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Adaptive Real-Time Clustering Method for Dynamic Visual

Tracking of Very Flexible Wings

T. Mkhoyan∗, C. de Visser†, R. De Breuker‡

Delft University of Technology, Delft, The Netherlands

Advancements in intelligent aircraft controller design, paired with increasingly flexible and

efficient aircraft concepts, create the need for the development of novel (smart) adaptive sensing

suitable for aeroelastic state estimation. In contrast to rigid states, aeroelastic state estimation

requires more measurement points (displacements and forces) across the span to capture the

vibrational shapes of the wing undergoing excitations. A potentially universal and non-invasive

approach is visual tracking. However, many tracking methods require manual selection of

initial marker locations as the start of a tracking sequence. This study is part of a larger

study in the field of smart sensing and aims to cover the gap by investigating a robust machine

learning approach for unsupervised automatic labelling of visual markers. The method utilizes

fast DBSCAN and adaptive image segmentation pipeline with HSV colour filter to extract and

label the marker centres under the presence of marker failure. A comparison is made with

Disjoint-set data structure for clustering of the data. The segmentation-clustering pipeline with

DBSCAN shows the capability to act as a visual tracking method on its own, capable of running

real-time at 250 fps on an image sequence of a single camera with a resolution of 1088 × 600

pixels. To increase the robustness against noise, a novel formulation of DBSCAN better suited

against noise, the inverse DBSCAN (DBSCAN−1), is proposed, allowing to cast the clustering

problem into noise filtering problem with an additional MaxPts parameter. Furthermore,

observations are made regarding the frequency content of the image pixel intensities across

time, and how this can be utilized to estimate the natural frequency of the system and adjust

the segmentation-clustering pipeline with a sliding DFT (Discrete Fourier Transform).

Nomenclature

B(x ′, y′) = Kernel matrix O(...) = Computational complexity

D = Dataset P(x, y) = Density distribution of particles (2D)

f (I(x, y)) = Filtering (sequence) operation p, q = Scatter points

fdilate(I(x, y)) = Dilate operation pn, qn = Scatter noise particles

ferode(I(x, y)) = Erode operation V∞ = Wind tunnel flow velocity

fg = Gust vane frequency w1, w2 = Class variance weights (Otsu)

fmorph(I(x, y)) = Morphological operations (combined) Zǫ (pn) = ǫ neighbourhood of noise points pn

fnorm = Global normalisation operation αg = Gust vane angle

G f (x, y) = Filtered image ǫ = Radius of neighbouring points

I(x, y) = Input image µI = Mean of points in 2D image

MaxPts = DBSCAN−1 maximum points dense region σI = Standard deviation of points in 2D image

MinPts = DBSCAN minimum points dense region σ2
w(τth) = Intra-class variance (Otsu)

Nǫ (p) = ǫ neighbourhood of points p σ2
1
, σ2

2
= Class variances (Otsu)

N(x, y, t) = Random seed initialised noise mask τth = Threshold parameter
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Introduction

Visual modelFlexible Aircraft
Intelligent

Controller

Aeroelastic State

Estimation

(elastic states)

input

gust/turbulence

visual frame

[1088 × 600]

output

real-time

feedback

Figure 1 State estimation setup consisting of an intelligent controller, aircraft model, visual model and aeroelastic state

estimation using visual tracking. This study aims to contribute to the advancement in state estimation with the

dotted feedback loop.

I
n the context of aeroservoelastic control, monitoring the entire wingspan can be crucial for proper delegation of

control actions. This may involve installing many conventional accelerometers that are likely subject to noise and bias,

lack of space, certification requirements and challenges associated with correct geometric placement. A smart sensing

approach is desired for these types of wing structures, that relies on novel types of sensors to provide feedback to an

intelligent controller.

A solution that can greatly reduce the complexity associated with hardware installation, and provide the flexibility

needed for using novel state estimation methods, is aeroelastic state estimation by visual methods. An illustration of

aeroelastic state estimation using visual data is shown in Fig. 1. Using visual information for observing deformations

has been successfully applied on wind tunnel models in early studies [1], and has also seen wide application in robot

manipulation [2]. However, in recent years, the capability in terms of on-board computation and camera quality has

immensely increased, while the hardware has become more compact [3, 4]. This opens the door for numerous embedded

applications using a camera as a sensor. In particular, fuselage-mounted camera systems can provide great advantages for

flexible aircraft systems, save costs associated with installation, certification, and have the potential of being non-invasive

and universally applicable. More importantly, image data is a rich source of information; collected over a period of time,

it unlocks the opportunity to approach the state estimation from a new perspective using machine learning methods.

While many suitable tracking methods exist for marker detection, correctly labelling the initial markers in the visual

frame is still not a trivial task [5].

In this study, two machine learning methods are implemented for unsupervised clustering of marker labels, meaning

that they that do not require the number of clusters and initial guesses as input. The sequence of images is filtered with

two image segmentation approaches to obtain a mask for clustering operations. A comparison is made between the

two machine learning methods, DBSCAN [6] and Disjoint-set data structure [7], and segmentation-clustering pipeline

is developed based on Hue-Saturation-Value (HSV) [8] and adaptive thresholding with Otsu’s method [9]. A novel

approach to DBSCAN is proposed, inverse DBSCAN (DBSCAN−1), were the clustering problem is reformulated into

noise filtering problem and an additional MaxPts parameter is introduced in the formulation. The crux of DBSCAN−1

lies in isolating the group of desired clusters and classifying them as noise, i.e. points surrounded by too many other

points (filtered by max MaxPts condition). Subsequently, the desired clusters of points are rejected as noise, while the

true noise in the data is identified explicitly and removed from the dataset in a follow-up step.

