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Should an external human-machine interface flash or just show 
text? A study with a gaze-contingent setup 

Yke Bauke Eisma , Lucas van Gent , Joost de Winter * 

Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

Automated vehicles need to prioritize pedestrian safety. One way to achieve this is through 
external human–machine interfaces (eHMIs) that send visual signals to pedestrians. eHMIs can be 
either text-based or light-based. However, there has been limited research on the effects of these 
types of eHMI on human information processing and attention allocation. This study aimed to fill 
this gap by using a gaze-contingent approach, which blurs the view outside a circular aperture, to 
test the hypothesis that text-based eHMIs, which require focused or foveal attention, result in 
longer response times compared to light-based eHMIs, which can be understood using peripheral 
vision. In this study, 23 participants watched animated video clips of traffic situations involving 
automated vehicles with either no eHMI, a flashing-light eHMI, or a text-based eHMI. Their eye 
movements were tracked, and they were asked to press the spacebar when they felt it was safe to 
cross the road. The results showed faster response times when an eHMI was present, with no 
significant difference between the two types of eHMIs. Further analysis suggested that the 
flashing-light eHMI captured attention briefly, while the text-based eHMI held attention for a 
longer period. When no eHMI was present, participants focused on the approaching vehicle for 
the longest time. The gaze-contingent window resulted in fewer eye movements and slower 
response times. In conclusion, the study showed that the gaze-contingent window negatively 
affected response times and eye movements, emphasizing the importance of considering pe-
ripheral vision when designing eHMIs for pedestrian safety.   

1. Introduction 

Automated vehicles (AVs) should be designed to prioritize the safety of pedestrians and other vulnerable road users (Berge et al., 
2022; GOV.UK, 2022; SWOV, 2022; US DOT, 2018). This can be achieved by implementing technology that allows the AV to detect the 
presence of pedestrians and to respond accordingly to avoid collisions and unsafe situations (Combs et al., 2019; Park et al., 2017). 
Additionally, it may be necessary to implement new regulations and laws that address the risks posed by AVs, such as the ability for 
remote problem-solving and more stringent speed limits for AVs in areas where pedestrians are present (European Union, 2022; 
NACTO, 2016; NHTSA, 2016). It may also be necessary to educate pedestrians about how to interact with AVs so that they know what 
to expect (see Faas et al., 2021; Gremmelmaier et al., 2022, for discussions). 

In addition to ongoing progress in enhancing AV technology itself, it is equally vital to consider the pedestrian’s perspective by 
designing AVs to interact in a predictable and comprehensible manner. Specifically, external human–machine interfaces (eHMIs) could 
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be implemented to convey the AV’s intentions and pedestrian detection status through visual signaling to surrounding road users 
(Bazilinskyy et al., 2021; Dey et al., 2021; Epke et al., 2021; Mahadevan et al., 2018; Verstegen et al., 2021). This approach may 
facilitate pedestrians making more appropriate navigation decisions through enhanced situational awareness and projected vehicle 
behavior. 

The human eye uses both foveal and peripheral vision (Granit & Harper, 1930; Strasburger et al., 2011). Foveal vision, the small 
area within 2.5◦ of the fixation point (Sakurai, 2015), refers to the detailed sight obtained from the central part of the retina, called the 
fovea. Foveal vision is important for tasks requiring high visual acuity, such as reading and recognizing faces. Peripheral vision, on the 
other hand, refers to vision outside the direct line of sight, covering a much wider field, beyond 2.5◦ (for convenience, parafoveal and 
peripheral vision are grouped here as ‘peripheral vision’). The periphery of the retina provides less detailed information but is 
important for detecting changes in the environment, such as impending obstacles or dangers (Finlay, 1982; Franchak & Adolph, 2010; 
Huestegge & Böckler, 2016; Strasburger et al., 2011). When a salient or task-relevant stimulus in the periphery is detected, it typically 
triggers a saccade toward that stimulus to explore it in further detail (Jacobs et al., 1989; Vater et al., 2016). Pedestrians normally focus 
their foveal vision (i.e., rotate the eyes) on relevant environmental cues, such as approaching vehicles, the far side of the road, and 
visual landmarks (De Winter et al., 2021a; Geruschat et al., 2003; Lévêque et al., 2020). Simultaneously, they monitor the environment 
with peripheral vision to detect potential hazards (e.g., Marigold, 2008; Uttley et al., 2017; Vater et al., 2022). 

A common safety issue is that pedestrians are not always visually attentive; for instance, their foveal vision could be engrossed in a 
smartphone (Basch et al., 2014; Feld & Plummer, 2019; Larue et al., 2019). A related phenomenon is that pedestrians sometimes cross 
the street without directing their gaze towards the rest of the traffic, implying that peripheral vision plays a significant role in their 
crossing behavior (Vater et al., 2022). Additional research in pedestrian-AV interaction found that pedestrians may not realize whether 
a human driver is present or absent, or do not rely on driver-state information to make their crossing decision (Lee et al., 2021; Moore 
et al., 2019; Rothenbücher et al., 2016). In addition to conditions like glaucoma that impair the visual field and hence affect pedestrian 
safety (Hassan et al., 2005; Turano et al., 1999), the visual field can also experience a functional impairment. The so-called functional 
visual field (e.g., Sanders, 1970) or useful field of view (UFOV; Sekuler et al., 2000) describes the area of the visual field from which 
information can be extracted without moving the eyes or head. Performance on UFOV tests, and related tests such as the detection 
response task, is not only negatively correlated with age (Edwards et al., 2006), but also tends to narrow under conditions of cognitive 
load such as during conversing and memorization (Atchley & Dressel, 2004; Conti et al., 2014; Rantanen & Goldberg, 1999), stress 
(Bursill, 1958; Weltman et al., 1971), and visual load (Mackworth, 1965; Wood et al., 2006; Van Winsum, 2019a). It is noteworthy here 
that nonvisual cognitive tasks seem to impair visual perception uniformly throughout the visual field, rather than inducing a specific 
reduction in the peripheral regions (Ringer et al., 2016; Van Winsum, 2019b). In summary, research clearly highlights how heavily 
pedestrians rely on peripheral vision, acknowledging that peripheral vision is compromised by factors intrinsic to individuals, like age, 
as well as other factors commonly experienced by pedestrians, such as increased mental and visual loads. 

