 %% Format string for each line of text:
15 % column1: double (%f)
16 % column2: double (%f)
17 % column3: double (%f)
18 % column4: double (%f)
19 % For more information, see the TEXTSCAN documentation.
20 formatSpec = '%f%f%f%*s%[ˆ\n\r]';
21

22 %% Open the text file.
23 fileID = fopen(filename,'r');
24

25 %% Read columns of data according to format string.
26 % This call is based on the structure of the file used to generate this
27 % code. If an error occurs for a different file, try regenerating the code
28 % from the Import Tool.
29 dataArray = textscan(fileID, formatSpec, endRow-startRow+1, 'Delimiter', delimiter, ...

'EmptyValue' ,NaN,'HeaderLines', startRow-1, 'ReturnOnError', false);
30

31 %% Close the text file.
32 fclose(fileID);
33

34 %% Post processing for unimportable data.
35 % No unimportable data rules were applied during the import, so no post
36 % processing code is included. To generate code which works for
37 % unimportable data, select unimportable cells in a file and regenerate the
38 % script.
39

40 %% Create output variable
41 nodecoordinates = [dataArray{1:end-1}];
42 X = dataArray{2}; Y = dataArray{3};
43 %% Clear temporary variables
44 clearvars filename delimiter startRow endRow formatSpec fileID dataArray ans;
45

46 end

LoadAllDefNodesFun.m:

1 function [nodedefcoordinates,x,y]=LoadAllDefNodesFun(xydef,Startxydef,Endxydef)
2 %% Loading input geometry
3

4 %% Initialize variables. Outside geometry
5 filename = xydef;
6 delimiter = ',';
7 %The first and the last line of the nodes in the ABAQUS input file:
8 startRow = Startxydef;
9 endRow = Endxydef;

10

11 %% Format string for each line of text:
12 % column1: double (%f)
13 % column2: double (%f)
14 % column3: double (%f)
15 % column4: double (%f)
16 % For more information, see the TEXTSCAN documentation.
17 formatSpec = '%f%f%f%*s%[ˆ\n\r]';
18

19 %% Open the text file.
20 fileID = fopen(filename,'r');
21

22 %% Read columns of data according to format string.
23 % This call is based on the structure of the file used to generate this
24 % code. If an error occurs for a different file, try regenerating the code
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25 % from the Import Tool.
26 dataArray = textscan(fileID, formatSpec, endRow-startRow+1, 'Delimiter', delimiter, ...

'EmptyValue' ,NaN,'HeaderLines', startRow-1, 'ReturnOnError', false);
27

28 %% Close the text file.
29 fclose(fileID);
30

31 %% Post processing for unimportable data.
32 % No unimportable data rules were applied during the import, so no post
33 % processing code is included. To generate code which works for
34 % unimportable data, select unimportable cells in a file and regenerate the
35 % script.
36

37 %% Create output variable
38 nodedefcoordinates = [dataArray{1:end-1}];
39 x=dataArray{2};y=dataArray{3};
40 %% Clear temporary variables
41 clearvars filename delimiter startRow endRow formatSpec fileID dataArray ans;
42

43 end

virfield 4.m:

1 function u = virfield 4(field,minfield,xmid,ymid ,powervec,rotnr)
2 u=zeros(size(xmid,1),field-minfield+1);
3 % cutting the element edge in correct number of lines.
4

5

6 for k = minfield:field
7 k2 = (rotnr-1)*(field-minfield+1)+k-minfield+1;
8 a=powervec(k2);
9 % if rem(k2,2)== 0 % Even, 2 4 6 8

10 u(:,2*k-(2*minfield)+1:2*k-2*minfield+2) = ...
[xmid./(xmid.ˆ2+ymid.ˆ2),ymid./(xmid.ˆ2+ymid.ˆ2)].*...

11 (xmid.ˆ2./(xmid.ˆ2+ymid.ˆ2)).ˆ(a);
12 % elseif rem(k2,2)6= 0 % uneven --> The k-1 is required to turn the exponents 3 5 7 9 ...

to 2 4 6 8
13 % u(:,2*k-(2*minfield)+1:2*k-2*minfield+2) = ...

[xmid./(xmid.ˆ2+ymid.ˆ2),ymid./(xmid.ˆ2+ymid.ˆ2)].*...
14 % (ymid.ˆ2./(xmid.ˆ2+ymid.ˆ2)).ˆ(a);
15 % end
16 end
17

18

19

20

21 end

virstrain 4.m:

1 function [e11, e22, e12] = virstrain 4(xcen, ycen, field,minfield,powervec,rotnr)
2 x=xcen; y=ycen;e11 = zeros(size(xcen,1),field-minfield+1);e12 = ...

zeros(size(xcen,1),field-minfield+1);
3 e22 = zeros(size(xcen,1),field-minfield+1);
4 for k = minfield:field
5 a=powervec((rotnr-1)*(field-minfield+1)+k-minfield+1);
6

7 e11(:,k-minfield+1) = ((x.ˆ2./(x.ˆ2 + y.ˆ2)).ˆa.*(2.*a.*y.ˆ2 - x.ˆ2 + y.ˆ2))./(x.ˆ2 + ...
y.ˆ2).ˆ2;