To investigate the robustness of the method, the input images are subjected to Gaussian noise and both the nominal

DBSCAN as well as DBSCAN−1 are assessed in performance with less noise filtering. It was observed that the proposed

method is capable of real-time tracking and achieving speeds of 250+ fps (frames-per-second), measured on image

sequence of a single camera with a resolution of 1088 × 600 pixels in a laboratory environment on standard Dell

Optiplex 7400 and 2.3 GHz Intel Core i5 16G MacBook. This makes the method suitable for on-line control applications.

The approach was tested on an image sequence of a flexible wing equipped with LED (light-emitting diode) markers,

undergoing oscillatory motion under gust excitations in the Open Jet Facility (OJF) wind tunnel of the Delft University

of Technology. In this experiment, the same gust generator was used as the one developed for OJF in a previous study

[10]. Furthermore, the effect of the frequency content is studied to investigate how this can be implemented in the

pipeline for adjusting the segmentation and clustering pipeline.
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I. Methodology

Markers

Gust Wing oscillations

image
u

im
ag
e
v

Cam 1

Cam 2

Figure 2 Experimental setup with the wing facing the wind tunnel, equipped with visual markers.

The method proposed in this study describes a computer vision and machine learning approach composed of a

robust segmentation-clustering pipeline, that is capable of automatically detecting and extracting marker locations, and

dealing with temporary marker loss. An image filtering pipeline (segmentation) is implemented consisting of HSV

filter and the Otsu’s automatic thresholding method [9]. Two machine learning routines are then evaluated: (clustering)

DBSCAN [6] and Disjoint-set data structure [7]. The segmentation pipeline is used to extract the point data of the

markers and the clustering is used to correctly label the cluster centroids. The approach was tested on image sequence

of a flexible wing undergoing motion, equipped with active LED markers.

A. Segmentation

Segmentation approaches are generally focussed on finding a filter or a sequence of filters f (I(x, y)) in order to

shape an input image I(x, y) to the desired output G f (x, y) by altering the pixel intensity values:

G f (x, y) = f (I(x, y)) fI(x, y) G f (x, y)

For a sequence of images, the process is a function of the number of frames and thus, implicitly, time [11]. When the

desired segments of the image contain colour information, a commonly applied technique is colour filtering in the

HSV space. The main benefit of processing in this colour space is that the image intensity and colour can be distinctly

separated. The method also has a wide use in video sequence processing and image extraction [8, 12].

1. HSV Filter

To separate the background from the markers, a HSV filtering pipeline is used, composed of multiple filters. First,

the image is segmented based on the colour temperature of distinct LED markers, based on distinct values of hue,

saturation and value, as shown in Fig. 2. The filter is tuned to find the near optimal HSV values to minimize the noise in

the image. In Fig. 3 the result is show of such an operation.

The figures, from left to right, show how the original image is filtered based on its HSV values, obtaining a

Black-and-White (binary) (BW) colour-filtered image. Then, default thresholding is applied to remove the scattered

noise from the light diffusion from LEDs and the remaining background. The result is a BW image, a binary mask with

distinct LEDs. Hereafter, contours of the shapes contained in the binary mask are extracted and the clustering can be

applied to identify individual markers. The contours extraction filter is based on the Topological Structural Analysis

algorithm of binary images and shapes [13], where a border following technique is applied with the aid of topological

analysis of the contours of a border shape.

In Fig. 3, HSV operation is shown when the images are tracked in low lighting conditions. When lighting conditions

change, HSV filtering operation may produce a noisy mask, meaning that aside from a distinct mask with LEDs,
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Figure 3 Result of a single HSV filtering operation. The images are from left to right: original, HSV, Black-and-White

(binary) (BW) threshold image after colour filtering.

additional scattered background pixels are present in the HSV (middle) image. Since this image is close to bimodal by

nature, in this study it was investigated how the bimodal Otsu’s thresholding can improve the segmentation with an

additional HSV filtering step based on the image histogram. In Fig. 4, a simplified schematic is shown of the HSV

segmentation and clustering pipeline.

Input

img

HSV-BW

img
Erode

Dilate

BW img

threshold

Extract

contours
Cluster

Figure 4 Schematic of HSV filtering, such that a BW image is obtained for subsequent clustering.

2. Morphological operations

HSV filter alone may produce a noisy speckle masked image. A typical way to deal with this is by means of

morphological image transformations [14]. Morphological operation are, in general, useful, not only for removal of

global noise (e.g. Gaussian noise), but also for isolating and joining separate individual elements. A commonly used

cascaded operation is erode, followed by dilate, where the former erodes away pixels and pixel groups captured by a

certain kernel size, and the latter dilates and enlarges bright pixel groups. Both of these image transformations perform,

in essence, a convolution operation of image I(x, y) with kernel B(x ′, y′). Erode operator performs a local min operation

with a kernel of desired size (e.g. 3 × 3), anchored at the centre. As the kernel slides over the image, the pixel value

under the anchor point is replaced by the min value of the region covered by the kernel B(x ′, y′). Dilate operator works

according to the same principle, but performs a local max operation. The operations can be summarized as follows:

ferode(I(x, y)) = min
(x′,y′)∈Bker

(I(x + x ′, y + y
′)) (1)

fdilate(I(x, y)) = max
(x′,y′)∈Bker

(I(x + x ′, y + y
′)) (2)

and combined operation:

fmorph(I(x, y)) = fdilate( ferode(I(x, y))) (3)

For an appropriate kernel size, this will remove away noisy speckles surrounding and scattered around thresholded

shapes. In this study the kernel size was set to 2 × 2 pixels. The relevance and effect of morphological operations will

be further discussed in Section III.
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3. Thresholding

The thresholding strategy in image processing is essential for obtaining a good mask for DBSCAN clustering.

Variations of light and motion activity of the object make the task of obtaining good thresholding for live images

challenging [15]. A robust approach has to anticipate the variations in the pixel intensities to produce the best possible

mask. Several methods are possible; in this study, 3 approaches are investigated: using global unit normalisation,

baseline normalisation, adaptive global thresholding using Otsu’s method [9].