As noted above, the effectiveness of an eHMI may largely depend on its ability to attract peripheral attention. For example, a bright 
or flashing light may elicit a faster response (possibly before the pedestrian focuses on it) than an eHMI displaying text, which pe-
destrians must focus on first to read. However, as of present, little research has examined the fundamental question of which modality 
(text or light) is optimal for presenting an eHMI. Indeed, although a large number of studies have investigated eHMIs that employ 
textual and light/lamp elements (e.g., Bazilinskyy et al., 2022b; Chen et al., 2023; Eisele & Petzoldt, 2022; Guo et al., 2022b; Kunst 
et al., 2022; Lau et al., 2022; Schmidt-Wolf & Feil-Seifer, 2022), there is a lack of systematic comparison between these types of in-
terfaces in terms of attentional measurements, such as eye tracking. This has resulted in a dilemma where on the one hand, various 
researchers have recommended text- and icon-based eHMIs because they can convey semantically rich information (e.g., ‘Please 
proceed to cross’, ‘Waiting’, ‘Stopping’, or ‘After you’; Eisma et al., 2020; Ferenchak & Shafique, 2022; Hudson et al., 2019; Löcken 
et al., 2019; see Bazilinskyy et al., 2022a for an overview of 44 papers involving text-based eHMIs for AVs), while, on the other hand, 
authors and guidelines caution against text-based eHMIs because they may not be attention-grabbing and require foveal vision (Cefkin, 
2018; Dey et al., 2022; Tabone et al., 2021; and see ISO, 2018; UNECE, 2019, promoting light signal eHMIs). As pointed out above, 
bright light signal eHMIs have the potential to attract attention, especially when moving or flashing (Hensch et al., 2019), but caution 
is needed as the meaning of the light signal could be misinterpreted (Lee et al., 2019). 

To address the research gap regarding the choice between text- or light-signal eHMIs, the present study employs a gaze-contingent 
paradigm, a technique to control the extent to which the participant has access to peripheral vision (Duchowski et al., 2004; Reingold 
et al., 2003). Gaze-contingent methods have previously been used to simulate visual impairments (Biebl et al., 2022; Glen et al., 2016) 
and to simulate tunnel vision on computer screens or in virtual environments (Mao et al., 2021). In the current human-subject 
experiment, we used a gaze-contingent window consisting of a circular aperture with blurry vision outside of it. This was done to 
simulate how pedestrians focus their foveal attention on specific objects, while other areas are less detailed, as they would experience 
in the real world. 

The present study involved human participants watching animated video clips of a road crossing scenario, in which automated cars 
equipped with different types of eHMIs (a text message or a flashing light) drove by. Both types of eHMIs were presented to the 
participant with and without a gaze-contingent window, and two sizes of gaze-contingent windows were used to simulate two levels of 
access to peripheral vision: a normal-vision condition and a condition that may occur under stress and cognitive demands (cf. Rantanen 
& Goldberg, 1999). In this study, we tested the hypothesis that a text-based eHMI is particularly disadvantageous when presented 
peripherally, because it might prompt the pedestrian to fixate on it for reading or verification purposes. Additionally, it can be expected 
that a flash-based eHMI is relatively easy to detect regardless of whether it is presented centrally or peripherally, while a text-based 
eHMI may be less detectable if it appears peripherally. Consequently, this could result in a slower response time as compared to 
conditions under clear simulated vision. In summary, we anticipated an interaction between the eHMI format (flash-based vs. text- 
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based) and the size/presence of the gaze-contingent viewport in relation to the speed at which pedestrians arrived at a crossing de-
cision. Along with investigating response times, the current study also examined the effects of the eHMIs and gaze-contingent window 
manipulations on eye movements. 

2. Methods 

2.1. Participants 

The experiment was performed with 23 participants (18 male, 5 female) between 21 and 67 years old (M = 31.3, SD = 13.8). The 
participants were acquaintances of the experimenter and students of the Faculty of Mechanical, Maritime and Materials Engineering at 
the Delft University of Technology, the Netherlands. Our decision to include 23 participants was informed by previous investigations 
that elucidated the effects of different eHMI conditions on pedestrian crossing behavior (e.g., De Clerq et al., 2019: 28 participants; 
Mok et al., 2022: 17 pedestrians). All participants provided written informed consent. The research was approved by the TU Delft 
Human Research Ethics Committee (approval no. 2047). 

2.2. Apparatus 

Participants’ eye movements were recorded binocularly at a sampling rate of 2000 Hz using an Eyelink 1000 Plus eye tracker (SR 
Research, Ottawa, ON, Canada). The stimuli were presented on a 24.5-inch BenQ monitor. Although the monitor had greater pixel 
capability, we configured its resolution to 1280 × 720 pixels for the experiment and set the refresh rate at 144 Hz. The distance 
between the participant’s eyes and the monitor was approximately 100 cm. The dimensions of the screen were 544 × 303 mm, 
resulting in a horizontal viewing angle of 30.4 deg and a vertical viewing angle of 17.2 deg. The experimental setup is shown in Fig. 1. 

