

Delft University of Technology

On the real-world security of cryptographic primitives
From theory to practice
Najm, Z.

DOI
10.4233/uuid:b0adc65b-301a-49dc-aac5-03f3c55f7f2a
Publication date
2023
Document Version
Final published version
Citation (APA)
Najm, Z. (2023). On the real-world security of cryptographic primitives: From theory to practice. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:b0adc65b-301a-49dc-aac5-
03f3c55f7f2a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:b0adc65b-301a-49dc-aac5-03f3c55f7f2a
https://doi.org/10.4233/uuid:b0adc65b-301a-49dc-aac5-03f3c55f7f2a
https://doi.org/10.4233/uuid:b0adc65b-301a-49dc-aac5-03f3c55f7f2a

On the real-world security of
cryptographic primitives

From theory to practice

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir T.H.J.J. van der Hagen,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 17 oktober 2023 om 12:30 uur.

door

Zakaria NAJM

Master of Science in Mathematics and Computer Science,

University of Grenoble,

geboren te Bourgoin-Jallieu, France.

Keywords: Cyber Security, Information Security, Side Channel Attack, Cryp-
tography, Implementations

Printed by: Ipskamp Printing, Enschede

Front & Back: Zakaria Najm

Copyright © 2021 by Z. Najm

TU Delft PhD Series, Delft 2021

ISBN 978-94-6384-497-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:
Rector magnificus, voorzitter
Prof. dr. P. Hartel Technische Universiteit Delft, promotor
Dr. S. Picek, Technische Universiteit , copromotor

Onafhankelijke leden:
Prof.dr. P.R. Schaumont Worcester Polytechnic Inst., USA
Prof.dr.ir. N. Mentens U. Leiden, NL
Prof.dr. G. Smaragdakis Technische Universiteit Delft
Prof.dr. M. Conti TUD/ U. Padua, Italy EEMCS
Prof.dr.ir. R.L. Lagendijk Technische Universiteit Delft, reservelid

Delft

http://repository.tudelft.nl/

Contents

iiiiii

I Introduction 1

1 Introduction 3
1.1 Background . 3
1.2 Problem statement and Research questions 10

1.2.1 Scope . 11
1.2.2 The Practical Cryptanalysis (Part II) 12
1.2.3 Passive Side-Channel Attacks and Countermeasures (Part III) 13
1.2.4 Active Side-Channel Attacks and Countermeasures (Part IV) 13
1.2.5 Design considerations and guidelines (Part V) 15
1.2.6 Application of design guidelines: Lightweight cipher secure

implementations (Part VI) . 16
1.2.7 Research questions summary 18

1.3 Outline and Contributions . 18
1.3.1 Part II: The Practical Cryptanalysis 18
1.3.2 Part III: Passive Side-Channel Attacks and Countermeasures 20
1.3.3 Part IV : Active Side-Channel Attacks and Countermeasures 21
1.3.4 Part V: Design considerations and guidelines 23
1.3.5 Part VI: Application of design guidelines: Lightweight ci-

pher secure implementations 24

II The Practical Cryptanalysis 25

2 Hardware Acceleration Bridging the Gap between Practical and Theo-
retical Cryptanalysis 29
2.1 Introduction . 30
2.2 Cryptanalytic Attacks with Tight Hardware Requirements 31

2.2.1 Brute-Force Attacks . 31
2.2.2 Time-Memory-Data Trade-off Attacks 32
2.2.3 Parallel Birthday Search Algorithms 34

2.3 Hardware Machines for Breaking Ciphers 36
2.3.1 Brute Force Machines . 36

iii

iv Contents

2.3.1 Brute Force Machines . 36
2.3.2 Acceleration of Collision Attacks on Hash Functions 37
2.3.3 The Factoring Machine . 38
2.3.4 Molecular Computers . 38
2.3.5 Blockchain Mining . 38

2.4 Quantum Computers . 39
2.5 Conclusion . 40

3 On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study 41
3.1 Introduction . 42
3.2 Hash Functions and Cryptanalysis 45

3.2.1 SHA-1 and Related Attacks. 45
3.2.2 Birthday Search in Practice. 46
3.2.3 Differential Cryptanalysis. 47

3.3 Hardware Birthday Cluster . 49
3.3.1 Cluster Nodes . 49
3.3.2 Hardware Design of Birthday Slaves 50

3.4 Verification . 51
3.5 Hardware Differential Attack Cluster Design 51

3.5.1 Neutral Bits . 51
3.5.2 Storage . 52
3.5.3 Architecture . 53

3.6 Chip Design . 53
3.6.1 Chip Architecture . 53
3.6.2 ASIC Fabrication and Running Cost 54

3.7 Chip layout . 57
3.8 Verification . 58

3.8.1 Results . 59
3.8.2 Attack Rates and Execution Time 61

3.9 Cost Analysis and Comparisons . 64
3.9.1 264 Birthday Attack . 64
3.9.2 280 Birthday Attack . 66
3.9.3 Chosen Prefix Differential Collision Attack 67
3.9.4 Limitations . 69

3.10 Conclusion . 69

III Passive Side-Channel Attacks on implementations 71

4 On Comparing Side-channel Properties of AES and ChaCha20 on Mi-
crocontrollers 75
4.1 Introduction . 75

Contents v

4.2 Background . 76
4.2.1 Target Algorithms . 76
4.2.2 Side-Channel Attacks and Metrics 77

4.3 Side-channel Analysis of Target Algorithms 79
4.4 Towards Side-channel Protection . 81

4.4.1 Preventing Timing Side-channels 81
4.4.2 Preventing Power Side-channels 82

4.5 Conclusions . 83

5 Multi-Variate High-Order Attacks of Shuffled Tables Recomputation 85
5.1 Introduction . 86
5.2 Preliminary and notations . 88
5.3 Masking scheme with table recomputation 89

5.3.1 Algorithm . 89
5.3.2 Classical attacks . 89
5.3.3 Classical countermeasure . 90

5.4 Totally random permutation and attack 90
5.4.1 Defeating the countermeasure 91
5.4.2 Multivariate attacks against table recomputation 92
5.4.3 Leakage analysis . 95
5.4.4 Simulation results . 96
5.4.5 Theoretical analysis of the Success Rate 97

5.5 An example on a high-order countermeasure 101
5.5.1 Coron masking scheme attack and countermeasure 101
5.5.2 Attack on the countermeasure 104
5.5.3 Leakage analysis . 105
5.5.4 Simulation results on Coron masking Scheme 106

5.6 A note on affine model . 108
5.6.1 Properties of the affine model 108
5.6.2 Impact of the model on the confusion coefficient 109
5.6.3 Theoretical analysis . 110
5.6.4 Simulation results . 111

5.7 Practical validation . 112
5.7.1 Experimental Setup . 112
5.7.2 Experimental results . 116

5.8 Countermeasure . 118
5.8.1 Countermeasure Principle . 118
5.8.2 Implementations . 119
5.8.3 Security Analysis . 120
5.8.4 Implementation analysis . 120

5.9 Conclusions and Perspectives . 122

vi Contents

6 Feature Selection Methods for Non-Profiled Side-Channel Attacks on
ECC 125
6.1 Introduction . 126
6.2 Related Work . 127
6.3 Methodology . 127

6.3.1 Trace Characterization . 127
6.3.2 Feature selection . 128
6.3.3 Classification Phase . 130

6.4 Experiments . 130
6.4.1 Hardware Implementation and Evaluation Setup 130
6.4.2 Software Implementation and Evaluation Setup 131
6.4.3 Experimental Results . 131
6.4.4 Discussions . 131

6.5 Conclusion . 133

IV Active Side-Channel Attacks and countermeasures 135

7 SoK : On DFA Vulnerabilities of Substitution-Permutation Networks 139
7.1 Introduction . 140
7.2 Background . 143
7.3 Information Theoretic DFA Model: Towards a theoretical security

metric for DFA . 146
7.4 DFA against the last round of SPN 148

7.4.1 Reduction of the number of faults 149
7.4.2 Joint Difference Distribution Table (JDDT) 152

7.5 Three Round DFA Attack on SPNs 153
7.6 Single Fault Attacks against real world SPNs 155

7.6.1 PRESENT-80/128: Finding Optimal Attack 155
7.6.2 AES-128: Matching Best Known DFA Attack 159
7.6.3 SKINNY: Matching Best Known DFA Attack 162

7.7 Conclusion . 165

8 Fault Injection attack on Private Circuit II 167
8.1 Introduction . 168
8.2 Private Circuits I & II in FPGA . 170

8.2.1 PC-I in FPGA, for k = 1 . 170
8.2.2 PC-II in FPGA, for k = t = 1 173
8.2.3 SIMON 96/96 in Private Circuits II 174
8.2.4 Synthesis results for PC-I and PC-II in Xilinx Spartan 6 . . . 174

8.3 Security analysis of PC-II with k = t = 1 175
8.3.1 Setup time violations . 175

Contents vii

8.3.2 Timing faults on PC-II with t = 1 176
8.4 Evaluation using faults . 178

8.4.1 Experiment setup . 178
8.4.2 Internal and online debug of fault effects 178
8.4.3 Results . 179
8.4.4 Discussion . 183

8.5 Conclusion and perspectives . 184

9 Using Modular Extension to Provably Protect Edwards Curves Against
Fault Attacks 187
9.1 Introduction . 187
9.2 Existing Countermeasures for ECC 191
9.3 Security Analysis of Modular Extension 191
9.4 Edwards Curves over large-characteristic fields 194

9.4.1 Edwards curves . 194
9.4.2 Twisted Edwards curves . 194

9.5 Practical Study . 195
9.5.1 Edwards curves . 197
9.5.2 Twisted Edwards curves . 198
9.5.3 Discussion . 199

9.6 Performance . 200
9.6.1 Edwards curve example . 200
9.6.2 Twisted Edwards curve example: Curve25519 / Ed25519 . . 201
9.6.3 Comments about results . 202

9.7 Conclusions . 203

10 A novel physical EM Fault coutermeasure 205
10.1 Introduction . 205
10.2 PLL-Based EMI Countermeasure . 207

10.2.1 Concept . 207
10.2.2 Implementation Details . 209

10.3 Design Automation . 211
10.3.1 Controllable RO Routing Flow 211
10.3.2 Co-Integration Flow of Sensor and Crypto Core 212

10.4 Experimental Evaluation . 215
10.4.1 Experimental Setup . 215
10.4.2 Target Circuit . 215
10.4.3 Experimental Results . 217
10.4.4 Discussion . 218

10.5 Conclusions . 219

viii Contents

11 Reconfigurable LUT: A Double Edged Sword for Security-Critical Ap-
plications 221
11.1 Introduction . 221
11.2 Rationale of the RLUT . 223

11.2.1 Comparison With Dynamic Configuration 225
11.2.2 RLUT and Security . 226

11.3 Destructive Applications of RLUT 226
11.3.1 Adversary Model . 227
11.3.2 Trigger Design the Hardware Trojans 229
11.3.3 Trojan Description . 229

11.4 Constructive Applications for RLUT 235
11.4.1 Customizable Sboxes . 235
11.4.2 Sbox Scrambling for DPA Resistance 237

11.5 Conclusions . 240

V Security design principles 241

12 Security is an Architectural Design Constraint 245
12.1 Introduction . 245
12.2 Primitive Level . 249

12.2.1 Public Key Cryptography . 250
12.2.2 Post Quantum Public Key Cryptography 252
12.2.3 Symmetric Key Cryptography 253

12.3 Protocol Level . 255
12.3.1 Data compression techniques used in TLS protocol 255
12.3.2 Attacks on the encryption mode used in TLS protocol 256

12.4 System Level . 257
12.4.1 Hardware Security . 258
12.4.2 Software Security . 260
12.4.3 Hardware/Software Interface Security 262

12.5 Proposal for a Security Aware Design Flow 265
12.6 Conclusion . 267

VI Application of design guidelines: Lightweight ciphers
secure implementations 269

13 Fixslicing: A New GIFT Representation 273
13.1 Introduction . 274
13.2 The GIFT family of block ciphers . 276

13.2.1 Round function . 277

Contents ix

13.2.2 Key schedule and round constants 279
13.3 Naive bitsliced implementation of GIFT 280
13.4 A new GIFT representation . 282

13.4.1 GIFT-64 . 282
13.4.2 GIFT-128 . 285

13.5 Efficient software implementations of GIFT 289
13.5.1 GIFT-64 . 290
13.5.2 GIFT-128 . 291
13.5.3 Without rotate instruction . 292

13.6 Results . 293
13.6.1 The GIFT block ciphers . 293
13.6.2 Adding first-order masking 295
13.6.3 The GIFT-COFB authenticated cipher 296

13.7 Conclusion . 296

VII Conclusion 301

14 Conclusion 303
14.1 Achievements . 303
14.2 Reflection and future work . 311

Acknowledgements 315

Biography 317

List of Publications 318

References 322

VIII Appendix 355

15 Chapter5 356
.1 Proof of Theorem 5.4.3 . 356
.2 Proof of the propositions of Sect. 5.4.5 360

A Proof of Prop. 5.4.5 . 360
B Proof of Prop. 5.4.5 . 360
C Proof of Prop. 5.4.5 . 360

.3 Proof of Theorem 5.5.3 . 361

.4 Affine model . 362
A Proof of Lemma 5.6.1 . 362

x Contents

B Proof of the Theorem 5.6.3 363
C Proof of Corollary 5.6.3 . 364

16 Chapter7 366
.5 SPN vs DFA: Good Design Practices 366
.6 More Case Studies to our Techniques 367

A PRESENT-128 and Practical Implementations of PRESENT:
Finding Optimal DFA Attack 367

B GIFT-64: New Results . 368
C GIFT-128: New Results . 370
D PRIDE: Finding Optimal DFA Attack 370

.7 Proofs for Section 7.3 . 371

17 Chapter11 374
.8 Trigger generation for Hardware Trojans 374

18 Chapter13 375
.9 Key schedule in the fixsliced representation 375

A GIFT-64 . 375
B GIFT-128 . 375

.10 Additional illustrations . 379

I
Introduction

1

1
Introduction

3

1.1. Background

In today’s digital age, data has taken on a new level of significance and has even
been referred to as the new gold or new oil [1]. This is due to the increasing value
placed on data as an indispensable asset in the digital economy. The ability to
store, process, and analyze vast amounts of data has made it possible to gain in-
sights and make informed decisions, creating new opportunities and driving inno-
vation across various industries. However, the abundance of data also creates new
challenges, including protecting sensitive information from unauthorized access,
theft, and manipulation. Cryptography provides a powerful solution for securing
data and ensuring stored and transmitted information’s confidentiality, integrity,
and authenticity. Cryptographic methods are applied at every data lifecycle stage,
from collection and storage to transmission and usage. The demand for cryptog-
raphy and encryption has risen across various industries, such as finance, health-
care, and government, and is expected to continue growing in the future [2]. The
proliferation of communication networks and connected devices, such as the In-
ternet of Things (IoT), has increased the risk of attacks on these systems, which
store and handle sensitive information. As such the importance of cryptography in
ensuring the security of sensitive information in the digital world cannot be over-
stated. The fundamental components of cryptography, known as cryptographic
algorithms, serve to assure the confidentiality, integrity, and authenticity of stored
or communicated data. Key generation primitives, hashing, and encryption primi-
tives make up these algorithms. Key generation primitives generate unique digital
keys for encryption and decryption processes, often using a random number gener-

1

4 1. Introduction

ator. Hashing primitives generate a fixed-length hash from a variable-length input,
ensuring data integrity by detecting any modifications to the original. Encryption
primitives scramble data, rendering it unreadable without the proper decryption
key, preserving confidentiality. These primitives provide the secure foundation for
cryptography and are utilized in various cryptographic protocols to guard against
unauthorized access, tampering, and exposure.

Moreover, cryptographic algorithms were traditionally designed based on the de-
signers’ experience and intuition rather than solid mathematical proof. The secu-
rity of these algorithms was evaluated using generic techniques such as brute force
attacks or linear and differential cryptanalysis. However, these techniques may
only sometimes give a comprehensive or accurate understanding of an algorithm’s
security.

The practicality of security is often guided by experience and intuition, while
mathematical proofs offer a theoretical sense of security. These two ideas of se-
curity can sometimes conflict. For example, two groups emerged with differing
approaches to lattice-based schemes during the NIST post-quantum cryptography
competition. The first group focused on provably secure schemes that relied on
Gaussian sampling. However, these schemes were found to be costly to implement
and challenging to protect against side-channel attacks. In contrast, the second
group employed uniform sampling-based schemes, which, although lacking prov-
able security, were demonstrated to be less expensive to implement and easier to
secure against side-channel attacks [3]. This situation raises a critical question for
the field: Should we prioritize the development of systems with ease of security
proof, or should we favor schemes that have been empirically shown to be practi-
cal and secure?

In the context of cryptographic system design, it is generally preferred to use
schemes empirically shown to be secure rather than those with only provable se-
curity. However, that is difficult to implement and protect against side-channel
attacks. This is because practical security is a critical consideration in real-world
applications, and security proof is only one aspect of overall security.

However, using schemes with provable security is still highly valuable in situations
where security is paramount, such as in highly sensitive military or government
applications. In such cases, the additional security provided by a provably secure
scheme may be worth the added implementation complexity and resource usage.

Therefore, the choice of which scheme to use ultimately depends on the appli-
cation’s specific requirements, as well as the available resources and constraints.
While schemes with provable security may have their drawbacks, they are still a
vital area of research and development in cryptography.

1.1. Background

1

5

An example of empirically secure ciphers widely used in practice is the arithmetic-
based non-linear operation ciphers, such as SHA-1 and CHACHA-poly-20. While
these schemes have been demonstrated to be secure in practice and highly efficient,
they are challenging to formalize. Therefore, they have not received as much atten-
tion from researchers as Boolean Pseudo-Random Functions (PRF) based ciphers
[4]. However, the attractiveness of PRF-based ciphers has led to extensive research
and publication, which ultimately contributes to an additional level of trust in the
security of these schemes.

Cryptographic algorithms are mathematical procedures used for the encryption
and decryption of data. They form the foundation of secure communication by
transforming plaintext data into ciphertext, rendering it unreadable to unautho-
rized parties. Examples of cryptographic algorithms include symmetric algorithms
like Advanced Encryption Standard (AES) and asymmetric algorithms like RSA.

On the other hand, cryptographic protocols are sets of rules and procedures that
govern the secure exchange of information between parties using cryptographic
algorithms. Protocols define how the algorithms are to be used, including the
generation, distribution, and management of cryptographic keys and handling au-
thentication, confidentiality, and integrity of messages. Examples of cryptographic
protocols include Secure Sockets Layer (SSL), Transport Layer Security (TLS), and
Pretty Good Privacy (PGP).

Cryptographic algorithms provide the mathematical foundation for encryption
and decryption, while cryptographic protocols establish a structured framework
for secure communication that leverages these algorithms. By introducing both
concepts on page three, readers will clearly understand their distinct roles and
how they work together to ensure secure data transmission.

The field of cryptography is in a state of constant evolution. As a result, new
weaknesses and security breaches are frequently uncovered that can render cryp-
tographic algorithms and protocols vulnerable.

Regular updates, as well as solid underlying infrastructure, are essential to main-
tain their security. The recent developments in quantum computing have the po-
tential to break many of the encryption algorithms widely used today, making it
essential to research and develop post-quantum cryptographic algorithms that are
secure against quantum computers. These post-quantum algorithms are expected
to be more robust and secure than current algorithms and will be crucial in main-
taining the security of digital communication and transactions in the future [5].

The shift to post-quantum cryptography requires a thorough and well-planned ap-
proach that involves a range of stakeholders, including researchers, industry lead-
ers, and government agencies. The transition is a complex and multi-faceted pro-

1

6 1. Introduction

cess that entails updating the cryptographic algorithms and the underlying hard-
ware, software, and communication protocols that support these algorithms. To
ensure a smooth and successful transition, it is imperative to take into consid-
eration the far-reaching implications it will have on digital communication and
transactions and to implement measures that will minimize any potential risks
and disruptions during the process.

As the field of cryptography evolves, and new attacks and vulnerabilities are dis-
covered, security models for cryptographic algorithms and protocols become more
complex. Indeed, a security model is a mathematical representation of the crypto-
graphic algorithm or protocol and the environment in which it is used. It describes
the assumptions and requirements that must be met for the algorithm or protocol
to be considered secure. As the gap between theory and practice is studied, secu-
rity models for cryptographic algorithms and protocols become more complex and
consider a broader range of attack scenarios and potential vulnerabilities. This can
make it more challenging to analyze and evaluate the security of a given algorithm
or protocol. However, it is necessary to ensure that security is robust against all
known and potential attacks.

It is crucial to develop methods to assess security and identify bugs that could
affect the security of an implementation. There are several methods that can be
used to assess the security of cryptographic algorithms and protocols. These are
mathematical analysis, formal verification, and testing. The mathematical anal-
ysis involves using mathematical proofs and models to show that an algorithm
or protocol is secure under a given set of assumptions. Formal verification uses
mathematical proof systems to prove that an algorithm or protocol satisfies spe-
cific properties. Testing involves running the algorithm or protocol in a simulated
or natural environment to identify bugs or weaknesses.

It is important to note that no single method can guarantee the security of an al-
gorithm or protocol. Instead, a combination of methods is often used to provide a
comprehensive assessment of the security of an algorithm or protocol. In addition,
it is also essential to conduct regular security audits of the implementation of cryp-
tographic algorithms and protocols to identify any bugs that may affect security.
This can include a manual review of the code and automated testing of the imple-
mentation to identify any vulnerabilities or weaknesses. In summary, a methodol-
ogy that combines mathematical analysis, formal verification, testing, and security
audits is essential to ensure the security of cryptographic algorithms and proto-
cols. The implementation of a cryptographic primitive may result in the leakage
of secret information during computation through side-channels. Side-channels
are unintended information channels that can leak sensitive information about
the implementation of an algorithm. Examples of side-channels are power con-
sumption, electromagnetic radiation, and timing information. Attackers can use

1.1. Background

1

7

these side-channels to extract secret keys or other sensitive information by mea-
suring the physical characteristics of the implementation. Another way to attack
an implementation is the active side-channel attack, where an attacker actively dis-
rupts the computation of the algorithm to leak secrets. With the rapid evolution
of technology and advances in cryptanalysis research, older cryptographic primi-
tives such as SHA-1 are showing their limitations. SHA-1 is a cryptographic hash
function widely used in the past for digital signatures and other applications re-
quiring data integrity and authenticity. Researchers have discovered new attacks
that can effectively break SHA-1 and make the cryptographic hash function vul-
nerable to collisions. As a result, the use of SHA-1 has been deprecated, and ex-
perts recommend using more powerful cryptographic hash functions like SHA-2
or SHA-3. It is important to note that cryptographic primitives have a limited
lifetime and must be regularly reviewed and updated to maintain their security.
The gap between theory and practice in cryptography can create potential secu-
rity problems. Researchers focus on theoretical topics, while practitioners focus
on providing standards-compliant implementations. This can lead to a situation
where disproportionate theoretical security margins are used. In contrast, hackers
can, in some situations, easily exploit side-channel weaknesses in the implementa-
tion to break the cryptosystem, regardless of the theoretical security margins.

The security margin for a cryptographic algorithm is defined by the difference
between the current best-known attack against the algorithm and the theoretical
maximum security provided by the algorithm, usually expressed in terms of com-
putational steps or resources required for the attack.

In simpler terms, the security margin is a measure of how resistant an algorithm
is to attacks, and it is used to gauge the overall security of a cryptographic system.
A larger security margin indicates that an algorithm is more secure, as it would
require significantly more time, computational power, or other resources for an
attacker to break it.

The security margin depends on various factors, including:

Key size: A larger key typically provides a higher security margin, as it increases
the number of possible keys, making it more difficult for an attacker to guess the
correct Key through brute force.

Algorithm design: Some cryptographic algorithms are inherently more secure than
others due to their design and resistance to known attacks, such as differential or
linear cryptanalysis.

Implementation: The security of a cryptographic algorithm can also depend on the
quality of its implementation, including how well it resists side-channel attacks or
other implementation-specific vulnerabilities.

1

8 1. Introduction

Attack complexity: The amount of time, computational resources, or other re-
sources required for an attacker to successfully break the algorithm. The higher
the complexity, the larger the security margin.

State-of-the-art attacks: The current best-known attacks against a specific crypto-
graphic algorithm. As new attacks are discovered, or existing attacks are improved,
the security margin of an algorithm may decrease.

In practice, the security margin is often estimated based on the current state of
cryptographic research and attack techniques, and it is subject to change as new at-
tacks are discovered or existing attacks are refined. For bloc cipher, it is referred to
as the number of extra computation rounds for which the claimed security bound
still holds even if they are removed.

For example, AES has a security margin of three to four rounds in single-key set-
ting, excluding the biclique attack, meaning that if one round is attacked, the at-
tacker would still have to attack two to three rounds and start to erode the security
claims. A security margin of three to four rounds in the context of a block ci-
pher refers to the number of additional rounds of encryption that would need to
be successfully attacked by an adversary beyond any compromised rounds for the
cipher’s security to be significantly weakened.

For example, if a block cipher has ten rounds, and an attacker successfully com-
promises one round, the remaining security margin would be nine rounds. In the
case of a security margin of three to four rounds, the attacker would need to com-
promise an additional two to three rounds (in addition to the one already compro-
mised) before the overall security of the cipher is significantly weakened.

This security margin is a measure of the strength of the block cipher against attacks
and is an important consideration in the evaluation of cryptographic algorithms.
Generally, a higher security margin provides greater confidence in the cipher’s se-
curity.

It is important to note that a time-memory trade-off determines the security of a
block cipher. As a result, a reduction in time complexity without a corresponding
decrease in data or memory complexity may not significantly impact the cipher’s
overall security claims.

A biclique attack is a type of cryptanalytic attack that targets block ciphers, which
are symmetric key cryptographic algorithms operating on fixed-size data blocks.
The biclique attack was first introduced by Andrey Bogdanov, Dmitry Khovra-
tovich, and Christian Rechberger in 2011 to improve the known attacks on the
Advanced Encryption Standard (AES).

The biclique attack is based on partitioning the cipher into two parts and finding

1.1. Background

1

9

a so-called "biclique," a set of keys that allows an attacker to bypass some of the
intermediate computations in the cipher. By doing this, the attacker can signifi-
cantly reduce the overall computational complexity of an exhaustive Key search,
making the attack more efficient than a brute-force attack.

In the case of AES, the biclique attack reduced the computational complexity of
key recovery by a minor factor. However, it is essential to note that the practical
impact of the biclique attack on AES is quite limited. The attack still requires enor-
mous computational power to succeed, and more than a reduction in complexity
is needed to make AES insecure for most applications. While the biclique attack
is a noteworthy development in cryptanalysis, its practical implications are rela-
tively limited for well-designed cryptographic algorithms like AES. As of the time
of writing, there are still questions regarding the real-world impact of such attacks
in terms of their practical implementation using state-of-the-art technologies.

It is noteworthy that new properties of AES continue to be uncovered. For instance,
the novel representations of the AES key schedule by Leurent and Pernot [6] were
only recently described, nearly two decades after its initial analysis [7].

The attack serves as a reminder that the cryptographic community must contin-
ually research and develop new methods to ensure the long-term security of en-
cryption algorithms ranks depending on the version, and AES 128 requires about
2128 evaluations to be attacked under a single key, which is considered infeasible
for the foreseeable future. However, a cache-timing attack and other forms of side-
channel attacks can recover the secret Key of a vulnerable AES implementation in
just a few minutes [7].

Professionals frequently need to utilize obsolete standards despite the lack of proof
concerning any associated risks. Deprecated primitives that are unused but remain
in implementations for compatibility purposes can be detected. This practice ex-
poses a vulnerability that hackers could exploit in downgrade attacks, given how
algorithm types are used in libraries. Understanding the hazards of using such
algorithms is crucial for advancing the field. One way to achieve this is by demon-
strating the feasibility and cost of potential attacks. This highlights the importance
of bridging the gap between practitioners and theorists of cryptography. Theoreti-
cal research needs to be more closely linked to practical implementation, and prac-
titioners need to understand the theoretical underpinnings of cryptography better
to ensure secure implementations. One way to bridge this gap is to involve prac-
titioners in developing and analyzing cryptographic algorithms and protocols at
an early stage. This will align theoretical research more closely with practical im-
plementation and ensure greater security of applications. Another way to bridge
the gap is to include more practical evaluation and testing of cryptographic im-
plementations, including side-channel vulnerability testing, in the development

1

10 1. Introduction

process. This will ensure that implementations are secure not only in theory but
also in practice.

To conclude, bridging the divide between cryptographic practitioners and theorists
is crucial to ensure that cryptographic implementations are secure in practice and
theory.

This study adopts a practical and pragmatic approach to enhancing the security of
real-world systems. By examining the costs associated with various attack types,
including the complexity of the attack and the resources required, the study aims
to establish a better balance between security, performance, and cost in cryptog-
raphy. Moreover, the study evaluates several countermeasure schemes designed to
enhance the security of embedded systems and connected devices while consider-
ing real-world limitations and cost-effectiveness. Additionally, the thesis provides
a comprehensive review of the current state of cryptography, including crypto-
graphic primitives, protocols, and the challenges and constraints of existing cryp-
tographic algorithms. We also discuss the post-quantum cryptography topic and its
challenges and opportunities, offering recommendations for organizations and in-
dividuals in the transition. Overall, this thesis seeks to advance the understanding
of practical trade-offs and security margins in cryptographic standards, ultimately
contributing to developing robust and secure systems that balance performance
and cost.

1.2. Problem statement and Research questions

This thesis focuses on the gap between cryptography theory and practice. Under-
standing the differences in how cryptographic algorithms are implemented and
executed is critical to designing secure cryptosystems, especially in today’s digital
age, where the use of technology such as IoT devices, Edge computing, decentral-
ized cloud, and blockchains is widespread. Efficient cryptosystem design is crucial
as even small variations at the device or node level can have a significant impact
when billions of devices or nodes are connected and exchanging data.

In this thesis, various aspects of Cryptanalysis (in Part II), Passive Side-Channel At-
tacks and Countermeasures (in Part III), Active Side-Channel Attacks (also known
as Fault Attacks) and Countermeasures (in Part IV), and Secure Lightweight Im-
plementations (in Part VI) are examined.

The objective is to address key questions in the field and provide a comprehensive
conclusion that takes a broad view of security issues in cryptographic algorithms
and suggests a framework for incorporating security into the product design pro-
cess.

1.2. Problem statement and Research questions

1

11

Security design
principles

Secure Lightweight
Implementations

SCA attacks and
Countermeasures

Fault attacks and
Countermeasures

Practical
Cryptanalysis

VI

II

III IVV

Figure 1.1: Thesis structure chart

The vastness of security means that not all aspects can be covered in this Ph.D.
thesis. Nevertheless, we can redefine security from a designer’s perspective by
studying various topics and evaluating the current state-of-the-art. This can lead
to developing a security-aware design flow that designers can utilize to achieve
their desired security objectives.

1.2.1. Scope

The Figure 1.1 illustrates the scope of this Ph.D. thesis. Please note that the el-
lipse at the center labeled "Security design principles" pertains to establishing a
set of guidelines and design principles based on a thorough security analysis from
a designer’s perspective. The edges of the graph depict the security constraints.
The Ph.D. thesis considers three constraints: Cryptanalysis-based attacks, Passive
Side-Channel Attacks, and Active Side-Channel Attacks.

In Part II, Part III, Part IV of this doctoral dissertation, a dual approach is taken
to scrutinize various attacks and countermeasures from both the attacker and de-
signer perspectives. The investigation assesses the efficacy and constraints of these
measures, with particular emphasis on distinguishing between their theoretical
and practical implications.

Design guidelines are established based on the three considered constraints and a
review of the existing literature. These guidelines form the basis for a proposed
security-aware design flow aimed at introducing more rigor in the design process

1

12 1. Introduction

for applications that require protection against the three attack vectors.

The proposed security-aware design flow is demonstrated in a real-world scenario,
specifically implementing and evaluating various contenders in the NIST Lightweight
Cipher competition. The methodology was initially applied to the microcontroller
implementation of the GIFT family of block ciphers and was later extended to AES
[8], demonstrating its genericity.

Having outlined the thesis’s scope, we will elaborate on each aspect and present
the research questions.

1.2.2. The Practical Cryptanalysis (Part II)

This section explores the practical aspects of differential cryptanalysis attacks. It
sheds light on the cost of a differential cryptanalysis attack when the cipher’s secu-
rity is near or below the 80-bit security threshold. We recognize that cryptographic
methods are constantly evolving, and determining the level of security provided by
encryption is an ever-changing challenge. While 80-bit encryption is generally suf-
ficient for most applications, highly sensitive or critical applications may require
higher security, such as a minimum of 128-bit encryption. Despite its claimed se-
curity level of 80 bits, the SHA-1 algorithm was still widely used in various applica-
tions and website certificates at the start of this Ph.D. thesis. As shown by Leurent
et al. (2020), about 30% of the certificates on the internet still supported SHA-1,
highlighting the need for regular security assessments and updates to ensure ade-
quate protection. Understanding the cost of a chosen-prefix collision attack on the
SHA-1 algorithm through ASICs and GPUs provides insight into the cost of differ-
ential cryptanalysis attacks on ciphers with 80-bit security or lower, which are still
widely used in low latency and resource-constrained applications such as IoT and
sensor networks where side-channel attacks pose a risk. In Chapter chapter 3, we
enhance the understanding of the cost of a collision attack on SHA-1 by execut-
ing the first chosen-prefix collision on SHA-1 with the use of GPUs and designing
the first SHA-1 Chosen-prefix collision ASIC, providing a precise estimate of the
attack cost when using ASICs. This knowledge enables more informed choices in
selecting secure cryptographic methods and protocols for real-world applications
with strict constraints by setting more meaningful security margins. The following
research question is addressed in this part:

RQ1: What is the actual cost of a differential cryptanalysis attack when the cipher’s
security is near or below the 80-bit security threshold?

1.2. Problem statement and Research questions

1

13

1.2.3. Passive Side-Channel Attacks and Countermeasures (Part III)

This part explores the practical aspects of preventing side-channel attacks in em-
bedded systems and IoT devices. The security of these devices is not only de-
pendent on their ability to withstand cryptanalysis but also on their resistance to
passive and active side-channel attacks. In situations where the device is low on
power or requires low latency, side-channel attacks may pose a greater risk than
more complex attack methods. Various countermeasures can be employed to pre-
vent passive side-channel attacks, including masking. However, implementing a
countermeasure requires balancing execution time and memory usage and pre-
serving the security properties of the masking scheme. The masking order and the
signal-to-noise ratio determine a masking scheme’s security.

Linear operations in symmetric encryption have been shown to be highly suscepti-
ble to side-channel attacks due to their confusion properties, while non-linear op-
erations are fundamental to symmetric encryption. Implementing boolean S-boxes
in software can be expensive, and table-based implementations are vulnerable to
timing side-channel attacks. Although boolean S-boxes can be naturally masked,
arithmetic S-boxes may provide additional security benefits over boolean S-boxes
like those used in AES. Masking arithmetic operations such as addition, subtrac-
tion, multiplication, and division can be computationally expensive and negatively
impact cryptographic implementation performance, particularly for those requir-
ing many arithmetic operations. Masking requires converting arithmetic oper-
ations to boolean operations, a resource-intensive process involving performing
boolean operations on individual bits of operands and merging the boolean results
to produce the masked output.

ChaCha20, an arithmetic addition-based cipher, has emerged as an AES alternative
due to its ease of software implementation and ability to deliver constant-time
implementation advantages. It would be interesting to explore whether ChaCha20
provides any advantage against side-channel attacks without masking.

Therefore, this part addresses the question:

RQ2: How can we practically prevent side-channel attacks?

1.2.4. Active Side-Channel Attacks and Countermeasures (Part IV)

The Part IV is dedicated to fault injection attacks and their impact on block ciphers
and asymmetric cryptography. What methods or techniques can be employed to
detect and prevent practical fault attacks? The precision of the attacker plays a
crucial role in determining the success of these attacks. The two most common
methods for inducing faults on a cryptosystem are using a laser beam or power
glitches. However, using lasers may only sometimes be possible due to counter-

1

14 1. Introduction

measures like light sensors. Power glitches can also be prevented with an on-chip
DC-DC converter. Data path and time redundancy, achieved through codes or du-
plication, is another option, but it has limitations and can be costly. This is why the
focus has shifted towards Electromagnetic Fault Injection (EMFI) attacks, which
can be carried out with good time-space accuracy without opening the chip, and
can induce complex high-order fault models.

Can electromagnetic fault injection (EMFI) detection and prevention be achieved
without data-path time-space redundancy? An unreported behavior of the phase-
locked loop (PLL) phase detector sensor exposed to EMFI was discovered through
experimentation. A novel countermeasure is examined and assessed based on this
behavior against EMFI.

Once a realistic fault model has been established, the identification of potential as-
sociated attacks by the cryptographer becomes necessary. These attacks are cipher-
specific and are investigated on a case-by-case basis. To the best of our knowledge,
no general framework exists to assess a cipher’s vulnerability to faults provided a
fault model.

A Differential Fault Attack (DFA) is a type of fault injection attack that involves in-
tentionally introducing faults into a cryptographic implementation by altering its
input or internal state. The attacker then observes the output of the faulty imple-
mentation to infer secret information, such as the secret Key used in a symmetric
cipher or the private Key used in a public-key cryptosystem.

Given a fault model, how can we assess the inherent resistance of a block cipher
against fault attacks? Understanding the factors that make a cipher more resilient
to these attacks is valuable for improving system protection. This thesis seeks to
contribute to finding an answer to this question by conducting a case study on
DFA.

While physical countermeasures can enhance system security, combining them
with logical countermeasures can be even more effective. However, logical coun-
termeasures that are proven based on simple fault models like DFA may not be
sufficient in real-world scenarios. Implementing duplication-based countermea-
sures in Elliptic Curve Cryptography can also be costly.

How effective is a real-world secure, proven implementation of elliptic curve scalar
multiplication against electromagnetic fault injection attacks?

A technology feature developed to mitigate side-channel attacks or enhance sys-
tem performance may inadvertently create opportunities for other types of attacks.
Therefore, a thorough assessment of a system’s security and consideration of all
possible risk factors before its release to the market is crucial. An example of this
is demonstrated by using a reconfigurable lookup table (RLUT) in an FPGA, which

1.2. Problem statement and Research questions 15

1can increase a design’s resistance against SCA but also offers a potential means for
active adversaries to insert trojans into the design.

Therefore, this part addresses the question:

RQ3: What methods or techniques, can be employed to detect and prevent practi-
cal fault attacks?

1.2.5. Design considerations and guidelines (Part V)

In Part V, the utilization and selection of security algorithms are discussed. The
definition of security from a designer’s standpoint can be described as an addi-
tional constraint, precisely, as the fourth architectural design constraint, in addi-
tion to the three well-known existing ones: Power, Speed, and Price. A proposed
security-aware design flow that considers the three security constraints investi-
gated in this thesis, namely Cryptanalysis, Side-Channel Attacks, and Fault In-
jection Attacks, can be followed to determine the optimal trade-off for different
security applications.

In this part (Part V), we will discuss the utilization and selection of security al-
gorithms. From a designer’s perspective, security can be considered an additional
constraint that must be considered alongside the three well-known architectural
design constraints of Power, Speed, and Price. We want to demonstrate that se-
curity can be considered the fourth design constraint for any system through the
study of state of the art in different security domains, including Cryptanalysis,
Side-Channel Attacks, and Fault Injection Attacks.

From our observation in the previous chapters and the study of the state-of-the-
art, how can we introduce more rigor in the design process of a system subject to
different security constraints?

To ensure optimal security, we propose a security-aware design flow that considers
the three security constraints studied in this thesis to determine the optimal trade-
off for a targeted application.

The proposed security-aware design flow could include the following high-level
steps:

• Threat Model and Risk Assessment: Identify potential threats to the system
and evaluate associated risks. This step provides a comprehensive under-
standing of the system’s security requirements.

• Selection of Security Mechanisms: The appropriate security mechanisms can
be selected once the security requirements are understood. These mecha-
nisms can be chosen based on their ability to mitigate the identified threats

1

16 1. Introduction

and reduce the associated risks.

• Algorithm Selection: The appropriate cryptographic algorithms can be cho-
sen after selecting the security mechanisms.

• The selection process should consider the security strengths and weaknesses
of the different algorithms and ensure they are suitable for the specific appli-
cation.

• Implementation and Testing: The selected algorithms should be implemented
in the system and thoroughly tested to ensure that they provide the necessary
security levels.

• Verification and Validation: The implemented system should be verified and
validated to ensure that it meets the specified security requirements.

Overall, in this part, we explore potential guidelines or principles that de-
signers could utilize to enhance the level of rigor in the design process of
a security-critical application. We address the following research question:
RQ4: What potential guidelines or principles could designers utilize to en-
hance the level of rigor in the design process of a security-critical application?

1.2.6. Application of design guidelines: Lightweight cipher

secure implementations (Part VI)

In Part VI, the focus is on implementing the proposed security-aware de-
sign flow to address the challenge of creating secure embedded software im-
plementations for lightweight ciphers. The proliferation of IoT devices has
increased the use of general-purpose microcontrollers with integrated hard-
ware cryptographic modules and software cryptographic stack implementa-
tions. The selection of one of these solutions is primarily influenced by cost
considerations, with hardware solutions providing better power performance
but being more costly to replace if a vulnerability is identified. FPGA-based
solutions can provide the benefits of both approaches but at a higher cost.

In 2021, the NIST launched a competition to select a future lightweight au-
thenticated cipher cryptographic standard. This competition aims to find a
cipher that offers a better trade-off than AES, considering the latest advance-
ments in cryptography and hardware security. Designers face a challenge
in finding a lightweight cipher that is efficient in software and hardware.
Lightweight ciphers with low S-Box gate counts are Side-Channel masking
friendly, but their linear parts can be costly to process in software.

The objective is to find an algorithm that surpasses AES regarding gate count

1.2. Problem statement and Research questions

1

17

and software cycle count while providing additional security properties suit-
able for the widespread deployment of IoT and Edge devices.

The goal was to assess the performance of NIST lightweight cryptography
competition candidates versus AES regarding the hardware-software secure
implementation trade-off. The GIFT family of block ciphers utilized by sev-
eral NIST Lightweight Competition contenders was selected for evaluation
due to its advantageous hardware implementation characteristics. Despite
the favorable hardware implementation, the software implementation of GIFT
is considered complex and inefficient because of the bit permutation in its
linear layer. To address this issue, the second chapter of the thesis presents a
generic bit-slicing approach for efficient, constant-time software implemen-
tation of SPN applied to the GIFT family of block ciphers. This implementa-
tion methodology is also adaptable to other ciphers, including AES, and aims
to provide a fair basis for comparing secure cipher implementations that are
constant in time.

Automated formal proof verification for bit-slice implementations is advan-
tageous when utilizing first and second-order logic proof verifiers. Never-
theless, the proof process generally requires a simplified model and relies
on extensive assumptions concerning the executing processor’s architecture.
Various formally proven implementation methodologies will be examined
and validated on real microcontrollers used in the Internet of Things to in-
vestigate the disparity between theory and practicality.

1

18 1. Introduction

1.2.7. Research questions summary

In summary, here are the questions addressed in this Ph.D. thesis :

RQ1

What is the actual cost of a differential cryptanalysis attack when the
cipher’s security is near or below the 80-bit security threshold?

RQ2

How can we practically prevent side-channel attacks?

RQ3

What methods or techniques, can be employed to detect and prevent
practical fault attacks?

RQ4

What are some potential guidelines or principles that designers could
utilize to enhance the level of rigor in the design process of a security-
critical application?

1.3. Outline and Contributions

The structure of the thesis is as follows:

Each chapter of the thesis includes at least one publication referenced at the
end of the chapter. The different chapters of this thesis are integral versions
of published papers, and hence, the terminology and notations might vary
across chapters.

1.3.1. Part II: The Practical Cryptanalysis

In chapter 2, we provide a preliminary survey on the history of hardware
crackers. Cryptanalysis is a crucial aspect of cryptography. It serves the
purpose of breaking ciphers for malicious purposes and forming the foun-
dation for constructing secure ones. The most commonly used ciphers are
considered secure because they have been continuously tested and not suc-
cessfully broken by cryptanalysts. Although successful cryptanalysis may
prove a cipher’s vulnerability, the attack is often only theoretical due to its

1.3. Outline and Contributions

1

19

difficulty in efficiently executing it. For instance, the vulnerability behind the
SHA-1 collision attack discovered in 2017 was already known in 2005. How-
ever, due to a lack of resources and algorithms, it took until 2016 for it to be
addressed by the Internet and IT industries. Advancements in attack algo-
rithms, implementation techniques, and hardware fabrication have allowed
for the practical execution of cryptanalysis. This survey covers these efforts
and delves into quantum computers’ impact on cryptography and cryptanal-
ysis. The survey is divided into three sections: cryptanalytic attacks with
specific implementation needs, previous cryptanalytic machines, and quan-
tum computers.

This chapter is an integral copy of the paper "Crack Me if you can: hardware
acceleration bridging the Gap between Practical and theoretical cryptanaly-
sis?: A Survey. SAMOS 2018: 167-172".

Then in chapter 3, we study the cost of the SHA-2 chosen prefix collision on
ASIC. In 2017, the SHA-1 hash algorithm was practically broken using an
identical-prefix collision attack implemented on a GPU cluster, and in 2020,
a chosen-prefix collision was first computed with practical implications for
various security protocols. This raised questions about the cost of perform-
ing such attacks and the best software/hardware cryptanalysis technology.
This paper addresses these questions by examining the challenges and costs
of building an ASIC cluster for attacking a hash function. The study consid-
ers different scenarios and includes two cryptanalytic strategies - a classical
birthday search and a differential attack using neutral bits for SHA-1.

The results show that for generic attacks, GPUs and ASICs pose a severe
threat to primitives with 64-bit security, with rented GPUs being a good so-
lution for a one-time attack and ASICs being more efficient for multiple at-
tacks. ASICs also pose a significant security risk for primitives with 80-bit
security. For differential attacks, GPUs (purchased or rented) are often a cost-
effective choice. However, ASIC provides an alternative for an organization
with the financial means to afford the initial cost and look for a compact,
energy-efficient solution. In the case of SHA-1, we show that an ASIC clus-
ter costing several million dollars could generate chosen-prefix collisions in
a day or even a minute, extending the attack surface to TLS and SSH.

This chapter is an integral copy of the paper "On the Cost of ASIC Hardware
Crackers: A SHA-1 Case Study. CT-RSA 2021: 657-681".

1

20 1. Introduction

1.3.2. Part III: Passive Side-Channel Attacks and Counter-

measures

The threat of side-channel attacks is a significant concern for secure systems.
In chapter 4, we study the resistance of two ciphers commonly used in the au-
tomotive industry - AES and ChaCha20 - against such attacks. The focus is on
the analysis of the resistance of the non-linear component. ChaCha20 is nat-
urally resistant to timing-based side-channel attacks, making it suitable for
vulnerable applications. However, protecting it against power side-channel
attacks is more challenging and requires higher overhead than AES.

This chapter is an integral copy of the paper "On Comparing Side-channel
Properties of AES and ChaCha20 on Microcontrollers. APCCAS 2018: 552-
5558".

In chapter 5, we took a deeper dive into the security properties of the masked
table recomputation, which is commonly used in memory-constrained de-
vices. We show that a higher order of masking does not necessarily mean
more security once the sensitive point of interest is known. This work is an
integral copy of the paper "Multivariate High-Order Attacks of Shuffled Ta-
bles Recomputation" published in Journal of Cryptology 2018 p351-393.

Identifying points of interest in a grey-box or black-box setting is crucial
in Side Channel Attacks and Common Criteria evaluations. ECC (Elliptic
Curve Cryptography) is a widely used public key cryptosystem for various
real-world applications. The rise of side-channel attacks has raised con-
cerns about the security of ECC implementations, as these attacks can ex-
ploit physical leaks to break even theoretically secure ciphers. Non-profiled
side-channel attacks, which can work in almost a black-box setting, are con-
sidered more severe than profiled attacks. The challenge in such attacks is
the selection of relevant features from the side-channel signal, as the mea-
surement data often contain irrelevant points that can negatively impact the
attack’s effectiveness. This issue is particularly pronounced in non-profiled
black-box scenarios.

In chapter 6, we explore different feature selection approaches to improve the
accuracy of non-profiled attacks on ECC. The proposed methods are tested
on actual measurements from FPGA and microcontroller targets and achieve
accuracy comparable to the profiled case.

This chapter is an integral copy of the paper "Feature selection methods for
non-profiled side-channel attacks on ECC" published in DSP 2018: 1-5".

1.3. Outline and Contributions

1

21

Countermeasures against fault attacks are an essential aspect of cryptographic
system design. Fault attacks are a type of attack that takes advantage of er-
rors or faults introduced in a cryptographic system to extract sensitive in-
formation. Fault attacks can be applied to both symmetric and asymmetric
cryptographic systems and can be particularly devastating in cases where the
keys used in the system are compromised.

Various countermeasures can be used to protect against fault attacks on both
symmetric and asymmetric cryptographic systems. In asymmetric cryptog-
raphy, one approach is to use error-correcting codes to implement the system.
This helps ensure that any faults or errors introduced during the computa-
tion process are detected and corrected before attackers can exploit them.
Another approach is to use redundancy in the implementation of the sys-
tem, such as using multiple implementations to verify the correctness of the
results.

Countermeasures against fault attacks typically involve redundancy and ran-
domization techniques in symmetric cryptography. For example, one ap-
proach uses redundant computations, where multiple instances of the cryp-
tographic function are computed, and the results are combined using error
detection and correction techniques. Another approach is to use randomiza-
tion, where random values are introduced into the cryptographic function to
make it more difficult for an attacker to exploit faults.

However, it is essential to note that implementing these countermeasures
comes with practical trade-offs. The addition of error detection and correc-
tion codes or redundancy can result in increased computational overhead,
which can impact the performance of the cryptographic system. Addition-
ally, using randomization techniques can increase the system’s computational
complexity. Therefore, designers must carefully balance the need for security
against the practical considerations of performance and resource utilization.

Substitution-Permutation Network (SPN) is a standard method for designing
block ciphers in cryptography. Differential fault cryptanalysis attack or DFA
can be used to break every known existing block cipher. The complexity of
the DFA depends on the precision of the fault model. The ultimate attacker
can fault a single bit, and the single-bit flip can be induced at a different
location in time and space, leading to various key-extraction complexities.
The complexity of the DFA depends as well on the bloc cipher structure.

In chapter 7, we propose a generic method for evaluating the resistance of

1.3.3. Part IV : Active Side-Channel Attacks and Counter-

measures

1

22 1. Introduction

any SPN block cipher against DFA. This work is an integral copy of the paper
"SoK: On DFA Vulnerabilities of Substitution-Permutation Networks in ACM
AsiaCCS 2019 p403-414". The aim of this work is to identify feasible com-
promises when designing fault-resistant implementations of block ciphers.

Private Circuits II is a known provable defense against strong attackers who
have the ability to access a limited number of internal nodes. The ultimate
DFA attacker model is an attacker able to access and arbitrarily flip the value
of any internal node. The resistance against such an attacker is done by in-
troducing gate-level redundancy. It should be noted that targeting specific
nodes is difficult in practice. Therefore, studying the cost and effectiveness
of such countermeasures in practice is essential.

In chapter 8, we present the first implementation of Private Circuits II on an
FPGA, which is secure against the reading or reset of one wire chosen by the
attacker. The implementation uses a Spartan 6 Xilinx FPGA and features a
throughput of 142 Mbit/s. The security of the design is analyzed, revealing
that despite the countermeasure, some exploitable ciphertexts can still be
outputted. This is due to correlated faults that result in a differential fault
attack, but only if a steady fault injection setup is used. Otherwise, the faults
result in non-exploitable ciphertexts.

This work is an integral copy of the paper: "Private circuits II versus fault
injection attacks" published in "ReConFig 2015: 1-9".

In chapter 9, we address the issue of fault injection attacks on asymmet-
ric cryptography and present countermeasures that ensure the reliability of
computation results against these attacks. We focus on studying the modular
extension protection scheme and its variants applied to elliptic curve scalar
multiplication (ECSM) algorithms. We discovered a flaw in an existing coun-
termeasure and proposed a new, test-free variant to fix it. Our results showed
that this new method provides improved security as the fault non-detection
probability decreases with increased security parameters. Furthermore, we
implemented this countermeasure on an ECSM algorithm for Edwards and
twisted Edwards curves on an ARM Cortex-M4 microcontroller to demon-
strate its efficiency.

This work is an integral copy of the paper:" Using modular extension to prov-
ably protect Edwards curves against fault attacks" published in "The Journal
of Cryptographic Engineering. 7(4): 321-330 (2017)".

The evaluation of the ability of attackers to break a cryptosystem using DFA
is often done using lasers by evaluation labs. Lasers offer exceptional time-
space accuracy for DFA, leading most hardware security modules to imple-

1.3. Outline and Contributions

1

23

ment time and space redundancy and light sensors as a defense mechanism.
However, light sensors can be bypassed through the use of Electromagnetic
Fault Injection (EMFI), which is currently the subject of active research in the
community.

EMFI has a reasonably good spatial and perfect time precision, bypassing
time-redundancy-based countermeasures. For cost reasons, it is only some-
times possible to include spatial redundancy. Hence, a low-cost physical
sensor-based countermeasure is investigated in chapter 10. This work is an
integral copy of the paper "PLL to the Rescue: a novel EM fault countermea-
sure" in ACM/IEEE Design Automation Conference (DAC’2016)".

Finally, in chapter 11, the use of the Dynamic Reconfigurable LUT (RLUT)
feature in contemporary FPGAs for secure applications is explored. The fun-
damental functionality and potential of RLUT for security are described, fol-
lowed by an investigation of its application through case studies examined
from both design and hacking perspectives.

This work is an integral copy of the paper "Reconfigurable LUT: A Double-
Edged Sword for Security-Critical Applications published in "SPACE 2015:
248-268".

1.3.4. Part V: Design considerations and guidelines

The topic of Chapter 12 centers on the application and selection of security
algorithms, which involves redefining the concept of security as a fourth ar-
chitectural design constraint for designers to consider. In addition to the
three well-known constraints of power, speed, and price, we introduce secu-
rity as an essential aspect of the design process. To address this, we propose a
security-aware design flow, which begins with selecting cryptographic prim-
itives, protocols, and overall system design.

It is worth noting that this work is based on the paper "Security is an Archi-
tectural Design Constraint," which was published in the "Journal of Micro-
processors and Microsystems, Volume 68." As such, the proposed design flow
is built on previous research and aims to provide a comprehensive approach
to security in microprocessor and microcontroller designs and implementa-
tions.

Overall, in this chapter, we explore potential guidelines or principles that
designers could utilize to enhance the level of rigor in the design process of
a security-critical application. We address the following research question:
RQ4: What potential guidelines or principles could designers utilize to en-
hance the level of rigor in the design process of a security-critical application?

1

24 1. Introduction

1.3.5. Part VI: Application of design guidelines: Lightweight

cipher secure implementations

The chapter 13 focuses on the implementation performance of lightweight
ciphers in software.

The fixslicing implementation technique has been applied to GIFT, a funda-
mental building block utilized by several NIST Lightweight Cryptography
(LWC) finalist candidates. This study reveals that lightweight ciphers with
exceptional hardware-oriented designs can also achieve impressive perfor-
mance in software, surpassing AES. The methodology employed in this re-
search proves to be valuable in comparing different cipher implementations
on a fair and unbiased basis.

This work is an integral copy of the paper "Fixslicing: A New GIFT Repre-
sentation Fast Constant-Time Implementations of GIFT and GIFT-COFB on
ARM Cortex-M" published at TCHES 2020.

This section serves as an application of our design guidelines and contributes
to answering the research question RQ4. Through this work, we aim to
demonstrate that incorporating more rigor in the implementation process
of security primitives enables a fair comparison of implementation perfor-
mance for different ciphers.

II
The Practical Cryptanalysis

25

1

27

The main focus of this section is on the first constraint shown in Figure 1.1,
which is the ability of cryptographic algorithms to withstand cryptanalysis.
Specifically, we will be examining the cost of a real-world differential crypt-
analysis attacks on the widely used cryptographic hash function, SHA-1. The
goal is to provide an estimate of the cost of an attack that has a complexity be-
low the 80-bit security bound, which is the current standard for secure cryp-
tographic algorithms. By analyzing the cost of such attacks, we can better
understand the overall strength of SHA-1 and other similar lightweight cryp-
tographic algorithms, and identify any potential vulnerabilities that need to
be addressed to ensure their continued security.

2
Hardware Acceleration

Bridging the Gap between
Practical and Theoretical

Cryptanalysis

Cryptanalysis is an essential part of cryptology. Not just is it useful to break
ciphers for malicious applications, but it is also the basis for building secure
ones. In fact almost all the ciphers still in use are trusted to be secure mainly
due to the fact that many cryptanalysts are trying hard to break them pub-
licly and failing. However, most of the time successful cryptanalytic results
end up violating the cipher designers claims, but the attack itself remains
theoretical due to the lack of enough resources/algorithms to efficiently im-
plement it. For example, while the first practical SHA-1 collision was found
in 2017, most of the ideas and vulnerabilities behind the attack had been dis-
covered in 2005. The internet and IT industries didn’t give much attention
to the early theoretical results and it wasn’t until 2016 that internet browsers
starting getting rid of SHA-1. The leap from 2005 to 2017 was due to ad-
vancements in the attack algorithms, implementation techniques and hard-
ware fabrication technologies. While hardware fabrication so far keeps on
improving according to Moore’s law, the other two aspects require a lot of
research effort. In this survey, we touch on several examples of these efforts
over the years. The survey is divided into three parts, cryptanalytic attacks

29

2

30
2. Hardware Acceleration Bridging the Gap between Practical and

Theoretical Cryptanalysis

designed with specific implementation requirements, previous cryptanalytic
machines and quantum computers, the technology that promises to change
how we think about cryptography and cryptanalysis.

2.1. Introduction

While computing machines, hardware acceleration technologies and cryp-
tography have always been closely related, the use of hardware digital cir-
cuits to accelerate cracking secure ciphers even pre-dates the invention of
the Silicone transistor. The events surrounding World War II led to the emer-
gence of Modern Cryptography, where it changed from an art exclusive to
military and intelligence personnel, to a mathematical discipline practiced
and studied by mathematicians and computer scientists, as well. Moreover,
as it was discovered many years later, it was during the World War II at
Bletchley Park in England that the first automated hardware cryptanalytic
machines was built. In 1939, Alan Turing designed a mechanical machine
called "Bombe", which performed statistical attacks on encrypted German
messages, using Enigma [9], intercepted by the British Navy. Later, between
1943 and 1945, British code breakers built another machine called "Colos-
sus", in order to break another German cipher, Lorenz. Unlike Bombe, which
was an electro-mechanical machine, Colossus used vacuum tubes and Boolean
functions and is considered as the first programmable, electronic and digital
computer [10].

In this survey, the modern and potentially future hardware machines for
cryptanalytical purposes are discussed. We only consider cases where a sin-
gle machine is built in order to either break a cipher directly or perform
a huge computational task that is considered a milestone towards breaking
one. Distributed cryptanalysis projects over many locations are not consid-
ered. Besides, we consider only logical attacks that don’t include assumptions
on the cipher implementations. Hence, side-channel and fault-injection at-
tacks are also not considered, regardless of their costs. In Section 2.2, a set
of cryptanalytic techniques that require specific assumption when it comes
to the execution platform are discussed. In Section 12.4.1, several examples
of implementations or designs of cryptanalytic hardware machines are pro-
vided, showing how new and advancing technologies push the limits of what
was previously considered impractical. In Section 2.4, a brief discussion on
the effect of quantum computing and quantum attacks on existing ciphers is
provided, while the survey is concluded in Section 10.5.

2.2. Cryptanalytic Attacks with Tight Hardware Requirements

2

31

2.2. Cryptanalytic Attacks with TightHardware Re-

quirements

Most of the cryptanalytic attacks on ciphers, especially symmetric key ci-
phers (block ciphers, stream ciphers, hash functions, etc) consist of at least
one phase of executing a complex search algorithm. With the huge input
and output spaces of the involved functions, this step is very expensive in
terms of time and/or memory consumption. Hence, acceleration algorithms
and machines usually target efficient and parallelisable implementations of
this step. In [11], the authors provided three assumptions that cover a wide
variety of attacks and help develop efficient accelerators:

1. Cryptanalytic algorithms are parallelisable.

2. Different nodes need to communicate with each other only for a very
limited amount of time.

3. Since the target algorithms are computationally intensive, the commu-
nication with the host is very limited compared to the time spent on the
computational tasks.

In this section, we describe how some of the costly attacks can be adjusted in
order to satisfy these conditions and lead to efficient hardware accelerators.
For a wider exploration of different cryptanalytic techniques, we refer the
interested reader to any of these resources: [12–14].

2.2.1. Brute-Force Attacks

Brute-Force attacks play an important role in the security of ciphers, espe-
cially in the field of symmetric key cryptography. Brute-force attacks refer
to attacks where all the possible values of a secret variable are tried until
the correct value (or a set of valid values) is reached. This type of attack is
applicable to any cryptosystem and provides an upper bound on the com-
putational complexity of breaking a cipher. For example, since the Data En-
cryption Standard (DES) uses a secret key of 56 bits, it requires at most 256

encryptions/decryptions in order to significantly narrow down the space of
possible secret keys. Hence, it was believed when DES was introduced, that
it has a security level of 56 bits. Any attack that requires less than 256 en-
cryptions/decryptions is considered a genuine threat to the cipher security.
Moreover, while 256 operations was considered beyond the realm of possi-
bility in the 1980s and early 1990s, the NIST organization has recently an-
nounced that any security level below 112 will be considered insecure from
now on [15]. However, implementing brute force attacks is not as straight-

2

32
2. Hardware Acceleration Bridging the Gap between Practical and

Theoretical Cryptanalysis

forward as it sounds and it’s practicality is not just subject to the availability
of resources. A lot of challenges face the attackers when it comes to memory
management, parallelisation and data sorting/searching.

2.2.2. Time-Memory-Data Trade-off Attacks

In order to overcome the high time complexity required by most attacks,
there is a trade-off to be made between the time and space requirements.
For example, considering a block cipher EK (p), which represents a family
of bijective permutations parametrized by the key value K , the attacker can
choose on one end of the trade-off to ask for EK (0) and use brute-force to try
all possible keys until he finds the correct key (or set of keys, as depending on
the size of p and K it may not be possible to find a unique solution using only
a single encryption), or the attacker can pre-compute and sort EK ′ (0) ∀K ′ ∈
2|K |, then for any instance of the block cipher the key recovery takes O(1) as
it involves only one memory access. However, the space complexity of the
later case is O(2|K |). TMDT attacks try to find a sweet spot between these two
extremes, making complex attacks more practical for implementations. In
this section we describe two of the famous examples for such attacks.

Meet in the Middle Attacks The MitM attack was introduced by Diffie and
Hellman in 1977 [16]. It applies to scenarios were an intermediate value
during a function execution can be represented as the output of two indepen-
dent random mappings. The most famous example for a cipher vulnerable to
this attack is 2DES, which consists of applying the Data Encryption Standard
(DES) twice using two independent keys, i.e.,

C = EK2
(EK1

(P))

A straightforward brute force attack would require 2112 operations, since
DES has a key size of 56 bits. However, the MitM attack requires only 257

operations and works as follows. First, we notice that

I = EK1
(P) = E−1

K2
(C)

Second, we notice that I is a collision between two random mappings. Hence,
finding a pair (K1,K2), such that EK1

(P) = E−1
K2

(C), falls under the birthday

problem and requires only 2
|K1 |+|K2 |

2 , i.e., 256 iterations, on average. Since,
every iterations consists of one encryption and one decryption operations,

2.2. Cryptanalytic Attacks with Tight Hardware Requirements

2

33

the overall number of function calls is 257, which is only twice the brute
force complexity against DES. On the other hand, as most birthday attacks,
the MitM requires a huge memory space, since every execution has to be
stored and compared to all previous executions until the collision is found.

Hellman Time-Space Trade-off This attack, first proposed by Hellman in
1980 [17], targets accelerating brute force attacks. For simplicity, we consider
only the case where the key size equals the plaintext size. However, the same
attack can be generalized to other cases. The attacker chooses a plain-text
P , which he knows will be encrypted at some point in the future. Then, he
selects a set of possible keys as the starting point of his computation. For
example, he can use the set {Ki |Ki ∈ [0,N]}, where N is one of the parameters
of the time-space trade-off. The next step is to compute C0

i = EKi (P). The

attacker iterates over the computation Cji = E
C
j−1
i

(P), where j ∈ [1,S] (S is the

second parameter of the trade-off). All the previous step are done offline,
without communicating with the target user. The attacker at this point ends
up with N chains, each has S + 1 nodes, as follows:

C0
0 → C1

0 → C2
0 · · · → CS0

C0
1 → C1

1 → C2
1 · · · → CS1

...

C0
N → C1

N → C2
N · · · → CSN

The previous lists include (S + 1) ∗ (N + 1) Keys. In order to save memory,
the attacker stores only the initial key Ki and the final value CSi . Next, in
the online phase, the attacker intercepts a ciphertext C = EK∗(P). First, he
compares C to the N + 1 final values in his pre-computed table. If C = CSi ,
since C = EK∗(P), then EK∗(P) = ECS−1

i
(P). The attacker returns K∗ = CS−1

i .

Otherwise, the attacker sets C0 = C and computes the list in the same manner
as the lists generated during the offline phase:

C0→ C1→ C2 · · · → CS

If Cl = CSi , then EK∗(P) = ECS−l−1
i

(P). In both cases, the attacker needs to re-
compute the chain where the collision occurred until the key value is found.
On average, the online phase requires S/2 operations to find the collision
and S/2 operations to find the key. However, since the attack covers only

2

34
2. Hardware Acceleration Bridging the Gap between Practical and

Theoretical Cryptanalysis

xi xi+1 xi+2 xi+3 xi+4 xi+5

xj xj+1 xj+2

xk xk+1 xk+2

xk+3

Figure 2.1: A simplified functional graph example. An edge goes from vertex a to vertex H
′
(a)

(S+1)∗(N+1) key candidates, it has a success probability of (S+1)∗(N+1)
|KS| , where

|KS| is the size of the full key space.

2.2.3. Parallel Birthday Search Algorithms

So far, we have described three different generic attacks against ciphers. All
these attacks have one feature in common. A cipher is considered as a ran-
dom mapping C = EK∗(P) : {0,1}|P | × {0,1}|K | → {0,1}|C|. In this section, we
consider a wider class of functions; collision-resistant compression functions
T = H(x) : {0,1}n → {0,1}t , such that n� t and it is computationally hard to
find a pair (x1,x2) such thatH(x1) =H(x2). This class of functions has several
applications in the construction of secure hash functions and the cryptanal-
ysis of symmetric key ciphers. For examples, the problem of finding such
a collision is helpful to the meet in the middle attack described earlier. It
is known that the computational complexity of finding a collision for such
a function is upper bounded by the birthday bound 2t/2. However, the effi-
cient design of a collision search algorithm is not a trivial task, specially if
the attacker wants to make use of parallelisation over a set of computing ma-
chines. This issue is discussed in details in [18]. First, we look at the problem
of designing an efficient algorithm for the birthday search problem on a sin-
gle processing unit. A straightforward approach is to compute 2t/2 random
instances. With high probability, a colliding pair exists in the list formed by
these instances. However, such approach requires O(2t/2) memory locations
and O(2t) memory accesses/comparisons. In order to overcome these tight
requirements, several attacks with different trade-offs have been proposed,
almost all of them share the same property; the function in question is re-
duced to T = H

′
(x) : {0,1}t → {0,1}t , which is treated as a pseudo-random

function (PRF). One of the useful ways to represent such a function is using
a functional graph, which is a directed graph with 2t vertices and two ver-
tices x and y with an edge from x to y are connected if y = H(x), as shown in
Figure 2.1.

2.2. Cryptanalytic Attacks with Tight Hardware Requirements

2

35

The collision search problem can be treated as a graph search problem, where
he attacker is looking for two edges with the same endpoint but with different
start-points. Pollard’s rho method [19] helps find a collision in the functional
graph with a small memory requirement. The underlying idea is to start at
any vertex and perform a random walk in the graph until a cycle is found.
Unless the attacker is unlucky to have chosen a starting point that is part of
the cycle, he ends up with a graph that resembles the Greek letter ρ and the
collision is detected.

Nonetheless, Pollard’s rho method cannot be efficiently parallelized without
modifications. If an attacker tries to run many instances of the algorithms on
several machines, independently, each machine will try to look for a cycle in a
specific part of the functional graph. However, there is no guarantee that the
first colliding pair will be found using a single machine, as each member of
the pair can be found using a different machine. For example, two machines
can enter the same cycle, but the attacker will not detect this event. Hence, if
he usesmmachines, he will needO(2t√

m
) time to find the collision, as opposed

to his original target of O(2t
m).

In [18], the authors proposed a method to achieve O(2t
m) speed-up, using lim-

ited memory and communication requirements. First, the attacker defines
a distinguished point to be a point H

′
(x) that has a special property which

can be easily checked, e.g. the first d bits are equal to 0. Second, the at-
tacker chooses m random messages x1

0,x
2
0, · · · ,x

m
0 and assigns one of them to

each machine. Third, each machine i computes a trace (xi0,x
i
1, · · · ,x

i
d), where

xij = H
′
(xij−1) and xid is a distinguished point. This is a random walk in the

functional graph. If the probability of the condition xid = H
′
(xid−1) is θ, the

average length of the trace d is 1
θ . Hence, if θ is too large, the traces are too

short and the total number of traces ≈ 2k
θ is in the same order of magnitude

of 2k . This means that the attacker does not observe a significant reduction
in the memory usage compared to a random-search based algorithm. On the
other hand, if θ is too small, the traces become so long, and there is a risk
of hitting a cycle within the trace, without ever hitting a distinguished point.
Hence the choice of θ is crucial for the attack efficiency. Moreover, it is a
good practice to abort the trace after it becomes too long, e.g. 20

θ . The previ-

ous two steps are repeated 2t/2θ
m times. Each trace is specified in the memory

as (xi0,d,x
i
d). Finally, a central server needs to sort these traces efficiently,

according to the values xid and find the traces that have the same endpoint.
Once two similar traces are found, it is easy to find a collision within them
that looks like in Figure 2.2.

2

36
2. Hardware Acceleration Bridging the Gap between Practical and

Theoretical Cryptanalysis

x1
0 x1

1 x1
2 x1

3 x1
4 x1

5

x2
0 x2

1 x2
2

Figure 2.2: An example of two colliding traces in the functional graph

2.3.Hardware Machines for Breaking Ciphers

2.3.1. Brute Force Machines

In this section we describe cases where engineers have been able to build
machines to efficiently execute brute force attacks against certain ciphers.

Deep Crack In 1998, the Electronic Frontier Foundation (EFF) built a ded-
icated hardware machine consisting of 1856 ASIC chips connected to a sin-
gle PC. The machine was able to test over 90 billions DES keys per second,
which means that it can go over all the 256 DES keys in 9 days. It was able
to solve one of the RSA security DES challenges in 56 hours. The project
costed 250,0000 US Dollars and was motivated by the discrepancy between
the estimates of academia and government officials regarding the cost and
time required to break DES [20].

COPACOBANA In CHES 2006, COPACOBANA [11] was introduced as an
FPGA cluster architecture consisting on 120 FPGAs controlled by a host com-
puter. It is considered to be the first publicly reported configurable platform
built specifically for cryptanalysis as its main purpose. The design philoso-
phy behind the architecture depends on the three main assumptions in Sec-
tion 2.2. These assumptions are satisfied by both brute force and cryptana-
lytic attacks. Hence, the COPACABANA has been used to accelerate several
attacks [21]. We sum up some of these attacks in Table 2.1. Some of the at-
tacks performed on the COPACOBANA platform, e.g. guess and determine
attack on A5/1, were specially designed in the first place to make use of
hardware acceleration [22].

WindsorGreen In 2016, a document was release accidentally on the New
York University server, describing a custom made supercomputer designed
by the NSA and IBM, which is believed to have mainly two applications,
cracking ciphers and forging cryptographic signatures [23]. However, lim-
ited information is available publicly on the project.

2.3. Hardware Machines for Breaking Ciphers

2

37

Table 2.1: Some of the attacks performed using the COPACOBANA platform

Cipher Attack Type Time Consumed

DES Brute Force 6.4 days

A5/1 Guess and Determine [22] 6 hours

ECC (k=79) Discrete-Log 3.06 hours

ECC (k=97) Discrete-Log 93.4 days

[27] First Differential Attack

[28]

[29]

[30]

[31]

[32]

[33]

[24]

[34]

[35]

[36]

[37]

[38] [39]

[40] [41]

[42]

[43]

[44]

[45]

[46]

[47] [48] [49]

[50]

[26] [51]

[52] [53] [13]

[54] [55] [56] [57] [58]

First Collision

Figure 2.3: Summary of the improvement and efforts towards accelerating the collision attacks against
SHA-1 between 2005 and 2017

2.3.2. Acceleration of Collision Attacks on Hash Functions

In 2005, the first theoretical collision attack on SHA-1 was published by
Wang et al [24]. Since then, a lot of efforts have been targeted towards mak-
ing the attack more efficient. These efforts are summarized in Figure 2.3. In
2015, the authors of [25] provided an estimation for finding near collisions on
SHA-1, which is a critical step in the collision attacks. The authors provided
a design of an Application-Specific Instruction-set Processor (ASIP), named
Cracken, which executes specific parts of the attack. It was estimated that to
execute the free-start collision and real collision attacks from [26], the attacks
will take 46 and 65 days and cost 15 and 121 million Euros respectively.

In 2016, the first attack was practically executed using a cluster of 64 GPUs

2

38
2. Hardware Acceleration Bridging the Gap between Practical and

Theoretical Cryptanalysis

and took 10 days [56]. Later in 2017, the first real SHA-1 collision was com-
puted [58], using a combination of CPUs and GPUs, taking 6500 CPU years
and 100 GPU years. However, the exact details of the machine used were not
revealed in the paper.

2.3.3. The Factoring Machine

The problem of efficiently finding the prime factors of an integer is one of
the oldest mathematical problems in the field of Number Theory. It is also
the basis of some of the Public Key Cryptosystems (PKC), such as RSA. If
a computer can factor n = pq into p and q, it would lead to breaking RSA
systems of key size |n|. The Number Field Sieve (NFS) algorithm is one of
the famous algorithms for solving the factoring problem. However, efficient
and cheap implementations of this algorithm are non-trivial. In [59], the
author describes three different architectures for machine to perform the NFS
algorithm, the cheapest of which costs 400,000 US Dollars and is estimated to
take under one year to break RSA-768 in under one year. However, the results
are highly speculative and are not supported by any actual implementation.

2.3.4.Molecular Computers

In [60], Boneh et al. describe an attack on DES that is estimated to take one
day to recover the key. It is based on a theorized underlying DNA computer
and can be extended to any cipher of key size ≤ 64 bits. However, The attack
has not been implemented in real life and remains a theoretical idea, until
the required DNA computer becomes available.

2.3.5. Blockchain Mining

While the topic of blockchain mining is not directly related to cryptanalysis
or breaking ciphers (specifically hash functions), it is closely related to the
acceleration of brute force attacks. The mining operation involves finding an
input block to a secure hash function such that the output tag is less than
a specific value, i.e. has a certain number of leading 0’s. The number of re-
quired leading 0’s defines the complexity of the problem, which is equivalent
to a pre-image attack against a truncated version of the hash function. If that
version of the hash function is pre-image resistant, then the mining step is
equivalent to a brute force pre-image attack. As the blockchain gets older,
the mining step gets more complex. Hence, several industrial players have
been interested into accelerating these computations. In 2016, Intel applied
for a patent for a Bitcoin mining hardware accelerator [61], which consists

2.4. Quantum Computers

2

39

of a processor and a coupled hardware accelerator that uses SHA-256 as the
main underlying hash function. It is claimed that this system can reduce
the power consumption involved in Bitcoin mining by 35%. In April 2018,
Samsung has also confirmed that it is building ASIC chips to mine Bitcoin.
The new chips utilize the technology and expertise of Samsung’s high mem-
ory capacity GPUs and can be designed for a specific hash function, to give
customers the freedom to choose the target blockchain, not being limited to
Bitcoin. However, once fabricated the chip is hash-function specific. It is sup-
posed to increase the power efficiency by 30% and to execute 16 Tera hashes
per second [62].

2.4.Quantum Computers

In recent years, there has been a substantial amount of research on quantum
computers. If large-scale quantum computers are ever built, they will be able
to break many of the public-key cryptosystems currently in use.

