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Abstract

The COVID-19 crisis heavily affected financial stock markets. In March 2020 stock
prices dropped immensely and markets became extremely volatile. In this report
we model three European stock markets before and during the COVID-19 crisis to
determine whether the dynamics of financial markets changed structurally compared
to previous periods. Stock markets play a big role in our economy and can cause
economic disruption when they crash. Therefore, it can be very useful to understand
the dynamics of the stock market. Econometricians are nowadays often asked to model
the non-constant volatility (conditional heteroscedasticity) of financial time series.
This report uses Generalised AutoRegressive Conditionally Heteroscedastic (GARCH)
models that are known for their precise modeling of conditional heteroscedasticity.
They are also known for their ability to capture the key stylised facts, the common
empirical properties applicable to all types of stock markets. This report includes
general definitions and characteristics of the GARCH(p, q) process and covers topics
such as autocorrelation of returns, kurtosis, leptokurticity and volatility clustering.
For estimating the GARCH models this report uses the statistical program R which
estimates the parameters by the Quasi-Maximum Likelihood Estimation (QMLE)
method. We modeled different periods before and during COVID-19 and compared
the estimated parameters with the corresponding 95% confidence intervals. To test
the accuracy of the estimations we performed parametric bootstrapping. Throughout
the report, models for the Dutch Amsterdam Exchange (AEX) index, the French
Cotation Assistée Continu (CAC 40) index and the German Deutsche Aktien (DAX)
index are analysed and compared. It seems that European markets may experience
the impact of stock market crashes differently. The DAX index shows significant
changes in the dynamics of the stock market due to the COVID-19 crisis whereas the
AEX and CAC 40 index do not.
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Layman Abstract

The COVID-19 crisis heavily affected financial stock markets. In March 2020 stock
prices dropped immensely and markets became extremely volatile. In this report
we model three European stock markets before and during the COVID-19 crisis to
determine whether the dynamics of financial markets changed structurally compared
to previous periods. Stock markets play a big role in our economy and can cause
economic disruption when they crash. Therefore, it can be very useful to understand
the dynamics of the stock market. For example, statisticians use stock market
modeling for risk management and predicting future values. Empirical studies on
financial stock markets have shown that several common properties are applicable to
all types of stock markets, independent of location, time and details of the market
structure. These properties are defined as the stylised facts of financial markets. For
modeling the stock markets this report uses a type of model, known as a Generalised
AutoRegressive Conditionally Heteroscedastic (GARCH) model, that captures the
key stylised facts. Throughout the report models for the Dutch Amsterdam Exchange
(AEX) index, the French Cotation Assistée Continu (CAC 40) index and the German
Deutsche Aktien (DAX) index are analysed and compared. It seems that European
markets may experience the impact of stock market crashes differently. The DAX
index shows significant changes in the dynamics of the stock market due to the
COVID-19 crisis whereas the AEX and CAC 40 index do not.
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1 Introduction
The COVID-19 pandemic has had a tremendous impact on the entire world. As a consequence
of the rapid spread of the virus, countries initiated lockdowns which caused economic damage.
Many businesses went bankrupt and people lost their jobs, but also some sectors such as food
delivery thrived. It was a scary and uncertain time that also heavily affected financial stock
markets. In March 2020 stock prices dropped immensely and markets became extremely volatile.
On February 28, 2020, stock markets announced their greatest single-week decline since the
Global Financial Crisis in 2008 [25]. By March volatility had gone through the roof and markets
showed an overall decline of 30% [13].

The 2020 stock market crash was clearly part of the economic damage caused by the
pandemic and shows that the stock markets play a big role in our economy. While we can
demonstrably measure the decline in stock prices during the crisis, a more challenging question
is whether COVID-19 structurally changed the dynamics of the stock market. This report sets
out to answer this important question.

To answer this question we model three European stock markets on different periods
before and during the COVID-19 crisis. We estimate models fitted on data from the Amsterdam
Exchange (AEX), the Cotation Assistée Continu (CAC 40) and the Deutsche Aktien (DAX)
indices.

Chapter 2 presents a general understanding of financial stock markets and explains
common topics including returns, volatility and Value at Risk. Additionally, we introduce several
empirical properties applicable to all types of stock markets, defined as stylised facts. Key
stylised facts such as volatility clustering and fat-tailed distribution are discussed in Section 2.2.

In the next chapter we introduce Generalised AutoRegressive Conditionally Heteroscedastic
(GARCH) models, one of the most popular families of models for financial time series. These
models are known for their precise modeling of conditional heteroscedasticity, which is the way
volatility alternates between high and low periods. These models are also able to capture the
main stylised facts. We look specifically at univariate GARCH models and present several
definitions and properties of the GARCH(p, q) process. We discuss the simple case of the
GARCH(1,1) model since this GARCH(p, q) specification gives the best fit for our dataset. We
use the statistical program R to estimate the models. The parameters are estimated by the
Quasi-Maximum Likelihood Estimation (QMLE) method, which is discussed in Section 3.4.2.

Lastly, Chapter 4 sets out the methodology of our research. We start with the Dutch
AEX index. We split the data in different periods before and during the COVID-19 crisis and
perform several estimations in R using the ‘fgarch’ package. GARCH processes are designed
to model high and low volatility, but we are curious to see how it models the period during
COVID-19. We compare the different models by presenting error bar plots of the estimated
parameters and the corresponding 95% confidence intervals. In Section 4.4 we introduce the
concept of parametric bootstrapping, a method to test the accuracy of the estimations. After
the analysis of the AEX index, this same research is presented for the French CAC 40 and the
German DAX indices.

9
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2 Financial Stock Markets
To be able to answer our research question it is useful to have a general understanding of financial
stock markets. The first section of this chapter describes how stocks are bought and sold in an
order-driven marketplace. Common topics such as return values, price movement, volatility and
Value at Risk (VaR) are explained and illustrated using data from the Amsterdam Exchange
(AEX) index. Figures showing the decline of stock prices due to crises, such as the Global
Financial Crisis in 2008 and the current COVID-19 crisis, will be presented. In these crisis
periods we have felt how stock markets play a big role in our economy. Therefore it is very useful
to understand the dynamics of the stock market. Section 2.2 presents several characteristics of
financial time series that are necessary for this understanding. Empirical studies have shown
that there exist common properties applicable to all types of stock markets that are defined as
stylised facts. Eight key stylised facts will be thoroughly discussed in Section 2.2.2.

2.1 Concepts of Financial Stock Markets

The main object of study in finance are financial assets. Such financial assets are called securities
or financial instruments and the most common ones are stocks (equity securities), bonds (debt
securities) and exchange-traded funds (ETFs). These assets can be exchanged on organised
markets which we call financial markets. Financial markets play an important role in free market
economies and can cause great economic disruption when they crash. The financial stock market,
where stocks are exchanged, belongs to this larger family of financial markets.

A stock represents a fraction of the ownership of a company and investors put in or-
ders in the stock market to either buy or sell stocks. The market places provide an efficient
environment and guarantee market transparency and liquidity. Liquidity defines the ease of
converting a security into cash. Throughout the day when the marketplace is open, buyers and
sellers send in their orders and the market directly matches as many as possible to execute
trades, without intermediaries [8]. We therefore speak of an order-driven market. One of the
functions of the stock market is determining the price of the stocks. All order-driven markets
rank and match the incoming orders but have their own rules for determining the price at which
contracts are executed [8]. The price determination process is based on finding the intersection
of supply and demand.

An important Dutch stock market is the Amsterdam Exchange (AEX), home to some
of the biggest companies in the Netherlands. There are many other markets including the
well-known New York Stock Exchange and NASDAQ in the United States which are two of the
largest in the world. The majority of this research project uses data from the AEX index, the
aggregated data from all the companies in the AEX. Figure 2.1 shows a chart of the AEX index
values from January 2007 until May 2021. The constant fluctuation of the price values is visible
with peaks and some moments with deep lows. In the graph two large draw-downs are clearly
visible, in 2008 and in 2020. These correspond to the Global Financial Crisis of 2008 and the
COVID-19 crisis in 2020.

11



12 CHAPTER 2. FINANCIAL STOCK MARKETS

Figure 2.1: Time series of the AEX index values January 2007 - May 2021.

2.1.1 Returns

Most of the time in financial studies return values are used instead of price values. One reason for
this is that the return value is independent of the unit of currency. Secondly, return series have
more attractive statistical properties which make them easier to model [26]. These properties
will be discussed later in Section 2.2. Now we will introduce two different types of returns, the
simple return and continuous compounded return.

We consider observations to be at a certain moment in time and define the time-step
between observations as ∆t. The AEX index values are daily observations (∆t = 1 day) but
other possibilities are for example per second, minute, hour or month. For a given time t, we
denote Pt as the price of a given asset at time t. The simple return rt is then defined as the
relative price variation, and calculated as follows:

rt = Pt − Pt−1
Pt−1

. (2.1)

Figure 2.2 shows the simple returns of the AEX index daily stock prices from Figure 2.1. On
the other hand, the continuous compounded return Rt, also known as the log return (or simply
called the return) is defined as:

Rt = ln
( Pt
Pt−1

)
. (2.2)

For small values of x it is known that ln(1 + x) = x+O(x2), where O(x2) describes the error
term of this approximation. Therefore since return values are small and Rt = ln(1 + rt), we see
that the two return series are close to each other. The log return, however, is slightly preferred
since its statistical properties are easier dealt with. Moreover, the logarithmic function makes it
easier to change the time-scale, for examples when wanting to calculate the weekly return value
from daily observations.

The large negative and positive values in Figure 2.2, called extreme returns, are of interest for
investors observing the price movements. In Figure 2.2 the seven largest absolute returns are
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Figure 2.2: The AEX index stock returns January 2007 - May 2021. The red dots mark a few of the largest
absolute returns values of the series that occurred during the Global Financial Crisis in 2008 and the current
COVID-19 crisis that started in 2020.

marked by a red dot. The largest price drops occurred on 01/21/2008 and 03/11/2020, both
during crisis periods. Looking at the graph we see that most of the returns deviate around the
mean value zero. Finally, we define the volatility of market prices by the standard deviation of
the returns. This concept will be further discussed in the next section.

2.1.2 Volatility

Investors like to have stability because they do not want the prices to drop or fluctuate
very much, and therefore we study the volatility. To find a model that is coherent with the
empirical properties of a stock market, it must be able to reflect its volatility. Volatility
is measured by the standard deviation of the returns, or its conditional equivalent given
the amount of information known at a certain point in time. It reflects the amplitude of
the returns and is often seen as a good representation of the risk of a security. When the
volatility is high it means that the standard deviation of the returns is high. The returns then
have a large positive or negative value, which correspond to big positive movement or big
negative movement. Note, however, that volatility does not measure the direction of the price
changes but only the dispersion. The stock market alternates between periods of high and
low volatility. Figure 2.2 shows a clear example of the consecutive high- and low-volatility periods.

The concept of volatility is important because we observe high volatility during crisis
periods. Past crises can be easily seen in Figure 2.2 by the periods with large returns. Notice
for example the high volatility periods in 2008 and 2020 that correspond to the stock market
crashes during the Global Financial Crisis and the COVID-19 crisis, respectively.
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With an understanding of the concept of volatility and its relation to world crises such
as the COVID-19 pandemic, we can slightly reformulate the initial research question from the
Introduction:

Is the COVID-19 crisis just a period of high volatility or are there structural changes
in the dynamics of financial markets compared to the previous period?

2.1.3 Value at Risk

"Past performance is no guarantee of future results."

This phrase is often used as a warning label for investors seeking advice on how to in-
vest their money. There simply is no guarantee that an investment will do well just because it
has done so in the past. Investors therefore try to estimate the risk of an investment. A low
risk is generally seen as favorable. The most popular measure for the risk is the Value at Risk
(VaR). This measure is always specified with a given confidence level α and denoted by α-VaR
[17]. The α-VaR represents the maximum amount of cash you could lose with probability α
(usually α = 95% or α = 99%). Moreover, volatility and risk go together. A high-volatility stock
is considered a riskier investment than a low-volatility stock. This is why investment managers
are constantly watching the volatility trends. If they see the volatility go up, this might be a
reason for them to retract their investment. However, stock market volatility is not necessarily a
bad thing. It is not by definition bad to invest in a risky stock because there is always a chance
that the prices will go up in the future. On the contrary it can actually pay off to invest in risky
stocks because the profit is usually big when the stock starts doing well. This concept is also
referred to as the risk premium. Riskier stocks with higher variances often have greater return
rates [16].

2.2 Empirical Properties of Financial Time Series

Stock market observations are categorized as financial time series. The general characteristic of
time series is that the observations are ordered in time, such as the daily AEX index data where
∆t is one day. This allows one to see what influences the values over time and possibly predict
future values by finding trends.

As explained for example by Thomas Lux (2009), we define the martingale property of financial
prices as follows:

E[Pt+1|It] = Pt, (2.3)

where It denotes the information set available at time t and Pt the stock price at time t. In
other words, the expected value of the price the next day is equal to the present value, regardless
of the information available. An example of a series with this property is a random walk. As
a consequence we have that the realised price change (εt) is a random variable driven by the
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arrival of new information:

Pt+1 − Pt = Pt+1 − E[Pt+1|It] = εt (2.4)

with E[εt] = 0, for small time scales, due to the randomness of new information arrivals. On the
contrary, for larger time-scales such as months and years E[εt] = 0 is not reasonable. In reality
the mean value is greater than 0 with as a result an increase of the prices each year which can
also be noticed in Figure 2.1. Moreover, E[εt] = 0 and Equation 2.3 are only true if the market is
efficient and under the assumption that the investors are rational. For example, if the expected
price tomorrow is 50 euros, you will not want to buy it for more nor sell it for less.