2.3. Independent variables 

There were two independent variables: (1) eHMI type (Flash, Text, No eHMI), and (2) Gaze-contingent window (Small, Large, 
None). 

Both eHMI signals were presented on a main screen located on the front of the vehicle, measuring 1000 × 400 mm2. In addition, 
two smaller screens were placed on the left and right fronts of the car, respectively. The Flash eHMI consisted of white rectangular 
light. Upon activation, it flashed twice as follows: On (170 ms), Off (170 ms), On (170 ms). The screens were visible when the car was 
approaching head-on as well as when turning into the road. The windshield was not see-through, so no driver could be seen. The Text 
eHMI displayed the message ‘Waiting’, together with an icon of a zebra crossing and a walking pedestrian (as in Eisma et al., 2020). 
Once the text message turned on, it stayed on until the end of the video clip. Both eHMIs were white to maximize contrast and to 
prevent ambiguity in regard to the meaning of colors that are already used in traffic (Bazilinskyy et al., 2021; Eisma et al., 2020). 

The gaze-contingent window consisted of a circular aperture that followed the participant’s gaze in real-time. Outside the circle, 
the view of the scene was blurred. FFmpeg (The FFmpeg Developers, 2021) was used to apply Gaussian blur with σ = 10 to the original 
video clip, and the number of steps used for Gaussian approximation was 6. The small gaze-contingent window had a diameter of 150 
pixels, corresponding to a visual span of 3.7◦, whereas the large window had a diameter of 300 pixels, corresponding to a visual span of 
7.3◦. Note that the foveal region of the eyes can be defined as the area within a span of 5◦ around the fixation point (Sakurai, 2015). In 
the current study, foveal vision was thus left relatively intact, but peripheral vision was artificially degraded. 

Fig. 2 presents a selection of illustrative screenshots from the video clips (1280 × 720 pixels). In addition, Fig. 3 showcases cropped 
screenshots (293 × 164 pixels) capturing the moment when the eHMI was activated and its equivalent instance under the No eHMI 

Fig. 1. The experimental setup.  
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Fig. 2. 1: Moment the Flash eHMI turned on and the car started to decelerate (t = 5.02 s; vehicle-path condition 3), 2: Moment the Flash eHMI 
turned on and the car started to decelerate (t = 5.02 s; vehicle-path condition 1), with a small gaze-contingent window, 3: Moment when the Text 
eHMI turned on and the car started to decelerate (t = 5.02 s; vehicle-path condition 1), with a large gaze-contingent window, 4: End of the video clip 
with Text eHMI on (t = 10.00 s; vehicle-path condition 1). 
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condition. It can be seen that while the Text eHMI remains visible when presented in simulated peripheral vision, its salience is less 
pronounced than that of the Flash eHMI. This observation aligns with our intended design, as presented in the Introduction. 

2.4. Design of the animated video clips 

Twenty-one non-interactive animated video clips were created: 3 eHMI conditions (Flash, Message, No eHMI) × 7 vehicle-path 
conditions. When combined with the 3 gaze-contingent overlays, this yielded 63 trials per participant. The video clips were created 
using the software Blender (The Blender Foundation, 2021). All videos were 10 s long and were played at 60 frames per second. 

The road environment consisted of a T-junction and was the same in all video clips. It was derived from previous eHMI research 
(Eisma et al., 2020) and typical road topology of a real crossing in the Netherlands. The selected scenario was one where it is likely for a 
pedestrian to cross, while cars are not required to stop but could if they want to. The two-way street had a traffic island, so pedestrians 
only had to focus on traffic from one direction. The lane width was 3 m. The camera perspective was from the eyes of a pedestrian 
waiting to cross the road at a crossing with a traffic island. 

There were a total of seven vehicle-path conditions. In all videos, four cars were present. The cars for each vehicle-path condition 
had one of three trajectories (Arriving head-on and going straight at the junction, Arriving from the right and turning left at the 
junction, and Driving on the other side of the road and away from the pedestrian). All cars drove at a speed of 30 km/h. In six of the 
seven videos, one of the cars had an eHMI. 

At 5.02 s into the video, the eHMI activated, and the car started to decelerate at 3 m/s2. At an elapsed time of 7.82 s, the car came to 
a full stop, 5 m before the pedestrian. In four vehicle-path conditions, the car with eHMI was approaching head-on, while in two 
vehicle-path conditions, the car with eHMI was making a left turn at the junction (see Fig. 2, for screenshots). In the seventh video, 
none of the cars stopped, and no eHMI was activated. The seventh video was included to induce a sense of unpredictability and was not 

Fig. 3. Screenshots of the car at the moment of eHMI onset in clear view (left column) and in blurred view, i.e., when focusing elsewhere (right 
column). Top two rows: Flash eHMI, middle two rows: Text eHMI, bottom two rows: no eHMI. 
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analyzed in the current study. 

2.5. Procedures 

First, participants read and signed an informed consent form. Next, they sat behind the computer and adjusted the seat height so 
that they could comfortably position their head in a head support. Introductory information was presented on the computer screen: “In 
the following half hour, you will be seated in front of this screen with an eye tracker. You will be shown a number of videos of a traffic situation. 
In this situation, you are a pedestrian who wants to cross the road half-way. A number of cars will cross your path, after which some may stop. 
All the cars in this experiment are equipped with an external display, which can be used to show signals to you, the pedestrian.”. 