The basis of this problem is that the hidden subgroup problem (HSP) is solv-
able in finite Abelian groups in quantum polynomial time. Thus, factoriza-
tion, discrete logarithm, discrete logarithm in elliptic curves are solvable in
quantum polynomial time as well [63].

The question of when a large-scale quantum computer will be built is a not
obvious. While in the past it was less clear that large quantum computers
are a physical possibility, many scientists now believe it to be merely a sig-
nificant engineering challenge. It has taken almost two decade to deploy the
currently used public key cryptography standards. That’s why, to anticipate,
the NIST recently published a call for the post-quantum cryptography stan-
dard.

One of the challenge to solve is to find mechanisms for controlling and ma-
nipulating the quantum bit easier. Currently a laser is used to physically
move each individual qbit stored in the form of ion from one location to an-
other. Breaking cryptograhic standards used today would require to move
million of ions at the same time, so millions of lasers, making it impractical
for current technologies. But recent advances showed that with a new tech-
nic from the university of Sussex called blueprint [64] allows to manipulate
thousands of qubits with currently available technoligies. With this tech-
nology, a large scale quantum computer consisting of millions of ions would
occupy a space the size of a football field, costing upwards of $120 million .

2

40
2. Hardware Acceleration Bridging the Gap between Practical and

Theoretical Cryptanalysis

2.5. Conclusion
Breaking a real world cipher in practice is a scientific and technological chal-
lenge. When both advances in science and technology gives signs that a ci-
pher can be broken in practice, new cryptographic standards are pulled from
the current knowledge. This should be done way before the attack is made
practical to absorb the inertia needed to deploy a new cryptographic stan-
dard. From a theoretical attack and a practical one, there is still a gap, where
new discoveries can be made, that can push further the knowledge that we
have to make even better cryptographic standards. When practical attacks
are not well anticipated, this inertia can make possible, practical attacks on
cryptographic standards that are still in use, which can be catastrophic.

This study is funded by Temasek Laboratories @ NTU.

3
On The Cost of ASIC

Hardware Crackers: A
SHA-1 Case Study

In February 2017, the SHA-1 hashing algorithm was practically broken using an
identical-prefix collision attack implemented on a GPU cluster, and in January
2020 a chosen-prefix collision was first computed with practical implications on
various security protocols. These advances opened the door for several research
questions, such as the minimal cost to perform these attacks in practice. In par-
ticular, one may wonder what is the best technology for software/hardware crypt-
analysis of such primitives. In this paper, we address some of these questions by
studying the challenges and costs of building an ASIC cluster for performing at-
tacks against a hash function. Our study takes into account different scenarios
and includes two cryptanalytic strategies that can be used to find such collisions:
a classical generic birthday search, and a state-of-the-art differential attack using
neutral bits for SHA-1.

We show that for generic attacks, GPU and ASIC poses a serious practical threat
to primitives with security level ∼ 64 bits, with rented GPU a good solution for
a one-off attack, and ASICs more efficient if the attack has to be run a few times.
ASICs also pose a non-negligible security risk for primitives with 80-bit security.
For differential attacks, GPUs (purchased or rented) are often a very cost-effective
choice, but ASIC provides an alternative for organizations that can afford the ini-
tial cost and look for a compact, energy-efficient, reusable solution. In the case

41

3

42 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

of SHA-1, we show that an ASIC cluster costing a few millions would be able to
generate chosen-prefix collisions in a day or even in a minute. This extends the
attack surface to TLS and SSH, for which the chosen-prefix collision would need
to be generated very quickly.

3.1. Introduction
Hardware cryptanalysis has always been an important part of modern cryp-
tography. It studies building application-specific electronic machines for
performing cryptanalytic attacks. These machines can use different tech-
nologies, starting from mechanical computers during World War II, to FPGA,
GPU or ASIC in the modern days. A full discussion of the history and state
of the art of this field can be found in [65]. A widely held belief is that FP-
GAs and GPUs are suited for small-scale or low-budget computations, while
ASIC is predicted to be better for heavy computational tasks or if the attacker
has an important budget to spend. It is intuitive that a chip that is designed
for a specific task is much more efficient than a general-purpose chip for the
same task. However, since ASIC design has a huge non-recurring cost for
fabrication, it is only competitive when a huge amount of chips is required.
Besides, unlike the cryptographic algorithms themselves, which are usually
optimized for hardware implementations, the cryptanalytic algorithms are
usually designed for general-purpose computing machines. Hence, it is not
necessarily true that ASIC implementations of such algorithms are more ef-
ficient. In other words, ASIC can always be at least as efficient as general-
purpose CPUs or GPUS, as in the worst case the ASIC designer can simply
design a circuit that is similar to the general-purpose one, but the gap in ef-
ficiency between the ASIC and the general-purpose circuit depends on the
algorithm being implemented.

In general, ASIC provides an unfair advantage to players with bigger bud-
gets. This has led to speculation that large intelligence entities may already
possess ASIC hardware crackers that can break some of the widely used cryp-
tographic schemes. In this paper, we address the question of the feasibility of
such machines and whether it is more beneficial to use ASIC for cryptanal-
ysis. The answer to this question is yes, but only for generic attacks of very
large complexities, e.g. > 264. For low scale or more complicated cryptan-
alytic attacks, GPUs provide a very competitive option, due to re-usability,
mass production and/or the possibility of renting them.

A relevant topic to our study is blockchain mining. As discussed earlier,
big players can gain a huge advantage by using expensive ASICs. This has
been a trend for Bitcoin specifically, where the introduction of a new ASIC

3.1. Introduction

3

43

machine lowers the profitability of older machines significantly. To main-
tain fairness of blockchain and cryptocurrency mining, memory-bound and
ASIC-resistant hashing algorithms have been used, such as Ethash [66] for
the Ethereum cryptocurrency and the X16R algorithm [67].

Related Work COPACOBANA [11] was introduced in CHES 2006 as an
FPGA cluster consisting on 120 FPGAs. It is considered to be the first pub-
licly reported configurable platform built specifically for cryptanalysis. The
design philosophy behind the architecture depends on three assumptions:

1. Cryptanalytic algorithms are parallelisable.

2. Different nodes need to communicate with each other only for a very
limited amount of time.

3. Since the target algorithms are computationally intensive, the commu-
nication with the host is very limited compared to the time spent on the
computational tasks.

These assumptions are satisfied by both brute force (generic) and a lot of
cryptanalytic attacks. Hence, the COPACOBANA has been used to accelerate
several attacks [21]. In our study we follow the same assumptions and add
one more assumption:

4. Each node requires a constant/low amount of storage. The overall attack
can be implemented using an almost memory-less algorithm.

This assumption needs to be satisfied by the attack algorithm in order to
make sure that the efficiency due to parallelisation is not lost due to memory
operations. For example, a naive approach to implementing a generic birth-
day collision search on m nodes, can lead to only

√
m speed up compared to

a single node if the algorithm doesn’t satisfy this assumption.

Our Contributions. This paper is an attempt at answering three important
research questions:

– Can the cost of the collision attacks against SHA-1 be reduced? There has
been major breakthroughs in the cryptanalysis of SHA-1 over the past
few years, with the first practical identical-prefix collision (IPC) found
in February 2017 [58] and the first chosen-prefix collision (CPC) found
in January 2020 [68]. While these attacks are practical on general-purpose
GPUs, they still take a few months to generate one collision, by both
academic and industrial entities. Interestingly, the authors of [68] re-
marked that TLS and SSH connections using SHA-1 signatures to au-

3

44 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

thenticate the handshake could be attacked with the SLOTH attack [69]
if the chosen-prefix collision can be generated quickly. Hence, we would
like to check if ASIC can provide a better alternative to speed up the
attacks, using larger budgets. We actually show that chosen-prefix col-
lisions could be generated within a day or even a minute using an ASIC
cluster costing a few dozen Million USD (the amortized cost per chosen-
prefix collision is then much lower).

– What is the difference between generic attacks and cryptanalytic attacks in
terms of cost and implementation? When analyzing a new cipher, any al-
gorithm that has a theoretical time complexity lower than the generic
attacks is considered a successful attack and the cipher is considered
broken. For example, an n-bit hash function that is collision resistant
up to the birthday bound is considered insecure if there is a cryptana-
lytic attack that requires less than 20.9n/2 hash calls. Most of the time,
researchers only measure time complexity in terms of function calls and
ignore other operations required to perform the attack if they are much
smaller. However, in practice, it can be a lot harder to implement a
cryptanalytic attack compared to a generic attack, even with lower the-
oretical complexity. There are countless attacks published every year
with a complexity very close to the generic one, but a natural exam-
ple of such scenarios is the biclique attack against AES [70], where the
brute force complexity is reduced only by a small factor from 2128 to
2126.1. However, one can question if implementing the simple brute
force attack would actually be much less complex in practice. In this
paper, we compare the generic 64-bit birthday CPC attack over a 128-
bit hash function to the cryptanalytic CPC attack against SHA-1 (which
costs close to 263.6 operations on GPUs, and of a lower complexity in
theory) showing that in practice, the generic attack cost is more than 5
times cheaper than the ad-hoc CPC attack. Attacks like biclique or com-
plex cryptanalysis are even more difficult to implement than the ad-hoc
CPC attack and might require a huge memory, which probably makes
the gap even larger. Hence, we argue that for a cryptanalytic attack to
be competitive against a generic algorithm in practice, one must ensure
a sufficiently large gap, at least of a factor 5, if not more (only an ac-
tual hardware implementation testing or estimation could give accurate
bounds on that factor).

– How secure is an 80-bit collision-resistant hash function? In the NIST
Lightweight Cryptography Workshop 2019, Tom Brostöm proposed an
application for lightweight cryptography where the SIMON cipher [71] is
used in the Davis-Meyer construction as a secure compression function

3.2. Hash Functions and Cryptanalysis

3

45

which is collision-resistant at most up to 264 computations [72]. Besides,
it remains a common belief that SHA-1 is insecure due to the cryptana-
lytic attacks against it, but it would have still been acceptable otherwise.
Actually, it is only since 2011 that 80-bit security is not recommended
anymore by the NIST, and 80-bit security for data already encrypted
with this level of protection is deemed acceptable as a legacy feature,
accepting some inherent risk. Hence, we study the cost of implement-
ing the generic 280 birthday collision attack against SHA-1, showing that
it is within our reach in the near future, costing ≈ 61 million USD to im-
plement the attack in 1 month, which is not out of reach of large budget
players, e.g. large government entities, and with the decreasing cost of
ASICs, this will even be within reach of academic/industrial entities in
the near future.

Finally, we argue that ASIC provides the most efficient technology for imple-
menting high complexity and generic attacks, while GPU provides a compet-
itive option for cryptanalytic and medium/low cost attacks.

3.2.Hash Functions and Cryptanalysis

Cryptographic hash functions are one of the main and most widely used
primitives in symmetric key cryptography. One of their key applications is to
provide data integrity by ensuring each message will lead to a seemingly ran-
dom digital fingerprint. They are also used as building blocks of some digital
signature and authentication schemes. A cryptographic hash function takes a
message of arbitrary length as input and returns a fixed-size string, which is
called the hash value/tag. In order for the function to be considered secure,
it must be hard to find collisions, i.e. two or more different messages that
have the same tag. More specifically, a n-bit cryptographically secure hash
function must satisfy at least the security notion of collision resistance, i.e.
finding a pair (M1,M2) of distinct messages, such that H(M1) = H(M2) must
require about 2n/2 computations.

3.2.1. SHA-1 and Related Attacks.

The SHA-1 hash function defines a generalized-Feistel-based compression
function used inside the Merkle-Damgård (MD) algorithm. It was selected
in 1995 as a replacement for the SHA-0 hash function after some weaknesses
have been discovered in the latter. While the two functions are relatively sim-
ilar, SHA-1 was considered collision resistant till 2005, when Wang et al. pro-
posed the first cryptanalytic attack on SHA-1 [33]. Since then, a lot of efforts

3

46 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

have been targeted towards making the attack more efficient. In 2015, the
authors of [25] provided an estimation for finding near collisions on SHA-1,
which is a critical step in the collision attacks. The authors provided a design
of an Application-Specific Instruction-set Processor (ASIP), named Cracken,
which executes specific parts of the attack. It was estimated that to execute
the free-start collision and real collision attacks from [26], the attacks will
take 46 and 65 days and cost 15 and 121 Million Euros respectively. At Euro-
crypt 2019, Leurent and Peyrin [73] provided a chosen-prefix attacks which
uses two parts: first a birthday search to reach an acceptable set of differences
in the chaining variable, and then a differential cryptanalysis part that suc-
cessively generate near-collision blocks to eventually reach the final collision.
The attack was implemented on GPUs and a first chosen-prefix collision was
published in January 2020 [68].

3.2.2. Birthday Search in Practice.

The efficient design of a collision search algorithm is not a trivial task, es-
pecially if the attacker wants to use parallelization over a set of computing
machines. This issue is discussed in details in [18]. The collision search prob-
lem can be treated as a graph search problem, where the attacker is looking
for two edges with the same endpoint but with different starting points. Pol-
lard’s rho method [19] helps finding a collision in the functional graph with
a small memory requirement. The underlying idea is to start at any vertex
and perform a random walk in the graph until a cycle is found. Unless the
attacker is unlucky to have chosen a starting point that is part of the cycle,
he ends up with a graph that resembles the Greek letter ρ and the collision
is detected. Unfortunately, this method is not efficiently parallelizable, as it
provides only O(

√
m) speed-up when m cores are used. In [18], the authors

proposed a method to achieve O(m) speed-up, using limited memory and
communication requirements. This algorithm leads to very efficient parallel
implementations, and is the basis for our study.

However, in the chosen-prefix collision attack against SHA-1, it is not applied
directly to the compression function of SHA-1, but to a helper function. Let
IVi represent a chaining value to the compression function (reached after
processing a prefix), x a message block, and H(IVi ,x) the application of the
SHA-1 compression function. The goal of the birthday phase of CPC attack
is to find many solutions x1 and x2 such that L(H(IV1,x1)) = L(H(IV2,x2)),
where L(x) is a linear function applied to a word x, in order to select some of
the output bits of the compression function. The helper function is defined

3.2. Hash Functions and Cryptanalysis

3

47

as:

f (x) =

L(H(IV1,x)), if x = 1 (mod 2)

L(H(IV2,x)), otherwise.
(3.1)

When a collision f (x1) = f (x2) is found, we have x1 , x2 (mod 2) with prob-
ability one half, and in this case we obtain L(H(IV1,x1)) = L(H(IV2,x2)).

3.2.3. Differential Cryptanalysis.

In this section we briefly describe the algorithms involved in the second
part of the chosen-prefix collision attack: the generation of successive near-
collision blocks to reach the final collision. The details of this differential
attack can be found in [26, 33, 55, 56, 58, 68, 73]. For each new near-collision
block, the attacker has to go through three main steps:

1. Preparing a fully defined differential path for the SHA-1 compression
function (in particular a non-linear part has to be generated for the first
few steps of the SHA-1 compression function)

2. Find base solutions for the first few steps of this differential path (a base
solution is simply two messages inputs that verify the planned differ-
ential path in the internal state up to the starting step of the neutral
bits).

3. Expand those solutions into many solutions using what is known as neu-
tral bits (in order to amortize the cost of the base solution), and check
whether any of these solutions verify the differential path until the out-
put of the compression function.

A neutral bit for a step i is a bit (or a combination of bits) of the message
such that when its value is flipped on a base solution valid until step i, the
differential path is still satisfied with high probability until step i. Most of
the time, a neutral bit is a single bit, but it can sometimes be composed of a
combination of bits. A neutral bit for a step i allows to amortize the cost of
finding a solution to the differential path until step i.

The hardware cluster we consider consists of one master node and many
slave nodes. The master builds a proper differential path for the compres-
sion function steps, based on the incoming chaining values, and generates
base solutions based on this path. The slave is then required to expand these
base solutions into a wider set of potential solutions and find out which of
them satisfy the differential path until a certain step r (we selected r = 40 for
ASIC for implementation efficiency purposes, but we remark that r = 61 was
selected for GPU even though it does not have much impact) in the SHA-1

3

48 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

compression function. The master then aggregates all the solutions that are
valid up to step r and exhaustively search for solutions that are valid up to
step 80. This is repeated several times until a valid solution for the differen-
tial path is found. Consequently, we define a slave as a dedicated core that
is responsible for extending a base solution found by the master into a set of
potential solutions by traversing the tree of solutions defined by the neutral
bits.

Unfortunately, this attack is not hardware-friendly and needs a lot of control
logic. The master has to send to the slave:

1. A base solution, which consists of two message blocks M1 and M2.

2. A set [DP] of differential specifications for the slave to check confor-
mance.

3. A group of neutral bit sets Ni , where the neutral bits in Ni are supposed
to be neutral up to step i.

Combining a base solution (M1,M2) valid at step i and the set Ni , we get
about 2|Ni | new solutions that are valid up to step i, simply by trying all the
possible combinations of the neutral bits in the set. In a naive approach,
each of these partial solutions is expended to 2|Ni+1 | by applying combinations
of the next set. Eventually, we would end up with 2

∑
iNi partial solutions,

organised in a tree as shown in Figure 3.1. However, the neutral bits Ni+1 are
defined such that they don’t impact the path up to step i+1. Therefore, if the
partial solution does not satisfy the conditions at step i+1, there is no need to
apply the neutral bits Ni+1, and we can instead cut the corresponding branch
from the tree. Indeed, there is a certain probability that a solution valid
at step i will be valid at step i + 1, according to the SHA-1 differential path
selected. With the parameters used in SHA-1 collision attacks, most subtrees
fail.

We can generate the partial solutions using a graph search algorithm to start
navigating the tree from its root, and neglect complete subtrees that are fail-
ing. In this paper we choose Depth-First Search (DFS) graph search, with
some modifications to suit our specific problems, in order to satisfy our as-
sumptions for the cryptanalytic algorithm, as DFS has low memory require-
ments.

Our attack scenarios. In this paper we consider three attack scenarios:

1. A plain 264 birthday search: a generic birthday attack against a 128-
bit hash function, constructed by selecting only 128 bits out of the 160

3.3. Hardware Birthday Cluster

3

49

M

MN0
0

MN0
0+N0

1 MN0
0+N1

1

MN1
0

MN1
0+N0

1 MN1
0+N1

1

MN2
0

MN2
0+N0

1 MN2
0+N1

1

MN3
0

MN3
0+N0

1 MN3
0+N1

1

Figure 3.1: Building partial solutions with neutral bits

output bits of the SHA-1 compression function.

2. A plain 280 birthday search: a generic birthday search over the full space
of the SHA-1 compression function.

3. The chosen-prefix collision attack on SHA-1 from Leurent and Peyrin [68,
73].

These three scenarios cover two generic attacks against two security levels
used in practice and one cryptanalytic attack.

3.3.Hardware Birthday Cluster

In this section, we describe the hardware core that handles the birthday at-
tack. First, we define the nodes used in the proposed cluster. Then, we de-
scribe the design of the slave nodes and the communication requirements.

3.3.1. Cluster Nodes

The cluster used to apply the parallel birthday search attack consists of two
types of nodes:

1. Master: a software-based CPU that manages the attack from high level
and performs some jobs including choosing the initial prefixes, distribut-
ing the attack loads among slaves, sorting of the outputs and identifying
colliding traces.

3

50 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

2. Birthday Slaves: dedicated cores that can perform different parts of the
parallel birthday search. Specifically, it compute traces in the functional
graph of the function in question, and once the master has identified col-
liding traces, the core also can locate the exact collision in these traces.

3.3.2.Hardware Design of Birthday Slaves

The design of the proposed birthday slave is shown in Figure 3.2. It’s main
role is to iterate the helper function of Equation 3.1. It consists of a recon-
figurable ROM, where the initial trace value x0, IV1 and IV2 are loaded, a
logic SHA-1 core which performs the step function of SHA-1, a comparator
to compute L(x), x (mod 2) and check whether a given x is a distinguished
point (see [18]) or not, a memory to store distinguished points and a control
unit to handle the communications with the master, and measure the lengths
of different traces.

SHA-1
Trace

Memory

Comparator

x0 ROM

Control Unit

SPI Interface

Figure 3.2: Birthday slave for the parallel collision algorithm

In order to estimate the cost of the proposed core, the area and speed are
compared to a single, step-based SHA-1 core, which is a standard practice
in estimating the cost of SHA-1 cryptanalytic attacks. We have implemented
a full SHA-1 core and it has an area of 6.2 KGE and 0.21 ns critical path.
The implementation of the core in Figure 3.2 using a step-based SHA-1 core
requires at least twice this area. Moreover, its critical path is dominated by
the memory and counters in the control logic. Besides, it is not expected
that a huge ASIC cluster will run at a speed higher than 1 GHz, due to the
power consumption. Hence, in order to regain the efficiency lost due to the
extra control logic and memories, it is a good approach to try to use this logic
with as many SHA-1 steps as possible. Given these experiments and the huge
cost of the control overhead, we increase the efficiency by cascading 4 SHA-1

steps instead of one in the SHA-1 core. This makes the critical path around

3.4. Verification

3

51

1ns, but a full SHA-1 computations takes only 20 cycles instead of 80, and the
overhead 25% instead of 100%.

3.4. Verification

We have verified the attack by finding collisions on a small number of bits
using functional simulation of the hardware implementations. Specifically,
we found collisions on 20 ∼ 330 bits of the output. We have also generated
traces for larger number of bits and compared them to traces generated using
software implementations.

3.5.Hardware Differential Attack Cluster Design

In this section we discuss the challenges and different trade-offs when im-
plementing the neutral bit search algorithm in ASIC and give a description
of the circuit. The cluster architecture uses 3 types of nodes: master nodes,
birthday slaves (BC), and neutral bit slaves (NB).

3.5.1.Neutral Bits

One of the trade-offs when implementing the attack is whether to consider
neutral bits as only single-bits or to use the more general sets of multi-bits.
The first approach leads to a very small circuit, but it strongly limits the
number of usable neutral bits. This increases the overall work load, as more
base solutions need to be generated, and more time is spend applying neutral
bits. The second approach is more complex, because multi-bit neutral bits
must be represented by a bit-vector. However, the single-bit neutral bits are
not sufficient to implement an efficient attack, and we have to use the second
option:

1. Our simulation results show that the success probability of single-bits
is very low. Hence, any gain achieved by using them is offset due to the
huge work load and high communication cost between the master and
slave.

2. In order to achieve significant results, multi-bits are inevitable. In par-
ticular, boomerangs [74] (which can be seen as multi-bit neutral bits with
extra conditions to reach a later step) are crucial cryptanalytic tools for
a low-complexity attack against SHA-1. Hence, avoiding multi-bits can
lead to a drastic loss in terms of attack efficiency.

3

52 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

3.5.2. Storage

Each multi-bit neutral bit is represented by a 512-bit vector, which indicates
the location of the involved bits in the message block (a SHA-1 message block
is indeed 512-bit long). However, we noticed that almost all the neutral bits
involve bits only in the last 6 32-bit words of the message block. There-
fore, we reduced the representation to only 192 bits. Yet, since the original
chosen-prefix collision attack against SHA-1 uses ∼ 60 neutral bits, including
boomerangs, this requires a representation of ∼ 11,520 bits. Besides, the last
few levels of the tree requires 320 bits per neutral bits as the boomerangs
can be located as early as step 6. In addition, for each level of the tree search
we need a counter to trace which node we are testing. The tree used in the
attack has ∼ 10 levels, and our experiments show that the maximum number
of neutral bits in one level is ∼ 26 bits. Hence, the overall size of the coun-
ters is ∼ 260 bits. In order to design the circuit that handles this tree search
algorithm, we tried out four different approaches:

1. Generic approach: we assume that each tree level can have ∼ 28 neutral
bits (slightly higher than our experiments for tolerance). Also, assume
that these levels can be related to any step of the SHA-1 compression
function between 10 and 26, i.e. 16 possible steps. In total, this requires
∼ 63,670 memory locations (Flip-Flops).

2. Statistical approach: from the software experiments and simulations,
we identified an average number of neutral bits per level. In the design,
we use the maximum number of neutral bits we observe for each level
(in addition to two extra bits for tolerance). We observed that only the
first few levels require such a huge storage, while the later levels usually
have 3 ∼ 7 bits per level. In addition, boomerangs are usually 3 ∼ 4 per
level. This reduces the memory requirement by about 50%. However, it
remains a huge requirement.

3. Configurable approach: our experiments showed that not only the num-
ber of neutral bits per level can be predicted, but also the values of these
bits. In other words, very few bits have different values for different
blocks. Hence, we can fix each neutral bit to two or three choices and
use flip-flops to configure which choice is selected during execution.
This reduces the cost significantly. However, the cost is still high as a
multiplexer has an area only ∼ 50% of a flip-flop. Besides, we still need
flip-flops for configuring these multiplexers.

4. Another approach is to reduce the cost by fixing the the neutral bit val-
ues to a set of statistically dominant values. Indeed, [68] reports using
the same neutral bits for each near-collision bloc. This eliminates the

3.6. Chip Design

3

53

need to store the neutral-bit reference values.

At the end, we chose the third approach, since our analysis shows that it
captures the reality, while allowing some level of freedom for the attacker to
adjust the attack parameters after fabrication.

3.5.3. Architecture

Figure 3.3 shows the architecture of the neutral-bit slave. It consists of a reg-
ister file to store the differential path for comparison, a configurable ROM to
store the base solution, a unit to enumerate the different neutral bit patterns
and maintains the tree level for the graph search algorithm, and the SHA-1

step logic.

SHA-1

SHA-1

Differential
Path

Comparator

Base Solution

Configurable
Enumerator

Success
Report

Figure 3.3: Neutral-bit slave hardware architecture

3.6. Chip Design

In this section, we describe our process for simulating the proposed chips
and the results in terms of power, area and performance for each.

3.6.1. Chip Architecture

A challenge when designing this cluster is the communication overhead be-
tween the master and the slaves. A 100MHz SPI bus interface is used as a
one-to-one communication interface with the attack server. A set of ASICs
can also be daisy-chained, thanks to this interface, in such a way to lower the
number of interconnects with the master. It provides enough bandwidth to
handle the data exchanges between the BD/NB slave cluster and the attack
server. The CU (Control Unit) is responsible for dispatching the 32-bit de-
serialized packets sent by the attack sever to configure the BD/NB slaves. It
is also responsible for daisy-chaining and demultiplexing the output traces

3

54 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

of the different BD/NB slaves to the SPI bus interface before the serialization.
Each ASIC also outputs an asynchronous interrupt signal. The interrupt sig-
nal is 1 when at least one BD/NB slave is done, and an output trace is avail-
able. Those interrupt signals are managed by a set of ZYNQ board cluster
interfaces.

2kbit Reg File

32

32

SYS_CLK

SPI_CLK

n_RESET_i

n_SS_i

MOSI_i

MISO_i

CU

sys_clk

sys_clk

sys_clk

sys_clk

sys_clk sys_clk

sys_clk

n_reset n_reset

n_reset

n_resetn_reset

n_reset

dvld read done dvld read done

dvld read done

dvld read donedvld read done

dvld read done

3

sys_clk

addr
inst

wdata
rdata

INTERRUPT

2kbit Reg File

2kbit Reg File

2kbit Reg File

2kbit Reg File2kbit Reg File

LVDS
IO

IO

IO

LVDS
IO

 LVDS
IO

LVDS
IO

IO

VDD

VSS

Vbb

Vfb

NB/BD
core

NB/BD
core

NB/BD
core

NB/BD
core

NB/BD
core

NB/BD
core

SPI

Figure 3.4: System architecture of the ASIC cluster chip

3.6.2. ASIC Fabrication and Running Cost

Estimating the cost of fabricating and running an ASIC cluster can be chal-
lenging as many parameters are confidential to the fabs. In order to estimate
the costs of the attacks considered, we developed a methodology based on the
information available publicly. We considered the FD-SOI 28nm technology
from ST-Microelectronics. For small scale academic projects, the price of a
small batch of up to 100 die, the fabrication cost in US $ can be estimated by:

p100 =

125400 + (A− 12) ∗ 7700, if A > 12mm2

20900 + (A− 2) ∗ 9900, if 2mm2 ≤ A ≤ 12mm2

3.6. Chip Design

3

55

where A is the die area in mm2 and p100 is the price of the first 100 die in
US Dollars (USD). For small scale projects with more than 100 die, the price
for a lot of 100 extra die is between 21,120 and 38,500 USD depending on
the die area and the number of reticules in a wafer. MPW runs uses Multi
Layer Reticule technic to reduce the overall cost of the mask and additional
dies. For our purposes, we consider a small scale project to be a project with
at most 25 wafers [75] . For large scale projects, a market study published
at the FDSOI Forum in 2018 showed that the die manufacturing cost per 40
mm2 is 0.9 USD for the 28nm technology [76]. Hence, our methodology for
estimating the costs consists of the three parts we explained. In reality, a
more accurate methodology is probably available for the fabs to fill in the
gaps. However, we believe that the overall cost will be in the same range.

On top of the fabrication cost, we need to consider the running cost of the
ASIC cluster, which includes the energy consumption and cooling. We have
performed post-layout extraction and simulation in order to estimate the
power consumption of the different chips. In order to simplify the cost anal-
ysis, we use a figure of 18 cents/KWh, which is higher than the electricity
consumption price in most countries [77]. Hence, we only consider the en-
ergy consumption of the chips and not the cooling cost or other factors that
will be added after fabrication. The performances and power result are pro-
vided in Table 3.1.

Early studies [78] demonstrated the effectiveness of body biasing in reduc-
ing leakage, improving performances, and worst case power consumption.
This is an interesting feature for high performance computing, and practical
cryptanalysis. Indeed this feature allows to get the best possible performance
at given desired energy point. For a single targeted attack, the energy cost is
not the critical factor in the overall attack cost. However it has a direct impact
on the complexity of the cooling infrastructure when the attack complexity
gets high. Moreover, for multiple attacks scenario, the energy becomes a crit-
ical factor.

The STMicroelectronics CMOS FD-SOI 28nm technology has been chosen
for our simulations for its very good power × performance × cost product ca-
pability compared to the its earlier predecessors CMOS 40nm and 65nm, its
availability in our testing environment and the availability of enough pub-
lic information regarding its pricing. The ASIC chip in Figure 3.4 is com-
posed of slave cores, which can either be birthday or neutral-bit slaves. Our
digital design flow is shown in below Figure 3.5. Each slave has been syn-
thesized with a top-down strategy using cadence RTL-compiler v14.8, while
placement and routing were done using Cadence Innovus. A Power-Aware
Synthesis and Placement-And-Routing are used. Power simulations are per-

3

56 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

formed with the pre- and post-placement and routing back-annotated netlist
using Cadence Voltus. The slave is then imported as hard macro in Cadence
Virtuoso and instantiated from the top-level RTL. The slave and the interface
are then placed and routed in Virtuoso GXL.

Modelsim/irun

Cadence RC

Cadence Innovus

Voltus/Tempus

Virtuoso GXL

Mentor Calibre DRV

Mentor CalibreDRV

RVT .lib

LVT .lib

PowerGrid lib

RVT/LVT .db

C
M
O
S
F
D
S
O
I
28
n
m

S
ta
n
d
ar
d
C
el
l
L
ib
ra
ry

.v.vcd

.v

.spef
.gds

.db

.gds

Reports

Reports

IO ring libs .gds

.gds

Reports

Static / Dynamic

.sv , .v

.gds

Constraints

.sdc

.sdc

Constraints

Power .wavef

Figure 3.5: Our Bottom-Up ASIC digital design flow

The power rail and clock tree are routed with large tracks from the closest
power supply and clock pins so as to reduce local voltage drop effect. The RC
parasitic extraction of the NB/BD core GDS and final layout is done using
Cadence QRC.

Mentor CalibreDRV is then used for the sign-off DRC and LVS checks. Our
design mixes both Regular-Vt (RVT) and Low-Vt (LVT) cells. LVT cells are
used without poly-biasing (PB0) for the critical path. RVT cells with poly-
biasing up to PB16 are used for the rest of the circuit in order to minimize
the leakage power.

Nominal process variation for both PMOS and NMOS for the pre/post-placement-
and-routing power simulations with 0.92V supply voltage at 25 degree Cel-
cius are used as parameter for the high performance version of our design.
The circuit is first synthesized to reach the maximal operating frequency.

Our high speed version reaches 909MHz with Vf bb=0V and 1262MHz with
Vf bb=+2V. LVT cells have then been chosen for the critical path of the NB/BD
core. The rest of the circuit have been synthesized with RVT cells so that
to balance the performance and power consumption. Each slave is isolated

3.7. Chip layout

3

57

using triple-well isolation to reduce parasitic substrate noise between the
slaves that reduces the overall performances. Power simulations show that
our 16mm2 die requires 140 power supply pins and a plastic-ceramic pack-
age to dissipate the power. The effect of body biasing on power and delay
after place and route is simulated using Cadence Genus and Voltus. Parasitic
extraction with QRC is done with typical parameters. The performances and
power result are provided in Table 3.1.

3.7. Chip layout

Figure 3.6: NB Slave ASIC CMOS 28nm FD-
SOI layout.

Processor
 B

Processor
 A

Locate_Coll

Figure 3.7: Layout Birthday core.

Figure 3.8: Sample 1mm2. ASIC layout with 1
NB core.

Figure 3.9: Sample 1mm2 ASIC layout with 12
BD core.

3

58 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

3.8. Verification
In order to verify the functionality of the ASIC implementation of the neutral
bit algorithm, we have implemented it also in software and we have checked
that the outputs and the intermediate values from the two implementations
match. This process is described in more detail next.

In Algorithm 1, we give a description of the neutral bit search algorithm in
pseudo-code as implemented in software. It follows the high-level descrip-
tion given in Section 3.2. In more detail, all neutral bits are provided as an
input to the algorithm in the form of 512-bit masks. Each mask selects one or
more bits from the original 16 byte message, resulting resp. in a single neu-
tral bit or a set of neutral bits (multibits). Note that the latter also include the
boomerangs.

The set of all neutral bit (NB) masks is partitioned in nk subsets, such that
all NB from the nk-th subset are neutral up to step k inclusive. Such order
allows to apply the neutral bits recursively in a breadth-first manner from nk
to nk+1. If a neutral (multi)bit from subset nk fails (i.e. results in a message
that does not follow the differential path), then the search does not explore
any neutral bits from subset nk+1 for the particular failing combination at nk .
In this way failing branches of the search tree (Fig. 3.1) are abandoned early
during the search.

An equivalent implementation as the one described above was developed also
in hardware. The verification of the equivalence of the two implementations
was performed as follows. The execution of the software program is stored
in the form of a trace containing the following information: step k, neutral
bit maskmk from subset nk applied at step k and a list of all differential pairs
of modified internal states (Ai ,A′i) at steps i = k,k + 1, . . . , k′ , where step k′ is
the step at which the pair of internal states (Ak′ ,A′k′) has failed to follow the
differential path. The hardware implementation takes as input the trace pro-
duced by the software together with a list of all neutral bit masks and verifies
that the values of all internal state pairs (Ak ,A′k) match the ones produced by
the hardware and fail at the same step k′ given in the software trace.

3.8. Verification

3

59

3.8.1. Results

Two different architectures of SHA-1 crackers are compared here. The first
architecture is based on 2 separate ASIC slaves that handle the two parts
of the attack, i.e., the birthday search (BD) and the neutral bits part (NB).
The two phases are performed sequentially. Figure 3.10 depicts the overall
cost required to build the machine and find the first chosen-prefix collision
depending on the time ratio between the two phases. For ASIC, the overall

Algorithm 1 Apply neutral bits.

Input: —
i: Message step i ≥ 13 (correspond to internal state step i + 1)
P : Path (composed of internal state A and expanded message W)
Si: Base solution with fully instantiated first 16 message words W0, . . . ,W15

and following path P up to and including message step i ≥ 13
Nk[0 . . . nk − 1]: an array of nk 512-bit masks. Each mask is a single bit or a
multibit neutral bit (NBit) combination that is neutral up to and including message
step k : 13 ≤ k ≤ 18. (Note: a multibit is a collection of several bits that
have to be flipped together)

Output: —
Sj : Base solution following path P up to and including message step j > i

1: apply neutral multibits(i, Si, P)
2: // If no more NBits to assign, keep computing step by step until solution fails P
3: if i > 18 then
4: while Si follows P up to step i inclusive do
5: compute Si+1

6: i← i + 1
7: end while
8: return Si−1

9: end if
10: // Get the original 16 message words to be modified by the NBbits
11: (W0||W1||...||W15)← Si

12: // For all 2ni combinations of (multi)bits neutral up to step i inclusive
13: for all l = 0, 1 . . . , (2ni − 1) combinations of NBits up to message step i do
14: // Apply the l-th combination of NBits up to step i by XOR-ing all masks
15: // that compose it to the initial 16 message words
16: for all (Ni[q] : 0 ≤ q < ni) that belong to combination l do
17: (W0||W1||...||W15)← Ni[q]⊕ (W0||W1||...||W15)
18: end for
19: // Store the modified 16 message words back to the solution
20: Si ← (W0||W1||...||W15)
21: // Neutral bit probability
22: if Si follows P up to message step i inclusive then
23: // Compute next message step and call recursively the function
24: compute Si+1

25: // Differential step probability
26: if Si+1 follows P up to message step i + 1 inclusive then
27: apply neutral multibits(i + 1, Si+1, P)
28: end if
29: end if
30: end for

3

60 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

Figure 3.10: Impact of the BD/NB time ratio on the cost

Figure 3.11: Impact of the die size and latency on the HW cost (4 to 100 mm2 28nm FD-SOI). The top
left line in blue represents 4 mm2 and the bottom left is 100 mm2.

minimum cost is not perfectly at 50% ratio. Hence, we consider a two-stage
pipeline architecture at the cost of slightly more hardware to balance the
birthday and neutral-bit parts.

Our birthday (BD) core uses 16927.1 gate equivalents (GEs) per SHA-1 rounds.,
while our neutral-bit core (NB) uses 170442.7 GEs. Our best implementation
is a 4-round SHA-1 unrolled compression function that can be clocked at 900
MHz at Vcore=0.92V and Vf bb=0V. Using body biasing and LVT transistors
for the critical path, we can further decrease the threshold voltage and in-
crease the running frequency. With Vf bb=+2.0V we can increase the running
frequency of our fastest core by 40%, reaching 1262 MHz with a 2% increase
in dissipated power. The chip can be further over-clocked by increasing Vcore
but at the cost of a quadratic increase in the dissipated power, so a more
costly cooling system. The results of our implementations are shown in Ta-
ble 3.1. As shown in Figure 3.8 , a BD slave contains up to ∼ 15 BD cores per

3.8. Verification

3

61

mm2 while an NB slave contains ∼ 1.5 NB cores per mm2.

Version
900 MHz 1262 MHz

Vf bb=0V Vf bb=+2V

BD NB BD NB

Power (in mW) 71.1 289 72.6 294

CP delay (in ps) 1110 1110 792 792

Area (in mm2) 0.0650 0.6545 0.0650 0.6545

Table 3.1: ASIC implementation performances for 2 corners cases : high performance at 900 MHz and
high performance with FBB at 1262 MHz.

In our study, the overall cost is calculated without the cooling and infrastruc-
ture. Note that as shown in Figure 3.11, the total cost required to build an
ASIC-based cracker greatly depends on the die size. This is due to the fact
that the initial cost is predominant when the die size is large. The overall
hardware cost tends to the same for any die size when the attack is fast.

3.8.2. Attack Rates and Execution Time

As shown in Table 3.2, a single NB slave of 16mm2 contains up to 24 NB
cores and can generate up to 976 solutions up to step 40 of SHA-1 per second.
Each solution A40 requires 31 Million cycles, on average. A single BD slave
of 16mm2 contains up to 245 BD cores and provides a hash rate of 20.6 GH/s
for the fastest version of our design. As a comparison, as shown in Table 3.3
and taken from [68], a single GTX 1060 GPU provides a hash rate of 4.0GH/s
and can generate 2000 A40 solutions per second. If we take the birthday part
of the attack as a reference, the neutral bit part is ten time less efficient in
hardware than on GPU.

The second architecture is based on GPU. For GPU, it is cost-wise more inter-
esting to take advantage of its reconfigurability to minimize the cost. Hence,
we consider in our cost analysis that the chosen-prefix collision is performed
serially by reusing the same GPU for the two attack phases. In Table 3.4, the
cost of the three attack scenarios is provided. We give in this table the cost
to build the ASIC- and GPU-based clusters for 3 different speeds, i.e., one
attack per month, one attack per day and one attack per minute. The latency
corresponds to the delay to get the first collision. For instance, a two-stage
ASIC-based machine able to generate one SHA-1 collision every months, will
generate the first collision in two months. A GPU-based machine generates

3

62 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

Parameter 900 MHz 1262 MHz

SHA-1/core/sec 225.8 226.3

SHA-1/core/month 247.1 247.6

SHA-1/chip/month 255.1 255.6

A40 Solutions/core/sec 24.9 25.3

A40 Solutions/core/month 226.1 226.7

A40 Solutions/chip/month 230.8 231.2

Table 3.2: Our best 16mm2 ASIC implementation performances for 2 corners

GPU arch Hash Rate A33 rate A40 rate Price Power Rental

GTX 750 Ti Maxwell 0.9GH/s 62k/s 250/s $144 60W

GTX 1060 Pascal 4.0GH/s 470k/s 2k/s $300 120W $35/month

GTX 1080 Ti Pascal 12.8GH/s 1500k/s 6.2k/s $1300 250W

Table 3.3: SHA-1 hash rate from hashcat for various GPU models, as well as measured rate of solutions
at step 33 (A33-solutions). Data taken from [68].

the first collision in one month for the same attack rate. Our ASIC-based two
stage pipelined architecture has twice the latency of a sequential GPU-based
machine for the same attack rate. Our benchmark (Figures 3.20 and 3.21)
provides a comparison between our ASIC cluster and two of the most widely
spread GPU based machines, i.e., the GTX 1080TI (CMOS 14nm) and the
GTX 1060 (CMOS 16nm) for different attack rates. The numbers for the GTX
750 TI (CMOS 28nm technology) are also added to the benchmark as it pro-
vides an idea of the performance obtained with a GPU based on a similar
technology node as our ASIC.

Note on the use of FPGAs Our ASIC design have been tested on FPGA
platform. FPGA can be considered as a good alternative to ASIC thanks to
its reconfigurability property. However, one of the largest FPGAs from Xil-
inx, namely the Virtex 7 xc7vx330t-3ffg1157 can fit only 20 instances of the
Birthday core running at 135MHz in one chip. The same FPGA can fit only
16 instances of the Neutral Bit core running at 133MHz. In order to do the

3.8. Verification

3

63

Platform ASIC GPU rent GPU buy

Attack 64 CPC 80 64 CPC 80 64 CPC 80

Energy Cost $776 $1.6k $50.9M - - - $18k $12k $1.2B

Cluster for 1 attack per month

Latency (month) 1 2 1 1 1 1 1 1 1

Hardware Cost $257k $1.1M $11M - - - $715k $490k $47B

First Attack Cost $257k $1.1M $61.9M $61k $43k $4B $733k $502k $48B

Amortized Cost $7.9k $32.1k$51.2M $61k $43k $4B $38k $26k $2.5B

Cluster for 1 attack per day

Latency (day) 1 2 1 1 1 1 1 1 1

Hardware Cost $1.4M $3.7M $218M - - - $22M $15M $1.4T

First Attack Cost $1.4M $3.7M $269M $61k $43k $4B $22M $15M $1.4T

Amortized Cost $2k $5k $51.1M $61k $43k $4B $38k $26k $2.5B

Cluster for 1 attack per minute

Latency (minute) 1 2 1 1 1 1 1 1 1

Hardware Cost $8.5M $48M $263B - - - $31B $21B $2Q

First Attack Cost $8.5M $48M $263B $61k $43k $4B $31B $21B $2Q

Amortized Cost $781 $1.6k $51M $61k $43k $4B $38k $26k $2.5B

Table 3.4: Comparison of attack costs with various parameters. Costs are given in USD (k stands for
thousand, M for Million, B for Billion, T for Trillion, Q for Quadrillion). Amortized cost is the cost per
attack assuming that the hardware is used continuously during three years. Note that it is possible to get
slightly more energy efficient platforms and implementations at the cost of more expensive hardware.
We list the cheapest platform after one attack, energy included.

264 generic birthday search, we need 236.6 FPGA-seconds, i.e., in order to do
it in one month we need 215.3 FPGAs. As a single FPGA costs around 8000
USD, this attack would cost around 319 Million USD. This is more than one
thousand times the cost of the same attack on ASIC and 440 times the cost on
GPU, making it irrelevant for the purpose of analyzing SHA-1. Even if FPGAs
can be rented, a similar factor is expected compared to renting GPUs.

3

64 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

3.9. Cost Analysis and Comparisons

As explained throughout the paper, we have performed several experiments
to identify the different implementation trade-offs for the attack scenarios we
consider. In this section, we analyze the cost estimates of implementing these
attacks in ASIC vs. consumer GPU. We consider three attack scenarios that
fall into two categories: generic birthday attacks and differential cryptanal-
ysis of SHA-1. Before discussing the analysis in more details, here are a few
general conclusions that we reached through our experiments, which can be
helpful for building future hardware crackers:

1. The cost of implementing memoryless generic attacks, such as the par-
allel collision search of [18], in hardware can range from 20% to 50%
of the overall ASIC implementation, while the rest is dedicated to the
attacked primitive, e.g. the SHA-1 hash function.

2. For iterative cryptographic algorithms, such as hash functions and block
ciphers, a way to reduce the attack cost is to use unrolling. This ap-
proach is similar to using memoryless algorithms. Instead of comput-
ing one step of the function every clock cycle, we compute several steps
in the same cycle. This amortizes the costs of the attack logic among
several steps. For example, implementing the birthday attack using a
single-step iterative SHA-1 core leads to a circuits where only 20% of the
area is used by the SHA-1 logic and 80% of the area is due to the attack
logic, registers and comparisons. On the other hand, using a core that
computes 4 steps every clock cycles leads to a circuit with a 50%/50%
ratio. While this technique may increase the critical path of the circuit
and reduce the frequency, it also reduces the overall number of cycles, so
the overall time to compute a single SHA-1 per core is almost constant.

3. For cryptanalytic attacks, the cost is dominated by the attack logic, which
may include a huge number of comparisons, modifications and reg-
isters. These extra operations are usually different from one step to
another, so they consume a huge area. Besides, the state machine of
these attacks can be very costly. In such scenarios, the advantage of
using ASICs becomes diminished compared to consumer GPUs, except
for very high budgets, especially as the GPUs are reusable and can be
rented.

3.9.1. 264
Birthday Attack

The first attack scenario we consider is attacking a hash function with 264

birthday collision complexity. The hash function used is the SHA-1 compres-

3.9. Cost Analysis and Comparisons

3

65

sion function reduced to only 128 output bits, as explained in Section 3.2. A
single ASIC core is described in Section 3.3. The time to finish such an attack
depends on the number of chips fabricated and the size of each chip. A sin-
gle ASIC core running at 1262 MHz contributes 226.33 SHA-1 computations
per second. The attack costs 237.67 core-seconds. To reach this complexity,
Figure 3.11 shows the price required vs. the estimated time needed to finish
the attack, including the fabrication cost of chips of different sizes and the
energy consumption.

To put these numbers into perspective, the NVIDIA GeForce GTX 1080 TI
GPU (14nm technology) can do about 233.6 SHA-1 computations per second,
so implementing the attack on GPU would require 230.4 GPU-seconds. In
order to implement this attack in one month, we need to buy around 550
GPUs costing around 715k USD and around 18k USD in energy. As shown
in Figure 3.12, a GTX 1060-based machine is a bit less expensive, costing
525k USD but consuming around 28k in energy for the same job (using 1750
GPUs).

Besides, as shown in Figure 3.12, for any attack rate it is cheaper to buy an
ASIC cluster than a GPU-based cluster. The difference reaches 1 order of
magnitude from a rate of 1 attack per week. Furthermore, the ASIC-based
cluster consumes 1 to 2 order of magnitude less energy than any GPU-based
solution. As shown in Table 3.4, the minimum cost in energy per attack
on ASIC is as low as 776 USD. An ASIC-based cracker able to generate one
collision per month would cost 257k USD. For an attack rate of 1 attack per
minute, it would cost 8.5 million USD.

An alternative option is to rent the GPUs. This would cost around $61k per
attack, assuming a rental price of $209/month for a machine with 6 GTX
1060 GPUs. This makes the GPU rental very competitive for a single attack,
around 4 times cheaper than an ASIC cluster. However, the ASIC cluster
quickly become much more cost effective when the attack is repeated (see
Figure 3.14).

3

66 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

3

4

5

6

7

8

9

10

11

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.12: 264 BD machine price for differ-
ent attack rates: ASIC vs GPU

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

2.5

3.0

3.5

4.0

4.5

5.0

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.13: Energy cost per 264 BD attack:
ASIC vs GPU

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

4

5

6

7

8

9

10

11

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.14: Total cost (HW+E) for 100 264 BD
attack at a given attack rate: ASIC vs GPU

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]
GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.15: Total cost (HW+E) for 100k 264

BD attack at a given attack rate: ASIC vs GPU

3.9.2. 280
Birthday Attack

In this section, we look at the cost of implementing a generic birthday colli-
sion search for the full SHA-1 output, which requires around 280 SHA-1 com-
putations. The algorithm is the same as the previous attack, except that we
use the full output of the SHA-1 compression function. Since a single ASIC
core performs 226.33 SHA-1 computations per second, the birthday collision
search costs 253.67 core-seconds, or around 454 million years on a single core.
Fortunately, for a powerful attacker with enough money, the cost for produc-
ing ASICs grows slowly for large number of chips. The fabrication cost of a
hardware cluster to perform the attack in one month costs only 11 million
USD, as opposed to around 34 billion USD for GTX 1060. Hence in this case,
for any attack rate as shown in Graphs 3.18 and 3.19 the only realistic option
is to build an ASIC cluster.

Running the attack costs around 50.9 million USD in energy, which matches

3.9. Cost Analysis and Comparisons

3

67

the order of magnitude estimated from the bitcoin network: the network
currently computes about 270.2 SHA-256 every ten minutes, for a reward of
12.5 bitcoin, or roughly $85k at the time of writing. This would price a 280

computation at 75 million USD.

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

6

8

10

12

14

16

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Figure 3.16: 280 BD machine price for differ-
ent attack rates: ASIC vs GPU

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

7.5

8.0

8.5

9.0

9.5

10.0

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.17: Energy cost per 280 BD attack:
ASIC vs GPU

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

9

10

11

12

13

14

15

16

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Figure 3.18: Total cost (HW+E) for 100 280 BD
attack at a given attack rate: ASIC vs GPU

5 10 15 20 25 30

Attack rate in Collisions per 2**(#) seconds

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Figure 3.19: Total cost (HW+E) for 100k 280

attack at a given attack rate: ASIC vs GPU

3.9.3. Chosen Prefix Differential Collision Attack

The chosen-prefix collision attack proposed by Leurent and Peyrin [68] con-
sists of two main parts: a birthday search attack, and a differential collision
attack. The authors provide different trade-offs between the complexity of
the two parts. In their paper, the number of solutions required for the neu-
tral bits up to step 33 is provided. This number of solutions corresponds to
the number of solutions required to get a valid solution with high probability.
Step 33 is chosen because there is a zero difference at this state, so there is a
single path at this step, and solutions are generated fast enough to measure
the rate easily. This configuration requires to generate about 262.05 SHA-1

3

68 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

computations for the birthday part and 249.78 solutions up to step 33. In this
paper, it is cost-wise more interesting for ASIC to generate solutions for the
neutral bits up to step A40.There is a factor 27.91 difference in the number of
solutions to generate between step A33 and step A40. Hence a chosen-prefix
collision requires to generate 241.87 solutions. Table 3.3 provides the hash
rates and solution rates numbers used in our estimate for the cost on GPU.
This gives 38 GPU-years for the birthday, and 65 years for the neutral bits.
The estimated cost per attack using GTX 1060 GPU, assuming 209 USD per
month for 6 GPU is about 43k USD. The cost of running the attack in GPU is
dominated by the energy consumption. ASIC is much more energy efficient,
as shown in Figure 3.21. It can be up to 2 order of magnitude less than using
common consumer GPU. As shown in Figure 3.20, ASIC-based SHA-1 cracker
that generate one collision per month, costs about 1.1 million USD, about the
same as the cheapest GPU-based cracker from our benchmark. However, a
single attack on GPU costs about 19000 USD in energy. Hence from 100 at-
tacks as shown in Figure 3.22 and 3.23 as well as for attack rates greater than
1 attack per week, an ASIC-based SHA-1 cracker is the only realistic option.

5 10 15 20 25 30

Attack rate in CPC per 2**(#) seconds

3

4

5

6

7

8

9

10

11

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.20: CPC machine price for different
attack rates: ASIC vs GPU

5 10 15 20 25 30

Attack rate in CPC per 2**(#) seconds

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.21: Energy cost per CPC attack: ASIC
vs GPU

3.10. Conclusion

3

69

5 10 15 20 25 30

Attack rate in CPC per 2**(#) seconds

5

6

7

8

9

10

11

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Figure 3.22: Total cost (HW+E) for 100 CPC
attack at a given attack rate: ASIC vs GPU

5 10 15 20 25 30

Attack rate in CPC per 2**(#) seconds

8.0

8.5

9.0

9.5

10.0

10.5

11.0

LO
G

1
0

[P
ri

ce
 i
n
 U

S
D

]

GTX 1080TI 14nm GPU buy

GTX 1060 16nm GPU buy

GTX 750TI 28nm GPU buy

GTX 1080TI 14nm GPU rent

GTX 1060 16nm GPU rent

Our 28nm ASIC @909MHz Vcore 0.9V

Our 28nm ASIC @1262MHz FBB=+2V

Figure 3.23: Total cost (HW+E) for 100k CPC
attack at a given attack rate: ASIC vs GPU

3.9.4. Limitations

While we did our best to estimate the price of the attacks as accurately as pos-
sible, our figures should only be considered as orders of magnitude because
the pricing of hardware and energy can vary significantly. ASIC pricing is
not completely public, and energy prices depend on the country. Moreover,
our estimate only include hardware cost and energy, neglecting other oper-
ating costs such as cooling and servers to control the cluster (however, the
energy price we use is somewhat high, so it can be considered as including
some operating costs).

Another caveat is that we only consider the computation part of the attacks.
In reality, there is some need for communication between the nodes, and
some steps of the attacks must be done sequentially. Concretely, the generic
birthday attacks must sort the data after computing all the chains, and the
CPC attack must compute several near-collision blocks sequentially. This
will likely add some latency to the computation, and running the attack in
one minute will be be a huge challenge, even when the required computa-
tional power is available.

3.10. Conclusion
Our paper provides a precise comparison between ASIC-based and GPU-
based solutions for cryptanalysis, with a case study on generic birthday search
and a case study on the recent chosen-prefix collision on SHA-1. For the for-
mer, we show that generic birthday attacks can be performed very easily with
ASICs against a 128-bit hash function, and that even a 160-bit hash function
would not stand against a huge, yet potentially affordable, ASIC cluster. For

3

70 3. On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study

the latter, we created two independent ASICs that handle the two parts sep-
arately. Our comparisons with GPU-based solutions show a clear advantage
of ASIC-based solutions. In particular, we remark that the chosen-prefix col-
lisions for SHA-1 can be generated in under a minute, with an ASIC cluster
that costs a few dozen Millions dollars. Such ability would allow an attacker
to apply the SLOTH attack [69] on TLS or SSH connections using SHA-1.

In the introduction, we posed three research questions; the first question is
related to the cost of attacks on SHA-1. Our study showed that ASIC is clearly
the best choice for very high complexities attacks, or for attacks that need
to be performed in a short amount of time. However, for proof-of- concept
or cryptographic research in general, where complexities of 264 or less can
be computed in a month or so, renting a set of GPUs seems to be the best
solution. If the attack needs to be repeated multiple times, or if the speed
of the attack is critical, then the initial hardware cost might be amortized
and the energy cost per attack might become important. We note that the
energy cost will be very high on GPU compared to a dedicated ASIC solution.
For a chosen-prefix collision on SHA-1, the energy cost per attack for our
speed-optimized ASIC is 1.6k USD. The best GPU based solution from our
benchmarks consumes about 12k USD per attack. Hence, the cost of the
ASIC-based solution is amortized. Furthermore, when the CPC attack rate
becomes higher than 100 attacks per month, the ASIC solution is cheaper
than any GPU-based solution in our benchmarks. In this case, the cost of the
GPU rent is prohibitive and the ASIC is the only realistic threat.

In the second question, we target the comparison between generic attacks
and cryptanalytic attacks for similar theoretical level of numeric complexity.
In our study, we show that for a similar level of ∼ 264 computations, it is
∼ 75 ∼ 82% cheaper to implement a generic birthday search, compared to
the differential CPC attack on SHA-1. This means that for these two attacks,
the generic attack has an advantage of 5×. We need to study more cases, such
as the biclique attacks on block ciphers compared to the generic brute force
attacks.

Last but not least, the third question is whether the 80-bit security level is
still adequate for practical use in less demanding applications. Our study is
a warning, showing that not only SHA-1 is indeed practically fully broken,
but also that search-based and memory-less generic attacks with complexity
≤ 280 are within practical reach.

III
Passive Side-Channel

Attacks on implementations

71

3

73

This section focuses on the second constraint considered in Figure 1.1, which
is the resistance of cryptographic algorithms against side-channel attacks.
Side-channel attacks are a type of attack that exploits information leaked by
a cryptographic system during its computation, such as power consumption
or electromagnetic radiation.

Resisting side-channel attacks is a critical consideration in cryptographic sys-
tem design, particularly for applications that require high levels of security.
This is because side-channel attacks can reveal sensitive information about
the cryptographic key or plaintext, even if the cipher itself is considered se-
cure.

There are several techniques that can be used to enhance the resistance of
cryptographic algorithms against side-channel attacks, including masking,
hiding, and shuffling. These techniques involve adding noise or randomness
to the computation process, in order to make it more difficult for an attacker
to extract sensitive information.

In addition to these techniques, the choice of hardware and software imple-
mentation can also impact the resistance of cryptographic algorithms against
side-channel attacks. For example, using specialized hardware or imple-
menting the algorithm in a way that minimizes power consumption can help
reduce the information leakage that can be exploited by an attacker.

Overall, the resistance of cryptographic algorithms against side-channel at-
tacks is a critical aspect of cryptographic system design, and requires careful
consideration and evaluation to ensure that the resulting system is secure
against a wide range of potential attack vectors.

4
On Comparing Side-channel

Properties of AES and
ChaCha20 on

Microcontrollers

Side-channel attacks are a real threat to many secure systems. In this pa-
per, we consider two ciphers used in the automotive industry – AES and
ChaCha20 and we evaluate their resistance against side-channel attacks. In
particular, the focus is laid upon the main non-linear component in these
ciphers. Owing to the design of ChaCha20, it offers natural timing side-
channel resistance and thus is suitable for affected applications. However,
attacks exploiting the power side-channel are somewhat more difficult on
ChaCha20 as compared to AES, but the overhead to protect ChaCha20 against
such attack is considerably higher.

4.1. Introduction
The automotive industry has seen a major digital transformation in recent
years. Nowadays, electronics can make up to 60-70% of a car’s development
cost and consequently, many electronic control units (ECUs) communicate
with each other or to external units, to monitor and manage tasks of various
criticality. Any manipulation of the communicated data can have a direct ef-

75

4

76
4. On Comparing Side-channel Properties of AES and ChaCha20 on

Microcontrollers

fect on the functional safety of the vehicle and thus, can lead to serious con-
sequences. To protect against such threats, suites of standard cryptographic
algorithms are used to ensure the integrity of the data.

For securing the data, standards for symmetric encryption like AES [79] and
ChaCha20 [80] are used in the automotive industry. While many lightweight
ciphers have been developed in recent years, only AES and ChaCha20 are
usually used in automotive application. One of many threats for automotive
applications are side-channel attacks (SCA [81]), which target implementa-
tions of cryptographic algorithms and lead to key recovery in negligible com-
putation time. While AES is a standard for the last two decades, ChaCha20
is seeing a rapid adoption due to its software-friendly design and natural
resistance to timing side-channel attacks.

AES uses a substitution box (S-box) as the only nonlinear component, which
can be either pre-computed or calculated on the fly which involves the inver-
sion in the Galois field GF(28). ChaCha20 uses a modular addition instead,
which is natively supported on a wide range of general purpose microcon-
trollers. Since SCA primarily targets the nonlinear component, these two
operations become the focus of our study. To perform a detailed analysis,
we use profiled machine learning attacks and non-profiled correlation power
analysis, some of the most commonly used SCA techniques.

When considering countermeasures, it is also the nonlinear operation which
is expensive to implement protected against side-channel attacks, unlike other
linear components of the cipher. Thus, we also study and compare the cost
of protecting these two basic functions (S-box and modular addition) against
SCA. Other physical attacks like fault attacks and hardware Trojan are con-
sidered out of scope due to different attack model and modus operandi.

The rest of the paper is organized as follow. Section 7.2 recalls basics of target
algorithms and side-channel attacks. Section 4.3 compares the susceptibility
of the AES S-box and the modular addition to profiled machine learning-
based attacks and non-profiled correlation power analysis. In this paper, we
use simulated measurements for the analysis. Section 4.4 analyzes the two
nonlinear operation in terms of the side-channel protected implementation
overhead. Finally, conclusions are drawn in Section 13.7.

4.2. Background

4.2.1. Target Algorithms

4.2. Background

4

77

AES [79]

The Advanced Encryption Standard (AES) is the NIST standard for block
ciphers [82]. AES follows the Substitution Permutation Network (SPN) con-
struction and operates on 128 bit data blocks with a 128/192/256 bit secret
key in 10/12/14 rounds [79]. Four distinct operations comprise a round, i.e.,
SubBytes (SB), ShiftRows (SR), MixColumns (MC), and AddRoundKeys. The
operations are applied on the 128-bit data state that is organized as a 4 × 4
matrix of bytes. SubBytes is a non-linear permutation on individual bytes.
ShiftRows and MixColumns are linear permutations of the state and Ad-
dRoundKeys performs exclusive-or (XOR) between round keys and the data
state. A key expansion algorithm is used to derive round keys from the
master key. All rounds are identical except the last one, which skips Mix-
Columns. The SubBytes operation is based on the computation of the inverse
of an element of GF(28), followed by an affine transformation. Often, the
computation is performed using a precomputed table. The implementation
of an S-box is not easy and often represents the main source of a large time
or memory footprint. Hardware support for AES is currently available in a
large range of processors from vendors like Intel, AMD, or ARM. With the
built-in support, recent applications have seen significant performance im-
provements.

ChaCha20 [80]

The ChaCha20 stream cipher is a part of ChaCha20-Poly1305 Authenticated
Encryption with Associated Data (AEAD) suite. It follows the ARX construc-
tion, i.e., it is based only on addition, rotation, and XOR. Its design is opti-
mized for efficiency and is easily implemented as a time-constant software.
It produces a key stream with the internal state initialized using 4×32 bit con-
stant values c0, . . . , c3, an 8×32 bit width secret key k0, . . . , k7, 3×32 bit nonce
values n0,n1,n2, and a 32 bit message block counter value count. Then, the
complete state is copied, before the double-round function is called 10 times.
The plaintext is XORed with the key stream to get the ciphertext. The only
nonlinear function in ChaCha20 is the modular addition, which is very effi-
cient in both hardware and software. Being fairly new, currently no hardware
support is available, but ChaCha20 is anyhow adopted in many commonly
used cryptographic libraries.

4.2.2. Side-Channel Attacks and Metrics

4

78
4. On Comparing Side-channel Properties of AES and ChaCha20 on

Microcontrollers

Profiled Side Channel Attacks

Profiled SCA assumes a strong attacker who has access to a clone device al-
lowing detailed characterization of the leakage. While earlier proposals used
template attacks [83], machine learning classifiers were shown to outperform
template attacks in certain scenarios [84].

Random Forest (RF) is a well-known ensemble decision tree learner [85].
Decision trees choose their splitting attributes from a random subset of k
attributes at each internal node. The best split is taken among these ran-
domly chosen attributes and the trees are built without pruning, RF is a
parametric algorithm with respect to the number of trees in the forest. Ran-
dom Forest is a stochastic algorithm because of its two sources of random-
ness: bootstrap sampling and attribute selection at node splitting. Learn-
ing time complexity for RF is approximately O

(
I · k · NlogN

)
. We use I =

[10,50,100,200,500,1000] trees in the tuning phase, with no limit to the tree
size. To evaluate the performance of RF, we use accuracy as the metric. Ac-
curacy is defined as:

ACC =
T P + TN

T P + TN +FP +FN
. (4.1)

Here, TP refers to true positive (correctly classified positive), TN to true neg-
ative (correctly classified negative), FP to false positive (falsely classified pos-
itive), and FN to false negative (falsely classified negative) instances.

We divide the traces into training and testing sets in a 2:1 ratio. On the
training set, we conduct a 5-fold cross-validation where we use the averaged
results of individual folds to select the best classifier parameters. We report
results from the testing phase only, as these results are more relevant than
the training set results in assessing the actual classification performance of
the constructed models. All the machine learning experiments are done with
the scikit-learn library [86] for Python.

Non-Profiled Side Channel Attacks

Non-profiled SCA assumes a weaker attacker who has no access to a clone
device, but can observe side-channel activity for known inputs or outputs.
Based on a leakage model (like the Hamming Weight or the Hamming Dis-
tance), the attacker can estimate the leakage based on key hypotheses. Next,
statistical means like correlation are used to find a dependency between the
observed leakage and the estimated leakage. The correlation maximizes for
the estimated leakage with correct key, thus revealing its value to the at-
tacker. We use the Pearson correlation coefficient as the statistical distin-

4.3. Side-channel Analysis of Target Algorithms

4

79

guisher. The divide and conquer approach allows to treat small parts of the
key (for example, one byte) at a time, making the complexity practical for
both profiled and non-profiled SCA.

Attack Metric

We use guessing entropy as the attack metric. The Guessing entropy mea-
sures the average number of key candidates to test after the attack. A guess-
ing entropy of 1 signifies a successful attack. The Guessing entropy of the
adversary AEk ,L against a key class variable S is defined as:

GEAEK ,L(τ,m,k∗) = E[ExpAEK ,L
].

4.3. Side-channel Analysis of Target Algorithms
In this section, we analyze and compare the side-channel susceptibility of
the basic nonlinear functions of AES and ChaCha20. To perform the worst
case analysis, we consider the strongest attacker with the profiling capability.
Further, we use a machine learning classifier for the attack as such techniques
have shown to perform better than template attacks in certain cases [84].

We consider a 32 bit microcontroller as our target as it is seeing rapid adop-
tion in automotive applications. The simulated device is considered to be
leaking in the perfect Hamming weight model with some added environmen-
tal (Gaussian) noise of standard deviation σ . Two levels of noise are tested. In
one experiment, the AES S-box is implemented as a lookup table in memory,
operating over 8-bits. Although the underlying architecture is 32 bit, due to
memory restrictions, an 8 bit lookup is normally used and thus, we consider
only S-box look-ups over 8 bit in our analysis.

For the case of the modular addition, our simulation is computed over 32
bits owing to the native support in the instruction set. An attack over 32 bits
might be sometimes slow on normal system. However, the attacker has the
freedom to observe it over any granularity from 1 bit to 32 bit. This is repre-
sented as (x/y/z) in Table 4.1. Here, x signifies the bit width of observation or
the side-channel signal, while the remaining of 32 bit (y = 32− x) contribute
to algorithmic noise. z = x+ 1 is the total number of classes in the attack.

Our results are shown in Table 4.1. With the low environmental noise and no
algorithmic noise, the attack accuracy is 100%. For other cases, the accuracy
reduces with increased noise and increased number of classes (z). In gen-
eral, modular addition is marginally harder to attack as compared to the AES

4

80
4. On Comparing Side-channel Properties of AES and ChaCha20 on

Microcontrollers

Table 4.1: Classification Accuracy (%)

Noise AES ChaCha20

σ (8/0/9) (4/28/5) (8/24/9) (16/16/17) (32/0/33)

0.1 100 30.19 23.02 20.04 100

1 34.01 29.50 22.43 18.78 29.58

Table 4.2: Guessing Entropy for RF

σ : 0.1

No of traces (2x)

1 2 3 4 5 6 7 8 9 10 11 12

S-box 5.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 4 10.0 6.7 6.3 3.0 2.0 2.0 1.7 2.0 1.0 1.0 1.0 1.0

Add 8 181.0 126.5 66.3 76.1 48.6 42.0 5.0 3.0 1.3 1.0 1.0 1.0

Add 16 21 075.8 12 505.3 23 298.3 11 935.6 809.7 37.3 103.0 4.3 3.0 1.0 1.0 1.0

Add 32 1 846.0 35.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

σ : 1

No of traces (2x)

1 2 3 4 5 6 7 8 9 10 11 12

S-box 84.0 20.1 10.3 8.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 4 11.0 6.7 6.7 12.0 5.6 7.0 8.0 2.0 1.3 1.0 1.0 1.0

Add 8 134.0 69.0 36.2 49.7 38.0 57.0 86.0 7.6 16.0 3.0 1.0 1.0

Add 16 33 926.0 23 171.3 32 294.7 14 162.7 4 512.0 11 324.3 688.3 11.0 1.0 1.0 1.0 1.0

Add 32 14 305.3 3 134.3 5 736.3 22.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

S-box, because of the higher nonlinearity of the latter. Note that the accu-
racy for scenario (32/0/33) has 100% accuracy when σ = 0.1, which is much
higher than for (16/16/17) case. Although this may sound counterintuitive,
since the number of classes is much higher in the first case, there is a simple
explanation of such a behavior. When the level of noise is small, there are
clear boundaries between classes and RF does not have any problems when
classifying. However, when we reduce the number of classes (granularity),
then we actually see an overlap among certain measurements since now they
can belong to several classes, which results in a wrong classification.

In addition to the accuracy metric, we use the guessing entropy as a metric
for the SCA evaluation. In the attack scenario, the attacker is more interested
in obtaining the correct secret key, rather than exact classification. The at-
tacker can easily calculate the maximum likelihood for each key candidate,
and derive the guessing entropy, i.e., the average rank of the correct key.

In Table 4.2, the guessing entropies for RF are presented. It shows that for

4.4. Towards Side-channel Protection

4

81

Table 4.3: Guessing Entropy for CPA

σ : 0.1

No of traces (2x)

1 2 3 4 5 6 7 8 9 10 11 12

S-box 155.0 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 4 5.7 10.0 15.0 10.3 5.6 2.3 1.0 1.0 1.0 1.0 1.0 1.0

Add 8 180.7 67.0 18.6 85.0 8.7 2.0 1.3 1.0 1.0 1.0 1.0 1.0

Add 16 40753.0 10 288.0 2 501.0 34.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 32 42 121.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

σ : 1

No of traces (2x)

1 2 3 4 5 6 7 8 9 10 11 12

S-box 184.4 56.7 35.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 4 13.0 12.0 7.3 3.6 6.4 2.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 8 226.0 104.0 71.1 9.7 9.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0

Add 16 40 644.0 4 819.0 15 098.0 1 349.0 112.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0

Add 32 43 313.0 1 840.0 114.0 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

σ = 0.1, with 210 traces, it is enough to recover the correct key, whereas for
σ = 1, it will require 211 traces. In general, it can be observed that even
though some of the labels are not predicted correctly, by taking the maximum
likelihood, it is still possible to recover the secret key.

When considering non-profiled SCA, the results are presented in Table 4.3.
The attack model here is quite different from the profiled attacks, thus a
direct comparison is not possible. However, it can be clearly seen that in
both cases, addition offers slightly higher resistance to SCA as compared to
the S-box.

4.4. Towards Side-channel Protection

4.4.1. Preventing Timing Side-channels

In most cases, timing side-channels can be prevented by removing data-
dependent branches and memory accesses. For ChaCha20, this is trivial,
because no operation in the algorithm uses operations that are susceptible
to such behavior [80].

However, a fast AES implementation uses lookup tables to implement either
the S-boxes or so-called T-tables. Such table lookups usually do not have a
constant time behavior, and thus, a naive AES implementation is vulnerable

4

82
4. On Comparing Side-channel Properties of AES and ChaCha20 on

Microcontrollers

to cache timing attacks [87]. Using bit-slicing, the data-dependent behavior
can be removed, but at the cost of a reduced performance. An alternative
countermeasure is to disable caches during the execution of AES, if possible.

Another possibility is to use hardware accelerators that many modern micro-
controllers implement. For AES, this results in a much faster, constant-time
computation. The downside is, that many AES accelerators are not resistant
to power side-channel attacks and therefore, a software implementation is
needed, if such a protection is required.

No modern microcontroller has a ChaCha20 accelerator so far and there-
fore, no fair comparison is possible. However, due to the construction of
ChaCha20 as an ARX cipher, we believe that at least for low-end and mid-
end processors, it is unlikely that accelerators will be developed. For high-
end processors the usage of already existing SIMD instructions can lead to
high speed ups.

When we look at our main target platforms, i.e., ARM, most of the time AES
and ChaCha20 perform with similar speed. However, if hardware accelera-
tion for AES is available, it becomes a significant advantage for AES.

4.4.2. Preventing Power Side-channels

Power side-channels are much harder to mitigate, because the overhead of
protected implementations is much higher than for the protection against
timing side-channels.

One of the most effective countermeasures against power analysis attacks is
masking. In software, many masking schemes of nonlinear gates are often
based on the Trichina gate [88] or optimized variants [89].

The common factor among all masking countermeasures is their high over-
head compared to implementations hardened against timing side-channels.
For our comparison, we outline the costs for masking ChaCha20 and AES.

For ARX ciphers such as ChaCha20, there are two possible approaches. First,
it is possible to mask the addition operation with low overhead with arith-
metic masking and apply Boolean masking to linear operation. The draw-
back of this approach is a costly conversion between the different types of
masks [90]. Second, a Boolean masking can be applied to all operations.
Then, instead of having an expensive mask conversion step, masking of the
addition itself becomes expensive [91]. Currently, the most efficient approach
for Cortex-M3/M4 ARM microcontrollers needs 78 instructions for one ad-
dition [92]. Therefore, it is necessary to spend at least 16 × 21 × 78 = 26208

4.5. Conclusions

4

83

instructions to mask all addition operations of ChaCha20.

For AES, Boolean masking is usually implemented in a very different way.
Schwabe et al. [93] proposed a bit-sliced approach to implement the Sub-
Bytes layer, which needs 688 instructions for each SubBytes layer. Since AES
has 10 rounds, we only need to spend 6880 instructions to implement the
SubBytes layer of AES. A similar bit-slicing optimization is less beneficial for
ChaCha20, because the operations used in the algorithm presented in [92] are
already working with 32 bit in parallel. Therefore, the hardware utilization
cannot be improved significantly by reorganizing the internal state.

Of course, we also need additional instructions for the linear operations of
both ciphers. However, With the exception of added loads and stores, the
amount of instructions only grows linearly with the protection order. There-
fore, AES seems to be much faster, when protections against power side-
channels are needed. Currently, the most efficient first-order protected im-
plementation of AES-128 and ChaCha20 known in the literature take 463.9 [93]
and 947.2 [92] clock cycles per byte, respectively, if long messages are pro-
cessed. However, for short messages, such as those typically transmitted over
the CAN bus, ChaCha20 is much worse than AES, since the minimum block
size is 512 bit, while AES processes only 128 bit blocks, hence a significant
slowdown is expected.

4.5. Conclusions
We compare the AES S-box and the modular addition used by ChaCha20, the
main nonlinear components of two cryptographic algorithms regarding their
side-channel vulnerability. While the addition operation is slightly harder to
attack as compared to the S-box, the overhead for protecting an addition is
much higher. Thus, if power side-channel attacks are not a concern, like in
remote applications, ChaCha20 may have some advantages over AES owing
to its software performance and natural resistance to timing attacks. How-
ever, if resistance against power side-channel attacks is required, the cur-
rently best known implementations favor AES.