2.2.1 Stationarity and Ergodicity

According to Tsay (2010), the foundation of financial time series analysis is stationarity [26].
The assumption of stationarity is necessary to be able to mix data from different periods for
estimates of return values. It is therefore common to assume that the stock return series are
weakly stationary, also known as second-order stationary. Weakly stationary means that the
time series have a mean and autocovariance that does not change with time. This is for instance
visible in Figure 2.3 where the returns of the AEX index oscillate around zero. Note however that
the series of stock prices, visible in the upper graph of Figure 2.3, is non-stationary. Therefore
financial studies usually analyse the returns instead of the price values.

Figure 2.3: Price and return series of the AEX index data from January 2020 to May 2021. The large drawdown
in the price series at the start of the COVID-19 crisis is coherent with the large return values at that time.

Is this stationarity property enough to ensure that the constant sample mean is a good rep-
resentation of the actual mean? The answer is no. For this we need one more assumption:
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ergodicity [6]. Ergodicity embodies the fact that a point in a stochastic process will eventually
end up in every part of the space it moves in. This prevents the possibility of values getting
stuck somewhere and not leaving an area of the outcome space. More observations help towards
getting a more accurate estimation.

2.2.2 Stylised Facts

Market analysis is often an event-based approach for trying to explain market movements. But
different stocks are not necessarily influenced by the same event and one would think they
have very different properties. Does it make sense that the AEX index market has the same
characteristics as a market selling completely different securities such as a commodity market?
A long history of studies on financial time series has shown that there are statistical regularities
that are traceable in a large number of financial time series, independent of the type of market.
These statistical regularities are called stylised facts and are seen as the behavior roots of the
trading process of a stock market.

The term stylised facts was introduced in 1961 by Nicholas Kaldor, an economist that
criticised the economic growth theory at that time [5]. He constructed six statements, referred to
as Kaldor’s facts, summarising the statistical properties of long-term economic growth. He made
the sensible argument that, before constructing a theory, one should begin from a summary of
relevant facts. The term stylised fact was invented because he used scaling theory to concentrate
on broad tendencies instead of individual details [5].

Up to this day stylised facts are still used widely in economics, for instance as a vali-
dation of a constructed model. Many articles and books on financial time series modeling also
include research on stylised facts and the majority reference both the work of mathematician
Benoît Mandelbrot and of econometrician Tim Bollerslev. Mandelbrot was important for
analysing the distribution of price series and Bollerslev is known for his ideas on measuring and
forecasting the stock market’s volatility. A clear overview is presented in the article Empirical
properties of asset returns: stylized facts and statistical issues by Rama Cont and the book
GARCH-models: Structure, statistical inference and financial applications by Christian Francq
and Jean-Michel Zakoian. They complement the findings well and we will often refer to both
when elaborating on the stylised facts.

The following is a list of a few of the most important stylised facts.

1. Tiny autocorrelation of returns: Figure 2.4 (a) shows the autocorrelation of the returns
of January 2007 to May 2021 for the AEX index. It can be seen that the autocorrelation
is tiny and this is not only true for the AEX index but is something that is widely seen
in stock markets. In general the series of price returns show very small autocorrelations.
Francq and Zakoian (2010) compare it to white noise [14]. A time series is white noise
if the variables are independent and identically distributed with mean equal to zero [4].
Note, however, series that hold data from smaller time steps, say in minutes or seconds
(intraday time scales) instead of daily, potentially show significant autocorrelation due to
microstructure effects [6].

2. Large autocorrelations of the squared (and absolute) returns: Squared returns (r2
t ) and

absolute returns (|rt|) are usually strongly correlated and this is illustrated for the AEX
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Figure 2.4: Autocorrelation of daily price returns (a) and squared price returns (b) of AEX index (January 2007
to May 2021).

index in Figure 2.4 (b). This implies that the amplitude of the returns is predictable a
few days ahead, which contradicts the white noise comparison. In Figure 2.4 (b) one can
additionally observe a slow decay of autocorrelation of the squared returns. Cont (2000)
[6] indicates that this can be seen as a sign of long-range dependence. This property is also
called long memory and refers to the fact that volatility changes slowly, taking a long time
to go down.

3. Volatility clustering: Volatility clustering refers to the fact that large price variations tend
to be followed by large price variations, as well as smaller variations following each other.
Figure 2.2 also illustrates the clustering of high- and low-volatility periods. Notice that the
largest values (denoted by the red dots) are in two periods, the crises in 2008 and 2020.
There is a clear positive autocorrelation between the volatility at different moments in
time.

4. Fat-tailed distributions: The empirical distribution of daily return values does not resemble
a Gaussian distribution as is illustrated in Figure 2.5. Compared to a normal distribution
there is a larger chance of extreme return values. The density distribution has fat tails,
and this is clearly visible on a logarithmic scale (2.5(b)), where it decreases to zero more
slowly than the normal distribution. Additionally the density function has a larger peak
at the mean with respect to a normal distribution (2.5(a)). The returns are therefore
nonnormal and their density is called leptokurtic. A measure for leptokurticity is the
kurtosis coefficient. Section 3.3.3 will elaborate on the concept of kurtosis. The kurtosis of
a normal distribution equals 3, but for daily return series this is much higher. For example,
the AEX index returns have a kurtosis higher than 12 (see Appendix A.2.2). However,
when the time interval grows, for example with monthly returns, then the leptokurticity
fades away and it looks more and more like a normal distribution. This is a consequence
of the central limit theorem. In the other direction, intraday return values have sharper
peaks and heavier tails.
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Figure 2.5: The empirical distribution of the AEX index returns (red) density function and a Gaussian (blue)
distribution density function to illustrate the fat tails of leptokurtic densities. For (a) a normal scale is used and
for (b) a logarithmic scale for a clear vision of the fatness of the tails.

5. Gain/loss asymmetry: For stock price series there is asymmetry in the up and down
movement. Figure 2.1 and Figure 2.3 illustrate this fact well. One can observe the
large drawdowns in prices, like the drawdown due to COVID-19 in 2020, but the upward
movement is not equally big. The upward trends are less steep, reaching the peak values
after a longer period of time.

6. Leverage effect: The leverage effect refers to the observation that most measures of volatility
are negatively correlated with the corresponding returns. During crisis periods, prices go
down and the volatility goes up. On the contrary, during a quiet period the volatility
goes down and the price values go up. Price decreases cause higher volatility periods than
price increases of the same magnitude. Francq and Zakoian (2010) note this as a clear
asymmetry of the impact of past positive and negative returns on the volatility [14].

7. Seasonality and nontrading periods: The stock market is not open for trading all the time.
It is only open on weekdays (exceptions for holidays) from approximately 9 am until 5
pm. This differs slightly per market. Seasonalities such as the day of the week or periods
close to a holiday can very well influence the behaviour of the returns. This is not only
true for daily data but also for intraday series. Additionally, nontrading periods can affect
the volatility. When the market is closed, information on price variations accumulates
slower than when they are open. The result can only be reflected when the markets reopen
causing the volatility to then increase. This is why there is more variability in price returns
after the weekends and holidays.

8. Spillover effect: The spillover effect refers to information spilling over within and across
stock markets. This is also called co-movement in volatility. Nowadays, volatility of a
certain stock in a market can influence other securities of that same market as well as other
markets in general. This can even happen between different countries, where the state of
a globally important stock market can affect the markets in other countries. When an
event occurs, such as a natural disaster or a stock market crisis, this can influence many
different markets and countries. The Global Financial Crisis in 2008 is a good example of
this, where the crisis originated in the United States and influenced many other countries.
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In conclusion, modeling stock market volatility is quite complicated since there is a lot to capture
in the model. There are even more factors than mentioned above and, because there are so many
things influencing volatility, it can be difficult to trace their exact impact. Even when they can
be identified, artificially reproducing them in a model can be a complex task. Luckily, through
many studies on asset returns several volatility estimation models have been introduced and the
next step is finding one that incorporates most of the empirical properties.
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3 GARCH Models
This chapter sets out several definitions and properties of a family of estimation models called
Generalised AutoRegressive Conditionally Heteroscedastic (GARCH) models. The first section
introduces the definition of conditional heteroscedasticity which accounts for the time-varying
volatility property of stock price series. The ARCH and Generalised ARCH (GARCH) are two
models famous for modeling the conditional heteroscedasticity. Sections 3.2 and 3.3 provide
detailed definitions and property descriptions of the ARCH and GARCH models, and also check
their ability to reflect the important stylised facts covered in Section 2.2.2. Specifically the simple
case of GARCH(1,1) is thoroughly discussed and shown to fit our data the best compared to all
GARCH(p, q) models. Moreover, in Section 3.4 the procedure of estimating GARCH models is
presented. For the estimation we use the R environment since it offers built in packages that
make it easy to estimate the parameters. R estimates the parameters by the Quasi-Maximum
Likelihood Estimation (QLME) method, which we will present in Section 3.4.2. Lastly we will
briefly discuss some limitations of GARCH models but explain why we use them for our research
nonetheless.

3.1 Conditional Heteroscedasticity Models

Econometricians are nowadays being called in to build a model of financial returns, for example
for estimating the precise Value at Risk [23], and thus to model the volatility of financial
time series [11]. In the previous chapter we described properties that explain the complexity
of financial time series modeling. Francq and Zakoian (2010) stress that the main stylised
facts must be taken into account for any satisfactory statistical model for daily stock returns.
Similarly Tsay (2010) stresses that a satisfactory estimation model must especially capture the
volatility properties of asset returns such as volatility clustering, stationarity and continuity of
volatility. The latter two describe the fact that volatility does not diverge to infinity and that
today’s volatility is strongly related to the volatility yesterday, respectively.

It seems logical to first consider some of the traditional time series and econometric
models such as linear models and ARMA but these do not work in our situation. These models
operate under the assumption of constant volatility whereas the conditional variance of returns
changes over time [2]. This property of non-constant conditional variance is called conditional
heteroscedasticity:

Var(εt|εt−1, εt−2, . . . ) 6≡ constant.

By assuming that the volatility is constant, the statistician would not be adapting to the situation
of the stock markets. When allowing it to be conditional the statistician is using the information
to have a more precise measurement.

3.2 The ARCH(q) Process

The first model that dealt with heteroscedasticity was the ARCH (AutoRegressive Conditional
Heteroscedasticity) model introduced by Engle in 1982. This ARCH process acknowledges the
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time-varying volatility by letting the conditional variance be a function of past errors [2]. This
makes it an autoregressive model and allows the uncertainty to be a dynamic process [22]. Using
the notation of Francq & Zakoian (2010), an ARCH(q) model looks as follows:

rt = µ+ εt (returns) (3.1)
εt = σtηt (conditional average) (3.2)
σ2
t = α0 + α1ε

2
t−1 + . . .+ αqε

2
t−q (conditional variance) (3.3)

The rt denotes the returns of a financial asset at time t and is the sum of the mean µ and the
conditional average εt. Next σ2

t represents the conditional variance of the returns at time t and
(ηt) is a sequence of identically distributed (iid) random variables with mean zero and variance
equal to 1. Often a standard normal distribution is assumed as the distribution of η [26].

To show that this process indeed models the volatility of returns, we look at the sim-
ple ARCH(1) process. By substituting Equation 3.3 into Equation 3.2 we rewrite the equation
for εt a bit and obtain the following:

εt = ηt

√
α0 + α1ε2t−1.

Now by squaring both sides of the equation and taking the variance of εt we see that:

Var(εt) = E[ε2t ]− (E[εt])2

= E[ε2t ]
= E[η2

t ]E[α0 + α1ε
2
t−1]

= E[α0 + α1ε
2
t−1]

= α0 + α1Var(εt−1).

(3.4)

Here we used that ηt has zero mean and unit variance, and the fact that E[εt] = 0 (Equation 2.4).
Equation 3.4 shows that the variance of εt is a linear function of the variance of the return value
of the previous time-step. We see that large past returns εt−1 result in large conditional variance
for εt, which means it is more likely to have large returns than small returns. Hence this is the
reason why this model can reproduce the volatility clustering we observe in asset returns.

3.3 The GARCH(p, q) Process

The ARCH model represents a key invention in the field of financial modeling and its creator
Robert Engle indeed won the Nobel Prize for economics in 2003. Even though the model is quite
simple, on the other hand it often requires many lags to properly describe the volatility process
of an asset return [26]. As a solution to this flaw, Bollerslev (1986) introduced an extension to
the ARCH model: a new and more general class of processes named Generalised AutoRegressive
Conditionally Heteroscedastic (GARCH) [2]. Bollerslev explains that the Generalised ARCH
models allow for both longer memory and a much more flexible lag structure. He extended the
model in a way that resembles the extension of a standard time series AR (AutoRegressive)
process to a general ARMA (AutoRegressive Moving-Average) process, letting the conditional
variance be an ARMA process. GARCH models provide a slightly better fit of the time-varying
volatility, as well as most of the other stylised facts mentioned in Section 2.2.2.
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3.3.1 Definitions

For the definition of the GARCH(p,q) process we will follow the book on GARCH Models by
Francq & Zakoian (2010). They start with a definition based on the first two conditional moments,
the semi-strong GARCH(p,q) process, and after define the strong GARCH(p, q) process from
which the GARCH model is constructed.

Definition 1 (Semi-strong GARCH(p, q) process). Let It denote the information set available
at time t. A process (εt) is called a GARCH(p, q) process if its first two conditional moments
exist and satisfy:

(i) εt|It ∼ N (0, σ2
t ), t ∈ Z.

(ii) There exist constants ω, αi and βj, with i = 1, . . . , q and j = 1, . . . , p, such that

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , t ∈ Z. (3.5)

In Definition 1 εt once again denotes the real-valued, discrete time stochastic process of the asset
returns [2] and σ2

t the corresponding conditional variance. The constant parameters must satisfy
a few constraints. We have ω > 0, αi ≥ 0, βj ≥ 0 and, additionally, they must satisfy:

r∑
i=1

(αi + βi) < 1. (3.6)

Here we define r := max(p, q) and, moreover, αi := 0 if i > q and βj := 0 if j > p. The constraint
in Equation 3.6 ensures that the variance does not eventually explode. To illustrate what would
happen if this constraint is not satisfied, look at Equation 3.4 for the ARCH case. If we would
have α1 > 1, then with every time step Var(εt) increases in a geometric way, causing it to
eventually explode.