After that, the eHMIs were introduced, specifying what the eHMIs looked like and the information they conveyed: “Here is an 
example of a traffic situation. The initial state of the external display on the front is always as shown” (black front of the car). When a car is 
stopping, this state may change to any of the examples shown” (three screenshots were provided, no eHMI, Text eHMI, Flash eHMI). 
Participants were also provided with the following instruction: “Whenever you deem it safe to cross the road half way, you press and hold 
the spacebar key on the keyboard.”. 

Next, the eye tracker was calibrated with a standard 9-point calibration. After the calibration, participants completed three 10-s 
training trials: one trial without a gaze-contingent window and Flash eHMI, one trial with a small gaze-contingent window and 
Message eHMI, and one trial with a large gaze-contingent window without eHMI (in this order). Following the training trials, the actual 
trials began. The instruction to hold the spacebar was repeated on the screen: “Remember to press and hold the spacebar key whenever you 
deem it safe to cross the road half-way”. 

All trials were randomized, with a restriction that prevented subsequent trials from having the same gaze-contingent window size. 
The 63 trials were presented back-to-back, with no interaction between the participant and the experimenter. After each trial, there 
was a pause screen (“Press any key to proceed”), and a drift correction was performed. The experiment lasted between 30 and 45 min, 
including the calibration and practice trials. 

After finishing all 63 trials, the participants were asked to complete a paper-and-pencil acceptance questionnaire (Van der Laan 
et al., 1997), one for each eHMI condition. In this questionnaire, respondents were required to evaluate nine bipolar adjectives using a 
five-point Likert scale. We computed the measure of usefulness by averaging the scores from the following five items: Item 1: use-
ful–useless; Item 3: bad–good; Item 5: effective–superfluous; Item 7: assisting–worthless; and Item 9: raising alertness–sleep-inducing. 
Satisfaction was assessed based on the scores from these four items: Item 2: pleasant–unpleasant; Item 4: nice–annoying; Item 6: 
irritating–likeable; and Item 8: undesirable–desirable. We inverted the scores for Items 1, 2, 4, 5, 7, and 9 so that a higher score in-
dicates greater usefulness/satisfaction. 

2.6. Data processing and dependent variables 

After the experiment, the horizontal (x) and vertical (y) gaze data as well as the pupil diameter data were filtered for further 
processing. Periods during which vertical gaze data on the screen were unavailable, such as caused by eye blinks, were labeled as gaps. 
A margin of 100 ms was added before and after each gap, and the gaps in the data were linearly interpolated. Next, the × and y data, 
and pupil diameter, were median-filtered using a window length of 100 ms. Saccades were identified based on the speed of the gaze 
point and filtered using a Savitzky-Golay filter. Saccades were defined based on whether the speed of the gaze point exceeded 30◦/s, 
and the minimum fixation duration was set to 40 ms (Nyström & Holmqvist, 2010). 

The following dependent measures were used.  

- Response time (ms): The time elapsed between the car starting to decelerate (which coincided with the moment the eHMI turned 
on) and the first press of the spacebar. Response times faster than 150 ms were not taken into consideration.  

- Gaze dispersion (pixels): Next to response times, we explored whether eye movements differed between experimental conditions. A 
standard approach in the analysis of viewing behavior involves defining Areas of Interest (AOIs) and then calculating the duration 
or frequency that the participant’s gaze falls within each AOI (Holmqvist et al., 2011). However, such an approach cannot be 
straightforwardly applied to our experimental results due to the dynamic nature of the traffic situation; cars in the video clip change 
in size and position within the visual field, and there exists a certain arbitrariness in how AOIs could be defined. To be able to 
analyze where participants focused their attention, the idea was originated to adopt a group-based approach (Eisma et al., 2020). In 
this approach, it is determined for each video frame whether participants were focusing more on a particular point or were 
distributing their attention. If participants’ attention is centered around one point, it can be concluded that they were attracted to 
that point and likely used cues from that point at that moment to carry out their task. Conversely, if attention is more distributed, i. 
e., different participants were looking at different points in the scene, this could imply that there are multiple relevant cues or that 
participants were engaged in visual search, instead of a single dominant cue to be identified. For this purpose, we used an index 
called gaze dispersion, which is indicative of the extent to which participants were consistent in their eye behavior (Eisma et al., 
2020). More specifically, we defined gaze dispersion as the mean distance from the participants’ overall mean gaze point for that 
particular experimental condition. A dispersion score of, for example, 100 pixels, means that participants’ gaze point was, on 
average, 100 pixels away from the mean fixation gaze point of all participants.  

- Number of saccades: Saccades are rapid eye movements that cause the eyes to move from one location to another. The number of 
saccades was used as an index of eye movement activity (De Winter et al., 2021b). Note that the number of saccades corresponds to 
one less than the number of fixations, as the fixation filter divides the gaze data into fixations and saccades. In other words, the 
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number of fixations is redundant with the number of fixations, and since each trial had exactly the same duration (10 s), inversely 
related to the mean fixation duration. 

These measures were computed per trial, and subsequently averaged across the six trials (i.e., vehicle-path conditions) for the 
corresponding eHMI × gaze-contingent condition. Thus, we obtained a total of nine scores per measure per participant (3 eHMI 
conditions × 3 gaze-contingent conditions). To simplify the analysis, the six vehicle-path conditions were averaged prior to statistical 
examination. However, it should be acknowledged that the mean response time for the two vehicle-path conditions in which the 
obstructing vehicle approached from the right was about 250 ms slower compared to the vehicle-path condition in which the 
obstructing vehicle approached head-on. 