4

84
4. On Comparing Side-channel Properties of AES and ChaCha20 on

Microcontrollers

5
Multi-Variate High-Order
Attacks of Shuffled Tables

Recomputation

Masking schemes based on tables recomputation are classical countermeasures
against high-order side-channel attacks. Still, they are known to be attackable at
order d in the case the masking involves d shares. In this work, we mathematically
show that an attack of order strictly greater than d can be more successful than an
attack at order d. To do so, we leverage the idea presented by Tunstall, Whitnall
and Oswald at FSE 2013: we exhibit attacks which exploit the multiple leakages
linked to one mask during the recomputation of tables. Specifically, regarding
first-order table recomputation, improved by a shuffled execution, we show that
there is a window of opportunity, in terms of noise variance, where a novel highly
multivariate third-order attack is more efficient than a classical bivariate second-
order attack. Moreover, we show on the example of the high-order secure table
computation presented by Coron at EUROCRYPT 2014 that the window of op-
portunity enlarges linearly with the security order d. These results extend that
of the CHES ’15 eponymous paper. Here, we also investigate the case of degree
one leakage models, and formally show that the Hamming weight model is the
less favorable to the attacker. Eventually, we validate our attack on a real ATMEL
smartcard.

85

5

86 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

5.1. Introduction
For more than 16 years now Side-Channel Attacks (SCA [94]) have been a threat
against cryptographic algorithms in embedded systems. To protect cryptographic
implementations against these attacks several countermeasures have been devel-
oped. Data masking schemes [95] are widely used since their security can be for-
mally grounded.

The rationale of masking schemes goes as follows: each sensitive variable is ran-
domly splitted in d shares (using d − 1 masks), in such a way that any tuple of
d − 1 shares manipulated during the masked algorithm is independent from any
sensitive variable. Masking schemes are the target of higher-order SCA [96–99].
A dth-order attack combines the leakages of d shares. In the implementation of
masking schemes, it is particularly challenging to compute non-linear parts of the
algorithm, such as for example the S-Box of AES (a function from n bits to n bits).
To solve this difficulty different methods have been proposed which can be classi-
fied in three categories [100].

– Algebraic methods [101, 102]. The outputs of the S-Box will be com-
puted using the algebraic representation of the S-Box.

– Global Look-up Table [103, 104] method. A table is precomputed off-
line for each possible input and output masks.

– Table recomputation methods which precompute a masked S-Box stored
in a table [96, 105, 106]. Here, the full table is recomputed despite not
all entries will be called. Such tables can be recomputed only once per
encryption to reach first-order security. More recently, Coron presented
at EUROCRYPT 2014 [107] a table recomputation scheme secure against
dth-order attacks. Since this countermeasure aims at high-order secu-
rity (d > 1), it requires one full table precomputation before every S-Box
call.

These methods provide security against Differential Power Analysis [108] (DPA)
or Higher-Order DPA (HODPA). Still, whatever the protection order, there is at
least one leakage associated to each share; in practice, shares (typically masks) can
leak more than once. For example attacks exploiting the multiplicity of leakages
of the same mask during the table recomputation have been presented by Pan et
al. in [109] and more recently by Tunstall et al. in [110]. Such attacks consist in
guessing the mask in a first order horizontal Correlation Power Analysis [111, 112]
(CPA) and then conducting a first-order vertical CPA knowing the mask. We refer
to these attacks as Horizontal-Vertical attacks (HV attacks).

Shuffling the table recomputation makes the HV attacks more difficult. Still shuf-
fling can be bypassed if the random permutation is generated from a seed with low

5.1. Introduction

5

87

entropy, since both the mask and the shuffling seed can be guessed [110].

Our contributions.

Our first contribution is to describe a new HODPA tailored to target the table
recomputation despite a highly entropic masking (unexploitable by exhaustive
search). More precisely, we propose an innovative combination function, which
has the specificity to be highly multivariate. We relate attacks based on the com-
bination function of state-of-the-art and our new HODPA attack to their success
rate, which allows for a straightforward comparison.

We build a theoretical analysis of their success rate. Our analysis reveals that there
is a window of opportunity, when the noise variance is smaller than a threshold,
where our new HODPA is more successful than a straightforward HODPA, despite
it is of higher-order. Specifically, our analysis allows to derive mathematically that
the previously known attacks require up to three times more traces than our new
attack to extract the key. In addition, the impact of the leakage functions (Ham-
ming weight, weighted sum of bits, etc.) is identified, and as a consequence the
best and the worst cases for our new attack are found.

For instance in this paper we attack a first-order masking scheme based on table
recomputation with a (2n+1 + 1)-variate third-order attack more efficiently than
with a classical bivariate second-order attack. In this case HV attacks could not be
applied. This is the first time that a non minimal order attack is proved better (in
terms of success rate) than the attack of minimal order. Actually, this non intuitive
result arises from a relevant selection of leaking samples — this question is seldom
addressed in the side-channel literature. We generalize our attack to a higher-order
masking scheme based on tables recomputation (Coron, EUROCRYPT 2014), and
prove that it remains better than a classical attack, with a window of opportunity
that actually grows linearly with the masking order d.

Finally we propose a new innovative countermeasure in order to protect masking
schemes based on tables recomputation against our new attack.

Outline of the paper.

The rest of the paper is organized as follows. Sect. 5.2 introduces the notations used
in this article. Sect. 5.3 provides a reminder on table recomputation algorithms
and on the way to defeat and protect this algorithm using random permutations.
In Sect. 5.4 we propose a new attack against the “protected” implementation of
the table recomputation, prove theoretically the soundness of the attack and vali-
date these results by simulation. In Sect. 5.5 we apply this attack on a higher-order
masking scheme. Sect. 5.6 extends our results to the case where the leakage func-
tion is affine in the bits of the targeted sensitive variable. In Sect. 5.7 we validate

5

88 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

our results on real traces. Finally in Sect. 9.2 we present a countermeasure to miti-
gate the impact of our new attack.

5.2. Preliminary and notations

In this article capital letters (e.g.,U) denote random variables and lowercase letters
denote their realizations (e.g., u).

Let k? be the secret key of the cryptographic algorithm. T denotes the input or
the ciphertext. We suppose that the computations are done on n-bit words which
means that these words can be seen as elements of n2. As a consequence both k? and
T belong to n

2. Moreover as we study protected implementations of cryptographic
algorithms these algorithms also take as input a set of uniform independent ran-
dom variables (not known by an attacker). Let denote by R this set.

Let g be a mapping which maps the input data to a sensitive variable. A sensitive
variable is an internal variable proceeded by the cryptographic algorithm which
depends on a subset of the inputs not known by the attacker (e.g. the secret key
but also the secret random value). A measured leakage is modeled by:

X = Ψ
(
g
(
k? ,T ,R

))
+N, (5.1)

where Ψ :n2→ denotes the leakage function. This leakage function is a specific
characteristic of the target device. The leakage function could be for example the
Hamming Weight (denoted by HW in this article), or a weighted sum of bits (in-
vestigated in greater details in Sect. 5.6). The random variable N denotes an inde-
pendent additive noise. In order to conduct a dth-order attack an attacker should
combine the leakages of d shares. To combine these leakages an attacker will use a
combination function [96, 113, 114]. The degree of this combination function must
be at least d for the attack to succeed. The combination function will then be applied
both on the measured leakages and on the model (this is the optimal HODPA). As
a consequence, an HODPA is completely defined by the combination function used.

In the rest of the paper the is given by the following definition:

Definition 1 (Signal to noise ratio) The Signal to Noise Ratio of a leakage denoted
by a random variable L depending on informative part denoted I is given by:

(5.2)

An attack is said sound when it allows to recover the key k? with success probability
which tends to one when the number of measurements tends to the infinity.

SNR [L, I] =
Var [E [L|I]]

E [Var [L|I]]
.

5.3. Masking scheme with table recomputation

5

89

5.3.Masking scheme with table recomputation

5.3.1. Algorithm

In this article we consider Boolean masking schemes. In particular, we focus on
schemes based on table recomputation where the masked S-Box is stored in a table
and fully recomputed each time.

This algorithm begins by a key addition phase where one word of the plaintext t,
one word the key k? and a random mask word m, are Xored together.

Then, these values are passed through a non linear function (stored in a table). The
output of this operation can be masked by a different mask m′ . Some linear oper-
ations can follow the non linear function. Of course, in the whole algorithm, all
the data are masked (exclusive-ored) with a random mask, to ensure the protection
against first order attacks.

Masking the linear parts is straightforward but passing through the non linear
one is less obvious. To realize this operation the table is recomputed. For all the
elements of n

2 the input mask is removed and then the output is masked by the
output mask. In this step the key is never manipulated so all the leakages concern
the mask. It can also be noticed that a new table S ′ of size 2n × n bits, is required
for this step.

5.3.2. Classical attacks

As any masking scheme, table recomputation can be defeated without the leakage
of the table recomputation. Indeed an attacker can use:

– Second order attacks [96, 97] such as second-order CPA (). It can be
noticed that for such attacks, the adversary can also exploit the leakage
of the mask during the table recomputation.

– Collisions attacks. If several S-Boxes are masked by the same mask the
Collisions attacks may be practicable [115].

However these attacks do not take into account all the leakages due to table recom-
putation stage. An approach to exploit these leakages is to combine all of them
with a leakage depending on the key. This method has been presented in [110]
where an “horizontal” attack is performed on the table recomputation to recover
the mask.

In such “horizontal” attacks two different steps can be targeted:

– An attacker could try to recover the output masks. In this case he should
first recover the address in the table. In this case it is not necessary to

5

90 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

recover the input mask but only the address value.

– An attacker could also try to recover the input masks.

The second step consists in a vertical attack which recover the key. In this second
step the mask is now a known value. It can be noticed that the exact knowledge
of the mask is not required to recover the key. Indeed if the probability to recover
the mask is higher than 1

2n then a first order attack is possible (because the mask
distribution is biased).

Recently, the optimal distinguisher in the case of masking has been studied in [116]:
it is applied to the precomputation phase of masked table without shuffling in sec-
tion 5. This attack can be extended to the case of shuffled table recomputation but
would require an enumeration of all shuffles, which is computationally unfeasible.

5.3.3. Classical countermeasure

The strategy to protect the table recomputation against HV attacks and the distin-
guisher presented in [116] is to shuffle the recomputation, i.e., do the recomputa-
tion in a random order, as illustrated in Alg. 2.

Different methods to randomize the order are presented in [110]. One of the meth-
ods presented is based on a random permutation on a subset of n2.

Let S2n the symmetric group of 2n elements, which represents all the ways to shuf-
fle the set {0, . . . ,2n−1}. If the random permutation over n2 is randomly drawn from a
set of permutation S ⊂ S2n , where card (S)� card (S2n), it is still possible for an at-
tacker to take advantage of the table recomputation. Indeed as it is shown in [110]
attacks could be built by including all the possible permutations alongside with
the key hypothesis. If the permutation is drawn uniformly over the S2n the num-
ber of added hypothesis is 2n! which can be too much for attacks. For instance, for
n = 8, we have 28! ≈ 21684.

By generating a highly entropic permutation, such as defined in [110] or any pseudo
random permutation generator (RC4 key scheduler...), a designer could protect ta-
ble recomputation against HV attacks. Indeed using for example five or six bytes
of entropy as seed for the permutation generator could be enough to prevent an
attacker from guessing all the possible permutations.

5.4. Totally random permutation and attack

In this section we present a new attack against shuffled table recomputation. The
success of this attack will not be impacted by the entropy used to generate the shuf-
fle. As a consequence this attack will succeed when the HV attacks will fail because

5.4. Totally random permutation and attack

5

91

Algorithm 2: Shuffled masked table recomputation

input : Genuine SubBytes S :n2→
n
2 bijection

output: Masked SubBytes S ′ :n2→
n
2 bijection

1 m←R n
2, m′←R n

2 // Draw of random input and output masks

2 φ←R n
2→

n
2 // Draw of random permutation of

n
2

3 for ω ∈ {0,1, . . . ,2n − 1} do // S-Box recomputation loop

4 z← φ(ω)⊕m // Masked input

5 z′← S[φ(ω)]⊕m′ // Masked output

6 S ′[z] = z′ // Creating the masked S-Box entry

7 end
8 return S ′

the quantity of entropy used to generate the shuffle is too large to be exhaustively
enumerated. We then express the condition where this attack will outperform the
state of the art second order attack.

5.4.1. Defeating the countermeasure

As the permutation φ is completely random, the value of the current index in the
for loop (line 3 to line 7) is unknown. But it can be noticed that this current index
φ(ω), printed in boldface for clarity, is manipulated twice at each step of the loop
(line 4, line 5):

z← φ(ω)⊕m , (5.3)

z′← S[φ(ω)]⊕m′ . (5.4)

Let U a random variable uniformly drawn over n2 and m ∈n2 a constant. Then, it is
shown in [99] that:

(5.5)

As a consequence, it may be possible for an attacker to exploit the leakage depend-
ing on the two manipulations (Eq. (5.3) and (5.4)) of the current random index in
the loop. Indeed, at each of the 2n steps of the loop in the table recomputation,
the leakage of the φ(ω) in Eq. (5.3) and (5.4) which plays the role of U in Eq. (5.5)
will be combined (by a centered product) to recover a variable depending on the
mask. Afterwards, these 2n variables will be combined together (by a sum) in or-
der to increase the SNR as much as possible. Finally, this sum is combined (again
by a centered product) with a leakage depending on the key. This rough idea of

E [(HW[U]− E [HW[U]])× (HW[U ⊕m]− E [HW[U ⊕m]])] = −HW[m]

2
+
n

4
.

5

92 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

× × ×
+

× ×
×

m m
′

ϕ
(0
)
⊕
m

ϕ
(0
)

ϕ
(1
)
⊕
m

ϕ
(1
)

1 1 4 5 4 5

t
⊕

m
t
⊕

m
⊕

k
S
′ [t

⊕
k
]⊕

m
′

4 5

ϕ
(ω

)
⊕

m

ϕ
(ω

)

. . .Sensitive variable:

Line in Alg. 1: 54

. . .
time

ϕ
(2

n
−

1)
ϕ
(2

n
−

1)
⊕
m

new (2n+1 + 1)-variate 3rd-order attack

state-of-the-art bivariate 2nd-order attack

recomputation
Shuffled table AES

.

Figure 5.1: State-of-the-art attack and new attack investigated in this article

the attack is illustrated it on Fig. 5.1, which represents the “trace” corresponding
to the dynamic execution of Alg. 2, followed by the masked AES AddRoundKey &
SubBytes steps.

Remark 1 (Construction of the high-order attack) The construction of the attack
depicted in Fig. 5.1 leverages on two building blocks:

1. the centered product, represented as × , which allows to get rid of a mask
(recall Eq. (5.5)), albeit at the expense of a smaller SNR (it is squared, as
shown in [117] – see Sec. 5.4.3)

2. the sum of variables with the same leakage model, represented as + , which
increases the SNR linearly with the number of variables summed together.

An attacker could want to perform the attack on the output of the S-Box. But
depending on the implementation of the masking scheme the output masks can
be different for each address of the S-Box (see for example the masking scheme of
Coron [107]). To avoid loss of generality we focus our study on the S-Box input
mask of the recomputation. Indeed by design of the table recomputation masking
scheme, the input mask is the same for each address of the S-Box: the attacker can
thus exploit it multiple times. Moreover an attacker can still take advantage of
the confusion of the S-Box [118] to better discriminate the various key candidates.
Indeed he can target the input the of SubBytes operation of the last round. Notice
the use of capital M and capital Φ , which indicates that the leakage is modeled as
a random variable.

5.4.2.Multivariate attacks against table recomputation

In the previous section, it has been shown that at each iteration of the loop of the
table recomputation, it is possible to extract a value depending on the mask. As

5.4. Totally random permutation and attack

5

93

a consequence it is possible to use all of these values to perform a multivariate
attack. In this subsection we give the formal formula of this new attack. Let us
define the leakages of the table recomputation. The leakage of the masked random

index in the loop is given by: Φ (ω)⊕M +N (1)
ω . The leakage of the random index is

given by: Φ (ω) +N (2)
ω .

Depending on the knowledge about the model, the leakage could be centered by
the “true” expectation or by the estimation of this expectation. We assume this

expectation is a known value given by:

. Then let us denote the central leakages as:

(5.6)

(5.7)

Besides, the leakage of the masked AddRoundKey is:

X? = T ⊕M ⊕ k? +N − n
2
. (5.8)

In a view to use all the leakages of the table recomputation, an original combina-
tion function could be defined.

Definition 2 The combination function exploiting the leakage of the table recomputa-
tion is given by:

Following the Fig. 5.1 it can be noticed that is in fact the combination of two sub-
combination functions. Indeed, first of all, the leakages of the table recomputation
are combined; the result of this combination is the following value:

(5.9)

Second, this value is multiplicatively combined with X? .

Remark 2 It can be noticed that the random variable does not depend on Φ . Indeed
in Eq. (5.9) the sum can be reordered by Φ . Moreover as this sum is computed over all
the possible Φ (ω) it implies that 1

2n
∑2n−1
ω=0 X

(1)
ω ×X

(2)
ω is exactly the expectation over the

X(1)
ω = HW[Φ (ω)⊕M] +N (1)

ω − n

2
,

X(2)
ω = HW[Φ (ω)] +N (2)

ω − n

2
.

E HW Φ ω ⊕M N
(1)
ω =

E HW[Φ (ω)] +N
(2)
ω = n

2

CTR : R2n+1 × R −→ R((
X

(1)
ω , X

(2)
ω

)
06ω62n−1

, X?

)
7−→

(
−2× 1

2n

∑2n−1
ω=0 X

(1)
ω ×X(2)

ω

)
×X? .

XTR = −2× 1

2n

2n−1∑
ω=0

X(1)
ω ×X(2)

ω .

5

94 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

Φ (ω). As a consequence is random only through the mask and the noise.

Based on the combination function , a multivariate attack can be built.

Definition 3 The MultiVariate Attack (MVA) exploiting the leakage of the table recom-
putation (TR) is given by the function:

where Y =
(
T ⊕M ⊕ k − n2

)
·
(
M − n2

)
|T and ρ is the Pearson coefficient. According to

Eq. (5.5), the model Y is equal to an affine transformation of −T ⊕ k (note the negative
sign for the correlation ρ extremal value when k ∈n2 to be positive).

is sound. By the law of large numbers, correlation coefficient involved in the
expression of tends to ρ(−T ⊕ k∗,−T ⊕ k) when the number of traces tends to in-
finity. This quantity is maximal when k = k∗, by the Cauchy-Schwarz theorem.
Then for enough traces the noise will impact all the key guesses similarly and as a
consequence the result of is maximal when k = k∗.

Remark 3 The attack presented in Def. 3 is a (2n+1 +1)-multivariate third order attack.

Let us denote the leakage of the mask (which occurs at line 1 of Alg. 2) by:

X(3) =M +N (3) − n
2
. (5.10)

Definition 4 We denote by the using the centered product as combination function.
Namely:

A careful look at Def. 2, Def. 3 and Eq. (5.9) reveals that the only difference between
the and the is the use of instead of X(3). Thus will act as the leakage of the mask.
Let us call the second order leakage. The informative part of the second order
leakage is the same as the informative part of the leakage mask i.e.,

It is a straightforward application of the results of [99]: Use Eq. (5.5) and notice
the intentional −2 factor in Eq. (5.9). Both expectations are thus equal to m.

MVATR : R2n+1 × R× R −→ Fn2((
X

(1)
ω , X

(2)
ω

)
ω
, X?, Y

)
7−→ argmax

k∈Fn2
ρ
[
CTR

((
X(1)
ω , X(2)

ω

)
ω
, X?

)
, Y
]
,

2O-CPA: R× R× R −→ Fn2(
X(3), X?, Y

)
7−→ argmax

k∈Fn2
ρ
[
X(3) ×X?, Y

]
.

E [XTR|M = m] = E X(3)|M = m .

5.4. Totally random permutation and attack

5

95

5.4.3. Leakage analysis

By using the formula of the theoretical success rate () we show that as the same
operations are targeted by the and the . Consequently, it is equivalent to compare
the or the of these attacks. Based on this fact we can theoretically establish the
conditions in which the outperforms the . These conditions are given in Theo-
rem 5.4.3.

Recently A.A Ding et al. [117, §3.4] give the following formula to establish the
Success Rate () of second-order attacks:

(5.11)

In this formula:

– δ0 denotes the of the first share and δ1 denotes the of the second one;

– ΦNk−1 denotes the cumulative distribution function of (Nk − 1)-dimensional
standard Gaussian distribution; as underlined by the authors in [117],
if the noise distribution is not multi-variate Gaussian, then ΦNk is to be
understood as its cumulative distribution function;

– Nk denotes the number of key candidates;

– K denotes the confusion matrix and κ the confusion coefficient;

– b denotes the number of traces.

Remark 4 An updated version of this formula for first order has been presented in
Eqn. (27) of [119] which solves the issue of the non invertible matrix.

This formula allows to establish the link between the and of second order attacks
against Boolean masking schemes.

Let us apply the A.A Ding et al. formula in the case of our two attacks:

We target the same operation for the share that leaks the secret key (X?). Moreover
by remark 5.4.2 the informative parts of the leakages depending on the mask (and
X(3)) is the same in the two leakages. As a consequence, K and κ are the same in
the two attacks.

SR = ΦNk−1

(√b δ0δ1
4

K
− 1/2κ

)
.

SR2O-CPA = Φ2n−1

(√
b

SNR
[
X(3),M

]
SNR [X?, (T,M)]

4
K
− 1/2κ

)
,

SRMVATR = Φ2n−1

(√
b

SNR [XTR,M] SNR [X?, (T,M)]

4
K
− 1/2κ

)
.

5

96 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

It can be noticed that the only difference in the success rate formula is the use of ,M
instead of X(3),M. Therefore, it is equivalent to compare these values and compare
the of these attacks.

The of the “second-order leakage” is greater than the of the leakage of the mask
if and only if

σ2 6 2n−2 − n
2
,

where σ denotes the standard deviation of the Gaussian noise.

As a consequence will be better than in the interval σ2 ∈ [0,2n−2 −n/2].

See Appendix .1. Interestingly, the same result is also a byproduct of the demon-
stration of Proposition 5.4.5 (see Appendix B).

Theorem 5.4.3 gives us the cases where exploiting the second-order leakage will
give better results than exploiting the classical leakage of the mask. For example if
n = 8 (the case of AES) the second-order leakage is better until σ2 6 60.

Figure 5.2 shows when the of is greater than the of X(3). In order to have a better
representation of this interval 1/ is plotted.

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50 60 70

In
ve

rs
e

of
th

e

Variance of the Gaussian Noise

Useful interval of variance

1
,M

1
X(3),M

Figure 5.2: Comparison between the variance of the noise for the classical leakage and the second-order
and the impact of these noises on the SNR

5.4.4. Simulation results

In order to validate empirically the results of Sect. 5.4, we test the method pre-
sented on simulated data. The target is a first order protected AES with table
recomputation. To simulate the leakages we assume that each value leaks its Ham-
ming weight with a Gaussian noise of standard deviation σ . The 512 leakages of
the table recomputation are those given in Subsect. 5.4.2.

A total of 1000 attacks are realized to compute the success rate of each experiment.
In this part, the comparisons are done on the number of traces needed to reach 80%

5.4. Totally random permutation and attack

5

97

of success.

It can be seen in Fig. 5.3 and in Fig. 5.4 that the difference between the two attacks
is null for σ = 0 and σ = 8 (that is, σ2 = 64 ≈ 60). It confirms the bound of the
interval shown in Fig. 5.2. This also confirms that comparing the is equivalent to
comparing the .

It can be seen in Fig. 5.7 that in presence of noise the outperforms the . The highest
difference between the and is reached when σ = 3. In this case, the needs 2500
traces to mount the attack while the needs 7500 traces. This represents a relative
gain1 of ≈ 200%. As shown in Fig. 5.6, the relative gain decreases to 122% when
σ = 4.

5.4.5. Theoretical analysis of the Success Rate

While the previous analysis of Subsect. 5.4.3 gives the bounds of effectiveness of
the it does not allow a quantitative comparison of the respective behaviors of the
and the between these bounds. In this subsection we propose an approach which
allows a deeper analysis of the relevant parameters of their . We exploit the results
of [120] which presents a closed form formula which links the to the for first order
attacks. These results have recently been extended to high order attacks [121].

[[120

(5.12)

where is the success exponent and q the number of traces used for the attack.

The proof is given in [120].

(5.13)

1The formal definition of the relative gain is given in Def. 5.

1− SR ≈ exp (−SE×q) ,

([?, Corollary 1]). The SR of an additive distinguisher satisfies:

Proposition 5. The SE of the 2O-CPA is:

SE2O-CPA = min
k 6=k?

κ (k?, k)

2
(
κ′(k?,k)
κ(k?,k) − κ (k?, k)

)
+ 2

(
α−21 σ2

1 + α−22 σ2
2 + α−21 σ2

1α
−2
2 σ2

2

) ,

5

98 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

Figure 5.6: σ = 4.

Figure 5.7: Comparison between and

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(a) σ = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200000 400000 600000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(b) σ = 8.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(c) σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20000 40000 60000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(d) σ = 4.

Fig. 3: Comparison between 2O-CPA and MVATR

5 The formal definition of the relative gain is given in Def. 5.

5.4. Totally random permutation and attack

5

99

where in our case (which complies to Eqn. (5.2) of Definition 1):

κ
(
k? , k

)
and κ′

(
k? , k

)
are general confusion coefficients defined in

Definition 8 of [120]. Notice that κ
(
k? , k

)
is a natural extension

of the seminal coefficient introduced by Fei et al. in [118].

See Appendix A.

We note that α2
i and σ2

i respectively represent the power of the signal and of the
noise.

As Def. 2, Def. 3 and Eq. (5.9) reveals that the only difference between the and the
is the use of instead of X(3). Thus we can directly compute the success exponent
of .

(5.14)

The proof is similar as the proof of Prop. 5.4.5 using the values of noise computed
in the Appendix .1.

Exploiting this values it is possible to extract the parameters which impact the re-
spective behavior of the the two attacks and especially the ones reaching to a higher
difference between the two attacks. Similarly to Subsect. 5.4.4 we will compare the
two attacks using the relative gain.

α2
1 = α2

2 = Var
[
E
[
X(3)|M

]]
= Var [E [X?|M,T]] =

√
n

4
,

σ2
1 = σ2

2 = E
[
Var

[
X(3)|M

]]
= E [Var [X?|M,T]] = σ2 ,

Proposition 6. The SE of the MVATR is:

SEMVATR = min
k 6=k?

κ (k?, k)

2
(
κ′(k?,k)
κ(k?,k) − κ (k?, k)

)
+ 2

(
α−21 σ2

1 + α−22 σ2
2 + α−21 σ2

1α
−2
2 σ2

2

) ,
where in our case

α2
1 = α2

2 = Var [E [XTR|M]] = Var [E [X?|M,T]] =

√
n

4
,

σ2
1 = E [Var [XTR|M]] = 4×

(
σ2

2n
× n

2
+
σ4

2n

)
,

σ2
2 = E [Var [X?|M,T]] = σ2 .

5

100 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

See Appendix B.

This means that, in Fig. 5.7, the curves for and are the same, modulo a scaling in
the X axis. For instance, in Fig. 5.7(a) and (b), the scaling factor is 1, i.e., the two
curves superimpose perfectly. As a result, one can compare these two attacks in
terms of traces number to extract the key, irrespective of the value chosen for the
threshold.

See Appendix C.

Numerical Results.

In order to validate our theoretical analysis we build empirical validation based
on simulations. We reuse the curves generated for Sect. 5.4.4. In Fig. 5.10 the
empirical results based simulation are plotted in gray and the Theoretical ones in
red pointed lines. The first observation is that the theoretical analysis match well
the simulations which validates our model choices.

Definition 5 (rel-gain(SR)) The relative gain between 2O-CPA and MVATR is
given by:

rel-gain(SR) =
m

(SR)
2O-CPA −m

(SR)
MVATR

m
(SR)
MVATR

,

where m
(SR)
2O-CPA and m

(SR)
MVATR

are respectively the number of traces needed by
2O-CPA and MVATR to reach success rate value SR.

And we will also used the difference in number of traces needed to reach SR.

Definition 6 (gain(SR)) The difference in number of traces needed to reach SR
of success is given by the gain:

gain(SR) = m
(SR)
2O-CPA −m

(SR)
MVATR

,

where m
(SR)
2O-CPA and m

(SR)
MVATR

are respectively the number of traces needed by
2O-CPA and MVATR to reach SR of success rate.

Notice that rel-gain(SR) and gain(SR) are tools to compare attacks after hav-
ing computed their SR. They differ from relative distinguishing margins met-
rics [?] which analyses the value of the distinguisher (and not their SR).

Proposition 7. rel-gain(SR) does not depend on the value of SR.

Proposition 8. gain(SR) depends on the value of SR, but the value of the noise
variance where gain(SR) is maximum not depends on SR.

Remark 5 While the bounds of Theorem 3 depend only on the SNR the max-
imum effectiveness (the maximum of gain(SR) or rel-gain(SR)) of the MVATR

compare to the 2O-CPA also depends on the operation targets (e.g. AddRoundKey
or SubBytes) by the confusion coefficients κ and κ′.

5.5. An example on a high-order countermeasure

5

101

5.8

5.9

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

D
is

ta
n
ce

Standard deviation σ

Emp rel-gain(SR)

Theo rel-gain(SR)

(a) rel-gain(SR)

-20000

-10000

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7
D

is
ta

n
ce

Standard deviation σ

Emp gain(SR)

Theo gain(SR)

(b) gain(SR)

Fig. 4: Comparison between the 2O-CPA and the MVATR

In Fig it can be noticed that for several SR (different gray lines) the empir-

ical rel-gain(SR) are closed which confirmed the Prop. 7. Exploiting the formula
of Def. 5 we can find the noise variance σ2 where rel-gain(SR) is maximum. In-
deed it occurs in a root of the derivative of rel-gain(SR). In our scenario it occurs
for σ2 = 9.11 (that is σ ≈ 3.02). For this value of σ2, the relative gain is about
equal to 2, that is, our MVATR attacks requires three times less traces
than the 2O-CPA to extract the key.

The behavior of gain(SR) is different indeed the SR has an impact on it, the
gray lines are not superimposed (see Fig.). But similarly to rel-gain(SR) the
SR does not impact the value of noise where the maximum gain(SR) is reached.
This confirms the Prop. 8. In our scenario it is reached for σ2 = 39.67 (that is
σ ≈ 6.30).

In order to compute this maximum we have computed the roots of the deriva-
tives (of rel-gain(SR) and gain(SR) w.r.t. σ2) using the MAXIMA software.

5

102 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

5.5. An example on a high-order countermeasure

The result of the previous section can be extended to any masking scheme based on
table recomputation. In particular the can apply to High-Order masking schemes.

5.5.1. Coron masking scheme attack and countermeasure

The table recomputation countermeasure can be made secure against High-Order
attacks. An approach has been proposed by Schramm and Paar [123]. However, it
happened that this masking scheme can be defeated by a third order attack [124].
To avoid this vulnerability Coron recently presented [107] a new method based
on table recomputation, which guarantees a truly high-order masking. The core
idea of this method is to mask each output of the S-Box with a different mask and
refresh the set of masks between each shift of the table (masking the inputs by
one mask). HV attacks are still a threat against such schemes. Indeed an attacker
will recover iteratively each input mask. Afterwards he will be able to perform
a first order attack on the AddRoundKey to recover the key. To prevent attacks
based on the exploitation of the leakages of the input masks an approach based
on a random shuffling of the loop index is possible (see Alg. 3). Algorithm 3 is a
(d − 1)-th order countermeasure, meaning that attacks of order strictly less than d
fail. In this algorithm, the xi for i < d can be seen indifferently as shares or as masks.
The original masked S-Box algorithm from Coron [107] is the same as Alg. 3, with
φ chosen as the identity. It can be noticed that the entropy

needed to build the permutation could be low compared to the entropy needed
for the masking scheme (especially because of the numerous costlyRefreshMasks
operations).

5.5. An example on a high-order countermeasure

5

103

Algorithm 3: Masked and shuffled computation of y = S (x)
input : x1, . . . ,xd , such that x = x1 ⊕ . . .⊕ xd
output: y1, . . . , yd , such that y = y1 ⊕ . . .⊕ yd = S(x)

1 φ←R n
2→

n
2 // Draw of random permutation of

n
2

2 for ω ∈n2 do

3 T (ω)← (S (ω) ,0, . . . ,0) ∈
(
n
2

)d
// ⊕ (T (ω)) = S (ω)

4 end
5 for i = 1 to d − 1 do
6 for ω ∈n2 do
7 for j = 1 to d do
8 T ′ (φ(ω)) [j]←T (φ(ω)⊕xi) [j] // T ′ (φ(ω))←T (φ(ω)⊕xi)
9 end

10 end
11 for ω ∈n2 do
12 T (φ(ω))← (T ′ (φ(ω))) // See in Alg. 2 of [107]

13 end
14 end

// Invariant: ⊕ (T (φ(ω))) = S (φ(ω)⊕x1 ⊕ . . .⊕ xd−1) , ∀ω ∈n2
15 (y1, . . . , yd)← (T (xd)) // ⊕ (T (xd)) = S (x)
16 return y1, . . . , yd

5

104 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

5.5.2. Attack on the countermeasure

We apply Alg. 2 on X which is equal to T ⊕k?, i.e.,
⊕d

i=1Xi = T ⊕k?. Similarly
to the definitions in Subsect. 4.2, let us define the leakages of the table recompu-
tation of the masking scheme of Coron where the order of the masking is d− 1:

X
(1)
(ω,i,j) = HW[Φ (ω)⊕Xi] +N

(1)
(ω,i,j)− n

2 and X
(2)
(ω,i,j) = HW[Φ (ω)] +N

(2)
(ω,i,j)− n

2 ,

where i ∈ J1, d−1K will index the d−1 masks. The d-th share is the masked sen-
sitive value. Besides j ∈ J1, dK denotes the index of the loop from lines 7 to lines 9

of the Alg. 2. The leakage of the masks is given by X
(3)
i = HW[Xi] +N

(3)
i − n

2 .

Finally, we denote by: X? = HW[
⊕d−1

i=1 Xi ⊕ k? ⊕ T] +N − n
2 the leakage of the

masked value.

Definition 7 The combination function CdCS exploiting the leakage of the table
recomputation (Coron Scheme, abridged CS) is given by:

CdCS : Rd×(d−1)×2n+1 × R → R(X(1)
(ω,i,j), X

(2)
(ω,i,j)

)
ω∈F2n

i∈J1,d−1K
j∈J1,dK

, X?

 7→ d−1∏
i=1

−2

d2n

∑
ω∈F2n

j∈J1,dK

X
(1)
(ω,i,j)×X

(2)
(ω,i,j)

×X?.

Similarly to Subsect. 4.3, we define for all 1 6 i 6 d− 1:

XCSdi
=
−2

d2n

∑
ω∈F2n

j∈J1,dK

X
(1)
(ω,i,j) ×X

(2)
(ω,i,j) .

This value is the combination of all the leaking values of the table recomputation
depending of one share.

Remark 6 The scaling by factor −2/d allows to have, for all i ∈ J1, d− 1K:

E
[
XCSdi

|Xi = xi

]
= E

[
X

(3)
i |Xi = xi

]
.

Additionally we define for, i = d, XCSdi
= X?. Based on the combination

function CdCS a multivariate attack can be built.

5.5. An example on a high-order countermeasure

5

105

is sound. The demonstration follows the same lines as that of Proposition 5.4.2.
In the case of Proposition 5.5.2, the expectation of

∏d
i=1 (d) knowing the plaintext

T = t is proportional to t ⊕ k. Indeed by [125]
∏d
i=1 (d) |T = t =

(
−1
2

)d−1
×
(
t ⊕ k − n2

)
Remark 7 The attack presented in Def. 8 is a (d×(d − 1)×2n+1 +1)-variate (2×(d − 1)+
1)-order attack.

5.5.3. Leakage analysis

The difference between the two attacks is the use of d instead of X(3)
i as the leakage

of the d −1 shares which do not leak the secret key. A.A Ding et al. also provides a
formula to compute the of HOCPA [117, §3.4].

σ2 6 d × 2n−2 − n
2
, (5.15)

where σ denotes the standard deviation of the Gaussian noise.

Definition 8 The MultiVariate Attack exploiting the leakage of the table recom-
putation of the d− 1 order Coron masking Scheme is given by:

MVAd
CS : Rd×(d−1)×2n+1 × R× R → Fn2(X(1)

(ω,i,j), X
(2)
(ω,i,j)

)
ω∈F2n

i∈J1,d−1K
j∈J1,dK

, X?, Y

 7→ argmax
k∈Fn2

ρ

[
d∏
i=1

(
XCSdi

)
, Y

]
,

where Y = (−1)d−1 ×
(
HW[T ⊕ k]− n

2

)
.

dO-CPA: Rd−1 × R× R −→ Fn2((
X

(3)
i

)
i∈J1,d−1K

, X?, Y

)
7−→ argmax

k∈Fn2
ρ

[
d−1∏
i=1

X
(3)
i ×X?, Y

]
.

Definition 9 The “classical” dO-CPA is the HOCPA build by combining the d
shares using the centered product combination function.

Similarly to Sect. 4, the only differences in the formula are the SNR of the

shares which do not leak the key. Then by comparing the SNR
[
XCSdi

, Xi

]
and

SNR
[
X

(3)
i , Xi

]
we compare the success rate of the attacks. It can be noticed

that in our model the SNR does not depend on i.

Theorem 10. The SNR of the “second-order leakage” is greater than the SNR
of the leakage of the mask if and only if

As a consequence MVAd
CS will be better than dO-CPA when the noise vari-

ance lays in the interval [0, d×2n−2−n/2]. We can immediately deduce that the
size of the Useful Interval of Variance increases linearly with the order of the
masking scheme.

5

106 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

.3.

120].

0

40

80

120

160

0 40 80 120 160 200 240 280 320

In
ve

rs
e

of
th

e

Variance of the Gaussian Noise

UIoV

UIoV

UIoV

UIoV 1/
[
X

(3)
i ,Mi

]
1/

[
1,Mi

]
1/

[
2,Mi

]
1/

[
3,Mi

]
1/

[
4,Mi

]

Figure 5.11: Comparison between the signal to noise ratio of X
(3)
i and signal to noise ratio of d (where

d is the attack order)

5.5.4. Simulation results on Coron masking Scheme

In order to validate the theoretical results of Subsect. 5.5.3, the has been tested
on simulated data and compared to . The simulations have been done with the
Hamming weight model and Gaussian noise such as the leakages defined in Sub-
sect. 5.5.2. We test these attacks against a second and a third order masking
scheme.

To compute the success rate, attacks are redone 500 times for the second order
masking and 100 times for the third order masking (because this attack requires
an intensive computational power).

In Fig. ?? it can be seen that MVA(3)
CS reaches 80% of success rate for less than 20000

traces while the 3O-CPA does not reach 30% for 100000. In Fig. ?? it can be seen

that MVA(4)
CS reaches 80% of success rate for less than 200000 traces while the 4O-

CPA does not reach 5%.

Proof. See Appendix

Figure 5 shows the impact of the attack order d on the interval of noise
where the MVAd

CS outperforms dO-CPA (let us called this interval the Useful
Interval of Variance denoted by UIoV). We can see that the size of these intervals
increases with the order. For example for d = 3 the useful interval of variance
is [0, 188]. In practice, it is very difficult to perform a third order attack with
a noise variance of 188. Indeed, recall that the number of traces to succeed an
attack with probability 80% is proportional to the inverse of the SNR [

5.5. An example on a high-order countermeasure

5

107

Figure 5.12: Comparison between dO-CPA and MVAdCS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 25000 50000 75000100000

S
u
cc

es
s

ra
te

Number of traces

3O-CPA

MVA3
CS

(a) d = 3, σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100000 200000 300000

S
u
cc

es
s

ra
te

Number of traces

4O-CPA

MVA4
CS

(b) d = 4, σ = 3.

5.6. A note on affine model

In Sect. 5.4 and 5.5, the leakage function was expected to be the Hamming weight.

5.6.1. Properties of the affine model

Definition 10 (Affine leakage function) Let V the leaking value, α the weight of the
leakage of each bit, and · the inner product in n, that is α · V =

∑n
i=1αiVi . A leakage

function Ψα is said affine if this function is a weighted sum of the bits of the leaking
value, i.e., Ψα (V) = α ·V .

In the sequel, we assume sensitive variables are balanced and have each bit inde-
pendent of the other, as is customary in cryptographic applications.

Let us now study the impact of the leakage function on the MVATR attack. We
suppose that the leakage function is affine.

Proposition 11. Let 1 = (1, . . . , 1) ∈ Fn2 .

E [Ψα (V)] =
1

2
(α · 1) and Var [Ψα (V)] =

1

4
‖α‖22 .

Proof. We have E [Ψα (V)] = α·E [V] = α·
(
1
21
)

and Var [Ψα (V)] = αtCov [V]α =
1
4‖α‖22. �

Then it is possible to compute the results of the centered product.

5

108 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

See in Appendix A.

– X? = α · (T ⊕ k? ⊕M) +N − 1
2 (α · 1), which is similar to Eq. (5.8), or

– X? = α · (S(T ⊕ k?)⊕M) +N − 1
2 (α · 1), if there is an S-Box S.

Lemma 12. Let U be a random variable following a uniform law over Fn2 , and
z ∈ Fn2 . We have:

E [(Ψα (U)− E [Ψα (U)])× (Ψβ (U ⊕ z)− E [Ψβ (U ⊕ z)])] = −1

2
(α� β)·z+1

4
α·β ,

where � denotes the element-wise multiplication, that is (α� β)i = αiβi.

Assumption 1 In order to compare the results in case of an affine model and
the Hamming weight model (HW = Ψ1) let us assume that the model variance is
the same in the two cases i.e., Var [Ψα (V)] = Var [HW[V]]; this is equivalent to
‖α‖22 = n.

Let us also assume that all the values manipulated during the algorithm leak
in the same way i.e., the weight vector α of the sum is the same for all the
variables V of the algorithm. This is realistic because it is likely that sensitive
variables transit through a given resource, e.g., the accumulator register.

In the rest of this section, we will denote by α the vector of weight of the leakage
model.

Let us redefine the leakage of the table recomputation the (centered) leakage

of the random index: X
(1)
ω = α · (Φ (ω)⊕M) + N

(1)
ω − 1

2 (α · 1), the (centered)

leakage of the mask random index: X
(2)
ω = α · (Φ (ω)) + N

(2)
ω − 1

2 (α · 1), the

(centered) leakage of the mask: X(3) = α ·M − 1
2 (α · 1), Besides, let X? be the

leakage of a sensitive value depending on the key. We have either:

5.6. A note on affine model

5

109

In a view to unite both expressions, we denote by Z the sensitive variable, that is
either Z = T ⊕ k? , or Z = S(T ⊕ k?). Consequently, we have X? = α · (Z ⊕M) +N −
1
2 (α · 1).

Direct application of Lemma 5.6.1.

In case of affine model, the leakages of the (recall Def. 2) and the 2O-CPA are
different. Indeed, let us denote αn = α �α � · · · �α︸ ︷︷ ︸

n times

. We have:

Direct application of Lemma 5.6.1 and Lemma 5.6.1.

5.6.2. Impact of the model on the confusion coefficient

As the models in the two different attacks are different, the parameters K and κ
(recall Eq. (5.11)) also differ. In order to compare the two attacks we first estab-
lish the impact of the model on the value of the minimum confusion coefficient
mink,0κk . Then we show that the impact is not important in case of the targeted
sensitive value is proceed in a nonlinear part of the algorithm (an S-Box).

In practice the confusion coefficients are very close. We study the impact of the

disparity of α using several distributions (see Fig. 5.13):

– αi =
√

1 + ε for i even and αi =
√

1− ε otherwise (abridged α =
√

1± ε),

– and the other sign convention (abridged α =
√

1∓ ε).

Lemma 13. In case of affine leakage model the second order leakage XTR is
given by:

E [XTR|M = m] = E

[
−2

2n

2n−1∑
ω=0

X(1)
ω ×X(2)

ω |M = m

]
=
(
α2
)
·m− 1

2
‖α‖22 ,

where α2 = α� α.

We have:

E
[
CTR

((
X(1)
ω , X(2)

ω

)
ω
, X?

)
| T
]

= −1

2
α3 · z +

1

4

n∑
i=1

α3
i ,

and

E
[
X(3) ×X? | T

]
= −1

2
α2 · z +

1

4
‖α‖22 .

5

110 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

We also randomly generate 1000 α. All those distributions satisfy the assump-
tion 1, namely

∑n
i=1α

2
i = n.

The confusion coefficient for α2 and α3 are very close (see Fig. 5.13).

Moreover we find that the maximum difference in all the simulations with random
weight is max(mink,0 α2κk −mink,0 α3κk) = 0.019. In terms of number of traces
needed to reach 80% of success this represents a small difference of 5%.

0.36
0.37
0.38
0.39

0.4
0.41
0.42

0 0.2 0.4 0.6 0.8 1

m
in
k,

0
κ
k

ε

α2 for α =
√

1± ε
α3 for α =

√
1± ε

α2 for α =
√

1∓ ε
α3 for α =

√
1∓ ε

Figure 5.13: Comparison of mink,0κk for the and the

5.6.3. Theoretical analysis

Similarly to the Subsect. 5.4.3 let us study the impact of the affine model on the
success of the compared to the .

As motivated in Sect. 5.4.1, we can modify the in order to target the last round
S-Box input: X? = α ·

(
T ⊕ k? ⊕M

)
+N − 1

2 (α · 1).

The of the “second-order leakage” is greater than the of the leakage of the mask
if and only if

σ2 6 4α4 × 2n−2

n
− n

2
,

where pα = (
∑n
i=1 |αi |

p)1/p is the p-norm (p > 1) of vector α, and where σ denotes
the standard deviation of the Gaussian noise.

As a consequence is better than when the noise variance is in the interval [0,4α4 2n−2/n−
n/2]. See Appendix B.

5.6. A note on affine model

5

111

The minimal value of 4α4 subject to 2α2 = n is reached when all the component of
α are equal. This means that the worst case for the compared to the is when the
leakage is in Hamming Weight.

See Appendix C.

5.6.4. Simulation results

Some simulations have been done in order to validate the results of the theoretical
study of the previous sections. The results, presented in this section, confirm that:

– attacks are not impacted by the small differences of the confusion coef-
ficient (κ, recall Sec. 5.6.2).

– attacks depend on the as predicted by Theorem 5.6.3.

For the purpose of the simulations, the target considered is the input of the S-Box
of the last round; as a consequence we consider

X? = α ·
(
T ⊕ k? ⊕M

)
+N − 1

2
(α · 1) .

The maskM and the plain text T are randomly drawn from 8
2. The noises are drawn

from a Gaussian distribution with different variances σ2. The results of the attacks
are expressed using the success rate. To compute the success rates the experiments
have been redone 1000 times. For each experiment the secret key k? are randomly
drawn over 8

2. To compare the efficiency of the two attacks we compare the number
of traces needed to reach 80% of success.

For the first experiment we choose α =
√

1± ε (i.e., ∀i, αi =
√

1 + (−1)iε).

Case ε = 0.9

In this case 4α4 = 14.480 and according to Theorem 5.6.3, the should outperform
the classical success rate in the interval [0,111]. It can be seen in Fig. 5.14 and 5.15
that in such case when σ2 = 0 or when σ2 = 111 the and the need the same
number of traces to reach 80% of success. First of all, this confirms the soundness
of our model. Second, it validates that, in case of affine model when the target
is proceeded in a non linear part of the cryptographic algorithm, the main factor
which makes attacks different is the . When σ = 3 the needs around 3800 traces to
reach 80% of success whereas the needs around 1000 traces (see Fig. 5.16). This
represents a relative gain of 280%. Compared to the relative gain observed in case
of the Hamming weight model (recall Fig. 5.5), this confirms that the performs
better compare to the in case of an affine model. It can be seen in Fig. 5.17, when

5

112 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

the σ = 4, the number of traces needed to reach 80% of success is around 2500 for
the and around 10000 for the ; this represents a relative gain of 300%.

Case ε = 0.5

When ε = 0.5, 4α4 = 10; consequently, Theorem 5.6.3 predicts that the should
outperform in the interval [0,76]. It can be seen in Figure 5.19 and 5.20 that in
such case when σ2 = 0 or when σ2 = 76 the and the need the same number of
traces to reach 80% of is success. This confirms the results of Theorem 5.6.3.

It can be seen in Fig. 5.21 that when σ = 3 the needs around 1000 traces to reach
80% of success whereas the needs 3500 traces. The relative gain of use the is
250%. When σ = 4 then the number traces needed by the to reach 80% of success
is around 3000. The number of traces needed by the is around 9000. The relative
gain of the with respect to the is 200%.

For one bit attacks

The best case for compared to the is when all the bits are zero except one (see
Appendix C). Let us compare the two attacks in a such case. We assume that all
the coordinates of α are equal to zero except the most significant bit. As 4α4 = 64
the Useful Interval of Variance is [0,508]. It can bee see in Fig.5.24 that when the
noise is null both attacks perform in the same way. It confirms that also in this
case the difference resides in the . When σ = 8 the reach 80% of success with
25000 traces whereas the needs 175000; this represents a relative gain of 600%
(see Fig. 5.25).

5.7. Practical validation
This section presents the results of the multivariate attack exploiting the table re-
computation stage on true traces.

5.7.1. Experimental Setup

The traces are electromagnetic leakages of the execution of an AES-128 assembly
implementation with table recomputation. Our implementation has been loaded
on ATMEL ATMega163 8-bit to be analyzed. This smartcard is known to be leaky.
It contains 16Kb of in-system programmable flash, 512 bytes of EEPROM, 1Kb
of internal SRAM and 32 general purpose working registers. The smartcard is
controlled by a computer through the Xilinx Spartan-VI FPGA embedded in a
SASEBO-W platform. The ATMega is powered at 2.5 V and clocked at 3.57 MHz.

5.7. Practical validation

5

113

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(a) σ = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 250000 500000 750000
S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(b) σ = 10.54.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(c) σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 7500 15000 22500

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(d) σ = 4.

Fig. 8: Comparison between 2O-CPA and MVATR for ε = 0.9

5

114 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(a) σ = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 150000 300000 450000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(b) σ = 8.71.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(c) σ = 3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 7500 15000 22500

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(d) σ = 4.

Fig. 9: Comparison between 2O-CPA and MVATR for ε = 0.5

5.7. Practical validation

5

115

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(a) σ = 0.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100000 200000 300000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(b) σ = 8.

Fig. 10: Comparison between the 2O-CPA and the MVATR in case of one bit
model in presence of high Gaussian noise

The measurements were taken using a LeCroy wave-runner 6100A oscilloscope by
means of a Langer EMV 0–3 GHz EM probe and PA-303 30 dB Langer amplifier.
The acquisitions have been acquired with full bandwidth and with a sampling rate
of FS = 500 MS/s.

To build our experiments 13000 traces have been acquired. Each trace contains
12 million leakages samples in order to simplify our analysis we only acquired the
table recomputation step and the first round of the AES.

5

116 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

5.7.2. Experimental results

Let us first study the results of the attack in terms of success rate. The leakage
function as been recovered using a linear regression. For example the normalized
vector of weight for the leakage of the first share is

α = (0.95,1.22,0.98,1.13,0.59,1.01,1.04,0.95) .

Both the and the target T ⊕ k?⊕M as in our implementation the input and output
masks are the same.

It can be seen in Fig. 5.27 that the results of the two attacks are similar. Both attacks
perform similarly because the curves are not noisy.

Indeed the average values of the of the 256 leakages of the masked random index
(Φ (ω)⊕M) and the of the 256 leakages of the random index (Φ (ω)) is 5.

If we assume that the variance of the signal is equal to two (such as HW on 8-
bit CPUs) then the variance of the noise is less than 0.5. The mask (M) and the
key-dependent share (T ⊕ k? ⊕M) leak with a of 14 which corresponds to a noise
variance of 0.1, which is very low (compared to the upper bound of the useful
interval of variance given in Theorem 5.4.3, namely 60).

This two results are specific to the implementation and a clear disadvantage for the
. But even in this case the works as well as the , this shows that there is (generally)
a gain to use the .

In order to confirm these results let us verify that when the noise increases the
outperforms the . Let us add an artificial Gaussian noise with a standard devia-
tion of 0.0040. This models the addition of a countermeasure on top of the table
recomputation. Then it can be seen in Fig. 5.28 that in this case the outperforms
the . This confirms the practicality of our attack, and also that the gain is in the .

5.7. Practical validation

5

117

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(a) Comparison on raw traces

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(b) Comparison with noise addition

Fig. 11: Comparison of the SR of the MVATR and the 2O-CPA

5.8. Countermeasure
The represents a threat against block ciphers with table recomputation step. In
order to mitigate this new vulnerability we present in this section a countermea-
sure, depicted in Alg. 4. This countermeasure will ensure the security against the
new proposed attack. We present it in the context of a first order masking scheme
but this countermeasure is generic and as a consequence can be applied in a higher
order masking scheme such as the masking scheme of Coron.

Remark 8 The proposed countermeasure tackles the input masks vulnerability. The
protection of the output mask is easier as all the output masks can be different for all the
table entries.

5

118 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

5.8.1. Countermeasure Principle

The core idea of this countermeasure is to randomly draw permutations not all
over the possible permutations but only over a particular kind of permutations:
the ones which are commutative with S (the SubBytes function).

Definition 11 A permutation f :n2→
n
2 is said to be commutative with respect to the

function g :n2→
n
2 and the composition law if and only if f (g (x)) = g (f (x)) ,∀x ∈n2.

Exploiting this kind of function the countermeasure principle is as follow: as ran-
dom permutation, a commutative permutation with respect to S is drawn. Let us
call the permutation γ . Exploiting the commutative property of the random per-
mutation, γ(S[ω]) is computed instead of S[γ (ω)] (line 5 of Alg. 4). Contrast this
line with line 5 of Alg. 2. As a consequence if an attacker combines the leakages of
the random mask index (line 4) and the random index (line 5) the obtained value
depends very little in the masks m and m′ (see in-depth analysis in Sec. 5.8.3).

Algorithm 4: Shuffled masked table recomputation, with our additional counter-
measure
input : Genuine SubBytes S :n2→

n
2 bijection

output: Masked SubBytes S ′ :n2→
n
2 bijection

1 m←R n
2, m′←R n

2 // Draw of random input and output masks

2 φ←R n
2→

n
2 // Draw of random permutation of

n
2, permuting with S

3 for ω ∈ {0,1, . . . ,2n − 1} do // S-Box recomputation loop

4 z← φ(ω)⊕m // Masked input

5 z′← φ(S[ω])⊕m′ // Masked output

6 S ′[z] = z′ // Creating the masked S-Box entry

7 end
8 return S ′

5.8. Countermeasure

5

119

5.8.2. Implementations

The major issue of the countermeasure in an implementation perspective is to ran-
domly generate a commutative permutation.

A first approach could be to generate off-line a large enough set of permutations
and store them into the device. At each execution using a random number, a per-
mutation will be selected. Of course such approach can be prohibitive in terms of
memory need and as a consequence is not applicable.

A probably better approach is to generate on-the-fly a commutative permutation.
In this subsection we give an example of a such algorithm. The idea is to ran-
domly generate a power (with respect to the combination law) of the SubBytes : S
bijection.

Definition 12 The power p ∈N of the function S is given by:

Sp : n
2 −→ n

2

x 7−→ S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸
p

(x) ,

where ◦ denotes the composition law.

The bijections Sp :n2−→
n
2 and S :n2−→

n
2 are commutative ∀p ∈N.

In order to generate a random power of S it is possible to directly compute Sr by
applying r times the permutation S where r is a random number. Notice that r can
be larger than the number of possible power S by the group law property of the
combination. But this approach can be time consuming.

In a view to accelerate this operation, the use of the cycle decomposition of S
may be an interesting approach. Let us recall this well known theorem: [Theo-
rem 5.19 [126]] Let Sn be the symmetric group of n elements then each element of
Sn can be expressed as a product of disjoint cycles.

The maximum number of exponentiations needed to compute Sp could be re-
duced from p to p (mod l1) + p (mod l2) + . . . + p (mod lm) where the li denote
the respective length of the cycles in the cycles decomposition of S. Notice that
l1 + l2 + . . .+ lm = 2n.

We can express S as S = c1 ◦ c2 ◦ . . . ◦ cm by Prop. 5.8.2. As the order of a cycle is
equal to its length l we have that:

Sp = cp (mod l1)
1 ◦ cp (mod l2)

2 . . . ◦ cp (mod lm)
m .

5

120 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

Let us take as example of S the SubBytes function of AES. This permutation can
be decomposed on five disjoint cycles of respectively length l1 = 59, l2 = 81, l3 =
87, l4 = 27, l5 = 2. The order of S in this case is lcm(59,81,87,27,2) = 277182.
As a consequence the computation of S277182 requires a maximum of 256 table
evaluations.

5.8.3. Security Analysis

The security provided by this countermeasure results from different working fac-
tors. Of course the first one is to ensure that the is still unfeasible or at least less
effective than the which would remain feasible. We validated this security us-
ing simulation with the same setup as in Subsect. 5.4.4. Namely we assume that
each value leaks its Hamming weight with a Gaussian noise of standard deviation
σ . A total of 1000 attacks has been realized to compute the success rate of each
experiment.

The attacker can combine multiplicatively γ (S[ω]) with γ (ω). The results of the
attack resulting from this combination can be found in Fig. 5.32 for two different
noise standard deviations. We can immediately see that in this case the does not
allow to recover the key.

The second working factor for the countermeasure of Alg. 4 is the number of pos-
sible commutative permutations. Indeed if this number is too low an attacker can
test all the permutations and build attacks such as in [110]. For example using the
possible powers of S in AES, we reach a total count of 277182 bijections commu-
tating with S, which is hard to exhaustively test but remains possible.

Of course another aspect of the countermeasure is the security of the permutation
generation itself against possible Side Channel Analysis. If an attacker is able for
example to recover: p (mod l1), p (mod l2), . . . , p (mod lm), he will be able to re-
cover the random permutation. This means that at least the exponentiation of S
should be executed in constant time.

5.8.4. Implementation analysis

The countermeasure presented previously may have an impact both on the time
and on the entropy needed for the table recomputation step. Interestingly the
entropy i.e., the number of random bytes needed, is smaller in our new counter-
measure. Indeed in the case where the non-linear operation is built using the S-box
of AES our new countermeasure needs less than 5 bytes of entropy whereas in the
case of shuffle implementation 256 bytes are needed2.

2Of course this reduction may have an impact on the security especially in the case where an attacker
performs an exhaustive search overall the permutations

5.8. Countermeasure

5

121

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(a) σ = 2.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

S
u
cc

es
s

ra
te

Number of traces

2O-CPA

MVATR

(b) σ = 3.

Fig. 12: MVATR with commutative bijection as countermeasure (Alg. 3)

Implementation Time

0.810 µs

0.861 µs

23,700 µs (i.e., 23.7 ms)

3.03 µs

Table 5.1: Time needed for the table recomputation

5

122 5. Multi-Variate High-Order Attacks of Shuffled Tables Recomputation

The other important implementation parameter is the execution time of the table
recomputation. In order to evaluate it, we implement in C a classical table re-
computation without any countermeasure denoted by , a shuffled version denoted
by where the permutation is drawn over all the possible permutations. We also
implement our countermeasure in a naïve approach denoted by and finally our
countermeasure exploiting the cycle decomposition denoted by . The summary of
the different times of table recomputation execution can be found in Table 5.1.

The profiling has been done using GPROF on an i5-6198DU CPU running at 2.30 GHz.

It can be first noticed that the naïve approach leads to a prohibitive overhead while
the implementation using the cycle decomposition is computed in a reasonable
supplementary amount of time. As a consequence we can deduce that this coun-
termeasure can be an interesting alternative to avoid the attacks presented in this
article. Finally the time needed to generate the random permutation is small. In-
deed both the implementation with and without shuffle have almost the same ex-
ecution time. Nevertheless these results may be slightly different on embedded
systems where the random generation could be costly.

5.9. Conclusions and Perspectives

The table recomputation is a known weakness of masking schemes. We have re-
called that practical countermeasures (e.g., shuffling with a high entropy) could be
built to protect the table recomputation. In this article, we have presented a new
multivariate attack exploiting the leakage of the protected table that outperformed
classical HODPA even if a large amount of entropy is used to generate the counter-
measure. This multivariate attack gives an example of a HODPA of non-minimal
order which is more efficient than the corresponding minimal order HODPA. We
have theoretically expressed the bound of noise in which this attack outperforms
HOCPA using the . Then we have empirically validated this bound. Interestingly,
we show that if the leakage model consists in a linear combination of bits, then our

5.9. Conclusions and Perspectives

5

123

attack becomes all the better as the model gets further away from uniform weights
(so-called Hamming weight model). Moreover, we have shown that the relative
gain to use the multivariate attack grows linearly with the order of the masking
schemes. This result highlights the fact that the study of masking scheme should
take into account as second parameter the number of variables exploitable by these
attacks. Indeed we have shown in this article that when the number of variables
used to perform the attacks increases, the order does not alone provide a criterion
to evaluate the security of the countermeasure, and that the SNR is a better security
metric to consider.

In future works we will investigate how to protect table recomputation against
such attacks and investigate the cost of such countermeasures, evaluate the threat
of such attacks on high-order masking schemes implemented on real components.
We will also investigate how multivariate attacks could be applied on other mask-
ing schemes and protection techniques. And then, we will quantify the impact of
these attacks.

Acknowledgments

The authors would like to thank Annelie Heuser for fruitful comments and inter-
esting discussions. Besides, we acknowledge Prof. Olivier Rioul for guidance about
the relationship between success rate and signal-to-noise ratio.

6
Feature Selection Methods

for Non-Profiled
Side-Channel Attacks on ECC

Elliptic curve cryptography (ECC) is a public key cryptosystem which is widely
used for different real world applications. With the introduction of side-channel
attacks, there is a growing concern regarding the security of such implementations.
Indeed, side-channel attacks have been reported to break even the theoretically
secure ciphers due to the exploit in the physical leakage. The non-profiled side-
channel attacks, especially are considered more serious than the profiled counter-
part, as the former can work in almost black box setting. Several attacks have been
proposed, however, one of the main issue normally encountered is regarding the
selection of relevant features from the side-channel signal. For ECC implementa-
tion, normally the side-channel measurements will contain lots of irrelevant points
which could hinder the effectiveness of the attack. For profiling scenario, these fea-
tures can be determined, since the attacker has full knowledge, however, for black
box non-profiled setting, this might pose an issue. In this work, we investigate dif-
ferent feature selection approaches to improve the accuracy for non-profiled attacks
on ECC. We demonstrate the effectiveness of proposed methods on real measure-
ments from FPGA and microcontroller targets, achieving accuracy comparable to
profiled case (88.6% and 98.4% respectively).

125

6

1266. Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC

6.1. Introduction

Elliptic Curve Cryptography is based on the difficulty of computing the discrete
logarithm problem over elliptic curves (ECDLP). The classical cryptanalysis mainly
focuses on efficiency improvements to compute the ECDLP, but so far, there is no
efficient classical algorithm to compute the ECDLP for large enough key sizes. On
the other hand, in practice, other attacks are more relevant, for instances side-
channel analysis (SCA) [127].

SCA normally exploits the physical properties of the implementation. When con-
ducting SCA, the attacker observes one or few specific physical traits of the target
implementation such as the time, power consumption or electromagnetic emana-
tions (EM) and derives the key from these observations using statistical methods.
For ECC, there are many proposed attacks, which exploit different properties of
the algorithms [128].

For most of the attacks, the attacker needs to know the (public) input data, or has
to perform a profiling step with known secret inputs to successfully derive a secret
key. A simple approach to protect against many of such attacks is randomization
based countermeasures. In contrast, unsupervised attacks have the potential to
render most of these countermeasures ineffective, because they do not require any
knowledge about the input data, neither the public or the private part. The attacks
are applied on randomized scalars with minimum assumptions. The original scalar
can be deterministically computed once randomized scalar is recovered.

As the measurement signal be performed in several milliseconds and contain mil-
lions of sample points, direct application of the attack technique is not optimal.
The main challenge is to identify few relevant sample points or features in the
measured signal which would lead to a successful attack. In the present paper, we
explore different approaches for feature selection and compare these to a profiled
attack. While success rate of profiled attack represents the best case, bit-wise pro-
cessing of scalar brings random guess success to 50% (worst case). In this paper,
we evaluate a pool of feature selection methods commonly used in side-channel
testing, in context of unsupervised attacks.

The rest of the paper can then be organized as follow: In Section 6.2, we provide a
brief description of the related work. Section 6.3, we provide the description of the
proposed approach. Practical experiments are discussed in Section 6.4 and finally,
in Section 6.5, we conclude the paper.

6.2. Related Work

6

127

6.2. Related Work

The application of unsupervised clustering or feature selection algorithms is a rel-
atively new topic. One of the first publications used the k-means clustering al-
gorithm [129]. Instead of using a two step approach, feature selection first and
then clustering the traces with a reduced set of features, they directly apply the
k-means clustering on the set of traces. To improve the success rate, the authors
use several low-noise localized EM measurements. An improved version of this
attack applied PCA for dimensional reduction to improve the success rate further
[130]. The main drawback of the general approach is, that it is not applicable in a
high-noise environment.

The more recent work [131] proposes a two step approach. They basically follow
the framework from [132] and adapt it to ECC. In principle, the procedure is iter-
ative in nature. A preliminary leakage assessment step is used to identify a first
approximate of the leaking samples in the trace. In a second step, the identified
preliminary features are used to cluster the traces. Then, based on this clustering a
refinement step is performed, which leads to better set of features. The final attack
on the actual trace to attack is carried out using the refined set of features. This at-
tack framework works very well on both ECC and RSA. The two papers report very
high success rates in many cases for both ECC and RSA. The main target in [131] is
only on key dependent processes. However, in general, there might be some noise
attributed to other data dependent leakage which might not be interesting to the
attacker. Hence, in this work, we consider an alternative approach which might
help to mitigate this problem.

6.3.Methodology

In this section, we will briefly describe different statistics we propose to use for
feature selection, as well as the classification method. Based on these methods, we
then choose sufficient number of relevant features and conduct the attack.

6.3.1. Trace Characterization

Computations in an Elliptic Curve Scalar Multiplication (ECSM) operation are seg-
mented and performed in a loop, where each segment is corresponding to one bit
of the secret scalar. Since the implementations of the ECSM operation are rec-
ommended to be fairly regular across all key bits to avoid timing side channels
and SPA attacks, it allows us to analyze trace segments corresponding to only one
bit of the scalar (which we henceforth refer to as traces for brevity) across multi-
ple scalars for feature selection. The resulting selected features thus apply to the

6

1286. Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC

traces corresponding to other key bits as well. We acquire a set of traces T with n
traces ti for i ∈ [0,n − 1] and we denote a sample of length L with index j as tij for
j ∈ {0,L−1}. Each of the traces correspond to one of the two labels (0 or 1) equal to
the corresponding secret scalar bit processed.

6.3.2. Feature selection

In a supervised attack scenario where the attacker knows the labels corresponding
to the different traces in the trace set T , the attacker can partition the traces into
two sets T0 and T1 and apply the commonly used univariate Welch’s t-test (also
known as TVLA [133]) and select those samples as features that correspond to a
high TVLA value. But, in an unsupervised scenario, where the attacker does not
know the labels, the attacker can follow two approaches. The first approach is a
label-dependent approach, wherein first he uses certain clustering algorithms such
as the univariate k-means [134] over all the samples of the trace. Further, a cluster
of two classes c0,j and c1,j for each sample j is obtained. The clusters are then
evaluted using the following approaches.

– Difference-of-Mean (DoM) [94]: The difference of the means of the two
clusters are calculated as DoMj =m0,j−m1,j and samples with high DoM
are selected as features.

– Welch’s t-test [135]: The technique is the same as that of the profiled
case, except that the t-test is applied over the clusters with predicted
labels (P0,j & P1,j) instead of actual labels.

– Normalized Inter-Class Variance (NICV) [136]: NICV is another met-
ric used for leakage detection similar to the TVLA (t-test) metric and a
sample with high value of NICV can be classified as a feature.

While these methods require preliminary estimation of the labels for each sample,
the attacker can also attempt to select features solely based on the distribution of
the data. For this, we consider the following approaches:

– Variance: One can compute the variance of the samples for a fixed index
j as Varj and repeat the same for all samples and select those samples
with high variance as features. This is based on the argument made by
Clavier et al. [137] that samples corresponding to high activity due to
manipulated data have a large variance compared to samples with low
or constant activity independent of the algorithmic input.

– Range: Computing the range for each sample j as Rangej = max
1≤i≤n

tij −

min
1≤i≤n

tij across traces follows a similar rational as variance, but has the

possibility of giving rise to many outliers.

6.3. Methodology

6

129

The features that we are interested in are those that help distinguishing traces
based on the value of the corresponding processed key bit, which can be alterna-
tively termed as key-dependent features. But, it is important to know that there are
also samples that depend on the value of the intermediate data processed, which
can be termed as data-dependent features. While combining key-dependent fea-
tures will increase the success probability of key-recovery, data-dependent fea-
tures are simply random and add noise due to randomness of the intermediate
data, which is independent of the processed key bit. Since all the above mentioned
approaches look at each sample individually in a univariate manner, it is definitely
possible that some of the irrelevant and random data-dependent samples are also
selected as features.

On the assumption that, there are multiple key dependent leakage points in a sin-
gle trace, we claim that all the key-dependent features observable across all traces
in the trace-set are very highly correlated. For example, consider a set of P key-
dependent features of a trace t processing bit k as (f1, f2, . . . , fP−1), the time samples
of trace t corresponding to these features (tf1 , tf2 , . . . , tfP−1

) all will belong to the
same class k of their corresponding univariate clusters (ck,f1 , ck,f2 , . . . , ck,fP−1

). But,
the same cannot be said for a data dependent feature as it is very unlikely to find
two highly correlated data-dependent leakage points on the same trace due to the
randomness of the intermediate data. Thus, we propose to adopt a multi-variate
approach wherein we use the covariance metric to identify key-dependent features
at two different indices (positions) on the trace.

For all pairs of possible indices u,v with u,v ∈ {0,L−1}, we calculate the covariance
of vectors tiu and tiv with i running from {0,n − 1}, which we denote as Covu,v . We
thus build a corresponding covariance matrix for the trace set T of size (n×L). We
identify those entries in the matrix which have a very high magnitude for covari-
ance and consider the corresponding pairs to be highly correlated. A high positive
value at entry (u,v) indicates that the position of the class k is the same in the cor-
responding univariate clusters cu and cv and thus Sign(DoMu) = Sign(DoMv). A
high negative value otherwise indicates that the position of class k is switched in
the respective univariate clusters leading to opposing signs for their DoMs. But, it
is a well known fact in side channel analysis that any point in the trace is always
very highly correlated with itself and its neighboring points. Thus, barring the
neighboring pairs of points, which are the entries near the diagonal of the covari-
ance matrix, an entry with a high magnitude of covariance conveniently far from
the diagonal can be considered to be key-dependent features with very high con-
fidence. Unlike the previous works on unsupervised attacks on ECC [129–131],
we are able to distinguish key dependent features from data dependent features
which will subsequently increase the attack success rates.

6

1306. Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC

6.3.3. Classification Phase

Once the key-dependent features have been identified, most of the previous works [129–
131] propose to utilize the multi-dimensional k-means classification algorithm
over the identified features for classification. It might also be possible that the
number of selected features might be too high for the k-means algorithm, thus
bumping into a clear case of the curse of dimensionality. We here propose a much
simpler technique for classification which only requires calculation of the mean
of a subset of the selected features. From the selected set of P̃ relevant features
F = (f0, f1, f2, fP̃−1) from the feature selection phase, we select only that subset of
features which pairwise correlate to a very high positive value, through which we
get a clear partition of the feature set resulting in disjoint subsets F0 and F1. The
attacker can choose either of the partitions and calculate the mean of the samples
at the respective features of the selected partition (F0 or F1), thereby assigning a
score of si for the trace ti for all i ∈ {0,1}. Assuming we have approximately equal
number of traces corresponding to both the key bits (which is easily maintained
by the randomness of the key), we calculate the mean of all the assigned scores si
to be the global threshold for classification. This leaves us with only two possible
values of the key depending on position of the class in the resulting cluster.

6.4. Experiments

In this section, we describe the implementation details of the targetted ECSM oper-
ation, the devices used, the evaluation setup and the corresponding experimental
results. We target two different ECSM implementations, one on a hardware and
the other on a software target to show the applicability of our attack.

6.4.1.Hardware Implementation and Evaluation Setup

It is a custom straightforward hardware design of an ECSM operation on a twisted
Edwards curve Ed25519 [138] implemented using the Joye’s double and add lad-
der [139] and extended projective coordinates [140]. The design is implemented
on Virtex-5 FPGA on the standard side-channel evaluation board SASEBO-GII. The
access pattern of the registers directly depends on the key bit used and thus, the
difference in address of the registers used manifests as key-dependent leakage.
The implementation is constant-time and devoid of conditional branches to protect
against timing side-channel attacks. The implementation run at 24 MHz and mea-
surements were performed using a Lecroy 610Zi oscilloscope synchronised with
a suitable trigger from the design. A set of 4000 traces (2000 for each bit) with a
sampling rate of 500 MSam/s were collected using high-sensitivity EM probe.

6.4. Experiments

6

131

6.4.2. Software Implementation and Evaluation Setup

The protected version of the popular µNacl library, which implements the ECSM
operation on Curve25519 using the Montgomery ladder and randomized projec-
tive coordinates, is tested on ATmega2560 on an ARDUINO MEGA board running
at 16 MHz. The design uses cswap (conditional swap) operation leading to key bit
leakage (refer to [141]). The measurement setup is the same as before.

6.4.3. Experimental Results

We performed the feature selection methods as described in Section 6.3.2, and we
compared the results with the profiled scenario. Accuracy is used as comparison
metric to evaluate the performance of different feature selection methods. We ob-
tained 300 features based on each method. For profiled case, the features are ob-
tained using t-test method (TVLA) on the labeled dataset. We also include the co-
variance based method to consider the bivariate feature selection scenario. The ex-
periments are then conducted on 2 sets of data, collected from FPGA and ATmega
respectively. The measurements from ATmega were misaligned when acquired
leading to failure of attack. Thus, traces were realigned for further analysis. For
profiling based attack, from the set of traces, the traces are divided for training and
testing using 80:20 ratio (3200 traces for training and 800 for testing), whereas for
non-profiled scenario, all the traces are used for the attack.

The accuracy results are then presented in Figure 6.1. As observed in the figure,
the features obtained from the profiled TVLA approach yields the highest accu-
racy (96% for FPGA implementation and 99.9% for realigned microcontroller im-
plementation). Most of the applied techniques surpass random guess. Among dif-
ferent methods, covariance based approach performs consistently better than the
other approach. For the FPGA implementation, the achieved accuracy is 88.6%,
whereas for aligned microcontroller implementation, the achieved accuracy is 98.43%.
For other statistics, however, the results are less consistent. For example, in FPGA
case, interval range gives the second best accuracy (84.75%), followed by variance
(81%) and DoM (80%). However, for microntroller case, their accuracies are in the
range of 55 - 65%, whereas, taking the t-test gives accuracy of 93.6%

Hence, in these examples, we have shown that the proposed covariance approach
can result in better accuracy, and has consistent performance across different target
implementations.

6.4.4. Discussions

One of the issue that might arise for unsupervised feature selection is to determine
the number of features used for the attack. Unlike profiling attack, in unsupervised

6

1326. Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC

50 100 150 200 250 300
No. of features

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

FPGA implementation

profiled
DoM
t-test
NICV.
range
variance
covariance

(a)

50 100 150 200 250 300
No. of features

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Microcontroller Implementation (aligned)

profiled
DoM
t-test
NICV.
range
variance
covariance

(b)

Figure 6.1: Accuracy of different feature selection methods, on different target implementations

6.5. Conclusion

6

133

scenario, there is no label available to evaluate the accuracy directly. One idea for
evaluating the features selected is to use the internal metric evaluation commonly
used in clustering. We then choose Silhouette index [142] and DB index [143].
Normally, these metrics are used to evaluate number of clusters, however, in [131],
they apply these metric to evaluate the quality of the cluster (since the initializa-
tion of the cluster is randomized) to determine the best resulting cluster. Similarly,
we use these metrics to determine the optimal number of features. We conduct
preliminary experiments on FPGA traces for the same and the optimal number of
features returned by both the metrics (maximum value for Silhouette and mini-
mum value for DB index) agrees with the best accuracy results. The results are
presented in Figure 6.2. However, for the same experiments on the AVR microcon-
troller, the optimal number of features returned did not exactly correlate with the
best accuracy. This could be due to misalignment in the traces. A good method for
selecting number of features is still an open question.

k

We could alternatively use deep learning to deal with misalignment. As shown
in [144], in the presence of jitter countermeasure, Convolutional Neural Network
(CNN) [145] can help to identify the targeted leakage parts in the traces. In our
case, we targeted the misaligned traces (similar effect to jitter countermeasure). In
profiling scenario, we could achieve the accuracy of 97 - 100% (as compared to
51.9% for profiling case with misaligned traces) without the need for realignment.
Hence, a potential future work is to optimize the CNN algorithm for the misalign-
ment case and extend it to the case of unsupervised scenario.