Francq & Zakoian define the innovation of the process ε2t as the variable νt = ε2t − σ2
t .

Rewriting this slightly such that σ2
t−j = ε2t−j − νt−j and substituting in Equation 3.5 we get the

following representation:

ε2t = ω +
r∑
i=1

(αi + βi)ε2t−i + νt −
p∑
j=1

βjνt−j . (3.7)

Equation 3.7 illustrates the linear structure of an ARMA model and the fact that if (εt) is
GARCH(p, q), then (ε2t ) is an ARMA(r, q) process [14].

Remark (Autocorrelation characteristics). In Section 2.2.2 we observed some characteristic
features with respect to the autocorrelation of both the returns and the squared returns. Firstly
we saw that the returns show very small autocorrelation. This empirical fact is captured by
Definition 1, since (i) shows that:

E[εt|εu, u < t] = 0,
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which implies that the returns εt are uncorrelated. Secondly, contrary to the absence of correlation
between return values, there is a clear autocorrelation between the squared returns. We see that
this empirical characteristic is also captured in the GARCH process by looking at Equation 3.7.
Consider the simple GARCH(1,1) case. If the kurtosis is finite, then the squared process (ε2t ) is
ARMA(1,1) and thus we have the following equation for the h-order autocorrelations:

Corr(ε2t , ε2t−h) = K(α1 + β1)h,

where K is a constant independent of h [14].

In spite of reflecting desired properties of asset returns, Francq & Zakoian note that Definition 1
does not offer a direct solution that satisfies the above conditions. For this reason they define
a slightly more restrictive class of processes that, however, enables the discovery of explicit
solutions. In the same manner as for the ARCH model, we again define (ηt) as a sequence of iid
random variables and represent the GARCH model in the following way:

Definition 2 (Strong GARCH(p, q) process). Let (ηt) be an iid sequence with distribution η.
The process (εt) is called a strong GARCH(p, q) (with respect to the sequence (ηt)) if{

εt = σtηt

σ2
t = ω +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjσ

2
t−j

(3.8)

where the αi and βj are non-negative constants, ω is a (strictly) positive constant and σt > 0.

Notice that if we have βj = 0 for all values of j = 1, . . . , p, the process is reduced to ARCH(q)
process (3.3). Accordingly α is often referred to as the ARCH coefficient and β as the GARCH
coefficient. Moreover, substituting εt−i = σt−iηt−i in (3.8) we get the following:

σ2
t = ω +

r∑
i=1

(αiη2
t−i + βi)σ2

t−i,

where again r := max(p, q). From this representation the volatility process of a strong GARCH
process is shown to be the solution of an autoregressive equation with random coefficients [14].
Furthermore this process indeed models the volatility of returns, which is easily seen by rewriting
the variance in the same way as in Section 3.2 for the ARCH process. Next we will consider the
simple case of GARCH(1,1) and highlight some properties of the parameters and variables in the
model.

3.3.2 GARCH(1,1)

From Definition 2 we obtain the GARCH(1,1) model by setting p and q equal to 1 in Equation
3.8: {

εt = σtηt

σ2
t = ω + αε2t−1 + βσ2

t−1
(3.9)

with ω > 0, α ≥ 0, β ≥ 0 and (ηt) iid (0,1). Let µ denote the mean of the returns, and rt is then
modeled as follows:

rt = µ+ εt. (3.10)
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Figure 3.1: Simulation of the GARCH(1,1) process during 1000 timesteps with ω = 1, α = 0.2 and β = 0.7 and
η ∼ N (0, 1).

To illustrate how εt is obtained by multiplying σt by ηt we present Figure 3.1. This figure
corresponds to a simulation of the GARCH(1,1) process during 1000 timesteps with parameters
ω = 1, α = 0.2 and β = 0.7. To model the unexpected shock we let ηt ∼ N (0, 1). A clear
representation of how the different variables and parameters influence one another is given in
Figure 3.2.

ηt−1 ηt ηt+1 ηt+2

εt−1 εt εt+1 εt+2

σt−1 σt σt+1 σt+2

α α α

β β β

ω ω ω ω

Figure 3.2: Directed Acyclic Graph (DAG) of the GARCH(1,1) model.
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The parameter ω represents the variance during the calm periods. That is, when εt−1 ≈ 0 and
σt−1 ≈ 0, then we have σ2

t ≈ ω. As mentioned before, α is the ARCH parameter and since
εt = σtηt, it models the influence of the unexpected shock from the random variable ηt. The
GARCH parameter β represents the influence of the variance the day before. Furthermore, to
not be explosive we must have:

α+ β < 1. (3.11)
By Theorem 2.1 and 2.2 from the book on GARCH models by Francq & Zakoian it holds that if
the model described by (3.9) satisfies (3.11), then we have a strict and second order stationary
solution of the GARCH(1,1). Note that this is also presented by the simulations in Figure 3.1.
Moreover, the solution we obtain for εt is ergodic.

Section 3.3.1 showed how the two stylised facts on autocorrelation are captured in the
GARCH models. Another empirical fact that is embedded in the model is volatility clustering.
The GARCH structure lets the amplitude of εt be a function of its past values [14] and, therefore,
high (respectively low) volatility periods will be followed by high volatility periods. This is also
illustrated in Figure 3.1 where we see that the extreme values are not independently distributed
on the entire time line.

3.3.3 Kurtosis

In Section 2.2.2 we introduced the kurtosis coefficient as a measure for leptokurticity, the heaviness
of the tails of a distribution. Recall that a normal distribution has kurtosis coefficient equal to 3,
but for distributions with fat tails this value is higher. The kurtosis coefficient κ is based on the
fourth order moment of a distribution (µ4) which is defined as:

µ4 = E
(
(rt − µ)4) = E

(
ε4t
)

since we have rt − µ = εt (3.10). The kurtosis coefficient κ is defined as follows:

κ = µ4
σ4 .

From this definition we can compute the kurtosis coefficient of the stationary marginal distribution
of a GARCH-process by Defintion 2:

κε = E(ε4t )(
E(ε2t )

)2 =
E
(
E(ε4t |εu, u < t)

)
(
E
(
E(ε2t |εu, u < t)

))2 = E(σ4
t )(

E(σ2
t )
)2 κη. (3.12)

The first equality shows that κ is the ratio of the fourth-order moment to the squared
second-order moment which follows from the fact that E(εt)2= 0. From the last equality the
relation to κη, the kurtosis coefficient of (ηt), can been seen. Recall that (ηt) is independently
identically distributed with zero mean and unit variance, and therefore has κη = E(η4

t ). Equation
3.12 shows that κε is greater than or equal to κη. The distribution of (εt) has fatter tails when
the ratio of the variance of σ2

t to the squared expectation is large [14].

Using the conditional fourth-order moment we obtain that the conditional kurtosis of
εt (κε|t) is constant and equal to κη:

κε|t = E(ε4t |εu, u < t)
σ4
t

= σ4
tE(η4

t )
σ4
t

= E(η4
t ) = κη.
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This shows the difference between the tails of the marginal and conditional distributions [14].

Ultimately, from equation 3.12 we can calculate κε for the GARCH(1,1) case:

κε = 1− (α+ β)2

1− (α− β)2 − α2(κη − 1) κη (3.13)

and if ηt ∼ N (0, 1) then we have κη = 3.

3.4 Estimating GARCH Models

Now that we have defined GARCH-type processes and discussed several properties, the next step
is estimating such a model. For our research we want to investigate European stock markets
and therefore the first model we estimate is based on data from the AEX index. The statistical
programming language R consists of tools that make the computation of the estimation quite
simple. It uses Quasi-Maximum Likelihood Estimation (QLME) for the coefficients. Additionally
we will discuss which GARCH specification is the best fit for our estimation and what criterion
we use for this determination.

3.4.1 Importing the data in R

To estimate the parameter we use the R analytics environment. R is an open source statistical
programming language and is widely used in academia and the financial industry [23] [22].
R grants access to packages through an open library created by users. The package we use
for modeling volatility is the ‘fGarch’ package, offering tools for simulating, estimating and
forecasting GARCH models. We focus on the estimation of the model and therefore use the
function garchFit with the following function description:

garchFit: fits the parameters of a GARCH process [28].

The first stock price series we wish to model is the one already frequently mentioned
in this report, the AEX index. We extracted the daily stock prices of the AEX index from the Ya-
hoo! Finance database using the ‘quantmod’ package. The Yahoo! Finance source also holds data
from different market indices such as the French CAC 40 (Cotation Assistée en Continu) and the
German DAX (De Deutscher Aktien) that will be discussed in the next chapter. We downloaded
the AEX index data from January 2007 through June 2021, including the 2008 Global Financial
Crisis and the current 2020 COVID-19 crisis. We use the available daily opening prices as Pt and
use Equation 2.1 to compute rt. We call the garchFit function on the returns (rt), which gives us
the desired estimated parameters corresponding to a GARCH model based on the AEX index data.

Summary output of the garchFit function can be found in the Appendix (A.1). It dis-
plays multiple statistics, such as the estimated parameters with their corresponding standard
error values, t-values and p-values. Additionally it displays several tests concerning the
standardised residuals as well as several goodness-of-fit measures, for example the log-likelihood
value and the information criterion values: the Aikaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC), the Schwarz Information Criterion (SIC) and the Hannan-Quinn
Information Criterion (HQIC).
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3.4.2 Quasi-Maximum Likelihood Estimation

The function garchFit in the package ‘fgarch’ estimates the parameters by the Quasi-Maximum
Likelihood Estimation (QMLE). We will present the procedure of the conditional (on initial
values) QML method following Chapter 7 of the book by Francq & Zakoian, but specify for the
simple case of GARCH(1,1).

Let ε1, . . . , εn be a realisation of the GARCH(1,1) process satisfying Equations 3.9 and 3.10. Let
θ denote the vector of parameters, belonging to the parameter space Θ ⊂ (0,∞)× [0,∞)2, and
define it as follows:

θ = (θ1, θ2, θ3)′ := (ω, α, β)′. (3.14)

The true value of the parameters is unknown and denoted by

θ0 = (ω0, α0, β0)′.

We need to specify a distribution for ηt in order to compute the likelihood. We therefore work
with a function called the quasi-likelihood, which coincides with the likelihood when ηt has a
standard Gaussian distribution [14]. Given initial values ε0 and σ̃2

0 and under the second-order
stationarity assumption it is reasonable to let

ε20 = σ̃2
0 = ω

1− α− β . (3.15)

The Gaussian quasi-likelihood is then defined as

Ln(θ) = Ln(θ; ε1, . . . , εn) =
n∏
t=1

1√
2πσ̃2

t

exp
(
− ε2t

2σ̃2
t

)
,

where we have
σ̃2
t = σ̃2

t (θ) = ω + αε2t−1 + βσ̃2
t−1.

Finally the QLME of θ is then defined as any measurable solution θ̂n of

θ̂n ∈ arg min
θ∈Θ

Ln(θ).

There exists a whole theory about the QMLE estimators and how they satisfy the usual
convergence and asymptotic properties. For the proof of these theorems we refer to the book of
Francq & Zakoian (pages 177 - 187). The theorems on the consistency and asymptotic normality
of the estimators are particularly interesting. Francq & Zakoian prove that the QMLE of the
coefficients of a GARCH model is asymptotically normal even if the distribution of the variables ηt
is not Gaussian. Therefore the inference is valid even if the assumption of a Gaussian distribution
is not true, for example if ηt follows a student-t distribution.

3.4.3 Finding the Best GARCH Specification

The next step is to find the most appropriate GARCH(p, q) model for our dataset. We use a
model selection procedure based on the information criterion AIC to determine for which values
p and q the model shows the best fit. By adding lags, so increasing p and q, we are adding a
direct influence from past values. For example for a GARCH(1,2) model, the schematic structure
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ηt−1 ηt ηt+1 ηt+2

εt−1 εt εt+1 εt+2

σt−1 σt σt+1 σt+2

α1 α1 α1

β1 β1 β1

α2 α2

ω ω ω ω

Figure 3.3: Directed Acyclic Graph (DAG) of the GARCH(1,2) model.

of variables can be viewed in Figure 3.3.

Note that the difference with the GARCH(1,1) structure in Figure 3.2 is the addition
of α2 which includes a direct influence of εt on σt+2. Furthermore, for a GARCH(2,2)
model we would add the parameter β2, adding a direct influence from the variance further
in the past, and so on. It is not a strange thought that adding more variables from the
past can improve the approximation. It could very well be that the volatility of today is
dependent on the volatility of two days ago and therefore must be accounted for in the model.
Nevertheless, a model with a low number of coefficients is preferred. Both Engle (2001) and
Tsay (2010) argue that the GARCH(1,1) model is the most robust and that higher-order
models do not succeed in outperforming the GARCH(1,1) model [23]. We can test if these
findings by Engle and Tsay are also true for our dataset by measuring which fits our data the best.

To find the best GARCH(p, q) specification we compare their AIC (Aikaike Informatoin
Criterion) values which are provided by the R summary outputs of garchFit. The AIC is
computed by the following formula:

AIC = −2
Nobs

(loglik −Npar). (3.16)

Here loglik is the resulting log-likelihood, Nobs the number of observations and Npar the
number of parameters of the model. This criterion penalizes the number of coefficients in the
model by subtracting Npar from the log-likelihood. Preferring the model with the smallest
number of parameters when choosing between two models with equal likelihood comes from
an epistemological concept known as Occam’s Razor. Occam’s Razor is a problem solving
principle and states that Entities should not be multiplied without necessity [24]. The best model
is therefore defined as the one with the smallest AIC, since it then has a high loglikelihood and a
low number of parameters.
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We let p and q take on values 1 through 4 and compared the AIC values of all possi-
ble combinations of p and q. The GARCH(1,1) was a clear winner with the lowest AIC value and
for this reason we chose this model for our estimation. This test does not show us if GARCH
models in general are good for our situation, but we do know now that of all GARCH(p, q)
models, GARCH(1,1) gives the best fit.