The statistical analyses involved conducting repeated-measures ANOVAs with eHMI condition and gaze-contingent condition as 
independent variables. In instances where no statistically significant eHMI × gaze-contingent window interaction was observed, 
paired t-tests were performed to compare the results for the three eHMI conditions (with the averages obtained for the three gaze- 
contingent conditions) and the three gaze-contingent conditions (with the averages obtained for the three eHMI conditions). A 
Bonferroni correction was applied, which meant that we set the significance level to 0.05/3. 

In addition to the above measures, we analyzed pupil diameter as an index of mental workload. The use of pupil diameter as a 
measure of mental workload has been established in studies since the 1960 s (Hess & Polt, 1964; Kahneman & Beatty, 1966) and has 
been confirmed in numerous more recent studies (e.g., Klingner et al., 2011; Marquart & De Winter, 2015). Pupil diameter is also 
gaining popularity in transportation research (Radhakrishnan et al., 2023). Finally, we statistically analyzed the acceptance ques-
tionnaire, which comprised Usefulness (mean of 5 items) and Satisfaction (mean of 4 items) components scored from − 2 to + 2. The 
three eHMI conditions were compared using paired-samples t-tests. 

3. Results 

3.1. Spacebar pressing and response times 

Fig. 4 depicts the participants’ spacebar pressing behavior as a function of elapsed time relative to the eHMI onset at t = 0 s. It can 
be seen that both eHMIs convinced participants that they could cross the road. The response times for the No-eHMI condition were 
slower, likely because participants had to rely on implicit cues (i.e., a reduction of speed) rather than an explicit visual signal. 

Response times could be computed for a total of 1218 of 1242 (23 participants × 54 trials) trials. In the remaining 24 trials, the 
participant did not press the spacebar. There were no missing values in the statistical analysis, since, by averaging across the vehicle- 
path conditions, response times were available for all 23 participants and all nine combinations of eHMI and gaze-contingent window. 

Table 1 shows the mean and standard deviations of response times for the nine combinations of eHMI and gaze-contingent con-
ditions. According to a repeated-measures ANOVA of the mean response times, there was a significant effect of eHMI condition (Flash, 
Text, No eHMI), F(2, 44) = 114.3, p < 0.001, partial η2 = 0.84, a significant effect of gaze-contingent condition (Small, Large, None), F 

Fig. 4. Percentage of trials in which the spacebar was pressed as a function of elapsed time in the trial. The average was taken of all trials (23 
participants × 6 vehicle paths × 3 gaze-contingent conditions) per eHMI condition. Only trials in which the participant pressed the spacebar at least 
once were included. The eHMI activated at 0 s, and the car came to a full stop at 2.8 s, as signified by the two vertical lines. 
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(2, 44) = 4.06, p = 0.024, partial η2 = 0.16, and no significant eHMI condition × gaze-contingent condition interaction, F(4, 88) =
1.43, p = 0.232, partial η2 = 0.06. 

Paired-samples t-tests revealed a significantly shorter response time for the Flash eHMI compared to No eHMI (p < 0.001), and for 
the Text eHMI compared to No eHMI (p < 0.001); the difference between Flash and Text was not statistically significant (p = 0.730) 
(three gaze-contingent conditions averaged). Paired-samples t-tests also revealed a shorter response time for the large window 
compared to no window (p = 0.004) (three eHMI conditions averaged), while the comparisons between the small window and no 
window and between the small and large window were not statistically significant (p = 0.112 and p = 0.274, respectively). 

3.2. Eye-movement dispersion 

Fig. 5 shows the gaze dispersion score for the three eHMI conditions without a gaze-contingent window. One thing that is apparent 
is that the approaching car (with or without eHMI) attracted attention, as signified by the low dispersion around t = 0 s. It can also be 
seen that the dispersion remained relatively low for the No-eHMI condition up to 2 s after the car started to decelerate. The observed 
outcome may be due to the participants’ efforts to predict whether the car would halt or proceed. In the Flash eHMI condition, on the 
other hand, the eHMI provided only two brief flashes, which may explain why the participants’ attention diversified soon after the 
eHMI onset, around t = 1 s. 

Table 2 shows the means and standard deviations of the gaze dispersion times between the moment of eHMI onset and the moment 
the car came to a full stop, for each of the nine combinations of eHMI and gaze-contingent conditions. According to a repeated- 
measures ANOVA, there was a significant effect of eHMI condition, F(2, 44) = 10.45, p < 0.001, partial η2 = 0.32, no significant 
effect of gaze-contingent condition, F(2, 44) = 2.69, p = 0.079, partial η2 = 0.11, and a significant eHMI-condition × gaze-contingent 
condition interaction, F(4, 88) = 5.35, p < 0.001, partial η2 = 0.20. 

Table 1 
Mean and standard deviation of the response times (n = 23).  

eHMI condition Gaze-contingent condition Mean (ms) Standard deviation (ms) 

Flash eHMI Small window 1294 630 
Flash eHMI Large window 1353 867 
Flash eHMI No window 1322 847 
Text eHMI Small window 1362 874 
Text eHMI Large window 1396 868 
Text eHMI No window 1267 749 
No eHMI Small window 2330 613 
No eHMI Large window 2404 666 
No eHMI No window 2198 619 

Note. The results of six trials (i.e., vehicle-path conditions) of each participant were averaged. 

Fig. 5. Gaze dispersion for the three eHMI conditions without gaze-contingent window as a function of elapsed time in the trial. The average was 
taken of all 23 participants and 18 trials per participant (i.e., 6 vehicle-path conditions × 3 gaze-contingent conditions) per eHMI condition. The 
eHMI activated at 0 s, and the car came to a full stop at 2.8 s, as signified by vertical lines. 
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The significant interaction effect suggests that the high dispersion for the Flash eHMI was particularly prevalent without a gaze- 
contingent window (Table 2). Paired-samples t-tests for the no-window condition revealed a significantly higher dispersion for the 
Flash eHMI compared to No eHMI (p < 0.001) and for the Flash eHMI compared to the Text eHMI (p = 0.002), as well as for the Text 
eHMI compared to no eHMI (p = 0.002). 