8 e22(:,k-minfield+1) = -((x.ˆ2./(x.ˆ2 + y.ˆ2)).ˆa.*(2.*a.*y.ˆ2 - x.ˆ2 + y.ˆ2))./(x.ˆ2 + ...
y.ˆ2).ˆ2;
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9 e12(:,k-minfield+1) = -(y.*(x.ˆ2./(x.ˆ2 + y.ˆ2)).ˆa.*(a.*x.ˆ2 - a.*y.ˆ2 + ...
2.*x.ˆ2))./(x.*(x.ˆ2 + y.ˆ2).ˆ2);

10

11

12

13 end

keyPressFcn.m:

1 %% Version 2.0
2

3

4

5 function N(obj,eve)
6 if eve.Character == '.'
7 xl = xlim; yl = ylim;
8 h = findobj('type','figure');
9 A=zeros(1,length(h));

10 for i = 1:length(h)
11 A(i) = h(i).Number;
12 end
13 A=sort(A);
14 ix = find(A==obj.Number);
15 if ix == length(A)
16 n = A(1);
17 else
18 n = A(ix+1);
19 end
20 figure(n);
21 xlim(xl); ylim(yl);
22 end
23 if eve.Character == ','
24 xl = xlim; yl = ylim;
25 h = findobj('type','figure');
26 A=zeros(1,length(h));
27 for i = 1:length(h)
28 A(i) = h(i).Number;
29 end
30 A=sort(A);
31 ix = find(A==obj.Number);
32 if ix == 1
33 n = A(end);
34 else
35 n = A(ix-1);
36 end
37 figure(n);
38 xlim(xl); ylim(yl);
39 end
40

41 if eve.Character == '2'
42

43 h = findobj('type','figure');
44 A=zeros(1,length(h));
45 for i = 1:length(h)
46 A(i) = h(i).Number;
47 end
48 A=sort(A);
49 ix = find(A==obj.Number);
50 if ix == length(A)
51 n = A(1);
52 else
53 n = A(ix+1);
54 end
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55 figure(n);
56

57 end
58 if eve.Character == '1'
59

60 h = findobj('type','figure');
61 A=zeros(1,length(h));
62 for i = 1:length(h)
63 A(i) = h(i).Number;
64 end
65 A=sort(A);
66 ix = find(A==obj.Number);
67 if ix == 1
68 n = A(end);
69 else
70 n = A(ix-1);
71 end
72 figure(n);
73

74 end
75 end

7.7.2 Level 2 and 3b

main.m :

1 % clc
2 clear
3 % close all
4

5 c = fix(clock); totaltime=tic; disp([' Simulation started on ' ...
6 ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ...

,num2str(c(5)),])
7 timeforEn =tic;
8

9 % % version 5 = Geo 5, 50 micron heterogeneous
10 % % version 6 = Geo 6, 50 micron heterogeneous
11 % % version 7 = Geo 7, 50 micron heterogeneous
12 % % version 8 = Geo 8, 50 micron heterogeneous
13 % % version 9 = Geo 9, 50 micron heterogeneous
14

15 delt = 1000; % 1000 for KPa, 1 for MPa
16 P = 0.01333*delt;
17

18

19 minfield =1;
20 field =100; %1520 %
21 rots = 350; % 30 geeft rank = 187 %
22 fact = 9;
23 addpv = 1.0; % add to powervec.
24 % powervec = addpv+(fact*rand(rots*(field-minfield+1),1));
25

26 powervec = addpv+(fact*rand(rots*(field-minfield+1),1));
27

28 for version = 5:9
29 c = fix(clock); totaltime=tic; disp([' Version ', num2str(version), ' started at ' ...
30 ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ...

,num2str(c(5)),])
31 dataloadlevel2 3b
32

33 MaxRot=180-(180/(rots+1));
34 Delta = zeros(rots*(field-minfield+1),1); ...

IVW=zeros(rots*(field-minfield+1),length(Elset)); EVW=zeros(rots*(field-minfield+1),1);
35 clearvars 'IVW4'
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36

37 for i = 1:rots;from = (i-1)*(field-minfield+1)+1; to = ...
(i-1)*(field-minfield+1)+field-minfield+1;

38 rotnr = i;
39 theta = ((i-1)/rots)*MaxRot ;
40 R = [cosd(theta), -sind(theta); sind(theta) cosd(theta)];
41 coordn = R*[x';y']; COORDn = R*[X';Y'];
42 xn=coordn(1,:)'; yn = coordn(2,:)'; Xn=COORDn(1,:)'; Yn=COORDn(2,:)';
43 [Delta(from:to,1), IVW(from:to,:),EVW(from:to,1),¬] ...

=Encalc4 2(xn,yn,Xn,Yn,lumn,Elset,field,minfield,delt,gt,powervec,rotnr,P) ;
44 end
45

46 %%
47

48 IVW4(:,1) = sum(IVW(:, plaquenr),2); IVW4(:,2) = sum(IVW(:,wallnr),2);
49 IVW4(:,3) = sum(IVW(:,lipidnr),2); IVW4(:,4) = sum(IVW(:,calcnr),2);
50 condIVW4 = cond(IVW4); rankIVW4 = rank(IVW4);
51 disp([' Geo',num2str(version), 'cond IVW4 = ', num2str( condIVW4),', rank IVW4 = ...