Global normalisation thresholding The global normalisation can be applied by converting the 3-channel RGB input

image to greyscale. Subsequently, the image can be scaled with the maximum value of the greyscale, depending on how

the greyscale is represented (0,1) or (0,255). Then, a single threshold can be applied to obtain a binary mask G(x, y).
For an input image I(x, y), this process can be represented as:

G(x, y) = fnorm(I(x, y)) (4)

G(x, y) =
{

1, I(x, y)norm ≥ τth
0, I(x, y)norm < τth

(5)

where the I(x, y)norm can be computed using a simple scaling, or mean µI and standard deviation σI of the image:

I(x, y)norm =
I(x, y) − µI
σI

(6)

The downside of this approach is that it does not take into account the variations in pixel intensities throughout the

image sequence, that may have been influenced by changing light conditions and/or movement of the object being

tracked. The threshold parameter τth is, in this case, obtained and tailored for a single static image. The quality of the

thresholding then depends on the carefully chosen threshold parameter and predictability of the light variations. When

applied correctly to a continuous image sequence, in this particular application, an arbitrary thresholding routine should

be able to segment the foreground as moving object (high intensity) and detect background as static (low intensity).

Baseline thresholding In this approach, the baseline pixel intensities are taken into account of the nth image. The

first image is a good basis to obtain a suitable threshold parameter such that variations are taken into account from these

baseline values. This process can be represented similar to Eq. 5, but now the normalisation of nth sequential image is

done using:

(I(x, y)n)norm =
I(x, y)n − µIn

σIn

1

I(x, y)n=0

(7)

The downside of this approach is that the sensitivity to the threshold parameter increases, and the intensities lie closer

together. However, an offset is maintained concerning the baseline in each image sequence.

Adaptive Otsu thresholding Otsu’s method is an automatic global thresholding method that tries to categorize an

image in two classes, background and foreground pixels [9, 16, 17]. It is well suited for images that have a bimodal grey

pixel intensity histogram. In the latter case, the histogram will show two distinct peaks and sharp separation between

them, where one peak is assumed to correspond to the bins of the background and the other to the foreground. The

threshold value is chosen such that the inter-class variance is minimized, which would suggest placing the threshold

value in the middle of the peaks. The minimisation to find a threshold value of τth can be represented as:

σ2
w(τth) = w1(τth)σ2

1 (τth) + w2(τth)σ2
2 (τth) (8)

where the parameters w1, w2 and σ2
1
, σ2

2
correspond to the probability and the variance of the two classes and can be

computed from the histograms [9].

The limitation of this method is the bimodality assumption, which may not hold for each image and its greyscale

image pair [18]. When the object is considerably smaller than the surrounding background, the histogram may not show

clear distinctions. Additionally, noise may affect the histogram representation. Variations of Otsu’s algorithm exist

which are capable of dealing with noisy images [16], however, in this regard HSV filtering is responsible for filtering out

most of the image noise, making the thresholding less complicated.
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B. Clustering approach

To tackle the problem of correctly detecting and clustering the markers, a machine learning approach is used. This

study implements and compares two machine learning methods for clustering, DBSCAN [6] and the Disjoint-set data

structure [7]. These algorithms were particularly suitable due to their unsupervised nature, namely (i) minimum needed

domain knowledge, (ii) ability to find clusters of varying size and (iii) ability to deal with noise (in case of DBSCAN).

The latter algorithm differs from the Disjoint-set data structure by its ability to deal with noise in the dataset and achieves

the goal at a significantly lower computational cost (O(n log(n))). The two unsupervised clustering algorithms are

implemented in the marker recognition pipeline and are evaluated for performance in terms of speed and robustness.

In this study, it was crucial to apply an unsupervised clustering method. The reason was the periodic failure of

led markers installed on the wing. This is illustrated in Fig. 5. The experiment was designed to include robustness,

and a condition was tested were under high gust loads and wing oscillations, LEDs started to fail (going on and off),

effectively losing certain markers whereby the number of markers (and thus cluster centres) varied over time ánd across

experimental runs.

(a) Clustering of a complete set of mark-

ers.

(b) Clustering of an incomplete marker

set (LEDs are lost), but unsupervised

clustering is capable of finding the

correct number of clusters.

(c) Clustering result from DBSCAN scan

(purple), and the Disjoint-set data

structure (yellow); the zoomed region

shows marker labels 1, 2 (lbl (1,2)).

Figure 5 Difference in mask obtained after thresholding of an incomplete (left) versus full (middle) set of markers (due

to periodic failure of LEDs), showing the necessity of unsupervised clustering. The red dots are contours of the

mask and blue is the centroid. The image on the right shows the result of clustering.

The main principle of DBSCAN is to identify and separate regions of high density from low density regions. At any

given point, p, density is measured within a circular radius ǫ . A dense region of radius ǫ from point p is a region that

contains at least a MinPts number of points. The latter two parameters are the main parameters of the algorithm. Given

a database D, the ǫ neighbourhood, Nǫ , of point p w.r.t. point q has the following form [6]:

Nǫ (p) = q ∈ |dist (p, q) (9)

This definition alone, when used naively, will fail to distinguish core points (points inside the cluster), border points

(points at the border of a cluster), and noise (a point not belonging to any cluster). The reason is that, generally, the ǫ

neighbourhood of border points has much fewer points than the ǫ neighbourhood of a core point. The problem arises

when the MinPts parameter is set to a low value to include the border points, which can cause noise to be included in

the cluster as well. To overcome this DBSCAN introduces the concept of density reachability. A point is said to be

Directly Density Reachable when the following two conditions hold:

p ∈ Nǫ (q) (10)

|Nǫ (p) | ≥ MinPts (core point condition) (11)

These conditions, thus, set a requirement for every point p in a cluster to be in the ǫ neighbourhood of another point q in

this cluster. Additionally, the ǫ neighbourhood of q, Nǫ (q), must have a minimum of MinPts, classifying it as a core

point. The method further introduces connectivity conditions for connecting Nǫ of points and defines noise as a point

not belonging to any cluster in dataset D under the given conditions (Density-Reachability and connectivity) [6].