3.5 Limitations and Extensions of GARCH Models

In this report we will not go into detail on the goodness-of-fit test for GARCH models in general.
No model can perfectly portray every empirical property of financial time series and we therefore
follow the in statistics well-known expression by George Box [3]:

"All models are wrong, but some are useful."

We are not saying that GARCH perfectly models our stock price data, but they do
present useful findings for our research question. Even if GARCH models would be rejected by
a goodness-of-fit test it does not mean that they are bad. They can still be very useful and
informative regardless. In order to better capture the stylised facts many extensions of the
classical GARCH models have been designed. Nevertheless, many studies have also shown that
these extensions do not necessarily greatly outperform the classical model. We therefore choose
to stick with the simple GARCH model. There are, however, three drawbacks of the classical
GARCH models that we find are worth mentioning.

The first one is the most obvious one, namely the symmetric form of a classical GARCH model.
The conditional variance depends on the modulus of past variables and therefore the impact
from past positive and negative innovations is the same [14]. This contradicts the empirical
stylised fact called gain/loss asymmetry that occurs in reality. In past data we observe large
drawdowns in prices, for instance in crisis periods, but the following upward movement is not
equally big. To allow this asymmetry, an option is to use the EGARCH extension (Exponential
GARCH) model introduced by Nelson (1991).

Secondly, Tsay (2010) highlights that certain empirical studies on financial time series
show that the tail behavior of GARCH models is still too short in comparison to actual
observations. This is shown by looking at the kurtosis coefficients. Assuming a normal
distribution for (ηt) and therefore letting κη = 3 we find that the kurtosis coefficient for the
GARCH model with estimated coefficients is still too small to portray the kurtosis of the
empirical findings. To improve the kurtosis coefficient we can let η have a student-t distribution,
but Tsay (2010) states that even then the tails are still too short.

Lastly, the leverage effect property of stock price series is not fully captured by the
GARCH model definition. It is known that price decrease causes higher volatility than price
increase of the same magnitude, and therefore does not respond equally to positive and negative
shocks [26]. Classical GARCH models fail to reproduce this due to the dependence of the
conditional variance on the magnitude of the lagged residuals apposed to their signs. The
TGARCH extension (Threshold GARCH) model is known to adequately capture this fact as it
uses zero as a threshold to separate impacts from past shocks [26].



4 Modeling Stock Indices
and the COVID-19 Crisis

This chapter sets out the methodology of our research for finding the answer to the research
question, whether COVID-19 has structurally changed the dynamics of the stock market. We
are interested in European markets and therefore estimate GARCH(1,1) models on stock market
indices from three different countries in Europe. First we continue with the Dutch AEX index.
GARCH processes are designed to model high and low volatility, but we are curious to see how
it models the period during COVID-19. Throughout this chapter we estimate models based on
different subsets of the AEX index dataset and compare the estimated parameter values by their
95% confidence intervals. This way we can compare models fitted on data from before and during
COVID-19 periods. Section 4.4 introduces the concept of parametric bootstrapping, a method
that tests the accuracy of estimations, and illustrates in three clear steps how it is used in our
research. Afterwards we apply the same computations to two other European indices, the French
Cotation Assistée en Continu (CAC 40) and the German Deutscher Aktien (DAX). In Section
4.5 we compare the estimated results of the different markets. All estimations and computations
discussed in this chapter were performed in R and several relevant codes and results have been
presented in the Appendix.

4.1 Splitting the data

The AEX index is the first index we model and the available data ranges from January 2007
until June 2021. The first step is finding the start date of the COVID-19 stock market crisis. In
multiple figures in Chapter 2 we have seen the deep drawdown of the stock prices in March
2020. The largest absolute return values occurred between March 11 and 17, the same week
that the Netherlands closed all shops, restaurants and other public areas. But actually, the
crisis had influenced the market earlier than this date. After investigating the returns we
define the COVID start date as January 30, 2020. This is when the large fluctuations of the
returns started, which is visible in Figure 2.3. With this COVID cut-off date we distinguish the
periods Before COVID (BC) and Post COVID (PC). We define all dates before 30/01/2020 as
BC and all dates after as PC, even though the PC period is technically during the COVID-19 crisis.

We want to estimate different models based on data from BC and PC periods. Since
we have data starting in January 2007, we take different BC periods to compare with the PC
period that is only a little over a year long. We distinguish three different BC periods and
base them on past periods of high volatility to have diversity between the datasets. Each BC
period will end 30/01/2020 but their start date will differ. We recognise two of the past phases
with high volatility in Figure 2.2: the Global Financial Crisis in 2008 and the sudden market
crash in 2015/16 (from now on referred to as the 2015 crash). The first BC period is chosen
not too far back in time and begins right after the high volatility period of the 2015 crash, on
12/01/2016. The second period is chosen to start before this high volatility phase and has start
date: 10/10/2014. For the third period we want to include the Global Financial Crisis in 2008
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and therefore set its start date on 01/01/2008. There are now five datasets on which we estimate
a model and each period is denoted by the following names:

Period 1 : [12/01/2016− 01/30/2020] End 2015 Crash (BC1)
Period 2 : [10/10/2014− 01/30/2020] Begin 2015 Crash (BC2)
Period 3 : [01/01/2008− 01/30/2020] Begin 2008 Crash (BC3)
Period 4 : [01/31/2020− 04/30/2021] Post COVID (PC)
Period 5 : [01/01/2007− 04/30/2021] All data (All)

4.2 First Estimation

The code used for the estimation of the five defined periods can be found in the Appendix (A.2.3).
The estimation of the coefficients looks as follows:

(rt)
Estimation−−−−−−→
(QLME)


µ̂BC1, µ̂BC2, µ̂BC3, µ̂PC , µ̂all
ω̂BC1, ω̂BC2, ω̂BC3, ω̂PC , ω̂all
α̂BC1, α̂BC2, α̂BC3, α̂PC , α̂all
β̂BC1, β̂BC2, β̂BC3, β̂PC , β̂all


where µ̂, ω̂, α̂ and β̂ are called the pseudo-true values. To compare the estimations we use error
bar plots that portray the different confidence intervals, which can be viewed in Figure 4.1.

Figure 4.1: Estimating the GARCH(1,1) model using the AEX index data. The estimated parameter values and
the corresponding 95% confidence intervals for five different periods (three BC periods, the PC period and the
entire dataset) are presented with error bars.

To start, we look at the graph with the estimated values of the mean µ. Recall that rt = µ+ εt.
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We see that for each period µ > 0 and, moreover, that µ is increasing over time, implying that
there is an overall upward trend in the stock market. This seems to be coherent with reality if
we look at Figure 2.1. Even though the prices are going up and down constantly, the mean value
has been increasing since the Global Financial Crisis.

We are especially interested in the cases where the confidence intervals of different periods are
disjoint and we see this happen for the parameters α and β. This implies that the model has
changed in time, however, these changes do no seem a consequence of COVID-19. In fact we
can see that the period right before COVID, the End 2015 Crash period, looks a lot like the
PC period. The models estimated on those periods are not significantly different at the level of
95%. We therefore cannot reject the assumption that they are equal. Looking for example at the
confidence intervals for β, we notice that the intervals corresponding to the PC and the End
2015 Crash are very similar. Even though the End 2015 Crash period did not contain data with
extreme return values, the model still seems very similar to that of the PC model, supporting
the fact that there have not been changes in the model due to COVID-19.

On the contrary, the interval for Begin 2008 Crash is completely disjoint with the PC interval
for α and β. We therefore have strong evidence that these two models are different. This implies
that there indeed have been changes in the dynamics of the stock market since the 2008 market
crash. However, it seems that these changes are due to other changes in the world that occurred
between 2008 and 2015, and not because of COVID-19.

Lastly, we want to point out the differences in the sizes of the confidence intervals. Obviously
the interval for the PC is the largest, which is due to the fact that it is estimated on the smallest
dataset. When the dataset is smaller the estimated values are usually less accurate, resulting
in a larger confidence interval. Comparatively the All data period has the smallest confidence
interval. Because of this fact there might be some limitations to this comparison and to tackle
this we proceed with new estimations that will be discussed in the next section.

4.3 Second Estimation

Based on the similar confidence intervals in Figure 4.1 of the estimated parameters for the End
2015 crash and PC periods it seems that COVID-19 has not caused for much change in the
model. However, there might be some limitations to this comparison concerning the sizes of the
two datasets. The PC period is only a little over a year, while the End 2015 Crash consists of
four years of data. For the other BC periods this difference is even larger. We therefore proceed
with more estimations on smaller periods. Moreover, this also gives us a more precise view of
what is really happening in the price series.

We split the timeline into many new periods that all have the same size. Starting in January
2007 and ending in April 2021, we have 158 periods that all contain 14 months of data. Each
new period is constructed by shifting the previous period up one month, which results in the 158
periods in total. We now have:

(rt)
Estimation−−−−−−→
(QLME)


µ̂1, . . . , µ̂158
ω̂1, . . . , ω̂158
α̂1, . . . , α̂158

β̂1, . . . , β̂158
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and the results are presented in Figure 4.2. The code corresponding to these estimation can be
found in the Appendix (A.2.5).

Figure 4.2: Error bar plots of the estimated parameter values and the corresponding 95% confidence intervals.
They present the estimated models based on 158 different subsets of the AEX index dataset. All subsets consist of
14 months of stock price data and thus have the same size.

In Figure 4.1 we saw only positive estimations for the parameter µ but now the periods occurring
during heavy crisis times have a negative estimated value. The estimations for ω appear to have
stayed fairly constant over time with the exception of one large outlier in 2013, but we have not
been able to track down what happened on this day in 2013 that could have caused it.

For β we find that the estimated value does fluctuate in time. But comparing the last BC
periods with the PC periods we do not find any disjoint intervals and therefore cannot reject the
assumption that the parameter values are equal. The same holds for α. Even though α clearly
shows to have increased in time, this change does not seem to have been a consequence of the
COVID-19 crisis.

4.4 Parametric Bootstrap

We have estimated the parameters µ, ω, α and β, but how accurate are these estimations?
To test the accuracy we use parametric bootstrapping. This method belongs to the larger
bootstrapping family that was introduced by Bradley Efron (1979) as a computer-based method
for estimating the standard error. It is seen as a substitute for testing statistical inference.
Bootstrapping assigns measures of accuracy, for instance confidence intervals, to sample estimates
[10]. Bootstrapping depends on the concept of a bootstrap sample, which in the parametric
bootstrap case is carried out by a parametric model such as the GARCH(1,1). A simulation
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study by Adriana Cornea (2014) shows that with heavy-tailed distributions, the quality of
inference based on a parametric bootstrap is sufficient.

Let θ denote the vector of parameters in the model and θ̂ the pseudo-true values ob-
tained from the QLM estimation. We are interested in the accuracy of θ̂, and approximate θ − θ̂
by θ̂∗ − θ̂. Here θ̂∗ denotes the estimated parameters based on the simulated bootstrap sample.
Now let X denote the observations from the available data and Pθ0 the set of actual values for
µ, ω, α and β, then:

X ∼ Pθ0 , (Pθ)θ∈Θ.

We test the null hypothesis:
H0 : Pθ0

?= Pθ for some θ ∈ Θ,

and thus apply parametric bootstrapping as follows:

X
Estimation−−−−−−→
(QLME)

θ̂
Simulation−−−−−−−→

GARCH(1,1)
X∗

Estimation−−−−−−→
(QLME)

θ̂∗

The series X∗ is called the bootstrap sample and is created by simulating a sample of returns
by the GARCH(1,1) process using the mean value of µ̂i, ω̂i, α̂i and β̂i for i = 1, . . . 158. The
bootstrap sample X∗ has the same size as X, the original observations. As a final step we
estimate new parameters with the bootstrap sample X∗.

The code corresponding to this process can be found in the Appendix (A.2.6) where we followed
the following three steps:

Step 1: Estimate the parameters for all 158 subsets of the AEX index dataset as explained in
Section 4.3. Next, for each parameter take the mean value of the pseudo-true values.

(rt)
Estimation−−−−−−→
(QLME)


µ̂1, . . . , µ̂158
ω̂1, . . . , ω̂158
α̂1, . . . , α̂158

β̂1, . . . , β̂158


−→ µ̄
−→ ω̄
−→ ᾱ
−→ β̄

Step 2: Let the mean values µ̄, ω̄, ᾱ and β̄ be the constant coefficients in the GARCH(1,1)
process and simulate a sample (r∗t ) that has the same size as (rt) with the following model:

r∗t = µ̄+ ε∗t
ε∗t = σ∗t η

∗
t , η∗t ∼ N (0, 1)

σ∗t
2 = ω̄ + ᾱε∗t−1

2 + β̄σ∗t−1
2

Step 3: Lastly, estimate the parameter values again to obtain θ̂∗:

(r∗t )
Estimation−−−−−−→
(QLME)


µ̂∗1, . . . , µ̂∗158
ω̂∗1, . . . , ω̂∗158
α̂∗1, . . . , α̂∗158
β̂∗1 , . . . , β̂∗158



By applying this method we can check whether the assumption of constant coefficients is satisfied.
If the estimated values of the parametric bootstrap are coherent with the results in Section 4.3,
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then we cannot reject the null assumption of constant coefficients. This implies that the model
has stayed more or less the same over time and thus no significant changes due to COVID-19
have occurred.