', num2str( rankIVW4)])
52

53 %%
54

55 options = optimoptions(@lsqlin,'Display','none','Algorithm','trust-region-reflective');
56 lb=zeros(4,1);
57 ub=[];
58 % Level 2 calculation
59 for i = 1 :100
60 x0level2(:,i) =1000*rand(4,1);
61 [cvalslevel2(i,:),reslevel2(i,1),¬,flaglevel2(i,1)]=lsqlin(IVW4,EVW,[],[],[],[],lb,[], ...
62 x0level2(:,i),options);
63 end
64

65 c valueslevel2(version,:) = mean(cvalslevel2);
66

67 % Level 3b calculation
68

69 x0level3b = delt*rand(length(Elset),1);
70 lb=zeros(length(Elset),1);
71 [cvalslevel3b,reslevel3b,¬,flaglevel3b]=lsqlin(IVW,EVW,[],[],[],[],lb,[],x0level3b,options);
72

73 disp([' Both lsqlin finished, now saving '])
74

75 cvalues level3b{version} = (cvalslevel3b);
76 figure('keyPressFcn', @keyPressFcn);
77 bar(cvalues level3b{version});
78 title(['Geo',num2str(version)])
79 savename = "workspace level2 and 3b version"+num2str(version)+" Including IVW";
80 save(savename, '-v7.3')
81

82 c = fix(clock); disp([' version ', num2str(version), ' finished at ' ...
83 ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ,num2str(c(5))])
84 end
85

86 %% Table creation
87 tabIntima = c valueslevel2(5:9,1);
88 tabWall = c valueslevel2(5:9,2);
89 tabLipid = c valueslevel2(5:9,3);
90 tabCalc = c valueslevel2(5:9,4);
91 Cross sections = {'Geo5';'Geo6';'Geo7';'Geo8';'Geo9';};
92 T = table(Cross sections,tabIntima,tabWall,tabLipid,tabCalc)
93

94

95 c = fix(clock); disp([' Total simulation time = ', num2str(toc(totaltime)),...
96 ' seconds and finished on ',num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)) ...
97 ,' at ',num2str(c(4)) ,':' ,num2str(c(5)),])

51



98

99 %% Discussion
100 % The following section is commented out, as it is not necessary to have
101 % when runing the code for results. Uncomment for discussion plots.
102 % make sure to have the workspace mats in the current folder. Also make
103 % sure to have dataloadlevel2 3b.m in here.
104

105 %%%%%%%%%%%%%%%%%%%%%%% better initial guess for level 3a, initial guess from Table 2
106 % name = "workspace level2 and 3b version9 Including IVW";
107 % c valueslevel2=load(name, 'c valueslevel2');c valueslevel2 = c valueslevel2.c valueslevel2;
108 %
109 % version =5;
110 %
111 % dataloadlevel2 3b
112 % x0 x0 from level2 = zeros(length(Elset),1); x0 x0 from level2(plaquenr)= ...

c valueslevel2(5,1);
113 % x0 x0 from level2(wallnr)= c valueslevel2(5,2); x0 x0 from level2(lipidnr)= ...

c valueslevel2(5,3);
114 % x0 x0 from level2(calcnr)= c valueslevel2(5,4);
115 % options = optimoptions(@lsqlin,'Display','none','Algorithm','trust-region-reflective');
116 % lb=zeros(length(Elset),1);
117 % ub=[];
118 % [cvals x0 from level2,res x0 from level2,¬,flag x0 from level2]=lsqlin(IVW,EVW ...
119 % ,[],[],[],[],lb,[],x0 x0 from level2,options);
120

121 %%%%%%%%%%%%%%%%%%%%%%% creation of level 2, letting 1<k<60 (Table 3)
122

123 % minfield =1;
124 % field =100; %1520 %
125 % rots = 350; % 30 geeft rank = 187 %
126 % fact = 59;
127 % addpv = 1.0; % add to powervec.
128 % powervec if 1 k 60 = addpv+(fact*rand(rots*(field-minfield+1),1));
129 %
130 % for version = 5:9
131 % c = fix(clock); totaltime=tic; disp([' Version ', num2str(version), ' started at ...

' ...
132 % ,num2str(c(3)),'-',num2str(c(2)),'-', num2str(c(1)),' at ',num2str(c(4)) ,':' ...

,num2str(c(5)),])
133 % dataloadlevel2 3b
134 %
135 % MaxRot=180-(180/(rots+1));
136 % Delta = zeros(rots*(field-minfield+1),1); ...

IVW=zeros(rots*(field-minfield+1),length(Elset)); EVW=zeros(rots*(field-minfield+1),1);
137 % clearvars 'IVW4'
138 %
139 % for i = 1:rots;from = (i-1)*(field-minfield+1)+1; to = ...

(i-1)*(field-minfield+1)+field-minfield+1;
140 % rotnr = i;
141 % theta = ((i-1)/rots)*MaxRot ;
142 % R = [cosd(theta), -sind(theta); sind(theta) cosd(theta)];
143 % coordn = R*[x';y']; COORDn = R*[X';Y'];
144 % xn=coordn(1,:)'; yn = coordn(2,:)'; Xn=COORDn(1,:)'; Yn=COORDn(2,:)';
145 % [Delta(from:to,1), IVW(from:to,:),EVW(from:to,1),¬] ...

=Encalc4 2(xn,yn,Xn,Yn,lumn,Elset,field,minfield,delt,gt,powervec,rotnr,P) ;
146 % end
147 %
148 % %%
149 %
150 % IVW4(:,1) = sum(IVW(:, plaquenr),2); IVW4(:,2) = sum(IVW(:,wallnr),2);
151 % IVW4(:,3) = sum(IVW(:,lipidnr),2); IVW4(:,4) = sum(IVW(:,calcnr),2);
152 % condIVW4 = cond(IVW4); rankIVW4 = rank(IVW4);
153 % disp([' Geo',num2str(version), 'cond IVW4 = ', num2str( condIVW4),', rank ...