In Fig. 5c the result is shown of the clustering operations both for DBSCAN scan (purple) and Disjoint-set data

structure (yellow).
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C. Inverse DBSCAN: DBSCAN−1 for noise detection of sparse datasets

While DBSCAN allows explicit definition for noise in the data (points not meeting the core points condition), the

success in rejecting the noise is closely tied to the correct selection of parameters and the quality of the thresholded

input image. The clustering becomes harder when high-density noise is introduced to the data. Noise can have various

sources, e.g. interference in hardware signal, poor illumination or, simply, poor pre-filtering and thresholding of the

input image. In particular for sparse datasets, under such conditions, DBSCAN is known to fail to identify the desired

clusters [19]. This arises from the fact that, for a high density of scattered noise, the probability increases such that

these noise particles will meet the core point criteria for a given DBSCAN parameter set.

To remedy this problem, a novel formulation of DBSCAN is proposed, the inverse DBSCAN (DBSCAN−1). In

this new model, a different perspective on the clustering problem is needed: instead of trying to reject the noise, it

is proposed to actively look for noise. Hence, DBSCAN−1 tries to explicitly detect noise, and clustering becomes an

implicit task. The proposed approach would be to utilise this formulation of DBSCAN as a noise removal filter, then

apply nominal DBSCAN again on clean image domain. To enable this approach, redefinition of DBSCAN is needed

and an additional parameter MaxPts is introduced. For a given database D, the ǫ neighbourhood of noise particles pn
and qn is defined as:

Zǫ (pn) = qn ∈ |dist (pn, qn) (12)

DBSCAN in its original form was intended for obtaining clusters for large datasets and relatively low noise, hence

no limitation is set on the maximum number of clusters. In the definition of DBSCAN−1 we introduce an additional

parameter MaxPts which sets a cap on the allowable number of points in the ǫ neighbourhood of noise pn, Zǫ . The

noise particle is directly reachable from another cluster of noise particle or particles when the following holds:

pn ∈ Zǫ (qn) (13)

MaxPts ≥ |Zǫ (pn) | ≥ MinPts (core noise particle condition) (14)

To allow this, two conditions must be placed on the DBSCAN−1: (i) MinPts must be set to 1 to capture individual noise

particles, (ii) ǫ must be at least the standard deviation of the noise density, σn (σxn and σyn ) in the spatial domain in

terms of (x, y) coordinates for zero mean distribution, and (iii) MaxPts must count less points than ǫ neighbourhood of

desired cluster points, Nǫ (q). The latter is directly related to the standard deviation, σcluster (σxcluster
and σycluster

), of

(x, y) coordinates of a dense cluster and can be chosen based on a priori analysis of the input data set. These conditions

dictate that point noise particle pn does not belong to the ǫ neighbourhood of true clusters Nǫ , but to Zǫ :

{
pn ∈ Zǫ

pn < Nǫ

≡





MinPts = 1

MaxPts <

√
(σxcluster

+ σycluster
)

ǫ ≥
√
(σxn + σyn )

Density Reachability parameter constraints

A necessary condition for this is that, if a probability distribution of points is defined on 2D image plane in dataset D as

P(x, y) =
∬
D

, the density distribution of desired particles, P(x, y)cluster , is higher that the density distribution of the

noise, Pn(x, y), otherwise the true clusters will dissolve in the noise:

P(x, y)n < P(x, y)cluster (15)

This is, however, a reasonable condition as otherwise, the clustering will not make sense for the given condition of

dataset D. What this clustering model will do in essence, is detect the group of desired clusters as points surrounded by

too many other points (filtered by max MaxPts conditions) and reject them as noise. The actual noise particles will

meet the core noise particle condition of DBSCAN−1 as they do not have a distinct concentrated distribution. A visual

representation of this process can be found in the results section.

II. Experimental Setup and Data Collection
The experimental data was collected from camera observations of a flexible wing undergoing gust excitations

equipped with active (LED) markers. The study was set up as a larger study on smart sensing methods for control of

flexible aircraft.
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Gust Generator

LED Markers

Gust

Laser

CAM1 CAM1 Measured dy

dy

Figure 6 The Open Jet Facility (OJF) located at the Delft University of Technology [20]; the gust generator is mounted in

front of the test section.

A. Apparatus

The experiment was conducted in the Open Jet Facility (OJF) at the Delft University of Technology [20]. The OJF,

as shown in Fig. 6, is a closed-circuit low-speed wind tunnel, driven by a 500 KW electric engine, with an octagonal test

section of 285×285 cm2. The maximum flow velocity available in the wind tunnel is 35 m/s, however, the theoretical

performance limit is around 30 m/s.

To introduce a gust for the dynamic motion conditions, a gust generator is installed in the test section composed

of two foam wings. The gust generator is servo-controlled and allows actuation of the gust vanes at 5-7 Hz for gust

vane angle of αg <= ±15◦, and 10-15 Hz for vane angles αg <= ±10◦. The gust generator can produce both harmonic,

as well as sinusoid signals of varying frequency. A Polytech PSV-500 laser vibrometer system [21] with a resolution

(RMS) of 200 µm/s was used to measure the dynamic response of the wing to the aerodynamic loads introduced by the

gust onsets. It was configured to measure 8 markers as shown in Fig. 7a, from a total of 16 LED markers placed on the

wing. Since the laser allowed for measurement of only a single point for each run, each run would be repeated 8 times to

reconstruct the displacement field of the wing. The system was configured for a sampling rate of 400 Hz.