The results of the third step are portrayed in the same way as in Figure 4.2 with error
bar plots with the 95% confidence intervals for each parameter. Comparing the parametric
bootstrap results with the original estimation in Figure 4.2 we find that there in fact are
differences. The parametric bootstrap sample does not seem to portray reality, which might be
due to the assumption of constant parameters.

We are curious to see if the PC estimated parameters portray the data well and there-
fore apply parametric bootstrapping once again. Now instead of taking the mean of all
pseudo-true values we let the constant coefficient be the PC estimated parameters µ̂158, ω̂158,
α̂158 and β̂158. The results can be found in the Appendix (A.2.6). Similarly to the first
bootstrap process, these results are also not coherent with the majority of the original es-
timation. However, as expected they indeed give a good representation of the COVID crisis period.

This lets us believe that the constant parameter assumption is incorrect and that there
have been changes in the model. However, note that these simulations are done with
ηt ∼ N (0, 1) and because of its randomness, every simulation will give a different result.
Therefore we execute several simulations to test if our previous findings are still satisfied.
We run 100 simulations and estimate parameters on the same five periods discussed in
Section 4.2. We count how many confidence intervals of the BC periods are disjoint with
the PC period confidence interval. How we executed this process can be found in the
Appendix (A.2.7). From these simulations we see that it is rare to have disjoint intervals,
but this is not reasonable with reality. We observed that the intervals of Begin 2008 Crash
and PC are disjoint in practice in Figure 4.1. The simulations do not reflect the usual be-
haviour of the model and this justifies our thought of rejecting the constant coefficient assumption.

4.5 Other European Markets

Obviously the AEX marketplace is only one example and might not represent all European
marketplaces. For this reason we did the same investigation for two other big European market
indices, namely the Cotation Assistée en Continu (CAC 40) in France and the Deutscher Aktien
(DAX) in Germany.

4.5.1 Cotation Assistée en Continu (CAC 40)

We first have a look at the CAC 40 index, a stock market index that represents 40 of the largest
companies on the Euronext Paris stock exchange market. The opening prices and returns of the
CAC 40 index are presented in Figure 4.3. Notice that the trends of the price and return series
are very similar to the AEX index data. They show the same periods of extreme return values
corresponding to high volatility periods. There is a difference in the price plots, namely that the
values of the CAC 40 index are much larger. However, this difference is not relevant since this is
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only due to the size of the market and does not effect the dynamics.

This is one of the reasons why we use the returns of the opening prices for our calculations and
these are very similar to AEX index values. In the Appendix (A.3) we illustrate how the CAC
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Figure 4.3: Time series of the CAC 40 index daily stock prices and return values from January 2007 to June
2021.

40 index satisfies several key stylised facts such as the autocorrelation properties of the returns
and squared returns and the fat-tailed (leptokurtic) distribution.

The CAC 40 index estimations are very similar to those of the AEX index and can be
found in the Appendix (A.3). COVID-19 does not seem to have caused noticeable changes in the
structure of the model. Moreover, we again see that the model has changed since 2007 as there
is strong evidence to reject the assumption of constant parameters, but this change seems due to
the Global Financial Crisis in 2008.

4.5.2 Deutscher Aktien (DAX)

The second European index we investigate is the German DAX, consisting of the 30 of the
largest companies trading on the Frankfurt Stock Exchange. Figure 4.4 presents the opening
prices and returns of the DAX index. The trends of the prices and return values are fairly
similar to those of the AEX and CAC 40 data. The DAX price values are even higher than
the CAC 40 but this is again irrelevant for the dynamics of the market. Nevertheless the
price values of the DAX index appear to have increased more since the Global Financial
Crisis in 2008 than the AEX and CAC 40 index prices. The recovery period from this
crisis is much shorter than for the other markets. The index prices have greatly surpassed
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the peak reached before the 2008 crash. In the Appendix (A.4) the autocorrelation and
the fat-tailed properties of the DAX data are illustrated. Other results can be found in A.4 as well.
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Figure 4.4: Time series of the DAX index daily stock prices and return values from January 2007 to June 2021.

The conclusions based on the CAC 40 index data were very similar to those for the AEX index,
but the DAX index on the other hand presents interesting alternative findings. In Figure 4.5 we
see that for α all of the confidence intervals of the BC periods are disjoint with the PC period.
These results are different from the other indices since now we find disjointness with the PC
interval for all the BC periods, and not only for the Begin 2008 Crash period. The fact that
the confidence intervals for End 2015 Crash and PC are disjoint is specifically interesting. This
constitutes strong evidence that the models fitted on these periods are different. If the models
are different, this implies that there has been a change in the structure of the model somewhere
between 2016 and 2021. We are guessing that this change is caused by COVID-19, however,
there is no way to conclude this for sure. A surprising finding is that the Global Financial Crisis
does not seem to have changed the model significantly, in contrast to the conclusions for the
CAC 40 and AEX indices. We also performed the Second Estimation process from Section 4.3.
These results are presented in Figure 4.6 and are coherent with our conclusion.

To test the accuracy of these findings we applied parametric bootstrapping and computed the
number of disjoint intervals we experienced for the bootstrap sample estimation. In Figure 4.1
we observed that for the original data the BC confidence intervals are all disjoint with the PC
confidence interval. But after running 100 simulations with constant parameters we see that it is
rare to have disjoint intervals which is not reasonable in practice. This does not reflect the usual
behaviour of the model and justifies our thought of rejecting the constant coefficient assumption.
We can state with 95% confidence that the model has changed in time. We cannot prove what
model is right for the DAX index data but we can reject the wrong ones, and a model with
constant parameters is wrong.
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Figure 4.5: Estimating the GARCH(1,1) model using the DAX index data. The estimated parameter values and
the corresponding 95% confidence intervals for five different periods (three BC periods, the PC period and the
entire dataset) are presented with error bar plots.

Figure 4.6: Error bar plots of the estimated parameter values and the corresponding 95% confidence intervals.
They present the estimated models based on 158 different subsets of the DAX index dataset. All subsets consist of
14 months of stock price data and thus have the same size.
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5 Conclusion
The impact of COVID-19 on the dynamics of the stock market does not appear to be the same
for all European markets. We modeled three different stock indices, the Dutch Amsterdam
Exchange (AEX), the French Cotation Assistée Continu (CAC 40) and the German Deutscher
Aktien (DAX). The conclusions for the CAC 40 and AEX were very similar, whereas the DAX
on the other hand presented interesting alternative findings.

Of the three market indices, only the DAX showed significant differences between the
estimated models fitted on data from before and during the COVID-19 crisis. This implies
that COVID-19 has indeed changed the dynamics of this market. This justifies our decision
to compare different markets, because there is no reason for them to actually be similar. For
example, the German economy is widely based on export so the belief that the dynamics of
the stock market have changed because of COVID-19 is quite reasonable. The dynamics of
the market have changed in the sense that, when assuming that the stock returns satisfy a
GARCH(1,1) process, the constant parameters of that process are different when modeling the
periods before and during COVID-19.

On the contrary, for the CAC 40 and the AEX indices there do not seem to have been
significant changes in the models due to the COVID-19 crisis. This conclusion is based
on the result that the models fitted on the period before and during the crisis are not
seemingly different. This affirms the ability of GARCH models to model both high and
low periods of volatility, since the periods before and during the COVID-19 crisis show
low volatility and high volatility, respectively. Moreover, this leaves us to believe that the
COVID-19 crisis in fact just resembles a period of high volatility for the Dutch and French market.

What is surprising is that the model fitted on the period during COVID-19 looks more
like the model fitted on low volatility data than the model fitted on data from a period which
includes the Global Financial Crisis in 2008. The Global Financial Crisis clearly appears to
have had a greater impact for the Dutch and French markets, showing significant changes in the
model, in comparison to the COVID-19 crisis. Moreover, the markets seem to have recovered
from the COVID-19 crisis much faster than they recovered from the Global Financial Crisis. It
took less than a year for the prices to have surpassed the peak value reached before the COVID
crisis, whereas after the Global Financial Crisis this took almost 10 years for both the AEX and
CAC markets.

On the other hand, the Global Financial Crisis does not seem to have changed the
DAX index model significantly. The recovery period from this crisis is also much smaller
compared to the recovery period experienced in the other markets. This is another justification
for the assumption that markets experience impacts of stock market crises differently.
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6 Discussion
For our research we have modeled several European stock markets before and during the COVID-
19 crisis. We used the GARCH(1,1) model, a simple case of the family of estimations models
called GARCH (General AutoRegressive Conditinally Heteroscedastic) models. GARCH models
are known for their ability to model the time-varying volatility property of stock returns. The
classical GARCH model we used is popular because of its simplicity and ability to capture most
of the empirical properties of financial time series but there are, however, a few restrictions.

In Section 3.5 we discussed how a few stylised facts are not fully captured by the classical
GARCH models. The symmetric form of a classical GARCH model is the most obvious one.
This does not portray the empirical properties defined as the gain/loss asymmetry and the
leverage effect. Many extensions of the classical model have been introduced to account for
this asymmetry property such as the Exponential GARCH (EGARCH), Threshold GARCH
(TGARCH) and the Asymmetric Power GARCH (APARCH). These and several other extension
models are discussed in Chapter 4 of the book on GARCH models by Francq & Zakoian [14].

Another limitation regards the heavy-tailed distribution property of financial time se-
ries. We realised that the kurtosis of the estimated model was too small in comparison to the
kurtosis of the actual observations, showing that the tail behavior of GARCH models is still too
short. We could have let η follow a student-t distribution to improve the kurtosis coefficient,
but studies have shown that even then the tails are still too short. Additionally, during our
research we experienced that the algorithm in R was unable to compute the standard error for
a few estimated parameters because of numerical convergence problems. This either suggests
that the classical GARCH model is not a good fit or that we should indeed replace N (0, 1), the
distribution of the innovation η, by a more appropriate distribution.

Moreover, besides using univariate models we could have also considered a multivariate
extension of the GARCH models. We have fitted three one-dimensional models but we could
have also used a three-dimensional model where there is interaction between the different stock
markets. Chapter 10 of the book by Francq & Zakoian discusses several multivariate GARCH
models.

"All models are wrong, but some are useful" (George Box, 1976).

No model can perfectly portray every empirical property of financial time series and,
even though the GARCH model had some limitations, it has still provided us with useful
findings. However, for further research it would be interesting to try several of the more
complicated univariate or multivariate extensions of the GARCH models or let η follow a
student-t distribution to possibly improve the model. Lastly, the conclusion that European
markets experience impact of stock market crises differently piqued our curiosity. The COVID-19
crash seems to have changed the dynamics of the German Deutsche Aktien (DAX) index but for
the Dutch Amsterdam Exchange (AEX) index and the French Cotation Assistée en Continu
(CAC 40) index these changes were insignificant. It would be interesting to further investigate
the differences between these market indices to learn more about why the DAX index was
influenced more than the others.
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A Appendix

A.1 Estimating GARCH Models in R

A.1.1 Importing the data

We imported the AEX index data from Yahoo! Finance through the ‘getSymbols’ function from
the ‘quantmod’ package. We calculated the simple returns with the opening price values.

getSymbols(c("ˆAEX"), src = "yahoo")

## [1] "^AEX"

AEX_Open = as.vector(AEX$AEX.Open)
returns = na.exclude((AEX_Open[-1] - AEX_Open[-length(AEX$AEX.Open)] ) /

AEX_Open[-length(AEX_Open)])

A.1.2 Fitting the Model

This table reports the result of fitting a GARCH(1,1) model with normally distributed innovation
for the AEX index data using the ‘fGarch’ package. The data ranges from January 2007 through
May 2021. The opening prices are obtained from Yahoo! Finance. This table presents the Quasi-
maximum likelihood parameter estimates with their corresponding standard error values, t-values
and p-values. Additionally the examination of the standardised residuals for serial correlation as
well as several goodness-of-fit measures are reported. For example the log-likelihood value and
the different information criterion values: AIC, BIC, SIC and HQIC.

fit_test = garchFit(~ garch(1,1), data = returns, trace = FALSE)

summary(fit_test)

##
## Title:
## GARCH Modelling
##
## Call:
## garchFit(formula = ~garch(1, 1), data = returns, trace = FALSE)
##
## Mean and Variance Equation:
## data ~ garch(1, 1)
## <environment: 0x7f8f31a21f50>
## [data = returns]
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##
## Conditional Distribution:
## norm
##
## Coefficient(s):
## mu omega alpha1 beta1
## 5.8729e-04 2.6946e-06 1.3096e-01 8.5790e-01
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
## Estimate Std. Error t value Pr(>|t|)
## mu 5.873e-04 1.492e-04 3.937 8.27e-05 ***
## omega 2.695e-06 4.728e-07 5.699 1.21e-08 ***
## alpha1 1.310e-01 1.244e-02 10.532 < 2e-16 ***
## beta1 8.579e-01 1.209e-02 70.982 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log Likelihood:
## 11469.47 normalized: 3.104891
##
## Description:
## Fri Jun 18 12:22:38 2021 by user:
##
##
## Standardised Residuals Tests:
## Statistic p-Value
## Jarque-Bera Test R Chi^2 510.0091 0
## Shapiro-Wilk Test R W 0.9800977 0
## Ljung-Box Test R Q(10) 12.05229 0.2815723
## Ljung-Box Test R Q(15) 15.7447 0.3992189
## Ljung-Box Test R Q(20) 26.61889 0.1463307
## Ljung-Box Test R^2 Q(10) 8.778673 0.5532293
## Ljung-Box Test R^2 Q(15) 17.55793 0.2866187
## Ljung-Box Test R^2 Q(20) 18.54497 0.5515554
## LM Arch Test R TR^2 14.81047 0.2519656
##
## Information Criterion Statistics:
## AIC BIC SIC HQIC
## -6.207616 -6.200887 -6.207618 -6.205221

The estimated model looks as follows:

{
rt = 0.0005873 + ε, εt = σtηt, ηt ∼ N (0, 1)
σ2
t = 0.000002695 + 0.1310ε2t−1 + 0.8579σ2

t−1
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A.2 Modeling the AEX Index

A.2.1 Importing the data and R Packages

We imported the AEX index data from Yahoo! Finance with the ‘getSymbols’ function in the
‘quantmod’ package. All other packages needed for the rest of the research are listed below. The
package ‘ggplot2’ is used for all plots in the report.