IVW4 = ', num2str( rankIVW4)])
154 %
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155 % %%
156 %
157 % options = optimoptions(@lsqlin,'Display','none','Algorithm','trust-region-reflective');
158 % lb=zeros(4,1);
159 % ub=[];
160 %
161 % for i = 1 :100
162 % x0level2 if 1 k 60(:,i) =1000*rand(4,1);
163 % [cvalslevel if 1 k 602(i,:),reslevel2 if 1 k 60(i,1),¬,flaglevel2 if 1 k 60(i,1)]= ...
164 % lsqlin(IVW4,EVW,[],[],[],[],lb,[],x0level2 if 1 k 60(:,i),options);
165 % end
166 % c valueslevel2 if 1 k 60(version,:) = mean(cvalslevel2 if 1 k 60);
167 % end
168 %
169 % tabIntima2 = c valueslevel2 if 1 k 60(5:9,1);
170 % tabWall2 = c valueslevel2 if 1 k 60(5:9,2);
171 % tabLipid2 = c valueslevel2 if 1 k 60(5:9,3);
172 % tabCalc2 = c valueslevel2 if 1 k 60(5:9,4);
173 % Cross sections2 = {'Geo5';'Geo6';'Geo7';'Geo8';'Geo9';};
174 % T2 = table(Cross sections2,tabIntima2,tabWall2,tabLipid2,tabCalc2)
175

176 %%%%%%%%%%%%%%%%%%%%%%% Using results of table 3 (i.e. 1<k<60) as initial
177 % guess for level 3b:
178 % x0 x0 from level2 T3 = zeros(length(Elset),1);
179 % x0 x0 from level2 T3(plaquenr)= c valueslevel2 if 1 k 60(5,1);
180 % x0 x0 from level2 T3(wallnr)= c valueslevel2 if 1 k 60(5,2);
181 % x0 x0 from level2 T3(lipidnr)= c valueslevel2 if 1 k 60(5,3);
182 % x0 x0 from level2 T3(calcnr)= c valueslevel2 if 1 k 60(5,4);
183 % options = optimoptions(@lsqlin,'Display','none','Algorithm','trust-region-reflective');
184 % lb=zeros(length(Elset),1);
185 % ub=[];
186 % [cvals x0 from level2 T3,res x0 from level2 T3,¬,flag x0 from level2 T3]=lsqlin( ...
187 %IVW,EVW,[],[],[],[],lb,[],x0 x0 from level2 T3,options);
188

189 %%%%%%%%%%%%%%%%%%%%%%% creating IVWmod and EVWmod, and calculating
190 % cvals with IVWmod
191

192

193 % IVWmod = IVW+[eye(length(Elset)); zeros(field*rots-length(Elset),length(Elset))]; ...
EVWmod=IVWmod*gt*delt;

194 % options = optimoptions(@lsqlin,'Display','none','Algorithm','trust-region-reflective');
195 % lb=zeros(length(Elset),1);
196 % ub=[];
197 % x0 IVWmod = delt*rand(length(Elset),1);
198 % [cvals IVWmod,res IVWmod,¬,flag IVWmod]=lsqlin(IVWmod,EVWmod ...
199 %,[],[],[],[],lb,[],x0 IVWmod,options);
200

201

202 %%%%%%%%%%%%%%%%%%%%%% Calculating c-value distribution with full rank
203 % ensured (400 micrometer mesh size)
204

205

206 % version = 10;
207 % delt = 1000; % 1000 for KPa, 1 for MPa
208 % P = 0.01333*delt;
209 %
210 %
211 % minfield =1;
212 % field =200; %
213 % rots = 500; %
214 % fact = 9;
215 % addpv = 1.0; %
216 %
217 % powervec 400mu = addpv+(fact*rand(rots*(field-minfield+1),1));
218 % dataloadlevel2 3b
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219 %
220 % MaxRot=180-(180/(rots+1));
221 % Delta 400mu = zeros(rots*(field-minfield+1),1); ...

IVW 400mu=zeros(rots*(field-minfield+1),length(Elset)); ...
EVW 400mu=zeros(rots*(field-minfield+1),1);

222 %
223 %
224 % for i = 1:rots;from = (i-1)*(field-minfield+1)+1; to = ...

(i-1)*(field-minfield+1)+field-minfield+1;
225 % rotnr = i;
226 % theta = ((i-1)/rots)*MaxRot ;
227 % R = [cosd(theta), -sind(theta); sind(theta) cosd(theta)];
228 % coordn = R*[x';y']; COORDn = R*[X';Y'];
229 % xn=coordn(1,:)'; yn = coordn(2,:)'; Xn=COORDn(1,:)'; Yn=COORDn(2,:)';
230 % [Delta 400mu(from:to,1), IVW 400mu(from:to,:),EVW 400mu(from:to,1),¬] ...