3.3. Number of saccades 

In addition to gaze dispersion, it is useful to examine the overall eye-gaze activity. For this purpose, we tabulated the number of 
saccades during the trials (Table 3). It can be seen that the number of saccades was higher without a gaze-contingent window 
compared to a large and especially a small gaze-contingent window. According to a repeated-measures ANOVA, there was no sig-
nificant effect of eHMI condition, F(2, 44) = 0.91, p = 0.408, partial η2 = 0.04, a significant effect of gaze-contingent condition, F(2, 
44) = 52.31, p < 0.001, partial η2 = 0.70, and no significant eHMI-condition × gaze-contingent condition interaction, F(4, 88) = 1.82, 
p = 0.132, partial η2 = 0.08. 

Paired-samples t-tests revealed no significant differences in the number of saccades between the three eHMI types (Flash vs. Text, 
Flash vs. No eHMI, and Text vs. No eHMI; three gaze-contingent conditions averaged). However, paired-samples t-tests did reveal 
significant differences between the three gaze-contingent window conditions (p < 0.001 for all three comparisons) (three eHMI 
conditions averaged). 

3.4. Pupil diameter 

Fig. 6 shows the average pupil diameter under the three eHMI conditions. Initial results suggested a significant increase in pupil 
diameter in trials without eHMIs, possibly due to the uncertainty of the car stopping. The Flash eHMI condition saw a moderate in-
crease, while the text-based eHMI condition resulted in the smallest pupil diameter. However, upon further analysis, we attributed 
these results partly to luminance differences within the stimulus. The Flash eHMI, which included two bright flashes, caused noticeable 
dips in pupil diameter at around 0.5 s and 0.9 s. After two flashes, the eHMI remained inactive, appearing identical to the No-eHMI 
condition. Conversely, the Text eHMI stayed visible till the video’s end. Although the stimuli were small and displayed on a screen at a 
1 m distance, which could potentially make brightness seem irrelevant, we employed a ‘local darkness’ metric (De Winter et al., 2021b) 
for quantitative evidence. This measures the average darkness of a 41 × 41-pixel area surrounding each participant’s gaze coordinate 
in each trial. Fig. 7 depicts average local darkness levels for the three eHMI conditions: the flashes and the text-based eHMI’s higher 
brightnesses were clearly distinguishable, possibly contributing to the smaller pupil diameter for the Text eHMI seen in Fig. 6. 

Table 2 
Mean and standard deviation of gaze dispersion between the moment the car started to decelerate (t = 5.02 s) and the moment the car came to a full 
stop (t = 7.80 s) (n = 23).  

eHMI condition Gaze-contingent condition Mean (pixels) Standard deviation (pixels) 

Flash eHMI Small window 124 60 
Flash eHMI Large window 127 66 
Flash eHMI No window 143 64 
Text eHMI Small window 112 56 
Text eHMI Large window 115 60 
Text eHMI No window 122 53 
No eHMI Small window 106 43 
No eHMI Large window 105 35 
No eHMI No window 96 39 

Note. The results of six trials (i.e., vehicle-path conditions) of each participant were averaged. 

Table 3 
Mean and standard deviation of the number of saccades per trial (n = 23).  

eHMI condition Gaze-contingent condition Mean Standard deviation 

Flash eHMI Small window 12.46 2.89 
Flash eHMI Large window 14.80 3.87 
Flash eHMI No window 15.61 4.02 
Text eHMI Small window 12.51 3.49 
Text eHMI Large window 14.34 3.42 
Text eHMI No window 16.67 4.11 
No eHMI Small window 12.38 3.36 
No eHMI Large window 14.30 2.88 
No eHMI No window 15.62 4.24 

Note. The results of six trials (i.e., vehicle-path conditions) of each participant were averaged. 
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3.5. Acceptance 

On a scale of − 2 (minimum possible score) to + 2 (maximum possible score), the mean (SD) usefulness scores were 1.11 (0.77), 
1.21 (0.57), and − 0.87 (0.62), for the Flash eHMI, Text eHMI, and No-eHMI conditions, respectively. According to a paired-samples t- 
test, the difference between the Flash and Text eHMI was not statistically significant (t(22) = − 0.57, p = 0.577), while the difference 
between the Flash eHMI and no eHMI was significant (t(22) = 8.25, p < 0.001), and the difference between the Text eHMI and no eHMI 
was as well (t(22) = 11.36, p < 0.001). 

The mean (SD) satisfaction scores were 0.46 (1.05), 1.05 (0.71), and − 0.40 (0.67), for the Flash eHMI, Text eHMI, and No-eHMI 

Fig. 6. Mean pupil diameter averaged across 18 videos and 23 participants as a function of elapsed time in the trial. The eHMI activated at 0 s, and 
the car came to a full stop at 2.8 s, as signified by the two vertical lines. 

Fig. 7. Mean local darkness averaged across 18 videos and 23 participants as a function of elapsed time in the trial. The eHMI activated at 0 s, and 
the car came to a full stop at 2.8 s, as signified by the two vertical lines. The overall local darkness was median-filtered with a time constant of 
200 ms. 
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conditions, respectively. According to a paired-samples t-test, the difference between the Flash and Text eHMI was not statistically 
significant for our significance level (t(22) = − 2.22, p = 0.037). On the other hand, significant differences were observed between the 
Flash eHMI and no eHMI (t(22) = 2.94, p = 0.008), and between the Text eHMI and no eHMI (t(22) = 6.38, p < 0.001). 