6.5. Conclusion
In this work, we have investigated different approaches for improved feature selec-
tion from ECC traces. It has been shown that choosing relevant features could help
to improve the performance of the classification process. It has been shown that
considering individual feature during the unsupervised phase might lead to the
selection of non-optimal features unrelated to the targeted secret. Here, we pro-
posed using covariance method (considering two points or bivariate) and showed
that the proposed approach could minimize the selection of irrelevant feature and
could help improving the accuracy of the classification. We also discussed some
potential approaches which could further improve feature selection which we con-
sider for future work.

6

1346. Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC

0 50 100 150 200 250 300
No. of features

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y/
In

de
x

FPGA Implementation

covariance
Silhouette
DB index

(a)

0 50 100 150 200 250 300
No. of features

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y/
In

de
x

Microcontroller Implementation (aligned)

covariance
Silhouette
DB index

(b)

Figure 6.2: Comparison between accuracy and returned estimation from Silhouette and DB index

IV
Active Side-Channel Attacks

and countermeasures

135

6

137

In accordance with the structure outlined in Figure 1.1, this section is focused on
the third constraint, which is the resistance of cryptographic algorithms to fault
injection attacks. Fault injection attacks are a type of attack that involves deliber-
ately introducing faults or errors into a cryptographic system in order to exploit
vulnerabilities and extract sensitive information.

In recent years, fault injection attacks have become increasingly prevalent, partic-
ularly in the context of embedded systems and IoT devices that are often subject
to resource constraints. Therefore, the ability of a cryptographic system to resist
fault injection attacks is a crucial aspect of its overall security.

This section will explore the various methods and techniques that can be employed
to enhance the fault resistance of cryptographic algorithms, including the use of re-
dundancy, randomization techniques and physical detection. Additionally, we will
investigate the trade-offs that come with implementing these countermeasures, in-
cluding increased computational overhead and resource utilization. Through this
exploration, we aim to provide a comprehensive understanding of the strategies
that can be employed to bolster the fault resistance of cryptographic systems, and
their associated benefits and limitations.

7
SoK : On DFA Vulnerabilities
of Substitution-Permutation

Networks

Recently, the NIST launched a competition for lightweight cryptography and a
large number of ciphers are expected to be studied and analyzed under this compe-
tition. Apart from the classical security, the candidates are desired to be analyzed
against physical attacks. Differential Fault Analysis (DFA) is an invasive physical
attack method for recovering key information from cipher implementations. Up
to date, almost all the block ciphers have been shown to be vulnerable against
DFA, while following similar attack patterns. However, so far researchers mostly
focused on particular ciphers rather than cipher families, resulting in works that
reuse the same idea for different ciphers.

In this article, we aim at bridging this gap, by providing a generic DFA attack
method targeting Substitution-Permutation Network (SPN) based families of sym-
metric block ciphers. We provide the overview of the state-of-the-art of the fault
attacks on SPNs, followed by generalized conditions that hold on all the ciphers of
this design family. Furthermore, we propose a novel approach to find good fault
masks that can leak the key with a small number of instances. We then developed
a tool, called Joint Difference Distribution Table (JDDT) for pre-computing the solu-
tions for the fault equations, which allows us to recover the last round key with a
very small number of pairs of faulty and non-faulty ciphertexts.

139

7

140 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

7.1. Introduction

Substitution-Permutation Network (SPN) is a fundamental design strategy for block
ciphers, with many primitives using SPN either for a part of their design or as the
main design concept. An SPN consists of one or more (usually many) iterations of
the following three operations:

1. Substitution (confusion): The state of the network is divided into words
and a non-linear substitution is applied to each of them. The substitu-
tion function can be the same for all of them, or different functions can
be used for different words.

2. Permutation (diffusion): A state-wise permutation is applied. This step
is responsible for propagating the information between the internal state
words as fast as possible.

3. Key mixing: A secret key is mixed with the state, usually using an XOR
operation.

The maximum security level possible for a block cipher is measured by its resis-
tance against brute force attacks, hence by the bit-size of the master key used to
generate the round keys. However, there are many cryptanalytic techniques that
try to push this boundary, by studying the specific properties of the building blocks
of the cipher. Most of these techniques fall into one of two categories:

1. Linear Cryptanalysis: the attacker tries to approximate the cipher as a
group of linear equations between the input, output and key bits, with
high probability.

2. Differential Cryptanalysis: the attacker tries to leak information about
the key bits by observing the differences between different input/output
pairs.

Over the years, many design techniques and studies have been established in order
to build ciphers that are secure against these two types of attacks. The idea in case
of SPN is that the substitution layer provides highly non-linear relations between
bits of internal words, with low maximum difference probability, while the permu-
tation layer mixes these relations together, increasing the complexity. By repeating
these two operations many times (rounds), mixing with (random) key bits in ev-
ery iteration, the plaintext/ciphertext pair should be practically indistinguishable
from two uniformly random vectors. However, if the number of iterations is not
enough, the previous statement cannot be true. Thus, usually cryptanalysts start
by analyzing reduced-round versions of the SPNs in question, while the cipher
designers try to increase the number of rounds beyond the maximum number of
rounds with non-ideal properties.

7.1. Introduction

7

141

Surprisingly, the reduced-round properties of SPNs have been useful beyond the
theoretical analysis and/or defining the minimum required number of rounds for
a cipher. With the emergence of fault attacks as a rising domain in the field of
hardware security, the attacker can change some of the internal bits of the cipher
in the last few rounds and use the properties of only these rounds to leak informa-
tion about the key. For example, there are practical fault attacks against AES that
use the differential properties of 1, 2, 3 or 4 rounds, while classical attacks require
the properties of 10 full rounds. However, in case of fault analysis such as Differ-
ential Fault Analysis (DFA), the attacks generally either rely on heuristic analysis,
empirical data or on general ideas that do not take the specifics of the cipher into
consideration. Similarly, the countermeasures for these attacks are generally ei-
ther at the implementation level [146–148] or at the the protocol/encryption mode
level [149–152].

The systemization of DFA on SPNs started by the work of Piret and Quisquater [153],
where they proposed a somewhat general DFA analysis of AES-like ciphers. Al-
though their attack has been enhanced in several subsequent works, it was still
exclusive to AES-like ciphers. Besides, the complexity of the attack is high and
the complexity analysis is approximate (Section 7.2). Moreover, the attack did not
discuss how to identify the optimal faults thoroughly. On the other hand, in [154],
the authors provided a discussion on the optimality of different DFA attacks, which
we revisit in our paper and identify the advantages and shortcomings of their ap-
proach. Hence, we identified a need for the systemization of DFA attacks on SPNs,
in order to have a general methodology for analyzing SPNs, as opposed to ana-
lyzing each cipher independently. This helps not only to study and compare the
available SPNs in literature, but to analyze future SPNs, as well.

The goal of this paper is to understand why different SPNs behave differently
against DFA, and what properties make an SPN stronger or weaker in this con-
text, achieving a better understanding of how the two layers of an SPN interact
with each other in the context of DFA. We study some of the available DFA at-
tacks against SPNs, identifying the weak points of the SPN design strategy against
DFA. We also find general vulnerabilities of SPNs against these attacks, enabling
us to find new attacks against modern SPN ciphers. The main idea is to find a
new approach to identify a good location for fault injection and quantify the cor-
responding expected amount of information leakage. For most SPNs, the attack of
choice is a single-word fault injected in round r−2 for an SPN with r rounds, using
a 2-round distinguisher. We identify what are the weaknesses that are common
for all SPN ciphers and what are the differences between them. In the process, we
also propose a method for efficiently performing the attacks using a Time-Memory
trade-off, which allows to pre-compute a big part of the analysis, with the ability to
reuse it for any attack instance. We believe the proposed methodology will serve as

7

142 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

a useful tool in analyzing a plethora of ciphers expected to be submitted for NIST
lightweight cryptography competition.

Our Contributions

1. We revisit the information theoretic approach from [154], providing
new insights on how the differential properties of the function attacked
and the fault distribution affect the information leakage, showing that,
for any deterministic non-linear bijective function of the form S(x) ⊕ K ,
where x and K are unknown, the entropy of K can be reduced by cal-
culating S(x ⊕ ∆x) ⊕ K , as long as ∆x is non-uniform. Hence, we show
that it is not possible to design an SPN-based cipher that is inherently secure
against DFA (Sections 7.3 and 7.4).

2. We formalize the complexity of retrieving the master key by injecting
a fault into the last round of an SPN. Next, we propose an approach to
accelerate such attack by reducing the number of faults and maximizing
the information leakage per fault (Section 7.4).

3. Once a good fault location is identified, we propose a new tool for pre-
computing the solutions of the fault equations, called the Joint Difference
Distribution Table (JDDT), based on the fault model, and the properties
of the substitution and permutation layers (Section 7.4.2).

4. We describe a class of SPNs that share a similar 2-round distinguisher
and provide a new method to analyze the differential properties of re-
lated attack and use it to find key candidates for the last round key
by observing a single pair of faulty and non-faulty ciphertexts (Sec-
tion 7.5). We validate this analysis on modern ciphers, such as PRESENT-
80, PRESENT-128, GIFT-64, GIFT-128, AES-128, SKINNY-64-64, SKINNY-
128-128, PRINCE, LED-64 and LED-128 (Section 7.6). We report three
different kinds of results:

M Match optimal results of well-studied ciphers, like AES

O Find optimal attacks for less studied ciphers, superseding previous
known best attacks like PRESENT, LED, PRIDE

N Find new attacks on recently proposed ciphers with no (or little)
public fault analysis like SKINNY, GIFT

5. We discuss some general intuitions or good practices which can help
cipher designers to improve security of their cipher against DFA.

Table 7.1 shows the ciphers analyzed in this paper using our technique, which
is also illustrated in Figure 7.1. It shows that some of the lightweight ciphers are

7.2. Background

7

143

Table 7.1: Comparison between the different ciphers analyzed by our analysis technique. The location
of the fault is considered to be known. N denotes new results, O denotes optimal results compared to
previous results.

Remaining Brute-force Complexity

Cipher Fault Model Implementation 1 pair 2 pairs 3 pairs 4 pairs 16 pairs Attack Type

AES-128 Random Byte Any 28.06 1 1 1 1 M[155]

AES-128 1-Bit Flip Any 20.15 1 1 1 1 O

LED-64 Random Nibble Any 210.4 1 1 1 1 M[156]

LED-64 1-Bit Flip Any 29.5 1 1 1 1 O

LED-128 Random Nibble Any 274.4 220.8 210.4 1 1 M[156]

LED-128 1-Bit Flip Any 273.5 219 29.5 1 1 O

PRESENT-80 4-Bit Flip Any 241 22 1 1 1 O

PRESENT-80 Random Nibble Bit-Sliced 241 22 1 1 1 O

PRESENT-128 4-Bit Flip Any 295 267 234 26 1 O

GIFT-64 4-Bit Flip Any 2111.175 2100.2 286.3 272.4 1 N

GIFT-128 4-Bit Flip Any 2111.175 2100.2 286.3 272.4 1 N

PRIDE 4-Bit Flip Any 2104.6 287.2 272.4 264 1 O

SKINNY-64-64 Random Nibble Any 251 240.4 234.8 25.6 1 M[157]

SKINNY-128-128 Random Byte Any 2102.4 281.28 269.76 211.52 1 M [157]

PRINCE Random Nibble Any 293.2 248 213.2 1 1 M[158]

PRINCE 4-Bit Flip Any 284.16 248 24.16 1 1 O

Other Differential Fault Analyses in Literature

PRESENT-80 [159] 16-bit Flip Any 240 216 26 1 1

PRESENT-80 [160] 1-bit Flip + Side Channel Any 280 276 266 264 1

PRIDE [161] 16-bit Flip Any 286.4 264 222.4 1 1

harder to break. However, none of these ciphers can be considered secure, since the
key can be uniquely identified using at most 12 faulty and non-faulty ciphertext
pairs.

7.2. Background

Differential Fault Analysis (DFA) is the oldest and most popular fault analysis
method targeting symmetric cryptography. Since its inception in 1997 [162], al-
most all the symmetric block ciphers have been shown vulnerable against it.

The working principle of DFA is as follows. The attacker first runs an encryption
procedure on plaintext P with a secret key K without disturbing the computation.
Then, she repeats the encryption with the same inputs, but injects a fault, normally
during the last few rounds of the cipher. She compares the faulty ciphertext with
the correct one and gets information about one of the round keys. Depending
on attacker model and the cipher structure, she repeats the fault injection several
times until the guessing complexity of the key is low enough to get K .

The trend in analyzing block ciphers with DFA usually follows the same pattern
for different encryption algorithms – first, an intuitive approach appears, requiring

7

144 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

0 2 4 6 8 10 12

1

216

232

264

296

2112

Number of Pairs

R
em

a
in
in
g
B
ru
te
fo
rc
e
C
o
m
p
le
x
it
y

AES-128 Random Byte AES-128 1-Bit Flip
LED-64 Random Nibble LED-64 1-Bit Flip
LED-128 Random Byte LED-128 1-Bit Flip
PRESENT-80 4-Bit Flip PRESENT-80 Random Nibble
PRESENT-128 4-Bit Flip GIFT-64 4-Bit Flip
GIFT-128 4-Bit Flip SKINNY-64-64 Random Nibble

SKINNY-128-128 Random Byte PRIDE 4-Bit Flip
PRINCE Random Nibble PRINCE 4-Bit Flip

Figure 7.1: The number of remaining key candidates vs. the number of faulty and non-faulty ciphertext
pairs for the ciphers in Table 7.1

more faults but lower brute-force complexity. Later, researchers tend to develop
more sophisticated techniques that can reveal the secret key with either single or
very low number of faults, while increasing the complexity of the analysis step. As
an example, one can take DFA on AES, that improved from the early approaches
requiring 35-250 faulty encryptions [163, 164], to more recent one that needs just
a single fault [155]. Similarly, first DFA of PRESENT required 65 faults [165], later
decreased to 2 [166].

Related work about DFA on SPNs. The work presented in our paper is closely
related and inspired by the work of Piret and Quisquater [153], which was later
extended and optimized by Tunstall et al. [155]. In this paper, we extend this line
of work in three directions:

1. Instead of performing an approximate analysis of the attack complexity,
assuming ideal primitives (Sbox and diffusion layers), we incorporate
the details of the cipher in question into the analysis. While this leads
to similar results in case of AES, since the Sbox of AES is well designed
(almost ideal) and the diffusion layer uses an MDS matrix, the results
concerning lightweight ciphers are different, due to the non-ideal prim-
itives used. This analysis enables us to compare ciphers with respect to
DFA security, beyond the simple bit security, showing that SPN ciphers
with the same block and key sizes are not necessarily the same when it
comes to security against DFA.

2. The analysis from [153] was targeting AES-like SPNs. We extend our
analysis to a wider class of SPNs to include also bit-permutation based
ciphers, such as PRESENT and GIFT, and SPNs with a diffusion layer that
depends on an almost-MDS matrix, such as SKINNY.

3. We provide a framework for efficiently implementing the computational
part of the attack, showing that a huge part of the attack can be pre-

7.2. Background

7

145

computed only once per cipher and reused to attack as many instances
as required, as opposed to the random search approach used in previous
works.

Multiple-Fault Attacks on SPN. While the definition of whether a fault is con-
sidered a single fault or multiple fault is vague and generally implementation-
dependent, it is usually the case that a single fault is either a single-bit fault or a
fault that is limited to b bits, which is the input size of 1 Sbox. In our analysis, we
consider any fault distribution over more than b bits to be a multiple fault attack
and out of the scope of our paper. However, recently a similar analysis to ours has
been presented by Lac et al. [167] which discusses a multiple-fault model. Their
analysis was described for the LS family of block ciphers, then extended to AES-like
cipher, e.g. AES and LED. The idea of their analysis is to accelerate the attack in Sec-
tion 7.4 by injecting a multiple-word fault to the input of the diffusion layer in the
second last round, such that all the Sboxes in the last round are active, with known
input differences. However, the multiple-word known fault model is less practical
compared to our work and is not suitable for some implementations. Moreover,
in [167] only a special class of Sboxes was considered. Hence, in Section 7.5, we
propose a single fault DFA for a wide class of SPNs.

Multiple-fault attacks were also used to attack PRESENT [159] and PRIDE [161],
with each of these attacks requiring to flip 16 bits simultaneously.

Definitions.

Throughout this paper, we use some definitions for fault models that are listed
below:

– Single fault: a fault whose maximum width is ≤ b, where b is the number
of input bits to the Sbox used in the cipher in question.

– Uniform/Random fault: a fault that can have any value between 1 and
2b − 1, where all the values are equiprobable.

– Constant/Known fault: a fault that has a specific value defined by the
attacker.

For all the faults used in this paper, the location and timing of the faults are as-
sumed to be known to the attacker. In practice, if the attacker is uncertain about
the timing or location of the fault, he needs to repeat the analysis for every possi-
bility.

Practical Fault Models. Three fault models are used throughout this paper:

1. Random fault model: A random byte/nibble is added to an internal
byte/nibble of the cipher. This is the most practical fault model used

7

146 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

in this paper and it has been used in several practical attacks [155, 156,
158].

2. Single bit flip: A specific internal bit of the cipher is flipped. In practice,
it is more complex than the random fault, but it has been shown to be
practical in several papers/attacks [168–171].

3. Four-bit flip: 4 adjacent internal bits are flipped together. While this
requirement can be challenging, it was shown in [159] that such fault
is practically possible. Moreover, there are a few tricks the attacker can
use to get around this requirement. In Section A, we show some tricks
that work around the requirements of this model, showing that for some
implementations, the attacker can achieve the required fault with only
a random fault injection. The idea is that with some knowledge on the
nature of the implementation, the attacker can use a random fault that
can only lead to the required fault value.

7.3. Information Theoretic DFAModel: Towards a the-

oretical security metric for DFA

In an effort to find a theoretical metric for studying the security of ciphers against
DFA, the authors of [154] introduced an information theoretic approach for eval-
uating whether a DFA is optimal or not. Given a fault model at the input of a
function S(x) + k, the authors provided an information theoretic equation that can
be used to calculate the maximum amount of information leakage under that fault
model. First, we present the equation and then we present some results based on
that equation, which contradicts with one of the inferential conclusions the au-
thors made, due to the ambiguity of the mathematical definition of the fault model
in the original paper.

Notation Xi ,Yi ,Zi ,K,∆X,∆Y and ∆Z are random variables defined in Table 7.2.

H(K |Z1Z2) =H(∆X |∆Y) +H(X1|∆X∆Y) (7.1)

Equation 7.1 can be used to calculate the entropy of the Secret Key, knowing a
single pair of faulty and correct ciphertexts [154] (or, generally, any pair of cipher-
texts). The first thing to notice is that ∆Y = ∆Z = Z1⊕Z2, which is public. However,
the equation does not show how to calculate X1 and ∆X. These two variables im-
plicitly hold the information about the function S(x) and the assumption about
the fault model. Assuming a uniform fault model and no knowledge about S(x),
it is straightforward to deduce that no information about the key is leaked and

7.3. Information Theoretic DFA Model: Towards a theoretical security

metric for DFA

7

147

Table 7.2: Notation used in the rest of the paper.

Xi input to the function S(x) at a certain invocation

Yi output of the function S(x) at a certain invocation

K secret key

Zi Yi ⊕K

∆X X1 ⊕X2

∆Y Y1 ⊕Y2

∆Z Z1 ⊕Z2

hence H(K |Z1Z2) = n. In [154], the authors also calculate the entropy of the key
HAES(K |Z1Z2) assuming a uniform fault model and analyze the AES Sbox. Since
HAES(K |Z1Z2) = n, the authors infer that AES Sbox is a good cryptographic func-
tion. While we are not challenging this conclusion, we can show that this analysis
is not conclusive, as this result is achieved due to the uniformity of the fault model
and not because of the properties of the AES Sbox. In addition, we show that it is not
possible to design any SPN that is inherently secure against DFA without randomiza-
tion, where the target security level is considered to be at least the brute force complexity
of searching for x, i.e. O(2|x|).

First, we define s∆x,∆y as the number of solutions of Equation 7.2. Hence,H(X1|∆X =
∆x,∆Y = ∆y) = log(s∆x,∆y). Additionally, since S(x) is a bijective function, P r(∆X =

∆x,∆Y = ∆y) =
s∆x,∆y

2n . Finally, P r(∆X = ∆x|∆Y = ∆y) = P r(∆X = ∆x,∆Y = ∆y), since
∆Y is public and P r(∆Y) = 1.

S(x)⊕ S(x⊕∆x) = ∆y (7.2)

Theorem .7 is used to find the amount of information leakage when the input dif-
ference follows a known distribution. The proofs of required for this section are
available in Appendix .7.

If ∆X is sampled from S , such that |S| = z and P (∆X) = px.then the expected num-
ber of leaked bits of K , when ∆Y is observed is

n−
∑
∆X∈S

pxs∆x,∆y∑
∆Xj∈S s∆xj ,∆ypxj

log(

∑
∆Xj∈S s∆xj ,∆ypxj

px
) (7.3)

Given a pair of faulty and correct ciphertexts Z1 and Z2, if ∆X ∈ {0,1}n is a uniform
random variable, then H(K |Z1Z2) = n, regardless of the properties of the function
S(x). From Corollary .7, we can see that if the fault model is unbiased and unre-
stricted, the key space is not reduced, regardless of the cryptographic properties
of S(x). Hence, any fault model used in DFA must be non-uniform, with respect

7

148 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

to S(x). If ∆X = ∆x (constant), then using one pair (Z1,Z2), the key space can be
reduced from 2n to s∆x,∆y . Only linear (affine) Boolean functions achieves the the-
oretical security bound H(K |Z1Z2) = n∀∆x, regardless of the distribution of ∆X.

Despite that linear/affine functions achieve the required bound in terms of dif-
ferential cryptanalysis, they are not helpful as they can be analyzed using linear
cryptanalysis. For example, a function that looks like z = L(x) + k, where L(x) is
affine and z is known, can be analyzed as L−1(z) = x + L−1(k) and the cipher is then
attacked neglecting this function, with the target to find L−1(k) instead of k, since
we can easily derive one from the other. Theorem .7 can be used to compare the
quality of different fault values and to design attacks that maximize the informa-
tion leakage. If ∆X = ∆x (constant), then the expected number of leaked bits of K
is n−

∑
∆y∈{0,1}n log(s∆x,∆y)P (∆Y = ∆y|∆X = ∆x).

7.4. DFA against the last round of SPN

Theorem .7 and Corollary .7 can be used to provide a generic attack against any
Substitution-Permutation-Network (SPN) that follows the description in Section 9.1.
An important observation is that any linear function at the end of the last round
can be effectively neglected. In other words, if the last step of the SPN is of the
form C = L(x)⊕Kr , where L(x) is a linear function and Kr is the last round key, it
can be converted into L−1(C) = x ⊕ L−1(Kr) and attack the cipher for the effective
key Kef f = L−1(Kr). Then, the real key is calculated as Kr = L(Kef f). Hence, in the
generic attack we consider this a standard step of no additional cost.

Using this structure, the space of last round key Kr of any SPN can be reduced
using the following procedure. We assume the cipher has w words per state and
the state size is n. Each word has size b = n

w .

1. For each substitution function in the last round, the Difference Distribu-
tion Table (DDT) is calculated and the minimum entry value is located.
An input difference with such value in the corresponding row is selected
for each function.

2. If the cipher includes a linear function L(x) before the addition of Kr ,
we concatenate the function L−1 to the cipher, such that the output is
L−1(C).

3. Iteratively, we inject a fault by flipping the bits of one word according
to the corresponding input difference. By observing the output differ-
ence and applying Theorem .7, the space of the last round key Kef f bits
XORed with this word is reduced to s∆x,∆y , which is the number of solu-
tions of the DDT for the input/output difference pair (∆x,∆y).

7.4. DFA against the last round of SPN

7

149

4. By repeating this for every word, the overall space of Kef f is reduced
from 2n to

∏w−1
i=0 s

wi
∆x,∆y , where swi

∆x,∆y is the number of solutions for word
wi of the last round, based on the corresponding input/output differ-
ence pair. The number of faults is equal to w.

For widely used ciphers, such as AES, LED, PRESENT and GIFT, the value of s∆x,∆y =
2 for most of the possible input/output difference pairs, and w = 16. Hence, they
require at most 16 faults and the resulting space for the last round key is 216. This
is the simplest DFA attack against SPN. However, depending on the underlying
cipher, optimizations can be found. For example, for the 4 mentioned ciphers, we
can double the number of faults by repeating the fault injection operation for ev-
ery word. While every DFA gives 2 candidates for a key word, the overlap between
these candidates is the right key word, i.e. we get the actual key value. Another op-
timization is to use more sophisticated/smart fault injection mechanism to trigger
many words simultaneously [159, 172]. However, we think that these optimiza-
tions are cipher-dependent and still follow the outline of the generic attack. An-
other aspect that is cipher dependent is the relation between the last round key Kr
and the master key. If the master key cannot be uniquely determined from the last
round key, the attacker can brute force the undetermined bits, which means that
the number of candidates of the master key is the number of candidates for the last
round key multiplied by the exponent of difference between the sizes of the two
keys, 2|Km |−|Kr |, where, Km is the master key and |X | is the bit length of X. Another
solution, is to use the last round key candidates to decrypt the last round and use
the same DFA attack to get candidates for the second-to-last round keys and try to
compute the master key using the two sets of candidates, this can be repeated until
enough round keys are obtained.

Since this is a generic attack, we can characterize the cipher by 2|Km |−|Kr |·min(
∏n−1
i=0 s

wi
xy) =

2|Km |−|Kr | ·
∏w
− 1
i=0min(∆x,∆y)(s

wi
xy). This shows the complexity of retrieving the master

key using an instantiation of the attack.

7.4.1. Reduction of the number of faults

In this section, we describe a framework for accelerating the key recovery using
lesser number of faults than what is described in Section 7.4. The goal of the at-
tacker is to recover the key with the minimum number of faults possible, while
keeping the differential analysis simple. For example, injecting the difference in
the input block will maximize the number of active Sboxes, but the analysis of the
faulty ciphertexts requires the full differential cryptanalysis of the cipher to be fea-
sible, which contradicts the security of the cipher. In order to achieve that, he has
to trigger more than one Sbox at once, while trying to maintain that the difference
propagation remains simple. While it is hard to find the exact minimum number

7

150 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

of faults required, we describe a heuristic approach to approximate this minimum
value. First, we define two properties of the Sboxes involved in the SPN.

Definition 13 Interacting Sboxes two Sboxes are interacting if the outputs of these two
Sboxes are combined together in the Linear Diffusion Layer.

Definition 14 Active Sbox is an Sbox for which the input difference is not equal to 0
when a certain fault is injected in the SPN.

The goal of the attacker is to find the fault value/location that maximizes the num-
ber of active Sboxes while keeping the number of interacting Sboxes minimal. For
example, for an attacker who can inject a known-byte fault at the input/output of
any of the Sboxes of AES, his goal to maximize the number of active Sboxes in the
final few rounds, while the number of interacting Sboxes has to be 0.

Example 1: Application to LS SPNs

The LS family of SPNs was proposed by Grosso et al. in 2014 [173]. The target
of this family is to be able to have very efficient bit-sliced implementations. One
round of the cipher is described as follows: a block of n ×m bits is organized into
an array:

b0
0 b0

1 · · · b0
m−1

b1
0 b1

1 · · · b1
m−1

. . · · · .

. . · · · .

. . · · · .

bn−1
0 bn−1

1 · · · bn−1
m−1

(7.4)

Then, a non-linear substitution operation is performed on each column using an
n-bit Sbox, followed by a linear diffusion operation applied on each row, using an
m-bit linear function. Finally, the round key is XORed. The previous steps are
repeated for r rounds. In [167], the authors proposed a DFA on this family, where
a fault is injected in one of the rows before the diffusion layer in round r − 1, such
that the input to r has exactly one row where every bit is flipped. This activates
every Sbox in round r with the same input difference ∆x and output difference ∆yi .
Consequently, the space of Kr is reduced to

∏n
i=0 s∆x,∆yi . However, since the DFA

from [167] usually requires a fault over a large word of width 8 bits or more, de-
pending on the row length, it is considered to be a multiple fault attack, if m > n.
An interesting question would be if it is possible to find a set of low Hamming

7.4. DFA against the last round of SPN

7

151

weight differences, such that the bits whose value is 1 are located near each other,
i.e. the set bits are spread over ≤ n bits, such that when these differences are ap-
plied to the input of the linear diffusion layer, the output difference has a high
Hamming weight value. In other words, we trigger as much Sboxes as possible
with a low Hamming weight fault. For example, we describe a toy-cipher that is
constructed in an LS structure, using the AES Sbox and MixColumn operations.
The state consists of an 8×32 bit array, as follows:

b0
0 b0

1 · · · b0
31

b1
0 b1

1 · · · b1
311

. . · · · .

. . · · · .

. . · · · .

b7
0 b7

1 · · · b7
31

(7.5)

Each round of the cipher consists of 32 column-wise Sbox operations, followed by
8 row-wise MixColumn operations. If the attacker can flip any 8 adjacent bits,
there are 130 32-bit fault values that are spread over only 8 bits and trigger at least
24 Sboxes. However, the highest number of Sboxes that can be triggered with such
model is 29 out of 32 Sboxes, with only a single value achieving this bound. Hence,
for our toy cipher, the maximum number of active Sboxes, while maintaining the
number of interacting Sboxes at 0, is 29. It is also noticeable that it is impossible
for this toy cipher to have exploitable faults in any round except the last round
where the number of active Sboxes is larger and the number of interacting Sboxes
is 0.

In case of SCREAM [174], the state is a 16×16 bit array. Hence, a single fault accord-
ing to our definition can be up to 16 adjacent bits. However, since 16-bit Sboxes are
not common in practice, and since the bit-sliced implementation provided by the
designers targets 8-bit microcontrollers, we search for fault masks that are spread
over at most 8-bits. We consider two cases, the first case is when the 8 bits are any
8 adjacent bits at the input of the linear layer, while the second is when the 8 bits
are exactly either the top half or the bottom half of the input. In the first case, the
maximum number of active Sboxes is 14, while in the second case, it is 13. This
means that in order to attack the last round of the cipher and activate more than
14 Sboxes, the fault has to be spread over 9 or more bits.

7

152 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

Example 2: Application to SKINNY

SKINNY is an AES-like block cipher presented in CRYPTO 2016 by Beierle et al. [175].
It is targeted for lightweight applications and uses the Tweakey framework to pro-
vide the possibility of using it as a tweakable block cipher [176]. It has 6 versions, 3
of which use 64-bit blocks and 4-bit nibbles/Sboxes, while the other 3 use 128-bit
blocks and 8-bit nibbles/Sboxes. The master key sizes are 64, 128, 192, 128, 256,
384, for each of them, respectively. Generally, a version tagged SKINNY-n-m uses
n-bit blocks and m-bit tweakeys. Being an AES-like cipher, it follows our descrip-
tion nicely, except that the mixing layer uses a non-MDS MixColumn matrix given
below:

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

(7.6)

Since 2 columns have 3 non-zero elements and 2 columns have 1 non-zero element,
injecting a fault in round r − 2 activates at most 3 Sboxes only in round r − 1, and
if the fault is injected in the proper nibble/byte, it can activate at most 7 Sboxes
in round r, which is less than half the number of Sboxes, distributed as follows: 2
columns with 3 Sboxes, 1 column with 1 Sbox and 1 column with 0 Sboxes. If a
nibble/byte fault is injected in round r−3, the number of interacting Sboxes cannot
be equal to 0.

7.4.2. Joint Difference Distribution Table (JDDT)

We can define a single round of an SPN as a group of non-linear functions S(x),
where S(x) consists of a linear part (diffusion layer) and a non-linear part (Sbox).
The main idea of the JDDT is that when a single word difference ∆ is injected into
the input of the diffusion layer in round j, the inputs to n corresponding Sboxes in
round j + 1 are not independent, but are {l1(∆), l2(∆), ...ln(∆)}, where li(x) is a linear
function from 1 word to 1 word, which corresponds to the difference propaga-
tion through the diffusion layer. Hence, instead of analyzing each of the Sboxes
in round j + 1 independently, we develop a Joint Difference Distribution Table
(JDDT) for the n Sboxes, which is actually a portion of the DDT of the function
[A1,A2, ...An]← S({a1, a2, ...an}). The JDDT of n Sboxes consists of exactly 2−(n−1)b

rows of the overall DDT of S(x). The purpose of the JDDT is to provide candidates
for the output value of S(x), given ∆ and the output difference.

7.5. Three Round DFA Attack on SPNs

7

153

We compute the JDDT as follows: we consider all the 24b possible output differ-
ences and divide them into four b-bit differences. We use each of these values to
access the corresponding DDT and find all the possible input differences corre-
sponding to this value. Typically, for good Sboxes, these would be four lists of
around 2b−1 values each, which means 24(b−1) possible values for the difference at
the output of the diffusion layer. However, only a subset of these values satisfies
the relation {l1(∆), l2(∆), l3(∆), l4(∆)}. Hence, they are tested and only the solutions
corresponding to valid differences are stored into the JDDT.

7.5. Three Round DFA Attack on SPNs

In this section, we describe a single fault DFA attack against a family of SPN-based
block ciphers. This family includes majority of the widely used SPNs, such as AES,
LED, PRESENT and GIFT. The advantage of the attack described in this section is that
it uses a single-fault injection and a single pair of faulty and correct ciphertexts.
It can be used as a security metric for an SPN against DFA attacks. The family of
SPNs we consider has the following properties:

1. The state of the cipher consists of w words, each of b bits divided into g
groups, where w = 4g and g mod 4 ≡ 0 .

2. Each round consists of a substitution layer that operates on every word
individually, using a non-linear Sbox, followed by a diffusion layer that
consists of two parts: shuffling and mixing.

3. The shuffling step generates new groups, such that every group consists
of 4 words from 4 different groups in the previous round.

4. The mixing step performs a linear operation on the words of every group,
such that every output word depends on the 4 input words. In other
words, the mixing step operates on each group independently.

5. Every word at the output of the substitution layer of the current round
affects exactly one group of the next round.

6. Every 4 groups before shuffling are mapped into 4 groups after shuf-
fling.

7. There exists at east one word difference value δo, such that when exactly
one word is active in round j, with difference δo at the input of the dif-
fusion layer, 4 words are active at the beginning of round j + 1 and 4
groups are active at the beginning of round j + 2.

These steps are depicted in Figure 7.2.

7

154 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

δo
. . .

. . .

. . .

. . .

r − 2

shuffling
δo

. . .

. . .

. . .

. . .

mixing

l0(δo)

l1(δo)

l2(δo)

l3(δo) . . .

. . .

. . .

. . .
Kr−2

l0(δo)

l1(δo)

l2(δo)

l3(δo) . . .

. . .

. . .

. . .

substitution

δs1
δs2
δs3
δs4 . . .

. . .

. . .

. . .

r − 1

shuffling

δs1 δs2 δs3 δs4
. . .

. . .

. . .

. . .

mixing
f
(1)
0 (δs1)

f
(1)
1 (δs1)

f
(1)
2 (δs1)

f
(1)
3 (δs1)

f
(2)
0 (δs2)

f
(2)
1 (δs2)

f
(2)
2 (δs2)

f
(2)
3 (δs2)

f
(3)
0 (δs3)

f
(3)
1 (δs3)

f
(3)
2 (δs3)

f
(3)
3 (δs3)

f
(4)
0 (δs4)

f
(4)
1 (δs4)

f
(4)
2 (δs4)

f
(4)
3 (δs4) . . .

. . .

. . .

. . .
Kr−1

f
(1)
0 (δs1)

f
(1)
1 (δs1)

f
(1)
2 (δs1)

f
(1)
3 (δs1)

f
(2)
0 (δs2)

f
(2)
1 (δs2)

f
(2)
2 (δs2)

f
(2)
3 (δs2)

f
(3)
0 (δs3)

f
(3)
1 (δs3)

f
(3)
2 (δs3)

f
(3)
3 (δs3)

f
(4)
0 (δs4)

f
(4)
1 (δs4)

f
(4)
2 (δs4)

f
(4)
3 (δs4) . . .

. . .

. . .

. . .

substitution

∆s
01

∆s
11

∆s
21

∆s
31

∆s
02

∆s
12

∆s
22

∆s
32

∆s
03

∆s
13

∆s
23

∆s
33

∆s
04

∆s
14

∆s
24

∆s
34

. . .

. . .

. . .

. . .

r

shuffling

∆s
01

∆s
02

∆s
03

∆s
04

∆s
11

∆s
12

∆s
13

∆s
14

∆s
21

∆s
22

∆s
23

∆s
24

∆s
31

∆s
32

∆s
33

∆s
34

. . .

. . .

. . .

. . .

mixing

g0(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g1(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g2(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g0(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g0(∆s
11, . . . ,∆

s
14)

g1(∆s
11, . . . ,∆

s
14)

g2(∆s
11, . . . ,∆

s
14)

g3(∆s
11, . . . ,∆

s
14)

g0(∆s
21, . . . ,∆

s
24)

g1(∆s
21, . . . ,∆

s
24)

g2(∆s
21, . . . ,∆

s
24)

g3(∆s
21, . . . ,∆

s
24)

g0(∆s
31, . . . ,∆

s
34)

g0(∆s
31, . . . ,∆

s
34)

g0(∆s
31, . . . ,∆

s
34)

g0(∆s
31, . . . ,∆

s
34) . . .

. . .

. . .

. . .
Kr

ciphertext output

g0(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g1(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g2(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g0(∆s
01,∆

s
02,∆

s
03,∆

s
04)

g0(∆s
11, . . . ,∆

s
14)

g1(∆s
11, . . . ,∆

s
14)

g2(∆s
11, . . . ,∆

s
14)

g3(∆s
11, . . . ,∆

s
14)

g0(∆s
21, . . . ,∆

s
24)

g1(∆s
21, . . . ,∆

s
24)

g2(∆s
21, . . . ,∆

s
24)

g3(∆s
21, . . . ,∆

s
24)

g0(∆s
31, . . . ,∆

s
34)

g0(∆s
31, . . . ,∆

s
34)

g0(∆s
31, . . . ,∆

s
34)

g0(∆s
31, . . . ,∆

s
34) . . .

. . .

. . .

. . .

denoted
as

∆00

∆10

∆20

∆30

∆01

∆11

∆21

∆31

∆02

∆12

∆22

∆32

∆03

∆13

∆23

∆33
. . .

. . .

. . .

. . .

Figure 7.2: 3 Round DFA on SPNs

In case of AES, and LED, the last property is satisfied by all word differences, hence
the attack can be launched with a random difference. On the other hand, in case
of PRESENT or GIFT, this property is only satisfied when all the bits of the chosen
word are inverted, i.e. δ = [1111]2. A random fault in the case of AES is not to
be confused with the uniform fault model in Theorem .7, since S(x) in this attack
will be a 4 word to 4 word function consisting of the mixing layer followed by 4
Sboxes. Hence, the fault model used for AES is a restricted fault, picked from only
256 possible input values out of 232 values.

The attack consists of an offline phase and an online phase. In the offline phase,
first, we perform a slight modification to the SPN during the analysis. Instead
of each round consisting of Substitution, Shuffling, Mixing and Addition of the
round key Kr , we consider it to consist of Substitution, Shuffling, Addition of the
effective round key L−1(Kr) and finally, Mixing. In this view, we merge Mixing and
Substitution into one function S(x). Then, we generate the extended DDT of the
Sboxes in this function. Finally, we compute the JDDT for this function.

In the online phase of the attack, once the output difference of a group is obtained,
the JDDT is accessed, and based on the assumptions on the input difference values
(fault model, Sbox/Mixing differential properties, etc), a set of potential output
values is required. These values are XORed with the ciphertext to get a set of key-
words candidates of this group. The time complexity of the attack is O(24b+2) S(x)
operations. Since a full encryption consists of around g × r S(x) operations, the
time complexity can be represented as O(24b+2

g×r) encryptions. The space complexity

is the space required to store the JDDT, O(25b). The number of key candidates is
|Ks | × 24b(g−4)+|Km |−|Kr |, where |Ks | is the size of the key space for the four attacked
groups after the analysis and is a characteristic of the cipher.

7.6. Single Fault Attacks against real world SPNs

7

155

The number of key candidates can be further reduced by generating all the can-
didates for the outputs of round r − 1 and performing the online phase again for
each, then keeping only the keys that satisfy a specific relation between Kr and
Kr−1, such that both round keys represent a valid key schedule from the same mas-
ter key. In round r − 1 only one group is active, hence we can solve only for 4 key
words. For every Kr candidate, we get |K ′s | ≤ 24b candidates for these four words.
Eventually, the key space size temporarily grows to |K ′s | × |Ks | × 24b(g−4)+|Km |−|Kr |.
However, given the key scheduling algorithm of the cipher, which is used to gen-
erate round keys, we consider the relationship between the 4 words of round r − 1
and the 16 words of round r. Pks ≤ 1 is the probability that such relation holds,
assuming uniformly random bit assignment. Hence, the final key space size is
Pks × |K

′
s | × |Ks | × 24b(g−4)+|Km |−|Kr | and the overall complexity of the online phase of

the attack is bounded by O(|KS |×24b(g−4)

r), which is the brute force cost of the second
step of the attack. It is to be noted that the second step may not always lead to
better results, as it depends on the key schedule of the cipher. For the attacker to
gain from this step, the condition Pks × |K

′
s | � 1 should be satisfied.

7.6. Single Fault Attacks against real world SPNs

In this section, we first study the DFA on PRESENT-80, an SPN based on bit permu-
tations. To the best of our knowledge, no single fault attack with a small number
of pairs have been reported so far against it. We also discuss applying our tech-
nique to AES-128, showing it matches the best known attack against AES. Besides,
we apply our technique to SKINNY, since is has some unique properties that can
be exploited to achieve more efficient attacks. We provide more case studies in
Appendix .6.

7.6.1. PRESENT-80/128: Finding Optimal Attack

PRESENT [177] is a lightweight block cipher proposed by Bogdanov et al. in CHES
2007. It targets applications such as RFID tags and sensor networks. It has been
extensively studied over the years. [178] provides an analysis of the differential
properties of PRESENT. In [159], the authors use a multiple fault model to attack
it, flipping all the bits of 4 specific words at the same time. Since the fault model is
specific and hard to achieve, they rely on a hardware Trajan to inject it. In [160], the
authors presented a single fault attack on PRESENT. However, the attack requires
side-channel assistance (namely power measurements) in order for the analysis to
work, which is not required in this paper. At the end of this section we compare
the attack from [160] to our attack.

7

156 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

Table 7.3: The 4-bit Sbox used in the PRESENT cipher

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

sb(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 7.4: The bit permutation used in PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

PRESENT consists of 31 rounds, each round operates on a 64-bit block and con-
tains three operations: addRoundKey, sBoxLayer and pLayer. addRoundKey is
described as follows

sj ← sj ⊕ kj (7.7)

where j is the round index and sj , kj are the cipher state and round key at round

j, respectively. The next step is to divide the state sj into 16 4-bit nibbles b(i)
j , i.e.

sj = b(0)
j b

(1)
j . . .b

(15)
j . Each nibble is replaced using the Sbox function sb(x), defined

using Table 7.3. The 16 parallel Sboxes represent the sBoxLayer.

Finally, the pLayer is described as a bit permutation P (i) over 64 bits, where i
refers to the bit index. The permutation is described in Table 7.4. For the purpose
of the analysis in this paper, we describe the permutation using a different, yet
equivalent, representation. The new representation consists of the shuffling and
mixing operations described in Section 7.5. The shuffling operation starts after the

sBoxLayer, by grouping the 16 b(i)
j into four groups, where each group is a column

in the following matrix.

M =

b
(0)
j b

(1)
j b

(2)
j b

(3)
j

b
(4)
j b

(5)
j b

(6)
j b

(7)
j

b
(8)
j b

(9)
j b

(10)
j b

(11)
j

b
(12)
j b

(13)
j b

(14)
j b

(15)
j

(7.8)

Then, the shuffling operation is defined as the matrix transpose operation Mt .

7.6. Single Fault Attacks against real world SPNs

7

157

Table 7.5: The mixing operation in PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
′
(i) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Hence, the mixing operation can be described as 4 parallel instances of the permu-
tation in Table 7.5, where a bit i is i-th bit of the nibble g+bi/4c×4, and g ∈ {0,1,2,3}
is the group number. A somewhat similar representation of PRESENT was used for
efficient software implementations in [179].

This representation makes some of the properties of the pLayer more clear:

1. The bits of nibbles b(g)
j ,b

(g+4)
j ,b

(g+8)
j ,b

(g+12)
j (before shuffling) depend com-

pletely on the bits of nibbles

b
(4g)
j ,b

(4g+1)
j ,b

(4g+2)
j ,b

(4g+3)
j .

2. If only one nibble in group g is active at the input of the mixing opera-
tion with difference δ, the number of active nibbles after mixing is equal
to the Hamming weight of δ.

3. If only one nibble 0 ≤ i ≤ 3 in group g is active at the input of the mixing
operation, then all the active nibbles after mixing have the same differ-
ence δ

′
= 2i .

Property 2 can be used to show that if one nibble is active at the input of the mixing
operation, then only δ = [1111]2 leads to 4 active nibbles at the output. Property
3 can be used to find the value of the output differences from {1,2,4,8}. Hence, by
injecting a fault δ in nibble i in the output of the sBoxLayer in round 29, a differ-
ence equal to 2i mod 4 is injected in the 4 nibbles of group bi/4c. In round 30, the
sBoxLayer changes these differences into {δ0,δ1,δ2,δ3}, then the shuffling opera-
tion distributes these four differences into 4 different groups. By using property 2,
we can show that the number of active Sboxes in round 31 (the final round), is the
Hamming weight of the vector v = [δ0 δ1 δ2 δ3]. In order to study the properties of
the vector v, we need to study the differential properties of the Sbox. The analysis
here refers to the differential cryptanalysis of PRESENT performed by Wang [178].
Depending on where the fault [1111]2 is injected in round 29, four Sboxes in round
30 are triggered with difference 2i mod 4 ∈ {1,2,4,8}. Table 7.6 represents the part of
the DDT of the Sbox used in PRESENT corresponding to these values. The second-
to-last column, µHW , is the average Hamming weight of the output difference, cor-
responding to the given input difference and a random value. It is clear that the
maximum average number of active Sboxes in round 31, given a fault of [1111]2 in
round 29, is 12 and it is achieved when i ≡ 3 mod 4. In other words, the best loca-
tions, in terms of diffusion, to inject the fault are nibbles 3, 7, 11, or 15. Similarly,
the value of the differences at the input of the active Sboxes in round 31 depends
on the fault locations: [0001]2 for i = 3, [0010]2 for i = 7, [0100]2 for i = 11, and

7

158 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

Table 7.6: Part of the DDT of the Sbox used in PRESENT

0 1 2 3 4 5 6 7 8 9 A B C D E F µHW EXP(SOLs)

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0 2.5 22

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0 2.25 21.25

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0 2.25 21.25

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4 3 21.5

[1000]2 for i = 15. The last column of Table 7.6 shows the expected number of
solutions of the Sbox output value, assuming the given input difference and a ran-
dom value, calculated using Theorem .7. It shows that the information leakage is
maximized when i ∈ {7,11}. Analyzing the last round using the attack described in
Section 7.5, the number of candidates of the last round key |Ks | is given by

|Ks | = 21.25×12 × 164 = 231 (7.9)

which shows a leakage of 34 bits by applying. In order to perform the second step
of the attack, we need to look at the key scheduling algorithm of PRESENT and
study the relation between the active bits of rounds 30 and 31.

PRESENT-80

The key scheduling algorithm for PRESENT-80 works as follows:

1. The master key Km is stored in an 80-bit register as: [K79K78...K0].

2. The current round key Ki is given by [K79K78...K16].

3. [K79K78...K0]← [K18K17...K0K79K78...K19]

4. [K79K78K77K76]← sb([K79K78K77K76]).

5. [K19K18K17K16K15]← [K19K18K17K16K15]⊕ round_counter.

Assuming the contents of the register at round 31 are [κ79κ78...κ0], then the con-
tents at round 30 are

[κ60κ59... ˜κ19 ˜κ18 ˜κ17 ˜κ16 ˜κ15...κ0]sb−1([κ79κ78κ77κ76])[κ75κ74...κ61] (7.10)

Besides, the round keys are given by

K31 = [κ79κ78...κ16] (7.11)

K30 = [κ60κ59... ˜κ19 ˜κ18 ˜κ17 ˜κ16 ˜κ15...κ0]truncate(sb−1([κ79κ78κ77κ76],3)) (7.12)

where truncate(x,3) return the 3 most significant bits of x.

If the fault is injected in round 29 in nibble 7, then nibbles 1, 5, 9 and 12 are active
in round 30, with an Sbox input difference equal [1000]2. The correct solutions for

7.6. Single Fault Attacks against real world SPNs

7

159

Table 7.7: The probability of having a key space of size k after 2 fault injections

k 0 1 2 3 4 5 6 7 8 P r(x ≤ 8)

P r(x = k) 0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030 0.979

these nibbles of K30 must satisfy

[κ52κ51κ50κ49κ36κ35κ34κ33κ20 ˜κ19 ˜κ18 ˜κ17κ4κ3κ2κ1] (7.13)

Since κ4,κ3,κ2, and κ1 are not used in K31, the probability of satisfying the con-
dition Pks = 2−12. Besides, since the 4 nibbles have an input difference of [1000]2,
and using Table 7.6, the number of solutions |K−1

s | for the 4 active nibbles of K30 is
26. Hence, combining steps one and two of the attack, the number of candidates
of K31 becomes 225, and the number of master key candidates becomes 241, with
complexity 231.

On the other hand, if the fault is injected in round 29 in nibble 11, then nibbles
1, 5, 9 and 12 are active in round 30, with an Sbox input difference equal [1000]2.
The correct solutions for these nibbles of K30 must satisfy

[κ56κ55κ54κ53κ40κ39κ38κ37κ24κ23κ22κ21κ8κ7κ6κ5] (7.14)

Similar to the previous case, 12 conditions must be satisfied. Hence, the analysis
is the same. If the attack is applied twice (2 fault injections), the second time leads
to a new set of 241 keys is calculated. However, the probability of one or more
of the wrong key candidates overlapping the first set, i.e. the probability that the
size of intersection between the two sets ≥ 1, can be computed using the Binomial
distribution. The experiment is defined as selecting a uniform random key 80-
bit vector, and it is successful if the selected key is one of the 241 keys calculated
during the first attack. Hence, p = 2−39 and P r(X ≤ k) =

∑k
i P r(X = i), which is also

the probability of the key space size to k with 2 faults. Table 7.7 shows that the
key space is reduced to at most 8 keys (77-bit leakage) after 2 fault injections, with
probability 97.9%.

7.6.2. AES-128: Matching Best Known DFA Attack

AES [180] is considered as the standard block cipher for most applications. It was
selected in 2001 by NIST through a public international competition. The design
details can be found in [181]. It follows the description in Section 7.5 directly,
with the ShiftRows operation representing shuffling and the MixColumns opera-
tion representing mixing. Moreover, since the MixColumns operation is designed
to achieve the maximum branching number of 5, it follows immediately that if ex-
actly a single byte at the input of MixColumns is active, all the four output bytes

7

160 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

must be active. Hence, a uniform random byte fault model will serve the purpose
of the attack described in Section 7.5. However, as shown in the attack in PRESENT,
sometimes it is easier to achieve a single-bit fault, e.g. bit-sliced implementation.
We are going to study both cases in this section. We refer to [180] for a full descrip-
tion of AES.

Similar to PRESENT, the number of solutions of Equation 7.2 where S(x) is the Sbox
function, s∆x,∆y , is either 0, 2 or 4 for any given pair (∆x,∆y) except (0,0). However,
as the AES Sbox is an 8-bit function, this means that the probability of any of
these pairs where the number of solutions is not zero is much lower. Moreover,
the DDT of the AES Sbox is more structured, such that for any given non-zero ∆x,
the number of values ∆y that correspond to 0, 2 and 4 solutions s∆x,∆y are 129,
126 and 1, respectively. Hence, for any input fault difference and a random input
value, the expected number of solutions for the output value of that Sbox is 21.0156

solutions, according to Theorem .7. On the other hand, unlike the case of PRESENT,
the diffusion in AES does not depend on any properties of the output value of the
Sbox.

In order to asses the attack in Section 7.5, we need to study not just the properties
of the DDT, but also the properties of the JDDT described in the attack. By inject-
ing a single byte fault ∆ in the input of the MixColumns operation, the four byte
differences at the input of the Sboxes are {δ,δ,2 · δ,3 · δ}, or a rotation of this set,
depending on which byte in the input is faulted. Hence, the number of solutions
in the JDDT for an input difference δ and output difference {∆1,∆2,∆3,∆4}, is the
number of solutions {y1, y2, y3, y4}, such that δ1 = 2 · δ,δ2 = δ,δ3 = 2δ, and δ4 = 3 · δ.
This number is equal to s2·δ,∆1

×sδ,∆2
×sδ,∆3

×s3·δ,∆4
. We can apply Theorem .7 on the

32-bit function constructed by performing the MixColumns operation followed by
4 parallel Sboxes for two cases:

1. δ ∈ {0,1}8 − {0}8 is a uniformly random variable (px = 1
255): This case

is valid when the attack in Section 7.5 with a uniformly random fault.
Given the output difference value, {δ1,δ2,δ3,δ4} represent a 32-bit ran-
dom vector, selected from 1274 possible values. However, 24 conditions
are imposed by the MixColumns equations. This limits the number of
possibilities to 1274

224 = 23.95. First, for simplicity, we assume that all the
possibilities are equiprobable. Using Theorem .7, the expected number
of solutions for any given 32-bit difference at the output of the mixing
operation is 24×1.0156 = 24.0624 solutions, then the overall expected num-
ber of solutions is 28.01. Since the AES state 4 columns (groups), step
1 of the attack in Section 7.5 reduce the last round key space from 2128

values to |KS | = 232.05. Applying step 2 of the attack, we get |KS ′ | = 28.01.
For AES-128, |Km| = |K10| and a single round key is enough to deduce the
master key and, hence, all the other round keys. Therefore, every can-

7.6. Single Fault Attacks against real world SPNs

7

161

didate for K10 imposes 32 conditions on the 32 active bits of K9, leading
to Pks = 2−32. To sum up, after applying the two steps of the attack, the
expected number of key candidates is 28.06, with complexity O(232.05).
To assess the expected number of key candidates after applying the at-
tack twice, we use a similar binomial distribution to the one used to
assess PRESENT. Since, P r(X = 0) = 1 − 2−111.88 ≈ 1, therefore, it is ex-
pected that the attacker can uniquely identify the key using two faults
with overwhelming probability. A similar result has been achieved by
Tunstall et al. in [155], where they concluded that when a single fault is
injected in round 8 at the input of the MixColumns operation, the key
space can be reduced to 28 candidates. The analysis was specific to AES-
128 and it used an approximation regarding the expected number of
solution for each Sbox. Hence, the analysis in our paper is more generic
and more conservative, showing that the number of key candidates af-
ter one fault is expected to be ≈ 4.2% more than what they originally
estimated.

2. δ is the output difference of an AES Sbox triggered by a constant input
difference: This case is valid the attack in Section 7.5 with a constant
fault. As discussed earlier, for some implementations, e.g. bit-sliced
software implementations, it might be easier to inject a fault in a spe-
cific bit of the state. In such cases we use a stronger fault model, where
δ = δo, such that δo is a constant known to the attacker and has a Ham-
ming weight of 1. For this model, the first part of the analysis is similar.
However, every difference δi at the input of the Sbox is restricted to 127
out of 255 values (as a known difference ∆x for the AES Sbox can lead
to 127 possible values for ∆y). Hence, the number of key candidates

after step 1 is reduced by a factor of 127
255

4
, leading to a total number of

key candidates |KS | = 228.02. In step 2, |KS ′ | = 24.0624, since we need to
solve only for δo. Since Pks depends on the conditions derived from the
key scheduling algorithm and not the fault model, it remains the same.
Consequently, the overall number of key candidates for this fault model
is 20.09.

In order to verify the previous results, we have implemented the pre-computation
algorithm described in Section 7.5 for each case. We calculated the average number
of leaked bits for every possible output difference (2554 possibilities), according to
Theorem .7. The computation was performed on an AMD Opteron 6378 quad-
core processor. The average number of solutions for case 1 is ≈ 28, and computing
the JDDT (the pre-computation phase) takes around 14 CPU-Hours. For case 2,
we need two JDDTs. The first one is for the first step of the attack, where δ can
take 1 value with probability 2−6 and 126 values with probability 2−7. The second

7

162 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

table is for the second step of the attack, considering a constant input difference.
The first table is computed in 30 CPU-Hours on the same machine and leads to
27.03 solutions per group on average. The reason of the time overhead compared
to the random case is to calculate the conditional probability distribution used
in Theorem .7. The second table is computed in 3 CPU-Minutes and leads to an
average of 24.034 solutions, for δ = 1. The resulting key space has a size of 20.154 or
1.1 candidates. Most of the time the key can be identified with a single fault.

7.6.3. SKINNY: Matching Best Known DFA Attack

A similar analysis to the analysis of SKINNY in this section was recently inde-
pendtly reported by Vafaei et al. [157]. We briefly discussed the diffusion of SKINNY
in section 7.4.1. While SKINNY does not exactly fall in the family of SPNs we are
considering in this section, since the MixColumns matrix is not an MDS matrix,
most of the analysis still applies to it. If the injected fault follows a uniform distri-
bution, then according to Theorem .7 and the fact that there are no Mix-Column
equations to reduce the space of this fault, the column with 1 Sbox cannot be used
to reduce the key space, but can only be used when the input difference follows a
non-uniform distribution. For example, the JDDT of the function constructed by 3
of the SKINNY 4 bit Sbox, such that all the input difference have to be equal shows
an expected reduction from 212 to 24.36029 solutions for a uniform fault model. By
analyzing the MixColumns matrix of SKINNY, we can find the best location for in-
jecting the fault in round r − 2 is any nibble/byte of the third row, i.e. b8,b9,b10
or b11 at the input of the MixColumns operations. The activity pattern of the last
round Sboxes is as follows (up to a cyclic rotation of the columns):

1 0 1 1

1 0 0 0

0 0 1 0

1 0 1 0

(7.15)

However, since the round key is added only to the first two rows, the key recovery
method is slightly different from other AES-like cipher. The output value of the
Sboxes in rows 2 and 3 in the last round is visible to the attacker. Hence, the
attacker can use the invert those Sboxes and find the input differences to them.
Since the input difference to all active Sboxes in the same column is the same,
then the attacker knows the input difference to 3 of the Keyed Sboxes. Using this
knowledge, he can reduce the key nibbles/bytes of these Sboxes to an expected
value is 21.4 key candidates for SKINNY-64-64 and 22.88 for SKINNY-128-128, using

7.6. Single Fault Attacks against real world SPNs

7

163

Table 7.8: The active Sboxes in the last round of SKINNY for every fault location

Fault location in round r − 2 Vulnerable Sboxes in round r

b8 b0,b2,b4

b9 b1,b3,b5

b10 b2,b0,b6

b11 b3,b1,b7

Theorem .7, reducing the size of the key space of the last round key to ≈ 224.2

for SKINNY-64-64 and ≈ 248.64 for SKINNY-128-128, while the size of the master
key space is reduced to 256.2 and 2112.64 respectively. Since there are four potential
good fault locations, in Table 7.8 we sum up the vulnerable Sboxes in the last round
corresponding to each of these faults. We can observe that after 4 pairs of fault and
non-fault ciphertexts, all the Sboxes in the last round have been activated, with
b0,b1,b2 and b3 activated twice. This leads to reducing the number of candidates
of the last round to between an average of 25.6 and 211.52 candidates for SKINNY-64-
64 and SKINNY-128-128 respectively. Overall, The last round key can be uniquely
identified with high probability using 4 more pairs. By repeating the attack for
the second to last round, we can reduce master key space to an expected value
of 211.2 and 223, for SKINNY-64-64 and SKINNY-128-128 respectively, after 8 pairs
and uniquely identify the key with high probability of after 16 pairs.

With this result, SKINNY seems to be the most immune cipher against the three
round attack we describe in this paper. However, we show next that the reason it
is immune against this attack is the same reason it is vulnerable to a more efficient
4-round attack, unlike other ciphers.

Four Round Attack on SKINNY

In this section we study the attack when the fault is injected in round r−3 instead of
r−2. The reason this attack is possible is due to the fact that the diffusion in SKINNY
is very slow. While it may not be possible to keep the number of interacting active
Sboxes to zero after 4 rounds, we show that a value of only 2 interacting Sboxes can
be achieved after 4 rounds. We consider the faults after 3 rounds (after applying
ShiftRows and MixColumns respectively):

7

164 7. SoK : On DFA Vulnerabilities of Substitution-Permutation Networks

Table 7.9: The active Sboxes in the last round of SKINNY for every fault location

Fault location in round r − 3 Vulnerable Sboxes in round r

b8 b0,b2,b4,b6,b7

b9 b1,b3,b5,b7,b4

b10 b2,b0,b6,b4,b5

b11 b3,b1,b7,b5,b6

a 0 c d

0 e 0 0

i 0 0 0

0 p 0 m

(7.16)

a⊕ i p c d ⊕m

a 0 c d

i e 0 0

a⊕ i 0 c d

(7.17)

It is worth mentioning the same property of SKINNY was used by Liu et al. [182],
but in a different context and with less details. Since the last round key is added
only to the top two rows, our goal is to find the output values of the top 8 Sboxes,
given the information about the bottom 8. Hence, the attacker already knows the
values of a, i, e, c and d and can reduce the key space of the corresponding key nib-
bles/bytes. In Table 7.9, we show the active Sboxes in the last round corresponding
to each of the four good fault locations. After one fault the number of candidates
of the last round key is expected to be 219 and 238.4 for both versions of SKINNY,
by applying Theorem .7. We can also observe that if we use 4 pairs, every Sbox
in the last round is activated at least twice. While we can repeat the same attack
one round earlier to get the full master key, we notice that the four pairs we have
are already 4 valid pairs for the 3-round attack described in the previous section.
Hence, we can use the same pairs to reduce the space of the round key at round
r − 1. Combining the two attacks together, the number of candidates for the mas-
ter key after only 4 pairs is expected to be 25.6 for SKINNY-64-64 and 211.52 for
SKINNY-128-128. With 8 pairs, the master key can be uniquely identified with
high probability.

7.7. Conclusion

7

165

The DFA attacks against SKINNY apply directly to any SKINNY-n-m version, as long
as only n bits represent the fixed master key and the rest can be controlled by the
attacker.

7.7. Conclusion
In this paper, we presented a generic DFA on SPNs. More specifically, we formu-
lated an information-theoretic model of fault attack in the last round of an SPN
and showed that for any non-uniform fault, the key space can always be reduced.
We proposed an attack method which injects a single fault in the second last round
of a class of SPNs and by using a novel tool, called Joint Difference Distribution Table
(JDDT), the master key of the cipher can be recovered. Our method was evaluated
on various block ciphers, including PRESENT-80, PRESENT-128, GIFT-64, GIFT-128,
AES-128, LED-64, and LED-128.

For the future work, we would like to extend our method to other block cipher
designs. Also, we note that our work can serve as a basis for designing fault resis-
tant block ciphers. Besides, the JDDT method for analysis of SPNs can potentially
be fully automated, which can be integrated with some cryptographic design and
analysis software tools.

8
Fault Injection attack on

Private Circuit II

Cryptographic implementations are subject to physical attacks. Private circuits II
is a proven protection against a strong attacker, able to read and write on a finite
number of chosen internal nodes. In practice, side-channel analyses and fault in-
jections are less accurate: typically, classical injection techniques (clock and power
glitches, electromagnetic pulses, etc.) can be reproducible, but they do not al-
low to choose the targeted nodes (the situation is different for software dual-rail
with precharge logic, such as [183, 184], where (0,1) ↔ (1,0) bitflips are easier
to achieve, since the computation is fully sequentialized [185]). So, a priori, pri-
vate circuits II should be a secure protection against such classical fault injection
attacks.

In this paper, we provide the first implementation of private circuits II in FPGA,
secure against read and/or reset of one internal wire chosen by the attacker. Our
implementation is a manually coded netlist which instantiates LUT6_2 (with dual
outputs, as required for private circuits II). Our design is a SIMON block cipher
programmed in a Spartan 6 Xilinx FPGA. It features a throughput of 142 Mbit/s.
We perform a security analysis, and notice that some exploitable ciphertexts can be
outputted despite the countermeasure. Our analysis reveals that correlated faults
exist because LUT6_2 outputs are produced almost simultaneously. In particular,
the critical path actually consists in a dual-rail pair, which is consistently faulted
together. If this pair is late with respect to the clock rising edge, then the previous
value can be latched instead of the new one. Such fault behaves like a toggle ((01)2
becomes (10)2 or vice-versa) of licit values. They propagate to the ciphertext which

167

8

168 8. Fault Injection attack on Private Circuit II

becomes by the same token susceptible to a differential fault attack. Nonetheless,
we emphasize that such faults require a steady fault injection setup: otherwise,
multiple critical paths are violated, resulting in non-exploitable (fully zeroized)
ciphertexts.

8.1. Introduction
Cryptographic keys are safeguarded in secure hardware devices. Now, implementation-
level attacks threaten the security of such sensitive devices. Those attacks can
be classified in two categories: passive and active. Passive attacks are also known
as side-channel attacks, and consist in collecting physical measurements leaked
through the boundary of a device. Such leakage contains information about the
internal variables handled by the device, which can be sufficient to extract secret
keys. Active attacks rely on perturbations to force the device malfunction. De-
pending on the way the errors propagate within the device, the faulted output
might reveal information about the keys.

Obviously, it is important to protect devices against such attacks. It is admittedly
hard to completely prevent them, let alone because of the overhead incurred by
countermeasures. Thus tradeoffs between security and cost must be devised. The
ideal situation is when a security parameter allows to quantify the achieved secu-
rity level.

Private circuits is the most acknowledged way to provably instantiate a counter-
measure with clear and meaningful security parameter(s). Actually, private cir-
cuits appeared in the literature in two steps, namely private circuits I (PC-I, [186])
and private circuits II (PC-II, [187]). The aim of PC-I is to protect only against
passive attacks. The attacker is assumed to be able to read k wires within a digital
circuit, thereby collecting k bits of information per clock cycle. PC-I is a construc-
tive method which shows how to design a circuit which resists the eavesdropping
by such attacker. The rationale is to entangle random bits with the design so as
to have any tuple of k wires be independent from the (unmasked) sensitive val-
ues. Now, attackers can also be active, and attempt to modify wires in the circuits.
This is the motivation for PC-II: this time, a design method to resist against an at-
tacker who is able to read k chosen wires and overwrite t chosen wires is proposed.
The write operation might be of two types: only reset, or set to an arbitrary chosen
value. The pair (k, t) is the security parameter of PC-II; whatever this pair, PC-II is
able to generate an implementation which is provably secure. The PC-II style adds
redundancy to the netlist in such a way that any change to 1, . . . , t wires will cause
an erasure of data after passing through a logic gate. For instance, when t = 1, the
redundancy is the same as dual-rail with precharge logics [188, Chap. 7], where bit
0 (resp. 1) is encoded as (01)2 (resp. (10)2), whilst (00)2 and (11)2 are illicit values

8.1. Introduction

8

169

used by PC-II as possible erased values.

Today, circuits are difficult to probe due to several reasons: first of all, the number
of metal layers is huge (> 10) for the latest CMOS technologies. Accordingly, chip
designers take proactive protection of sensitive signals by burying them, which
makes them less accessible by a probing station. Besides, backside probing is also
chancy because it is hard to know (at a resolution of a few tens of nanometers) what
can be probed blindly through the silicon wafer. Additionally, backside probing re-
quires costly equipments (called Focused Ion Beam stations), which are expensive
and feature a non-negligible risk of permanently damaging the circuit [189]. Sec-
ond, some technological protections (sensors of circuit lid opening, shields, etc.)
attempt to detect probing attacks.

But there are different ways than probing to perform side-channel and pertur-
bation attacks. Typically, state-of-the-art lab equipments allow to collect side-
channel information without contacting the device. Power analyses only need an
external monitoring of the amount of current flowing through the circuit, while
electromagnetic analyses can be conducted even far away from the circuit. Fault
injection attacks like overclocking or underfeeding do not allow to predict exactly
their effect: the faults can be injected at multiple unpredictable locations inside
the chip. Although slightly more local, electromagnetic pulse injection has also a
coarse area of influence.

In this context, it is interesting to evaluate the suitability of PC-I and PC-II counter-
measures against such macroscopic (by opposition to the microscopic scale of prob-
ing attacks) attacks. In theory, protecting against an attacker who can probe one
wire is sufficient to protect against a first-order attacker, who exploits only the ag-
gregated and noisy leakage from parts or totality of the chip. The same argument
applies to active attacks: a protection which resists arbitrary access to carefully se-
lected (6 t) wires can, all the more, protect against an attacker who is less accurate
in the injected faults of same multiplicity (6 t).

But the study is still worthwhile. For instance, due to implementation constraints,
some requirements of private circuits design style are hard to meet. This has al-
ready been demonstrated on PC-I implementations, where gates are assumed to
evaluate in a precise order. However, it is known that unless every gate is made
synchronous, glitches can occur which break the correct evaluation order require-
ment [190].

Contributions In this paper, we specifically focus on the practical evaluation of
PC-II. Our contributions are three-fold. First of all, we implement for the first time
a block cipher using PC-II, using security parameters k = t = 1. This choice for the
security parameters implies the use of random bits in each gate (since k > 0 for

8

170 8. Fault Injection attack on Private Circuit II

PC-I), and an encoding of each bit of the PC-I netlist as a dual-rail (since t = 1,
value 0 / 1 in PC-I becomes (01)2 / (10)2 in PC-II). Second, we identify a weakness
in our security assumption, which creates an exploitable vulnerability. Shortly,
as PC-II is built on top of PC-I, PC-II inherits implementation constraints from
PC-I; in particular, to avoid glitches, PC-II must be mapped such that dual-rail
signals are balanced. We leverage on the dual outputs of LUT6_2 in FPGA to meet
this constraint. However, such implementation opens the door to correlated faults,
whereby both outputs of a LUT6_2 are faulted together. This negates the attacker
model (t = 1 < 2). However, our a priori security analysis convinced us that it was
apparently difficult to obtain correlated faults of multiplicity two in the practical
setting of overclocking, underfeeding, or strong electromagnetic (EM) fields injec-
tion. Third, we demonstrate an analysis and an attack platform where we can as-
sess experimentally the likelihood of correlated faults to happen and to propagate
successfully to the output of the cipher, using overclocking, underfeeding, and EM
injection, and with the assistance of an internal FPGA debugger (ChipScope Pro
feature of Xilinx). In practice, for 50% of the plaintexts, we manage to generate an
exploitable faulted ciphertext with carefully tuned fault injection parameters.

Outline of the paper The rest of the paper is structured as follows. Section 8.2
tackles the private circuits II principle and implementation results in FPGA. Secu-
rity analysis of PC-II is conducted in Sec. 8.3. Fault injection results are given and
discussed in Section 8.4. Finally, Section 8.5 concludes the paper and opens some
perspectives.

8.2. Private Circuits I & II in FPGA

8.2.1. PC-I in FPGA, for k = 1

A private circuit I with security parameter k guarantees that any tuple of k wires
does not convey any information about a sensitive value. There are several possible
protections in the literature, for instance private circuits [186] or stateful private
circuits [191]. In the sequel, we focus on the later. Private circuit I implements a
notion of Boolean sharing: every bit is represented as a tuple of (2k+1) wires, such
that the bit value can be recovered by XORing together the (2k + 1) wires values.
In the seminal paper [186], a proof of concept is shown based on a netlist which
instantiates only few primitives:

– memory elements (typically a DFF), and combinational functions, namely:

– an “inverter” (INV) gate,

– an “exclusive-or” (XOR) gate and

8.2. Private Circuits I & II in FPGA

8

171

Figure 8.1: Gates protection in PC-I (with security parameter k = 1) and PC-II (with security parameters
k = t = 1)

– an “and” (AND) gate.

The protection consists in replacing those instances by masked gates. Therefore,
PC-I can be seen as a transformation from netlist to netlist. The mapping between
the unprotected gates (DFF, INV, XOR and AND) and the PC-I version for k = 1 is
given in Fig. 8.1 (a) and (b). Every bit a is thus transformed into a triple (a1, a2, a3),
and we notice that the secure evaluation of the PC-I AND gate requires 3 random
bits, denoted as z1,2, z1,3 and z2,3. The netlist transformation is straightforward
because the PC-I transformation is compositional.

It can be seen in Fig. 8.1 (b) that we devote one full LUT6 (represented as red box –
see Fig. 8.2(a)) to each gate, despite they have only one or two inputs. The reason is
that we want to avoid synthesis optimizations which would (statically) reorder the
gates. Obviously, this method is costly in terms of area, but it is guaranteed to be
secure. Moreover, this netlist allows us to quickly implement PC-II (as discussed
in next section 8.2.2). The configuration of the LUT6 for XOR and AND can be
found in Tab. 8.1.

We notice that optimization of PC-I (which is out of the scope of our work) has
been carried out in the literature in two directions. First of all, Park and Tyagi
have improved the mapping of PC-I in FPGA by a better clusterization, without
compromising the security [192, 193]. Glitch-free implementations have also been
demonstrated recently [190, 194]. A convergence between PC-I and threshold im-
plementation (a glitch-tolerant netlist style [195]) has been noticed recently [196].
Second, Rivain and Prouff [102] have adapted PC-I from the hardware case, which
involves Boolean gates (they call PC-I the “ISW” scheme), to the software case,
which involves machine words (like bytes). Their work has given rise to many
applications, such as masked evaluation of substitution boxes [102, 197], and con-
version algorithms between Boolean and arithmetic masking [198].

8

172 8. Fault Injection attack on Private Circuit II

a

b

y

I0

I1

I2

I3

I4

I5

a
y

b

b’

a’

1

0

O6

O5
y’

LUT6_2

I0

I1

I2

I3

I4

I6

a

b

LUT6

O
y

a’

b

a’

b

a

b’

y

a

b’

y

y’y’

a

b

y

(a): Mapping in PC−I (b): Mapping in PC−II

Figure 8.2: Mapping of Boolean functions, (a) in LUT6 as for PC-I, and (b) in LUT6_2 as for PC-II

Table 8.1: Configuration for PC-I and PC-II XOR and AND gates

Schematic INIT value

P
C

-I X
O

R a

b

y

INIT = (6)16

A
N

D

INIT = (8)16

P
C

-I
I X
O

R

INIT = (24000000420)16

A
N

D

INIT = (40000000260)16

8.2. Private Circuits I & II in FPGA

8

173

8.2.2. PC-II in FPGA, for k = t = 1

As already mentioned in the introduction, PC-II is a further refinement which en-
hances PC-I with fault resistance capability. The constructive method presented in
the original paper [187] assumes several fault models: a predetermined number t
of wires can be selected and either reset or set to chosen value, and so at each clock
period.

We restrict to the case where the attacker is able to change the value of t = 1 wire.
In this case, the PC-II protection consists in turning the PC-I circuit into a dual-rail
equivalent. This means that:

– each wire x becomes a pair (x,x′), where x′ is the opposite of x (that is,
x′ = ¬x), and that

– each gate is turned into a dual-rail instance (called a gadget in [187]), as
illustrated in Fig. 8.1(c), where green boxes are LUT6_2 (cf. Fig. 8.2(b)).

The resistance against one fault arises from this argument: if one bit of a value
(x,x′) is corrupted, then the new pair becomes either (0,0) or (1,1). Now, in both
cases, the final faulted value can be obtained irrespective x is equal to 0 or 1.

The PC-II gates are designed to be infective: should one input be invalid (that is,
either (0,0) or (1,1)), the gates propagate an invalid (0,0) value. This behavior of
PC-II gates ensures an avalanche of zeroization, thereby preventing the attacker
from collecting relevant faulted values at the end of the computation1

In Xilinx terminology, a LUT6_2 computes simultaneously two outputs named O6
and O5. The configuration of the LUT6_2 is encoded as a 64-bit integer called
INIT [200]. Outputs O6 (resp. O5) execute the function whose truth table is given
by the 32 upper (resp. lower) bits of INIT. We assign O6 to the true bit x of the dual-
rail pair (x,x′) while O5 is its complementary x′ . Despite LUT6_2 has 6 inputs,
four are needed for the PC-II gates. Specifically, the inputs are I0, I1, I2 and I3,
whereas inputs I4 and I5 are fixed to 0 and 1. The exact configuration of PC-
II gates is given in Tab. 8.1. Their construction is detailed in Tab. 8.2 for PC-II
AND gate. Apart from licit values, which correspond to (a,a′) ∈ {(0,1), (1,0)} and
(b,b′) ∈ {(0,1), (1,0)}, other values are mapped to (y,y′) = (0,0). Such mapping is
similar to that of WDDL_noEE [201].