=Encalc4 2(xn,yn,Xn,Yn,lumn,Elset,field,minfield,delt,gt,powervec 400mu,rotnr,P) ;
231 % end
232 %
233 %
234 %
235 % [¬,B]=licols(IVW 400mu');
236 % IVW2=IVW 400mu(B,:);
237 % EVW2gt=IVW2*gt*delt;
238 % EVW2 = EVW 400mu(B);
239 %
240 % rankIVW2 =rank(IVW2);
241 % condIVW2=cond(IVW2);
242 %
243 % options = optimoptions(@lsqlin,'Display','none','Algorithm','trust-region-reflective');
244 % lb=zeros(length(Elset),1);
245 % ub=[];
246 %
247 % x0 400mu = delt*rand(length(Elset),1);
248 % [cvals 400mu,res 400mu,¬,flag 400mu]=lsqlin(IVW2,EVW2,[],[],[],[],lb,[],x0 400mu,options);

dataloadlevel2 3b.m:

1 if version ==5 % Geo 5
2

3 Name input file='Geo5hetero0050.inp';
4 report='Geo5hetero0050report.rpt';
5 StartRowAllNodes=18; EndRowAllNodes=17832; Startreport=20; Endreport=17834;
6 lumn=[
7 4, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627 ...
8 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643 ...
9 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659 ...

10 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675 ...
11 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691 ...
12 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707 ...
13 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723 ...
14 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739 ...
15 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755 ...
16 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771 ...
17 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787 ...
18 788, 789];
19 lumn=[lumn lumn(1)];
20 Geo5elset0050;
21

22 gt = zeros(length(Elset),1);
23

24 wallnr = 5381:14429;
25 plaquenr = 1: 5380;
26 lipidnr = 14430:17143;
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27 calcnr = 17144:17495;
28

29 gt( plaquenr,1) = 0.120; % Plaque
30 gt(wallnr,1) = 0.250; % Wall
31 gt(lipidnr,1) = 0.005; % Lipid
32 gt(calcnr,1) = 0.423; % Calc
33

34

35 elseif version == 6 % Geo 6
36

37 Name input file='Geo6hetero0050.inp';
38 report='Geo6hetero0050report.rpt';
39 StartRowAllNodes=18; EndRowAllNodes=28961; Startreport=20; Endreport=28963;
40 lumn=[
41 2, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515 ...
42 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531 ...
43 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547 ...
44 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563 ...
45 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579 ...
46 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595 ...
47 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611 ...
48 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627 ...
49 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643 ...
50 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659 ...
51 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675 ...
52 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691 ...
53 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707 ...
54 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723 ...
55 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739 ...
56 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755 ];
57 lumn=[lumn lumn(1)];
58 Geo6elset0050;
59

60 gt = zeros(length(Elset),1);
61 wallnr = 6203:18156 ;
62 plaquenr = 1:6202 ;
63 lipidnr = 28058:28509;
64 calcnr = 18157:28057;
65

66 gt(plaquenr,1) = 0.120; % Plaque
67 gt(wallnr,1) = 0.250; % Wall
68 gt(lipidnr,1) = 0.005; % Lipid
69 gt(calcnr,1) = 0.423; % Calc
70

71

72 elseif version == 7 % Geo 7
73

74 Name input file='Geo7hetero0050.inp';
75 report='Geo7hetero0050report.rpt';
76 StartRowAllNodes=18; EndRowAllNodes= 20672 ; Startreport=20; Endreport= 20674 ;
77 lumn=[
78 2, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373 ...
79 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389 ...
80 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405 ...
81 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421 ...
82 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437 ...
83 ];
84 lumn=[lumn lumn(1)];
85 Geo7elset0050;
86

87 gt = zeros(length(Elset),1);
88 wallnr = 6418: 15260 ;
89 plaquenr = 1: 6417 ;
90 lipidnr = 15261: 18870 ;
91 calcnr = 18871: 20381 ;
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92

93 gt(plaquenr,1) = 0.120; % Plaque
94 gt(wallnr,1) = 0.250; % Wall
95 gt(lipidnr,1) = 0.005; % Lipid
96 gt(calcnr,1) = 0.423; % Calc
97

98

99

100 elseif version == 8 % Geo 8
101

102 Name input file='Geo8hetero0050.inp';
103 report='Geo8hetero0050report.rpt';
104 StartRowAllNodes=18; EndRowAllNodes=23361; Startreport=20; Endreport=23363;
105 lumn=[
106 2, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437 ...
107 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453 ...
108 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469 ...
109 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485 ...
110 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501 ...
111 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517 ...
112 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533 ...
113 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549 ...
114 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565 ...
115 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581 ...
116 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597 ...
117 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613 ...
118 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629 ...
119 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645 ...
120 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661 ...
121 662, 663, 664, 665 ];
122 lumn=[lumn lumn(1)];
123 Geo8elset0050;
124

125 gt = zeros(length(Elset),1);
126 wallnr = 6038: 17132;
127 plaquenr = 1: 6037;
128 lipidnr = 22503: 22952;
129 calcnr = 17133: 22502;
130

131 gt( plaquenr,1) = 0.120; % Plaque
132 gt(wallnr,1) = 0.250; % Wall
133 gt(lipidnr,1) = 0.005; % Lipid
134 gt(calcnr,1) = 0.423; % Calc
135

136 elseif version == 9 % Geo 9
137

138 Name input file='Geo9hetero0050.inp';
139 report='Geo9hetero0050report.rpt';
140 StartRowAllNodes=18; EndRowAllNodes=31147; Startreport=20; Endreport=31149;
141 lumn=[
142 2, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459 ...
143 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475 ...
144 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491 ...
145 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507 ...
146 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523 ...
147 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539 ...
148 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555 ...
149 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571 ...
150 572, 573, 574, 575, 576, 577, 578, 579, 580, 581 ];
151 lumn=[lumn lumn(1)];
152 Geo9elset0050;
153