We printed head(AEX) to find out the range of the dataset: January 2007 through June 2021.
The last value changes every day since new values keep coming in. The AEX index data provides
us with six columns of data: opening prices, closing prices, highest price of the day, lowest price
of the day, volume and the adjusted value (equal to the closing price value). We use the opening
prices to compute the returns which will be used for the model estimation.

library(quantmod)
library(fGarch)
library(ggplot2)
library(ggpubr)
library(tidyverse)
library(forecast)
library(moments)
library(lubridate)

getSymbols(c("ˆAEX"), src = "yahoo") #source is Yahoo! Finance

## [1] "^AEX"

head(AEX) #first values

## AEX.Open AEX.High AEX.Low AEX.Close AEX.Volume AEX.Adjusted
## 2007-01-02 497.91 501.39 497.86 501.00 68535200 501.00
## 2007-01-03 501.48 501.80 499.85 501.35 96484400 501.35
## 2007-01-04 498.20 500.96 497.93 500.33 117535300 500.33
## 2007-01-05 498.39 499.21 494.04 494.05 125123300 494.05
## 2007-01-08 495.37 495.88 491.42 492.81 113168100 492.81
## 2007-01-09 495.04 497.97 494.36 495.87 139352700 495.87

AEX_Open = as.vector(AEX$AEX.Open)
returns = (AEX_Open[-1] - AEX_Open[-length(AEX$AEX.Open)] ) /

AEX_Open[-length(AEX_Open)]

A.2.2 Kurtosis

The kurtosis coefficient of the returns, defined in Section 3.3.3, is calculated by the function
kurtosis from the ‘moments’ package. The kurtosis coefficient of the AEX index returns equals
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12.16677. This high value is expected since we know financial time series often have a leptokurtic
distribution with fat tails and thus a high kurtosis coefficient. Note that the kurtosis coefficient
of a normal distribution with zero mean and unit variance equals 3. Figure 2.5 illustrates the
fatness of the tails for the AEX index data.

kurtosis_coef = kurtosis(na.exclude(returns))
kurtosis_coef

## [1] 12.15176

A.2.3 First Estimation

As discussed in Section 4.1 we divided the dataset into five periods:

Period 1 : [12/01/2016− 01/30/2020] End 2015 Crash (BC1)
Period 2 : [10/10/2014− 01/30/2020] Begin 2015 Crash (BC2)
Period 3 : [01/01/2008− 01/30/2020] Begin 2008 Crash (BC3)
Period 4 : [01/31/2020− 04/30/2021] Post COVID (PC)
Period 5 : [01/01/2007− 04/30/2021] All data (All)

We estimated the GARCH(1,1) model on all five periods with the garchFit function from the
‘fGarch’ package. For the summary output of garchFit we refer to the Appendix (A.1.2). The
values of interest are the parameter estimates µ, ω, α, β and the corresponding standard error
values.

indexstartBC.1 = which(index(AEX)>=as.Date("2016-12-01"))[1]
indexstartBC.2 = which(index(AEX)>=as.Date("2014-10-10"))[1]
indexstartBC.3 = which(index(AEX)>=as.Date("2008-01-01"))[1]
indexendBC = which(index(AEX)>=as.Date("2020-01-30"))[1]
indexstartPC = which(index(AEX)>=as.Date("2020-01-31"))[1]
indexendPC = which(index(AEX)>=as.Date("2021-04-30"))[1]

AEX_OpenBC.1 = AEX_Open[indexstartBC.1:indexendBC]
AEX_OpenBC.2 = AEX_Open[indexstartBC.2:indexendBC]
AEX_OpenBC.3 = AEX_Open[indexstartBC.3:indexendBC]
AEX_OpenPC = AEX_Open[indexstartPC:indexendPC]

#Period 1
returnsBC.1 = (AEX_OpenBC.1[-1] - AEX_OpenBC.1[-length(AEX_OpenBC.1)] ) /

AEX_OpenBC.1[-length(AEX_OpenBC.1)]
fitBC.1 = garchFit(data=na.exclude(returnsBC.1), trace = F)

#Period 2
returnsBC.2 = (AEX_OpenBC.2[-1] - AEX_OpenBC.2[-length(AEX_OpenBC.2)] ) /

AEX_OpenBC.2[-length(AEX_OpenBC.2)]
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fitBC.2 = garchFit(data=na.exclude(returnsBC.2), trace = F)

#Period 3
returnsBC.3 = (AEX_OpenBC.3[-1] - AEX_OpenBC.3[-length(AEX_OpenBC.3)] ) /

AEX_OpenBC.3[-length(AEX_OpenBC.3)]
fitBC.3 = garchFit(data = na.exclude(returnsBC.3), trace = F)

#Period 4 : Post Covid
returnsPC = (AEX_OpenPC[-1] - AEX_OpenPC[-length(AEX_OpenPC)] ) /

AEX_OpenPC[-length(AEX_OpenPC)]
fitPC = garchFit(data = na.exclude(returnsPC), trace = F)

#All data
returnsBC.all= na.exclude(returns[index(AEX)<as.Date("2021-04-30")])
fit.al = garchFit(data=returnsBC.all, trace = F)

A.2.4 Comparing the Estimated Parameters

To compare the estimated models of the five periods we put all the necessary information into a
data frame. This data frame has the following columns: parameter, situation, estimate, standard
error, lower and upper. Situation refers to the different periods. The lower and upper values are
the left and right boundary values, respectively, of the 95% confidence intervals of the estimated
parameters. All computations are done with the 95% confidence interval, so all results are given
with 95% confidence. The boundaries for each parameter are calculated by:

lower = estimate− 1.96× st.error

upper = estimate+ 1.96× st.error

where 1.96 is the quantile of the normal distribution corresponding to the 95% confidence interval.
We may use this quantile because of the asymptotic normality discussed in Section 3.4.2. We
have α = 1− 0.95 and therefore q1−α

2
N = q0.975

N = 1.96.

par <- c("mu", "omega","alpha","beta")
parameter <- rep(par, each=5)
sit <- c("end 2015 crash", "begin 2015 crash", "begin 2008 crash",

"all data", "post covid")
situation <- rep(sit, times =4)
estimate <- c(fitBC.1@fit$par[1],fitBC.2@fit$par[1], fitBC.3@fit$par[1],

fit.al@fit$par[1],fitPC@fit$par[1],
fitBC.1@fit$par[2],fitBC.2@fit$par[2], fitBC.3@fit$par[2],
fit.al@fit$par[2],fitPC@fit$par[2],
fitBC.1@fit$par[3],fitBC.2@fit$par[3], fitBC.3@fit$par[3],
fit.al@fit$par[3], fitPC@fit$par[3],
fitBC.1@fit$par[4],fitBC.2@fit$par[4], fitBC.3@fit$par[4],
fit.al@fit$par[4] ,fitPC@fit$par[4])

st.error <- c(fitBC.1@fit$se.coef[1], fitBC.2@fit$se.coef[1],
fitBC.3@fit$se.coef[1],fit.al@fit$se.coef[1],fitPC@fit$se.coef[1],



50 APPENDIX A. APPENDIX

fitBC.1@fit$se.coef[2], fitBC.2@fit$se.coef[2],
fitBC.3@fit$se.coef[2],fit.al@fit$se.coef[2],fitPC@fit$se.coef[2],
fitBC.1@fit$se.coef[3], fitBC.2@fit$se.coef[3],
fitBC.3@fit$se.coef[3],fit.al@fit$se.coef[3],fitPC@fit$se.coef[3],
fitBC.1@fit$se.coef[4], fitBC.2@fit$se.coef[4],
fitBC.3@fit$se.coef[4],fit.al@fit$se.coef[4],fitPC@fit$se.coef[4])

lower <- estimate - 1.96*st.error
upper <- estimate + 1.96*st.error

#Adding the constraint for omega, alpha and beta: cannot have negative values
for (i in 6:20) {

lower[i]= max(0, lower[i], na.rm = TRUE)
}
estimates_df<- data.frame(parameter, situation,

estimate, st.error, lower, upper)
estimates_df

## parameter situation estimate st.error lower upper
## 1 mu end 2015 crash 7.041256e-04 2.239327e-04 2.652175e-04 1.143034e-03
## 2 mu begin 2015 crash 6.181023e-04 2.105592e-04 2.054063e-04 1.030798e-03
## 3 mu begin 2008 crash 5.095245e-04 1.596174e-04 1.966744e-04 8.223746e-04
## 4 mu all data 5.762947e-04 1.501491e-04 2.820026e-04 8.705869e-04
## 5 mu post covid 1.139188e-03 5.494966e-04 6.217491e-05 2.216202e-03
## 6 omega end 2015 crash 6.876278e-06 1.942107e-06 3.069748e-06 1.068281e-05
## 7 omega begin 2015 crash 2.835913e-06 7.752309e-07 1.316461e-06 4.355365e-06
## 8 omega begin 2008 crash 1.797922e-06 4.074060e-07 9.994065e-07 2.596438e-06
## 9 omega all data 2.594074e-06 4.644445e-07 1.683762e-06 3.504385e-06
## 10 omega post covid 7.200222e-06 4.829794e-06 0.000000e+00 1.666662e-05
## 11 alpha end 2015 crash 1.792714e-01 3.930481e-02 1.022340e-01 2.563088e-01
## 12 alpha begin 2015 crash 1.303144e-01 2.075707e-02 8.963049e-02 1.709982e-01
## 13 alpha begin 2008 crash 1.088985e-01 1.220025e-02 8.498598e-02 1.328110e-01
## 14 alpha all data 1.278157e-01 1.213936e-02 1.040225e-01 1.516088e-01
## 15 alpha post covid 2.809891e-01 7.734594e-02 1.293911e-01 4.325872e-01
## 16 beta end 2015 crash 6.909641e-01 5.976549e-02 5.738238e-01 8.081045e-01
## 17 beta begin 2015 crash 8.435192e-01 2.289614e-02 7.986427e-01 8.883956e-01
## 18 beta begin 2008 crash 8.830475e-01 1.208715e-02 8.593567e-01 9.067383e-01
## 19 beta all data 8.615018e-01 1.184857e-02 8.382786e-01 8.847250e-01
## 20 beta post covid 7.188314e-01 6.929469e-02 5.830138e-01 8.546490e-01

Error bar plots of the estimated parameters with their 95% confidence intervals are presented in
Section 4.2 in Figure 4.1. We are interested in the cases where the confidence intervals of the
different periods are disjoint.

A.2.5 Second Estimation

We split the timeline into many new periods that all have the same size. Starting in January
2007 and ending in April 2021, we have 158 periods that all contain 14 months of data. Each
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new period is constructed by shifting the previous period up one month, which results in 158
periods in total. We estimate a GARCH(1,1) model for each of these periods and construct a
data frame similar to the one in Section A.2.4. The results are visualised in Figure 4.2 with error
bar plots of the estimated parameters and the corresponding 95% confidence intervals.

estiMu = rep(NA, 158)
estiOmega = rep(NA, 158)
estiAlpha = rep(NA, 158)
estiBeta = rep(NA, 158)

st.e.Mu = rep(NA, 158)
st.e.Omega = rep(NA, 158)
st.e.Alpha = rep(NA, 158)
st.e.Beta = rep(NA, 158)

lmu = rep(NA, 158)
lomega = rep(NA, 158)
lalpha = rep(NA, 158)
lbeta = rep(NA, 158)

s = as.Date(rep(NA, 158))

for (t in 1:158){
start= which(index(AEX)>= ymd("20070801") %m+% months(t-7))[1]
end = which(index(AEX)>= ymd("20070801") %m+% months(t+7))[1]
AEX_Open.r=AEX_Open[start:end]
return = (AEX_Open.r[-1] - AEX_Open.r[-length(AEX_Open.r)] ) /
AEX_Open.r[-length(AEX_Open.r)]

fit = garchFit(data = na.exclude(return), trace = F)
p <- c("mu", "omega", "alpha", "beta")
parameters <- rep(p, each = 158)
s[t] <- ymd(ymd("20070801") %m+% months(t))
situations <- rep(s, times=4)
estiMu[t] <- fit@fit$par[1]
estiOmega[t] <- fit@fit$par[2]
estiAlpha[t] <- fit@fit$par[3]
estiBeta[t] <- fit@fit$par[4]
estimates <- c(estiMu, estiOmega, estiAlpha, estiBeta)
st.e.Mu[t] <- fit@fit$se.coef[1]
st.e.Omega[t] <- fit@fit$se.coef[2]
st.e.Alpha[t] <- fit@fit$se.coef[3]
st.e.Beta[t] <- fit@fit$se.coef[4]
st.errors <- c(st.e.Mu, st.e.Omega, st.e.Alpha, st.e.Beta)
lmu[t] <- estiMu[t] - 1.96*st.e.Mu[t]
lomega[t] <- estiOmega[t] - 1.96*st.e.Omega[t]
lomega[t] <- max(0, lomega[t], na.rm = TRUE)
lalpha[t] <- estiAlpha[t] - 1.96*st.e.Alpha[t]
lalpha[t] <- max(0, lalpha[t], na.rm = TRUE)
lbeta[t] <- estiBeta[t] - 1.96*st.e.Beta[t]



52 APPENDIX A. APPENDIX

lbeta[t] <- max(0, lbeta[t], na.rm = TRUE)
lowers= c(lmu, lomega, lalpha, lbeta)
uppers <- estimates + 1.96*st.errors
df <- data.frame(parameters, situations, estimates, st.errors, lowers, uppers)

}

A.2.6 Parametric Bootstrap

We apply parametric bootstrapping to the estimated models and use the process explained in
Section 4.4. We first apply the method where the coefficients in the bootstrap sample are the
mean of the pseudo-true values and afterwards do the same procedure but with the PC estimated
parameters as the constant coefficients.