1. Wing model and motion conditions

The wing used in the experiment was a forward swept tapered wing, built of glass fibre reinforced epoxy material,

referred to as the Allegra wing. The design of the wing allows for large tip displacements, up to 20% for 10◦ of Angle of

Attack (AoA) and 50 m/s flow velocity [22]. The wing was clamped on one-side on a sturdy table under a fixed angle of

attack of 4◦. Detailed information about the wing can be found in Appendix A.

The wing was equipped with 16 LED markers. Each LED marker consisted of a 3 sub-LED units, providing 3

distinct bright light sources per marker. In the experiment a 1-cosine gust signal and a frequency sweep signal were

used. The data collected for this particular study contained the following runs, as shown in Table 1:

Table 1 Flow and motion conditions in the wind tunnel collected for the image dataset in terms of number of images and

gusts observed. The flow velocity Vinf of the wind tunnel, gust vane frequency fg and gust vane angle αg. In R3 a

sweep signal was applied and no discrete gust.

Run ID Frequency [Hz] Vane angle [◦] Flow velocity [m/s] N images [-] N gusts [-]

R1 5 10. 30 469 3

R2 5 5 30 469 3

R3 5 inf 30 574 -
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(a) View of the wing and the active

marker locations tracked by the Poly-

tech measurement system.

(b) Hardware setup for data collection and live tracking with a Jetson

TX2

Figure 7 Experimental Setup

The motion conditions were selected such that it produced a high dynamic response from the wing and thus more

pixel activity in the image. The gust vane frequency of 5 Hz was close to the wing’s natural frequency at the given mass

configuration. Each recoding run R1 and R2 spans observations from 3 gust inputs. The run R3 did not have a discrete

gust, but a sweep signal. The purpose of R2 run was to act as a control against the results of R1. Run R3 was selected

since it was designed to show marker loss (LEDs on/off) under high dynamic activity.

2. Dataset collection

The overview of the hardware used for dataset collection is shown in Fig. 7b. The dataset was recorded with two

GigE acA1300-75gc ethernet Basler cameras with 1300 CMOS 1.3 megapixel (280×1024 pixels) sensor [23]. The

cameras were equipped with Computar 12 mm F1.4 2/3” P IRIS lenses [24] and were positioned in a stereo setup to

observe the markers from two viewpoints. The resulting image was cropped to 1088×600 pixel and streamed in 3

channel RGB format synchronously via real-time PTP triggering protocol over the Ethernet. A Power over Ethernet

(PoE) smart switch GS110TP from NETGEAR, provided both the power, 3.5 W (per camera unit), as well as the GigE

capability to stream the images up to 140 Frames Per Second (FPS).

The processing power and image capture was delivered by an embedded computing system from NVIDIA, the Jetson

TX2, equipped with NVIDIA Pascal architecture with 256 NVIDIA CUDA cores and 1.3 TFLOPS (FP16), Dual-core

Denver 2 64-bit CPU and quad-core ARM A57 complex [25]. The Jetson TX2 is designed for embedded applications

using Artificial Intelligence (AI) and Computer Vision (CV), and operates on Ubuntu 16.04 LTS allowing flexibility in

code deployment. The application developed for this study was programmed in C++ and deployed on the device. For

the development the Basler C++ Pylon API [23] and OpenCV open-source computer vision library [26]. The image and

tracking data were extracted and plotted in using the OpenCV-Matlab parsing interface tmkhoyan/cvyamlParser [27].

Code development, testing and assessment was done using standard Dell Optiplex 7400 and 2.3 GHz In-

tel Core i5 16G MacBook and the Jetson TX2. The code, dataset and tolls developed are available under

tmkhoyan/adaptiveClusteringTracker [28].

3. Noise model

To evaluate the real-life performance of the method a common noise model is used. The input images are injected

with an image independent Gaussian noise and the robustness of the colour filtering, thresholding and clustering pipeline

is investigated against possible sensor noise, transmission and hardware related issues and poor illumination. Then, the

tracking quality of the pipeline is accessed on image sequences from R1 and R3, where R2 is used as a reference. The

probability density function of the Gaussian noise model is as follows:

I(z) = 1

σ
√

2π
e

(z−µ)2
2σ2 (16)
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In this model, z represents the greyscale value. The parameters used for the noise model are a mean of µ = 0 and a

standard deviation of σ = 0.5. The grey values produced from the probability distribution are scaled to RGB range

(0-255) and injected in the 3-channels of the input image I(x, y) producing additive sum of new noise input image

J(x, y). The random seed is initialized with the CPU clock for each image input, thus resulting in dynamic noisy image

input sequence at each nth frame:

Inoise(x, y)n = I(x, y)n + N(x, y, t) (17)

III. Results and Discussion
The tracking result with the full clustering pipeline on run R1 and R3 were performed on a sequence of ≈ 468 images

from camera 1 (Leading edge). R2 was used as the control for R1 and showed a similar result. R3 was mainly used to

asses the ability of the tracking pipeline to deal with marker loss. In the nominal runs, ǫ = 20 pix and reachability

parameter of MinPts = 2 were used. This set of parameters provided the best cluster detection considering preceding

segmentation filters. Speeds of 250+ fps were measured on image sequence of a single camera with a resolution of

1088 × 600 pixels using standard Dell Optiplex 7400, 2.3 GHz Intel Core i5 16G MacBook and the Jetson TX2.

A. Measured wing response

The laser vibrometer measurement results from the experimental runs R1 and R3 are collected in Figures 8. These

results are an indication of the physical motion behind the image sequence and are subsequently compared to tracking

results. From the plots, R2 shows a similar response hence it is not included in the set. The time history signals

correspond to marker location 1 (as shown in Fig. 7a). Figure 8a show the response of the wing to a single gust

input; Fig. 8b shows the response to a sweep signal. The blue curve corresponds to the 400 Hz measurement by

the laser vibrometer, the red line is a spline model of this response sampled at the capture intervals of CAM1 (leading edge).
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-3 Measured tip displacement gust f=5,g=10,V=30ms

400Hz

40Hz (img samples)

(a) Measurement with 1-cos gust signal: gust vane

angle αg = 10◦, gust frequency fg = 5 Hz and

flow velocity V = 30 m/s.
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(b) Measurement with sweep signal: gust vane an-

gle αg = 10◦, gust frequency fg = inf Hz and

flow velocity V = 30 m/s.