154 gt = zeros(length(Elset),1);
155 wallnr = 6823: 20367;
156 plaquenr = 1: 6822;
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157 lipidnr = 21141: 30770;
158 calcnr = 20368: 21140;
159

160 gt( plaquenr,1) = 0.120; % Plaque
161 gt(wallnr,1) = 0.250; % Wall
162 gt(lipidnr,1) = 0.005; % Lipid
163 gt(calcnr,1) = 0.423; % Calc
164

165 elseif version == 10 % Geo 10
166

167 Name input file='Geo5hetero0400.inp';
168 report='Geo5hetero0400report.rpt';
169 StartRowAllNodes=10; EndRowAllNodes=470; Startreport=20; Endreport=480;
170 lumn=[
171 4, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113 ...
172 114, 115, 116, 117, 118, 119, 120, 121]; %];
173 lumn= [lumn lumn(1)];
174 Geo5elset0400;
175

176 gt = zeros(length(Elset),1);
177

178 plaquenr=(1 : 156); % Plaque
179 wallnr=(157 :302); % Wall
180 lipidnr=(303:388); % Lipid
181 calcnr=(389:420); % Calcified
182

183 gt( plaquenr,1) = 0.120; % Plaque
184 gt(wallnr,1) = 0.250; % Wall
185 gt(lipidnr,1) = 0.005; % Lipid
186 gt(calcnr,1) = 0.423; % Calc
187 else
188 error('version number is not correct')
189

190 end
191

192 [¬,X,Y]=LoadAllNodesFun(Name input file,StartRowAllNodes,EndRowAllNodes);
193 [¬,x,y]=LoadAllDefNodesFun(report,Startreport,Endreport);

LoadAllNodesFun.m:

1 function ...
[nodecoordinates,X,Y]=LoadAllNodesFun(Name input file,StartRowAllNodes,EndRowAllNodes)

2 %% Loading input geometry
3

4 % % This interesting function reads the input file.
5

6

7 %% Initialize variables. Outside geometry
8 filename = Name input file;
9 delimiter = ',';

10 %The first and the last line of the nodes in the ABAQUS input file:
11 startRow = StartRowAllNodes;
12 endRow = EndRowAllNodes;
13

14 %% Format string for each line of text:
15 % column1: double (%f)
16 % column2: double (%f)
17 % column3: double (%f)
18 % column4: double (%f)
19 % For more information, see the TEXTSCAN documentation.
20 formatSpec = '%f%f%f%*s%[ˆ\n\r]';
21

22 %% Open the text file.
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23 fileID = fopen(filename,'r');
24

25 %% Read columns of data according to format string.
26 % This call is based on the structure of the file used to generate this
27 % code. If an error occurs for a different file, try regenerating the code
28 % from the Import Tool.
29 dataArray = textscan(fileID, formatSpec, endRow-startRow+1, 'Delimiter', delimiter, ...

'EmptyValue' ,NaN,'HeaderLines', startRow-1, 'ReturnOnError', false);
30

31 %% Close the text file.
32 fclose(fileID);
33

34 %% Post processing for unimportable data.
35 % No unimportable data rules were applied during the import, so no post
36 % processing code is included. To generate code which works for
37 % unimportable data, select unimportable cells in a file and regenerate the
38 % script.
39

40 %% Create output variable
41 nodecoordinates = [dataArray{1:end-1}];
42 X = dataArray{2}; Y = dataArray{3};
43 %% Clear temporary variables
44 clearvars filename delimiter startRow endRow formatSpec fileID dataArray ans;
45

46 end

LoadAllDefNodesFun.m:

1 function [nodedefcoordinates,x,y]=LoadAllDefNodesFun(xydef,Startxydef,Endxydef)
2 %% Loading input geometry
3

4 %% Initialize variables. Outside geometry
5 filename = xydef;
6 delimiter = ',';
7 %The first and the last line of the nodes in the ABAQUS input file:
8 startRow = Startxydef;
9 endRow = Endxydef;

10

11 %% Format string for each line of text:
12 % column1: double (%f)
13 % column2: double (%f)
14 % column3: double (%f)
15 % column4: double (%f)
16 % For more information, see the TEXTSCAN documentation.
17 formatSpec = '%f%f%f%*s%[ˆ\n\r]';
18

19 %% Open the text file.
20 fileID = fopen(filename,'r');
21

22 %% Read columns of data according to format string.
23 % This call is based on the structure of the file used to generate this
24 % code. If an error occurs for a different file, try regenerating the code
25 % from the Import Tool.
26 dataArray = textscan(fileID, formatSpec, endRow-startRow+1, 'Delimiter', delimiter, ...