Remarkably, our implementation of PC-I and PC-II consist in the same netlists, let
apart the configuration of the LUT masks (INIT values reported in Tab. 8.1).

1In the original paper on PC-II [187], authors describe in Tab. 2 a cascade gadget that artificially spreads
the (0,0) value over the whole datapath. For the purpose of fault resistance, this is useless, as (0,0)
propagate naturally through computing gates. But in order to have a very datapath-wide check, a
simple computation of Hamming weight would be enough [199], [185, §3.1].

8

174 8. Fault Injection attack on Private Circuit II

Table 8.2: Example of derivation of the INIT value for the PC-II AND gate programmed in a LUT6_2

a a′ b b′ y y′

I3 I2 I1 I0 O6 O5

0 1 0 1 0 (INIT[37]) 1 (INIT[5])

0 1 1 0 0 (INIT[38]) 1 (INIT[6])

1 0 0 1 0 (INIT[41]) 1 (INIT[9])

1 0 1 0 1 (INIT[42]) 0 (INIT[10])

x x x x 0 0

Table 8.3: Synthesis results for SIMON 96/96

Unprotected PC-I PC-II

Max. frequency (MHz) 141 77 77

overhead: ./. −45% −45%

Registers 96 (<1%) 288 (<1%) 576 (<1%)

overhead: ./. +200% +500%

LUTs 1063 (1%) 3786 (4%) 5227 (5%)

overhead: ./. +256% +392%

(LUT6, LUT6_2) (391, 0) (2690, 0) (98, 2592)

8.2.3. SIMON 96/96 in Private Circuits II

Private circuits are many times larger than their unprotected equivalent. Thus,
we considered a lightweight block cipher, namely SIMON [202]. Interestingly, few
studies concern secure implementation of SIMON (we found only a regular mask-
ing in [203]). We initially intended to implement SIMON [202] in its 128-bit ver-
sion. But the overhead of private circuit is huge Thus a version of size of 96-bit for
both plaintext and key was implemented on Xilinx Spartan 6 on the SASEBO-W
board for the experiment. We notice that SIMON is particularly appropriate for an
implementation in private circuits, because it is made only of XOR and AND.

8.2.4. Synthesis results for PC-I and PC-II in Xilinx Spartan 6

The synthesis targets a Xilinx Spartan 6 LX150 FPGA constrained to run at clock
frequency of 24 MHz (very conservative value). The synthesis results are given
in Tab. 8.3. In this table, the red numbers represent the occupied ratio on the
FPGA. It clearly appears that the required resources increase when the circuit is

8.3. Security analysis of PC-II with k = t = 1

8

175

implemented in PC-I, and further increase when upgraded to PC-II. Actually, the
core resources to implement SIMON are the same for PC-I and PC-II. Nonetheless,
extra logic is required for the interface of PC-I and PC-II to the environment. Now,
PC-I requires a wrapper to turn every variable a into a triple (a1, a2, a3). On top of
this wrapper, PC-II needs a conversion between single to dual-rail. So, every bit a
is now encoded as a tuple of 6 elements ((a1, a

′
1), (a2, a

′
2), (a3, a

′
3)). The values of the

mask are generated thanks to a linear feedback shift register (LFSR) which yields a
vector of size sufficient to feed the necessarily random bits. The LFSR is chosen for
a quick implementation and evaluation but we are aware that a good PRNG/TRNG
must be used for a real application. These numbers are computed thanks to a
polynomial defined by a parameter according to the version of the SIMON. The
throughput of SIMON in PC-{I,II} is 96 bit/52 clk ×77 · 106 clk/s ≈ 142 Mbit/s.

8.3. Security analysis of PC-II with k = t = 1
Obviously, our implementation is secure within the PC-II model with security pa-
rameters k = t = 1, i.e.:

– probing any wire does not disclose any information, and

– modifying any wire can neither be exploited.

Now, we aim to evaluate the resistance of PC-II against fault injection attacks.

8.3.1. Setup time violations

Any synchronous circuit must meet timing constraints: the combinational gates
must have finished their evaluation before sequential gates can sample the result
they computed. One can thus define a maximal operating speed for synchronous
circuits. Of course, their operation is nominal only within certain environmental
conditions, typically in terms of voltage and temperature.

Fault injection attacks consist in displacing the environmental conditions outside
of the comfort zone for the circuit. This can be done permanently or transiently.
For instance, a strong EM field varying quickly in the vicinity of the FPGA under
test can locally create a voltage drop, thereby slowing down combinational gates.
As the clock frequency is fixed, the setup time of combinational gates is violated.
Symmetrically, the attacker can tamper with the clock, so as to accelerate it. The
effect is similar: incomplete computations are sampled in the sequential gates (the
DFFs).

If the field of the EM pulse is decreased, then the delays in the combinational paths
are reduced. The borderline case is when only one bit in the datapath is faulted.

8

176 8. Fault Injection attack on Private Circuit II

Such situation can be modeled as a single bit-flip error.

8.3.2. Timing faults on PC-II with t = 1

In PC-II circuits, a single bit-flip is harmless: indeed, PC-II resists against t = 1
fault.

Now, we argued that EM injection or overclocking/underfeeding are inaccurate
faulting methods. Thus, it can be expected that if the stress is slightly increased,
the second fault (e.g., bit-flip) will occur on a wire unrelated to the critical path.
Hopefully, PC-II is able to withstand such double independent attacks: indeed,
two unrelated LUT6_2 gates will output (0,0) (recall Tab. 8.2), thus zeroizing the
rest of the computation (cryptographic computations have a fast diffusion).

Now, in practice, we notice that in dual-rail circuits, the second critical path is
actual (very often) the very matching pair of the critical path. Indeed, in a pair
(x,x′) of PC-II wires, the timings are almost balanced.

As argued in Sec. 8.2, the two nets from a same pair pass through the same LUT6_2,
hence have (approximate) balanced timing. More precisely, it is known that bal-
anced routing is hard to achieve in FPGA, because lack of control over the tools
and lack of information about the internal structure and delays.

A previous work showed that having the pair of wires pass through the same LUT
(by exploiting their dual outputs) can significantly reduce the unbalance [204].
Indeed, the “graph” for both wires is the same. Now, unbalances remain as the
intra-LUT and LUT-to-LUT delays can vary. Accurate balancing can be achieved
with third party tools, such as RapidSmith [205].

Still, for our argumentation, it is sufficient to know that dual-rail pairs have similar
delays. Hence they are very likely to be faulted simultaneously upon setup time
violations2.

Such intrinsic problem of dual-rail circuits is illustrated in Fig. 8.3. It shows on its
top an excerpt from a circuit, where nets (x0,x

′
0) are produced by a LUT6_2. The

“combi” cloud is typically a series of gates such at those given in Fig. 8.1(c). The
routing between these nets is assumed different: the value x0 arrives faster than x′0
to the DFFs. This is represented in the simulation (a) of Fig. 8.3. We stress here
that, because in PC-II logic, gates are self-synchronizing, the only timing discrep-
ancy of signals (x0,x

′
0) when reaching their sampling DFF (x1,x

′
1) is caused by a

timing unbalanced of the routing between the last LUT6_2 in the logic cone (i.e.,
the “combi” cloud in Fig. 8.3) and the corresponding DFF. If, due to stress (under-

2We stress that this noting is quite innovative, because former papers (see e.g., [206]) consider that
faults are uniformly distributed over the circuit.

8.3. Security analysis of PC-II with k = t = 1

8

177

combi

x1

x′
1x′

0

x0

clk

clk

x0

x′
0

x1

x′
1

0

1

0

0 0

1

(a) Nominal (b) Slow (c) Still slower

Figure 8.3: Illustration of setup time violation on a dual-rail circuit. (a): nominal case, the combina-
tional logic evaluate before the rising edge of the clock; (b): slow case, the path x′0 is violated; (c): still
slower case, the two paths (x0,x

′
0) are violated, leading to a valid fault (0,1)→ (1,0)

powering, overclocking, or EM glitch), the combinational gates are made slower,
then it can happen that the slowest net x′0 does not reach its corresponding DFF
timely. Hence the value of the DFF is (x1,x

′
1) = (0,0) (see Fig. 8.3(b)), as intended in

the PC-II countermeasure for one bit faults. Now, if the stress is further increased,
both x0 and x′0 will be violated, which results in (x1,x

′
1) sampling a valid value,

namely the previous value of (x0,x
′
0). Indeed, we recall that in a properly imple-

mented PC-II netlist, there are no glitches, hence gates evaluate only when they
have their final value (no intermediate values are computed). So, the situation rep-
resented in Fig. 8.3(c) causes a fault which overcomes PC-II countermeasure (with
t = k = 1), at least if the previous value of (x0,x

′
0) is the complement of the new one,

which happens in average with probability 1/2. We also mention that, contrary to
some secure logic styles such as [207], there is no precharge between evaluations in
PC-II. This is why the previous value of a combinational gate is always a licit value.
Moreover, if the routing between x0 and x1 has the same duration as the routing
between x′0 and x′1, then the situation depicted in Fig. 8.3(b) never happens, and
only licit faults are produced, as in Fig. 8.3(c).

8

178 8. Fault Injection attack on Private Circuit II

trigger ()

JTAG

LAN

Signal Generator

Osciloscope

Timing Generator

Class A Amplifier

Control ChainCUT Injection Chain

EM Probe

Sys_Freq

DDUT

Figure 8.4: Picture of experimental setup for fault injection of SASEBO-W

8.4. Evaluation using faults

8.4.1. Experiment setup

We chose to evaluate PC-II against those faults: underfeeding, overclocking, and
electromagnetic glitching. Regarding the underfeeding, only a simple power sup-
ply is necessary: it has a resolution of 500 µV. The fault is generated by gradually
decreasing the supply voltage of the device under test (DUT) until faults occur.
The same procedure is used for overclocking. We gradually increase the clock of
the DUT until faults occur. Our setup (signal generator) allows to tune finely the
frequency (resolution of 1 ps). Eventually, an amplifier allows us to injection EM
faults. The full setup is presented in Fig. 10.7.

We notice that when faults are injected carelessly, the ciphertext is indeed fully ze-
roized. This validates practically our implementation and the principle of infection
by pairs of zeros of PC-II. Now, in the rest of this section, our aim is to check the
vulnerabilities identified in the previous section 8.3. This requires to fault only one
path (namely, the critical path), hence we geared our fault injection experiments
towards the most gentle stress as possible, so as to avoid faults with too high a
multiplicity.

8.4.2. Internal and online debug of fault effects

For experiments, we found it useful to target the design to Spartan 6: indeed,
Spartan 6 FPGA is packaged in frontside (FG). Therefore it is easier to perform EM
injection on Spartan 6 FPGA than others FPGA which are packaged in backside
(FF).

8.4. Evaluation using faults

8

179

The traditional method to characterize faults is indirect: an exhaustive study of
faults within a model is done (as in the differential fault analysis, or DFA, of Piret
and Quisquater [208, 209]). Here, in order to extract directly the fault models, we
implement the Integrated Logic Analyzer (ILA). We checked that the insertion of
the analyzer does not impact the maximal working frequency of the DUT.

The implemented ILA has the following properties:

– ILA probes 96 × 4 nodes, i.e., the internal SIMON state, the dual-rail
state3, the key and the corresponding dual-rail key;

– ILA dump is triggered by the start signal of the SIMON encryption;

– ILA dumps 64 states after being triggered;

– ILA frequency is the same as the DUT frequency;

– ILA uses 17 of the 268 available BRAM blocks of the Spartan 6 FPGA
and JTAG boundary scan chain to store dumped values;

– ILA can operate at a higher frequency than the DUT (checked).

It is non-intrusive, in that it is plugged on the design without interfering with it.
We requested ILA to record and then dump the consecutive values of the state of
SIMON. ILA is controlled by ChipScope Pro debugger interface. In the sequel, we
use ChipScope to dump the execution traces, under VCD4 format. Thanks to the
tool vcdtowlf provided by Mentor Graphics, we turn this VCD file into a WLF5

file. Then we use Mentor Graphics ModelSim to open and analyze the WLF traces
(those will be shown in Fig. 8.5 and 8.6).

8.4.3. Results

Power supply fault

The first injection is to modify the power supply of the DUT (SIMON 96/96). The
nominal value of power supply of FPGA is 1.00 V. By decreasing this value, we
observe that under 0.68 V, the circuit produces incorrect results. However, around
0.68−0.67 V, the value of the ciphertext is different from zero. Then under 0.67 V,
the ciphertext computed by SIMON is zero.

3To help the debug, we integrated the demasking (a1, a2, a3) 7→ a = a1 ⊕ a2 ⊕ a3 in the design, for each
bit a of the datapath. This is not secure from a side-channel point of view, but does not impact our
experiments which are rather concerned by fault injection attacks.

4VCD is short for Values Change Dump; it is the IEEE Standard 1364-1995. One example of usage in
security is provided in [210], where unbalances in a dual-rail netlist are analyzed.

5WLF is short for Waveform Log Format; it is the ModelSim default format for simulation results.

8

180 8. Fault Injection attack on Private Circuit II

SIMON starts

SIMON ends

52 rounds

Figure 8.5: One experimental results of SIMON running at 24 MHz, and overclocked at 80 MHz and
83 MHz

Overclocking

Overclocking with fixed plaintext We increase the clock frequency of the SI-
MON block cipher from 24 MHz until the ciphertext gets erroneous. We choose a
plaintext pt = 0x2072616c6c69702065687420 and a key k = 0x0d0c0b0a0908050403020100.
The resulting WLF waveforms as dumped by ChipScope are joined, and are repre-
sented in Fig. 8.5. Three acquisitions are taken:

1. the first one for f = 24 MHz (in green),

2. the second one for f = 80 MHz (in pink), and

3. the last one for f = 83 MHz (in red).

The correct ciphertext is 0x602807a462b469063d8ff082. The three computations
trigger at the same time. In Fig. 8.5, the scale is given round by round (it is not a
time scale).

At 80 MHz, we observe in Fig. 8.5, that a fault is created in the circuit. We recall
that the synthesis report (Tab. 8.3) announced a maximal frequency of 77 MHz, but
the FPGA still functions normally until < 80 MHz. Nonetheless, at 80 MHz, the
computed ciphertext is different from 0: it is 0x37dd3ac20989b9360ebef34a. By
carrying on increasing the frequency value of frequency until 83 MHz, the cipher-
text stays at 0x37dd3ac20989b9360ebef34a. Then, over 83 MHz, the ciphertext
becomes 0 (as should happen in theory with PC-II netlists).

An explanation why at f = 80 MHz the ciphertext is not full-zero can be seen by
doing a zoom on Fig. 8.5: we find that at the third round, the state starts to be
incorrect.

For the reader’s convenience, the state value is also given in Tab. 8.4. At the
round three, the value of the valid state is 0xf64be72c5773b48da3938c84. For
f = 80 MHz, the corrupted state is 0xf64be7285773b48da3938c84. The nibble c is
changed in 8 at the eighth position of the state. In dual-rail, this corresponds to
value a being changed to 9. Now, a represents (1010)2, namely the two bits (1,0)
and (1,0), whereas 9 means (1001)2 in binary, which is a valid case in LUT6_2 truth

8.4. Evaluation using faults

8

181

Figure 8.6: Zoom on Fig. 8.5, where we identify the first round (namely round #3) where a fault occurs

Table 8.4: State and dual-state differences at the third round.
Blue means “valid” error, such as (0,1)→ (1,0), whereas
green means “single bit reset” error, such as (0,1)→ (0,0).
(data extracted from Fig. 8.6)

f (MHz) State (96-bit word)

24 0xf64be72c5773b48da3938c84

80 0xf64be7285773b48da3938c84

83 0xf64bc7085773b48da3938c84

f (MHz) Dual-rail state (192-bit word)

24 0xaa69659aa96a59a5666a6a5a9a6595a6995a965a95a59565

80 0xaa69659aa96a5995666a6a5a9a6595a6995a965a95a59565

83 0xaa69659aa12a0095666a6a5a9a6595a6995a921a95a59565

8

182 8. Fault Injection attack on Private Circuit II

Frequency

P
la
in
te
x
t
#

76 77 78 79 80

5

10

15

20

25

30 0

0.5

1

1.5

2

F
au

lt
ed

,
b
u
t

N
o
fa
u
lt

Z
er
oi
za
ti
on

n
on

-z
er
o

Ciphertext:

75 77 79 81 83 85

Figure 8.7: Effect of overclocking on 30 plaintexts for different frequencies

table (recall Tab. 8.2). Thus, this exemple illustrates the replacement of a licit value
by another one, as in Fig. 8.3(c). So, on the critical path, there exists one LUT6_2
where a pair of dual-rail wires (1,0) was changed in (0,1), a valid value in dual-
rail. Consequently the SIMON computes with a valid false state and it is possible
to attack the circuit thanks to a DFA.

For f = 83 MHz, the first error in the state also occurs at third round. There, the
faulted state takes the value 0xf64bc7085773b48da3938c84. The nibbles e, 2 and
c at positions respectively 5, 7 and 8 become c, 0 and 8. In dual-rail, the numbers
1, 2, 0 are encoded in binary as (0001)2, (0010)2, (0000)2. Those faults are single
bit-flips. Thus, faulty states appear, and so a zeroization wave propagates. As can
be seen in Fig. 8.5, the state reaches the value of zero at the round 11.

It is noteworthy that fault injections, if successful, can still be exploited despite the
implementation is masked. Indeed, irrespective of the masking and the implemen-
tation details, a fault propagates until the output. The interested reader is referred
to this paper [211] for more details.

Overclocking with varying plaintexts By changing the plaintext, the clock fre-
quency when the circuit starts to be faulty changes, but remains around 80 MHz.
Indeed, it is a well known fact that the critical path is data-dependent. In Fig. 8.7,

8.4. Evaluation using faults

8

183

we present the effect of overclocking PC-II with 30 plaintexts. The experiment is
performed using 1000 steps of 0.01 MHz. In total, the DUT frequency is changed
from 75 MHz to 85 MHz. The red color in the Fig. 8.7 means that no fault oc-
curred. The blue color means that the PC-II circuit is faulted with a non-zero
ciphertext. Eventually, the green color means that the PC-II circuit is faulted with
an output fully zeroized. We notice that, there is around 50% (16/30 plaintexts
faulted with non-zeroization output) of probability to created an exploitable (not
fully zero) fault, in a range of about 4 MHz (that is, between 79 and 83 MHz). In the
other 50%, the (0,0) values generated by the PC-II countermeasure absorb poten-
tial harmful (0,1)↔ (1,0) faults. Still, with roughly a probability of 1/2, bypassing
PC-II is possible provided the fault injection is controlled precisely enough.

We raised the clock frequency much beyond 85 MHz. Interestingly, the result re-
mains zeroized for all the bits. One could have imagined that for a high enough
frequency, only valid bits from the previous state are sampled. But apparently,
there is consistently at least one gate which transitions, hence with output equal to
(0,0). In the extreme case, the clock would be so fast that the previous state would
be sampled verbatim. But this would have no effect, since the round counter would
also stall during this fast clock period. At least, this situation is harmless if the
computation path and the control logic are both implemented in PC-II. If only the
computation is implemented in PC-II and the logic in regular (faster) logic, then it
would be possible to skip [212] or add [213] rounds.

Electromagnetic injections

The SIMON 96/96 in PC-II under EM injections behaves similarly as in the case of
overclocking.

8.4.4. Discussion

The faults obtained by overclocking and EM injection are similar on our platform.
We can deduce that we caused delay faults. According to the delays measured by
ChipScope, we have:

– an average delay between true (y) and false (y′) wires slightly non-zero:
−166 ps, and

– with a fairly large standard deviation of 501 ps.

The distribution is represented in Fig. 8.8. It can clearly be seen that most pairs are
balanced (the delay difference is peaked around zero), while some outliers exist,
with a large delay difference, probably due to routing unbalances.

When the injected field is very strong, EM injection can also cause sampling faults [214],

8

184 8. Fault Injection attack on Private Circuit II

 0

 10

 20

 30

 40

-2 -1 0 1 2

P
ro

b
a

b
ili

ty
 (

%
)

Time difference between True & False wires in a pair (ns)

Figure 8.8: Statistics of delays unbalance, per step of 100 ps

where the DFFs are perturbed while they sample, precisely by having the EM pulse
happen timely with the clock rising edge. Such fault model would not allow corre-
lated faults, hence would not harm private circuits II. But the global timing faults
are harmful: it is thus important, for the faults to be exploitable, to exercise only
gentle stress: overclocking must have an effect, but not too strong, otherwise too
many timing violations occur, amongst them zeroization can occur and wash the
licit faulted values. EM injection must not cause DFF malfunctions, only increase
the delay in gates, hopefully touching first the critical path.

8.5. Conclusion and perspectives

This paper has shown the possibility to collect erroneous outputs from crypto-
graphic circuits protected by the private circuits II countermeasure, allowing dif-
ferent sorts of attacks, such as the differential fault analysis.

We notice that ChipScope (or equivalently SignalTap in Altera) is a nice tool to
investigate the effects of faults on circuits. We leverage on this tool, apparently for
the first time, to determine exactly the fault models for overclocking.

As a perspective, we intend to take advantage of the zeroization process to test

8.5. Conclusion and perspectives

8

185

other attack paths, such as fault sensibility analysis [215] (the stress level at which
a fault occurs is data dependent). Let us remark that safe errors are a priori not
possible, since in hardware, even values which do not impact the computation
value at the logic level are protected. For instance, a multiplexer with the non-
selected input at the invalid zero value will propagate an invalid zero value all the
same. Obviously, the fault attacks we present applies to other protected circuits,
namely dual-rail circuits (WDDL, MDPL, etc.).

Besides, a recent paper [196] has shown similarities between PC-II and threshold
implementation, a logic style which is theoretically designed to withstand glitches.
Practical validation would definitely make sense.

Acknowledgments

The authors a grateful to Laurent Sauvage for setting up the fault injection plat-
form and valuable pieces of advice. We also thank Thibault Porteboeuf for inter-
esting feedback exchanges about ChipScope setup under ISE. sca

9
Using Modular Extension to

Provably Protect Edwards
Curves Against Fault Attacks

Fault injection attacks are a real-world threat to cryptosystems, in particular asym-
metric cryptography. In this paper, we focus on countermeasures which guarantee
the integrity of the computation result, hence covering most existing and future
fault attacks. Namely, we study the modular extension protection scheme in pre-
viously existing and newly contributed variants of the countermeasure on elliptic
curve scalar multiplication (ECSM) algorithms. We find that an existing counter-
measure is incorrect and we propose new “test-free” variant of the modular ex-
tension scheme that fixes it. We then formally prove the correctness and security
of modular extension: specifically, the fault non-detection probability is inversely
proportional to the security parameter. Finally, we implement an ECSM protected
with test-free modular extension during the elliptic curve operation to evaluate the
efficient of this method on Edwards and twisted Edwards curves.

9.1. Introduction
Properly used cryptography is a key building block for secure information ex-
change. Thus, implementation-level hacks must be considered seriously in ad-
dition to the threat of cyber-attacks. In particular, fault injection attacks target
physical implementations of secured devices in order to induce exploitable errors.

187

9

188
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

Asymmetric cryptography Asymmetric cryptography addresses different needs
such as key exchange and digital signature. RSA, Diffie-Hellman, and ElGamal
have been used for decades, and elliptic curve cryptography (ECC) algorithms such
as ECDSA [216] are more and more deployed. ECC pairing-based cryptography
has recently been accelerated in practice and is thus becoming practical [217]. For
example, the construction of “pairing-friendly” elliptic curves is an active sub-
ject [218]. Homomorphic encryption schemes are getting more practical and are
progressively considered viable solutions for some real-world applications requir-
ing strong privacy. All these algorithms use large numbers and take place in math-
ematical structures such as finite rings and fields, which enables powerful mathe-
matical properties but also facilitates attacks.

Fault Attacks As put forward in the reference book on fault analysis in cryptog-
raphy [219, Chp. 9], there are three main categories of fault attacks.
1) Safe-error attacks consist in testing whether an intermediate variable is dummy
(usually introduced against simple power analysis [94]) or not, by faulting it and
looking whether there is an effect on the final result.
2) Cryptosystem parameter alterations aim at weakening the algorithm in order to
ease key extraction. For example [220], invalid-curve fault attacks consist in mov-
ing an ECC computation to a weaker curve, enabling the attacker to use cryptanal-
ysis attacks exploiting the faulty outputs.
3) Finally, the most serious attacks belong to the differential fault analysis (DFA) cat-
egory. Often the attack path consists in comparing correct and faulted outputs, like
in the well-known BellCoRe attack on CRT-RSA (RSA sped up using the Chinese
Remainder Theorem), or the sign-change fault attack on ECC.

The BellCoRe attack [221] on CRT-RSA introduced the concept of fault injection
attacks. It is very powerful: faulting the computation even in a very random way
yields almost certainly an exploitable result allowing to recover the secret primes
of the RSA modulus N = pq.

The sign-change attack [222] on ECC consists in changing the sign of an interme-
diate elliptic curve point in the midst of an elliptic curve scalar multiplication
(ECSM). The resulting faulted point is still on the curve so the fault is not detected
by traditional point validation countermeasures. Such a fault can be achieved by
for instance changing the sign in the double operation of the ECSM algorithm
(line 3 of Alg. 5). If the fault injection occurs during the last iteration of the loop,
then the final result Q̂ = [−2

∑n−1
i=1 ki2

i−1]P + k0P = −Q + 2k0P , i.e., either Q̂ = −Q or
Q̂ = −Q + 2P depending on k0, which reveals the value of k0 to the attacker. This
process can be iterated to find the other bits of the scalar, and optimizations exist
that trade-off between the number of necessary faulted results and the required
exhaustive search.

9.1. Introduction

9

189

Algorithm 5: Double-and-add left-to-right scalar multiplication on elliptic curve E.

Input : P ∈ E, k =
∑n−1
i=0 ki2

i (n is the scalar size in bits, where ki ∈ {0,1})
Output : [k]P

1 Q←O . O is the point at infinity

2 for i← n− 1 down to 0 do
3 Q← 2Q . ECDBL

4 if ki = 1 then Q←Q+ P . ECADD

5 end
6 return Q

Figure 9.1: Sketch of the principle of modular extension.

Both RSA and ECC algorithms continue to be the target of many new fault injection
attacks: see [223–227] just for some 2014 papers. Besides, this topic is emerging
and other new fault attacks will appear sooner or later. Hence, the need for effi-
cient and practical generic countermeasures against fault attacks is obvious. David
Wagner from UC Berkeley concurs in [228]: “It is a fascinating research problem to
establish a principled foundation for security against fault attacks and to find schemes
that can be proven secure within that framework.”

Countermeasures Verifications compatible with mathematical structures can be
applied either at computational or at algorithmic level.

Algorithmic protections have been proposed by Giraud [229] (and many others [230–
232]) for CRT-RSA, which naturally transpose to ECC, as shown in [233]. These
protections are implementation specific (e.g., depend on the chosen exponentiation
algorithm) and are thus difficult to automate, requiring specialized engineering
skills.

Computational protections have been pioneered by Shamir in [234] using modular
extension, initially to protect CRT-RSA. The idea is to carry out the same computa-
tion in two different algebraic structures allowing to check the computation before
disclosing its result. For example protecting a computation in Fp consists in carry-
ing out the same computation in Zpr and Fr (Zpr is the direct product of Fp and
Fr), where r is a small number (r � p); the computation in Zpr must match that of
Fr when reduced modulo r, if not an error is returned, otherwise the result in Zpr

is reduced modulo p and returned. The principle of modular extension is sketched
in Fig. 9.1. This method operates at low level (integer arithmetic), thereby enabling
countermeasures (and optimizations) to be added on top of it. They are thus easily
maintained, which explains why this method is quite popular. Indeed, there is a
wealth of variants for CRT-RSA stemming from this idea [235–240], as well as a few
proofs-of-concept transposing it to ECC [222, 241, 242]. Despite the nonexistence

9

190
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

of literature, the same idea could apply to post-quantum code-based cryptography,
pairing, and homomorphic computation for instance. Therefore, our paper focuses
on computational countermeasures.

On the one hand, the variety of CRT-RSA countermeasures shows that fault attacks
are a threat that is taken seriously by both the academic and the industrial com-
munities. On the other hand, it bears witness to the artisanal way these counter-
measures were put together. Indeed, the absence of formal security claims and of
proofs added to the necessity of writing implementations by hand results in many
weaknesses in existing countermeasures and thus in many attempts to create better
ones.

Contributions The countermeasure described in [241] can be applied only on
Weierstrass curve, and the overhead computation is 48% for curve with parameters
on 256 bits. The main disadvantage of this countermeasure is the need for point
testing during the addition and doubling operations. These tests can differ in Zpr

and Fr , hence a loose security proof, because the computation in Fr can be trapped
in the point at infinity.

In this paper, we take advantage of the speed-up record on ECDSA computa-
tion using the twisted Edwards curve Ed25519 [138] coded with NaCl crypto-
library [243]. We propose a new countermeasure against faults injection based
on modulus extension with only one “test-free” addition operation using complete
and unified formulas of addition point on Edwards and twisted Edwards curves.
This allows for a synchronized computation in Fp and Fr while computing in Zpr ,
as opposed to the state-of-the-art countermeasures, such as [222, 241, 242]. Our
countermeasure is new insofar as we give explicit conditions on the prime r: they
happen to be easily met in the case of Edwards curves (see Sec. 9.6.1), whereas they
restrict the number of possible r to a little number of values for the popular twisted
Edwards curves (see Sec. 9.6.2). The overhead computation of this countermeasure
is 28% for Edwards curve and 39% for twisted Edwards curve on 32-bit processors,
such as an ARM Cortex-M4.

Outline The rest of the paper is organized as follows. Section 9.2 described the
details of the existing countermeasure for ECC. Section 9.3 is the theoretical analy-
sis of our new countermeasure using the modular extension with test-free. Section
9.4 described the mathematical background on the Edwards curves. The descrip-
tion of our countermeasure to make the modular extension without test in the
elliptic curve operation is in Section 9.5. Section 9.6 explains the overhead of com-
putation and some examples of our countermeasure. Section 13.7 concludes.

9.2. Existing Countermeasures for ECC

9

191

9.2. Existing Countermeasures for ECC

Countermeasures against fault injection attacks have been proposed for elliptic
curve computations, but they are actually incorrect. For example, in [222], Blömer,
Otto, and Seifert (BOS) propose a countermeasure based on the modular extension
idea of Shamir for CRT-RSA [234]. The problem is that the modular extension
scheme cannot actually be applied as is to Weierstrass elliptic curve, because the
tests in the ECDBL and ECADD operations are not true at the same times for the
computation in Zpr and the one in Fr , which breaks the scheme and will yield false
negatives. This behavior can be a serious security issue as it reveals information
about the inputs.

In 2010 Joye patented [242] essentially the same countermeasure except it uses Fr2

and Zpr2 instead of Fr and Zpr , which does not address the raised issues.

In [241], Baek and Vasyltsov (BV) propose a countermeasure based on modular
extension and point verification. The particularity of this countermeasure is that
instead of computing a sibling ECSM on a smaller curve E(Fr) to compare with its
redundant counterpart over E(Zpr), it only checks whether the point obtained by
reducing the result E(Zpr) modulo r is on the E(Fr) curve (i.e., whether it satisfies
the curve equations modulo r). Because of that, BV does not suffer from BOS prob-
lem. However, the correctness of BV comes with a drawback: indeed, faults may go
undetected if they happen before O (the point at infinity) is reached in the compu-
tation modulo r as the intermediate point quickly tends to (0 : 0 : 0) in projective
coordinates and stays there until the end.

It is actually possible to get the best of both world: what is needed is BOS approach
(i.e., pure modular extension scheme) but without the problematic tests. Luckily,
Edwards curves allow to perform ECC without tests thanks to a complete addition
law, as will be detailed in Sec. 9.4. But before, we will formally analyze the security
of the modular extension scheme when the implementation is test-free.

9.3. Security Analysis of Modular Extension

Definition 15 (Fault model) We consider an attacker who can fault data by random-
izing or zeroing any intermediate variable, and fault code by skipping any number of
consecutive instructions.

Remark The three fault models have been described several times in the literature.
For example, randomizing faults are discussed in [221], zeroing faults in [244], and
instruction skip faults in [245].

Definition 16 (Attack order) We call order of the attack the number of faults (in the
sense of definition 15) injected during the target execution.

9

192
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

In the rest of this section, we focus mainly on the resistance to first-order attacks
on data.

Definition 17 (Secure algorithm) An algorithm is said secure if it is correct and if it
either returns the right result or an error constant when faults have been injected, with
an overwhelming probability.

[Security of test-free modular extension] Test-free algorithms protected using the
modular extension technique, are secure as per definition 17. In particular, the
probability of non-detection is inversely proportional to the security parameter r.
Faulted results are polynomials of faults. The result of an asymmetric cryptography
computation can be written as a function of a subset of the intermediate variables,
plus some inputs if the intermediate variables do not suffice to finish the compu-
tation. We are interested in the expression of the result as a function of the inter-
mediate variables which are the target of a transient or permanent fault injection.
We give the formal name x̂ to any faulted variable x. For convenience, we denote
them by x̂i , 1 ≤ i ≤ n, where n ≥ 1 is the number of injected faults. The result
consists in additions, subtractions, and multiplications of those formal variables
(and inputs). Such expression is a multivariate polynomial. If the inputs are fixed,
then the polynomial has only n formal variables. We call it P (x̂1, . . . , x̂n). For now,
let us assume that n = 1, i.e., that we face a single fault. Then P is a monovariate
polynomial. Its degree d is the multiplicative depth of x̂1 in the result.

A fault is not detected if and only if P (x̂1) = P (x1) mod r, whereas P (x̂1) , P (x1)
mod p. Notice that the latter condition is superfluous insofar since if it is negated
then the effect of the fault does not alter the result in Fp.

Non-detection probability is inversely proportional to r. As the faulted variable x̂1
can take any value in Zpr , the non-detection probability Pn.d. is given by:

Pn.d. =
1

pr − 1
·

∑
x̂1∈Zpr\{x1}

1P (x̂1) = P (x1) mod r

=
1

pr − 1
·
(
− 1 + p

r−1∑
x̂1=0

1P (x̂1) = P (x1) mod r

)
. (9.1)

Here, 1condition is an indicator function: it is equal to 1 (resp. 0) if the condition is
true (resp. false).

Let x̂1 ∈ Zr , if P (x̂1) = P (x1) mod r, then x̂1 is a root of the polynomial ∆P (x̂1) =
P (x̂1) − P (x1) in Zr . We denote by #roots(∆P) the number of roots of ∆P over Zr .
Thus (9.1) computes (p ×#roots(∆P)− 1)/(pr − 1) ≈ #roots(∆P)/r.

Study of the proportionality constant. A priori, bounds on this value are broad since
#roots(∆P) can be as high as the degree d of ∆P in Zr , i.e., min(d,r − 1). However,

9.3. Security Analysis of Modular Extension

9

193

in practice, ∆P looks like a random polynomial over the finite field Zr , for several
reasons:

• inputs are random numbers in most cryptographic algorithms, such as probabilis-
tic signature schemes,

• the coefficients of ∆P in Zr are randomized due to the reduction modulo r. In
such case, the number of roots is very small, despite the possibility of d being
large. See for instance [246] for a proof that the number of roots tends to 1 as
r→∞. Interestingly, random polynomials are still friable (i.e., they are clearly not
irreducible) in average, but most factors of degree greater than one happen not to
have roots in Zr . Thus, we have Pn.d. &

1
r , meaning that Pn.d. ≥ 1

r but is close to
1
r . A more detailed study of the theoretical upper bound on the number of roots is
available in [247, Sec. A].

The same law applies to multiple faults. In the case of multiple faults (n > 1), then
the probability of non-detection generalizes to:

Pn.d. = 1
(pr−1)n ·

∑
x̂1,...,x̂n∈Zpr\{x1}×...×Zpr\{xn}

·1P (x̂1,...,x̂n)=P (x1,...,xn) mod r

= 1
(pr−1)n ·

∑
x̂2,...,x̂n∈

∏n
i=2 Zpr\{xi }

·

 ∑
x̂1∈Zpr\{x1}

1P (x̂1,...,x̂n)=P (x1,...,xn) mod r

= 1

(pr−1)n ·
∑

x̂2,...,x̂n∈
∏n
i=2 Zpr\{xi }

· [p ×#roots(∆P)− 1]

= 1
(pr−1)n · (pr − 1)n−1 [p ×#roots(∆P)− 1]

=
p ×#roots(∆P)− 1

pr − 1
.

Therefore, the probability not to detect a fault when n > 1 is identical to that for
n = 1. Thus, we also have Pn.d. ≈ 1

r in the case of multiple faults of the intermediate
variables1.

1Note that this study does not take correlated faults into account.

9

194
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

9.4. Edwards Curves over large-characteristic fields

In mathematics, the Edwards curves are a family of elliptic curves studied by
Harold M. Edwards in 2007 [248]. Technically, an Edwards curve is not elliptic,
because it has singularities; but resolving those singularities produces an elliptic
curve. The concept of elliptic curves over finite fields is widely used in elliptic
curve cryptography. Applications of Edwards curves to cryptography were devel-
oped by Bernstein and Lange: they pointed out several advantages of the Edwards
form in comparison to the more well known Weierstrass form.

9.4.1. Edwards curves

Definition 18 (Edwards curves) On the finite field Fp with p a prime number, an
elliptic curve in Edwards form has parameters c,d in the finite field Fp and coordinates
(x,y) satisfying the following equation:

x2 + y2 = c2(1 + dx2y2), with cd(1− c4d) , 0. (9.2)

The main advantage to use the Edwards curves is that addition formulas are unified:
doubling and addition operations are the same. Affine unified addition formula is
(x1, y1) + (x2, y2) = (x3, y3), where:

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
and y3 =

y1y2 − x1x2

c(1− dx1x2y1y2)
. (9.3)

The affine negation formula is as expected: −(x1, y1) = (−x1, y1).

The neutral element of the curve is the point (0, c). Contrary to Weierstrass curves,
this point is not special (there is no abstract “point at infinity”), but verifies the
curve equation. The point (0,−c) has order 2. The points (c,0) and (−c,0) have
order 4.

Bernstein and Lange [249] proved that if d is not a square in Fp then the unified ad-
dition law is complete. This means that the addition formula is valid for all points,
with no exception. That is one of the advantages of Edwards curves over Weier-
strass curves in which the addition law is not complete: a complete addition law
provides some resistance to side-channel attacks.

9.4.2. Twisted Edwards curves

Twisted Edwards curves are a generalization of Edwards curves [250].

Definition 19 (Twisted Edwards curves) Let p a prime number. On the finite field

9.5. Practical Study

9

195

Fp, an elliptic curve in twisted Edwards form has parameters a,d in the finite field Fp

and coordinates (x,y) satisfying the following equation:

ax2 + y2 = 1 + dx2y2, with ad(a− d) , 0. (9.4)

Like Edwards curves, the addition formulas are unified. Affine unified addition
formula is (x1, y1) + (x2, y2) = (x3, y3), where:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − ax1x2

1− dx1x2y1y2
. (9.5)

The neutral element is (0,1). Affine negation formula is natural: −(x1, y1) = (−x1, y1).

Addition law is complete if a is a square and d is a non-square [249].

9.5. Practical Study
On Edwards curves and twisted Edwards curves, the addition law is complete: ad-
dition formulas work for all pairs of input points. In particular, there is no trou-
blesome point at infinity. Another advantage of Edwards curve is the atomicity
of the formula doubling and adding and the constant time to protect the classical
Side-Channel Attack. The addition law is unified, meaning that there are no test to
verify if the two input points are equal, opposite or different. To be more efficient,
we use the unified projective coordinates to the addition law ECADD-complete-
unified named “add-2007-bl-2” on [251] or on [249, Sec. 4, page 9].

The ECSM with modular extension protection using complete unified addition for-
mulas is given in Alg. 6. The first phase can compute offline, because find r verifies
the lemmas 9.5.1 and 9.5.2 is not trivial. The second phase is composed by two
ECSM computation online. The first ECSM computation consists in multiplying
the point P with the scalar k on the ring Zpr using the parameters defined later in
this section by the proprieties 9.5.1 or 9.5.2. The second ECSM computation is the
multiplication of the point P ′ with the scalar k on the small curve over Fr using the
parameters defined in the lemmas 9.5.1 or 9.5.2. It is worthwhile to note that these
two ECSM share the same code (see. Alg. 7).

Given an elliptic curve over Fp and a point (xG, yG), we define by λ the multiple of
p to add when the point on curve equation is plunged from Fp to Z. Formally,

Definition 20 (Parameter λ for Edwards curves) Given an Edwards elliptic curve
of equation (9.2), the parameter λ is the integer satisfying the relationship in Z: x2

G +
y2
G = c2(1 + dx2

Gy
2
G) +λp.

Definition 21 (Param. λ for twisted Edwards curves) Given a twisted Edwards el-

9

196
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

Algorithm 6: ECSM with modular extension protection using complete unified addition
formulas.
Input : P ∈ E(Fp), k ∈Z
Output : Q = [k]P ∈ E(Fp)

Offline phase

Edwards Curves:

1 Compute λp = x2
G + y2

G − c
2(1 + cx2y2)

2 repeat
3 Choose a random prime r < p
4 Compute x′G = XG mod r
5 Compute y′G = yG mod r
6 Compute c′ = c2 +λp mod r

7 Compute d′ = dc2

c2+λp
mod r

until x′G , 0 and y′G , 0 and c′d′(1 −
c′4d′) , 0 and c′ a square and d′ a no-
square

. r verifies the lemma 9.5.1

Twisted Edwards Curves:

1 Compute λ = (1+dx2
Gy

2
G−ax

2
G+y2

G)÷p
2 Find all the factor r smaller than p of
λ

3 for each factor r do
4 Compute x′G = xG mod r
5 Compute y′G = yG mod r
6 Compute a′ = a mod r
7 Compute d′ = d mod r
8 if x′G , 0 and y′G , 0 and a′d′(a′ −

d′) , 0 and a′ a square and d′ a no-
square then

9 break . r verifies the lemma 9.5.2

else
10 r does not work

end
end

11 Determine the small curve E(Fr) with parameter c′ (or a′) and d′ , and a point P ′(x′G, y
′
G) is

on that curve.
12 Determine the combined curve E(Zpr) with parameter C = CRT (c,c′) (or A = CRT (a,a′))

and D = CRT (d,d′) . using properties 9.5.1 and 9.5.2.

Online phase

13 (Xpr : Ypr : Zpr) = ECSM(P ,k,E(Zpr)) . without test on the point and on the scalar value

14 (Xr : Yr : Zr) = ECSM(P ′ , k,E(Fr)) . without test on the point and on the scalar value

15 if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr) then
16 return (Xpr mod p : Ypr mod p : Zpr mod p)

else
17 return error

end

9.5. Practical Study

9

197

liptic curve of equation (9.4), the parameter λ is the integer satisfying the following
relationship in Z: ax2

G + y2
G = 1 + dx2

Gy
2
G +λp.

9.5.1. Edwards curves

Let p be a prime and an Edwards curve over Fp as per definition 18, parameterized
by c,d. Let λ as per definition 20.

Let r be a prime number r < p, such that c2 + λp is a non-zero square in Fr ,
xG mod r , 0 and yG mod r , 0. The set of points which satisfy Er : x2 + y2 =
c′2(1+d′x2y2) mod r with c′2 = c2+λp mod r and d′ = dc2

c2+λp mod r is an Edwards

curve, generated by the point (x′G, y
′
G) = (xG mod r,yG mod r).

If the parameters c′ and d′ satisfy c′d′(1 − c′4d′) , 0 and d′ is not a square in the
finite field Fr , then the ECSM computation on this small Edwards curve E(Fr) is
complete, i.e., can be computed without point or scalar conditional tests. The
detail of the proof is in the online version [247, Lemma 1 Sec 5.1].

For the purpose of the modular extension countermeasure, we extend the notion
of Edwards curve to rings2 (such as Zpr).

Let an Edwards curve defined on Fp with the parameters c,d and the point (xG, yG).
If a random number r verifying the lemma 9.5.1 can be found to define the Ed-
wards curve E(Fr) with the parameters c′ ,d′ , thenC = CRT (c,c′) andD = CRT (d,d′)
are the parameters of an Edwards elliptic curve over the rings Zpr . This curve pa-
rameters permit to detect a fault thanks to the comparison at line 15 in the Algo-
rithm 6. We introduce the following notations:

– We denote by P tp with p in index a point named P t computed on the
E(Fp);

– We denote by P tr with r in index a point named P t computed on the
E(Fr);

– We denote by P tpr with pr in index a point named P t computed on the
E(Zpr).

The input value of the two ECSMs verify the equality using the projective coordi-
nates, because we have as input (xG, yG) for the combined curve and (x′G, y

′
G) for the

small curve:
X- coordinate: x′G = xG mod r,

Y - coordinate: y′G = yG mod r,

Z- coordinate: 1 = 1 mod r.

(9.6)

2Similar idea can be found in [222, 241, 242]; we explicit it here for the article to be self-contained.

9

198
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

The ECSM computation over the combined curve on the ring extension Zpr and
the small curve over finite field Fr do consist in the same sequence of addition
operations (ECADD-complete-unified).

Let Ppr and Pr be two points such that XPr = XPpr mod r,YPr = YPpr mod r,ZPr =
ZPpr mod r. Let Qpr and Qr be two points such that XQr = XQpr mod r,YQr = YQpr
mod r,ZQr = ZQpr mod r.

We compute Rr the result of ECADD-complete-unified between Pr and Qr over
E(Fr), and Rpr the result of ECADD-complete-unified between Ppr and Qpr over
E(Zpr).

The computation of the projective coordinates of Rpr is composed by addition, sub-
traction, multiplication over the ring Zpr using the projective coordinates of Ppr
and Qpr and the two curve parameters C and D.

The computation of the projective coordinates of Rpr is composed by addition, sub-
traction, multiplication over the ring Zpr using the projective coordinates of Pr and
Qr and the two curve parameters c′ and d′ .

By construction C = CRT (c,c′) and D = CRT (d,d′), we have C mod r = c′ and
D mod r = d′ , so the projective coordinates of Rpr are pairwise equal modulo r
with the projective coordinates of Rr .

As the ECADD-complete-unified operation conserves the equality of the point co-
ordinates value modulo r, we conclude that the ECSM computation conserves the
equality of the point coordinates value modulo r between the computation over the
ring extension and over the finite field Fr .

9.5.2. Twisted Edwards curves

If a,d,p,λ verify the conditions defined in definition 21, then if we can choose a
prime factor r of λp such that xG mod r , 0 and such that the point (x′G, y

′
G) =

(xG mod r,yG mod r) generates the curve E(Fr) : a′x2 + y2 = 1 + d′x2y2 where a′ =
a mod r and d′ = d mod r.

If the parameters a′ and d′ satisfy a′d′(a′ − d′) , 0, a′ is a square and d′ is a non-
square in the finite field Fr , then the ECSM computation on this small twisted Ed-
wards curve E(Fr) requires no point and scalar tests. The detail of the proof is
in the online version [247, Lemma 2 Sec 5.2]. For the purpose of the modular
extension countermeasure depicted in Alg. 6, we extend the notion of twisted Ed-
wards curve to ringsnote1 (such as Zpr). Let a twisted Edwards curve defined on
Fp with the parameters a,d and the point (xG, yG). If a random number r verifying
the lemma 9.5.2 can be found to define the twisted Edwards curve E(Fr) with the

9.5. Practical Study

9

199

parameters a′ ,d′ , then A = a and D = d are the parameters of a twisted Edwards
curve over the ring Zpr .

If xG mod r , 0 then the point (x′G, y
′
G) is not the point at infinity. So, this point

(x′G, y
′
G) is a generator of a non-trivial subgroup of the elliptic curve E(Fr).

This curve parameters permit to detect a fault with the comparison at line 15 in
the Algorithm 6. The input value of the two ECSM verify the equality using the
projective coordinates, because we have as input (xG, yG) for the combined curve
and (x′G, y

′
G) for the small curve, as described previously in Eqn. (9.6).

The ECSM computation over the combined curve on the ring extension Zpr and the
small curve over finite field Fr consist in the same sequence of addition operations
(ECADD-complete-unified). Namely, the sequence is given in Alg. 7, where E is
either E(Zpr) or E(Fr).

By construction A = a,D = d and we have a mod r = a′ and d mod r = d′ , so the
projective coordinates of Rpr are equal modulo r two by two with the projective
coordinates of Rr .

As the ECADD-complete-unified operation conserves the equality of the point co-
ordinates value modulo r, we conclude that the ECSM computation conserves the
equality of the point coordinates value modulo r between the computation over the
ring extension and over the finite field Fr .

9.5.3. Discussion

About small curve requirements Both for Edwards and twisted Edwards curves,
the small curve is of course not a cryptographic-grade curve. Indeed, the modu-
lus r is too small and the curve might have points of low order. However, the
small curve is not intended to be the support of a secure cryptographic operation:
the computation on this curve actually remains internal to fault-detection-enabled
ECSM. That is, the small curve is intended here to carry out exactly the same com-
putation as that done in the curve on the extended ring, in order to enable the
integrity verification.

Resistance to some attacks As a general guideline, additional protection against
the common point attack [252] shall be enforced. This attack is based on curve pa-
rameters alteration, with the hope that the obtained curve is weak. Thus, to thwart
this attack, the curve parameters shall be tested before and after the computation.

9

200
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

Table 9.1: Theory of the elliptic curve addition cost for th Edwards and twisted Edwards curves

ECADD-complete-unified ECADD-complete-unified ECADD-complete-unified Total cost of the
Computational

Curves type on Fp on Zpr on Fr countermeasure
overhead with:

n′ = 8 n′ = 16

Edwards 11.8n′2 + 7n′ 11.8n′2 + 30.6n′ + 18.8 19.8 11.8n′2 + 30.6n′ + 38.6 ≈ +28% ≈ +13%

Twisted Edwards 11.8n′2 + 7n′ 12.8n′2 + 32.6n′ + 29.8 19.8 12.8n′2 + 32.6n′ + 49.6 ≈ +39% ≈ +21%

9.6. Performance

Our implementation uses the projective coordinates described in [249, Sec. 4, page
9]. Projective unified addition version takes 10M + 1S + 1C + 1D + 7A where M
is the cost of multiplication, S is the cost of square, C is the cost of multiplying
by c, D is the cost of multiplying by d, and A abbreviates addition. The ECSM is
the algorithm add-always left-to-right like described in Alg. 7. The bitwidth of the
modulus is denoted by n (e.g., n = 256 for Ed25519). We denote by n′ the number of
words of the modulus, that is n′ = 256/32 = 8 on 32-bit platforms (or n′ = 256/16 =
16 on 16-bit platforms). We consider that cost of a multiplication of two numbers
composed by n′ words is n′2, cost of a square S is 0.8M and the addition A is
n′ . The Tab. 9.1 permits to compare the time of each ECADD-complete-unified,
depending of the number of words n′ .

Algorithm 7: Add-always left-to-right scalar multiplication on elliptic curve E.

Input : P ∈ E, k =
∑n−1
i=0 ki2

i (n is the scalar size in bits, where ki ∈ {0,1})
Output : [k]P

1 R0← P
2 R1← P
3 j← n− 2
4 b← 0
5 while j ≥ 0 do
6 R0← R0 +Rb . ECADD-complete-unified

7 b← b⊕ kj
8 j← j + kj − 1
9 end

10 return R0

9.6.1. Edwards curve example

For our experiment, we generate a Edwards curve on the finite field F2255−19 defined
by x2 + y2 = 1− 6x2y2 mod 2255 − 19.

Using the Prop. [253, sec 3.1], this Edwards curve corresponds to an elliptic curve
defined by E : v2 = u3 + a2u

2 + a4u on F2255−19, with a2 = −5 and a4 = 49. The

9.6. Performance

9

201

number of elements defined on the curve computed by MAGMA tool [254] is:

#E(2255 − 19) = 2255

+ 138694172605265013181071149003381840660.

We find a generator point (xG, yG) on the Edwards curve with:

xG = 5374651458625038877096795186176602156

1817370662802863797712166095360241234126,

yG = 1957008123356055059798743913552951638

1390903225319934175948181057081969418594.

The co-factor of the curve is 4. For the small curve, we can choose r = 2147499037;
hence we have c′ = 1800340494,d′ = 1430405543,x′G = 28751952 and y′G = 1290929995.
These parameters verify the lemma 9.5.1. The probability of fault non-detection is
about equal to 2−31.

Remark The probability namely “c2 + λp is a non-zero square in Fr” is about 1/2
and the probability namely “ dc2

c2+λp is a non-zero no-square in Fr” is about 1/2. To

generate 500.000 random primes r < 232 verifying the lemma 9.5.1, using online
version on MAGMA tool [254], the time is 110.769 seconds. The number of ran-
dom prime number generated is 1.999.238. The probability that a random prime r
meets the requirement of lemma 9.5.1 is less than 1/4 verified by this experimental
part.

9.6.2. Twisted Edwards curve example: Curve25519 / Ed25519

On the finite field F2255−19, the elliptic curve Curve25519 defined by the equation
v2 = u3 + 48662u2 + u is birationally equivalent to the twisted Edwards Curves
Ed25519 defined by equation −x2 + y2 = 1− 121665

121666x
2y2.

This equivalence is given by:x = u
v

√
−48664

y = u−1
u+1

or

u = 1+y
1−y

v = 1+y
(1−y)x

√
−48664

. (9.7)

The Curve25519 is a Montgomery curve, where very efficient computations can be
carried out using only the X and Z coordinates. We find a generator point (xG, yG)

9

202
9. Using Modular Extension to Provably Protect Edwards Curves Against

Fault Attacks

Table 9.2: Prime Factors < p of λ for the generator point (xG , yG) given in example (curve Ed25519

defined in Sec. 9.6.2)

Prime factors r 2 3 17 47 78857 843229 159962189299

Length in bit of r 2 2 5 7 16 19 40

r verifies the lemma 9.5.2 False False False False True True False

on the twisted Edwards curve Ed25519 with:

xG = 2472741323510654100255457457167558883

46227681673976384567264236825212336082063,

yG = 1554967558028019017635266871044954225

1549572066445060580507079593062643049417.

The prime factors of λ (recall definition 21) smaller3 than p are stored in the
Tab. 9.2.

For the small curve like described in Tab. 9.2, we can choose:

1. r = 78857, a′ = 32865,d′ = 47471,x′G = 71670 and y′G = 16752, or

2. r = 843229, a′ = 839079,d′ = 43998,x′G = 96826 and y′G = 488894.

These parameters verify the lemma 9.5.2.

The probability of fault non-detection is about equal to 2−16 for the first case and
to 2−19 for the second case.

Important remark we notice that the small verification field Fr cannot be chosen
at random. Instead, the value of r is highly constrained, as shown in Tab. 9.2. This
limitation of the ring extension countermeasure was not previously known.

9.6.3. Comments about results

One can see in Tab. 9.1 that the global time computation increases by 28% or 39%
for each addition operation using a 256-bit curve with a 32-bit processor (n′ = 8).
The computation overhead decreases when the curve parameters and the security
increase. Remarkably, the implementation code is the same for the two ECSM
computations. The memory storage requirement is increased by two word registers
for each variable.

3Actually, there is in λ only one factor larger than p, of length ≈ 900 bits, hence of no practical use—it
is indeed more efficient to perform the computation several times or to verify the signature.

9.7. Conclusions

9

203

9.7. Conclusions
It is well known that detecting faults while computing elliptic curve cryptogra-
phy can be achieved thanks to ring extension. In this paradigm, two entangled
computations are carried out in the extended ring, allowing to tightly produce
the functional result along with a redundant one, which can be checked indepen-
dently. However, classical methods fail because the redundant computation eval-
uated standalone or entangled can be different, owing to some tests being inde-
pendently evaluated when the elliptic curve formulae are not complete. Edwards
curves and twisted Edwards curves have complete formulae, hence are not con-
cerned with the issue of consistent tests requirement. Still, the application of ring
extension involves some technicalities, we discuss in the paper. Namely, Edwards
curves require an adaptation with Chinese reminder theorem of the curve con-
stant parameter. As for twisted Edwards curves, the modulus extension can only
be performed with a factor of λ, which is related both to the curve parameters and
to the base point. The outcome is a provable fault detection method for (twisted)
Edwards curves which, despite its simplicity, is novel, elegant and effective.

10
A novel physical EM Fault

coutermeasure

Electromagnetic injection (EMI) is a powerful and precise technique for fault in-
jection in modern ICs. This intentional fault can be utilized to steal secret infor-
mation hidden inside of ICs. Unlike laser fault injection, tedious package decap-
sulation is not needed for EMI, which reduces an attacker’s cost and thus causes
a serious information security threat. In this paper, a PLL-based sensor circuit
is proposed to detect EMI reactively on chip. A fully automatic design flow is
devised to integrate the proposed sensor together with a cryptographic processor.
A high fault detection coverage and a small hardware overhead are demonstrated
experimentally on an FPGA platform.

10.1. Introduction
Embedded systems play an important role in a current advanced information so-
ciety and will become fundamentally critical in a coming Internet of Things (IoT)
era. Although IoT could benefit a human life significantly, the hardware security of
the IoT embedded system becomes a serious technical issue. Since the IoT devices
are distributed anywhere and everywhere in the human life and collect precious
private information, the systems could be a potential target of physical attacks.

Side-channel and fault attacks are well-known physical attacks. Side-channel at-
tack (SCA [255]) is passive in nature, which basically search for sensitive infor-
mation by observing unintentional but natural side-channel leakage of physical

205

10

206 10. A novel physical EM Fault coutermeasure

parameters, such as power consumption, EM radiation, and operation timing of
ICs. Fault injection attack (FIA [2]) is on the other hand active in nature, which
intentionally turns the target device in an abnormal operate condition and induces
computation faults. This fault operation can be exploited to reveal sensitive in-
formation. The abnormal operate conditions can be realized by several methods.
The most common and low-cost methods include under-powering, over-clocking,
and extreme-heating/cooling. These techniques have a global impact and thus lack
precision in location and type of faults. Efficient FIA needs more local fault injec-
tion in time and space domains. Sophisticated techniques such as laser injection or
focused ion beam (FIB) injection are efficient but very expensive for the attackers
and both of them require package decapsulation.

Electromagnetic injection (EMI) is one of the efficient and low-cost methods for
fault injection in modern ICs [256]. There are two main advantages in EMI. Firstly,
unlike laser injection, EMI can be performed without detailed decapsulation for
opening of the target circuit since the EM field can penetrate the package and
therefore no dedicated IC chip preparation is required. This reduces the attacker
cost significantly by saving the time and money on careful decapsulation and acci-
dental destruction of the chip. Moreover, secure chips often deploy several phys-
ical sensors which are triggered upon the opening of the package. Such counter-
measures can be easily bypassed by EMI. The second advantage of EMI is high
configurability. Depending on the various parameters like probe size, orientation,
and injection pulse width/frequency, the fault injection timing and spot can be
precisely adjusted.

There are a few research works done to develop countermeasures against this EMI.
One of the best known methods is glitch detectors [257]. Zussa et al. proposed to
integrate multiple FF-based distributed sensors and their clock networks to detect
EMI-induced glitches before inducing the actual fault operation in the protected
core circuit. When one of the sensors detects glitches, an alarm signal is raised.
The biggest problem is its sensitivity control. Since the detector utilizes simple
delay line based sensor, the EMI detection threshold is broadly fluctuated over
PVT variations. In addition, there is no clear criteria on how many and how finely
the sensors should be distributed to guarantee the security margin against EMI.

In this paper, a novel countermeasure to detect EMI is proposed. This countermea-
sure is based on PLL (phase locked loop). A PLL is a clock control circuit and is
found easily in modern ASICs and FPGAs. Whenever, a PLL is started, it needs
multiple cycles to generate a stable clock. This state where the PLL generates sta-
ble clock is known as a ’locked’ state. When the parameters of the PLL is modified
during operation, its lock is broken and it again needs multiple clock cycles to
come back to the ’locked’ state. Proposed countermeasure exploits this property of
PLL. Precisely, the PLL monitors an internally generated clock. When an attacker

10.2. PLL-Based EMI Countermeasure

10

207

D Q

D Q

Rclk

Fbclk

Reset

Down

Up

Fbclk

Up PFD
Down

LF
VCTRL

1/N

Rclk

PLL

VCO
Core
Clock
Cclk

Loop-State Monitor Locked
EMI

Watch-Dog Clock
Glitch

PFD

t

Rclk	

Fbclk

Up

Down

VCTRL

Locked

(a) Locked State (b) Unlocked State

Attack Detection

Glitch

Attack

Crypto Core

Figure 10.1: Block diagram of PLL-based EMI countermeasure and its operation waveforms
in (a) lock and (b) unlock state.
attempts to perform EMI, the internal clock changes phase/frequency which leads
to unlocking of PLL and thus detection of disturbances. Since the proposed system
requires precise design controls in implementation that cannot be done by generic
vendor tools, an automated implementation flow is devised in Xilinx FPGA envi-
ronment for properly manipulating the bottom layer logic elements, merging the
protection system and the security sensitive circuit to be protected.

The rest of the paper is organized as follows: Sec 10.2 describes the basic func-
tioning of PLL and how it can be used to design EMI countermeasure. Sec 10.3
details the fully automated design flow for application of the proposed counter-
measure in an FPGA platform. Experimental results are shown in Sec 13.6 and
final conclusions are drawn in Sec. 10.5.

10.2. PLL-Based EMI Countermeasure

10.2.1. Concept

Phase Locked Loop or PLL, is a clock timing control circuitry which detects phase
and frequency difference between two clock sources and feedback-controls to keep
synchronization between them. Fundamental building blocks of PLL are a Phase-
Frequency Detector (PFD), a Loop Filter (LF), and a Voltage-Controlled Oscillator
(VCO) as depicted in Fig. 10.1. PFD compares two clock input timings: one is an

10

208 10. A novel physical EM Fault coutermeasure

external reference clock Rclk and feedback internal core clock Fbclk. Based on the
timing comparison, PFD produces up and down pulses (Up, Down) whose duration
time represents phase and frequency difference between two clock sources. A sim-
ple implementation of PFD consists of only one AND gate and two FFs with reset
input. LF generates the control voltage VCTRL for VCO depending on the up/down
pulses given from PFD to adjust phase and frequency of VCO for the synchroniza-
tion. Insertion of a frequency divider (1/N) in the feedback loop, enables to gen-
erate N -times higher-frequency core clock Cclk synchronized with respect to the
external reference clock Rclk. PLL is therefore widely used for global clock syn-
chronization in the LSI-based electronic systems and thus almost of all the modern
high-performance SoC ASICs and FPGAs integrate PLL on-chip.

This existing PLL can be utilized for an EMI countermeasure. Fig. 10.1 describes
the basic concept. PLL can be seen as a continuous monitor of internal clock stabil-
ity. Since the purpose of EMI is an intentional induction of instantaneous abnormal
circuit operations by large-power EM pulse, PLL can detect this EMI attack by uti-
lizing feedback clock path as a watch dog signal. In a stable steady state of the PLL
loop, both the phase and frequency are locked between the external reference clock
and the internal clock sources. Thus PFD only produces almost-no or very short
up/down pulses in a locked state (Fig. 10.1 (a)). Once PLL looses lock due to in-
stantaneous glitches or jitter in the feedback clock path, PLL starts to recover lock
by producing explicit up/down pulses for many clock cycles (Fig. 10.1 (b)). This
locked/unlocked state can be easily distinguished by a digital Loop-State Monitor
(LSM). By distributing the feedback clock path all over the security sensitive crypto
core to be protected, the EMI attack can be easily captured as an unlock event in
the PLL loop. In other word, PLL amplifies the instantaneous erroneous operation
in the watch-dog clock as a digital attack-warning signal. Once the attack is cap-
tured on-chip, the crypto core can be protected by disabling the core or operating
it in dummy operation mode, such as in [258].

For further enhancing the security level, the reference clock path is together in-
cluded in the watch-dog clock paths (Fig. 10.2). This modified configuration makes
it possible to detect the EMI attack before the actual fault operation is induced in
the crypto core. In addition, malicious attacks, such as EMI injection into the con-
trol loop itself, can be detected since these attacks anyway cause the unlocked state
of PLL. A repeater configuration (Fig. 10.2 (a)) can provide flexibility for the syn-
chronization with the external clock source Rclk. This configuration exposes the
clock port to the attackers however the fault attack exploiting this clock port is
very difficult. Over-clocking or glitch insertion of Rclk can be detected by PLL in
advance of the actual fault operation. Also, by carefully designing the maximum
operating frequency of the crypto core to be higher than the PLL tuning range,
a Fault Sensitivity Analysis (FSA [215]) is also disabled (the attacker only see the

10.2. PLL-Based EMI Countermeasure

10

209

Crypto Core

Up
Rclk

PLL

Cclk

LSM Locked
EMI

Watch-Dog
Clock Paths

Down

Crypto Core

Up Rclk

PLL

Cclk

LSM Locked
EMI

Watch-Dog
Clock Paths

Down

(a) Repeater Configuration (b) Ring-Oscillator (RO) Configuration

Figure 10.2: Security-enhanced implementation of EMI countermeasure with reference
clock watch dog in (a) repeater and (b) ring-oscillator configuration.
fault operation of PLL). A ring-oscillator (RO) configuration (Fig. 10.2 (b)) hides
the clock port on-chip for maximally enhancing the security. No exposed port is
available to the attackers. In this configuration, the crypto core asynchronously
communicates with other circuits in a hand-shaking manner which is common
for the security core design. A test chip in this work integrates the asynchronous
crypto core with the EMI countermeasure in RO configuration for the highest secu-
rity demonstration. The technical challenges lie in (1) how to efficiently implement
the crypto core with the countermeasure in a fully automatic design flow; (2) how
to adjust the sensitivity of the attack detection to guarantee a high enough security
margin i.e., countermeasure raises alarm much before the crypto core is in fault.

10.2.2. Implementation Details

The proposed countermeasure uses an active ring oscillator (RO) as a watch-dog
circuit (Fig 10.2(b)). The frequency f of a RO can be defined as 1

2∗t∗n , where t
is gate delay and n is number of inverters. n is chosen as 1 to allow maximal
oscillating frequency. The delay t in detail has two significant components: one is
gate delay tg and the other is routing delay tr . As shown in Fig. 2(b), RO in our
implementation is designed in a way to thoroughly envelop the sensitive module
by making multiple loops to guarantee the full coverage of EMI detection. The RO
delay is mostly composed of routing delay including buffers delay and therefore
tr cannot be neglected. The operating frequency f can be finally written as f =

1
2∗(tg+tr)

. f tends to be as low as several MHz because long single routing is needed

for the detection coverage. However, the operating frequency of the crypto core
can be still increased by adjusting the clock division rate of the PLL feedback path.
The performance degradation of the crypto processing can be minimized.

When an EM injection is made on the chip, the EM glitch will try to disturb the
sensitive core. Since the RO is routed over the sensitive core, the glitch will change
the routing time delay to a value t′r . The modified frequency of RO will be f ′ =

1
2∗(tg+t′r)

. This sudden change in frequency will impact the phase of the RO, which

10

210 10. A novel physical EM Fault coutermeasure

(a) (b)
Figure 10.3: Validation of the countermeasure principle on Spartan-6. (a) Configuration of
PLL, (b) Observed signal on scilloscope with trigger in pink, EMI pulse in yellow, CLK_OUT
in purple and LOCKED in green.
in turn will force the PLL to unlock state. Thus, the LOCKED signal of LSM raises
an alarm.

To demonstrate this phenomena, simple experiments are performed on Spartan-6
FPGA. PLL_ADV block on Spartan-6 FPGA is used as a PLL module, which re-
ceives external clock as input. The CLK_FB_OUT is fedback to CLK_FB_IN for
self-calibration, as shown in Fig. 10.3(a). The LOCKED output of the PLL is ob-
served on an external pin. The results are shown in Fig. 10.3(b). When the injected
pulse disturbs the internal clock routing, the PLL is unlocked and LOCKED sig-
nal (in green) moves to zero. EMI pulse (in yellow) appears multiple cycles after
the trigger (in pink) i.e., triggering delay. As soon as the EMI pulse appears, the
LOCKED signal goes down asynchronously and raises an alarm. The EMI pulse
disturbs the phase of the CLK_FB_IN, which leads to breaking of the lock. A dis-
turbance on the (asynchronous) reset pin of the PLL can also have similar affects.
When the EM pulse is removed, the PLL starts to stabilize itself and the LOCKED
signal stays low during this period for multiple cycles.

A similar behavior is observed by changing the phase of externally-input refer-
ence clock CLK_IN. However a gradual and slow change in frequency of CLK_IN
does not triggers the alarm. The attacker can possibly exploit the external clock
to perform a FSA [215] in the crypto core. By carefully designing the maximum
operating frequency of the crypto core to be higher than the tuning range of PLL,
FSA can be disabled. However this is not always possible for any crypto core and
existing PLL pair. The clock generated by the RO is therefore utilized as the refer-
ence clock input to derive the clock source for the crypto core. This configuration

10.3. Design Automation

10

211

enhances the PVT variation tolerance of the countermeasure. Since a change in
process, supply voltage, and temperature will impact both the crypto core and RO
in a similar way, susceptibility (sensitivity) against EMI is also changed similarly.
In addition, the precise fault control by intentional disturbance of supply voltage
and temperature becomes difficult.

An EM attack sensor [258] was presented as a countermeasure against a passive
side-channel attack. This sensor was build on a LC coil acting as a probe sensor
by detecting frequency shift with respect to another calibrating coil. It can detect
micro EM probes which approach the circuit at a proximity within 0.1 mm. In
our approach, the EM-probe detection range is as long as few cms as it detects
active EM probes. These two techniques can be together integrated to cover the
protection against a passive proximity EM analysis attack and an active EMI.

10.3. Design Automation

An automatic design flow is devised to implement the proposed countermeasure
together with the cryptographic processor to be protected. The detailed explana-
tion is separated into two parts. First, the procedure to automatically place and
route the watch-dog RO in an FPGA is explained. Second, the detailed design flow
to integrate RO and PLL together with the crypto core.

10.3.1. Controllable RO Routing Flow

Due to limited routing freedom in FPGAs, routing manipulation is almost impos-
sible in an automated manner with standard vendor tools. To implement the RO
in the proposed countermeasure, the routing from inverter output to its own in-
put should be sufficiently long to thoroughly cover all the sensitive block. The EM
probe trying to inject fault will therefore interfere with RO. However, using the
standard commercial router only results in very uncontrollable and short loops, as
the tools are designed for resource optimization by default. In order to properly
control the RO routing path, a customized tool is constructed over Rapidsmith
library [259] to manipulate the logic and routing in a Xilinx environment. The
proposed design flow mainly comprises of 4 distinct stages.

1. 4 single-inverter RO modules are instantiated by a HDL source code,
and deployed on the 4 corners of a rectangular region to be covered. 3
of the 4 ROs are actually dummy for positioning the region boundary
of the watch-dog clock path. The preliminary design is implemented by
generic FPGA design flow to create the post P&R ncd file, as shown in
Fig 10.4(a).

10

212 10. A novel physical EM Fault coutermeasure

2. The ncd file is parsed by the customised analysis tools to be converted
into xdl format, which is human readable and contains all the imple-
mentation details mapping to a specific device. The basic routing ele-
ment in Xilinx environment is “node” that is used to concatenate differ-
ent instances and populate a complete routing network. The nodes of
the 4 ROs are extracted from each RO modules in the xdl file [260]. For
the main RO, a source node i.e., output pin of inverter (labeled node
1.1) and the sink node i.e., input node of inverter (labeled node 1.2) are
extracted as shown in Fig 10.4(b).

3. In this step, the dummy ROs are simply removed from the xdl, only
their nodes are left in the design. On the contrary, the LUT of the main
RO is intact, but all the routings are removed, except the node 1.1 and
node 1.2.

4. Since the vendor router is just capable of routing a path from source

to sink, a custom node router is developed that can partially route a
path between the two designated nodes. Following the previous steps, 4
independent routings are performed using the node router: node 1.1→
node 2→ node 3→ node 4→ node 1.2. Each individual route follows
the generic routing protocol which results in the shortest path between
two nodes. Next, a long routing path is completed that is positioned to
be a rectangular by the selected corner nodes (1.1, 1.2, 2, 3, 4) as seen in
Fig 10.4(d).

The same flow can be simply extended when the RO has a zig-zag shape (Fig. 10.3)
and more than 4 nodes can be identified.

10.3.2. Co-Integration Flow of Sensor and Crypto Core

This section presents an automatic design flow to implement the countermeasure
with a cryptographic processor core. The module to be protected can be any other
sensitive circuit, such as CPU, key storage, etc. In this work, a cryptographic core of
Simon block cipher is considered as an design example. All the steps are automated
and concatenated using Java, which calls Xilinx tools in command line mode. The
xdl files are also processed using customised tools [260]. The main procedure is
sketched in Fig. 10.5 and involves the following steps:

1. The flow starts with the HDL description of the cipher i.e., cipher.v
and the specific placement constraints on logic region. The cipher is
synthesized, placed and routed to extract the ncd, followed by xdl file
of the cipher implementation.

2. The placement constraints from the previous steps are also used to de-

10.3. Design Automation

10

213

[RO module deploye-

ment]

main RO

dummy RO module

dummy RO module

dummy RO module

[Boundary node extrac-

tion]

main RO

dummy RO moduledummy RO module

dummy RO module

source node 1.1

sink node 1.2

node 2node 3

node 4

[Dummy module re-

moval]

source node 1.1

sink node 1.2

node 2node 3

node 4

[RO segmental re-

route]

(route: node 1.1 -> node 2)

(route: node 2 -> node 3)

(route: node 3 -> node 4)

(route: node 4 -> node 1.2)

Figure 10.4: Exemplary design flow to implement a RO with restrained routing require-
ments.

10

214 10. A novel physical EM Fault coutermeasure

Cipher.xdl RO.xdl PLL.xdl

Cipher.ncd RO.ncd PLL.ncd

Cipher.v RO.v PLL.v

design
merge

route process

reconnect
PLL & RO & Cipher

fpga_edline.scr

1.extract nodes/remove dummies
2.segmental node_reoute

RO enable

fpga_edline.scr
RO.ncd

RO.xdl

merge.bit

region_constraint

dummy location
constraint

(Xmin, Ymin)

(Xmax, Ymax)

reconnect RO enable signal to
external pin

Figure 10.5: Design flow of automatic co-integration of crypto core and countermeasure.
fine the corner nodes of the 4 ROs implemented. 3 out of 4 ROs are
dummy modules in nature and are eventually removed. Nevertheless,
the corner nodes can also be extracted from cipher.xdl rather than
defining in the constraint file.

3. The EM countermeasure previously explained is also implemented and
converted to xdl file.

4. The RO.xdl is then modified to envelop the cipher module. This proce-
dure is explained in previous subsection (see Fig. 10.4). An enable sig-
nal is also added to the final RO in an automatic way using fpga_edline

commands at this step.

5. In the penultimate step, the three xdl designs are combined (cipher,
PLL, modified_RO) and concatenated.

10.4. Experimental Evaluation

10

215

RO cipherCipher PLL

enable

enable

cipher reset

PLL clock_in

design merge
&

Reconnect

Figure 10.6: Conceptual overview of design flow.
6. The final step is the bitstream generation from the merged design.

A high-level overview of the flow is illustrated in Fig 10.6. The automation method-
ology can also be extended to ASIC design flow, of course with different tool tricks.

10.4. Experimental Evaluation

10.4.1. Experimental Setup

The proposed countermeasure is validated on SASEBO-W board, which carries a
Spartan-6 FPGA from Xilinx. Spartan 6 FPGA is packaged in frontside (FG) pack-
age which makes it easier to perform EM injection as compared to other FPGA that
are packaged in flip chip (FF). The chip package stays intact as EMI does not need
package removal.

The full setup for EMI test is presented in Fig. 10.7. The signal generator is used
to fine tune the frequency with a precision of 1 ps. A 300W (55dB) broadband,
400MHz class A amplifier allows injection of very short EM pulses of width of 1.5-
ns. A remotely controllable XYZ axes table (not shown) is used to perfom a full
fault cartography with a spacial resolution of 1.0 µm. The XYZ table scans the
entire chip and generates a cartography as a 30× 30 array.