Parametric sample with the mean of the pseudo-true values:

Step 1: Estimate the parameters for all 158 subsets of the AEX index dataset as explained in
Section 4.3. Next, for each parameter take the mean value of the pseudo-true values:

mu_bar = mean(estiMu)
omega_bar= mean(estiOmega)
alpha_bar= mean(estiAlpha)
beta_bar = mean(estiBeta)

Step 2: Let the mean values µ̄, ω̄, ᾱ and β̄ be the constant coefficients in the GARCH(1,1)
process and simulate the bootstrap sample (r∗t ) that has the same size as (rt) with the following
model:

Timelength = length(AEX_Open)
Time = 1:Timelength
eta_t = rep(NA, Timelength)
epsilon_t = rep(NA, Timelength)
sigma_t = rep(NA, Timelength)
Price_t = rep(NA, Timelength)
r_t = rep(NA, Timelength)

eta_t[1] = 0
epsilon_t[1] = 0
sigma_t[1] = 0
r_t[1]=0
Price_t[1] = 489

for (t in 2:Timelength){
eta_t[t] = rnorm(1)
sigma_t[t] = sqrt( omega_bar + alpha_bar * (epsilon_t[t-1])ˆ2 +
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beta_bar * (sigma_t[t-1])ˆ2 )
epsilon_t[t] = eta_t[t] * sigma_t[t]
Price_t[t] = Price_t[t-1] * exp(epsilon_t[t])
r_t[t] = mu_bar + epsilon_t[t]

}
#plots of the simulated sample
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Note that this simulation is not entirely realistic. In the graph corresponding to the price values
(a_price) we notice that the price is able to increase just as steeply as decrease. This is because
ηt ∼ N (0, 1) and therefore it returns positive and negative values of the same magnitude. In
reality, however, this is not the case. This asymmetry is defined as the gain/loss asymmetry
stylised fact discussed in Section 2.2.2.

Step 3: Lastly, estimate the parameter values again to obtain θ̂∗:

estiMu2 = rep(NA, 158)
estiOmega2 = rep(NA, 158)
estiAlpha2 = rep(NA, 158)
estiBeta2 = rep(NA, 158)

st.e.Mu2 = rep(NA, 158)
st.e.Omega2 = rep(NA, 158)
st.e.Alpha2 = rep(NA, 158)
st.e.Beta2 = rep(NA, 158)
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lmu2 = rep(NA, 158)
lomega2 = rep(NA, 158)
lalpha2 = rep(NA, 158)
lbeta2 = rep(NA, 158)

s = as.Date(rep(NA, 158))
for (t in 1:158){
start= which(index(AEX)>= ymd("20070801") %m+% months(t-7))[1]
end = which(index(AEX)>= ymd("20070801") %m+% months(t+7))[1]
return2 = r_t[start:end]
fit2 = garchFit(data = na.exclude(return2), trace = F)
p <- c("mu", "omega", "alpha", "beta")
parameters2 <- rep(p, each = 158)
s[t] <- ymd(ymd("20070801") %m+% months(t))
situations2 <- rep(s, times=4)
estiMu2[t] <- fit2@fit$par[1]
estiOmega2[t] <- fit2@fit$par[2]
estiAlpha2[t] <- fit2@fit$par[3]
estiBeta2[t] <- fit2@fit$par[4]
estimates2 <- c(estiMu2, estiOmega2, estiAlpha2, estiBeta2)
st.e.Mu2[t] <- fit2@fit$se.coef[1]
st.e.Omega2[t] <- fit2@fit$se.coef[2]
st.e.Alpha2[t] <- fit2@fit$se.coef[3]
st.e.Beta2[t] <- fit2@fit$se.coef[4]
st.errors2 <- c(st.e.Mu2, st.e.Omega2, st.e.Alpha2, st.e.Beta2)
lmu2[t] <- estiMu2[t] - 1.96*st.e.Mu2[t]
lomega2[t] <- estiOmega2[t] - 1.96*st.e.Omega2[t]
lomega2[t] <- max(0, lomega2[t], na.rm = TRUE)
lalpha2[t] <- estiAlpha2[t] - 1.96*st.e.Alpha2[t]
lalpha2[t] <- max(0, lalpha2[t], na.rm = TRUE)
lbeta2[t] <- estiBeta2[t] - 1.96*st.e.Beta2[t]
lbeta2[t] <- max(0, lbeta2[t], na.rm = TRUE)
lowers2= c(lmu2, lomega2, lalpha2, lbeta2)
uppers2 <- estimates2 + 1.96*st.errors2
df_2 <- data.frame(parameters2, situations2, estimates2, st.errors2,

lowers2, uppers2)
}
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Parametric sample with the PC pseudo-true value:

Step 1: Estimate the parameters for all 158 subsets of the AEX index dataset as explained in
Section 4.3. Next, for each parameter take the pseudo-true values of the last estimation:

(rt)
Estimation−−−−−−→
(QLME)


µ̂1, . . . , µ̂158
ω̂1, . . . , ω̂158
α̂1, . . . , α̂158

β̂1, . . . , β̂158


−→ µ̂158
−→ ω̂158
−→ α̂158

−→ β̂158

mu_hat= estiMu[length(estiMu)]
omega_hat = estiOmega[length(estiOmega)]
alpha_hat = estiAlpha[length(estiAlpha)]
beta_hat = estiBeta[length(estiBeta)]

Step 2: Let the values µ̂158, ω̂158, α̂158 and β̂158 be the constant coefficients in the GARCH(1,1)
process and simulate a sample (r∗t ) that has the same size as (rt) with the following model:

r∗t = µ̂158 + ε∗t
ε∗t = σ∗t η

∗
t , η∗t ∼ N (0, 1)

σ∗t
2 = ω̂158 + α̂158ε

∗
t−1

2 + β̂158σ
∗
t−1

2

Timelength = length(AEX_Open)
Time = 1:Timelength
eta_tn = rep(NA, Timelength)
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epsilon_tn = rep(NA, Timelength)
sigma_tn = rep(NA, Timelength)
Price_tn = rep(NA, Timelength)
r_tn = rep(NA, Timelength)

eta_tn[1] = 0
epsilon_tn[1] = 0
sigma_tn[1] = 0
r_tn[1]=0
Price_tn[1] = 489

for (t in 2:Timelength){
eta_tn[t] = rnorm(1)
sigma_tn[t] = sqrt( omega_hat + alpha_hat * (epsilon_tn[t-1])ˆ2 +

beta_hat * (sigma_tn[t-1])ˆ2 )
epsilon_tn[t] = eta_tn[t] * sigma_tn[t]
Price_tn[t] = Price_tn[t-1] * exp(epsilon_tn[t])
r_tn[t] = mu_hat + epsilon_tn[t]

}
#plots of the simulated sample
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Step 3: Lastly, estimate the parameter values again to obtain θ̂∗:

(r∗t )
Estimation−−−−−−→
(QLME)


µ̂∗1, . . . , µ̂∗158
ω̂∗1, . . . , ω̂∗158
α̂∗1, . . . , α̂∗158
β̂∗1 , . . . , β̂∗158


estiMu3 = rep(NA, 158)
estiOmega3 = rep(NA, 158)
estiAlpha3 = rep(NA, 158)
estiBeta3 = rep(NA, 158)

st.e.Mu3 = rep(NA, 158)
st.e.Omega3 = rep(NA, 158)
st.e.Alpha3 = rep(NA, 158)
st.e.Beta3 = rep(NA, 158)

lmu3 = rep(NA, 158)
lomega3 = rep(NA, 158)
lalpha3 = rep(NA, 158)
lbeta3 = rep(NA, 158)

s = as.Date(rep(NA, 158))
for (t in 1:158){
start= which(index(AEX)>= ymd("20070801") %m+% months(t-7))[1]
end = which(index(AEX)>= ymd("20070801") %m+% months(t+7))[1]
return3 = r_tn[start:end]
fit3 = garchFit(data = na.exclude(return3), trace = F)
p <- c("mu", "omega", "alpha", "beta")
parameters3 <- rep(p, each = 158)
s[t] <- ymd(ymd("20070801") %m+% months(t))
situations3 <- rep(s, times=4)
estiMu3[t] <- fit3@fit$par[1]
estiOmega3[t] <- fit3@fit$par[2]
estiAlpha3[t] <- fit3@fit$par[3]
estiBeta3[t] <- fit3@fit$par[4]
estimates3 <- c(estiMu3, estiOmega3, estiAlpha3, estiBeta3)
st.e.Mu3[t] <- fit3@fit$se.coef[1]
st.e.Omega3[t] <- fit3@fit$se.coef[2]
st.e.Alpha3[t] <- fit3@fit$se.coef[3]
st.e.Beta3[t] <- fit3@fit$se.coef[4]
st.errors3 <- c(st.e.Mu3, st.e.Omega3, st.e.Alpha3, st.e.Beta3)
lmu3[t] <- estiMu3[t] - 1.96*st.e.Mu3[t]
lomega3[t] <- estiOmega3[t] - 1.96*st.e.Omega3[t]
lomega3[t] <- max(0, lomega3[t], na.rm = TRUE)
lalpha3[t] <- estiAlpha3[t] - 1.96*st.e.Alpha3[t]
lalpha3[t] <- max(0, lalpha3[t], na.rm = TRUE)
lbeta3[t] <- estiBeta3[t] - 1.96*st.e.Beta3[t]
lbeta3[t] <- max(0, lbeta3[t], na.rm = TRUE)
lowers3= c(lmu3, lomega3, lalpha3, lbeta3)
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uppers3 <- estimates3 + 1.96*st.errors3
df_3 <- data.frame(parameters3, situations3, estimates3, st.errors3,

lowers3, uppers3)
}

Section 4.4 discusses both the parametric bootstrap results presented here.

A.2.7 Validation with 100 Simulations

The parameter values are now again the mean of the pseudo-true values from the first estimation.
We simulate 100 different samples and estimate new models for the five periods from Section 4.1.
We calculate how many confidence intervals of the different BC periods are disjoint with the PC
confidence interval. The result is presented in a data frame.

Timelength = length(AEX_Open)
Time = 1:Timelength
eta_tn = rep(NA, Timelength)
epsilon_tn = rep(NA, Timelength)
sigma_tn = rep(NA, Timelength)
Price_tn = rep(NA, Timelength)
r_tn = rep(NA, Timelength)

eta_tn[1] = 0
epsilon_tn[1] = 0
sigma_tn[1] = 0
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r_tn[1]=0
Price_tn[1] = 489 #first opening price value of the original observations

indexstartBC.1 = which(index(AEX)>=as.Date("2016-12-01"))[1]
indexstartBC.2 = which(index(AEX)>=as.Date("2014-10-10"))[1]
indexstartBC.3 = which(index(AEX)>=as.Date("2008-01-01"))[1]
indexendBC = which(index(AEX)>=as.Date("2020-01-30"))[1]
indexstartPC = which(index(AEX)>=as.Date("2020-01-31"))[1]
indexendPC = which(index(AEX)>=as.Date("2021-04-30"))[1]

disjoint_mu_BC1 = 0
disjoint_mu_BC2 = 0
disjoint_mu_BC3= 0
disjoint_mu_BC.all= 0

disjoint_omega_BC1 = 0
disjoint_omega_BC2 = 0
disjoint_omega_BC3 = 0
disjoint_omega_BC.all = 0

disjoint_alpha_BC1 = 0
disjoint_alpha_BC2 = 0
disjoint_alpha_BC3= 0
disjoint_alpha_BC.all= 0

disjoint_beta_BC1 = 0
disjoint_beta_BC2 = 0
disjoint_beta_BC3 = 0
disjoint_beta_BC.all = 0

count = 0
while (count < 100){

count = count +1
for (t in 2:Timelength){
eta_tn[t] = rnorm(1)
sigma_tn[t] = sqrt( omega_bar + alpha_bar * (epsilon_tn[t-1])ˆ2 +
beta_bar * (sigma_tn[t-1])ˆ2 )
epsilon_tn[t] = eta_tn[t] * sigma_tn[t]
Price_tn[t] = Price_tn[t-1] * exp(epsilon_tn[t])
r_tn[t] = mu_bar + epsilon_tn[t]

}

sim_BC.1 = r_tn[indexstartBC.1:indexendBC]
sim_BC.2 = r_tn[indexstartBC.2:indexendBC]
sim_BC.3 = r_tn[indexstartBC.3:indexendBC]
sim_all = r_tn[1:indexendPC]
simPC = r_tn[indexstartPC:indexendPC]

fitBC.1 = garchFit(data= sim_BC.1, trace = F)
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fitBC.2 = garchFit(data= sim_BC.2, trace = F)
fitBC.3 = garchFit(data = sim_BC.3, trace = F)
fit.all = garchFit(data= sim_all, trace = F)
fitPC = garchFit(data = simPC, trace = F)

par <- c("mu", "omega","alpha","beta")
parameter <- rep(par, each=5)
sit <- c("end 2015 crash", "begin 2015 crash", "begin 2008 crash",