'EmptyValue' ,NaN,'HeaderLines', startRow-1, 'ReturnOnError', false);
27

28 %% Close the text file.
29 fclose(fileID);
30

31 %% Post processing for unimportable data.
32 % No unimportable data rules were applied during the import, so no post
33 % processing code is included. To generate code which works for
34 % unimportable data, select unimportable cells in a file and regenerate the
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35 % script.
36

37 %% Create output variable
38 nodedefcoordinates = [dataArray{1:end-1}];
39 x=dataArray{2};y=dataArray{3};
40 %% Clear temporary variables
41 clearvars filename delimiter startRow endRow formatSpec fileID dataArray ans;
42

43 end

Encalc4 2.m

1 % Allereerst controle of de getallen van EVW wel kloppen. Voor element 8 ga
2 % ik de EVW checken, nodes 4 en 99 zijn lumennodes, de andere tweee zijn
3 % 223 en 224.
4

5 function [Delta, IVW,EVW,Ar] ...
6 =Encalc4 2(x,y,X,Y,lumn,Elset,field,minfield,delt,gt,powervec,rotnr,P)
7

8

9 % allereerst de traction load T: T=nP, P = 0.0133, n = vector dat richting
10 % de lumen center wijst ? of andersom? ik denk juist richting het center.
11

12

13

14

15 %% EVW calculation
16

17 % % % dl calculation:
18

19 % for i = 1:length(lumn)-1
20 %
21 % end
22

23 % % % calculation of T
24 % % calculation of n
25 % calculation of vector:
26 n=zeros(length(lumn)-1,2); ymid=zeros(length(lumn)-1,1); xmid=zeros(length(lumn)-1,1);
27 dl = sqrt( (x(lumn(2:end)) - x(lumn(1:end-1)) ).ˆ2 + (y(lumn(2:end)) - ...

y(lumn(1:end-1))).ˆ2 );
28 vec2 = [x(lumn(2:end))-x(lumn(1:end-1)),y(lumn(2:end))-y(lumn(1:end-1))];
29 vecR2 = ([0 -1 ; 1 0]*vec2')';
30 for i = 1:length(lumn)-1
31 n(i,:) = vecR2(i,:)/norm(vecR2(i,:));
32 end
33

34 xmid = (x(lumn(2:end))+x(lumn(1:end-1)))/2;
35 ymid = (y(lumn(2:end))+y(lumn(1:end-1)))/2;
36 % % calculation of T:
37 T = n*P;
38

39

40 % % % calculation of uˆ*
41

42 % calculation of midpoints in lumenelements:
43

44

45 %
46 % u=[uindividual1,uindividual2];
47

48 u2 = virfield 4(field,minfield,xmid,ymid,powervec,rotnr);
49

50
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51 % % % calculation of EVW:
52

53 % EVWindividual = ((T(:,1).*u(:,1)+T(:,2).*u(:,2)).*dl);
54 EVWindividual2 = ((T(:,1).*u2(:,1:2:size(u2,2)-1)+T(:,2).*u2(:,2:2:size(u2,2))).*dl)';
55

56

57 % EVW = sum(EVWindividual);
58 EVW = sum(EVWindividual2,2);
59

60

61 %% IVW calculation
62

63

64 % % % Calculation of sigma = 2*B*c
65

66 % % calculation of DG
67 Ar=zeros(length(Elset),1); B11=zeros(length(Elset),1);B22=zeros(length(Elset),1);
68 B12=zeros(length(Elset),1); ycen=zeros(length(Elset),1);xcen=zeros(length(Elset),1);
69 Ar(:,1) = polyarea(x(Elset(:,2:end))', y(Elset(:,2:end))') ;
70 f11 = zeros(length(Elset),1); f22 = zeros(length(Elset),1); f21 = zeros(length(Elset),1);
71 f12 = zeros(length(Elset),1);
72

73

74 for i = 1:length(Elset)
75 xdisp = x(Elset(i,2:end)); Xdisp = X(Elset(i,2:end));
76 ydisp = y(Elset(i,2:end)); Ydisp = Y(Elset(i,2:end));
77 u = xdisp-Xdisp;
78 v = ydisp-Ydisp;
79 dudr = 0.25*(-u(1)+u(2)+u(3)-u(4));
80 duds = 0.25*(-u(1)-u(2)+u(3)+u(4));
81 dvdr = 0.25*(-v(1)+v(2)+v(3)-v(4));
82 dvds = 0.25*(-v(1)-v(2)+v(3)+v(4));
83

84 mat1 = [dudr duds ; dvdr dvds ] ;
85

86 dXdr = 0.25*(-Xdisp(1)+Xdisp(2)+Xdisp(3)-Xdisp(4));
87 dXds = 0.25*(-Xdisp(1)-Xdisp(2)+Xdisp(3)+Xdisp(4));
88 dYdr = 0.25*(-Ydisp(1)+Ydisp(2)+Ydisp(3)-Ydisp(4));
89 dYds = 0.25*(-Ydisp(1)-Ydisp(2)+Ydisp(3)+Ydisp(4));
90

91 mat2 = [dXdr dXds; dYdr dYds];
92

93 DGtemp = mat1*mat2ˆ-1+eye(2);
94

95

96 f11(i,1) = DGtemp(1,1);f12(i,1) = DGtemp(1,2); f21(i,1) = DGtemp(2,1); f22(i,1) = ...
DGtemp(2,2);

97 B11(i) = f11(i).ˆ2+f12(i).ˆ2;
98 B12(i) = f11(i).*f21(i)+f12(i).*f22(i);
99 B22(i) = f22(i).ˆ2+f21(i).ˆ2;

100

101

102 end
103

104 % % calculation of B
105

106

107 % % calculation of sigma:
108 S11 = 2*B11;
109 S12 = 2*B12;
110 S22 = 2*B22;
111

112 % % % Calculation of e*;
113

114 % % centerpoints of each element:
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115 for i = 1:length(Elset)
116