4. Discussion 

This study evaluated the effectiveness of a flash-based external human–machine interface (eHMI) compared to a text-based eHMI 
and a no eHMI condition in pedestrian-crossing scenarios. A gaze-contingent window was employed to simulate a real-life visual 
experience of traffic conditions. We hypothesized that the Text eHMI, compared to the Flash eHMI, would result in slower response 
times, particularly when peripheral vision was less accessible. 

The results revealed that response times were significantly faster with the use of an eHMI as compared to the condition in which the 
eHMI was absent (for a similar finding, see, e.g., Bindschädel et al., 2021; De Clercq et al., 2019; Dietrich et al., 2019; Madigan et al., 
2022). This study also found that the Flash eHMI and Text eHMI were perceived as significantly more useful and satisfying than the No- 
eHMI condition. Even though the effect of the gaze-contingent window on response times was relatively small, it was still statistically 
significant, with a gaze-contingent window causing slower response times compared to the full-vision condition. 

However, contrary to our hypothesis, we did not find a statistically significant interaction between the eHMI and the gaze- 
contingent conditions. One explanation is that the Text eHMI in our study was still sufficiently easy to detect in the blurred region 
(for a depiction of the subtly conspicuous yet still discernible text, please refer to Fig. 3) and did not necessarily require reading the 
text, message was always the same and the car with eHMI would always come to a stop, therefore functioning more or less in an 
identical manner to the Flash eHMI. To better understand the demands of eHMIs on peripheral vision, future research should add 
conditions with eHMIs that show a message that the car will not stop, thus requiring the participant to explicitly read and understand 
the text message. In summary, our findings suggest that even with a blurred surrounding environment, participants perceived and 
understood the eHMIs well, indicating that peripheral vision may not significantly impact eHMI intelligibility under our experimental 
conditions. 

The gaze dispersion results (see Fig. 5) show that homogeneous viewing behavior already occurred in a few tenths of a second 
before the eHMI was activated. This suggests that the eHMIs in our study did not heavily rely on peripheral vision, as participants were 
already focusing on the approaching car (for a similar finding, see Eisma et al., 2020). This observation aligns with prior research, 
which showed that road users tend to focus on objects or agents that have predictive value for their own safety while ignoring other, 
more irrelevant objects (Garrison & Williams, 2013; Lappi et al., 2017; Palazzi et al., 2019). 

Additionally, the effect of eHMI and gaze-contingent windows on eye movements was analyzed. Notably, the gaze-dispersion 
analysis showed that the Flash eHMI captured participants’ attention only briefly. This may be due to the brief flash signal, allow-
ing the participants to press whenever they noticed the flashes. In contrast, the text-based eHMI, and especially the No-eHMI condition, 
held participants’ attention longer. The heightened attention in the Text eHMI scenario might be attributed to the continuous text 
message in the video, possibly keeping the participants engaged and prompting them to read the text. Conversely, in the absence of 
eHMI, the increased focus could be a consequence of the necessity for extended vehicle observation to detect any signs of deceleration. 

Furthermore, our investigation revealed substantial differences in saccade frequency among the three gaze-contingent conditions, 
with a smaller window resulting in fewer saccades than a larger window, which in turn yielded fewer saccades than the no-gaze- 
contingent condition. Previous studies have reported that the use of an aperture-based gaze-contingent window, as employed in 
our study, leads to longer fixation durations (and thus fewer saccades) compared to full vision (David et al., 2019; Loschky & 
McConkie, 2002; Nuthmann, 2014; Pomplun et al., 2001). A plausible explanation for this phenomenon is that peripheral vision is 
important in determining where the observer should direct their next fixation (Ludwig et al., 2014). Many eHMI studies have been 
conducted in relatively small field-of-view setups (e.g., Dey et al., 2020; Eisma et al., 2020, 2021; Faas et al., 2021; Guo et al., 2022a; 
Lau et al., 2022), while immersive virtual reality setups employing head-mounted displays or CAVE-based simulators are considerably 
rarer (for examples, see: Bindschädel et al., 2021; De Clercq et al., 2019; Kaleefathullah et al., 2022; Weber et al., 2019). 

Initially, pupil diameter appeared to provide valuable insights into mental workload and the clarity of different eHMI conditions. 
We reasoned that the Flash eHMI yielded an elevated workload due to the ambiguous ways in which light-based eHMIs may be 
interpreted, such as signaling lights that could signify a gesture of right of way or indicate a threat (e.g., Lee et al., 2019). Furthermore, 
the low pupil diameter for the Text eHMI aligned with previous research suggesting that text-based eHMIs are perceived as clear and 
unambiguous (Bazilinskyy et al., 2019; Ferenchak & Shafique, 2022; Guo et al., 2022b). However, upon more detailed analysis, we 
found that the differences in pupil diameter could be explained, at least in part, by variations in light intensity caused by the eHMIs. 
This finding is consistent with recent research that showed changes in pupil diameter previously attributed to psychological phe-
nomena, such as ‘pupil mimicry’, may actually be explained by changes in light intensity (De Winter et al., 2021b; Derksen et al., 
2018). It is important to recognize these limitations, especially given the growing prevalence of eye-tracking technology and the 
increasing use of pupil diameter in transportation research, such as in Radhakrishnan et al. (2023). In fact, some researchers have 
suggested that pupil diameter should not be used in combination with visual stimuli at all (Goldwater, 1972; Janisse, 1974). We hope 
that this comment serves as a useful resource for researchers and practitioners in avoiding potential confounding factors when 
interpreting changes in pupil diameter. 