10.4.2. Target Circuit

The countermeasure is validated on a hardened cryptographic module i.e., a block
cipher which has fault detection capabilities in-built. Using such hardened cryp-
tographic primitives simplifies the analysis part and it is easier to distinguish ex-

10

216 10. A novel physical EM Fault coutermeasure

trigger ()

JTAG

LAN

Signal Generator

Osciloscope

Timing Generator

Class A Amplifier

Control ChainCUT Injection Chain

EM Probe

Sys_Freq

DDUT

Figure 10.7: Picture of experimental setup for fault injection.

ploitable faults from faults which occur on the peripherals. The target circuit is
a one cycle per round encryption only implementation of Simon32/64 block ci-
pher implemented in Verilog. It is hardened for fault detection using encoded
circuits [261] with a linear code of dual distance of 5. Encoded circuits operate by
encoding the internal state of the circuit, using a linear code, which is then mixed
with a random number. If a fault is injected inside the encoded circuit, it can be
simply detected by decoding the random number and comparing with the initial
random number. Any fault in the computation of cryptography will modify the
code and hence the decoded random number will differ. More details on this tech-
nique can be found in [261]. Encoded circuits based hardening is applicable to any
digital circuit. The validation is done on Simon32/64 core, as it stays small in area
even after hardening and it is easier to analyze the faults.

Next, the proposed countermeasure is implemented on hardened Simon32/64 core
using the design flow detailed in Sec. 10.3. The RO is routed using 12 nodes and
the design flow converges in single iteration, without any conflicts. The overall
cost of hardened Simon32/64 is 578 flip-flops and 1658 LUTs for Simon32/64 and
the UART communication interface. Maximal operating frequency of the design
is 50 MHz. Proposed countermeasure uses one PLL_ADV primitive for the PLL
functionality and single LUT as an inverter along with routing resources to realize
the RO. The circuit is driven close to maximal frequency so that faults are easier
to inject. Moreover, the frequency of oscillation of the RO can be estimated from
FPGA editor and PLL can be tuned accordingly. The hardened Simon core along
with proposed countermeasure is validated on SASEBO-W platform. The analysis
is conducted using the EMI platform explained in Sec.10.4.1. In the next section,
the results of EMI injection are presented and analyzed.

10.4. Experimental Evaluation

10

217

36 40.75 45.5 50.25 55 59.65 64.5

0

0.2

0.4

0.6

0.8

1

EM Pulse Injection Power (dBm)

P
ro

b
a

b
ili

ty

EM Pulse Detected

Fault Injected

Undetected Faults

Security Margin

Figure 10.8: Sensitivity of the proposed countermeasure against EM pulse injection.
10.4.3. Experimental Results

The experiments are devised to test two parameters i.e., the sensitivity of counter-
measure and the spatial coverage of the countermeasure. Sensitivity means that
the countermeasure is expected to raise an alarm much before the EM pulse faults
the sensitive circuit. This is done by fixing the position of the probe on a point on
top of the sensitive core. The impact of injecting EM pulses with varying power
intensity is shown in Fig. 10.8. The proposed countermeasure raises an alarm
for EM pulses of power as low as 38dBm. On the other hand, faults in sensitive
core (Simon) start appearing at a minimum power of 54dBm. The security margin
of the proposed countermeasure can be estimated to 19dBm from Fig. 10.8. At
64dBm, the faults discontinue, i.e., the EMI setup has reached its practical limit.
Moreover, repetition of this experiment at several other points over SIMON32/64
depicts similar trend. None of the performed experiment shows reverse trend i.e.,
faults in sensitive core are injected without raising the alarm.

5 10 15 20 25 30

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)
Figure 10.9: EM cartography of the (a) detection rate, (b) undetected faults on Spartan-6
FPGA implementing Encoded Simon32/64 and proposed countermeasure under EMI setup.

10

218 10. A novel physical EM Fault coutermeasure

Next experiments studies the spatial coverage of the fault injection. The FPGA is
scanned by a remotely controlled XYZ table carrying the EM injection probe and
the FPGA is scanned using 30× 30 grid. The fault detection capability of the EMI
countermeasure is shown using a color map in Fig 10.9(a). The current results
are at injection power of 53dBm i.e., in the region of fault injection on Simon. The
expected region over Simon core and related I/0 (i.e., center of FPGA) reports 100%
fault detection. The fault detection probability falls to less than 100% in certain
regions. However, the core is totally encircled by the watch-dog RO including some
margin, thus such injection do not impact the Simon core.

There were a couple of pixels on the cartography, where some unexpected behavior
occurred, as shown in Fig. 10.9(b). These were around pixel (27,18). Although no
part of Simon core or the countermeasure is placed around these pixels but still
some faulty output can be observed. Moreover, this faulty output turned out to be
non-exploitable. From these observations, it can only be speculated that the EM
pulse violates an internal (hidden) sensor which disturbs the FPGA functioning. It
could also be due to disturbance of some power delivery or clock network or PLL
itself. However, as the internal architecture of FPGA is not known, this hyposthesis
cannot be confirmed. Reffering back to Fig. 10.8, at higher power some undetected
faults are injected with a probability lower than of 0.01. When the the power of
EM pulse is high, an injection triggers similar sensors and unexpected behavior is
observed.

All the experiments were performed without any chip decapsulation. So it is hard
to point exact location of crypto-core and sensor routing on the cartography. The
FPGA die only covers a part of the package. Future work can explore techniques
like X-ray imaging for deeper analysis.

10.4.4. Discussion

This section compares countermeasure proposed in this work with the state of the
art. In [257], authors use multiple glitch detectors to detect local EM injection.
Their idea is simple and works very well. Now comparing with proposed scheme,
glitch detectors can have several shortcomings. First of all, there is no defined
methodology to find the required number and placement of glitch detectors, which
makes automation difficult. Proposed scheme needs only one RO and an existing
PLL, and can be easily automated. The need of PLL on-chip is one limitation of
proposed scheme however PLL exists almost of all the modern FPGAs and ASICs.
The placement of proposed scheme is easy as it needs to only envelope all the sen-
sitive core thoroughly with wide enough security margin. Every glitch detector
works as stand-alone environment sensor, and thus every detector has different
sensitivity to local PVT and process variation. The sensitivity of proposed counter-

10.5. Conclusions

10

219

Property Glitch Detector [257] This Work

Design Flow Semi-Automatic Fully-Automatic

Placement Difficult Envelope target

PLL Necessity No Need PLL (Existing)

Composition n Detectors 1 PLL + 1 RO

PVT Variation Im-
munity

Low High

Table 10.1: Qualitative Comparison of Proposed Countermeasure with State of The Art
measure is majority routing spread over a large area, which make PVT and process
variation sensitivity limited. These properties are summarized in Table ??.

10.5. Conclusions
EMI has recently emerged as a precise and powerful fault injection technique. In
this paper, a circuit level countermeasure against EMI is proposed. It uses a PLL
circuit and a free running oscillator. A fully automated design flow is provided
for supporting the implementation of the proposed countermeasure system. The
protected scheme is validated on Spartan-6 FPGA. Results show that the proposal
detects all the faults targeting the sensitive core with significant security margin
of 19dBm. Further work will focus on better understanding of unexpected fault
behavior from hidden architecture of FPGAs, using techniques like X-ray imaging.

11
Reconfigurable LUT: A Double

Edged Sword for
Security-Critical

Applications

Modern FPGAs offer various new features for enhanced reconfigurability and bet-
ter performance. One of such feature is a dynamically Reconfigurable LUT (RLUT)
whose content can be updated internally, even during run-time. There are many
scenarios like pattern matching where this feature has been shown to enhance per-
formance of the system. In this paper, we study RLUT in the context of secure
applications. We describe the basic functionality of RLUT and discuss its poten-
tial applications for security. Next, we design several case-studies to exploit RLUT
feature in security critical scenarios. The exploitation are studied from a perspec-
tive of a designer (ex. designing countermeasures) as well as a hacker (inserting
hardware Trojans).

11.1. Introduction
Field Programmable Gate Arrays (FPGAs) have had a significant impact on the
semiconductor market in recent years. FPGAs came into the VLSI industry as suc-
cessor of programmable read only memories (PROMs) and programmable logic
devices (PLDs) and has been highly successful due to its reconfigurable nature.

221

11

222
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

A standard FPGA can be defined as islands of configurable logic blocks (CLBs)
in the sea of programmable interconnects. However, with time, FPGAs have be-
come more sophisticated due to the addition of several on-chip features like high-
density block memories, DSP cores, PLLs, etc. These features coupled with their
core advantage of reconfigurability and low-time to market have made FPGA an
integral part of the semiconductor industry, as an attractive economic solution for
low to medium scale markets like defense, space, automotive, medical, etc. The
key parameters for FPGA manufacturers still remain area, performance and power.
However, during these recent years, FPGA manufacturers have started considering
security as the fourth parameter. Most recent FPGAs support bitstream protec-
tion by authentication and encryption schemes [262]. Other security features like
tamper resistance, blocking bitstream read-back, temperature/voltage sensing, etc.
are also available. FPGA has also been a popular design platform for implementa-
tions of cryptographic algorithms due to its reconfigurability and in house security.
Apart from the built-in security features, designers can use FPGA primitives and
constraints to implement their own designs in a secure manner. In [263], authors
show several side-channel countermeasures which could be realized on FPGAs to
protect one design. Another work [264] demonstrates the efficient use of block
RAMs to implement complex countermeasures like masking and dual-rail logic.
DSPs in FPGAs have also been widely used to design public-key cryptographic al-
gorithms like ECC [265, 266] and other post-quantum algorithms [267]. Moreover,
papers like [268] have used FPGA constraints like KEEP, Lock_PINS or language
like XDL to design efficient physical countermeasures.

The basic building block of an FPGA is logic slices. Typically a logic slice contains
look up tables (LUTs) and flip-flops. LUTs are used to implement combinational
logics whereas flip-flops are used to design sequential architectures. Every LUT
contains an INIT value which is basically the truth table of the combinational func-
tion implemented on that LUT. This INIT value is set during the programming of
the FPGA through bitstream. Generally this INIT value is considered to be constant
until the FPGA is reprogrammed again. However, in recent years, a new feature
has been added to the FPGAs which allows the user to modify the INIT value of
some special LUTs in the run time, without any FPGA programming. These spe-
cial LUTs are known as reconfigurable LUTs or RLUTs as they can be reconfigured
during the operation phase to change the input-output mapping of the LUT. To the
best of our knowledge, RLUTs have found relevant use in pattern matching and
filter applications [269]. Side channel protection methodology using RLUT is pre-
sented in [270] where the authors have combined different side channel protection
strategies with RLUTs and have developed leakage resilient designs. However, in
that work the authors have concentrated mainly on constructive use of RLUTs, not
on destructive applications which is covered by our paper.

11.2. Rationale of the RLUT

11

223

In this paper, we aim to study the impacts and ramifications of these RLUTs on
cryptographic implementations. We have provided a detailed study of RLUTs
and have deployed it in many security related applications. We propose several
industry-relevant applications of RLUT both of constructive and destructive na-
ture. For example, an RLUT can be easily (ab)used by an FPGA IP designer to
insert a hardware Trojan. On the other hand, using RLUT, a designer can provide
several enhanced features like programming secret data on client-side. The contri-
bution of the paper can be listed as follows:

– This paper provides a detailed analysis of RLUTs and how it can be ex-
ploited to create extremely stealthy and deadly hardware security threats
like hardware Trojans (destructive applications).

– Moreover, we also propose design methodologies which uses RLUTs to
redesign efficient and lightweight existing side channel countermea-
sures to mitigate power based side channel attacks (constructive appli-
cations)

– Thus, in this paper we show that how RLUTs provide a gateway of cre-
ating efficient designs for both adversary and normal users and act as
double-edged swords for security applications. To the best of our knowl-
edge, this is the first study which provides a detailed security analysis
of RLUTs from both constructive and destructive points of view.

The rest of the paper is organized as follows: Sec. 11.2 describes the rationale of
an RLUT and discusses its advantages and disadvantages. Thereafter several de-
structive and constructive applications of RLUT are demonstrated in Sec. 11.3 and
Sec. 11.4 respectively. Finally conclusions are drawn in Sec. 11.5.

11.2. Rationale of the RLUT

RLUT is a feature which is essentially known to be found in Xilinx FPGAs. A
Xilinx RLUT can be inferred into a design by using a primitive cell called CFGLUT5
from its library. This primitive allows to implement a 5-input LUT with a single
output whose configuration can be changed. CFGLUT5 was first introduced in
Virtex-5 and Spartan-6 families of Xilinx FPGAs. As we will show later in this
section, the working principle of CFGLUT is similar to the shift register or the more
popularly known SRL primitives. Moreover, some older families of Xilinx which
do not support CFGLUT5 as a primitive, can still implement RLUT using the SRL16
primitive. In the following, for sake of demonstration, we stick to the CFGLUT5
primitives. Nevertheless the results should directly apply to its alternatives as well.

As stated earlier, a RLUT can be implemented in Virtex-5 FPGAs using a CFG-

11

224
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

LUT5 primitive. The basic block diagram of CFGLUT5 is shown in Fig. 11.1. It is
a 5-input and a 1-output LUT. Alternatively, a CFGLUT5 can also be modeled as a
4-input and 2-output function. The main feature of CFGLUT5 is that it can be con-
figured dynamically during the run-time. Every LUT is loaded with a INIT value,
which actually represents the truth table of the function implemented on that LUT.
A CFGLUT5 allows the user to change the INIT value at the run-time, thus giving
the user power of dynamic reconfiguration internally. This reconfiguration is per-
formed using the CDI port. A 1-bit reconfiguration data input is shifted serially
into INIT in each clock cycle if the reconfiguration enable signal (CE) is set high.
The previous value of INIT is flushed out serially through the CDO port, 1-bit per
clock cycle. Several CFGLUT5 can be cascaded together using reconfiguration data
cascaded output port (CDO).

I2

I3

I4

I1
I0

CE

Clk INIT

CFGLUT5
CE= Reconfiguration enable signal (active high)
CDI= Reconfiguration data serial input
O6= LUT output (For 5/4 i/p function)
O5= LUT output (For 4 i/p function)

CDO= Reconfiguration data output, can
be cascaded to CDI input of other CFGLUT

Clk=clock

INIT=Initial content of LUT

I4, I3, I2, I1, I0= LUT i/p (similar to the
address of shift register)

CDI

O6

O5

CDO

Figure 11.1: Block diagram of CFGLUT5

The reconfiguration property of CFGLUT5 is illustrated in Fig. 11.2 with the help
of a small example. In this figure, we show how the value of INIT gets modified:

– from value O = (O0,O1,O2, . . . ,O30,O31),

– to a new value N = (N0,N1,N2, . . . ,N30,N31).

This reconfiguration requires 32 clock cycles. As it is evident from the figure,
reconfiguration steps are basic shift register operations. Hence if required, re-
configuration of LUT content can be executed by using shift register primitives
(SRL16E_1) in earlier device families. The CDO pin can also be fed back to the
CDI pin of the same CFGLUT5. In this case, the original INIT value can be re-
stored after a maximum of 32 clock cycles without any overhead logic. We will
exploit this property of RLUT later to design hardware Trojans.

There are two different kinds of slices in a Xilinx FPGA i.e., SLICE_M and SLICE_L.
Whereas a simple LUT can be synthesized in either of the slices, CFGLUT5 can be
implemented only in SLICE_M. SLICE_M contains LUTs which can be configured
as memory elements like shift register, distributed memory along with combina-
tional logic function implementation. CFGLUT5, when instantiated, is essentially
mapped into a SLICE_M, configured as shift register (SRL32) as shown in Fig 11.3.

11.2. Rationale of the RLUT

11

225

...

...

O0 O2 O31O30

N31 O0 O1 O30O29

...N30 N31 O0 O28 O29

...N2 N3N1 N31 O0

...N0 N1 N2 N30 N31

O1

CE = 0, CDI = N31

CE = 1, CDI = N31, CDO = O31

CE = 1, CDI = N30, CDO = O30

...

CE = 1, CDI = N1, CDO = O1

CE = 1, CDI = N0, CDO = O0

Stage 0

Stage 1

Stage 2

Stage 31

Stage 32

INIT

Figure 11.2: INIT value reconfiguration in CFGLUT5

Figure 11.3: CFGLUT5 mapped in LUT as SRL32 as shown from Xilinx FPGA Editor
11.2.1. Comparison With Dynamic Configuration

Another alternative to reconfigure FPGA in run-time is to use partial or dynamic
reconfiguration. This reconfiguration can also be exploited to implement secure ar-
chitectures [271]. In partial reconfiguration, a portion of the implemented design
is changed without disrupting operations of the other portion of the FPGA. This
operation deploys an Internal Configuration Access Ports (ICAP) and the design
needing reconfiguration must be mapped into a special reconfigurable region. Re-
configuration latency is in order of milliseconds. Partial reconfiguration is helpful
when significant modification of the design is required. However, for small mod-
ification, using RLUT is advantageous as it has very small latency (maximum 32

11

226
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

clock cycles) compared to partial reconfiguration. RLUT is configured internally
and no external access to either JTAG or Ethernet ports are required for reconfigur-
ing RLUTs. Additionally, traditional DPR requires to convey an extra bit file which
is not required in case of RLUT, making RLUT ideal for small reconfiguration of
the design, in particular for Trojans.

11.2.2. RLUT and Security

Since we have described the functioning of RLUT in detail, we can clearly rec-
ognize some properties which could be helpful or critical for security. A typical
problem of cryptographic implementations is its vulnerability to statistical attacks
like Correlation Power Analysis (CPA) [111]. For instance, CPA tries to extract
secret information from static cryptographic implementations by correlating side-
channel leakages to estimated leakage models. A desirable feature to protect such
implementations is reconfiguration of few internal features. A RLUT would be a
great solution in this case as it has the power to provide reconfigurability at mini-
mal overhead and with no external access. It is important to reconfigure internally
to avoid the risk of any eavesdropping. On the other hand, RLUT can also be used
as a security pitfall. For example, an efficient designer can simply replace a LUT
with RLUT in a design keeping the same INIT value. Until reconfiguration, RLUT
would compute normally. However upon reconfiguration, the RLUT can be turned
into a potential Trojan. In the following sections, we would show some relevant
applications of constructive or deadly nature. Of course it is only a non-exhaustive
list of RLUT applications into security.

11.3. Destructive Applications of RLUT

In earlier sections, we have presented the basic concepts of RLUTs with major em-
phasis on CFGLUT5 of Xilinx FPGAs. Though CFGLUT5 provides user unique
opportunity of reconfiguring and modifying the design in run-time, it also gives
an adversary an excellent option to design efficient and stealthy hardware Trojan.
In this section, we focus on designing tiny but effective hardware Trojan exploiting
reconfigurability of RLUTs.

A hardware Trojan is a malevolent modification of a design, intended for either dis-
rupting the algorithm operation or leaking secret information from it. The design
of hardware Trojan involves efficient design of Trojan circuitry (known as pay-
load) and design of trigger circuitry to activate the Trojan operation. A stealthy
hardware Trojan should have negligible overhead, ideally zero, compared to the
original golden circuit. Moreover, probability of Trojan getting triggered during
the functional testing should be very low, preventing accidental discovery of the

11.3. Destructive Applications of RLUT

11

227

Trojan. The threat of hardware Trojans is very realistic due to the fabless model
followed by the modern semiconductor companies. In this model, the design is
sent to remote fabrication laboratories for chip fabrication. It is very easy for an
adversary to make some small modification in the design without violating the
functionality of the design. The affected chip will give desired output in normal
condition, but will leak sensitive information upon being triggered. More detailed
analysis of hardware Trojans can be found in [272–274].

Researchers have shown that it is possible to design efficient hardware Trojans on
FPGAs also. In [275] the authors have designed a Trojan on a Basys FPGA board
which get triggered depending upon the ‘content and timing’ of the signals. On
the other hand, authors in [276] have designed a hardware Trojan which can be
deployed on the FPGA via dynamic partial reconfiguration to induce faults in an
AES circuitry for differential fault analysis.

In this section, we will focus on effective design of hardware Trojan payload using
RLUT. But before going into the design methodologies of payload using RLUTs,
we will first describe the other two important aspects of the proposed hardware
Trojans: Adversary model and Trigger methodologies.

11.3.1. Adversary Model

It is a common trend in the semiconductor industry to acquire proven IPs to re-
duce time to market and stay competitive. We consider an adversary model where
a user buys specific proven IPs from a third party IP vendor. By proven IPs, we
mean IPs with well-established performance and area figures. Let us consider that
the IP under consideration is a cryptographic algorithm and the target device is
an FPGA. An untrusted vendor can easily insert a Trojan in the IP which can act
as a back-door to access sensitive information of other components of the user cir-
cuit. For instance, an IP vendor can provide a user with an obfuscated or even
encrypted netlist (encrypted EDIF). Such techniques are popular and often used
to protect the rights of the IP vendor. A Trojan in an IP is very serious for two
major reasons. First, the Trojan will affect all the samples of the final product and
secondly it is almost impossible to get a golden model. Moreover, research in Tro-
jan detection under the given attack model is quite limited. The user does not
have a golden circuit to compare, thus making hardware Trojan detection using
side channel methodology highly unlikely. Additionally, this adversary model also
makes the Trojan design challenging. Generally, before buying an IP, user will an-
alyze IPs from different IP vendors for performance comparison. This competitive
scenario does not leave a big margin (gate-count) for Trojans.

Using RLUT, we can design extremely lightweight hardware Trojan payload as we
can reconfigure the same LUTs, used in the crypto-algorithm implementation, from

11

228
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

correct value to malicious value. This reduces the overhead of the hardware Tro-
jan and makes it less susceptible to detection techniques based on visual inspec-
tion [277]. We can also restore the original value of RLUT to remove any trace of
Trojan, of course, at minor overheads. An IP designer can easily replace a normal
LUT with RLUT. In this case, the designer has only one restriction of replacing a
LUT implemented in SLICE_M. It is not difficult to find such a LUT in a medium to
big-scale FPGA which is often the case with cryptographic modules. Moreover, if
the designer chooses to insert the trojan at RTL level, the present restriction would
not even apply.

Instantiation of CFGLUT5 does not report any special element in the design sum-
mary report, but a LUT modeled as SRL32. A shift register has many usages on the
circuit. For example, a counter can be very efficiently designed on a shift register
using one hot encoding. Moreover, lightweight ciphers employs extensive usage of
shift registers for serialized architectures. Thus any suspicion of malicious activity
will not arise in the user’s mind by seeing the design report.

The only requirement is efficient triggering and a reconfiguration logic which will
generate the malicious value upon receiving trigger signal. However, in this paper
we will show that once triggered, malicious value for the hardware Trojan can
be generated without any overhead, thus giving us extremely lightweight and
stealthy design of hardware Trojans. The basic methodology is same for all the
Trojans, which can be tabulated as follows:

– Choose a sensitive sub-module of the crypto-algorithm. For example,
one can choose a 4 × 4 Sbox (can be implemented using 2 LUTs) as the
sensitive sub module.

– Replace the LUTs of the chosen sub-module with CFGLUT5s without
altering the functionality. A 4 × 4 Sbox can also be implemented using
two CFGLUT5.

– Modify the INIT value upon trigger. As shown in Fig. 11.1, reconfigu-
ration in CFGLUT5 takes place upon receiving the CE signal. By con-
necting the trigger output to the CE port, an adversary can tweak the
INIT value of CFGLUT5 and can change it to a malicious value. For ex-
ample, the 4× 4 Sboxes, implemented using CFGLUT5 can be modified
in such a way that non-linear properties of the Sboxes get lost and the
crypto-system becomes vulnerable to standard cryptanalysis. The ma-
licious INIT value can be easily generated by some nominal extra logic.
However, in the subsequent sections, we will show that it is possible to
generate the malicious INIT value without any extra logic.

– Upon exploitation, restore original INIT value.

11.3. Destructive Applications of RLUT

11

229

11.3.2. Trigger Design the Hardware Trojans

A trigger for a hardware Trojan is designed in a way that the Trojan gets activated
in very rare cases. The trigger stimulus can be generated either through output
of a sensor under physical stress or some well controlled internal logic. The com-
plexity of trigger circuit also depends on the needed precision of the trigger in
time and space. Several innovative and efficient were introduced as a part of Em-
bedded Systems Challenge (2008) where participants were asked to insert Trojans
on FPGA designs. For instance, one of the the proposition was content & timing
trigger [275], which activates with a correct combination of input and time. Such
triggers are considered practically impossible to simulate. Other triggers get acti-
vated at a specific input pattern. A more detailed analysis with example of different
triggering methodologies and their pros and cons can be found in [278].

Moreover, modern devices are loaded with physical sensors to ensure correct oper-
ating conditions. It is not difficult to find voltage or temperature sensors in smart-
cards or micro-controllers. Similarly, FPGA also come with monitors to protect the
system for undesired environmental conditions, Virtex-5 FPGAs contain system
monitor. Though system monitor is not a part of cipher, they are often included in
the SoC for tamper/fault/ temperature variation detection. These sensors are pro-
grammed to raise an alarm in event of unexpected physical conditions like over-
heating, high/low voltage etc. Now an adversary can use this system monitor to
design an efficient and stealthy hardware Trojan trigger methodology. The trick is
to choose a trigger condition which is less than threshold value but much higher
than nominal conditions. For instance, a chip with nominal temperature of 20−30
and safety threshold of 80, can be triggered in a small window chosen from the
range of 40 − 79. Similarly, user deployed sensors like the one proposed in [279]
can also be used to trigger a Trojan. In our case study, we used the temperature
sensor of Virtex-5 FPGAs system monitor to trigger the Trojan, more precisely on
SASEBO-GII boards. The heating required to trigger the Trojan can be done by a
simple $5 hair-dryer easily available in the market. The triggering mechanism is
explained in Appendix .8. In the following to not deviate from the topic, we focus
mainly on the payload design of the Trojan using RLUT. We let the designer choose
any of the published techniques (including one proposed in Appendix .8) or inno-
vate one. We precisely propose the design of the Trojan and the required triggering
conditions.

11.3.3. Trojan Description

Before designing Trojan payload for a given hardware, we first demonstrate the
potential of RLUT in inserting malicious activity. Let us consider a buffer which
is a very basic gate. Buffers are often inserted in a circuit by CAD tools to achieve

11

230
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

desired timing requirements. For FPGA designers, another equivalent of buffer is
route-only LUT. These buffers can be inserted in any sensitive wires without raising
an alarm. In fact, sometimes the buffers might already exist.

These buffers are implemented in a LUT6 with INIT=0xAAAAAAAAAAAAAAAA and can
be easily replaced by CFGLUT5. A simple Trojan would consist in changing the
INIT value of CFGLUT5 to 0xAAAAAAAA and feedback CDO output to CDI input
(see Fig 11.1). The CE input is connected to the trigger of the Trojan. Now, when
the Trojan is triggered once (one clock), INIT value changes to 0x55555555 which
changes the functionality of the gate to inverter. Another trigger brings back the
INIT value to 0xAAAAAAAA i.e., a buffer. The operations are illustrated in Fig. 11.4,
where red block shows Trojan inverter and black blocks show a normal buffer.
Thus by precisely controlling the trigger, an adversary can interchange between
a buffer and inverter. Such a Trojan can be used in many scenarios like injecting
single bit faults for Differential Fault Attacks [208] or controlling data multiplexers
or misreading status flags, etc.

In the above example, we see how a buffer can be converted to an inverter by re-
configuring the CFGLUT5 upon receiving the trigger signal. One important obser-
vation is that we do need need any extra reconfiguration logic to modify the INIT
value of the CFGLUT5. The modification of the INIT value is achieved by the con-
necting the reconfiguration input port CDI to the reconfiguration data output port
CDO. In other words, we can define the malicious INIT value in following way

INITmalicious = CSi(INITnormal)

where CSi denotes cyclic right shift by i bits. The approach of RLUT is harder to
detect because the malicious payload does not exist in the design. It is configured
when needed and immediately removed upon exploitation. In normal LUT, the
malicious design is hardwired (requires extra logic) and risk detection, whereas
RLUT modifies existing resources and enables us to design design hardware Tro-
jans without any extra reconfiguration logic. We will use similar methodologies for
all the proposed hardware Trojans in this paper.

31 30 29 28 3 2 1 0

INIT (32 bits)

CLK

1

31 30 29 28 3 2 1 0

INIT (32 bits)

CLK

1

31 30 29 28 3 2 1 0

INIT (32 bits)

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0...... ...

Figure 11.4: Operations of CFGLUT5 to switch from a buffer to inverter and back

Next, we target a basic AES IP as a Trojan target. The architecture of the AES de-
sign is shown in Fig. 11.5. The AES takes 128 bits of plaintext and key as input and
produce 128 bit cipher-text in 11 clock cycles. The control unit of the AES encryp-
tion engine is governed by a 4 bit mod-12 counter and generates three different
control signals which are as follows:

1. load: It is used to switch between plaintext and MixColumns output.

11.3. Destructive Applications of RLUT

11

231

During the start of the encryption, this signal is made high to load the
plaintext in the AES encryption engine.

2. S.R/M.C: It is used to switch between the ShiftRows and MixColumns
output in the last round of AES.

3. done: It is used to indicate the end of encryption.

These signals are set high for different values of the counter. In our Trojan design,
we mainly target the control unit of the AES architecture to disrupt the flow of the
encryption scheme so that we can retrieve the AES encryption key. For this, we
have developed four different Trojans and have deployed them on the AES imple-
mentation. The objective of the developed Trojan is to retrieve the AES key with
only one execution of hardware Trojan or single bad encryption. Indeed, it has
been shown that only one faulty encryption, if it is accurate in time, suffices to ex-
tract a full 128-bit key [280]. Triggering conditions can be further relaxed if several
bad encryptions are acceptable. Each Trojan has trigger with different pulse-width
or number of clock cycles. For different payloads, the RLUT content varies, hence
variation in the trigger.

K

E

Y

S

C

H

E

D

U

L

Clk Enable

Counter

4

Control

Signals

Generator

LUT6_2

4

count

Control Unit

Output Cipher Text

done

Reset
Master Key

128

128

128

128

Plain−Text

round key

128

128

128

128’d0 128

128

State Register

S.R/M.C

load

128

128

E

ShiftRows

MixColumns

Substitution

Figure 11.5: AES architecture without any Hardware Trojans

The detailed description of the developed Trojans are as follows:

11

232
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

Trojan 1

As we have stated earlier, the control unit of AES is based on a counter which also
generates a done flag to indicate completion of the encryption cycle and is set to
high only if counter value reaches 11. Signal done as shown in Fig. 11.5, is driven
by a LUT6_2, which takes 4 bit counter value as input, and under normal operation
it should contain INIT value 0x00000800 (it means only the 11th bit is set to one
i.e. condition required for done signal). To insert a Trojan we replace this LUT with
CFGLUT5 with INIT=0x80000800. It must be noted that though the INIT value of
LUT6_2 and INIT value of CFGLUT5 is not same, both will essentially produce the
same output upon receiving the 4 bit counter value. This is because truth-table of
a function of 4 variables consists of 16 bits only, hence any change in the upper 16
bits of the INIT value will not change the functionalities of the LUT.

The CDO output is feedback into CDI input as in the example above. A trigger
of 2 clock cycles at the CE input activates the Trojan (INIT=0x00002002) and pro-
duces the round 0 output (at round 0, counter value is 1) as the ciphertext. By
knowing the plain-text, one can easily extract the full key with one wrong encryp-
tion. Again, we can see that malicious value of the INIT is generated by cyclic
shift of the original INIT value of the CFGLUT5, hence we do not need any ex-
tra logic to generate the new INIT value. After extracting the key, a trigger of 10
clock cycles will restore the normal operations of the AES (INIT=0x00800800). This
INIT value need not to be the same value, with which we started the computation
(INIT=0x80000800), as long as the LUT generates correct output. The transition of
INIT to activate the Trojan and restore back is shown in Fig 11.7(a) and the modi-
fications in the AES architecture is shown in Fig. 11.6.

In the above Trojan description, we need 2 clock cycles to modify the CFGLUT5
to malicious Trojan configuration and 10 clock cycles to restore it to the original
correct value. So in total, we require 12 clock cycles.

Keeping this in mind, we have implemented three different versions of the same
Trojan, depending on the precision of the trigger.

1. Trojan 1a needs a 1 cycle trigger synchronized with the start of the en-
cryption. This trigger is used to enable a FSM which generates 12 clock
cycles for CE of the CFGLUT , in order to activate the Trojan and restore
it back after exploitation. Because of this, the overhead of the developed
Trojan is 6 LUTs and 4 flip-flops.

2. Trojan 1b is a zero overhead Trojan. It assumes an adversary to be
slightly stronger than Trojan 1a who can generate a trigger signal ac-
tive for precisely 12 cycles and synchronized with the start of encryp-
tion.This overhead is absent in Trojan 1b as the trigger itself act as the

11.3. Destructive Applications of RLUT

11

233

K

E

Y

S

C

H

E

D

U

L

Clk Enable

Counter

4

Control

Signals

Generator

count

Control Unit

Output Cipher Text

Reset

128

128

128

128

round key

128

128

128

128’d0 128

128

State Register

S.R/M.C

load

128

128

4

Trig.

CD
I

CDO

CE

CFGLUT5

done

Plain−Text Master Key

E

Substitution

ShiftRows

MixColumns

Figure 11.6: AES architecture with Trojan 1
CE signal of RLUT.

3. Trojan 1c relaxes the restriction on the adversary seen at previous case.
It assumes that there are some delays of n � 10 clock cycles between
two consecutive encryption. The choice of n� 10 is due to the fact that
we need 2 clock cycles to reconfigure the RLUT into malicious Trojan
payload, and 10 clock cycles to restore it back to good value. Hence the
gap between two consecutive AES encryption should be greater than
10. The adversary provides a trigger of two clock cycles (not necessar-
ily consecutive) before the start of current encryption. After the faulty
encryption is complete, the adversary generates 10 trigger cycles (again
not necessarily consecutive) to restore back the cipher operations. The
overhead for this Trojan is 2 LUTs , due to routing of RLUT.

CLKCLK
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 01 1 1 1

102

31 30 29 11 2 1 0 31 30 29 13 2 1 0 31 30 23 11 1 0

INIT (32 bits) INIT (32 bits) INIT (32 bits)

...

(a)

CLKCLK
0 0 0 0 1 0 0 0 0 0 0 0 0 1 01 1 11 0

210

INIT (32 bits)

31 30 29 22 2 1 0 31 30 29 10 2 1 0

INIT (32 bits)

31 30 29 12 1 0

INIT (32 bits)

...

(b)
Figure 11.7: Operations of CFGLUT5 to activate the Trojan and restore to normal operations
for (a) Trojan 1; (b) Trojan 2. Bit positions not shown contain ‘0’

11

234
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

Trojan 2

This Trojan targets a different signal in the control unit of the AES design. As
shown in Fig. 11.5, the design contains a multiplexer which switches between Mix-
Columns output and input plaintext depending on the round/count value. The
output of the multiplexer is produced at input of AddRoundKey operation. Under
normal operation, multiplexer passes the input plaintext in round 0 (load signal
of multiplexer is set to 1) and MixColumns output (ShiftRows output in the last
round) in other rounds (select signal of multiplexer is set to 0). To design the Tro-
jan, we have replaced the LUT6_2 (with INIT=0x00000002) which generates load
signal of the multiplexer with CFGLUT5, containing INIT= 0x00400002. As we
have observed for Trojan 1, the difference in the INIT value in LUT6_2 and INIT
value of CFGLUT5 will essentially produce the same output.

In this case also CDO port of CFGLUT5 is connected to CDI port, enabling cyclic
shift of the INIT value. Upon a trigger of 10 clock cycles, the INIT value gets modi-
fied to INIT=0x80000400 (it means load will set to one during the last round). This
actually change the multiplexer operation, modifying it to select the plaintext in
the last round computation. From the resulting ciphertext of this faulted encryp-
tion, we can easily obtain the last round key, given the plaintext. Further a trigger
of 2 clock cycles restores the normal operation (INIT=0x00001002) as shown in
Fig 11.7(b). Again the value over bit position 12 is not a problem as the select sig-
nal is controlled by a mod-12 counter and the value is never reached. The counter
value 0 indicates idle state, 1 − 10 encryption and 11 indicates end of encryption.
This Trojan also has a zero overhead as reconfiguration of the CFGLUT5 is obtained
by cyclic right shifting of INIT. Hence, the triggering cost is same as Trojan 1b.

Tab. 11.1 summarizes the nature, trigger condition and cost of the four Trojans.
Table 11.1: Area overhead of the Trojans on Virtex-5 FPGA. Trigger is given in clock cy-
cles and s subscript indicates trigger must be consecutive synchronized with the start of
encryption.

Trojan Trigger LUT Registers Payload Overhead Frequency (MHz)

AES (No Trojan) 1594 260 X 212.85

Trojan 1a 1s 1600 264 6 LUTs & 4 flip-flops 212.85

Trojan 1b 12s 1594 260 0 212.85

Trojan 1c 12 1596 260 2 LUTs 212.85

Trojan 2 12s 1594 260 0 212.85

The above described Trojans can also be designed using normal LUTs also. The
zero overhead Trojans described above can be designed using 2 LUT overhead (One
LUT for Trojan operation and other for selecting between Trojan and normal oper-

11.4. Constructive Applications for RLUT

11

235

ations). But such Trojan designs can be easy to detect as the Trojan operated LUT
is always present on the design unlike CFGLUT5, where the Trojan operated LUT
is created by run time reconfiguration.

11.4. Constructive Applications for RLUT

In the previous section, we discussed some application of RLUT for hardware Tro-
jans into third party IPs. However, RLUT do have a brighter side to their portfolio.
The easy and internal reconfigurability of RLUT can surely be well exploited by
the designers to solve certain design issues. In the following, we detail two distinct
cases with several applications, where RLUT can be put to good use.

11.4.1. Customizable Sboxes

A common requirement in several industrial application is dynamic or cutomiz-
able substitution boxes (Sboxes) of a cipher. One such scenario which is often en-
countered by IP designers who design secret ciphers for industrial application. A
majority of secret ciphers use a standard algorithm like AES with modified specifi-
cation like custom Sboxes or linear operations. Sometimes the client is not comfort-
able to disclose these custom specifications to the IP designer. Common solutions
either have a time-space overhead or resort to dynamic reconfiguration, to allow
the client to program secret parameters at their facilities. A RLUT can come handy
in this case.

There are several algorithms where the Sboxes can be secret. The former Soviet en-
cryption algorithm GOST 28147-89 which was standardized by the Russian stan-
dardization agency in 1989 is a prominent example [281]. The A3/A8 GSM algo-
rithm for European mobile telecommunications is another example. In the field
of digital rights management, Cryptomeria cipher (C2) has a secret set of Sboxes
which are generated and distributed to licencees only.

There are certain encryption schemes like DRECON [282], which offers DPA re-
sistance by construction, exploiting tweakable ciphers. In this scheme, users ex-
change a set of tweak during the key exchange. The tweak is used to choose the
set of Sboxes from a bigger pool of precomputed Sboxes. In the proposed imple-
mentation [282], the entire pool of Sboxes must be stored on-chip. Using RLUT,
the Sboxes can be easily computed as a function of the tweak and stored on the
fly. Similarly, a low-cost masking scheme RSM [264] can also benefit from RLUT
to achieve desired rotation albeit at the cost of latency. Thus there exist several
applications where customizable Sboxes are needed.

11

236
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

Architecture of Sbox Generator:

As a proof of concept, we implement the Sbox generation scheme of [282]. The
original implementation generates a pool of 32 4 × 4 Sboxes and stores it into
BRAMs, while only 16 are used for a given encryption. It uses a set of Sboxes which
are affine transformations of each other. For a given cryptographically strong
Sbox S(·), one can generate 2n strong Sboxes by following: Fi(x) = αS(x) ⊕ i for
all i = 0, · · · ,2n−1, where α is an invertible matrix of dimension n×n. α can also be
considered a function of the tweak value t i.e. α = f (t). Since affine transformation
does not change most of the cryptographic properties of Sboxes, all the generated
Sboxes are of equal cryptographic strength [282].

The sbox computation scheme of [282] can be very well implemented using RLUT
as follows. The main objective of this Sbox generator is to compute a new affine
Sbox from a given reference Sbox, and store it in the same location. The architec-
ture is shown in Fig 11.8. As we have stated earlier, each CFGLUT5 can be modeled
as 2 output 4 input function generator, we can implement a 4 × 4 Sbox using two
CFGLUT5 as shown in Fig 11.8. We consider that the reference 4×4 Sbox is imple-
mented using 2 CFGLUT5. We compute the new Sbox and program it in the same
2 CFGLUT5. The reconfiguration of the Sbox is carried through following steps:

1. Read the value of the Sbox for input 15.

2. Compute the new value (4-bits {3,2,1,0}) of the Sbox using affine trans-
former for the Sbox input 15.

3. Now CFGLUT5 is updated by the computed value, 2 bits for each CFG-
LUT5 ({3,2},{1,0}). However, only one bit can be shifted in CFGLUT5
in one clock cycle. Hence we shift in two bits, 1-bit in each CFGLUT5
({0,2}) and store the other 2-bit ({1,3}) in two 16 bit registers.

4. After the 2-bits ({0,2}) of new value of Sbox is shifted in to position 0
of each CFGLUT5, old value for the position 15 is flushed out. The old
value at position 14 is moved up to position 15. Thus the address is
hard-coded to 4’d15.

5. Repeat steps 1− 4 until whole old Sbox is read out i.e. 16 clock cycles.

6. After 16 clock cycles, we start to shift in the data which we stored in
the shift register bits ({1,3}) for 16 Sbox entries, which takes another 16
clock cycles. This completes Sbox reconfiguration.

The architecture requires 56 LUTs, 38 flip-flops with a maximum operating fre-
quency of 271 MHz. To reconfigure one Sbox, we need 32 clock cycles. Now
depending on the application and desired security the sbox recomputation can be

11.4. Constructive Applications for RLUT

11

237

done after several encryption or every encryption or every round. It is a purely
security-performance trade-off.

.

.

.

.

.

.

4

1

2

4
1

11

2

1

1

1

CDI

4

CDI

44’d15

SBox input
Affine

index i

Trans-
former

CFGLUT5

CFGLUT5

0

0

15

15

Sbox

SBOXH

SBOXL

α

Shift

Shift
Reg.

.Reg.

reconfig/encrypt

Figure 11.8: Architecture of Sbox Computation using affine transformation and storing in
RLUT

11.4.2. Sbox Scrambling for DPA Resistance

RLUT also have the potential to provide side-channel resistance. The reconfigu-
ration provided by RLUT can be very well used to confuse the attackers. A ben-
eficial target would be the much studied masking countermeasures [263] which
suffer from high overhead due to the requirement of regular mask refresh. One of
the masking countermeasures which was fine-tuned for FPGA implementation is
Block Memory content Scrambling (BMS [263]). This scheme claims first-order se-
curity and, to our knowledge, no practical attack has been published against it.
However, Sbox Scrambling using BRAM is inefficient on lightweight ciphers with
4X4 sboxes due to underutilization of resources. Hence we propose a novel archi-
tecture using RLUT to address this. Nevertheless, this mechanism can easily be
translated to AES also.

The side channel countermeasure using RLUT, shown in [270] is different from the
proposed design architecture. The design of [270] implements standard Boolean
masking scheme, where each round uses a different mask. Here, we propose a
lightweight architecture of SBox scrambling scheme presented in [263]. These two
countermeasures have similar objectives but quite different designs.

The BMS scheme works as follows: let Y (X) = P (SL(X)) be a round of block cipher,

11

238
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

where X is the data, P (·) is the linear and SL(·) is the non-linear layer of the block
cipher. For example in PRESENT cipher [283], the non-linear layer is composed
of 16 4 × 4 Sboxes and the linear layer is bit-permutation. According to the BMS
scheme, the masked round can be written as YM (X) = P (SLM (XM)), where XM is
masked data X ⊕M and SLM (·) is the Sbox layer of 16 scrambled Sbox. Now each
Sbox Sm(·) in SLM is scrambled with one nibblem of the 64-bit maskM. The scram-
bled Sbox Sm(·) can be simplified as Sm(xm)) = S(xm ⊕m)⊕ P −1(m), where x is one
nibble of round input X. Next in a dual-port BRAM which is divided into an active
and inactive segment, where the active segment contains SLM0(·) i.e. Sbox scram-
bled with mask M0 is used for encryptions. Parallely, another Sbox layer SLM1(·)
scrambled with mask M1 is computed in an encryption-independent process and
stored in the inactive segment. Every few encryption, the active and inactive con-
tents are swapped and a new Sbox scrambled with a fresh mask is computed and
stored in the current inactive segment. This functioning is illustrated in Fig. 11.9.

SLM1

SL(XM1 ⊕M1)⊕P−1(M1)

SLM0
keyr

XM0 = X ⊕M0

SL(XM0 ⊕M0)⊕P−1(M0)

64

64

64

64

64

64 64
P

64

SWAP=0

YM0 = P (SL(X))⊕M0

Figure 11.9: Architecture of Modified PRESENT Round. SLM0 is the (precomputed) active
SLayer while SLM1 is being computed as in Fig. 11.10.

BMS is nice countermeasure and shown to have reasonable overhead of 44% for
LUTs, 2× BRAMs and roughly 3× extra flip-flops in FPGA. Another advantage of
BMS is that it is generic i.e., it can be applied to any cryptographic algorithm.
BMS can be viewed as a leakage resilient implementation, where the cipher is not
called enough with a fixed mask for an attack to succeed. The memory contexts
are swapped again with a fresh mask. However, for certain algorithms BMS could
become unattractive. For example in a lightweight algorithm like PRESENT, a 4×4
Sbox can be easily implemented in 4 LUTs. In newer FPGA families which support
2-output LUT, 2 LUTs are enough to implement a Sbox. Using a BRAM in such a
scenario would lead to huge wastage of resources.

Sbox Scrambling using RLUT:

In the following, we use RLUT to implement BMS like countermeasure. Precisely
we design a PRESENT cryptoprocessor protected with a BMS like scrambling scheme

11.4. Constructive Applications for RLUT

11

239

but using RLUTs to store scrambled Sboxes. Rest of the scheme is left same as [263].
The architecture of Sbox scrambler using RLUT is shown in Fig 11.10. SBOXP is
the PRESENT Sbox. A mod16 counter generates the Sbox address ADDR which is
masked with Mask m of 4-bits. The output of Sbox is scrambled with inverse per-
mutation of the mask to scramble the Sbox value. Please note the the permutation
must be applied on the whole 64-bits of the mask to get 4-bits of the scrambling
constant for each Sbox. Each output of the scrambler is 4-bits. As stated before,
each 4 × 4 Sbox can be implemented in 2 CFGLUT5 each producing 2-bits of the
Sbox computation. Let us call the CFGLUT5 producing bits 0,1 as SBOXML and
bits 2,3 as SBOXMH . The 4-bit output of the scrambler is split into two buses of
2-bits ({3,2},{1,0}). Bits {3,2} and {1,0} are then fed to the CDI of SBOXML and
SBOXMH respectively, through a FIFO. The same scrambler is used to generate all
the 16 Sboxes one after the other and program CFGLUT5. In total it requires 16×32
clock cycles to refresh all 16 inactive Sboxes. We implement two parallel layers of
SBoxes. When active layer is computing the cipher, inactive is being refreshed.
Thus cipher operation is not stalled. 16 × 32 clocks (16 encryptions) are needed
to refresh the inactive layer and this means that we can swap active and inactive
SBoxes after every 16 encryptions. Swap means that active SBox become inactive
and vice versa. The cipher design uses active SBox only. The area overhead comes
from the scrambler circuit and multiplexers used to swap active/inactive Sboxes.
We implemented a PRESENT crypto-processor and protected it with Sbox scram-
bling countermeasure. The area and performance figures of original design and its
protected version are summarized in Tab. 11.2.

MASK m

4

4

64 64

4

ADDR

RNG

4 4

Inverse

pLayer

4

2

2

FIFO

FIFO

RECONFIGURATION
CIRCUIT

SCRAMBLER

SBOXP

CDI

SBOXML

CFGLUT5

CFGLUT5

O6

O5

O5

O6
CDI

SBOXMH

Figure 11.10: Architecture of Sbox Scrambler

11

240
11. Reconfigurable LUT: A Double Edged Sword for Security-Critical

Applications

Table 11.2: Area and Performance Overhead of Scrambling Scheme on Virtex-5 FPGA

Architecture LUTs Flip-flops Frequency (MHz)

Original 208 150 196

Scrambled 557 552 189

Overhead 2.67× 3.68× 1.03×

11.5. Conclusions
This paper addresses methods to exploit reconfigurable LUTs (RLUTs) in FPGAs
for secure applications, with both views: destructive and constructive. First it
has been shown that the RLUT can be used by an attacker to create Hardware
Trojans. Indeed the payload of stealthy Trojans can be inserted easily in IP by
untrusted vendors. The Trojans can be used to inject faults or modify the control
signals in order to facilitate the key extraction. This is illustrated by a few examples
of Trojans in AES. Second the protective property of RLUT has been illustrated
by increasing the resiliency of the Sboxes of cryptographic algorithms. This is
accomplished either by changing dynamically the Sboxes of customized algorithms
or scrambling the Sboxes of standard algorithms.

To sum up, this paper clearly shows that RLUT is a double-edged sword for secu-
rity applications on FPGAs. Due to the obvious positive application of RLUTs in
security, one cannot simply restrict the use of RLUT in secure applications. This
motivates further research in two principal directions. Firstly, there is need for
Trojan detection techniques at IP level. This detection techniques should be capa-
ble of distinguishing a RLUT based optimizations from potential Trojans. Finally
certain new countermeasures totally based on RLUTs, including the trigger part,
can be studied.

V
Security design principles

241

11

243

This section refers to the ellipse located at the center of Figure 1.1, which rep-
resents the process of incorporating greater rigor in the design of systems with
security constraints. Here, we examine the concept of security from a designer’s
viewpoint and provide a methodology and a set of guidelines for designers seek-
ing to create secure systems.

The goal of the methodology outlined in this section is to assist designers in pro-
ducing systems with a higher level of security by systematically identifying and
addressing potential vulnerabilities in the design process. This approach involves
a thorough understanding of the system being designed, the potential threats it
may face, and the security requirements it must meet.

The set of guidelines presented in this section is intended to provide designers
with a framework for designing secure systems. These guidelines cover various as-
pects of the design process, including threat modeling, system architecture, cryp-
tographic algorithms and protocols, implementation, and testing.

By following these guidelines, designers can ensure that the security of their sys-
tems is not an afterthought, but rather a central consideration from the beginning
of the design process. This approach results in systems that are more secure, more
reliable, and less vulnerable to attack.

12
Security is an Architectural

Design Constraint

In state-of-the-art design paradigm, time, space and power efficiency are consid-
ered the primary design constraints. Quite often, this approach adversely impacts
the security of the overall system, especially when security is adopted as a coun-
termeasure after some vulnerability is identified. In this position paper, we mo-
tivate the idea that security should also be considered as an architectural design
constraint in addition to time, space and power. We show that security and effi-
ciency objectives along the three design axes of time, space and power are in fact
tightly coupled while identifying that security stands in direct contrast with them
across all layers of architectural design. We attempt to prove our case utilizing a
proof-by-evidence approach wherein we refer to various works across literature that
explicitly imply the eternal conflict between security and efficiency. Thus, security
has to be treated as a design constraint from the very beginning. Additionally, we
advocate a security-aware design flow starting from the choice of cryptographic
primitives, protocols and system design.

12.1. Introduction
Historically, design of computer systems have revolved around the notion of per-
formance, primarily measured in terms of time and space efficiency. It was only
with the advent of low-footprint portable devices during the 80’s that power fea-
tured as a potential measure of performance. Careful scrutiny and evaluation over
a couple of decades confirmed that power efficiency complements and contradicts

245

12

246 12. Security is an Architectural Design Constraint

the notions of time-and-space efficiency in practical systems, and hence, it should
be considered as a fundamental constraint in design. We have come a long way
since then, and for over a decade, we have unequivocally considered time, space
and power as the three primary constraints of architectural design. Orthogonally,
one can also observe the exponential growth of Cyber-Physical Systems (CPS) and
Internet-of-Things (IoT), serving as the best examples of increasing heterogeneity
in existing digital infrastructure that has become pervasive in our lives. As these
systems are expected to be deployed in critical infrastructure and adverse envi-
ronments, the security of such systems demand serious attention. During the last
decade, the boom of heterogeneous architecture has triggered several research ini-
tiatives towards the development of so called security-aware systems [284, 285]. In
this paper, we argue that it is time to consider the notion of security as the fourth
axis in the space of architectural design, instead of incorporating security as a mere
add-on feature over existing systems.

Security as a Design Axis

Security as a design axis seems to both complement and contradict the other three
axes of power, space and time. The security axis is strikingly peculiar, as one is
always concerned about meeting the lower bound (e.g., 128/192/256 bit security),
usually fixed keeping in mind the the attacker’s capabilities, while not worrying
about improving it any further as it is generally considered an overkill, taking
a toll on the design parameters on the other three axes. Thus, optimal design
points usually lie within a very thin strip over the security axis, just satisfying
the strict lower bound. In contrast, designers always strive to improve the design
parameters over the other three axes to the maximum extent, allowing themselves
a much wider working range. In other words, designs are always expected to be as
time-efficient, space-efficient and power-efficient as possible, but in terms of security,
designs are expected to be security-compliant.

While it is possible to derive an analytic relationship between the tightly coupled
time-space-power design parameters, incorporation of security into the same rela-
tionship might not be possible. This makes it difficult to understand the relation-
ship of the security design axis with the other three. However, it is intuitive, and
we would like to hypothesize that the security axis always contradicts the other
three axes. In order to argue our case, we adopt the strategy of proof-by-evidence
by citing enough examples from literature that illustrate the various instances of
the eternal conflict between security and efficiency. It is indeed not possible to cite
all attacks, and we do not claim that all these attacks were caused by the push for
efficiency. We would simply like to establish that incorporation of techniques to
improve efficiency along any of the time-space-power design axes has to be done
with extreme caution, so that it does not compromise or weaken the security of the

12.1. Introduction

12

247

system. We do not claim that this is always the case with efficiency, but only advice
the designer to employ time-space-power optimization techniques with extreme
caution.

We present the notion of security across three layers — cryptographic primitives,
security protocols and security systems — as depicted in Table 12.1. It is evident
from the literature that there have been various reported cryptanalytic results and
security breaches at each of these three layers and we identify those instances that
clearly demonstrate the trade-off between efficiency and security. Quite often, ar-
chitectural designs focussed on the fundamental principles of time-space-power
efficiency introduce security vulnerabilities in cryptographic primitives, security
protocols and security systems. Most critical vulnerabilities are generally noticed
in the systems layer, spread across the range of hardware systems, software systems
and hardware-software interfaces, where the time-space-power design constraints
are considered to be of highest priority. This is where we advocate the inclusion
of security as a fundamental architectural constraint to complete the design land-
scape.

Primitive
Level

Mathematical
Models

Pseudo-Random Generators, Functions, and
Permutations

Key-usage
Paradigms

Symmetric Key Cryptography, Asymmetric Key
Cryptography

Cryptographic
Modules

Block Ciphers, Stream Ciphers, Hash Functions,
Signatures, etc.

Cryptographic
Modes

Encryption, Authentication, Authenticated En-
cryption, etc.

Protocol level Transport Layer Security, Secure Sockets Layer, Secure Shell, IP Se-
curity, Wireless Security, etc.

System Level Software Abstraction, Hardware Abstraction, Software-Hardware
Interface, Operating Systems, etc.

Table 12.1: The layers of Security — Cryptographic Primitives, Security Protocols and Se-
curity Systems

Security-Efficiency Trade-Off

The trade-off between security and efficiency is as old as the dawn of cryptogra-
phy. Formal notion of information-theoretic security, as introduced by Shannon
in 1950s, warrants the use of perfectly random one-time pads, which are abso-
lutely useless in terms of practical efficiency. Cryptography practitioners, hence,
introduced the notion of pseudo-random generators to approximate the desirable
properties of one-time pads, and we followed the path of computational security.
In a similar vein, we discarded the inefficient symmetric key-exchange mechanism

12

248 12. Security is an Architectural Design Constraint

of Merkle Puzzles that provided a quadratic computational gap between the users
and the adversary to adopt the efficient asymmetric key-exchange mechanism like
Diffie-Hellman, providing an exponential advantage to the users. Even today, most
of the theoretical proofs in security rely on the random-oracle property of com-
pression functions, whereas practical instantiations could only remain efficient till
the construction of standard hash functions. It is evident that security and effi-
ciency do not go hand-in-hand. In this paper, we provide practical evidences to
present a two-way argument — on one hand, security generally comes at the cost
of efficiency, while on the other, efficiency may not always come at the cost of secu-
rity, but the designers should be extremely cautious of such a possibility. We will
henceforth adopt a top-down approach in this paper, wherein we refer to practical
instances where this security-efficiency trade-off can be observed at various layers
of the stack — starting with the abstraction of cryptographic primitives, progres-
sively moving down to the implementations.

Depending on the application and the use case in hand, a secure design always
looks to achieve a multitude of different objectives like fast performance, low re-
source utilization, low power consumption and many more. In this paper, we will
concentrate on the three fundamental efficiency parameters — time, space and
power. In the quest for optimizing these resources, practical instantiations of se-
cure algorithms often render themselves vulnerable. There are various categories
of such vulnerabilities, some of which are as follows:

– Inherent security-efficiency trade-off is done when deciding the various
parameters for a given secure algorithm.

– Efficient instantiations of a given secure algorithm might yield very good
performance compared to a random or a generic instantiation of the
same, but the same efficient instance might pave way for unforeseen
vulnerabilities.

– Cryptographic primitives when implemented in a standalone mode may
be secure, but quite often, an efficient encapsulation of the primitive
into a broader class of security protocols might lead to vulnerabilities.

– Careless optimization technique implemented on a secure algorithm
might lead to leakage of information.

– Generic security-agnostic performance enhancement approach devel-
oped for a specific platform might lead to creation of side channels, thus
weakening the implementation of any secure algorithm on the same
platform.

– Certain efficient implementation strategies providing time-efficiency open
gates to side channel leakage.

12.2. Primitive Level

12

249

– Optimizations employed by (semi-)automated tools over a given imple-
mentation of a secure algorithm (in most of the case, the source code)
might discard inefficient features that ensured security in the first place.

We broadly classify the literature of security vulnerabilities introduced due to
performance improvements into three categories of efficiency — time, space and
power — affecting the three layers of security — primitives, protocols and sys-
tems. The cross-layer cross-category taxonomy in context of this paper is set as
XXX.YY, where XXX denotes the affected security layer, and YY denotes the efficiency
node, which causes the security loophole. Table 12.2 provides a brief descrip-
tion of the various types of instances that exhibit the trade-off between security
and efficiency obseravble across multiple levels of the applied cryptography stack.
Sections 12.2, 12.3 and 12.4 present in details the evidences of security-efficiency
trade-off from the literature in a more systematic format (layer-wise) to support
our argument.

TE SE PE

PRI Time-Efficiency vs Secu-
rity trade-off observable
at the Primitive level

Space-Efficiency vs Secu-
rity trade-off observable
at the Primitive level

Power-Efficiency vs Secu-
rity trade-off observable
at the Primitive level

Ref.: [286–299] Ref.: [291, 296–315] Ref.: [298, 299, 305–
315]

PRO Time-Efficiency vs Secu-
rity trade-off observable
at the Protocol level

Space-Efficiency vs Secu-
rity trade-off observable
at the Protocol level

Power-Efficiency vs Secu-
rity trade-off observable
at the Protocol level

Ref.: [316–318] Ref.: [319, 320] –

SYS Time-Efficiency vs Secu-
rity trade-off observable
at the System level

Space-Efficiency vs Secu-
rity trade-off observable
at the System level

Power-Efficiency vs Secu-
rity trade-off observable
at the System level

Ref.: [87, 321–350] Ref.: [87, 330–333, 336–
353]

Ref.: [354]

Table 12.2: Literature of Security-Efficiency trade-off : Layers of Security vs Efficiency Con-
siderations

12.2. Primitive Level
The computational security notion governing the security of both private key and
public key cryptographic primitives are quite well understood. While the secu-
rity of public key cryptographic primitives are derived through polynomial time

12

250 12. Security is an Architectural Design Constraint

reductions from provably hard mathematical problems, security of private key
primitives are derived from constructions like Feistel structures and Substitution-
Permutation networks governed by well defined mathematical concepts like con-
fusion and diffusion. Though there have been a number of reported attacks and
vulnerabilities of these primitives in literature [286, 292, 293], none of them are
catastrophic but merely point out to the existence of certain corner cases, weak
instances and insecure algorithmic optimizations. We would like to focus on such
instances in this section that especially argue our case of the conflict between se-
curity and efficiency at the primitive level. We separately analyse classical public
key, post-quantum public key and symmetric key cryptographic primitives.

12.2.1. Public Key Cryptography

The traditional public key cryptographic primitives like RSA and ECC based cryp-
tographic systems used in almost all secure communications derive their security
guarantees from hard problems based in the field of number theory. While the se-
curity of RSA depends on factorization of a product of two large prime numbers,
ECC relies on the hardness of solving the discrete logarithm problem. Though the
underlying hard problems of these schemes are rendered intractable by classical
computers, a number of weaknesses and vulnerabilities are known to have been
exploited leading to practical attacks on the RSA and ECC based cryptographic
schemes. And following the argument of our paper, it is not surprising to know
that many of those vulnerabilities stem from the presence of the cross-layer phe-
nomenon between security and efficiency, which will be covered in the following
discussion.

Exploiting Reduced Entropy in KeyPair Generation (Type PRI.TE)

Keypair generation is crucial in RSA and ECC based cryptography, and reuse of
randomness is a common implementation strategy used to improve efficiency. But
this technique does not have a good track record in security as it has led to a num-
ber of well known attacks.

Exploiting reuse of operating group and primes: Adrian et al.[286] reported the fa-
mous "LogJam" attack in 2015, an MITM (Man In The Middle) attack on TLS
connections in which servers could be tricked into using "Export Grade" Diffie-
Hellman that operated over 512-bit groups. The main vulnerability stemmed from
the usage of same 512 bit group across 8.4% of Alexa Top Million websites and the
same 1024 bit group 3.4% of all HTTP servers, thus a massive precomputation step
could be used to amortize the attack time over multiple entities using the same
group. Heninger et al. [287] performed the then largest network survey of TLS and
SSH servers in 2012 and reported vulnerabilities due to usage of keys with insuffi-

12.2. Primitive Level

12

251

cient entropy and usage of same key in shared hosting conditions. Another similar
vulnerability due to reuse of ephemeral keys in Elliptic Curve Digital Signature al-
gorithm was reported by a hacker group named FailOverflow on Sony PlayStation
3.

Exploiting use of efficient prime generation algorithms: Švenda et al.[288] performed
statistical analysis on a large number of public key and moduli used for RSA gener-
ated from a variety of cryptographic libraries and smart cards and observed that a
given key could be classified into its correct key source with a very high accuracy of
85%, thus exposing anonymity of users. This is due to the existence of multiple ef-
ficient algorithms for prime generation like random sampling method, incremental
search algorithm, rejection sampling, use of "Square" regions etc. which leave an
observable signature for themselves allowing for easy detection. The same authors
further discovered that the prime generation algorithm used by the cryptographic
library RSAlib from Infineon Technologies AG only generated primes that were of
the form

p = k ∗M + (65537a modM)

wherein the RSA prime p generated only depends on a and k and M is known. The
primes of this form were shown to be easily factorizable and also were easy to be
fingerprinted due to the abnormal decrease in entropy.

Efficient Parameter Instantiations (Type PRI.TE)

Modular exponentiation used in RSA algorithms is very costly in terms of per-
formance and resource utilization. Thus, use of efficient parameters to speed up
implementations is very common. For example, use of a small secret key exponent
for signatures will significantly speed up signature generation, but Wiener [289]
showed that private key exponents satisfying the bound d < N0.25 where d,N are
the private key exponent and modulus respectively leads to a break of the RSA
cryptosystem. by Boneh et al. [292] to d < N0.292. Similarly, usage of a small pri-
vate key exponent has been shown to be exploited by a number of attacks like
Hastad Broadcast attack [294], partial key exposure attack [290] using variants of
the Coppersmith’s theorem.

Efficient Techniques for Modular Exponentiation (Type PRI.TE)

The Chinese Remainder Theorem (CRT) is a well known efficient technique to per-
form modular exponentiation which computes over primes half the size as that
of the original modulus leading to a speed-up up to a factor of four. But Boneh
et al. [295] showed that a single fault injected during computation using one of
the prime factors in a CRT optimized RSA signature generation procedure re-
sults in trivial retrieval of the key from the faulty signature. A recent report by

12

252 12. Security is an Architectural Design Constraint

Weimer [293] showed that this simple fault classical attack still poses a threat to
real world systems using TLS with RSA signature schemes. The countermeasure
against the fault attack leads to significant decrease in performance as it requires
an additional signature verification and hence is not widely deployed.

12.2.2. Post Quantum Public Key Cryptography

The cross-layer phenomenon not only is observable in classical cryptography, but
also extends its presence into post quantum cryptographic primitives. The crypto-
graphic community is actively working towards standardization of quantum resis-
tant public key cryptographic primitives, better known as "Post-Quantum" cryp-
tography. There have been several proposals for post quantum cryptography from
varied fields of mathematics among which lattice based cryptography and code
based cryptography seem to be the more promising proposals that provide both
quantum resistance guarantees along with practical efficiency comparable on a
scale with traditional public key cryptography.

Lattice based cryptography (Type PRI.TE & PRI.SE)

Lattice based cryptography, in its infancy was considered to be near impractical
due to the schemes suffering from asymptotically large key sizes and operation
counts (O(n2log(n))) where n is the security parameter. But, the security of these
schemes were based on hard problems on general lattices which were considered
to be NP −Hard in the worst case, thus offering very good security guarantees.
A lot of research then was focussed on increasing the efficiency of lattice based
cryptographic schemes, with the main direction being development of schemes
with hardness on algebraically structured ideal lattices [296, 297], yielding asymp-
totic efficiency in both space and time, with reduced key sizes and computation
time (O(nlog(n))), since arithmetic could be done over polynomials in rings as op-
posed to matrix vector arithmetic in the case of general lattices. This triggered a
large body of work towards efficient implementation of lattice based cryptographic
primitives on a range of devices from the smallest 8-bit AVR microcontrollers [355,
356] to reconfigurable hardware [357, 358]. But, the caveat present here is that the
same hard problems over the structured ideal lattices which determines the se-
curity guarantees of these efficient schemes are not known to be as hard as that
on general lattices. Even with extensive cryptanalytic efforts on these structured
variants [359, 360], there are not any known weakness still known that could be
exploited from their algebraic structure. With many of the efficient lattice based
cryptographic schemes basing their security over hard problems on algebraically
structured lattices [361, 362], cryptanalysis of lattice based cryptographic schemes
will be intensely scrutinized over the coming years.

12.2. Primitive Level

12

253

Code based cryptography (Type PRI.TE & PRI.SE)

One can also observe very similar trends in code based cryptography where there
is a dilemma in a choice between structured but efficient instantiations as opposed
to unstructured but inefficient instantiations of code based cryptographic schemes.
The first code based cryptographic scheme, the McEliece encryption scheme [302]
was proposed using binary Goppa codes, but this scheme suffered from large sizes
for the public keys along with complex decoding procedures. A large body of work
concentrated on development of efficient but secure choices of algebraically struc-
tured linear codes like Reed-Solomon [300], Reed-Muller codes [291], quasi-cyclic
and quasi-dyadic codes [301] and many more. But, most of them are known to
be broken with only the initial proposal of the Binary-Goppa codes [302] and the
QC-MDPC codes [303] still considered to be secure. According to the state of the
art, the QC-MDPC code based schemes offer very compact keys (1− 2KB) while at
the same time being very efficient, but have a certain error probability associated
with their decryption procedures, which was shown to be exploitable through the
GJS reaction attack reported in [304], provided the same key is used across many
number of encryptions. But, the relateively inefficient binary Goppa code variant
of the McEliece encryption scheme still stands unscathed even with about close to
40 years of cryptanalysis efforts.

12.2.3. Symmetric Key Cryptography

Security of Private-Key Primitives (Type PRI.SE & PRI.TE & PRI.PE)

The security of all symmetric key cryptographic primitives are directly related to
the size of the shared secret, which is commonly indicated by the bit security level.
A bit security of n bits indicates that a black box attacker has to perform at the most
2n operations to retrieve the secret key. The bit security level is determined based
on the best known attacks against the symmetric key primitive and thus need not
be equal to the bit size of the secret. Moreover, due to the sustainable decrease in
the cost of computational power, recommended security levels for various crypto-
graphic applications are regularly increased, with the most recent instance being
the declaration of any security level below 112 bits to be insecure according to
NIST [15], thus phasing out the use of PRESENT-80 [305] and LED-64 [306] light
weight block ciphers. Thus, upgrading the bit security level of any symmetric key
primitive would indicate increasing the bit size of the key, implying larger storage,
more operations on the key and ultimately a larger resource footprint.

The area of lightweight cryptography has attracted a lot of attention which has
spurred the development of many light weight cryptographic designs like efficient
block ciphers (PRESENT, LED, SIMON/SPECK [307], SKINNY [308], GIFT [309]),
stream ciphers (Grain [310], Plantlet [311], Fruit [312], Lizard [313]) and Hash

12

254 12. Security is an Architectural Design Constraint

Functions (PHOTON [314]). The main reason can be attributed to the emergence
of embedded device technologies like Bluetooth, Internet-of-Things (IoT), Wireless
Sensor Networks (WSNs), Wearable Devices etc. which primarily operate on low
power over computationally constrained platforms. While most of these ciphers
achieve competitive bit-security levels, they build upon less secure and more ef-
ficient building blocks leading to low resource consumption, but require a higher
number of iteration rounds which adds up to processing time. Besides, since this
field is relatively new, the security gap between these lightweight primitives and
their old trusted counterparts (AES, SHA-2 [363] , SHA-3 [364]) has not been ex-
tensively studied, thus leading to restrain from using these lightweigtht designs
from use in high security and sensitive applications.

Post-Quantum Security of Private-Key Primitives (Type PRI.SE& PRI.TE& PRI.PE)

Unlike public-key primitives, there are no known quantum attacks on private-key
primitives except for Grover’s Search Algorithm [298], which can speed up brute-
force search attack from 2n to 2n/2. Hence, post-quantum private-key primitives
have to be at least twice as large as their classical counterparts in order to achieve
the same security level, which, again, shows the trade-off between efficiency and
security [299].

Evaluation of CAESAR Candidates (Type PRI.SE & PRI.TE & PRI.PE)

The CAESAR competition [365] was announced in 2013, to allow the academic
community to choose a portfolio of authenticated encryption algorithms. Over 5
years, more than 50 submissions have been intensively studied, evaluating their
security, software performance and hardware efficiency. In March, 2018, the CAE-
SAR competition was concluded by selecting 7 final proposals, divided into three
use cases — (a) Lightweight applications (resource constrained environments): ACORN
and Ascon, (b) High-performance applications: AEGIS, MORUS and OCB, and (c)
Defense in depth: COLM and Deoxys-II.

In [315], the authors have studied the hardware performance, area and efficiency of
all the third round candidates of the competition, by implementing them for ASIC.
Their results showed that, when comparing ciphers designed for use cases segre-
gated as lightweight and defense-in-depth applications, there is a clearly observ-
able 10x gap in the throughput/area efficiency, where the lightweight candidates
are significantly both faster and smaller than there defense-in-depth counterparts.
Thus, all lightweight cryptographic designs clearly demonstrate instances of con-
flict between security and all types of efficiencies like Space efficiency (SE) through
small designs, time efficiency (TE) through high throughput rates and power effi-
ciency (PE) through reduced power consumption.

12.3. Protocol Level

12

255

12.3. Protocol Level
In almost all real world systems, crytograhic primitives are not implemented in
a standalone mode, but are encapsulated in a larger cryptographic protocol along
with other cryptographic primitives to achieve different security objectives. The
TCP/IP (Transmission Control Protocol/Internet Protocol) stack is one of the most
used communication protocols used in most of the computer networks around
the world. It has a modular architecture with multiple layers, with each layer
secured with different cryptographic protocols that are required to interact with
each other to provide end-to-end security. Incorporating such sucurity measures
at each layer is considered costly sometimes, but there are several trivial attacks
like Packet Sniffing, Sppofing, Cache Poisoning, Proxy routing table updates, DoS
style of attacks and many more that are possible if all the layers are not properly
secured. But, there have been multiple other instances where application of certain
optimization techniqeus have compromised the security of even a provably secure
protocol, with the Transport Layer Security (TLS) protocol being the main focus of
this section.

12.3.1. Data compression techniques used in TLS protocol

Transport Layer Security (TLS) (Previously known as Secure Sockets Layer (SSL)) is
one of the most widely used cryptographic application in the world, which mainly
provides security to the transport-layer of the TCP/IP stack. Data compression
techniques were widely being utilized to decrease network traffic congestion, but
this compression mechanism leaked information about the internal state of the
data. This has been known to be exploited by a number of vulnerabilities like
BREACH [320], CRIME [319] and TIME [366] attacks.

CRIME Attack (Type PRO.SE)

Both HTTP requests from the client and responses from the servers in cleartext are
typically compressed by the TLS protocol using the DEFLATE1 compression tech-
nique before they are encrypted to be sent over the insecure channel. Juliano Rizzo
and Thai Duong [319] reported Compression Ratio Info-leak Made Easy (CRIME), a
side channel attack that can retrieve information about session tokens and cookies.
The attacker maliciously injects information into the victim’s HTTP request and
observes the size of the encrypted request. By adaptively altering the injected infor-
mation depending on the observed sizes of the encrypted requests, an attacker can
easily deduce information regarding some secret tokens embedded in the HTTP
request.

1https://tools.ietf.org/html/rfc1950

12

256 12. Security is an Architectural Design Constraint

TIME Attack (Type PRO.SE)

Following the CRIME attack, the major vendors deprecated the use of TLS com-
pression technique at both the client and server sides which successfully thwarted
the CRIME attack. Later, Tal Be’ery and Amichai Shulman reported Timing Info-
leak Made Easy (TIME) attack [366], a variant of the CRIME attack but mainly tar-
getting HTTP responses. The attacker carefully crafts additional information to
be padded into the victim’s HTTP requests and observes a larger RTT (Round Trip
Time) for those manipulated requests in which the added information matches
wih the internal data. Using the observable time difference due to compression,
the attacker can retrieve internal information about the HTTP responses.

BREACH Attack (Type PRO.SE)

Gluck et al. [320] reported a variant of the CRIME attack called the Browser Recon-
naissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) attack,
which targets the size of the HTTP compressed responses (instead of TLS com-
pressed requests as in CRIME) to reveal secret information about secret tokens
and cookies in the body of the response.

12.3.2. Attacks on the encryption mode used in TLS protocol

There is another class of attacks that specifically target the CBC (Cipher Block
Chaining) mode of encryption used in the context of the TLS protocol. Block ci-
phers are usually used in different modes to encrypt large amounts of data, ECB
(Electronic Code Book) mode, Counter mode and CBC (Cipher Block Chaining)
mode to name a few. The CBC mode for block ciphers is known for its efficient
properties like reuse of ciphertext as initialization vector during encryption and
its ability to decrypt data in parallel. The CBC mode in a standalone configuration
is secure, but has caused a lot of security concerns when used in the TLS proto-
col [316–318].

BEAST Attack (Type PRO.TE)

TLS records are typically first authenticated using the HMAC construction, padded
with deterministic data to align the data to the block size and then encrypted. Dif-
ferent error responses were invoked for the cases when the padding is correct but
the HMAC was wrong or when the padding itself is wrong. The attacker tweaks
the ciphertexts to evoke response regarding the correctness of the padding to re-
veal information about the plaintext. This attack which was first published by
Vaudenay [316], which was later shown to be practical by Duong et al. [317] in
2011, famously known as the BEAST attack. The BEAST attack was made possible

12.4. System Level

12

257

due to a number of reasons, but one of the two main reasons were the differential
error response on either incorrect padding or authentication and use of the last
ciphertext of the previous packet as the IV of a new packet for want of time ef-
ficiency, with the attack very well aided by the structure of the CBC mode. The
attack could be thwarted by evoking the same response for both incorrect padding
and incorrect authentication. But, in doing so, the sender has to recalculate both
the padding and the MAC, even in cases when packet has been correctly authenti-
cated, increasing the computation times upon failure.