117 xcen(i) = mean(x(Elset(i,2:end)));
118 ycen(i) = mean(y(Elset(i,2:end)));
119

120 end
121

122

123 [e112, e222, e122] = virstrain 4(xcen, ycen, field,minfield ,powervec,rotnr);
124 % % % IVW per element:
125

126 % IVW = ((S11.*e11+2*S12.*e12+S22.*e22)).*Ar;
127 IVW = (((S11.*e112+2*S12.*e122+S22.*e222)).*Ar)';
128

129 % disp([' rotnr = ',num2str(rotnr),', sumxycen = ', ...
num2str(sum(abs(xcen))+sum(abs(ycen))),', sumxymid = ', ...
num2str(sum(abs(xmid./(xmid.ˆ2+ymid.ˆ2)))+sum(abs(ymid./(xmid.ˆ2+ymid.ˆ2))))])

130

131 Delta = IVW *gt*delt-EVW;
132

133 end

virfield 4.m

1 function u = virfield 4(field,minfield,xmid,ymid ,powervec,rotnr)
2 u=zeros(size(xmid,1),field-minfield+1);
3

4

5 for k = minfield:field
6 k2 = (rotnr-1)*(field-minfield+1)+k-minfield+1;
7 a=powervec(k2);
8 % if rem(k2,2)== 0 % Even, 2 4 6 8
9 u(:,2*k-(2*minfield)+1:2*k-2*minfield+2) = ...

[xmid./(xmid.ˆ2+ymid.ˆ2),ymid./(xmid.ˆ2+ymid.ˆ2)].*...
10 (xmid.ˆ2./(xmid.ˆ2+ymid.ˆ2)).ˆ(a);
11 % elseif rem(k2,2)6= 0 % uneven --> The k-1 is required to turn the exponents 3 5 7 9 ...

to 2 4 6 8
12 % u(:,2*k-(2*minfield)+1:2*k-2*minfield+2) = ...

[xmid./(xmid.ˆ2+ymid.ˆ2),ymid./(xmid.ˆ2+ymid.ˆ2)].*...
13 % (ymid.ˆ2./(xmid.ˆ2+ymid.ˆ2)).ˆ(a);
14 % end
15 end
16

17 end

virstrain 4.m

1 function [e11, e22, e12] = virstrain 4(xcen, ycen, field,minfield,powervec,rotnr)
2 x=xcen; y=ycen;e11 = zeros(size(xcen,1),field-minfield+1);e12 = ...

zeros(size(xcen,1),field-minfield+1);
3 e22 = zeros(size(xcen,1),field-minfield+1);
4 for k = minfield:field
5 a=powervec((rotnr-1)*(field-minfield+1)+k-minfield+1);
6

7 e11(:,k-minfield+1) = ((x.ˆ2./(x.ˆ2 + y.ˆ2)).ˆa.*(2.*a.*y.ˆ2 - x.ˆ2 + y.ˆ2))./(x.ˆ2 + ...
y.ˆ2).ˆ2;

8 e22(:,k-minfield+1) = -((x.ˆ2./(x.ˆ2 + y.ˆ2)).ˆa.*(2.*a.*y.ˆ2 - x.ˆ2 + y.ˆ2))./(x.ˆ2 + ...
y.ˆ2).ˆ2;

9 e12(:,k-minfield+1) = -(y.*(x.ˆ2./(x.ˆ2 + y.ˆ2)).ˆa.*(a.*x.ˆ2 - a.*y.ˆ2 + ...
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2.*x.ˆ2))./(x.*(x.ˆ2 + y.ˆ2).ˆ2);
10

11 end

keyPressFcn.m:

1 %% Version 2.0
2

3

4 function N(obj,eve)
5 if eve.Character == '.'
6 xl = xlim; yl = ylim;
7 h = findobj('type','figure');
8 A=zeros(1,length(h));
9 for i = 1:length(h)

10 A(i) = h(i).Number;
11 end
12 A=sort(A);
13 ix = find(A==obj.Number);
14 if ix == length(A)
15 n = A(1);
16 else
17 n = A(ix+1);
18 end
19 figure(n);
20 xlim(xl); ylim(yl);
21 end
22 if eve.Character == ','
23 xl = xlim; yl = ylim;
24 h = findobj('type','figure');
25 A=zeros(1,length(h));
26 for i = 1:length(h)
27 A(i) = h(i).Number;
28 end
29 A=sort(A);
30 ix = find(A==obj.Number);
31 if ix == 1
32 n = A(end);
33 else
34 n = A(ix-1);
35 end
36 figure(n);
37 xlim(xl); ylim(yl);
38 end
39

40 if eve.Character == '1'
41

42 h = findobj('type','figure');
43 A=zeros(1,length(h));
44 for i = 1:length(h)
45 A(i) = h(i).Number;
46 end
47 A=sort(A);
48 ix = find(A==obj.Number);
49 if ix == length(A)
50 n = A(1);
51 else
52 n = A(ix+1);
53 end
54 figure(n);
55

56 end
57 if eve.Character == '2'
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58

59 h = findobj('type','figure');
60 A=zeros(1,length(h));
61 for i = 1:length(h)
62 A(i) = h(i).Number;
63 end
64 A=sort(A);
65 ix = find(A==obj.Number);
66 if ix == 1
67 n = A(end);
68 else
69 n = A(ix-1);
70 end
71 figure(n);
72

73 end
74 end
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