Figure 8 Spline model of the laser measured (400 Hz) tip displacement of marker ID[1] sampled at capture intervals of

Cam1 (≈ 40 Hz). From runs with discrete gust and sweep signals.

Looking at the results from Fig. 9, the tracking pipeline shows the ability to follow the motion of the wing and

correctly cluster the markers. This is also confirmed by looking at the output of the tracking in terms of pixel (x, y)
locations in the images, shown in Fig. 10a. The plots show the time traces for the detected markers and 3 occurrences

of decaying sinusoidal responses can be observed from the output. During the image sequence exactly 3 gusts were

introduced to the wing that produced a measurement as shown in Fig. 8 for a single gust. It suggests, thus, that the

tracking can be used to observe the motion of the wing. Looking at R3 results in Fig. 9, in a bottom row it can be seen

how some markers are lost, but DBSCAN is able to correctly cluster the markers without supervision in terms of a

number of clusters.
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Input
img

HSV-BW
img

Erode
Dilate

BW img
threshold

Extract
contours

DBSCAN

Lost markers

Figure 9 Tracking sequence on input images from run R1 (upper row) and R3 lower row. The dotted outline shows the

initial contour at baseline deflected shape before the gusts hit the wing. The tracking pipeline used is shown in

the last row.
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(a) Combined 3D view and time history with marker deflec-

tions in image y coordinates.
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(b) Relative deflections in y image coordinates with baseline

substracted.

Figure 10 Time series of marker-y deflections in the image coordinates across 498 image sequences, as a result of gust

excitations from run R1.
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B. Assessment of DBSCAN parameters

Figure 11 shows the sensitivity of the MaxPts parameter on the tracking result. When the parameter is set to 3,

dictating that the Direct Density Reachability of core points needs to contain a neighbourhood of at least 3 core points,

the markers 1 and 10 fail to meet these criteria and are no longer score points. The shapes (dataset D) in the extracted

binary mask on which the clustering operation is done, are influenced by the motion of the wing and the result of

morphological filters (erode, dilate) performed after HSV filtering. As a result, at a given time instance, the 3 sub-LED

units can be clotted together in one or two dots instead of 3, hence never meeting the core points condition. It is clearly

seen how the cluster is found again once the units become more distinct. It can be seen that this is not happening when

the MaxPts parameter is chosen as 2, as shown in Fig. 9, for the reasons explained above.

Figure 11 Sensitivity of DBSCAN parameters. Snapshot of two frames from sequence R1, the frames are ≈ 0.025 seconds

apart. The parameters are: ǫ = 20, MinPts = 3.

C. Evaluation of robustness against noise

The runs R1 and R3 were injected with Gaussian noise (µ = 0 and standard deviation of σ = 0.5), as explained in

the previous section, and the performance of the tracking was evaluated. In Fig. 12 a sequence is shown for tracking of

frames 0, 50 and 100. The tracking pipeline used is shown in the bottom row. The colour codes correspond to the

stepwise operation performed in the pipeline, throughout the sequence (e.g. green row is HSV filtering operation).

As seen, the HSV filter combined with the morphological operations (erode and dilate) is able to cope well with the

Gaussian noise. The morphological operations together with the HSV filter are in fact acting as a complex de-noising

filter passing a clean output to DBSCAN. DBSCAN is then able to produce a robust result on the thresholded binary

image, despite the high level of noise injected into the input. The results are of the same quality as shown in Fig. 9. For

the run R3, a similar result was obtained and can be observed in Appendix B, Fig. 17.

D. DBSCAN−1 in the presence of noise without morphological operations

In this analysis, the robustness of DBSCAN was investigated without additional de-noising filters. The same

experiment was run to see how well DBSCAN would fare when exposed to more noise and less filtering steps, and in

particular when morphological operations were removed. The latter step showed how well it was able to filter out the

remnants of Gaussian noise after HSV operation (row 3), marked as the blue filtering block in Fig. 12. It is therefore

interesting to examine what happens when the morphological filter block is removed. The result with the nominal

DBSCAN and same parameters (ǫ = 20 pix, MinPts = 2) is shown in Fig. 13. Looking at the figure, the most important

change in the pipeline is disabling the morphological operations (erode and dilate) shown in transparent grey. As a

result of this, the thresholded binary image contains noisy speckles which are detected as core points in DBSCAN. It

can be seen that in the third column (red colour code) the clustering fails to properly detect the markers. Instead, a large

number of clusters is detected. This is clearly illustrated in the rightmost plot where each point is identified with a

numeric label belonging to the cluster ID, where magenta labels represent valid clusters and grey (-1) labels — outliers

or noise. This can be partly remedied by further tuning of the DBSCAN parameters, however, the additional noise in the

threshold image will continue to produce problems for correct detection of the remainder of the markers.

A better approach would be to use DBSCAN clustering differently. In the section I.C a methodology was proposed

to approach the DBSCAN clustering from a novel viewpoint. DBSCAN is known for its ability to discard points that are

not part of a cluster as noise. Instead of looking for cluster centres, it was proposed to use DBSCAN in an inverse
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fashion, for detection of noise (non-core points). The approach is to put the MinPts = 1, allowing to maximize the

number of points forming a cluster and tune instead of the ǫ and MaxPts to capture the desired clusters. The result of

this analysis with ǫ = 20, MinPts = 1 and MaxPts = 8 is shown in Fig. 14. The input to DBSCAN is the same, except,

as seen in the last row, the inverse DBSCAN filter (Cyan block) is applied. As a result, as shown in the last row, the

desired clusters (markers) are identified as noise (obtaining a grey -1 ID) and the rest of the points are identified as valid

clusters, while the nominal DBSCAN (Fig. 13) was not able to deal with this without the additional de-noising filter.