LUCKY13 Attack (Type PRO.TE)

Even on evoking the same response from the server upon failure due to different
reasons to avoid information leakage, the attacker can still learn about the num-
ber of padded bytes based on the time taken for authentication. A padding error
evokes a faster error response but the attacker can observe a slower response upon
correct padding but incorrect authentication. Here again, the timing leakage is
caused due to want of efficiency to avoid calculating the MAC even upon noticing
an incorrect padding. Thus, fixing this requires the server to calculate MAC for
both correctly and incorrectly padded messages. But, there still existed a timing
leakage due to the difference in times for authenticating the data which gave in-
formation about the number of padded bytes. This attack which is very similar to
the BEAST attack but uses a timing oracle was proposed by Nadhem AlFardan and
Kenny Paterson [318], which is famously known as the LUCKY13 attack. These
two attacks led to abandoning the use of CBC mode atleast in the context of TLS
protocol as MAC-then-encrypt along with CBC has too many issues which could
not be resolved very easily, while also looking like a source of many other hidden
vulnerabilities.

12.4. System Level

The theoretically secure cryptographic primitives and the corresponding crypto-
graphic protocols are ultimately required to be implemented on real world systems
through which one can leverage upon their security guarantees. They are imple-
mented in a wide array of real world systems, ranging from the smallest micro-
controllers used in wireless sensor networks to the most powerful general purpose
computers powering the data centres. System designers are always in pursuit of
efficient yet secure implementations of cryptographic primitives and protocols as
they are always considered to be adding a significant overhead in terms of effi-
ciency to the application in hand. This pursuit of implementation efficiency has
been constantly plagued with security issues as well. Following the trend observed
in the higher layers of the cryptographic stack, we observe that this cross layer phe-

12

258 12. Security is an Architectural Design Constraint

nomenon has made its presence felt in various aspects of system level security as
well, which we cover in this section. We organize this section into three parts —
(a) Hardware Security, (b) Software Security, and (c) Hardware/Software Interface
Security.

12.4.1.Hardware Security

Hardware security as a discipline encompasses multiple fields dealing with crypto-
graphic engineering and security such as hardware trojans, physical attacks, pro-
tection of the IC supply chain both pre-silicon and post-silicon, development of
hardware root of trust and security enhanced hardware infrastructure. But fol-
lowing the line of work from the previous sections, we will focus on hardware
security challenges from the stand point of efficient implementations of crypto-
graphic primitives and protocols. Side channel attacks (especially power analysis)
and fault attacks usually pose as a major threat towards secure cryptographic de-
signs from the standpoint of hardware security, which will be the main focus of
this section.

Generic Side channel protection approaches

Side-channel countermeasures against power analysis attacks have been developed
on two different lines: leakage hiding and leakage randomisation.

Leakage Hiding Countermeasures — Leakage hiding aims at data independent pro-
cessing which removes any side-channel basis. Dual-rail precharge logic (DPL) are
a fair representative of this class of countermeasures [330]. DPL leads to over two
times overhead both in area and time/performance. It suffers from two security
vulnerabilities i.e. early propogation effect and routing imbalance [331]. Fixing
any of these vulnerabilities leads to more elaborate design leading to area/perfor-
mance overheads [332, 333] and thus compromising security with efficiency (Type
SYS.TE and SYS.SE). Similarly, there are leakage countermeasures that work in the
time domain that work by randomizing the occurence of the sensitive operations.
But, Clavier et al. in [367] showed that desyncrhonizing the sensitive operations
within a time window of t will only lead to a linear increase in the number of ex-
ecution traces required by the attacker to perform the attack, while increasing t
clearly hampers performance of the design (Type SYS.TE).

One of the most fundamental requirements for a side channel resistant design is
to run in constant time so as to not leak information about data through side chan-
nels. But, constant time implementations are usually slower and time consuming
to implement. For instance, the variable time operation of the base field opera-
tions in WolfSSL or OpenSSL implementations were exploited through timing at-
tacks reported in [334]. Though not all timing variations are directly related to the

12.4. System Level

12

259

secret, which might seem to mitigate known side channel attacks, they have also
been shown to open the door to new attacks [335]. These instances can be classified
under the Type SYS.TE.

Leakage Randomisation Countermeasures — The alternate line of countermeasures
is built upon leakage masking which is used to randomise the leakage of sensitive
computations. We will consider private circuits [352], which form the basis of all
masked implementations which assume an attacker with very strong probing ca-
pabilities. A t-order private circuit requires the attacker to probe t + 1 signals to
get intelligible inormation on 1−bit. Since each bit is represented by t−bits of the
masked implementation, the area/performance overheads are evident. A practical
study on implementation aspects of private circuits on FPGA was reported in [353]
which reported a very large overhead of about 38× in the number of slices and 9×
in performance as compared to the unprotected design. They also demonstrated
that CAD tools in the bid to decrease CLB utilization and increase performance,
optimize away the security measures employed in the private circuit design and
thus require to provide explicit constraints in order to prevent insecure optimiza-
tions. Thus, these instances can be classified under the Type SYS.SE.

Similarly, building efficient algorithmic level masking countermeasures for asym-
metric key cryptographic primitives based on ECC and RSA also remains an elusive
task. With a plethora of known attacks with different capabilities [328], develop-
ment of an efficient yet secure countermeasure to thwart all known (and future)
attacks is a daunting task. For example, data re-randomisation countermeasure
for secure ECC designs against the powerful single execution attacks yield almost
a two times increase in computational time [329]. These instances fall under the
Type SYS.TE.

Security Oblivious Power Management (Type SYS.PE)

Power, energy and thermal management has become a very crucial characteris-
tic in today’s modern commodity hardware, right from the ubiquitous embed-
ded systems that are battery powered to the power hungry enterprise level sys-
tems. For instance, Dynamic Voltage Frequency Scaling (DVFS) is one of the most
used techniques for energy management, wherein power consumption is regulated
based on runtime task demands, by controlling the two crucial factors that majorly
contribute to power consumption of the device - voltage and frequency. Tang et
al. [354] demonstrated a remote fault attack on the ARM Trustzone CPU possible
due to a fundamental flaw in the security oblivious DVFS technique. Pervasive
software access was provided to the hardware registers which were used to con-
trol the voltage and frequency parameter of the device, that allowed an attacker
to inject faults into the computation through remote software commands. This in-
stance clearly demonstrates the need to employ efficiency improvements in secure

12

260 12. Security is an Architectural Design Constraint

designs with extreme caution and also stresses the need for widespread security
measures at every level of a secure design.

12.4.2. Software Security

For a long time, work on compiler optimizations have only focussed on ensur-
ing functional coherence between the source code and its compiler optimized ver-
sion [368, 369]. But there have been a number of works across literature that have
revealed a very clear case of bumping into security errors where many a time com-
piler optimizations have lead to violating a security guarantee made by the original
source code [324, 351, 370]. The formalization of this problem was first done by
Silva et al. in [370] coining the term of correctness-security gap in compiler opti-
mizations. This triggered a large body of work to study and diminish the effect
of compiler optimizations on security [324, 371]. Silva et al. [370] point out to
three types of vulnerabilities introduced by compiler optimizations — (a) Infor-
mation Leakage through Persistent State, (b) Code Elimination through Undefined
Behaviour, and (c) Side Channel Attacks.

Information Leakage through Persistent State (Type SYS.TE)

One of the most famous compiler optimizations that is known for its security flaws
is the dead store elimination (DSE). A secret key residing in memory is usually over-
written with random data after use (or deleted), so as to avoid its persistence in
memory. This scrubbed data is never read again by the program, so this is sensed
by the compiler and thus the last instruction which accesses the memory location
(i.e) the scrubbing instruction is optimized away thus leading to security issues.
Though this issue has been known for quite sometime and has been claimed to
be preventable through a variety of techniques [321–323], a recent work by Yang
et al. [324] evaluated the known techniques used in various security projects and
noticed that many of them are flawed. They propose a scrubbing-safe DSE opti-
mization, but it still remains to be seen that DSE can truly be trusted to be secure.
Another well known optimization is the inline function call, which eliminates over-
head steps of explicitly calling a function. But it has the implication of merging of
the stack frames of the caller and callee function. Thus, any secret variable used
inside a function lives for a longer time as it now becomes a part of the callee func-
tion, which is a typical example of violating boundaries of trust-separated domains
where a variable could trespass the boundary implemented by the programmer.
Code motion is another widely adopted optimization technique, through which
the compiler re-orders code by examining dependencies between the instructions.
This might again lead to a situation of a persistence of a secret variable in memory
for a longer duration that desired.

12.4. System Level

12

261

Code Elimination through Undefined Behaviour (Type SYS.SE)

Wang et al. [351] point out to a curious case of software bugs which they term as
Optimization Unstable codes. These are code segments that can invoke undefined
behaviour by the program, for eg. divide by zero, referencing a null pointer, shift-
ing an n bit integer by more than n places etc. These type of codes are deemed
to function erratically and thus the compilers more often than not take advantage
of these code segments and optimize them away under the assumption that these
undefined behaviours do not exist. Thus, any sanity checks like checking for an in-
teger overflow or a null pointer reference will always evaluate to false and will be
considered to be dead code by the compiler to be optimized away. These optimiza-
tions can sometime result in vulnerabilities based on buffer overflow or memory
allocation. Wang et al. [351] also make a crucial observation of a general trend in
compilers becoming more and more aggressive with successive generations in do-
ing away with codes with undefined behaviour thus rising security concerns about
their optimization characteristics.

Information Leakage through Side Channel (Type SYS.TE)

Compiler optimizations are also considered to be notorious in removing certain
timing guarantees of the source code that were placed intentionally by the de-
veloper to ensure constant time implementations. Well known optimizations like
strength reduction, Peephole optimizations, Common subexpression elimination
etc. are techniques typically used by compilers for combination, simplification
and replacement of certain parts of codes trying to achieve more performance and
lesser resource utilization. But, usage of these optimizations more often than not,
could lead to possible exploits through a number of side channel attack vectors.
Time critical parts of the code are sometimes written in inline assembly to ensure
that compilers do not perform any alteration leading to vulnerabilities. Similarly,
there are countless instances littered across literature dealing with compiler op-
timizations that clearly demonstrate yet another clear case of trying to reach the
ever elusive sweet-spot that remains hidden between the security and efficiency
guarantees.

In complex applications like Internet of Things (IoT) and smart autonomous cars,
developers are using many generic complex software stacks wherein most cases,
the knowledge of the low level architechture behaviour is abstracted away. In such
a scenario, implementation of cryptographic primitives encapsulated in several
software layers can lead to unforeseen security vulnerabilities. Automated coun-
termeasure insertion against side channel attacks at compilation time from a high
level abstract language is a deep research topic. Though design using high level
languages makes the code easier to write, read and verify for implementation bugs
and flaws, most of the underlying levels are abstracted away. Both the underlying

12

262 12. Security is an Architectural Design Constraint

micro-architechture and the compilation can introduce hidden information leak-
age [325–327]. The more the number of abstracted levels, lesser is the control over
the actual behaviour of implementation, thus might lead to unforeseen security
bugs and vulnerabilities.

12.4.3.Hardware/Software Interface Security

Apart from hardening devices against attacks purely exploiting vulnerabilities ei-
ther in hardware or software, it is also important to know that there is also consid-
erable leakage present at the interface between hardware and software, which is
more commonly known as the microarchitectural level. The trillion fold increase in
computational power over the last sixty years [372] can be attributed to a number
of microarchitectural optimization strategies such as Cache memories, Pipelining,
Branch Prediction, Multi-threading, out of order execution, virtualization etc. But,
these optimizations also brought along with them hidden vulnerabilities that have
been shown to be exploited by a number of attacks, which together can be brack-
eted under the term of microarchitectural attacks.

Cache Memory hierarchy - A necessary evil — The ever increasing gap between pro-
cessor and memory speeds, is greatly attributed to the bisection of the semiconduc-
tor industry into two parts- Microprocessor and Memory [373]. While the micro-
processor industry laid emphasis on increasing the speed of the processor, capacity
had been the main driver for the memory industry. Cache memories were intro-
duced in the 1960s in order to bridge this fast growing gap between processor and
memory. Staring with a single level cache, architectures evolved to have upto 3 lev-
els of caches - with the caches closer to the processor smaller and faster compared
to the ones farther. There is an observable cache sharing hierarchy, wherein all
cache levels except the Last Level Cache are local to the processor. This resource
sharing which leads to an observable resource contention at multiple cache lev-
els allows for visibility of activities of other co-located entities that contest for re-
sources at the same level. This granularity in visibility also increases as one moves
up from the Last Level Cache (LLC) to the first level cache which is the closest to
the processor.

Caches were traditionally used to store instruction and data to increase system per-
formance. But, there are also other smaller caches that are local to a processor core.
Translational look-aside buffer, (TLB) which store page translation addresses used
during page mapping and Branch Target Buffer (BTB) which store the branching
addresses of upcoming branch instructions with the help of the Branch Prediction
Unit (BPU) are a few examples of the same. In addition to speeding up informa-
tion access from memory, the cache access times almost always depend on either
the data value or the address or both. This differential behaviour of cache memory

12.4. System Level

12

263

access towards data has been exploited in a wide variety of attacks which together
can be referred to as Cache Timing Attacks.

Achieving Parallelism through Resource Sharing (Type SYS.SE and SYS.TE) — In-
strucion level parallelism is another key objective that had been the main focus of
architecture designers to improve processor resource utilization and achieve exe-
cution of multiple instructions per clock cycle. Several architectural level design
optimizations like symmetric multi-processing, hardware multi-threading, out-of-
order execution and speculative execution were used to achieve the afore men-
tioned objective. This resource sharing resulted in observable resource contention
at a very fine level at various execution units like ALUs, FPUs, memory controllers,
system buses, interconnects etc. Thus, any entity like a parallel thread, process or
a Virtual Machine will be able to observe the footprint of other similar co-located
entities on contended resources at the same level. For eg. one can observe resource
contention of execution units and L1 cache at a thread level or between processes
or VMs running on the same core, while the resource contention between two enti-
ties located on different cores is only observable at lower levels like the Last Level
Cache, system bus etc. Resource contention at multiple levels acrorss the processor
hierarchy renders visibility of behaviour of other co-locatd entities mainly through
timing-channels, which has lead to a number of microarchitectural attacks.

Reported Attacks

Gu et al. [336], in their survey of microarchitectural timing attacks broadly clas-
sify the same based on two axes - according to the level of sharing and the degree of
concurrency required for the attack. While an attacker at the top level enjoys a very
fine grained visibility of a co-located victim’s behaviour, an attacker working at the
bottom, at the bus level can only observe something close to the overall through-
put variation. Similarly, an attacker at the thread level only requires to perform
pre-emptive multitasking, while an attacker at the Last Level Cache requires true
concurrency with the victim process to perform the attack.

Based on Attack styles

Exploitation of resource contention at caches have been achieved through different
attack styles like PRIME+PROBE, FLUSH+RELOAD, EVICT+TIME, MELTDOWN
and SPECTRE. These side channel attacks typically rely on timing leakage coming
from resource contention observable across various levels of the cache hierarchy.
Refer to Tab.12.3 for the description of the various reported styles of microarchi-
tectural timing attacks.

There are other types of attacks that use cache as a covert channel to perform De-
nial of Service attacks [374] that can saturate the caches with the attacker’s own

12

264 12. Security is an Architectural Design Constraint

Class of At-
tack

Description

PRIME+PROBE The attacker first primes the cache by filling it with its own lines in
one or more sets. Once the victim finishes its execution, the attacker
probes the previously loaded lines to observe any observable timing
difference in the memory accesses.

FLUSH+RELOADAn exact inverse of the PRIME+PROBE attack, wherein the attacker
flushes the cache indexed by virtual addresses and lets the victim to
execute. Once the victim has finished execution, the attacker reloads
the same lines to check if the victim has accessed any of the same lines.

EVICT+TIME A similar approach as that of the PRIME+PROBE attack, but first lets
the victim run to observe the average run time. The attacker then
evicts certain lines of interest and lets the victim run again to observe
timing differences based on which some inference can be made on the
victim’s internal state.

MELTDOWN Relies on execution of so called transient instructions (instructions
which follow after a branch instruction or an exception) that are not
meant to be executed by the victim. The out-of-order execution tech-
nique used to increase time efficiency is exploited in this kind of at-
tack, whose activity can be observed in the shared caches across vari-
ous levels. MELTDOWN results in a privilege escalation vulnerability
specific to Intel processors through execution of instructions after an
instruction trap.

SPECTRE These attacks exploit the speculative execution technique used to pre-
dict direction of branching instructions, thus relying on execution of
transient instructions. Though the results of these transient instruc-
tions are thrown away, their footprints are not erased from the shared
caches across various levels. These attacks which can result read ar-
bitrary memory from victim’s process, apply to Intel, AMD and ARM
processors.

Table 12.3: Different styles of microarchitectural timing attacks exploiting resource con-
tention at the shared cache memories

12.5. Proposal for a Security Aware Design Flow

12

265

data leading to serious performance degradation for the victim. These style of at-
tacks have also been known to be performed on other types of caches like TLB [337]
and BPU [339].

Based on level of sharing:

(Type SYS.SE and SYS.TE) Given the visibility of co-located entities rendered possi-
ble by resource sharing, attacks have been reported over multiple levels of the pro-
cessor hierarchy. They are Thread Shared State, Core Shared State, Package Shared
State, and System Shared State.

An attacker present at the thread level usually observes contention at thread shared
resources like ALUs [338], BTB [339], FPU [340], BPU [341], return stack buffers
[342] etc. Attacks at the Core shared state [87, 343, 344] typically target activ-
ity in the L1 and L2 level caches due to contention among different threads and
processes running on the same core. Attacks at the Package shared state [345–347]
target activity in the Last Level Cache which is typically shared by multiple proces-
sors on the same core. These attacks typically have to work with lesser granularity
in observing the victim’s behaviour and require more concurrency with the vic-
tim entity residing on the other core. Contention on system level resources like
System buses, processor interconnects and system interfaces like PCIExpress have
also been shown to be exploitable by a number of covert channel, side channel and
DOS style attacks [348–350].

With the above cited literature on microarchitectural attacks across the entire pro-
cessor hierarchy, we can clearly see that major architectural optimization tech-
niques have been employed without foreseeing the possible security threats. These
instances observable at the interface between hardware and software again stand
as evidence of the eternal conflict between security and efficiency.

12.5. Proposal for a Security Aware Design Flow

In Sections 12.2,12.3,12.4, we surveyed as many references as possible available in
literature from academia and the industry to provide evidence of the ever existing
trade-off between security and efficiency across multiple layers of the cryptography
stack. We could see that certain optimization strategies opened gates to some un-
forseeable security vulnerabilities, or protecting against powerful attacks becomes
a very costly affair from a designer’s perspective, who always targets high perfor-
mance and low resource utilization. Since vulnerabilities can be introduced at any
level, a security engineer’s job to ensure security at each and every level becomes a
paramount task.

No longer can security be considered as an afterthought for a digital system design.

12

266 12. Security is an Architectural Design Constraint

Incorporation of security to existing digital systems using an ad-hoc approach has
only lead to a number of attacks as seen in previous sections [317, 319, 320, 366].
Also some of the optimization techniques like cache memory hirarchy, out of order
execution, speculative execution, branch prediction etc. were introduced long be-
fore security was being seriously considered as being a threat to digital computer
systems. With an ever increasing number of types of attacks and the attack sur-
faces, it is now supremely important to integrate the notion of security into each
and every level of the design flow.

We would like to propose a fully security aware design flow that would be useful
for a security engineer who is required to incorporate all the required and neces-
sary security measures and functionalities for any given application. Refer Fig.12.1
for our proposal for a security aware design flow, which tries to incorporate se-
curity at each and every step of the design flow for both hardware and software
implementations.

Figure 12.1: Our proposal for a Security Aware Design Flow

12.6. Conclusion

12

267

12.6. Conclusion
In this position paper, we have shown numerous examples about how security and
efficiency stands in sharp contrast with each other. This is a fact that is not yet
well understood in the design community, leading to regular and severe security
breaches. The vulnerabilities presented in this paper shows security issues across
multiple design layers and due to the pursuit to achieve different performance
objectives, e.g., space, time and power. Consequently, we advocate a security-aware
design flow that includes security as an architectural design constraint. This work
calls for the development of an early design space exploration tool that includes
security as a quantifiable metric. Further interesting directions could be to study
the interplay between security wrappers in different design layers.

VI
Application of design

guidelines: Lightweight
ciphers secure

implementations

269

12

271

In this Part, we focus on implementing the precepts outlined in the previous chap-
ter in a real-world scenario. Specifically, we apply our security-aware design flow
to the selection and implementation of a symmetric encryption algorithm for mass-
market IoT security (Security of Private-Key Primitives (Type PRI.SE PRI.TE PRI.PE).
in the previous chapter). When it comes to mass-market applications that require
secure firmware updates, general-purpose microcontrollers are the preferred plat-
form. However, in such applications, side-channel attacks can be a major concern.

To mitigate timing attacks, a constant-time implementation is necessary. One effi-
cient way to achieve a constant-time implementation of a block cipher on micro-
controllers is to use the bitslicing technique, which also happens to be masking-
friendly. We introduce a new technique called "fix-slicing," which allows for the
development of constant-time, efficient implementations. This technique can be
applied to other ciphers beyond the one chosen for demonstration (GIFT). Note
that in this study, fault injection resistance is not considered.

13
Fixslicing: A New GIFT

Representation

The GIFT family of lightweight block ciphers, published at CHES 2017, offers ex-
cellent hardware performance figures and has been used, in full or in part, in sev-
eral candidates of the ongoing NIST lightweight cryptography competition. How-
ever, implementation of GIFT in software seems complex and not efficient due to
the bit permutation composing its linear layer (a feature shared with PRESENT
cipher).

In this article, we exhibit a new non-trivial representation of the GIFT family of
block ciphers over several rounds. This new representation, that we call fixslicing,
allows extremely efficient software bitsliced implementations of GIFT, using only
a few rotations, surprisingly placing GIFT as a very efficient candidate on micro-
controllers. Our constant time implementations show that, on ARM Cortex-M3,
128-bit data can be ciphered with only about 800 cycles for GIFT-64 and about
1300 cycles for GIFT-128 (assuming pre-computed round keys). In particular,
this is much faster than the impressive PRESENT implementation published at
CHES 2017 that requires 2116 cycles in the same setting, or the current best AES
constant time implementation reported that requires 1617 cycles. This work im-
pacts GIFT, but also improves software implementations of all other cryptographic
primitives directly based on it or strongly related to it.

273

13

274 13. Fixslicing: A New GIFT Representation

13.1. Introduction
In parallel to the rise of pervasive computing and IoT, lightweight cryptography
has naturally been a very hot topic in the past decade. Many new primitives have
been proposed, from block ciphers to hash functions and authenticated encryption
schemes, for various goals such as minimization of area, energy or power con-
sumption, latency, etc. One can remark that there is no single algorithm that is
more efficient than all others on every possible platform. Even though designers
try to produce a primitive aiming at a particular class of platforms while maintain-
ing good performance otherwise, we can generally observe that hardware-oriented
ciphers tend to be less efficient on software and vice-versa. For example, the NSA
did not propose only a single lightweight block cipher, but two of them [375]: one
oriented for constrained hardware platforms (SIMON) and one oriented for con-
strained software platforms (SPECK).

In hardware, it seems that the community is reaching a limit in terms of perfor-
mances, with recent schemes [375–377] that can be implemented efficiently using
a very small data-path (minimizing area and power), while allowing also efficient
trade-offs for fast and low-energy implementations. Yet, constrained software plat-
forms such as small micro-controllers will play a very important role in the future.
Even though hardware-oriented designs use a very small total number of bitwise
operations when compared to classical designs such as AES, their situation in soft-
ware is not so bright: many of these ciphers use hardware-friendly diffusion layers
and an important number of cycles will be required to move these bits around,
without much possibility to benefit from vectorization. This is especially true for
ciphers using bit permutation such as PRESENT [283] or GIFT [377]. Since this bit
permutation is basically free in hardware (it consists of simple wirings), designers
concentrated on how to maximize security when choosing this permutation layer.
For example, GIFT permutation layer has been chosen with security as the only
criterion (more precisely, maximizing its resistance against differential and linear
attacks).

When high parallelism can be achieved in the operating mode where the primitive
will be placed, one can always use highly bitsliced implementations (see perfor-
mances of SIMON, SKINNY and GIFT on recent Intel processors with AVX2 instruc-
tions [377]) that can lead to excellent performance: these ciphers again use a very
small number of bitwise operations and the high parallelism will allow to strongly
reduce the cycles wasted in moving bits around by unrolling the implementation.
However, this strategy will not be applicable in the case of constrained micro-
controllers, as these devices will not offer enough registers to perform such highly
bitsliced implementations efficiently. These highly bitsliced implementations will
also not be possible for serial operating modes, which are quite widespread in prac-

13.1. Introduction

13

275

tice and are even more relevant for lightweight cryptography as it can save some
area.

It remains rather unexplored how efficient hardware-oriented ciphers can be in
software. Yet, this topic is quite important with the ongoing NIST LightWeight
Cryptography (NIST LWC) competition, that started in 2018, with the goal of se-
lecting the future authenticated encryption standard(s) for constrained environ-
ments. A first answer was given at CHES 2017, with a new very efficient imple-
mentation of PRESENT cipher on various micro-controllers [378]. It is based on a
decomposition of the permutation layer over two consecutive rounds, resulting in
a more software-friendly representation.

However, PRESENT has a rather low security margin with regards to linear crypt-
analysis and its advanced extensions. It also has the disadvantage to only come
in a 64-bit block version, which is to be avoided [379] unless a Beyond-Birthday-
Bound (BBB) operating mode can be used (generally much more costly). Actually,
one can observe that none of the NIST LWC candidates use PRESENT as internal
primitive, even though it is widely considered as one of the first lightweight ci-
phers. Recently, at CHES 2017, the GIFT family of block ciphers was proposed to
correct these two issues with PRESENT. GIFT has a 128-bit version and provides a
much stronger resistance against linear cryptanalysis than PRESENT, thanks to a
careful choice of its S-box, its diffusion layer and how they operate together. It has
actually been used as a basic block for several NIST LWC candidates, such as ES-
TATE [380], GIFT-COFB [381], HYENA [382], LOTUS-AED [383], LOCUS-AED [383],
SIMPLE [384], SUNDAE-GIFT [385] and TGIF [386]. The problem is that software
performance of GIFT is believed to be poor on micro-controllers, because even us-
ing table-based implementations, moving the bits around for the diffusion layer
will cost many expensive rotations, shifts, masks, exclusive-ORs, etc. To the best of
our knowledge, no micro-controller implementation has been previously reported
for GIFT.

Our Contributions. In this article, we propose a new non-trivial representation
of both versions of the GIFT cipher over several rounds. More precisely, we show
how the seemingly-complex bit permutation of GIFT-64 can be rewritten over 4
consecutive rounds, using only a few simple operations. This new very clean rep-
resentation, that we named fixslicing, allows an efficient bitsliced implementation
of GIFT-64 on ARM Cortex-M3, requiring only about 800 cycles to cipher two 64-
bit input blocks. Our setting assumes that round keys are precomputed, but we
also provide an efficient implementation of the GIFT-64 key schedule.

The situation is more difficult for GIFT-128, as its bit permutation operates on twice
as many bits. Yet, a more systematic search approach led to a new representation
of GIFT-128 over 5 rounds, again using only a few simple operations. This new

13

276 13. Fixslicing: A New GIFT Representation

very clean representation allows an efficient bitsliced implementation of GIFT-128
on ARM Cortex-M3, requiring only about 1300 cycles to encrypt one single 128-bit
input block.

Our implementations show that GIFT is very efficient in software, as they are much
faster than the impressive PRESENT implementation published at CHES 2017 that
requires 2116 cycles in the same setting, or the current best AES constant time
implementation reported that requires 1617 cycles. This work impacts GIFT, but
also all other cryptographic primitives directly based on it or strongly related to it.
In particular, we benchmarked that GIFT-COFB runs at 79 cycles per byte on ARM
Cortex-M3 for long messages, placing this scheme as a very fast candidate.

13.2. The GIFT family of block ciphers

In this section, we will describe the GIFT family of block ciphers but refer to [377]
for the full specifications.

GIFT is a family of lightweight block ciphers, with two members: GIFT-64 and GIFT-
128 which have a block size of 64 and 128 bits respectively. They are composed of
a Substitution-Permutation Network (SPN) with a key length of 128-bit. They are
28-round and 40-round iterative block ciphers respectively, with identical round
function.

There are different ways to perceive GIFT-64 and GIFT-128. The classical one is to
represent it with an SPN view (see Section 2 of [377] for a graphical representa-
tion), which looks like a PRESENT-like cipher with 16 (or 32) 4-bit S-boxes and
a 64-bit (or 128-bit) bit permutation (see Figure 13.1 that illustrates 2 rounds of
GIFT-64). Since we will be proposing new bitsliced implementations, we will be
using the bitsliced description instead, which is similar to Appendix A of the GIFT
paper.

Instead of collecting the input stream S-box per S-box, we can also consider that the
data arrives already in bitsliced ordering. This changes absolutely nothing to the
quality of the cipher, as a bit permutation is simply applied at the start (plaintext)
and at the end (ciphertext) of the encryption process (to compensate for the state
bitslice packing/unpacking). We note that such ciphers have been already used in
some NIST LWC candidates such as GIFT-COFB [381]. We will denote GIFTb-64 and
GIFTb-128 the bitsliced-input versions of GIFT-64 and GIFT-128 respectively.

13.2. The GIFT family of block ciphers

13

277

13.2.1. Round function

Each round of GIFT-64 (or GIFT-128) consists of 3 steps: SubCells, PermBits, and
AddRoundKey.

Figure 13.1: 2 rounds of GIFT-64 (from https://www.iacr.org/authors/tikz/).

Initialization. The 64-bit (or 128-bit) plaintext is loaded into the cipher state
S which will be expressed as 4 16-bit (or 32-bit) segments. In the per-
spective of a 2-dimensional array, the bit ordering is from top-down,
then right to left. Namely, for GIFT-64, we have:

S =

S0

S1

S2

S3

←

b60 · · · b8 b4 b0

b61 · · · b9 b5 b1

b62 · · · b10 b6 b2

b63 · · · b11 b7 b3

.

while for GIFT-128 we have:

S =

S0

S1

S2

S3

←

b124 · · · b8 b4 b0

b125 · · · b9 b5 b1

b126 · · · b10 b6 b2

b127 · · · b11 b7 b3

.

The 128-bit secret key is loaded into the key state KS partitioned into 8
16-bit words. In the perspective of a 2-dimensional array, the bit order-

https://www.iacr.org/authors/tikz/

13

278 13. Fixslicing: A New GIFT Representation

ing is from right to left, then bottom-up.

KS =

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

b127 · · · b112 ‖ b111 · · · b98 b97 b96

b95 · · · b80 ‖ b79 · · · b66 b65 b64

b63 · · · b48 ‖ b47 · · · b34 b33 b32

b31 · · · b16 ‖ b15 · · · b2 b1 b0

SubCells. The substitution layer of 16 (or 32) identical 4-bit S-boxes can be

applied in parallel with the following operations.

S1← S1 ⊕ (S0 ∧ S2)

S0← S0 ⊕ (S1 ∧ S3)

S2← S2 ⊕ (S0 ∨ S1)

S3← S3 ⊕ S2

S1← S1 ⊕ S3

S3← ¬ S3

S2← S2 ⊕ (S0 ∧ S1)

{S0,S1,S2,S3} ← {S3,S1,S2,S0},

where ∧, ∨ and ¬ are logical AND, OR and NOT operation respectively.

PermBits. The bit permutation of GIFT has the special property that each bit
located in a slice i remains in the same slice through this permutation.
Now, different 16-bit (or 32-bit) permutations are applied to each Si
independently. They map a bit located at position j in slice i to position
Pi(j) in the same slice i. We provide in Tables 13.1 and 13.2 the Pi(j)
values for GIFT-64 and GIFT-128 respectively.

Table 13.1: Specifications of GIFT-64 bit permutation.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0(j) 0 12 8 4 1 13 9 5 2 14 10 6 3 15 11 7

P1(j) 4 0 12 8 5 1 13 9 6 2 14 10 7 3 15 11

P2(j) 8 4 0 12 9 5 1 13 10 6 2 14 11 7 3 15

P3(j) 12 8 4 0 13 9 5 1 14 10 6 2 15 11 7 3

AddRoundKey. This step consists of adding the round key and round con-
stant. Two 16-bit (or 32-bit) segments U,V are extracted from the key
state as the round key: RK = U‖V . Then, for the addition of round key,
U and V are XORed to S1 and S0 of the cipher state respectively for

13.2. The GIFT family of block ciphers

13

279

Table 13.2: Specifications of GIFT-128 bit permutation.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0(j) 0 24 16 8 1 25 17 9 2 26 18 10 3 27 19 11

P1(j) 8 0 24 16 9 1 25 17 10 2 26 18 11 3 27 19

P2(j) 16 8 0 24 17 9 1 25 18 10 2 26 19 11 3 27

P3(j) 24 16 8 0 25 17 9 1 26 18 10 2 27 19 11 3

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P0(j) 4 28 20 12 5 29 21 13 6 30 22 14 7 31 23 15

P1(j) 12 4 28 20 13 5 29 21 14 6 30 22 15 7 31 23

P2(j) 20 12 4 28 21 13 5 29 22 14 6 30 23 15 7 31

P3(j) 28 20 12 4 29 21 13 5 30 22 14 6 31 23 15 7

GIFT-64, or S2 and S1 of the cipher state respectively for GIFT-128:

S1← S1 ⊕U, S0← S0 ⊕V for GIFT-64

S2← S2 ⊕U, S1← S1 ⊕V for GIFT-128.

For the addition of round constant, S3 is updated as follows:

S3←S3 ⊕ 0x80XY for GIFT-64

S3←S3 ⊕ 0x800000XY for GIFT-128

where the byte XY = 00c5c4c3c2c1c0.

13.2.2. Key schedule and round constants

The key schedule and round constants are the same for both versions of GIFT, the
only difference is the round key extraction. A round key is first extracted from the
key state before the key state update. For GIFT-64, two 16-bit words of the key state
are extracted as the round key RK =U‖V

U ←W6, V ←W7,

while for GIFT-128, four 16-bit words of the key state are extracted as the round
key RK =U‖V .

U ←W2‖W3, V ←W6‖W7.

13

280 13. Fixslicing: A New GIFT Representation

The key state is then updated as follows,

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

W6≫ 2 ‖ W7≫ 12

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

,

where≫ i is an i bits right rotation within the 16-bit word.

The round constants are generated using a 6-bit affine LFSR, whose state is denoted
as c5c4c3c2c1c0. Its update function is defined as:

c5‖c4‖c3‖c2‖c1‖c0← c4‖c3‖c2‖c1‖c0‖c5 ⊕ c4 ⊕ 1 .

The six bits are initialized to zero, and updated before being used in a given round.
The values of the constants for each round are given in the table below, encoded to
byte values for each round, with c0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

13.3.Naive bitsliced implementation of GIFT

Naive bitsliced implementations of the GIFT family of block ciphers can be achieved
by following straightforwardly the specifications. First, in the case of GIFT-64 and
GIFT-128, one has to rearrange the inputs in their bitsliced representation. This
can be done using the SWAPMOVE technique [387]:

SWAPMOVE(A,B,M,n) :

T = (B⊕ (A� n)) ∧ M
B = B⊕ T
A = A⊕ (T � n)

which consists in swapping the bits in B masked by M with the bits in A masked
by (M � n). Regarding the substitution layer, the 4-bit S-boxes can be computed
in parallel in only 13 operations as described in Section 13.2. The main difficulty
lies in the diffusion layer as it refers to the least bitslice-friendly operation. For
the sake of clarity, let us consider the case of GIFT-64. In order to apply the 16-bit
permutation P0 to S0, a basic approach would be to move the bits using masks and

13.3. Naive bitsliced implementation of GIFT

13

281

shifts, resulting in the following operations:

P0(S0) = (S0 ∧ 0x0401) ∨ ((S0 ∧ 0x0008)� 1) ∨
((S0 ∧ 0x2000)� 2) ∨ ((S0 ∧ 0x0040)� 3) ∨
((S0 ∧ 0x0200)� 5) ∨ ((S0 ∧ 0x0004)� 6) ∨
((S0 ∧ 0x0020)� 8) ∨ ((S0 ∧ 0x0002)� 11) ∨
((S0 ∧ 0x1000)� 9) ∨ ((S0 ∧ 0x8000)� 8) ∨
((S0 ∧ 0x0100)� 6) ∨ ((S0 ∧ 0x0800)� 5) ∨
((S0 ∧ 0x4010)� 3) ∨ ((S0 ∧ 0x0080)� 2)

which requires about 27 cycles on ARM Cortex-M processors. In the same way,
P1, P2 and P3 can be implemented in approximately 14, 27 and 18 cycles, respec-
tively. Therefore, the diffusion layer requires about 100 cycles for a single round.
This highlights why ciphers using bit permutation are generally considered inap-
propriate for software implementations on micro-controllers.

Still, it is possible to minimize the impact on performances by operating on several
blocks in parallel for 32-bit (and above) architectures. In order to give some in-
sights on how GIFT performs on ARM Cortex-M3 and M4 using the naive bitsliced
implementation, we benchmarked a code fully written in C language, compiled
by arm-none-eabi-gcc 9.2.1 using the flag -O3 for optimized speed results, on
the STM32L100C and STM32F407VG development boards. Note that our bench-
mark simply measures the execution time to expand the key and to encrypt 128-bit
data, without any operating mode. Implementation results are listed in Table 13.3.
For encryption functions, the data in ROM refers to precomputed round constants
while under RAM usage, I/O refers to the amount of memory needed to store the
input and ouput plus the temporary variables (excluding the round keys).

Algorithm
Parallel Speed (cycles/block) ROM (bytes) RAM (bytes)

Blocks M3 M4 Code Data I/O Stack

GIFT-64 key exp. - 2296 2304 668 0 112 24

GIFTb-64 encryption 2 2091 2097 1172 28 52 48

GIFT-64 encryption 2 2141 2138 1608 28 52 48

GIFT-128 key exp. - 3433 3476 644 0 360 24

GIFTb-128 encryption 1 8456 8375 1508 40 52 48

GIFT-128 encryption 1 8644 8573 1996 40 52 48
Table 13.3: Naive bitsliced implementation results on ARM Cortex-M3 and M4 for various
versions of GIFT.

13

282 13. Fixslicing: A New GIFT Representation

As expected, the result is that GIFT is not well suited for software bitsliced im-
plementations on micro-controllers. While our C implementation requires about
4000 cycles to encrypt 128-bit data using GIFT-64, twice as much are required
when using GIFT-128. This gap is due to the fact that, on top of having more
rounds than GIFT-64, the slice permutations P0, · · · , P3 of GIFT-128 operate on 32
bits instead of 16, increasing the number of masks and shifts to compute. How-
ever, the next section introduces a new GIFT representation which challenges this
conclusion.

13.4. A new GIFT representation

13.4.1. GIFT-64

Let us consider a bitsliced representation of the cipher state: for each nibble, bit
0 is placed in the slice 0, bit 1 in slice 1, bit 2 in slice 2 and bit 3 in slice 3. For
ease of description, a slice can be placed in matrix form, as shown in the top row
of Figure 13.3. During the SubCells application, when each slice is stored in inde-
pendent words, all the 16 S-boxes are implemented in parallel in bitslice manner,
as seen in Figure 13.2. Then, according to the GIFT designers [377], the bit permu-
tation can be implemented as follows:

– Take the transpose of each individual slice matrix

– Apply the following row swaps:

� Slice 0 matrix: swap row 1 with 3

� Slice 1 matrix: swap row 0 with 1, and swap row 2 with 3

� Slice 2 matrix: swap row 0 with 2

� Slice 3 matrix: swap row 0 with 3, and swap row 1 with 2

We give a graphical representation of 4 rounds of this process in Figure 13.3.

Figure 13.2: Cubic representation of the main state of GIFT-64. Each color refer to a slice
matrix while the black cuboid is where an S-box is applied.

13.4. A new GIFT representation

13

283

As explained in Section 13.3, the diffusion layer requires bits to be moved around
individually in the slice (and not entire chunks of the slice), resulting in a signifi-
cant overhead. In order to avoid these issues, we propose a new way to represent
GIFT-64. The idea is to fix the first slice matrix to never move and find the easiest
operations that could keep the bits of other slice matrices synchronised after ap-
plication of the linear layer (so that the S-box computation that comes after will
indeed involve the proper bits). This representation is given in Figure 13.4 and
one can see that even though the bit positions are different, each S-box will have
exactly the same bits indexes involved when compared to the classical representa-
tion given in Figure 13.3. For example, after one round, the classical representation
will have bits 16/21/26/31 in row 0 and column 1 and we can see that the exact
same quartet will appear as well in the new representation, but in row 1 and col-
umn 0 instead. The fact that this quartet appears in a different row/column has no
impact on the actual computation of the S-box right after, since the computation is
bitsliced.

The very nice property of this new representation is that it requires very few oper-
ations: each round, we only apply a row or column rotation to the three last slice
matrices, while the first slice matrix is never moved. More precisely, for a round i:

– if i%4=0, rotate slice j matrix by j columns to the left

– if i%4=1, rotate slice j matrix by j rows to the top

– if i%4=2, rotate slice j matrix by j columns to the right

– if i%4=3, rotate slice j matrix by j rows to the bottom

This entire process, which applies different functions for each 4 consecutive rounds,
will be much less costly in software than having to transpose and then swap rows
around. Even better: the new and the classical representations are naturally fully
synchronised again after applying these 4 rounds, which avoids any representa-
tion correction to be applied at the end of the cipher (since GIFT-64 has 28 rounds,
which is a multiple of 4). This is due to the fact that P 4

i = Id for all i. Therefore, no
matter which slice matrix is fixed, the new and the classical representations will be
fully synchronised after 4 rounds anyway.

We call this technique fixslicing. Note that it is close to the software optimization of
PRESENT in [378] which consists in decomposing the permutation over 2 rounds, as
our new representation can be seen as a decomposition of P0, · · · , P3 over 4 rounds.
Actually, the fixslicing technique is a particular case for permutations which en-
sures that, from a bitsliced perspective, all bits within a slice remain in the same
one through the permutation. Therefore, it can be applied to all permutations that
verify this property, and the number of rounds to consider for the decomposition
equals min(order(Pi)) for all i.

13

284 13. Fixslicing: A New GIFT Representation

Figure 13.3: Classical representation of the GIFT-64 round function during 4 rounds. Each
cell represents a bit, and the numbers in the cells then denote the actual index of that par-
ticular bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue)
represents all the bits at position 0 (resp. 1/2/3) of the S-boxes of the cipher state.
The other side of the coin of this new representation is that the round keys and
round constants have to be adapted to fit the new way the bits are positioned.
While this is not an issue for the round constants by using a precomputed look-
up table, adapting the key schedule might result in some computational overhead.
The naive approach would be to run the key schedule using the classical repre-
sentation, before rearranging bits for all round keys. However, one can take ad-
vantage of the fact that after 4 rounds all key words are back in the same position
within the key state (yet the words themselves will be rotated because of the ro-
tation operations in the key schedule). In other terms, because RK i = U i‖V i and
RK i+4 = U i≫ 2‖V i≫ 12, each key word has to go through the same bit reorder-
ing every 4 rounds. Therefore a more efficient approach is to rearrange bits for the

slice 0 slice 1 slice 2 slice 3

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

0

12

8

4

16

28

24

20

32

44

40

36

48

60

56

52

5

1

13

9

21

17

29

25

37

33

45

41

53

49

61

57

10

6

2

14

26

22

18

30

42

38

34

46

58

54

50

62

15

11

7

3

31

27

23

19

47

43

39

35

63

59

55

51

0

48

32

16

12

60

44

28

8

56

40

24

4

52

36

20

21

5

53

37

17

1

49

33

29

13

61

45

25

9

57

41

42

26

10

58

38

22

6

54

34

18

2

50

46

30

14

62

63

47

31

15

59

43

27

11

55

39

23

7

51

35

19

3

0

4

8

12

48

52

56

60

32

36

40

44

16

20

24

28

17

21

25

29

1

5

9

13

49

53

57

61

33

37

41

45

34

38

42

46

18

22

26

30

2

6

10

14

50

54

58

62

51

55

59

63

35

39

43

47

19

23

27

31

3

7

11

15

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

13.4. A new GIFT representation

13

285

Figure 13.4: New representation of the GIFT-64 round function during 4 rounds. Each cell
represents a bit, and the numbers in the cells then denote the actual index of that particular
bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue) represents
all the bits at position 0 (resp. 1/2/3) of the S-boxes of the cipher state.
first 4 round keys only, and to adapt the key schedule accordingly. More details
on how to compute the key schedule in the fixsliced representation are given in
Appendix A.

13.4.2. GIFT-128

As for GIFT-64, we consider a bitsliced representation of the cipher state. For ease
of description, a slice i can be represented as a pair of matrices iL and iR, as shown

slice 0 slice 1 slice 2 slice 3

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

← ←← ←←←

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

5

21

37

53

9

25

41

57

13

29

45

61

1

17

33

49

10

26

42

58

14

30

46

62

2

18

34

50

6

22

38

54

15

31

47

63

3

19

35

51

7

23

39

55

11

27

43

59

↑ ↑↑ ↑↑↑

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

21

37

53

5

25

41

57

9

29

45

61

13

17

33

49

1

42

58

10

26

46

62

14

30

34

50

2

18

38

54

6

22

63

15

31

47

51

3

19

35

55

7

23

39

59

11

27

43

→ →→ →→→

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

17

33

49

1

21

37

53

5

25

41

57

9

29

45

61

13

34

50

2

18

38

54

6

22

42

58

10

26

46

62

14

30

51

3

19

35

55

7

23

39

59

11

27

43

63

15

31

47

↓ ↓↓ ↓↓↓

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

13

286 13. Fixslicing: A New GIFT Representation

in the top row of Figure 13.6. During the SubCells application, when each slice is
stored in independent words, all the 32 S-boxes are implemented in parallel in a
bitsliced manner, as seen in Figure 13.5.

Figure 13.5: Cubic representation of the main state of GIFT-128. The black cuboid is where
an S-box is applied for both matrices.
Then, according to the GIFT designers [377], the bit permutation can be imple-
mented as follows:

– Take the transpose of each individual slice matrix

– Shuffle the left and right matrices of each slice (i.e. shuffle iL and iR for
all i).

– Apply the following row swaps:

� Slice 0: swap the 2 bottom halves

� Slice 1: swap the top and bottom halves of the slices independently

� Slice 2: swap the 2 top halves

� Slice 3: cross swap the top and bottom halves

We give a graphical representation of 5 rounds of this process in Figure 13.6.

As for GIFT-64, one can see that the process will be very costly in software, with lots
of transpositions, shuffle and swaps. We therefore propose a new way to represent
GIFT-128, thanks to the fixslicing technique. However, unlike GIFT-64, note that
the classical and the new representation will not be synchronised anymore after 4
rounds since P 4

i , Id for all i. For GIFT-128 we have P 31
0 = P 10

1 = P 31
2 = P 5

3 = Id.
In other terms, by fixing the fourth slice to never move, we can define a routine so
that the classical and new representation are naturally synchronised after 5 rounds.
Since GIFT-128 has 40 rounds (which is a multiple of 5), it avoids any correction to
be applied at the end of the cipher. This representation is depicted in Figure 13.7.
Additional illustrations are also provided in Appendix .10.

One can again see that even though the bit positions are different, each S-box will
have exactly the same bit indexes involved when compared to the classical repre-

1
3
.
4
.
A
n
e
w

G
I
F
T
r
e
p
r
e
s
e
n
t
a
t
i
o
n

13

287

7

Figure 13.6: Classical representation of the GIFT-128 round function during 5 rounds. Each cell represents a bit, and the numbers in
the cells then denote the actual index of that particular bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue)
represents all the bits at position 0 (resp. 1/2/3) of the S-boxes of the cipher state.

slice 0L slice 0R slice 1L slice 1R slice 2L slice 2R slice 3L slice 3R

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

64

80

96

112

68

84

100

116

72

88

104

120

76

92

108

124

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

65

81

97

113

69

85

101

117

73

89

105

121

77

93

109

125

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

66

82

98

114

70

86

102

118

74

90

106

122

78

94

110

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

0

64

12

76

16

80

28

92

32

96

44

108

48

112

60

124

8

72

4

68

24

88

20

84

40

104

36

100

56

120

52

116

5

69

1

65

21

85

17

81

37

101

33

97

53

117

49

113

13

77

9

73

29

93

25

89

45

109

41

105

61

125

57

121

10

74

6

70

26

90

22

86

42

106

38

102

58

122

54

118

2

66

14

78

18

82

30

94

34

98

46

110

50

114

62

126

15

79

11

75

31

95

27

91

47

111

43

107

63

127

59

123

7

71

3

67

23

87

19

83

39

103

35

99

55

119

51

115

0

8

48

56

64

72

112

120

12

4

60

52

76

68

124

116

32

40

16

24

96

104

80

88

44

36

28

20

108

100

92

84

21

29

5

13

85

93

69

77

17

25

1

9

81

89

65

73

53

61

37

45

117

125

101

109

49

57

33

41

113

121

97

105

42

34

26

18

106

98

90

82

38

46

22

30

102

110

86

94

10

2

58

50

74

66

122

114

6

14

54

62

70

78

118

126

63

55

47

39

127

119

111

103

59

51

43

35

123

115

107

99

31

23

15

7

95

87

79

71

27

19

11

3

91

83

75

67

0

32

76

108

8

40

68

100

48

16

124

92

56

24

116

84

12

44

64

96

4

36

72

104

60

28

112

80

52

20

120

88

85

117

21

53

93

125

29

61

69

101

5

37

77

109

13

45

81

113

17

49

89

121

25

57

65

97

1

33

73

105

9

41

38

6

106

74

46

14

98

66

22

54

90

122

30

62

82

114

42

10

102

70

34

2

110

78

26

58

86

118

18

50

94

126

123

91

59

27

115

83

51

19

107

75

43

11

99

67

35

3

127

95

63

31

119

87

55

23

111

79

47

15

103

71

39

7

0

12

56

52

32

44

24

20

76

64

116

120

108

96

84

88

48

60

8

4

16

28

40

36

124

112

68

72

92

80

100

104

93

89

85

81

125

121

117

113

29

25

21

17

61

57

53

49

77

73

69

65

109

105

101

97

13

9

5

1

45

41

37

33

22

26

46

34

54

58

14

2

90

86

98

110

122

118

66

78

38

42

30

18

6

10

62

50

106

102

82

94

74

70

114

126

99

103

107

111

67

71

75

79

35

39

43

47

3

7

11

15

115

119

123

127

83

87

91

95

51

55

59

63

19

23

27

31

0

48

108

92

12

60

96

80

56

8

84

100

52

4

88

104

76

124

32

16

64

112

44

28

116

68

24

40

120

72

20

36

125

109

93

77

121

105

89

73

117

101

85

69

113

97

81

65

61

45

29

13

57

41

25

9

53

37

21

5

49

33

17

1

90

106

54

6

86

102

58

10

98

82

14

62

110

94

2

50

22

38

122

74

26

42

118

70

46

30

66

114

34

18

78

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

GIFT-128 round function during 5 rounds. Each cell represents a bit, and the numbers in the cells then

13

288
1
3
.
F
i
x
s
l
i
c
i
n
g
:
A
N
e
w

G
I
F
T
R
e
p
r
e
s
e
n
t
a
t
i
o
n

Figure 13.7: New representation of the GIFT-128 round function during 5 rounds. Each cell represents a bit, and the numbers in the cells
then denote the actual index of that particular bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue) represents
all the bits at position 0 (resp. 1/2/3) of the S-boxes of the cipher state.

slice 0L slice 0R slice 1L slice 1R slice 2L slice 2R slice 3L slice 3R

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

64

80

96

112

68

84

100

116

72

88

104

120

76

92

108

124

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

65

81

97

113

69

85

101

117

73

89

105

121

77

93

109

125

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

66

82

98

114

70

86

102

118

74

90

106

122

78

94

110

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

← ← ←← ←← ←←← ←←←
4

20

36

52

8

24

40

56

12

28

44

60

0

16

32

48

68

84

100

116

72

88

104

120

76

92

108

124

64

80

96

112

9

25

41

57

13

29

45

61

1

17

33

49

5

21

37

53

73

89

105

121

77

93

109

125

65

81

97

113

69

85

101

117

14

30

46

62

2

18

34

50

6

22

38

54

10

26

42

58

78

94

110

126

66

82

98

114

70

86

102

118

74

90

106

122

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

↑ ↑ ↑↑ ↑↑ ↑↑↑ ↑↑↑
20

36

52

4

24

40

56

8

28

44

60

12

16

32

48

0

84

100

116

68

88

104

120

72

92

108

124

76

80

96

112

64

41

57

9

25

45

61

13

29

33

49

1

17

37

53

5

21

105

121

73

89

109

125

77

93

97

113

65

81

101

117

69

85

62

14

30

46

50

2

18

34

54

6

22

38

58

10

26

42

126

78

94

110

114

66

82

98

118

70

86

102

122

74

90

106

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

↘↙ ↘↙
84

100

116

68

88

104

120

72

92

108

124

76

80

96

112

64

24

40

56

8

20

36

52

4

16

32

48

0

28

44

60

12

45

61

13

29

41

57

9

25

37

53

5

21

33

49

1

17

109

125

77

93

105

121

73

89

101

117

69

85

97

113

65

81

114

66

82

98

126

78

94

110

122

74

90

106

118

70

86

102

62

14

30

46

50

2

18

34

54

6

22

38

58

10

26

42

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

←← ←← ←← ←←
108

92

76

124

96

80

64

112

84

100

116

68

88

104

120

72

32

16

0

48

44

28

12

60

24

40

56

8

20

36

52

4

61

45

29

13

57

41

25

9

53

37

21

5

49

33

17

1

125

109

93

77

121

105

89

73

117

101

85

69

113

97

81

65

122

74

90

106

118

70

86

102

66

114

98

82

78

126

110

94

54

6

22

38

58

10

26

42

14

62

46

30

2

50

34

18

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

↘↙↑↑ ↑↑ ↑↑ ↑↑
0

48

108

92

12

60

96

80

56

8

84

100

52

4

88

104

76

124

32

16

64

112

44

28

116

68

24

40

120

72

20

36

125

109

93

77

121

105

89

73

117

101

85

69

113

97

81

65

61

45

29

13

57

41

25

9

53

37

21

5

49

33

17

1

90

106

54

6

86

102

58

10

98

82

14

62

110

94

2

50

22

38

122

74

26

42

118

70

46

30

66

114

34

18

78

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

13.5. Efficient software implementations of GIFT

13

289

sentation given in Figure 13.6. We recall that this representation implies that the
key schedule and constant addition have to be adapted to fit the new way the bits
are positioned.

The first 2 rounds are similar to the ones used for GIFT-64. Namely, in the first
round, we simply rotate each matrix of each slice i (thus iL and iR for all i) by i
columns to the left. In the second round, we simply rotate each matrix of each
slice i (thus iL and iR for all i) by i rows to the top. For the third round, we swap
the matrices iL and iR for i ∈ {0,2} before swapping the first and third columns with
the second and fourth ones respectively, for matrixes 0R,1L,1R and 2L. During the
fourth round, we swap the first and third rows with the second and fourth ones
respectively, for each matrix of slice 1. Then, for each matrix of slice 0 (resp. slice
2), we rotate by 2 columns to the left before swapping rows of the left-half block
(resp. right-half block). Finally, the fifth round consists in swapping 1L with 1R,
rotating iL and iR by 2 rows to the top for i ∈ {0,2} and swapping the first and
second rows of each matrix for slice 0, while swapping the third and fourth rows
of each matrix for slice 2. All these operations are illustrated in Figure 13.7 for
greater clarity.

The above mentioned method to adapt the key schedule for GIFT-64 cannot be
straightforwardly applied to GIFT-128. Indeed, the new and the classical repre-
sentations of the state are synchronised after 5 rounds, but the key schedule part
is almost synchronised after 4 rounds (the key word will return to its original po-
sition after 4 rounds, albeit rotated). Thus, it looks like the synchronisation will
happen only every 4×5 = 20 rounds. However, one can remark that twice as much
subkey material is used for GIFT-128 compared to GIFT-64, and there the key words
used every two rounds are the same (albeit rotated, and for different part of the in-
ternal state). Thus, we have an almost synchronisation that will happen only every
2 × 5 = 10 rounds instead. In other terms, each key word has to match every new
representation of the state at some point. Instead of applying the naive approach
for all round keys, which consists in running the key schedule using the classical
representation and then rearranging bits, we suggest to apply it only for the first
10 round keys. At this stage, all key words will be expressed in each representa-
tion, allowing to adapt the key schedule for each of them, without reordering bits.
More details on how to compute the key schedule in the fixsliced representation
are given in Appendix B.

13.5. Efficient software implementations of GIFT

This section shows how to take advantage of the fixslicing technique to achieve
efficient implementations of GIFT on ARM Cortex-M processors. We also briefly

13

290 13. Fixslicing: A New GIFT Representation

discuss the gap for other platforms that do not come with an inline barrel shifter
or rotate instruction.

13.5.1. GIFT-64

In the case of GIFT-64, thanks to our new fixsliced representation, the linear layer
consists in rotating either rows or columns depending on the round number. De-
pending on how the bits are arranged within the slices (i.e. row-wise or column-
wise bitsliced representation), these operations refer to either half-word (16-bit)
or nibble (4-bit) rotations. In the rest of this section we consider a row-wise bit-
sliced representation. The ARM Cortex-M being a 32-bit architecture (and since
we have 4 slices in GIFT-64), two 64-bit blocks B and B′ can be processed at a time.
Instead of simply concatenating 16-bit slices of both blocks within a 32-bit words,
we suggest to interleave the nibbles as follows:

S0←b60 b56 b52 b48 b
′
60 b

′
56 b

′
52 b

′
48 · · · b12 b8 b4 b0 b

′
12 b

′
8 b
′
4 b
′
0

S1←b61 b57 b53 b49 b
′
61 b

′
57 b

′
53 b

′
49 · · · b13 b9 b5 b1 b

′
13 b

′
9 b
′
5 b
′
1

S2←b62 b58 b54 b50 b
′
62 b

′
58 b

′
54 b

′
50 · · · b14 b10 b6 b2 b

′
14 b

′
10 b

′
6 b
′
2

S3←b63 b59 b55 b51 b
′
63 b

′
59 b

′
55 b

′
51 · · · b15 b11 b7 b3 b

′
15 b

′
11 b

′
7 b
′
3

so that 16-bit rotations are now 32-bit rotations, which can be implemented in a
single cycle using the ror instruction. Actually, it can be computed for free by tak-
ing advantage of the inline barrel shifter, since instructions can shift or rotate one
of their operands without any additional cost. Therefore, the implementation cost
of the linear layer is now equivalent to 42 nibble rotations (3 have to be computed
every 2 rounds). Such rotations can be computed in 3 cycles on ARM Cortex-M
processors assuming that the required masks are already loaded in some general
purpose registers, resulting in a total of 42 × 3 = 126 cycles. The following calls
to the SWAPMOVE routine lead to the above mentioned row-wise nibble-interleaved
bitsliced representation.

13.5. Efficient software implementations of GIFT

13

291

S0← b31 · · · b0 S1← b′31 · · · b
′
0 S2← b63 · · · b32 S3← b′63 · · ·b

′
32

SWAPMOVE(S0,S0,0x0a0a0a0a,3); SWAPMOVE(S1,S1,0x0a0a0a0a,3);

SWAPMOVE(S2,S2,0x0a0a0a0a,3); SWAPMOVE(S3,S3,0x0a0a0a0a,3);

SWAPMOVE(S0,S0,0x00cc00cc,6); SWAPMOVE(S1,S1,0x00cc00cc,6);

SWAPMOVE(S2,S2,0x00cc00cc,6); SWAPMOVE(S3,S3,0x00cc00cc,6);

SWAPMOVE(S0,S0,0x0000ff00,8); SWAPMOVE(S1,S1,0x0000ff00,8);

SWAPMOVE(S2,S2,0x0000ff00,8); SWAPMOVE(S3,S3,0x0000ff00,8);

SWAPMOVE(S0,S1,0x0f0f0f0f,4); SWAPMOVE(S2,S3,0x0f0f0f0f,4);

SWAPMOVE(S0,S2,0x0000ffff,16); SWAPMOVE(S1,S3,0x0000ffff,16);

Although a bitsliced representation without interleaving the nibbles could be built
for 12 SWAPMOVE instead of 16, each half-word rotation would require at least 3 cy-
cles, therefore doubling the cost of the linear layer to at least 252 cycles. Regarding
the non-linear layer, it is possible to save 1 instruction by omitting the NOT oper-
ation. Indeed, this operation applies to a slice that will be then exclusive-ORed
with the round key. Therefore, we suggest to compute the NOT on the correspond-
ing round keys. Moreover, because the key schedule is completely linear, one can
simply apply the logical negation to the right chunks of the key:

k127 · · ·k112 k111 · · ·k96 k95 · · ·k80 k79 · · ·k64 k63 · · ·k48 k47 · · ·k32 k31 · · ·k16 k15 · · ·k0

before computing the key schedule. Note that this can be done once, when the
encryption key is being derived and/or stored on the device, therefore saving 28
cycles per 128-bit data encryption.

On the other hand, a nibble-interleaved bitsliced representation requires twice as
much memory to store the round keys and constants in order to avoid extra com-
putations on the fly. It would still be possible to store these variable as 16-bit
words but one would have to pay extra cycles to expand them into 32-bit words,
nibble-interleaved with theirselves. As a matter of efficiency, we did not consider
this option for our implementations. The round keys and constants are stored in
32-bit words, leading to a memory requirement of 112 and 224 bytes for all the
round constants and the round keys, respectively.

13.5.2. GIFT-128

Regarding GIFT-128, because only a single block can be processed at a time on
32-bit processors, we consider a row-wise bitsliced representation without any in-
terleaving. Unlike GIFT-64, it is not possible to distinguish only 2 but 5 kind of
operation since each step of the new representation requires different slice trans-

13

292 13. Fixslicing: A New GIFT Representation

formations. At steps 1, 2, 4 and 5, these transformations can be implemented by
means of nibble, half-word, byte and full-word rotations, respectively. The third
step does not clearly refer to any n-bit rotation but can be simply computed using
the SWAPMOVE process. Again, full-word rotations can be implemented for free on
ARM thanks to the inline barrel shifter. Even though the nibble, byte and half-
word rotations can be implemented in at least 3 cycles, our implementation re-
quires 5 cycles as 2 additional cycles are spent in loading the appropriate masks
into registers. This is due to the fact that, unlike GIFT-64, it is not possible to
keep all the masks in registers during the entire encryption routine as 12 differ-
ent ones are needed. The same statement also applies to SWAPMOVE calculations,
leading to a cost of 5 cycles per process. As a result, the linear layer of GIFT-128
can be implemented in about 12× 5× 8 = 480 cycles in total, according to our new
representation.

Note that row ordering matters to match with this interpretation of the new rep-
resentation. Our GIFT-128 implementations use a row ordering from top-down,
which can be achieved using the 14 following calls to the SWAPMOVE process:

S0← b79 · · · b64 b15 · · · b0 S1← b95 · · · b80 b31 · · · b16

S2← b111 · · · b96 b47 · · · b32 S3← b127 · · · b112 b63 · · · b48

SWAPMOVE(S0,S0,0x0a0a0a0a,3); SWAPMOVE(S1,S1,0x0a0a0a0a,3);

SWAPMOVE(S2,S2,0x0a0a0a0a,3); SWAPMOVE(S3,S3,0x0a0a0a0a,3);

SWAPMOVE(S0,S0,0x00cc00cc,6); SWAPMOVE(S1,S1,0x00cc00cc,6);

SWAPMOVE(S2,S2,0x00cc00cc,6); SWAPMOVE(S3,S3,0x00cc00cc,6);

SWAPMOVE(S0,S1,0x000f000f,4); SWAPMOVE(S0,S2,0x000f000f,8);

SWAPMOVE(S0,S3,0x000f000f,12); SWAPMOVE(S1,S2,0x00f000f0,4);

SWAPMOVE(S1,S3,0x00f000f0,8); SWAPMOVE(S2,S3,0x0f000f00,4);

Regarding the non-linear layer, contrary to GIFT-64, it is not possible to get rid of
the NOT operation within the S-box computation as the round keys are not exclusively-
ORed to S0. Therefore, our implementation of the non-linear layer follows straight-
forwardly the specification and requires 13× 40 = 520 cycles in total.

13.5.3.Without rotate instruction

Thanks to the inline barrel shifter, our fixsliced implementations fit very well the
ARM architecture since the linear layer can be computed for free every 2 and 5
rounds for GIFTb-64 and GIFTb-128, respectively. However, one could ask oneself
how it would perform on platforms that do not come with an inline barrel shifter
and/or rotate instructions. For instance, RISC-V has no rotate instruction with-

13.6. Results

13

293

out an appropriate extension (e.g., Bitmanip [388]). In this case, one rotation can
be computed by means of 2 shifts and 1 OR, resulting in at least 3 cycles. There-
fore, instead of having the linear layer for free every 2 and 5 rounds, it would
require at least 4× 3 = 12 cycles, leading to a minimum overhead of 12× 14 = 168
and 12 × 8 = 96 cycles for GIFTb-64 and GIFTb-128, respectively. Moreover, nib-
ble, byte and half-word rotations on RISC-V cannot be computed in 3 but 5 cy-
cles because the barrel shifter is not inlined, resulting in an additional overhead of
2×4×14 = 112 for GIFT-64. On the other hand, this should not affect GIFT-128 since
our implementation spends 5 cycles for all these rotations because 2 additional cy-
cles are spent to load the appropriate masks in registers. While ARM Cortex-M
processors only have 14 general purpose registers, RISC-V has 32 such registers, so
all the masks can be kept in registers during the entire encryption process. Finally,
the SWAPMOVE process would require 6 cycles instead of 4, increasing the cost to
pack the input and unpack the output to 16×4 = 64 and 14×4 = 56 cycles for GIFT-
64 and GIFT-128, respectively. Note that it would also add (6−5)×3×8 = 24 cycles
to GIFTb-128 since it relies on 3 SWAPMOVE calls in order to compute the linear layer
every 5 rounds.

As a result, on platforms without inline barrel shifter or rotate instruction, we
estimate a total overhead of 168 + 112 = 280 (i.e. 140 per block) and 96 + 24 = 120
cycles for our fixsliced implementations of GIFTb-64 and GIFTb-128, respectively.
Taking into account the overhead to pack/unpack the data would lead to a total
overhead of and 280 + 64 = 344 (i.e. 172 per block) and 120 + 56 = 176 cycles
for GIFT-64 and GIFT-128, respectively. Overall, this means a penalty of around
40% cycles for GIFT-64 and 15% cycles for GIFT-128. Therefore, fixslicing is still of
interest on such platforms compared to the classical representation, although the
ARM architecture allows to boost its performance.

13.6. Results

13.6.1. The GIFT block ciphers

Our GIFT implementations, which are written in ARM assembly, are put into the
public domain and available at https://github.com/aadomn/gift. Results for
various lightweight block ciphers including GIFT are provided in Table 13.4.

The implementations of RECTANGLE-64/128, SIMON-64/128 and SPECK-64/128
are the ones from scenario 2 - Best execution time - of the FELICS framework [389].
In this scenario, the key schedule is not taken into account as the round keys are
assumed to be precomputed and stored in RAM. The benchmark consists in mea-
suring the time required to encrypt 128-bit data using the CTR mode. We followed

https://github.com/aadomn/gift

13

294 13. Fixslicing: A New GIFT Representation

the same approach for our GIFT implementations to ensure a fair comparison. The
results for PRESENT-64/128 are taken from [378] and were obtained using the
same methodology. Regarding the key schedule, results from the FELICS frame-
work were extracted from the scenario 0, which consists in a simple benchmark
of the key schedule and a block encryption/decryption. Except for RECTANGLE,
for which implementations are written in ARM assembly, note that the results for
the other above mentioned ciphers come from C codes. Therefore, better results
can be expected for these algorithms by considering assembly implementations.
Table 13.4 also includes results for the current best AES constant-time implemen-
tation from [390]. Note that, as in Table 13.3, RAM usage for encryption functions
does not take into account the memory required for the round keys to be compliant
with the results from the FELICS framework.

As expected, our new GIFT fixsliced representation allows extremely efficient soft-
ware bitsliced implementations, requiring at best 766 and 838 cycles to encrypt
128-bit data for GIFTb-64 and GIFT-64, respectively. Note that this is about 5 times
more efficient than our naive bitsliced implementations written in C reported in
Table 13.3. On the other hand, the amount of memory to store the round keys
is increased by a factor 2. GIFT-64 outperforms all other 64-bit ciphers listed in
Table 13.4, except SPECK-64/128 which is well known for its outstanding perfor-
mances thanks to its ARX structure. Especially, our implementation of the GIFT-64
key schedule according to the new representation outperforms all the other ones.
GIFT-64 key exp. refers to the key schedule including the rearrangement of the
encryption key to match the fixsliced representation, while GIFTb-64 key exp. as-
sumes a key already in the right representation as input. Note that rearranging
the encryption key can be done only once, when this latter is being derived and/or
stored on the device, at the same time that the S-box optimization described in
Section 13.5.

Regarding GIFT-128, we observe a factor of 1.6 in terms of performance compared
to GIFT-64. Considering that the factor in terms of rounds is about 1.4, it is a re-
markable result since its new representation is slightly more complex. However,
the cost of the key schedule is more than doubled due to the fact that the opti-
mization for GIFT-64 does not apply to GIFT-128 as stated in Section 13.5. Still,
it allows a slightly better performance than the AES key schedule. Note that, un-
like for GIFT-64, we do not make a distinction between GIFTb-128 key exp. and
GIFT-128 key exp. as our adapted key schedule starts from the key in its classi-
cal representation anyway. For encryption routines, it results that our GIFT-128
implementations largely outperforms the current best AES one reported in the lit-
erature, with GIFTb-128 saving about 28% cycles on AES-128, for a code size 2.9
times smaller when loops are fully unrolled. It requires 1169 and 1316 cycles for
GIFTb-128 and GIFT-128, respectively, which is about 7 times more efficient than

13.6. Results

13

295

our naive bitsliced implementations reported in Table 13.3. Moreover, note that
these AES results benefit from being averaged over 4096 bytes encryption, versus
16 bytes for GIFT-128.

13.6.2. Adding first-order masking

On top of running in constant-time, secure embedded cryptographic implementa-
tions should integrate countermeasures against power based side-channel analysis
since they are typical targets for these kind of attacks. A well-known approach
to overcome such attacks is the masking countermeasure [391], which consists in
splitting intermediate values in statistically independent shares by means of ran-
dom masks. Thereafter, we report implementation results when applying first-
order masking (i.e. splitting all intermediate values in two shares).

While linear operations can be simply computed on both shares independently,
non-linear operations are more challenging to compute securely. In the case of
GIFT, the only non-linear gates are 1 OR and 3 AND during the S-box computation.
Our masked implementations rely on the secure AND and OR operations introduced
in [392], which run in 6 cycles on ARM Cortex-M processors and do not require
any additional randomness. Table 13.5 reports implementation results for GIFT
and AES on ARM Cortex-M4 as the STM32F407VG incorporates a random num-
ber generator. Because the number of clock cyles required to generate random
numbers is platform dependent, it is enclosed in parentheses separately. Our GIFT
implementations only require 4 32-bit random words to mask the internal state at
the beginning of the algorithm. Regarding the key schedules, the same amount of
randomness is required to mask the initial key. For both GIFT-64 and GIFT-128, the
internal state fits in 4 registers. Therefore, it is possible to handle the state and the
masks in 8 registers, avoiding any additional memory access during the encryption
routine.

When taking first-order masking into consideration, the advantage of GIFT-128
over AES-128 is even more significant since the number of non-linear operations
to secure is smaller. However, note that the reported results for AES do not take
advantage of the optimized AND gate from [392] and therefore bear the cost of ad-
ditional operations and randomness generation. Compared to our unmasked im-
plementation results reported in Table 13.4, we observe a penalty factor about 2.5
in terms of execution time, showing that GIFT is well suited for software masked
implementations thanks to our fixsliced representation.

13

296 13. Fixslicing: A New GIFT Representation

13.6.3. The GIFT-COFB authenticated cipher

Since GIFTb-128 defines the underlying block cipher of GIFT-COFB, we can eas-
ily have a look at the benefits of our fixsliced representation when applied to
this authenticated cipher. To do so, our GIFT-COFB implementation computes the
COFB mode using C code while calls to the GIFTb-128 primitive are handled by
our assembly implementation. Tables 13.6 and 13.7 summarize our implementa-
tion results for GIFT-COFB and Ascon [393], another submission to the NIST LWC
competition. For both versions of Ascon, namely Ascon-128 and Ascon-128a,
we consider the ARM optimized implementations bi32_arm, available online at
https://github.com/ascon. We believe this is a fair comparison since the core
function is written in assembly in a fully unrolled manner, while the rest of the
algorithm is handled by C code, just like our GIFT-COFB implementation.

According to our benchmark, fixslicing makes GIFT-COFB a very efficient authen-
ticated cipher, running at 79 cycles per byte for long messages, versus 58 and 42
cycles per byte under the same setting for Ascon-128 and Ascon-128a, respec-
tively. However, because the considered Ascon implementation are highly speed-
optimized, their code size are bigger than our fully unrolled implementation by
a factor 1.2 and 1.5 for Ascon-128 and Ascon-128a, respectively. We observe
that our first-order masked implementation of GIFT-COFB requires about thrice
as much cycles as Ascon-128, taking into account the randomness generation on
the STM32F407VG micro-controller. Although it is unclear how Ascon-128 would
perform compared to our fixsliced implementations when taking first-order mask-
ing into account, we expect it to be more efficient for messages composed of several
blocks since masking can be restricted to the initialization and finalization phases
as done in [394].

13.7. Conclusion
In this article, we proposed a new representation for the GIFT family of lightweight
block ciphers called fixslicing, and showed how it can be used to obtain extremely
fast implementations on micro-controllers, making GIFT a very efficient candidate
on these platforms. Especially, our fixsliced representation fits very well the ARM
architecture as the inline barrel shifter allows to compute the linear layer for free
every 2 and 5 rounds for GIFT-64 and GIFT-128, respectively. Our implementa-
tions, available online at https://github.com/aadomn/gift to validate our over-
all strategy, run in constant-time since they are bitsliced in essence. This result di-
rectly provides efficient implementations of GIFT-COFB, a submission to the NIST
LWC competition, placing it as a very promising candidate on micro-controllers.

We also report implementation results for GIFT and GIFT-COFB when adding first-

https://github.com/ascon
https://github.com/aadomn/gift

13.7. Conclusion

13

297

order masking and observe a penalty factor about 2.5 and 2.1, respectively. Ac-
cording to our benchmark, GIFT-COFB masked at first-order requires about thrice
as much cycles than Ascon-128 without masking. Further work should be con-
ducted to draw a clear picture when comparing both algorithms regarding masked
implementations.

More generally, we believe that the approach of not following the classical cipher
representation for a few rounds might be applicable to other designs. Especially,
bitsliced implementations can take advantage of the fixslicing technique as long
as each bit located in a slice remains in the same one through the linear layer, as
is the case for GIFT. From a design point of view, considering a permutation with
a low order for the linear layer might be of interest, since it allows to define a
compact routine to resynchronise the slices. Furthermore, the key schedule should
be designed accordingly to avoid any additional calculations due to round keys
adjustment.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-
ments. The authors are supported by a Temasek Labs grant (DSOCL16194) and a
joint WASP/NTU grant.

bibshort

13

298 13. Fixslicing: A New GIFT Representation

Algorithm Ref
Parallel Speed (cycles) ROM (bytes) RAM (bytes)

Blocks M3 M4 Code Data I/O Stack

64-bit ciphers with 128-bit key

339 338 972 0 224 52
GIFTb-64 key exp. -

381 383 226 0 224 56

383 383 2666 0 40 48
GIFTb-64 encryption 2

415 415 756 112 40 52

488 487 1575 0 224 52
GIFT-64 key exp. -

530 533 828 0 224 56

419 419 2962 0 40 48
GIFT-64 encryption

Ours

2
458 456 1058 112 40 52

PRESENT key exp.
[378]

- 5043 3464 • • • •

PRESENT encryption 2 1058 800 2476 • • •

1106 157 232 44
RECTANGLE key exp. -

1106
•

157 232 44

854 800 76 24
RECTANGLE encryption

[389]

1
1185

•
440 52 24

1195 112 200 8
SIMON-64 key exp. -

1202
•

108 200 12

650 456 48 24
SIMON-64 encryption

[389]

1
1281

•
336 40 24

475 46 132 12
SPECK-64 key exp. -

484
•

46 132 12

285 628 36 24
SPECK-64 encryption

[389]

1
518

•
254 36 24

128-bit ciphers with 128-bit key

AES-128 key exp.
[390]

- 1028 1034 3384 1036 368 188

AES-128 encryption 2 1617 1618 12120 12 48 108

966 969 3510 0 320 48
GIFT-128 key exp. -

1813 1812 1100 0 320 56

1169 1172 4250 0 48 56
GIFTb-128 encryption 1

1297 1279 834 160 48 64

1316 1319 4868 0 48 56
GIFT-128 encryption

Ours

1
1444 1427 1332 160 48 64

Table 13.4: Constant-time implementation results on ARM Cortex-M3 and M4 for various
versions and representations of GIFT, as well as other lightweight block ciphers. For encryp-
tion routines, speed is expressed in cycles per block. Emboldened (resp. italic) results refer
to speed (resp. code size) oriented implementations.