A limitation of our study was that it was conducted in a safe lab environment. The impacts of eHMIs on the safety of pedestrians in 
real-life scenarios, and the potential for eHMIs to reduce the number of road traffic accidents is still an understudied topic that requires 
more research (see Cefkin et al., 2019; Forke et al., 2021; Merat et al., 2018; Monzel et al., 2021; for studies on the effect of eHMIs in 
naturalistic environments). It must also be acknowledged that the installation of eHMIs is associated with additional costs, a factor that 
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cannot be overlooked in the broader scope of this research. The ethics surrounding the use of eHMIs in pedestrian-crossing scenarios, 
including issues related to trust and overreliance, also require further elaboration. Though effective at capturing attention and 
reducing response times, the eHMIs used in this study could promote overreliance if pedestrians come to expect vehicles will always 
stop. A study by Kaleefathullah et al. (2022) found that pedestrians who had become reliant on a flash-based eHMI were likely to have 
accidents when the eHMI turned on, yet the AV unexpectedly continued driving. Therefore, engineers developing eHMIs for pedes-
trians should create systems that promote pedestrian situation awareness rather than systems that elicit stimulus–response behaviors. 

5. Conclusions 

This study evaluated the effectiveness of different types of eHMIs on pedestrian crossing behavior, employing differently-sized 
gaze-contingent windows. The findings indicate that response times were substantially reduced with the use of an eHMI as 
compared to the conditions with no eHMI. The flash-based eHMI and text-based eHMI yielded equivalent response times, but there 
were subtle differences, where the flash-based eHMI required less attention allocation time (thus allowing participants to focus 
elsewhere). Additionally, this study suggests that the gaze-contingent window, which had the goal of simulating real-life conditions, 
had a negative effect on response times and on the number of saccades, implying that the participants allocated their attention less. In 
conclusion, although participants could perform the task effectively even when much of the scene was blurred, researchers and de-
signers of eHMIs are advised to consider the role of peripheral vision in designing eHMIs that aid pedestrians and other vulnerable road 
users in making the right decisions. 

CRediT authorship contribution statement 

Yke Bauke Eisma: Conceptualization, Methodology, Writing – review & editing, Supervision, Software, Data curation, Project 
administration, Validation. Lucas van Gent: Conceptualization, Methodology, Resources, Formal analysis, Visualization, Investiga-
tion, Writing – original draft, Project administration. Joost de Winter: Conceptualization, Methodology, Validation, Formal analysis, 
Data curation, Visualization, Validation, Supervision, Project administration, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This research is funded by grant 016.Vidi.178.047 (“How should automated vehicles communicate with other road users?”), which 
is provided by the Netherlands Organization for Scientific Research (NWO). More details, such as the rendering settings of the videos, 
are provided in Van Gent (2022). 

Data availability 

MATLAB scripts and raw data are available at https://doi.org/10.4121/6dfe7bd5-16f7-4e8d-9ab7-f8203b902310. 

References 

Atchley, P., & Dressel, J. (2004). Conversation limits the functional field of view. Human Factors, 46, 664–673. https://doi.org/10.1518/hfes.46.4.664.56808 
Basch, C. H., Ethan, D., Rajan, S., & Basch, C. E. (2014). Technology-related distracted walking behaviours in Manhattan’s most dangerous intersections. Injury 

Prevention, 20, 343–346. https://doi.org/10.1136/injuryprev-2013-041063 
Bazilinskyy, P., Dodou, D., & De Winter, J. (2019). Survey on eHMI concepts: The effect of text, color, and perspective. Transportation Research Part F: Traffic 

Psychology and Behaviour, 67, 175–194. https://doi.org/10.1016/j.trf.2019.10.013 
Bazilinskyy, P., Dodou, D., & De Winter, J. C. F. (2022). Crowdsourced assessment of 227 text-based eHMIs for a crossing scenario. Advances in Transportation, AHFE 

International Conference, 60, 141–155. https://doi.org/10.54941/ahfe1002444 
Bazilinskyy, P., Kooijman, L., Dodou, D., & De Winter, J. C. F. (2021). How should external Human-Machine Interfaces behave? Examining the effects of colour, 

position, message, activation distance, vehicle yielding, and visual distraction among 1,434 participants. Applied Ergonomics, 95, Article 103450. https://doi.org/ 
10.1016/j.apergo.2021.103450 

Bazilinskyy, P., Kooijman, L., Mallant, K. P. T., Roosens, V. E. R., Middelweerd, M. D. L. M., Overbeek, L. D., Dodou, D., & De Winter, J. C. F. (2022b). Get out of the 
way! Examining eHMIs in critical driver-pedestrian encounters in a coupled simulator. Proceedings of the 14th International ACM Conference on Automotive User 
Interfaces and Interactive Vehicular Applications, Seoul, Republic of Korea. https://doi.org/10.1145/3543174.3546849. 

Berge, S. H., Hagenzieker, M., Farah, H., & De Winter, J. (2022). Do cyclists need HMIs in future automated traffic? An interview study. Transportation Research Part F: 
Traffic Psychology and Behaviour, 84, 33–52. https://doi.org/10.1016/j.trf.2021.11.013 

Biebl, B., Arcidiacono, E., Kacianka, S., Rieger, J. W., & Bengler, K. (2022). Opportunities and limitations of a gaze-contingent display to simulate visual field loss in 
driving simulator studies. Frontiers in Neuroergonomics, 3, Article 916169. https://doi.org/10.3389/fnrgo.2022.916169 
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