Thus, DBSCAN−1 has an advantage over the nominal DBSCAN in this scenario.

In essence, the DBSCAN−1 approach is actively looking for noise and discards the clusters, subsequently, the clusters

can be retrieved by an additional step applying nominal DBSCAN again. For this, a new parameter, MaxPts, was

introduced putting a cap on the number of reachable core points within a cluster. Since noise will be randomly and

densely scattered together, the probability is high (for most noise models) that noise particles will be surrounded with a

dense number of other noise particles within an arbitrary ǫ neighbourhood. It is important to note that this condition

will hold when the MinPts = 1, such that the number of points forming a cluster is maximized.

Input
img

HSV-BW
img

Erode
Dilate

BW img
threshold

Extract
contours

DBSCAN

Gaussian
noise

+

+

Figure 12 Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (µ = 0 and standard

deviation of σ = 0.5). From top to bottom, the rows represent: input+noise image (gray), HSV filtering (green),

threshold image (blue) and clustering result (red). The colour codes correspond to the tracking pipeline (last

row) and the dotted outline shows the initial contour at baseline deflected shape before the gusts hit the wing.
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Input
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HSV-BW
img

Erode
Dilate

BW img
threshold

Extract
contours

DBSCAN

Gaussian
noise

Cluster
labels

+

+ +

+

Figure 13 Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (µ = 0 and standard

deviation of σ = 0.5) and disabled morphological operations (transparent block). From left to right: noisy input

image, thresholding after HSV and skipping erode and dilate operations, clustering result and the extracted

labels of all points processed in DBSCAN. The modified pipeline is shown in the bottom row.

Input
img

HSV-BW
img

Erode
Dilate

BW img
threshold

Extract
contours

DBSCAN−1

(inverse)

Gaussian
noise

Noise
labels

+

+ +

+

Figure 14 Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (µ = 0 and standard

deviation of σ = 0.5), and DBSCAN−1. From top to bottom, the rows represent: input+noise image (grey), HSV

filtering (green), threshold image (blue) and clustering result (red). The colour codes correspond to the tracking

pipeline shown in the last row. The dotted outline shows the initial contour at baseline deflected shape before

the gusts hit the wing.
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E. Effect of image thresholding

Variations of light and motion activity of the object make the task of obtaining a good thresholding challenging. In

this study several thresholding approaches were investigated: global normalization, baseline normalization and adaptive

global thresholding using Otsu’s method. The analysis is shown in Figures 15a, 15c and 15e. Here, the input images

from run R1 were converted to greyscale and thresholding strategy was applied as described in section I.A.3. The

collected range of input images was arbitrary chosen at intervals as a continuous vector:

Nn =
[
1 4 11 90 95 160 168 274 326 330 424 469

]

1. Global normalisation thresholding

The result of global normalisation is shown in Fig. 15a. Here, the full image sequence is converted to greyscale and

normalized in the 0 − 255 range. Then, a threshold of τth = 9 · 10−5 is applied. Subsequently, the pixel intensities

across time were summed over the input vector Nn:

N∑

n=0

G(x, y)n =
N∑

n=0

fnorm(I(x, y)n) (18)

3D view of the accumulated pixel intensity sum is shown in Fig. 15a. It can be observed that the so-called footprint of

the markers, indicated by the red line, corresponds to high pixel activity in the spatial domain across the input sequence.

This footprint corresponds to the full sequence from Fig. 10a projected to the spatial domain of the image. The pixel

activity is indicated by high-intensity values retained after thresholding (dark peaks). For a continuous input sequence,

correct thresholding should assign the moving foreground as high intensity and filter out the static background. This

appears to be the case here, however, we see a dis-balance in the height of the peaks. The high peaks at the location

of the bottom markers on the wing (below ID’s 14-5 in Fig. 7a) indicating that high-intensity values were captured

repeatedly at these locations. Observing the top view plot in Fig. 15b it can be seen that the highest motion amplitudes

belong to the wing tip, meaning the outline around the bottom markers should have been more cleanly filtered by the

threshold due to the low motion activity.

2. Baseline thresholding

The results of the baseline thresholding is shown in figures 15c and 15d.The main observation of baseline thresholding

is that the balance between the peak heights is retained, and the static areas around the bottom markers are correctly

filtered. However, since now the pixel intensities differences are shifted closer together, the background is more noisy

and distinct static patterns are picked up due to higher sensitivity to the threshold parameter which is undesired. Partly

this can be remedied by adjusting the threshold parameter.

3. Adaptive Otsu thresholding

The results of Otsu’s thresholding is shown in Figures 15e and 15f. Observing the figures we see a very clear

definition of a (moving) foreground. The high pixel intensities are correctly assigned to only the marker centres and the

background is entirely absent. Figure 15d shows a clear agreement of marker footprint and pixel intensity. Also, the

height of the peaks is more balanced, meaning that the static areas are efficiently removed. It also indicated that this is

the cleanest approach for thresholding for this given dataset.

15

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
7,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

22
50

 



(a) 3D view global normalisation thresholding
(b) Top view global normalisation thresholding

Baseline thresholding

(c) 3D view view baseline thresholding (d) Top view baseline thresholding

(e) 3D view Otsu thresholding (f) Top view Otsu thresholding

Figure 15 (Right) 3D view of the accumulated pixel intensity values after thresholding, across the 469 frame sequences of

R1. (Right column) Top view of the intensity map with footprints of the markers centres in the spacial image

domain representing the spatial image domain in pixels. The regions with high value (dark peaks) correspond

high occurrence of respective pixels passing the threshold and thus high pixel activity. The region marked with

the red outline corresponds to the travel of the marker centres in the and thus high physical motion of the wing.
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F. Segmentation-Clustering pipeline using time-spatial frequency content

The methodology explained previously along with the results on assessment of the image thresholding (Figures 15a,

15c and 15e) as well as the time traces (Fig. 10a), show the interconnection of segmentation and clustering. However,

the gap is to connect these processes in time. That is, to find a relationship between segmentation and clustering

parameters to obtain optimal marker label detection through time for a sequence of images.