"all data", "post covid")
situation <- rep(sit, times =4)
estimate <- c(fitBC.1@fit$par[1],fitBC.2@fit$par[1], fitBC.3@fit$par[1],

fit.al@fit$par[1],fitPC@fit$par[1],
fitBC.1@fit$par[2],fitBC.2@fit$par[2], fitBC.3@fit$par[2],
fit.al@fit$par[2],fitPC@fit$par[2],
fitBC.1@fit$par[3],fitBC.2@fit$par[3], fitBC.3@fit$par[3],
fit.al@fit$par[3], fitPC@fit$par[3],
fitBC.1@fit$par[4],fitBC.2@fit$par[4], fitBC.3@fit$par[4],
fit.al@fit$par[4] ,fitPC@fit$par[4])

st.error <- c(fitBC.1@fit$se.coef[1], fitBC.2@fit$se.coef[1],
fitBC.3@fit$se.coef[1],fit.al@fit$se.coef[1],fitPC@fit$se.coef[1],
fitBC.1@fit$se.coef[2], fitBC.2@fit$se.coef[2],
fitBC.3@fit$se.coef[2],fit.al@fit$se.coef[2],fitPC@fit$se.coef[2],
fitBC.1@fit$se.coef[3], fitBC.2@fit$se.coef[3],
fitBC.3@fit$se.coef[3],fit.al@fit$se.coef[3],fitPC@fit$se.coef[3],
fitBC.1@fit$se.coef[4], fitBC.2@fit$se.coef[4],
fitBC.3@fit$se.coef[4],fit.al@fit$se.coef[4],fitPC@fit$se.coef[4])

lower <- estimate - 1.96*st.error
for (i in 6:20) {
lower[i] = max(0, lower[i], na.rm = TRUE)

}
upper <- estimate + 1.96*st.error
sim_estimates_df <- data.frame(parameter, situation, estimate,

st.error, lower, upper)
#mu

#BC1 vs PC
if ((upper[1] < lower[5]) | upper[5] < lower[1] ){
disjoint_mu_BC1 = disjoint_mu_BC1 + 1

}
#BC2 vs PC

if ((upper[2] < lower[5]) | upper[5] < lower[2] ){
disjoint_mu_BC2 = disjoint_mu_BC2 + 1

}
#BC3 vs PC

if ((upper[3] < lower[5]) | upper[5] < lower[3] ){
disjoint_mu_BC3 = disjoint_mu_BC3 + 1

}
#BC.all vs PC

if ((upper[4] < lower[5]) | upper[5] < lower[4] ){
disjoint_mu_BC.all = disjoint_mu_BC.all + 1
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}

#omega
#BC1 vs PC

if ((upper[6] < lower[10]) | upper[10] < lower[6] ){
disjoint_omega_BC1 = disjoint_omega_BC1 + 1

}
#BC2 vs PC

if ((upper[7] < lower[10]) | upper[10] < lower[7] ){
disjoint_omega_BC2 = disjoint_omega_BC2 + 1

}
#BC3 vs PC

if ((upper[8] < lower[10]) | upper[10] < lower[8] ){
disjoint_omega_BC3 = disjoint_omega_BC3 + 1

}
#BC.all vs PC

if ((upper[9] < lower[10]) | upper[10] < lower[9] ){
disjoint_omega_BC.all = disjoint_omega_BC.all + 1

}
#alpha

#BC1 vs PC
if ((upper[11] < lower[15]) | upper[15] < lower[11] ){
disjoint_alpha_BC1 = disjoint_alpha_BC1 + 1

}
#BC2 vs PC

if ((upper[12] < lower[15]) | upper[15] < lower[12] ){
disjoint_alpha_BC2 = disjoint_alpha_BC2 + 1

}
#BC3 vs PC
if ((upper[13] < lower[15]) | upper[15] < lower[13] ){
disjoint_alpha_BC3 = disjoint_alpha_BC3 + 1

}
#BC.all vs PC
if ((upper[14] < lower[15]) | upper[15] < lower[14] ){
disjoint_alpha_BC.all = disjoint_alpha_BC.all + 1

}

#Beta
#BC1 vs PC
if ((upper[16] < lower[20]) | upper[20] < lower[16] ){
disjoint_beta_BC1 = disjoint_beta_BC1 + 1

}
#BC2 vs PC
if ((upper[17] < lower[20]) | upper[20] < lower[17] ){
disjoint_beta_BC2 = disjoint_beta_BC2 + 1

}
#BC3 vs PC
if ((upper[18] < lower[20]) | upper[20] < lower[18] ){
disjoint_beta_BC3 = disjoint_beta_BC3 + 1
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}
#BC.all vs PC
if ((upper[19] < lower[20]) | upper[20] < lower[19] ){
disjoint_beta_BC.all = disjoint_beta_BC.all + 1

}
}

par <- c("mu", "omega", "alpha", "beta")
parameter <- rep(par, each = 4)
per<- c("all data", "BC1", "BC2", "BC3")
period <- rep(per, times=4)
num_disjoint <- c(disjoint_mu_BC.all,disjoint_mu_BC1, disjoint_mu_BC2,
disjoint_mu_BC3, disjoint_omega_BC.all, disjoint_omega_BC1, disjoint_omega_BC2,
disjoint_omega_BC3, disjoint_alpha_BC.all, disjoint_alpha_BC1, disjoint_beta_BC2,
disjoint_alpha_BC3, disjoint_beta_BC.all, disjoint_beta_BC1, disjoint_beta_BC2,
disjoint_beta_BC3)

data.frame(parameter, period, num_disjoint)

## parameter period num_disjoint
## 1 mu all data 0
## 2 mu BC1 0
## 3 mu BC2 0
## 4 mu BC3 0
## 5 omega all data 2
## 6 omega BC1 1
## 7 omega BC2 2
## 8 omega BC3 2
## 9 alpha all data 2
## 10 alpha BC1 0
## 11 alpha BC2 6
## 12 alpha BC3 2
## 13 beta all data 5
## 14 beta BC1 1
## 15 beta BC2 6
## 16 beta BC3 5



A.3. MODELING THE CAC 40 INDEX 63

A.3 Modeling the CAC 40 Index

Importing the data

getSymbols( # CAC40
c("ˆFCHI"),
src = "yahoo")

head(FCHI) #first values
FCHI_Open = as.vector(FCHI$FCHI.Open)
returns.FCHI = (FCHI_Open[-1] - FCHI_Open[-length(FCHI_Open)] ) /

FCHI_Open[-length(FCHI_Open)]

## [1] "^FCHI"
## FCHI.Open FCHI.High FCHI.Low FCHI.Close FCHI.Volume FCHI.Adjusted
## 2007-01-02 5575.76 5621.65 5575.63 5617.71 85910000 5617.71
## 2007-01-03 5621.00 5623.67 5596.82 5610.92 118580700 5610.92
## 2007-01-04 5573.73 5585.54 5547.17 5574.56 130465700 5574.56
## 2007-01-05 5552.64 5566.24 5517.35 5517.35 126420500 5517.35
## 2007-01-08 5532.57 5555.67 5509.06 5518.59 115053800 5518.59
## 2007-01-09 5549.01 5563.48 5532.62 5533.03 151688200 5533.03

Autocorrelation

Here we show the autocorrelation of the returns (a) and the squared returns (b) of the CAC 40
index. We notice the tiny autocorrelation between the returns while the squared returns on the
other hand show larger autocorrelation. These two properties are general characteristics of stock
returns and thus support the use of GARCH models.
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Kurtosis

Next the kurtosis coefficient of the returns is calculated. This value equals 9.66256 which is
smaller than for AEX index but still high. This high value is expected since we know financial
time series often have a leptokurtic distribution with fat tails and thus a high kurtosis coefficient.
The plot below presents the distribution density function of the returns and its deviance from a
normal distribution. The logarithmic scale is used in (b) for a clear view on the fatness of the
tails.

#kurtosis coefficient
kurtosis_coef = kurtosis(na.exclude(returns.FCHI))
kurtosis_coef

## [1] 9.66256

First Estimation

We decided to split the dataset into the same five periods as we did for the AEX index in
Section 4.1 since the CAC 40 data shows very similar trends for both the price and return series.
Moreover, in the past the whole of Europe has been affected by crises around the same time and
therefore it seems reasonable to stick with these periods.

The results are presented in the same way as in Section A.2.4 with error bar plots of the
confidence intervals. These results are very similar to the AEX index results in Figure 4.1.
Therefore the same remarks discussed in Section 4.2 are relevant. Notice that for the CAC
40 index the disjointness between the confidence intervals Begin 2008 Crash and PC is even
stronger for α and β, than for the AEX index.
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Second Estimation

We apply the same Second Estimation process from Section A.2.5 for the CAC 40 index. Because
of numerical convergence problems the algorithm is unable to compute the standard error for a
few points and therefore we do not represent the error bar there.
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Parametric Bootstrap

We apply parametric bootstrapping to the estimated models and use the same 3 step process
explained in Section 4.4. We first let the coefficients in the bootstrap sample be the mean of the
pseudo-true values and afterwards do the same procedure but with the PC estimated parameters
as the constant coefficients. These computations were done in the exact same manner as presented
in Section A.2.6. Afterwards we apply parametric bootstrapping once more with different values
for the constant coefficients of the bootstrap sample, namely the estimated coefficients from the
final PC period. The results of both of the processes, the estimations of the bootstrap samples,
are illustrated in the following figures with the bar plots of the 95% confidence intervals for all
periods.

Parametric sample with the mean of the pseudo-true values:
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Parametric sample with the PC pseudo-true value:

Validation 100 simulations

The parameter values are now again the mean of the pseudo-true values from the first estimation.
We simulate 100 different samples and estimate new models for the five periods from section
4.1. We calculate how many confidence intervals of the BC periods are disjoint with the PC
confidence interval. The result is presented in a data frame. We see that it is rare to have disjoint
intervals which is not reasonable with reality. This justifies our thought of rejecting the constant
coefficient assumption.

## parameter period num_disjoint
## 1 mu all data 0
## 2 mu BC1 0
## 3 mu BC2 0
## 4 mu BC3 1
## 5 omega all data 1
## 6 omega BC1 1
## 7 omega BC2 1
## 8 omega BC3 1
## 9 alpha all data 2
## 10 alpha BC1 0
## 11 alpha BC2 1
## 12 alpha BC3 2
## 13 beta all data 2
## 14 beta BC1 1
## 15 beta BC2 1
## 16 beta BC3 2
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A.4 Modeling the DAX Index

Importing the data

getSymbols(
# DAX Index
c("ˆGDAXI"),
src = "yahoo")

head(GDAXI) #first values
GDAXI_Open = as.vector(GDAXI$GDAXI.Open)
returns.GDAXI = (GDAXI_Open[-1] - GDAXI_Open[-length(GDAXI_Open)] ) /

GDAXI_Open[-length(GDAXI_Open)]

## [1] "^GDAXI"
## GDAXI.Open GDAXI.High GDAXI.Low GDAXI.Close GDAXI.Volume GDAXI.Adjusted
## 2007-01-02 6614.73 6682.81 6614.73 6681.13 70947800 6681.13
## 2007-01-03 6681.23 6704.04 6667.58 6691.32 105913800 6691.32
## 2007-01-04 6662.24 6684.11 6634.74 6674.40 143461600 6674.40
## 2007-01-05 6661.90 6665.51 6588.03 6593.09 142562500 6593.09
## 2007-01-08 6603.55 6628.36 6579.90 6607.59 116670200 6607.59
## 2007-01-09 6625.28 6665.91 6606.87 6614.37 136073800 6614.37

Autocorrelation

Here we show the autocorrelation of the returns (a) and the squared returns (b) of the DAX index.
We notice the tiny autocorrelation between the returns, even smaller than those of the AEX and
CAC 40 indices, while the squared returns on the other hand show larger autocorrelation.
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Kurtosis

Next the kurtosis coefficient of the returns is calculated. This value equals 10.32092, smaller than
for AEX index but still high. This high value is expected since we know financial time series
often have a leptokurtic distribution with fat tails and thus a high kurtosis coefficient. The plot
below presents the distribution density function of the returns and its deviance from a normal
distribution. The logarithmic scale is used in (b) for a clear view on the fatness of the tails.

#kurtosis coefficient
kurtosis_coef = kurtosis(na.exclude(returns.GDAXI))
kurtosis_coef

## [1] 10.32092

Parametric Bootstrap

We apply parametric bootstrapping to the estimated models and use the same 3 step process
explained in Section 4.4. We first let the coefficients in the bootstrap sample be the mean of the
pseudo-true values and afterwards do the same procedure but with the PC estimated parameters
as the constant coefficients. These computations were done in the exact same manner as presented
in Section A.2.6. Afterwards we apply parametric bootstrapping once more with different values
for the constant coefficients of the bootstrap sample, namely the estimated coefficients from the
final PC period. The results of both of the processes, the estimations of the bootstrap samples,
are illustrated in the following figures with the bar plots of the 95% confidence intervals for all
periods.



70 APPENDIX A. APPENDIX

Parametric sample with the mean of the pseudo-true values:

Parametric sample with the PC pseudo-true value:
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Validation 100 simulations

The parameter values are now again the mean of the estimated values from the first estimation.
We simulate 100 different samples and estimate new models for the five periods from Section
4.1. We calculate how many confidence intervals of the BC periods are disjoint with the PC
confidence interval. The result is presented in a data frame.

## parameter period num_disjoint
## 1 mu all data 1
## 2 mu BC1 1
## 3 mu BC2 1
## 4 mu BC3 1
## 5 omega all data 0
## 6 omega BC1 0
## 7 omega BC2 1
## 8 omega BC3 1
## 9 alpha all data 0
## 10 alpha BC1 0
## 11 alpha BC2 1
## 12 alpha BC3 1
## 13 beta all data 2
## 14 beta BC1 1
## 15 beta BC2 1
## 16 beta BC3 2

We observed in Figure 4.5 that the intervals for α of the BC periods were disjoint with the PC
period intervals in practice. But from the results we see that it is rare to have disjoint intervals
which is not reasonable with reality. This does not reflect the usual behaviour of the model and
and justifies our thought of rejecting the constant coefficient assumption. We can not prove
what model is right for this data but we can reject the wrong ones, and this model with constant
parameters is wrong.
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