For this, a method implementing SDFT (Sliding Discrete Fourier Transform) [29] is suggested. The concept is to

monitor and detect regions in the image that show movement (activity) relative to a static scene (background). This

would allow one to obtain a footprint of markers in spatial image domain (x, y) through time and adjust the parameters

of the image processing (segmentation) and machine learning (clustering) methods more optimally. This is illustrated in

Fig. 16 along with additional explanation. The nature of SDFT allows to use it real-time at low cost. Implementing this

approach would effectively enable the use of the pipeline as a robust tracking algorithm. In this study, the role and

benefit of SDFT are investigated. The methods presented in this study and the processing pipeline were developed in

C++ programming language using the OpenCV open-source computer vision library [26].
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Figure 16 Simplified spatial and time representation of the information extraction process from a sequence of frames n.

Note that the image and markers are not represented in true scale. A point P1 corresponding to a marker label

with coordinates xi and yi , represents a displacement signal in x, y pixel values in time domain. Consequently,

its movement corresponds to a ’footprint’ in the spatial domain. The grey threshold value is adjusted to capture

P1 as it moves in the footprint. As the sliding DFT collects more data of the motion of P1 in x, y the amplitude of

the peak starts to become more prominent at a distinct value of frequency ωn. This gives information about the

dynamics of the underlying body in motion and can be used to adjust the parameters of the marker detection

pipeline.

IV. Conclusion and Recommendation
In this study, a tracking pipeline was proposed consisting of segmentation and clustering using computer vision

and machine learning methodologies. The sequence of images from experimental runs was colour filtered with an

HSV colour filter and threshold filter to obtain a mask for clustering operations. The mask was then clustered using

unsupervised method DBSCAN [6]. DBSCAN was compared to another unsupervised clustering method, Disjoint-set

data structure [7] and found to outperform in terms of computational cost.
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It was observed that the method is capable of real-time tracking and speeds of 250+ fps were achieved on an

image sequence of a single camera with a resolution of 1088 × 600 pixels in a laboratory environment on standard

Dell Optiplex 7400 and 2.3 GHz Intel Core i5 16G MacBook. This makes the method suitable for on-line control

applications. The approach was tested on image sequence of a flexible wing equipped with LED (light-emitting diode)

markers, undergoing oscillatory motion under gust excitations in the OJF (Open Jet Facility) wind tunnel of the Delft

University of Technology.

The time traces (Fig. 10a) indicated that the method was able to extract dynamic information about the underlying

model (wing) under observation. Further experiments and processing are needed to asses the Segmentation-Clustering

pipeline as a self-sustained tracking method. Looking at the assessment of the image thresholding (Figures 15a, 15c,

15e.) it was observed that the motion of the markers reflected in the summed pixel intensity map and that the choice of

the thresholding influenced the representation of this motion in the spatial domain. The time traces of the footprints

throughout the image sequence showed a correlation with the intensity peaks obtained and was a good indication of

motion in the spatial domain. The interconnection of thresholding and spatial motion throughout the image sequence

indicated that possibly better thresholding can be achieved if an SDFT is applied to extract the frequency of motion

along the time axis and the thresholding is continuously adapted.

To investigate the robustness of the method the input images were subjected to zero mean Gaussian noise and

both the nominal DBSCAN as well as DBSCAN−1 were assessed in performance with reduced noise filtering steps

(no morphological operations). The tracking pipeline with HSV filtering and morphological operations (erode and

dilate) showed robustness against noise. However, when the latter was turned off for the robustness assessment, the

clustering performance degraded. To remedy this, an inverse DBSCAN model, DBSCAN−1, was proposed that reverses

the clustering problem and acts as a noise filter. DBSCAN−1 must be followed by an additional nominal DBSCAN

clustering to extract the true location of the markers. The final nominal DBSCAN can be done at a significantly lower

computational cost due to the removed noise. It was shown that with its explicit definitions for noise and core points, the

nominal DBSCAN method allowed redefining the model and addressing noise in the data in a novel inverse fashion.

Further studies are required to asses the additional complexity of computation and the benefit of DBSCAN−1 compared

to additional filtering steps.
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Appendix A. Allegra Wing Specifications

Below the specification of the Allegra wing are presented [22]:

Table 2 Parameters of the Allegra wing

Definition Parameter Value Unit

Span b 1.6 [m]

Top chord croot 0.36 [m]

Root chord ctip 0.12 [m]

Taper ration λ 1/3 [−]

Aspect ratio A 6.67 [m]

Sweep (quarter line) Λ -17 [deg]

Wing area S 0.384 [m2]

Mean chord cm 0.24 [m]

Airfoil max. thicknes − 13.028 [%]

Airfoil max. camber − 2.4 [m]

20

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
7,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

22
50

 



Appendix B. Tracking result for run R3 with Gaussian noise
Below the result are shown for tracking the sequence from run R3 with injected Gaussian noise (µ = 0 and standard

deviation of σ = 0.5).

Input
img

HSV-BW
img

Erode
Dilate

BW img
threshold

Extract
contours

DBSCAN

Gaussian
noise

+

+

Figure 17 Tracking sequence on input images (0,60,80) from run R3 with injected Gaussian noise (µ = 0 and standard

deviation of σ = 0.5). From top to bottom, the rows represent: input+noise image (grey), HSV filtering (green),

threshold image (blue) and clustering result (red). The colour codes correspond to the tracking pipeline shown

in the last row. The dotted outline shows the initial contour at baseline deflected shape before the gusts hit the

wing.
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