13.7. Conclusion

13

299

Algorithm Ref
Parallel

Speed (cycles)
ROM (bytes) RAM (bytes)

Blocks Code Data I/O Stack

64-bit ciphers with 128-bit key

641 (+196) 1950 0 448 68
GIFTb-64 key exp. -

723 (+196) 360 0 448 68

911 (+98) 6646 0 40 64
GIFTb-64 encryption 2

1014 (+98) 1516 112 40 72

965 (+196) 3160 0 448 68
GIFT-64 key exp. -

993 (+196) 944 0 448 68

940 (+98) 6942 0 40 64
GIFT-64 encryption

Ours

2
1051 (+98) 1722 112 40 72

128-bit ciphers with 128-bit key

AES-128 encryption [390] 2 5290 (+2133) 39916 12 48 1588

1994 (+196) 6816 0 640 64
GIFT-128 key exp. -

2202 (+196) 2168 0 640 72

2815 (+196) 10266 0 48 64
GIFTb-128 encryption 1

3049 (+196) 1532 160 48 72

2972 (+196) 10906 0 48 64
GIFT-128 encryption

Ours

1
3203 (+196) 2172 160 48 72

Table 13.5: Masked constant-time implementation results of GIFT and AES on ARM Cortex-
M4. For encryption routines, speed is expressed in cycles per block. Emboldened (resp.
italic) results refer to speed (resp. code size) oriented implementations.

Algorithm Ref
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

Without masking

4827 4893 10092 0 428 92
GIFT-COFB Ours

6028 6082 4240 160 428 100

Ascon-128 https://github.com/ascon 4203 4276 12348 0 124 36

Ascon-128a
(Our measurements)

3862 3990 15200 0 140 36

With 1st-order masking (including randomness generation)

• 10978 (+579) 19808 0 732 108
GIFT-COFB Ours

• 11928 (+579) 5096 160 732 100

Table 13.6: Constant-time implementation results on ARM Cortex-M3 and M4 for GIFT-
COFB and Ascon to secure 16 bytes of message along with 16 bytes of additional data. Em-
boldened (resp. italic) results refer to speed (resp. code size) oriented implementations.

https://github.com/ascon

13

300 13. Fixslicing: A New GIFT Representation

Algorithm Ref
Message size (bytes)

16 64 256 1024 4096 16384

Without masking

GIFT-COFB Ours 4893 8725 23929 84701 327581 1299101

Ascon-128 https://github.com/ascon 4276 7073 18246 62886 241446 955686

Ascon-128a
(Our measurements)

3990 6028 14171 46715 176891 697595

With 1st-order masking (including randomness generation)

GIFT-COFB Ours 11557 20824 57773 205572 796733 3161412

Table 13.7: Running time (cycles) of constant-time speed-oriented implementations of GIFT-
COFB and Ascon on ARM Cortex-M4 for different message sizes along with 16 bytes of
additional data.

https://github.com/ascon

VII
Conclusion

301

14
Conclusion

14.1. Achievements

In summary, here are the questions addressed in this Ph.D. thesis with their an-
swers:

RQ1

What is the actual cost of a differential cryptanalysis attack when the
cipher’s security is near or below the 80-bit security threshold?

We showed that ASICs present a significant threat to primitives with
64-bit security and even pose a risk to those with 80-bit security. The
chosen-prefix collision on SHA-1, achievable with an ASIC cluster cost-
ing a few million, expands the attack surface to TLS and SSH. The first
chapter of this thesis underscores the need for regular security evalu-
ations and updates. We also showed how minor inaccuracies in attack
parameters can significantly impact overall cost estimates. However,
this research has limitations as it cannot be easily applied to other cryp-
tographic primitives like AES. Further study of the cost of other real-
world attacks like the biclique attack would be beneficial.

RQ2

How can we practically prevent side channel attacks?

303

14

304 14. Conclusion

To explore this inquiry, we began our analysis by examining the prac-
tical advantages of using boolean S-boxes, like those employed in AES,
compared to other cipher structures to implement resistance to side-
channel attacks.

In Chapter 4, we underscore the importance of selecting the appropriate
cipher by comparing AES and ChaCha20’s resistance to side-channel at-
tacks. While ChaCha20 exhibits natural resistance to timing attacks and
may be suitable for specific applications, it is susceptible to power side-
channel attacks. AES, on the other hand, is preferred for defense against
power side-channel attacks, but ChaCha20 may prove advantageous for
applications where power side-channel attacks are not a concern due
to its superior software performance and innate defense against timing
attacks. Our evaluation of the primary non-linear components of these
two ciphers indicates that the addition in ChaCha20 is marginally more
challenging to attack than AES’s S-box. However, it also has a more
significant overhead for protection.

Chapter 5 shows the difference between theory and practice when using
memory-contained provable secure software masked high-order masked
implementations. The chapter aims to showcase the effect of choosing
an appropriate security model while creating security proof and evalu-
ating the practical security level of implementation.

Our mathematical analysis showed that a first-order multivariate at-
tack exploits several leakages connected to one mask during table re-
computation and can surpass the efficacy of a classical high-order differ-
ential power analysis (HODPA) attack on the same masked implemen-
tation. We emphasized the importance of considering the number of
exploitable variables and noise variance as security metrics since these
factors can significantly impact the attack’s effectiveness. It is worth
noting that implementing a higher-order masking scheme does not nec-
essarily guarantee a higher security level. The cost of implementing a
high-order masking scheme can be too high, and any trade-off in how it
is implemented can affect the security advantage it provides.

Our findings were further confirmed on a real smartcard. Future re-
search will address the challenge of protecting table re-computation
from such attacks and examining the potential application of multivari-
ate attacks on other masking schemes and defensive techniques, such as
Threshold masking implementation schemes. However, one of this at-
tack’s limitations is identifying Points of Interest (PoI) in a black box or
non-profiled attack setting. In order to identify PoIs, a white-box setting

14.1. Achievements

14

305

with profiling is required. Another issue is how to avoid unintended
indirect leakages that occur due to the uncontrollable underlying archi-
tecture of the processor executing the code.

The problem of PoI selection in a non-profiled SCA setting is investi-
gated in the following chapter. The context of the study is the secu-
rity evaluation of Elliptic curve cryptography (ECC) against horizontal
side-channel attacks. However, the same methodology could be used for
SCA evaluations of masked symmetric cryptographic implementations.
To improve the precision of non-profiled attacks, several feature selec-
tion methods are examined and validated using actual measurements
acquired from FPGA and microcontroller targets.

We tested several non-profiled feature selection techniques and discov-
ered that some are nearly as precise as profiled attacks. This is a crucial
finding as it suggests that the black-box setting constraint does not offer
a substantial security advantage.

Preventing side-channel attacks requires careful design, rigorous evalu-
ation, and effective countermeasures.

Based on our research, here are some possible measures that can be
taken to prevent side-channel attacks:

(a) Choose the appropriate primitive with natural resistance to the spe-
cific type of side-channel attacks the system is vulnerable to.

(b) Select a suitable security model during the creation of a security
proof and when evaluating the practical security level of an imple-
mentation.

(c) Consider the number of exploitable variables and noise variance as
security metrics when evaluating the effectiveness of a security mea-
sure.

(d) Implement an appropriate masking scheme that balances security
and performance.

(e) Preferably use constant-time bit sliced cryptographic implementa-
tions in software

(f) When evaluating the implementation, make sure to identify Points
of Interest (PoI) in a white-box setting with profiling to avoid unin-
tended indirect leakages that occur due to the underlying architec-
ture of the processor executing the code.

14

306 14. Conclusion

(g) use feature selection techniques to enhance accuracy in non-profiled
attacks.

In the future, one promising research direction for AI and neural network-
based attacks could be further enhancing feature selection. Addition-
ally, the research could focus on the explainability of neural networks
to identify the source of a successful neural network-based attack. AI-
based attacks have the potential to factor in indirect leakages created
by the underlying architecture, which can be challenging to predict to
designers and may be invisible to evaluators who use traditional side-
channel evaluation methodologies.

How can we protect a system against attacks exploiting leakages we
cannot even predict? We could imagine trainable countermeasures that
would learn about themselves. Is this even achievable?

3.
RQ3

What methods or techniques can be employed to detect and prevent
practical fault attacks such as EMFI?

The primary step to address this question is to identify a generic ap-
proach to compare the resistance of various existing ciphers against
fault attacks. Since this task can be challenging, we narrowed our study
to the DFA attack model on symmetric block ciphers.

In Chapter 7, we present a comprehensive overview of existing DFA at-
tacks on Substitution-Permutation Network (SPN) ciphers. Then, we
introduce a generic DFA attack method for this family of ciphers. Our
proposed method involves the development of a novel approach to iden-
tify appropriate fault masks and the Joint Difference Distribution Table
(JDDT) tool to pre-compute solutions for fault equations. This tech-
nique successfully recovers the last round key with minimal faulty and
non-faulty cipher text pairs. We demonstrate the effectiveness of our
approach on several block ciphers, including AES-128, PRESENT-80
and 128, GIFT-64 and 128, and LED-64 and 128. The outcomes of
this research could lay the foundation for future efforts to design fault-
resistant block ciphers and explore the application of our approach to
other block cipher designs, possibly leading to the creation of a fully
automated and integrated tool with cryptographic design and analysis
software.

As a potential future research direction, it would be valuable to ex-
pand this work to other families of ciphers, symmetric cryptographic

14.1. Achievements

14

307

schemes, and fault models.

We then investigated the efficacy of using the private circuits II as a po-
tential defense mechanism against fault injection attacks on symmetric
cryptography. Although this approach may be too expensive to imple-
ment on asymmetric cryptographic circuits, it is still feasible for less
complex symmetric cryptographic circuits in specific scenarios.

Private Circuit II offers security proof of resistance against probing at-
tacks, considered the most potent form of passive and active side chan-
nels and attacks.

This thesis presents the first implementation of private circuits II in an
FPGA. A security analysis assesses its effectiveness against classical Side
Channel and Fault Injection attacks. The results showed that while Pri-
vate Circuits II protected against read and reset attacks, it was still sus-
ceptible to correlated faults that could result in exploitable ciphertexts.

The cause of this issue is that the fault models observed in real-world
scenarios are intricate and go beyond what can be adequately addressed
by the active and passive bit probing attacker model employed in the
security proof of Private Circuit-II. As a result, it needs to be sufficiently
robust to thwart the occurrence of complex fault models in reality, lead-
ing to correlated outputs.

A key challenge is to accurately model the faults occurring in reality to
bridge the gap between theory and practice. This task is challenging
due to process fabrication variations, which can result in chip-specific
fault models. Furthermore, in experimental testing setups, numerous
sources of variability further complicate the task.

Our experiments demonstrate that employing an on-chip monitor can
enhance the comprehension of the types of faults that occur in reality.
Moreover, an on-chip monitor can be utilized to study the impact of
faults on circuits, obviating the need for experimental post-silicon fault
injection characterization setups.

Then, in chapter 9, the use of ring extension as a fault detection method
for asymmetric cryptography is explored and proposed. The ring ex-
tension is applied on twisted Edwards Curves and was shown to be a
simple and effective solution. However, it involved some technicalities
related to the curve parameters and base point. Various variants are in-
vestigated a new "test-free" variant that is proven secure and efficient is
proposed. Implementing the elliptic curve scalar multiplication (ECSM)
algorithm protected with the test-free modular extension is evaluated

14

308 14. Conclusion

on Edwards and twisted Edwards curves. The results demonstrate the
effectiveness of the proposed method in detecting faults and maintain-
ing the integrity of the computation result. Despite some technicali-
ties in applying the ring extension method, the provable fault detection
method for (twisted) Edwards curves is novel, elegant, and effective in
securing cryptographic systems from fault injection attacks.

In chapter 10, we showcase a solution in the form of a PLL-based sensor
circuit and a comprehensive automated design flow on an FPGA plat-
form able to detect Electromagnetic Fault Injections. This solution pro-
vides a high fault detection rate and low hardware impact. Although
other methods of avoiding fault injection attacks have been studied, the
proposed solution serves as a positive step in enhancing the security of
ICs by safeguarding sensitive information. However, it must be noted
that this approach is limited to FPGAs and ASICs and does not apply
to Microcontrollers. Additionally, while the physical countermeasure
presents a high detection rate, it is not foolproof and should be used
with other protection mechanisms for maximum security. Further re-
search is necessary to understand unexpected fault behavior and to find
more effective solutions.

We wish to caution designers about the potential dangers of utilizing a
technology feature for a single purpose. In Chapter 11, we illustrate an
instance in which an FPGA feature that designers often consider appeal-
ing for deterring Side Channel Attacks can prove to be a double-edged
sword as attackers can exploit it to introduce a Hardware Trojan surrep-
titiously. This highlights the significance of conducting a thorough risk
analysis that accounts for all possible attack vectors while designing a
connected system.

In summary, based on our research, the following list of factors can help
ensure the prevention of fault attacks:

(a) Selection of an appropriate primitive for the cryptographic algo-
rithm

(b) Adoption of a suitable security model that can provide comprehen-
sive protection against possible attacks

(c) Use of the right fault model that can accurately reflect the types of
faults that occur in real-world scenarios

(d) Accurate modeling of faults that occur in reality, which can help in
designing more robust cryptographic systems

14.1. Achievements

14

309

(e) Employment of RTL, post-synthesis simulations, and an on-chip
monitor to enhance the understanding of the types of faults that
occur in reality

(f) Implementation of suitable data-level countermeasures such as data
path time-space redundancy or ring extensions according to the
identified occurring fault models

(g) Study of the processor architecture to identify if any assembly-level
macro can be used to prevent fault propagation

(h) Consideration of the usage of physical-level countermeasures, when
feasible, in conjunction with other techniques for maximum protec-
tion level

(i) Conducting a thorough risk analysis that accounts for all possible
attack vectors while designing a connected system

4.
RQ4

What potential guidelines or principles could designers utilize to en-
hance the rigor in the design process of a security-critical application?

One can systematize the acquired knowledge by comprehending dis-
tinct attack sources and constraints on countermeasures. By examining
the literature, we discuss in chapter 12 the definition of "security" from
a designer’s standpoint and show that security is a design constraint.
The importance of considering security as a primary architectural de-
sign constraint, time, space, and power are discussed. The conflict be-
tween security and efficiency objectives in multiple design layers has
been highlighted, and numerous examples have been presented to sup-
port this idea. The need for a security-aware design flow has been em-
phasized, starting from the choice of cryptographic primitives to system
design, in order to avoid severe security breaches. A security-aware de-
sign flow is proposed.

Some potential guidelines include the following elements:

(a) Threat analysis: Understand the distinct attack sources and con-
straints on countermeasures in order to systematize the acquired
knowledge.

(b) Consider security as a primary architectural design constraint: Along
with time, space, and power, designers must prioritize security as a
critical consideration in the design process.

14

310 14. Conclusion

(c) Address the conflict between security and efficiency objectives: De-
signers must balance security and efficiency objectives in multiple
design layers.

(d) Adopt a security-aware design flow: from the choice of cryptographic
primitives to system design.

(e) Test the resulting implementation on actual targets: Despite the
methodology used, testing the implementation on actual targets is
still necessary, as the underlying architecture may result in unpre-
dictable behavior.

In the final chapter, the principles presented in the previous chapters
are put into practice in a real-world scenario involving selecting and
implementing a lightweight cipher for IoT applications within the NIST
Lightweight Cipher competition. To achieve this, a novel cipher rep-
resentation, known as fix-slicing, is proposed, facilitating highly effi-
cient software bit-sliced implementations of block ciphers on micro-
controllers. The proposed methodology is applied to the GIFT family
of block ciphers. It is demonstrated that by using this approach, our
constant-time implementations of GIFT-64 and GIFT-128 outperform
the fastest current constant-time AES implementation in terms of speed.
This approach of not following the traditional cipher representation for
a few rounds can also be applied to other designs and has been indepen-
dently applied to the AES family of block ciphers in a subsequent study,
highlighting the generality and efficacy of our approach.

However, testing the resulting implementation on actual targets is still
necessary, as the underlying architecture may result in unpredictable
behavior. This methodology enables a just comparison of various block
ciphers for IoT mass-market application scenarios, where general-purpose
microcontrollers are employed to decrease costs while delivering the
flexibility of post-production secure firmware updates. Moreover, this
methodology can be extended to other block cipher families, such as the
ASCON family of lightweight block ciphers based on SHA-3 S-boxes.

14.2. Reflection and future work

14

311

14.2. Reflection and future work

When evaluating the security of a system, it is essential to identify the factors of
risk and exposure. Moreover, it is necessary to determine whether these factors
are worth the value and benefits of the assets being protected, while considering
the trade-offs between security, availability, and usability. However, these factors
are often challenging to formalize and quantify, and there is no straightforward
approach to measuring security.

One way to approach the challenge of measuring security is to think in four di-
mensions or explore alternative approaches. For instance, assessing the security
level can involve determining the minimum expenditure of both time and money
required to traverse any of the potential routes of attack in a directed graph that
has been weighted. Each node in the graph represents an attack vector, which an
attack model, a target, and a distinguisher define. However, assessing the level of
security can be particularly challenging in situations where soft parameters, such
as the signal-to-noise ratio, are involved.

Machine learning can play a crucial role in bridging the gap between theory and
practice by fitting attack data, but the explainability of machine learning-based
attacks poses a challenge. In addition, side-channel and fault injection attacks
are particularly challenging to evaluate. For example, the metrics used to evaluate
side-channel attacks lack adherence, making it challenging to compare the security
of different algorithm implementations against these attacks. Meanwhile, formal
security proof under a given fault model does not guarantee practical security due
to the difference between fault models used in the proof and those occurring in
practice.

Safeguarding a circuit from poorly understood attacks is another challenge that
designers face. However, there are potential solutions available, such as design-
ing an analog-digital circuit that can adapt its power consumption based on the
data obtained from power consumption analysis or developing a circuit that intro-
duces artificial power data points, acting as a generic adversarial defense. Machine
learning techniques can also help detect sensitive points in a circuit and identify
optimal locations to introduce fault injection sensors.

In conclusion, there is no straightforward approach to evaluating security, and
many unanswered questions remain. Machine learning may help solve some of the
challenges associated with measuring security, but the explainability of machine
learning-based attacks is still a concern. Overall, a multidisciplinary approach is
necessary to tackle the complexities of cybersecurity and protect valuable data.
Therefore, future research is needed to address the questions raised in this thesis
and further advance the field of cybersecurity.

14

312 14. Conclusion

The following table summarizes Zakaria Najm’s contributions to the publications
constituting the chapters of this thesis.

Table 14.1: Publications summary and contributions

Chapter Reference Contributions

chapter 2 (Part II)
"Mustafa Khairallah, Zakaria Najm, Anupam Chat-
topadhyay, Thomas Peyrin: Crack me if you can: hard-
ware acceleration bridging the gap between practical
and theoretical cryptanalysis?: a Survey. SAMOS 2018:
167-172 "

Wrote state-of-the-art, and presented
paper at SAMOS

chapter 3 (Part II)
"Anupam Chattopadhyay, Mustafa Khairallah, Gaë-
tan Leurent, Zakaria Najm, Thomas Peyrin, Vesselin
Velichkov: On the Cost of ASIC Hardware Crackers: A
SHA-1 Case Study. CT-RSA 2021: 657-681"

Wrote results section and ASIC vs GPU comparision,
designed ASIC (RTL+backend)

chapter 4 (Part II)
"Zakaria Najm, Dirmanto Jap, Bernhard Jungk,
Stjepan Picek, Shivam Bhasin: On Comparing Side-
channel Properties of AES and ChaCha20 on Micro-
controllers. APCCAS 2018: 552-5558"

Implemented masked CHACHA, worked on results
section and presented paper at DSP

chapter 5 (Part III)
"Multivariate High-Order Attacks of Shuffled Tables
Recomputation." by Nicolas Bruneau, Sylvain Guilley,
Zakaria Najm, Yannick Teglia in Journal of Cryptology
2018 p351-393."

Initiated idea, Implemented TR masking on AVR +
setup and sca measurement and wrote result section

chapter 6 (Part III)

"Feature selection methods for non-profiled side-
channel attacks on ecc Bernhard Jungk, Dirmanto Jap,
Zakaria Najm, Shivam Bhasin,Prasanna Ravi: Feature
Selection Methods for Non-Profiled Side-Channel At-
tacks on ECC. DSP 2018: 1-5"

Initiated idea, wrote background and result sections,
presented paper at DSP

chapter 7 (Part IV)
"SoK: On DFA Vulnerabilities of Substitution-
Permutation Networks by Mustafa Khairallah, Xiaolu
Hou, Zakaria Najm, Jakub Breier, Shivam Bhasin,
Thomas Peyrin in ACM AsiaCCS 2019 p403-414."

Participated to brainstorming and shared experience
on Private circuit II and EMI, Participated to the ex-
periments and building the methodology

chapter 10

(Part IV)

" by Noriyuki Miura, Zakaria Najm, Wei He, Shivam
Bhasin, Xuan Thuy Ngo, Makoto Nagata, Jean-Luc
Danger which is published in ACM/IEEE Design Au-
tomation Conference (DAC’2016)."

Initiated idea and discovered the behaviour of the PLL
during experiments on EMI + conducted all the exper-
iments + wrote concept description section + results

chapter 9 (Part IV)
"Using modular extension to provably protect Ed-
wards curves against fault attacks. J. Cryptogr. Eng.
7(4): 321-330 (2017) "

Conducted experiments and generated results (Imple-
mentation on AVR platform) + EMI + comparision
theory vs practice

chapter 8

(Part IV)

"Henitsoa Rakotomalala, Xuan Thuy Ngo, Zakaria
Najm, Jean-Luc Danger, Sylvain Guilley: Private cir-
cuits II versus fault injection attacks. ReConFig 2015:
1-9"

Helped intern on the implementation and simulations
on Xilinx FPGA and setup Fault injection experiments
+ Chip-scope dynamic analysis

chapter 11 (Part IV)
"Debapriya Basu Roy, Shivam Bhasin, Sylvain Guil-
ley, Jean-Luc Danger, Debdeep Mukhopadhyay, Xuan
Thuy Ngo, Zakaria Najm: Reconfigurable LUT: A Dou-
ble Edged Sword for Security-Critical Applications.
SPACE 2015: 248-268"

Initiated idea of RLUT based hardware trojan exploit-
ing Xilinx scan-chain, and worked on POC

chapter 12 (Part V)
Prasanna Ravi, Zakaria Najm, Shivam Bhasin, Mustafa
Khairallah, Sourav Sen Gupta, Anupam Chattopad-
hyay: Security is an architectural design constraint.
Microprocess. Microsystems 68: 17-27 (2019)

Main paper contributor and initiator and wrote sec-
tion on Fault, SCA and Cryptanalysis + contributed to
security aware design flow section

chapter 13 (Part VI)
"Fix-slicing: A New GIFT Representation Fast
Constant-Time Implementations of GIFT and GIFT-
COFB on ARM Cortex-M" by Alexandre Adomnicai,
Zakaria Najm, Thomas Peyrin in IACR TCHES 2020(3)
p402-420

Implemented different versions of GIFT64 and 128
and worked on optimizations + main initiator of the
fix-slicing concept and comparison table with others
ciphers

Acknowledgments

I wish to express my gratitude to my promotors Pieter Hartel and Stjepan Picek
for their patience and invaluable guidance throughout the redaction of this thesis.
I would also like to extend my thanks to Sylvain Guilley for his interesting dis-
cussions and insightful recommendations. Furthermore, I am grateful to Shivam
Bhasin, Anupam Chattopadhyhai, Jean-Luc Danger, Thomas Peyrin, Mustafa Khairal-
lah, Prassana Ravi, Xuan Thuy Ngo, Nicolas Bruneau, Pablo Rauzy, and Margaux
Dugardin and all the researcher I had the chance to collaborate with for their bril-
liant ideas, collaborative efforts, and valuable recommendations. Lastly, a special
thanks goes to my sister Yasmine Najm for her feedback and assistance in improv-
ing my work and my mom for her support.

315

316 14. Conclusion

Biography

Zakaria Najm

Zakaria Najm is a seasoned cybersecurity professional with over 13 years of ex-
perience in cryptography and security for embedded systems. He specializes in
automotive product and government sector security and has a proven track record
in secure hardware architectures, threat analysis, system-level security analysis,
embedded firmware, secure OS, protocols, and high-performance computing. He
is a curious, autonomous, and strong analytical thinker who enjoys sharing new
ideas and working as part of a team.

Currently, Zakaria is pursuing his Ph.D. at Delft University of Technology, focus-
ing on hardware security. He holds a Master of Science degree from University
of Grenoble in Security Cryptology and Coding of Information, a Postgraduate
Master degree from the University of Dundee in Microelectronics, and a French
"Grandes Ecoles" Graduate Engineer degree from INSA, Blois in Electrical, Elec-
tronics, and Computer Science Engineering.

Zakaria has an extensive list of publications, which include over 40 papers pub-
lished during his time as a Research Engineer at Telecom ParisTech-CNRS and Re-
search Associate at NTU Singapore. Some of his notable works include "High pre-
cision fault injections on the instruction cache of ARMv7-M architectures," "NICV:
normalized inter-class variance for detection of side-channel leakage," and "Lin-
ear complementary dual code improvement to strengthen encoded circuit against
hardware Trojan horses."

Throughout his career, Zakaria has held various positions, including Senior Cyber
Security Architect and Security Lead at Continental AG, Cyber-Edge-to-Cloud Pro-
gram Manager at SECURE-IC PTE LTD, and Research Associate at TL@NTU/SYLLAB@SPMS.
He has also worked as a Security Design Architect at STMicroelectronics and con-
ducted research in cryptography and security, leading to multiple awards and
recognitions.

Zakaria is fluent in English, French, and Arabic, and has basic knowledge of Ger-
man. In his free time, he enjoys running, cycling, karate, rock climbing, music,
and traveling accross the world and especially in Asia.

317

List of Publications

1. High precision fault injections on the instruction cache of ARMv7-M ar-
chitectures (2015 IEEE International Symposium on Hardware Oriented
Security and Trust . . . , 2015) (Cited by 101)

2. NICV: normalized inter-class variance for detection of side-channel leak-
age (2014 International Symposium on Electromagnetic Compatibility,
Tokyo, 310-313, 2014) (Cited by 101)

3. Linear complementary dual code improvement to strengthen encoded
circuit against hardware Trojan horses (2015 IEEE International Sym-
posium on Hardware Oriented Security and Trust . . . , 2015) (Cited by
78)

4. Hardware Trojan detection by delay and electromagnetic measurements
(2015 Design, Automation Test in Europe Conference Exhibition (DATE),
782-787, 2015) (Cited by 57)

5. Analysis and improvements of the DPA contest v4 implementation (Se-
curity, Privacy, and Applied Cryptography Engineering: 4th Interna-
tional . . . , 2014) (Cited by 55)

6. Hardware property checker for run-time hardware trojan detection (2015
European Conference on Circuit Theory and Design (ECCTD), 1-4, 2015)
(Cited by 46)

7. Side-channel leakage and trace compression using normalized inter-class
variance (Proceedings of the Third Workshop on Hardware and Archi-
tectural Support for . . . , 2014) (Cited by 46)

8. Pll to the rescue: a novel em fault countermeasure (Proceedings of the
53rd Annual Design Automation Conference, 1-6, 2016) (Cited by 43)

9. Dismantling real-world ECC with horizontal and vertical template at-
tacks (Constructive Side-Channel Analysis and Secure Design: 7th In-
ternational . . . , 2016) (Cited by 42)

10. Method taking into account process dispersion to detect hardware Tro-
jan Horse by side-channel analysis (Journal of Cryptographic Engineer-
ing 6, 239-247, 2016) (Cited by 38)

318

List of Publications 319

11. Fixslicing: A new gift representation (Cryptology ePrint Archive, 2020)
(Cited by 37)

12. Cryptographically secure shield for security IPs protection (IEEE Trans-
actions on Computers 66 (2), 354-360, 2016) (Cited by 37)

13. A look into SIMON from a side-channel perspective (2014 IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust . . . , 2014)
(Cited by 35)

14. Time-frequency analysis for second-order attacks (Smart Card Research
and Advanced Applications: 12th International Conference . . . , 2014)
(Cited by 34)

15. Multivariate high-order attacks of shuffled tables recomputation (Jour-
nal of Cryptology 31, 351-393, 2018) (Cited by 31)

16. Formally proved security of assembly code against power analysis: A
case study on balanced logic (Journal of Cryptographic Engineering 6,
201-216, 2016) (Cited by 23)

17. A low-entropy first-degree secure provable masking scheme for resource-
constrained devices (Proceedings of the Workshop on Embedded Sys-
tems Security, 1-10, 2013) (Cited by 22)

18. Integrated sensor: a backdoor for hardware Trojan insertions? (2015
Euromicro Conference on Digital System Design, 415-422, 2015) (Cited
by 19)

19. Encoding the state of integrated circuits: a proactive and reactive pro-
tection against hardware trojans horses (Proceedings of the 9th Work-
shop on Embedded Systems Security, 1-10, 2014) (Cited by 19)

20. Formally Proved Security of Assembly Code Against Leakage. (IACR
Cryptol. ePrint Arch. 2013, 554, 2013) (Cited by 18)

21. Optimized linear complementary codes implementation for hardware
trojan prevention (2015 European Conference on Circuit Theory and
Design (ECCTD), 1-4, 2015) (Cited by 14)

22. Correlated extra-reductions defeat blinded regular exponentiation (Cryp-
tographic Hardware and Embedded Systems–CHES 2016: 18th Interna-
tional . . . , 2016) (Cited by 13)

23. On comparing side-channel properties of AES and ChaCha20 on micro-
controllers (2018 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), 552-555, 2018) (Cited by 12)

320 List of Publications

24. Feature selection methods for non-profiled side-channel attacks on ecc
(2018 IEEE 23rd International Conference on Digital Signal Processing
(DSP), 1-5, 2018) (Cited by 11)

25. Reconfigurable LUT: A double edged sword for security-critical appli-
cations (Security, Privacy, and Applied Cryptography Engineering: 5th
International . . . , 2015) (Cited by 11)

26. Security is an architectural design constraint (Microprocessors and mi-
crosystems 68, 17-27, 2019) (Cited by 9)

27. Using modular extension to provably protect ECC against fault attacks
(Cryptology ePrint Archive, Report 2015/882, 2015) (Cited by 6)

28. Using modular extension to provably protect Edwards curves against
fault attacks (Journal of Cryptographic Engineering 7, 321-330, 2017)
(Cited by 5)

29. Time-frequency analysis for second-order attacks (Cryptology ePrint
Archive, 2016) (Cited by 5)

30. Private circuits II versus fault injection attacks (2015 International Con-
ference on ReConFigurable Computing and FPGAs . . . , 2015) (Cited by
5)

31. Method taking into account process dispersions to detect hardware tro-
jan horse by side-channel (June, 2015) (Cited by 5)

32. SoK: on DFA vulnerabilities of substitution-permutation networks (Pro-
ceedings of the 2019 ACM Asia Conference on Computer and Commu-
nications . . . , 2019) (Cited by 4)

33. Correlated extra-reductions defeat blinded regular exponentiation-extended
version (Cryptology ePrint Archive, 2016) (Cited by 4)

34. The conflicted usage of RLUTs for security-critical applications on FPGA
(Journal of Hardware and Systems Security 2, 162-178, 2018) (Cited by
3)

35. On the cost of asic hardware crackers: A sha-1 case study (Topics in
Cryptology–CT-RSA 2021: Cryptographers’ Track at the RSA . . . , 2021)
(Cited by 2)

36. Crack me if you can: hardware acceleration bridging the gap between
practical and theoretical cryptanalysis? a Survey (Proceedings of the
18th International Conference on Embedded Computer . . . , 2018) (Cited
by 2)

List of Publications 321

37. A Generic Countermeasure Against Fault Injection Attacks on Asym-
metric Cryptography. (IACR Cryptol. ePrint Arch. 2015, 882, 2015)
(Cited by 2)

38. Security, Privacy, and Applied Cryptography Engineering (Springer, Berlin,
2014) (Cited by 1)

39. Software Camouflage (Foundations and Practice of Security: 6th Inter-
national Symposium, FPS 2013 . . . , 2014) (Cited by 1)

40. Session details: Security threats caused by novel technologies (Proceed-
ings of the 18th International Conference on Embedded Computer . . . ,
2018) (Cited by 0)

41. Power and Electromagnetic Analysis for Template Attacks (TRUDEVICE,
2015) (Cited by 0)

42. Lecture Note 10 () (Cited by 0)

43. Using Modular Extension to Provably Protect Edwards Curves Against
Fault Attacks () (Cited by 0)

44. Correlated Extra-Reductions Defeat Blinded Regular Exponentiation ()
(Cited by 0)

References

1C. Arthur, “Tech giants may be huge, but nothing matches big data”, The
Guardian (2013).

2Allied Market Research, World Encryption Software Market - Opportunities
and Forecasts, 2014-2022, https://www.alliedmarketresearch.com/
world-encryption-software-market, Accessed on March 5, 2023, 2016.

3S. Brannigan, Secure Gaussian sampling for lattice-based signaturesi, New di-
rections for reaching high standard deviation, https://pureadmin.qub.
ac.uk/ws/portalfiles/portal/258063826/thesis.pdf, Accessed on
March 5, 2023, 2021.

4M. Rosulek, Introduction to Modern Cryptography: Cryptography Engineer-
ing, https://web.engr.oregonstate.edu/~rosulekm/crypto/chap6.
pdf, Accessed on March 5, 2023, 2016.

5D. J. Bernstein, A. Hülsing, and T. Lange, POST-QUANTUM CRYPTOG-
RAPHY Integration study, Technical Report (European Union Agency for
Cybersecurity (ENISA), Heraklion, Greece, Oct. 2022).

6G. Leurent and C. Pernot, New Representations of the AES Key Schedule,
Cryptology ePrint Archive, Paper 2020/1253, https://eprint.iacr.
org/2020/1253, 2020.

7N. Mouha, Review of the Advanced Encryption Standard, NIST Interagen-
cy/Internal Report (NISTIR) 8319 (National Institute of Standards and
Technology (NIST), Gaithersburg, MD, 2022).

8A. Adomnicai and T. Peyrin, “Fixslicing AES-like Ciphers: New bitsliced
AES speed records on ARM-Cortex M and RISC-V”, IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021, 402–425 (2021).

9F. Carter, The Turing Bombe (Bletchley Park Trust, 2008).
10B. Randell, “Colossus: Godfather of the computer”, in The Origins of Digi-

tal Computers (Springer, 1982), pp. 349–354.
11S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler, “Breaking ci-

phers with COPACOBANA–a cost-optimized parallel code breaker”, in
International Workshop on Cryptographic Hardware and Embedded Sys-
tems (Springer, 2006), pp. 101–118.

12C. Swenson, Modern cryptanalysis: techniques for advanced code breaking
(John Wiley & Sons, 2008).

13A. Joux, Algorithmic cryptanalysis (CRC Press, 2009).

322

https://www.theguardian.com/technology/2013/aug/23/tech-giants-huge-match-big-data
https://www.theguardian.com/technology/2013/aug/23/tech-giants-huge-match-big-data
https://www.alliedmarketresearch.com/world-encryption-software-market
https://www.alliedmarketresearch.com/world-encryption-software-market
https://pureadmin.qub.ac.uk/ws/portalfiles/portal/258063826/thesis.pdf
https://pureadmin.qub.ac.uk/ws/portalfiles/portal/258063826/thesis.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/chap6.pdf
https://web.engr.oregonstate.edu/~rosulekm/crypto/chap6.pdf
https://eprint.iacr.org/2020/1253
https://eprint.iacr.org/2020/1253
http://dx.doi.org/10.13154/tches.v2021.i1.402-425
http://dx.doi.org/10.13154/tches.v2021.i1.402-425

References 323

14M. Stamp and R. M. Low, Applied cryptanalysis: breaking ciphers in the real
world (John Wiley & Sons, 2007).

15.
16W. Diffie and M. E. Hellman, “Special feature exhaustive cryptanalysis of

the NBS data encryption standard”, Computer 10, 74–84 (1977).
17M. Hellman, “A cryptanalytic time-memory trade-off”, IEEE transactions

on Information Theory 26, 401–406 (1980).
18P. C. Van Oorschot and M. J. Wiener, “Parallel collision search with crypt-

analytic applications”, Journal of cryptology 12, 1–28 (1999).
19J. M. Pollard, “Monte Carlo methods for index computation”, Mathematics

of computation 32, 918–924 (1978).
20J. Gilmore, Cracking DES: Secrets of Encryption Research, Wiretap Politics &

Chip Design, 1998.
21T. Güneysu, T. Kasper, M. Novotnỳ, C. Paar, and A. Rupp, “Cryptanalysis

with COPACOBANA”, IEEE Transactions on Computers 57, 1498–1513
(2008).

22J Keller and B Seitz, “A Hardware-Based Attack on the A5/1 Stream Ci-
pher (2001)”, URL http://pv. fernuni-hagen. de/docs/apc2001-final. pdf.
Accessed April (2012).

23S. Biddle, “NYU ACCIDENTALLY EXPOSED MILITARY CODE-BREAKING
COMPUTER PROJECT TO ENTIRE INTERNET”, URL https://theintercept.com/2017/05/11/nyu-
accidentally-exposed-military-code-breaking-computer-project-to-entire-internet/
(2017).

24X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1”, in
Annual international cryptology conference (Springer, 2005), pp. 17–36.

25M. Hassan, A. Khalid, A. Chattopadhyay, C. Rechberger, T. Güneysu, and
C. Paar, “New asic/fpga cost estimates for sha-1 collisions”, in Digital Sys-
tem Design (DSD), 2015 Euromicro Conference on (IEEE, 2015), pp. 669–
676.

26M. Stevens, “New collision attacks on SHA-1 based on optimal joint local-
collision analysis”, in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (Springer, 2013), pp. 245–261.

27F. Chabaud and A. Joux, “Differential collisions in SHA-0”, in Annual In-
ternational Cryptology Conference (Springer, 1998), pp. 56–71.

28E. Biham and R. Chen, “Near-collisions of SHA-0”, in Annual Interna-
tional Cryptology Conference (Springer, 2004), pp. 290–305.

29N. Pramstaller, C. Rechberger, and V. Rijmen, “Exploiting coding theory
for collision attacks on SHA-1”, in IMA International Conference on Cryp-
tography and Coding (Springer, 2005), pp. 78–95.

30V. Rijmen and E. Oswald, “Update on SHA-1”, in Cryptographers’ Track
at the RSA Conference (Springer, 2005), pp. 58–71.

324 References

31K. Matusiewicz and J. Pieprzyk, “Finding good differential patterns for
attacks on SHA-1”, in Coding and Cryptography (Springer, 2006), pp. 164–
177.

32C. S. Jutla and A. C. Patthak, “A Matching Lower Bound on the Minimum
Weight of SHA-1 Expansion Code.”, IACR Cryptology ePrint Archive 2005,
266 (2005).

33X. Wang, A. C. Yao, and F. Yao, “Cryptanalysis on SHA-1”, in Crypto-
graphic Hash Workshop hosted by NIST (2005).

34X. Wang, “Cryptanalysis of hash functions and potential dangers”, in In-
vited Talk at the Cryptographer’s Track at RSA Conference 2006 (2006).

35M. Cochran et al., “Notes on the Wang et al. 263 SHA-1 Differential Path.”,
IACR Cryptology ePrint Archive 2007, 474 (2007).

36E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby, “Colli-
sions of SHA-0 and Reduced SHA-1”, in Annual International Conference
on the Theory and Applications of Cryptographic Techniques (Springer,
2005), pp. 36–57.

37X. Wang, H. Yu, and Y. L. Yin, “Efficient collision search attacks on SHA-0”,
in Annual International Cryptology Conference (Springer, 2005), pp. 1–
16.

38Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro, and K. Ohta,
“Improved collision search for SHA-0”, in International Conference on the
Theory and Application of Cryptology and Information Security (Springer,
2006), pp. 21–36.

39S. Manuel and T. Peyrin, “Collisions on SHA-0 in one hour”, in Interna-
tional Workshop on Fast Software Encryption (Springer, 2008), pp. 16–35.

40F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “The impact of
carries on the complexity of collision attacks on SHA-1”, in International
Workshop on Fast Software Encryption (Springer, 2006), pp. 278–292.

41J. Yajima, T. Iwasaki, Y. Naito, Y. Sasaki, T. Shimoyama, N. Kunihiro, and
K. Ohta, “A strict evaluation method on the number of conditions for the
SHA-1 collision search”, in Proceedings of the 2008 ACM symposium on
Information, computer and communications security (ACM, 2008), pp. 10–
20.

42C. De Canniere and C. Rechberger, “Finding SHA-1 characteristics: Gen-
eral results and applications”, in International Conference on the Theory
and Application of Cryptology and Information Security (Springer, 2006),
pp. 1–20.

43C. De Canniere, F. Mendel, and C. Rechberger, “Collisions for 70-Step
SHA-1: on the full cost of collision search”, in International Workshop
on Selected Areas in Cryptography (Springer, 2007), pp. 56–73.

References 325

44S. Manuel, “Classification and generation of disturbance vectors for colli-
sion attacks against SHA-1”, (2008).

45C. McDonald, P. Hawkes, and J. Pieprzyk, “Differential Path for SHA-1
with complexity O (252).”, IACR Cryptology ePrint Archive 2009, 259
(2009).

46S. Manuel, “Classification and generation of disturbance vectors for colli-
sion attacks against SHA-1”, Designs, Codes and Cryptography 59, 247–
263 (2011).

47E. A. Grechnikov, “Collisions for 72-step and 73-step SHA-1: Improve-
ments in the Method of Characteristics.”, IACR Cryptology ePrint Archive
2010, 413 (2010).

48F. Mendel, C. Rechberger, and V. Rijmen, “Update on SHA-1”, rump ses-
sion of CRYPTO 2007 (2007).

49R. Chen and E. Biham, “New Techniques for Cryptanalysis of Crypto-
graphic Hash Functions”, PhD thesis (Computer Science Department, Tech-
nion, 2011).

50E. Biham, R. Chen, and A. Joux, “Cryptanalysis of SHA-0 and Reduced
SHA-1”, Journal of Cryptology 28, 110–160 (2015).

51M. M. J. Stevens et al., Attacks on hash functions and applications (Mathe-
matical Institute, Faculty of Science, Leiden University, 2012).

52A. Joux and T. Peyrin, “Hash functions and the (amplified) boomerang
attack”, in Annual International Cryptology Conference (Springer, 2007),
pp. 244–263.

53T. Peyrin, “Analyse de fonctions de hachage cryptographiques”, PhD the-
sis (PhD thesis, University of Versailles, 2008).

54J. Yajima, Y. Sasaki, Y. Naito, T. Iwasaki, T. Shimoyama, N. Kunihiro, and
K. Ohta, “A new strategy for finding a differential path of SHA-1”, in
Australasian Conference on Information Security and Privacy (Springer,
2007), pp. 45–58.

55P. Karpman, T. Peyrin, and M. Stevens, “Practical free-start collision at-
tacks on 76-step SHA-1”, in Annual Cryptology Conference (Springer,
2015), pp. 623–642.

56M. Stevens, P. Karpman, and T. Peyrin, “Freestart collision for full SHA-
1”, in Annual International Conference on the Theory and Applications of
Cryptographic Techniques (Springer, 2016), pp. 459–483.

57P. Karpman, “Analyse de primitives symétriques”, PhD thesis (Université
Paris-Saclay, 2016).

58M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
first collision for full SHA-1”, in Annual International Cryptology Confer-
ence (Springer, 2017), pp. 570–596.

59E. Tromer and, Hardware-based cryptanalysis (2007).

326 References

60D. Boneh, C. Dunworth, and R. J. Lipton, “Breaking DES Using a Molec-
ular Computer”, Proceedings of DIMACS workshop on DNA computing
(1995).

61V. Suresh, S. Satpathy, and S. Mathew, Bitcoin mining hardware accelera-
tor with optimized message digest and message scheduler datapath, US Patent
App. 15/274,200, 2018.

62N. Marinoff, “Samsung Is Building ASIC Chips for Halong Mining”, URL
https://bitcoinmagazine.com/articles/samsung-building-asic-chips-halong-
mining/ (2018).

63M. Santha, “Quantum cryptanalysis: How to break some classical cryp-
tosystems with quantum computers?”, in FWS01 Quantum Cryptography
(Centre for Quantum Technologies, NUS Singapore and CNRS IRIF, Uni-
versite Paris Diderot France, 2018).

64B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich,
and W. K. Hensinger, “Blueprint for a microwave trapped ion quantum
computer”, in Science Advances, Vol. 3, 2 (American Association for the
Advancement of Science, 2017), e1601540.

65M. Khairallah, Z. Najm, A. Chattopadhyay, and T. Peyrin, “Crack Me if
You Can: Hardware Acceleration Bridging the Gap Between Practical and
Theoretical Cryptanalysis?: A Survey”, in Proceedings of the 18th Interna-
tional Conference on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation, SAMOS ’18 (2018), pp. 167–172.

66E. Wiki, “Ethash”, GitHub Ethereum Wiki. https://github. com/ethereum/wik-
i/wiki/Ethash (2017).

67X16R, https://en.bitcoinwiki.org/wiki/X16R.
68G. Leurent and T. Peyrin, SHA-1 is a Shambles - First Chosen-Prefix Colli-

sion on SHA-1 and Application to the PGP Web of Trust, Cryptology ePrint
Archive, Report 2020/014, https://eprint.iacr.org/2020/014, 2020.

69K. Bhargavan and G. Leurent, “Transcript Collision Attacks: Breaking Au-
thentication in TLS, IKE and SSH”, in NDSS 2016 (Feb. 2016).

70A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique Cryptanaly-
sis of the Full AES”, in Advances in Cryptology – ASIACRYPT 2011, edited
by D. H. Lee and X. Wang (2011), pp. 344–371.

71R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK Lightweight Block Ciphers”, in Proceedings of
the 52nd Annual Design Automation Conference, DAC ’15 (2015).

72Tom Brostöm, Lightweight Trusted Computing, https://www.nist.gov/
news-events/events/2019/11/lightweight-cryptography-workshop-

2019, 2019.
73G. Leurent and T. Peyrin, “From Collisions to Chosen-Prefix Collisions

Application to Full SHA-1”, in Annual International Conference on the

http://dx.doi.org/10.1145/3229631.3239366
http://dx.doi.org/10.1145/3229631.3239366
http://dx.doi.org/10.1145/3229631.3239366
https://en.bitcoinwiki.org/wiki/X16R
https://eprint.iacr.org/2020/014
http://dx.doi.org/10.1145/2744769.2747946
http://dx.doi.org/10.1145/2744769.2747946
https://www.nist.gov/news-events/events/2019/11/lightweight-cryptography-workshop-2019
https://www.nist.gov/news-events/events/2019/11/lightweight-cryptography-workshop-2019
https://www.nist.gov/news-events/events/2019/11/lightweight-cryptography-workshop-2019

References 327

Theory and Applications of Cryptographic Techniques (Springer, 2019),
pp. 527–555.

74A. Joux and T. Peyrin, “Hash Functions and the (Amplified) Boomerang
Attack”, in CRYPTO, Vol. 4622, edited by A. Menezes, Lecture Notes in
Computer Science (2007), pp. 244–263.

75Y.-M. Tu and C.-W. Lu, “The Influence of Lot Size on Production Perfor-
mance in Wafer Fabrication Based on Simulation”, in Procedia Engineer-
ing, Vol. 174, 13th Global Congress on Manufacturing and Management
Zhengzhou, China 28-30 November, 2016 (2017), pp. 135 –144.

76H. Jones, “FINFET AND FD SOI:MARKET AND COST ANALYSIS”, FD-
SOI Forum 2018. http://soiconsortium.eu/wp-content/uploads/2018/08/MS-
FDSOI9.1818-cr.pdf (2018).

77globalpetrolprices.com, https://www.globalpetrolprices.com.
78D. Vivek, S. Narendra, M. Haycock, V. Govindarajulu, V. Erraguntla, H.

Wilson, S. Vangal, A. Pangal, E. Seligman, R. Nair, et al., “1. 1 V 1 GHz
communications router with on-chip body bias in 150 nm CMOS”, in DIG
TECH PAP IEEE INT SOLID STATE CIRCUITS CONF. pp. 270-271+ 466+
263. 2002 (2002).

79V. Rijmen and J. Daemen, “Advanced Encryption Standard”, Proceedings
of Federal Information Processing Standards Publications, National Insti-
tute of Standards and Technology, 19–22 (2001).

80Y. Nir and A. Langley, ChaCha20 and Poly1305 for IETF Protocols, tech.
rep. (2018).

81P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis”, in Annual
International Cryptology Conference (Springer, 1999), pp. 388–397.

82N.-F. Standard, “Announcing the Advanced Encryption Standard (AES)”,
Federal Information Processing Standards Publication 197, 1–51 (2001).

83S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks”, in International
Workshop on Cryptographic Hardware and Embedded Systems (Springer,
2002), pp. 13–28.

84S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic, and N.
Mentens, “Side-channel analysis and machine learning: A practical per-
spective”, in 2017 International Joint Conference on Neural Networks,
IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017 (2017), pp. 4095–
4102.

85L. Breiman, “Random Forests”, Machine Learning 45, 5–32 (2001).
86F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine Learning in Python”, Journal of Machine Learning Research 12,
2825–2830 (2011).

http://dx.doi.org/10.1007/978-3-540-74143-5_14
http://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.01.180
http://dx.doi.org/https://doi.org/10.1016/j.proeng.2017.01.180
https://www.globalpetrolprices.com

328 References

87D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of AES”, in Cryptographers’ Track at the RSA Conference
(Springer, 2006), pp. 1–20.

88E. Trichina, “Combinational Logic Design for AES SubByte Transforma-
tion on Masked Data”, IACR Cryptology ePrint Archive 2003, 236 (2003).

89A. Biryukov, D. Dinu, Y. Le Corre, and A. Udovenko, “Optimal First-Order
Boolean Masking for Embedded IoT Devices”, in International Conference
on Smart Card Research and Advanced Applications (Springer, 2017),
pp. 22–41.

90J.-S. Coron and A. Tchulkine, “A new algorithm for switching from arith-
metic to boolean masking”, in International Workshop on Cryptographic
Hardware and Embedded Systems (Springer, 2003), pp. 89–97.

91J.-S. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala, “Conversion
from arithmetic to boolean masking with logarithmic complexity”, in In-
ternational Workshop on Fast Software Encryption (Springer, 2015), pp. 130–
149.

92B. Jungk, R. Petri, and M. Stöttinger, Efficient Side-Channel Protections of
ARX Ciphers, Cryptology ePrint Archive, Report 2018/693, https : / /
eprint.iacr.org/2018/693, 2018.

93P. Schwabe and K. Stoffelen, All the AES You Need on Cortex-M3 and M4,
Cryptology ePrint Archive, Report 2016/714, https://eprint.iacr.
org/2016/714, 2016.

94P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, in CRYPTO,
Vol. 1666, edited by M. J. Wiener, Lecture Notes in Computer Science
(1999), pp. 388–397.

95L. Goubin and J. Patarin, “DES and Differential Power Analysis. The “Du-
plication” Method”, in CHES, LNCS, Worcester, MA, USA (1999), pp. 158–
172.

96S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards Sound Approaches
to Counteract Power-Analysis Attacks”, in CRYPTO, Vol. 1666, LNCS, Santa
Barbara, CA, USA. ISBN: 3-540-66347-9 (1999).

97T. S. Messerges, “Using second-Order Power Analysis to Attack DPA re-
sistant Software”, in CHES, Vol. 1965, LNCS, Worcester, MA, USA (2000),
pp. 71–77.

98J. Waddle and D. Wagner, “Towards Efficient Second-Order Power Analy-
sis”, in CHES, Vol. 3156, LNCS, Cambridge, MA, USA (2004), pp. 1–15.

99E. Prouff, M. Rivain, and R. Bevan, “Statistical Analysis of Second Order
Differential Power Analysis”, IEEE Trans. Computers 58, 799–811 (2009).

100H. Maghrebi, E. Prouff, S. Guilley, and J.-L. Danger, A First-Order Leak-Free
Masking Countermeasure, Cryptology ePrint Archive, Report 2012/028, http:
//eprint.iacr.org/2012/028, 2012.

https://eprint.iacr.org/2018/693
https://eprint.iacr.org/2018/693
https://eprint.iacr.org/2016/714
https://eprint.iacr.org/2016/714
http://eprint.iacr.org/2012/028
http://eprint.iacr.org/2012/028

References 329

101J. Blömer, J. Guajardo, and V. Krummel, “Provably Secure Masking of
AES”, in Selected Areas in Cryptography, Vol. 3357, edited by H. Hand-
schuh and M. A. Hasan, Lecture Notes in Computer Science (2004), pp. 69–
83.

102M. Rivain and E. Prouff, “Provably Secure Higher-Order Masking of AES”,
in CHES, Vol. 6225, edited by S. Mangard and F.-X. Standaert, LNCS (2010),
pp. 413–427.

103E. Prouff and M. Rivain, “A Generic Method for Secure SBox Implemen-
tation”, in WISA, Vol. 4867, edited by S. Kim, M. Yung, and H.-W. Lee,
Lecture Notes in Computer Science (2007), pp. 227–244.

104F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard, “The World is Not Enough: Another Look on
Second-Order DPA”, in ASIACRYPT, Vol. 6477, LNCS, Singapore. http:
//www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf (2010), pp. 112–
129.

105T. S. Messerges, “Securing the AES Finalists Against Power Analysis At-
tacks”, in Fast Software Encryption’00, New York (2000), pp. 150–164.

106M.-L. Akkar and C. Giraud, “An Implementation of DES and AES Secure
against Some Attacks”, in Proceedings of CHES’01, Vol. 2162, edited by
LNCS, LNCS, Paris, France (2001), pp. 309–318.

107J. Coron, “Higher Order Masking of Look-Up Tables”, in Advances in Cryp-
tology - EUROCRYPT 2014 - 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, Vol. 8441, edited by P. Q. Nguyen
and E. Oswald, Lecture Notes in Computer Science (2014), pp. 441–458.

108P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, in Proceed-
ings of CRYPTO’99, Vol. 1666, LNCS (1999), pp. 388–397.

109J. Pan, J. I. den Hartog, and J. Lu, “You Cannot Hide behind the Mask:
Power Analysis on a Provably Secure S-Box Implementation”, in WISA,
Vol. 5932, edited by H. Y. Youm and M. Yung, Lecture Notes in Computer
Science (2009), pp. 178–192.

110M. Tunstall, C. Whitnall, and E. Oswald, “Masking Tables - An Underes-
timated Security Risk”, in Fast Software Encryption - 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Pa-
pers, Vol. 8424, edited by S. Moriai, Lecture Notes in Computer Science
(2013), pp. 425–444.

111É. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a
Leakage Model”, in CHES, Vol. 3156, LNCS, Cambridge, MA, USA (2004),
pp. 16–29.

112A. DeTrano, S. Guilley, X. Guo, N. Karimi, and R. Karri, “Exploiting Small
Leakages in Masks to Turn a Second-order Attack into a First-order At-

http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/88.pdf
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-662-43933-3_22
http://dx.doi.org/10.1007/978-3-662-43933-3_22
http://dx.doi.org/10.1007/978-3-662-43933-3_22

330 References

tack”, in Proceedings of the Fourth Workshop on Hardware and Architec-
tural Support for Security and Privacy, HASP ’15 (2015), 7:1–7:5.

113T. S. Messerges, “Using Second-Order Power Analysis to Attack DPA Re-
sistant Software”, in CHES, Vol. 1965, LNCS, Worcester, MA, USA (2000),
pp. 238–251.

114E. Oswald and S. Mangard, “Template Attacks on Masking — Resistance
Is Futile”, in CT-RSA, Vol. 4377, edited by M. Abe, Lecture Notes in Com-
puter Science (2007), pp. 243–256.

115C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil, “Improved
Collision-Correlation Power Analysis on First Order Protected AES”, in
CHES, Vol. 6917, edited by B. Preneel and T. Takagi, LNCS (2011), pp. 49–
62.

116N. Bruneau, S. Guilley, A. Heuser, and O. Rioul, “Masks Will Fall Off –
Higher-Order Optimal Distinguishers”, in Advances in Cryptology – ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, Vol. 8874, edited by P. Sarkar
and T. Iwata, Lecture Notes in Computer Science (2014), pp. 344–365.

117A. A. Ding, L. Zhang, Y. Fei, and P. Luo, “A Statistical Model for Higher
Order DPA on Masked Devices”, in Cryptographic Hardware and Embed-
ded Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, Vol. 8731, edited by L. Batina
and M. Robshaw, Lecture Notes in Computer Science (2014), pp. 147–169.

118Y. Fei, Q. Luo, and A. A. Ding, “A Statistical Model for DPA with Novel
Algorithmic Confusion Analysis”, in CHES, Vol. 7428, edited by E. Prouff
and P. Schaumont, LNCS (2012), pp. 233–250.

119Y. Fei, A. A. Ding, J. Lao, and L. Zhang, “A statistics-based success rate
model for DPA and CPA”, J. Cryptographic Engineering 5, 227–243 (2015).

120S. Guilley, A. Heuser, and O. Rioul, “A Key to Success - Success Expo-
nents for Side-Channel Distinguishers”, in Progress in Cryptology - IN-
DOCRYPT 2015 - 16th International Conference on Cryptology in India,
Bangalore, India, December 6-9, 2015, Proceedings, Vol. 9462, edited by
A. Biryukov and V. Goyal, Lecture Notes in Computer Science (2015),
pp. 270–290.

121S. Guilley, A. Heuser, and O. Rioul, A Key to Success – Success Exponents for
Side-Channel Distinguishers (extended version of [120]), Cryptology ePrint
Archive, Report 2016/987, http://eprint.iacr.org/2016/987, 2016.

122C. Whitnall and E. Oswald, “A Fair Evaluation Framework for Comparing
Side-Channel Distinguishers”, J. Cryptographic Engineering 1, 145–160
(2011).

http://dx.doi.org/10.1145/2768566.2768573
http://dx.doi.org/10.1145/2768566.2768573
http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/978-3-662-44709-3_9
http://dx.doi.org/10.1007/978-3-662-44709-3_9
http://dx.doi.org/10.1007/978-3-662-44709-3_9
http://dx.doi.org/10.1007/s13389-015-0107-0
http://dx.doi.org/10.1007/978-3-319-26617-6_15
http://dx.doi.org/10.1007/978-3-319-26617-6_15
http://dx.doi.org/10.1007/978-3-319-26617-6_15
http://eprint.iacr.org/2016/987

References 331

123K. Schramm and C. Paar, “Higher Order Masking of the AES”, in CT-RSA,
Vol. 3860, edited by D. Pointcheval, LNCS (2006), pp. 208–225.

124J.-S. Coron, E. Prouff, and M. Rivain, “Side Channel Cryptanalysis of a
Higher Order Masking Scheme”, in CHES, Vol. 4727, edited by P. Paillier
and I. Verbauwhede, LNCS (2007), pp. 28–44.

125M. Rivain, E. Prouff, and J. Doget, “Higher-Order Masking and Shuffling
for Software Implementations of Block Ciphers”, in CHES, Vol. 5747, Lec-
ture Notes in Computer Science, Lausanne, Switzerland (2009), pp. 171–
188.

126U. Datta and A. Muktibodh, Algebra And Trigonometry (Prentice-Hall Of
India Pvt. Limited, 2006).

127P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”, in Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, Vol. 1109, edited by N. Koblitz,
Lecture Notes in Computer Science (1996), pp. 104–113.

128J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and D. Naccache, “A
synthesis of side-channel attacks on elliptic curve cryptography in smart-
cards”, J. Cryptographic Engineering 3, 241–265 (2013).

129J. Heyszl, A. Ibing, S. Mangard, F. D. Santis, and G. Sigl, “Clustering Al-
gorithms for Non-profiled Single-Execution Attacks on Exponentiations”,
in Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Re-
vised Selected Papers, Vol. 8419, edited by A. Francillon and P. Rohatgi,
Lecture Notes in Computer Science (2013), pp. 79–93.

130R. Specht, J. Heyszl, M. Kleinsteuber, and G. Sigl, “Improving Non-profiled
Attacks on Exponentiations Based on Clustering and Extracting Leakage
from Multi-channel High-Resolution EM Measurements”, in Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop,
COSADE 2015, Berlin, Germany, April 13-14, 2015. Revised Selected Pa-
pers, Vol. 9064, edited by S. Mangard and A. Y. Poschmann, Lecture Notes
in Computer Science (2015), pp. 3–19.

131E. Nascimento and L. Chmielewski, “Applying Horizontal Clustering Side-
Channel Attacks on Embedded ECC Implementations”, in Smart Card Re-
search and Advanced Applications - 16th International Conference, CARDIS
2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Pa-
pers, Vol. 10728, edited by T. Eisenbarth and Y. Teglia, Lecture Notes in
Computer Science (2017), pp. 213–231.

132G. Perin and L. Chmielewski, “A Semi-Parametric Approach for Side-Channel
Attacks on Protected RSA Implementations”, in Smart Card Research and
Advanced Applications - 14th International Conference, CARDIS 2015,

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-75208-2_13
http://dx.doi.org/10.1007/978-3-319-75208-2_13
http://dx.doi.org/10.1007/978-3-319-75208-2_13
http://dx.doi.org/10.1007/978-3-319-75208-2_13
http://dx.doi.org/10.1007/978-3-319-31271-2_3
http://dx.doi.org/10.1007/978-3-319-31271-2_3
http://dx.doi.org/10.1007/978-3-319-31271-2_3

332 References

Bochum, Germany, November 4-6, 2015. Revised Selected Papers, Vol. 9514,
edited by N. Homma and M. Medwed, Lecture Notes in Computer Science
(2015), pp. 34–53.

133G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, A testing methodology for side-
channel resistance validation, 2011.

134S. P. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Information
Theory 28, 129–136 (1982).

135B. L. Welch, “The Generalization of ‘Student’s’ Problem when Several Dif-
ferent Population Variances are Involved”, Biometrika 34, 28–35 (1947).

136S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “NICV: Normalized Inter-
Class Variance for Detection of Side-Channel Leakage”, IACR Cryptology
ePrint Archive 2013, 717 (2013).

137C. Clavier and L. Reynaud, “Improved Blind Side-Channel Analysis by Ex-
ploitation of Joint Distributions of Leakages”, in Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, Vol. 10529, edited
by W. Fischer and N. Homma, Lecture Notes in Computer Science (2017),
pp. 24–44.

138D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-speed
high-security signatures”, J. Cryptographic Engineering 2, 77–89 (2012).

139M. Joye, “Highly Regular Right-to-Left Algorithms for Scalar Multiplica-
tion”, in Cryptographic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13, 2007, Pro-
ceedings, Vol. 4727, edited by P. Paillier and I. Verbauwhede, LNCS (2007),
pp. 135–147.

140H. Hisil, K. K. Wong, G. Carter, and E. Dawson, “Twisted Edwards Curves
Revisited”, in Advances in Cryptology - ASIACRYPT 2008, 14th Interna-
tional Conference on the Theory and Application of Cryptology and In-
formation Security, Melbourne, Australia, December 7-11, 2008. Proceed-
ings, Vol. 5350, edited by J. Pieprzyk, Lecture Notes in Computer Science
(2008), pp. 326–343.

141M. Hutter and P. Schwabe, “NaCl on 8-Bit AVR Microcontrollers”, in Progress
in Cryptology - AFRICACRYPT 2013, 6th International Conference on
Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings, Vol. 7918,
edited by A. Youssef, A. Nitaj, and A. E. Hassanien, Lecture Notes in Com-
puter Science (2013), pp. 156–172.

142P. Rousseeuw, “Silhouettes: A Graphical Aid to the Interpretation and Val-
idation of Cluster Analysis”, J. Comput. Appl. Math. 20, 53–65 (1987).

143D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure”, IEEE
Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979).

http://dx.doi.org/10.1007/978-3-319-31271-2_3
http://dx.doi.org/10.1007/978-3-319-31271-2_3
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.2307/2332510
http://dx.doi.org/10.1007/978-3-319-66787-4_2
http://dx.doi.org/10.1007/978-3-319-66787-4_2
http://dx.doi.org/10.1007/978-3-319-66787-4_2
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1007/978-3-540-74735-2_10
http://dx.doi.org/10.1007/978-3-540-74735-2_10
http://dx.doi.org/10.1007/978-3-540-74735-2_10
http://dx.doi.org/10.1007/978-3-540-89255-7_20
http://dx.doi.org/10.1007/978-3-540-89255-7_20
http://dx.doi.org/10.1007/978-3-540-89255-7_20
http://dx.doi.org/10.1007/978-3-540-89255-7_20
http://dx.doi.org/10.1007/978-3-642-38553-7_9
http://dx.doi.org/10.1007/978-3-642-38553-7_9
http://dx.doi.org/10.1007/978-3-642-38553-7_9
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/TPAMI.1979.4766909

References 333

144E. Cagli, C. Dumas, and E. Prouff, “Convolutional Neural Networks with
Data Augmentation Against Jitter-Based Countermeasures - Profiling At-
tacks Without Pre-processing”, in Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, Vol. 10529, edited by W. Fischer and
N. Homma, Lecture Notes in Computer Science (2017), pp. 45–68.

145J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural
Networks 61, 85–117 (2015).

146M. Khairallah, R. Sadhukhan, R. Samanta, J. Breier, S. Bhasin, R. S. Chakraborty,
A. Chattopadhyay, and D. Mukhopadhyay, “DFARPA: Differential fault at-
tack resistant physical design automation”, in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2018 (IEEE, 2018), pp. 1171–
1174.

147W. He, J. Breier, and S. Bhasin, “Cheap and cheerful: A low-cost digital
sensor for detecting laser fault injection attacks”, in International Confer-
ence on Security, Privacy, and Applied Cryptography Engineering (Springer,
2016), pp. 27–46.

148C. Patrick, B. Yuce, N. F. Ghalaty, and P. Schaumont, “Lightweight fault at-
tack resistance in software using intra-instruction redundancy”, in Inter-
national Conference on Selected Areas in Cryptography (Springer, 2016),
pp. 231–244.

149A. Baksi, S. Bhasin, J. Breier, M. Khairallah, and T. Peyrin, “Protecting
block ciphers against differential fault attacks without re-keying”, in 2018
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST) (IEEE, 2018), pp. 191–194.

150M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni, “Fresh re-
keying: Security against side-channel and fault attacks for low-cost de-
vices”, in International Conference on Cryptology in Africa (Springer, 2010),
pp. 279–296.

151C. Dobraunig, F. Koeune, S. Mangard, F. Mendel, and F.-X. Standaert, “To-
wards fresh and hybrid re-keying schemes with beyond birthday secu-
rity”, in International Conference on Smart Card Research and Advanced
Applications (Springer, 2015), pp. 225–241.

152C. Dobraunig, M. Eichlseder, S. Mangard, and F. Mendel, “On the security
of fresh re-keying to counteract side-channel and fault attacks”, in Inter-
national Conference on Smart Card Research and Advanced Applications
(Springer, 2014), pp. 233–244.

153G. Piret and J.-J. Quisquater, “A differential fault attack technique against
SPN structures, with application to the AES and KHAZAD”, in Inter-
national workshop on cryptographic hardware and embedded systems
(Springer, 2003), pp. 77–88.

http://dx.doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003

334 References

154K. Sakiyama, Y. Li, M. Iwamoto, and K. Ohta, “Information-theoretic ap-
proach to optimal differential fault analysis”, IEEE Transactions on Infor-
mation Forensics and Security 7, 109–120 (2012).

155M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis of
the advanced encryption standard using a single fault”, in IFIP interna-
tional workshop on information security theory and practices (Springer,
2011), pp. 224–233.

156K. Jeong and C. Lee, “Differential fault analysis on block cipher LED-64”,
in Future Information Technology, Application, and Service (Springer, 2012),
pp. 747–755.

157N. Vafaei, N. Bagheri, S. Saha, and D. Mukhopadhyay, “Differential Fault
Attack on SKINNY Block Cipher”, in International Conference on Secu-
rity, Privacy, and Applied Cryptography Engineering (Springer, 2018), pp. 177–
197.

158L. Song and L. Hu, “Differential fault attack on the PRINCE block cipher”,
in International Workshop on Lightweight Cryptography for Security and
Privacy (Springer, 2013), pp. 43–54.

159J. Breier and W. He, “Multiple fault attack on present with a hardware
trojan implementation in FPGA”, in Secure Internet of Things (SIoT), 2015
International Workshop on (IEEE, 2015), pp. 58–64.

160S. Patranabis, J. Breier, D. Mukhopadhyay, and S. Bhasin, “One plus one
is more than two: a practical combination of power and fault analysis at-
tacks on PRESENT and PRESENT-like block ciphers”, in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2017 Workshop on (IEEE, 2017),
pp. 25–32.

161B. Lac, M. Beunardeau, A. Canteaut, J. J. Fournier, and R. Sirdey, “A First
DFA on PRIDE: from Theory to Practice”, in International Conference on
Risks and Security of Internet and Systems (Springer, 2016), pp. 214–238.

162E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems”, in Annual international cryptology conference (Springer, 1997),
pp. 513–525.

163P. Dusart, G. Letourneux, and O. Vivolo, “Differential fault analysis on
AES”, in International Conference on Applied Cryptography and Network
Security (Springer, 2003), pp. 293–306.

164C. Giraud, “DFA on AES”, in International Conference on Advanced En-
cryption Standard (Springer, 2004), pp. 27–41.

165G. Wang and S. Wang, “Differential Fault Analysis on PRESENT Key Sched-
ule”, in Computational Intelligence and Security (CIS), 2010 International
Conference on (2010), pp. 362–366.

http://dx.doi.org/10.1109/CIS.2010.84
http://dx.doi.org/10.1109/CIS.2010.84

References 335

166F. De Santis, O. M. Guillen, E. Sakic, and G. Sigl, “Ciphertext-only fault
attacks on PRESENT”, in International Workshop on Lightweight Cryp-
tography for Security and Privacy (Springer, 2014), pp. 85–108.

167B. Lac, A. Canteaut, J. Fournier, and R. Sirdey, “DFA on LS-Designs with
a Practical Implementation on SCREAM”, in International Workshop on
Constructive Side-Channel Analysis and Secure Design (Springer, 2017),
pp. 223–247.

168L. Hemme, “A differential fault attack against early rounds of (triple-)
DES”, in International Workshop on Cryptographic Hardware and Em-
bedded Systems (Springer, 2004), pp. 254–267.

169H. Tupsamudre, S. Bisht, and D. Mukhopadhyay, “Differential fault anal-
ysis on the families of SIMON and SPECK ciphers”, in 2014 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, 2014),
pp. 40–48.

170N. Bagheri, R. Ebrahimpour, and N. Ghaedi, “New differential fault anal-
ysis on PRESENT”, EURASIP Journal on Advances in Signal Processing
2013, 145 (2013).

171M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, and
A. Tria, “How to flip a bit?”, in On-Line Testing Symposium (IOLTS), 2010
IEEE 16th International (IEEE, 2010), pp. 235–239.

172D. Saha, D. Mukhopadhyay, and D. R. Chowdhury, “A Diagonal Fault
Attack on the Advanced Encryption Standard”, IACR Cryptology ePrint
Archive 2009 (2009).

173V. Grosso, G. Leurent, F.-X. Standaert, and K. Varıcı, “LS-designs: Bitslice
encryption for efficient masked software implementations”, in Interna-
tional Workshop on Fast Software Encryption (Springer, 2014), pp. 18–37.

174S. Halevi, D. Coppersmith, and C. Jutla, “SCREAM: A software-efficient
stream cipher”, in International Workshop on Fast Software Encryption
(Springer, 2002), pp. 195–209.

175C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P.
Sasdrich, and S. M. Sim, “The SKINNY family of block ciphers and its low-
latency variant MANTIS”, in Annual Cryptology Conference (Springer,
2016), pp. 123–153.

176J. Jean, I. Nikolić, and T. Peyrin, “Tweaks and keys for block ciphers: the
TWEAKEY framework”, in International Conference on the Theory and
Application of Cryptology and Information Security (Springer, 2014), pp. 274–
288.

177A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher”, in International Workshop on Cryptographic Hardware and
Embedded Systems (Springer, 2007), pp. 450–466.

336 References

178M. Wang, “Differential cryptanalysis of reduced-round PRESENT”, in In-
ternational Conference on Cryptology in Africa (Springer, 2008), pp. 40–
49.

179T. Reis, D. Aranha, and J. López, “PRESENT Runs Fast: Efficient and Se-
cure Implementation in Software”, in Conference on Cryptographic Hard-
ware and Embedded Systems (CHES’17) (2017).

180N. F. Pub, “197: Advanced encryption standard (AES)”, Federal informa-
tion processing standards publication 197, 0311 (2001).

181J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryp-
tion standard (Springer Science & Business Media, 2013).

182G. Liu, M. Ghosh, and L. Song, “Security analysis of SKINNY under related-
tweakey settings”, IACR Transactions on Symmetric Cryptology 2017, 37–
72 (2017).

183C. Chen, T. Eisenbarth, A. Shahverdi, and X. Ye, “Balanced Encoding to
Mitigate Power Analysis: A Case Study”, in CARDIS, Vol. 8968, Lecture
Notes in Computer Science, Paris, France (2014).

184P. Rauzy, S. Guilley, and Z. Najm, “Formally proved security of assembly
code against power analysis”, English, Journal of Cryptographic Engineer-
ing, 1–16 (2015).

185“The Other Side of The Coin: Analyzing Software Encoding Schemes Against
Fault Injection Attacks”, in CARDIS (2015).

186Y. Ishai, A. Sahai, and D. Wagner, “Private Circuits: Securing Hardware
against Probing Attacks”, in CRYPTO, Vol. 2729, Lecture Notes in Com-
puter Science, Santa Barbara, California, USA (2003), pp. 463–481.

187Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner, “Private Circuits II:
Keeping Secrets in Tamperable Circuits”, in EUROCRYPT, Vol. 4004, Lec-
ture Notes in Computer Science, St. Petersburg, Russia (2006), pp. 308–
327.

188S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the
Secrets of Smart Cards, ISBN 0-387-30857-1, http://www.dpabook.org/
(Springer, 2006), p. 338.

189C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and J.-
P. Seifert, “Breaking and entering through the silicon”, in ACM Confer-
ence on Computer and Communications Security, edited by A.-R. Sadeghi,
V. D. Gligor, and M. Yung (2013), pp. 733–744.

190M. Gomathisankaran and A. Tyagi, “Glitch Resistant Private Circuits De-
sign Using HORNS”, in IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2014, Tampa, FL, USA, July 9-11, 2014 (2014), pp. 522–527.

191Y. Yu, J. Leiwo, and B. Premkumar, “Private stateful circuits secure against
probing attacks”, in ASIACCS, Singapore (2007), pp. 63–69.

http://dx.doi.org/10.1007/s13389-015-0105-2
http://dx.doi.org/10.1007/s13389-015-0105-2
http://www.dpabook.org/
http://www.springer.com/
http://dx.doi.org/10.1109/ISVLSI.2014.93
http://dx.doi.org/10.1109/ISVLSI.2014.93

References 337

192J. Park and A. Tyagi, “t-Private logic synthesis on FPGAs”, in Hardware-
Oriented Security and Trust (HOST), 2012 IEEE International Symposium
on (2012), pp. 63–68.

193J. Park and A. Tyagi, “t-Private Systems: Unified Private Memories and
Computation”, English, in Security, Privacy, and Applied Cryptography
Engineering, Vol. 8804, edited by R. Chakraborty, V. Matyas, and P. Schau-
mont, Lecture Notes in Computer Science (2014), pp. 285–302.

194J. Park and A. Tyagi, “Towards Making Private Circuits Practical: DPA
Resistant Private Circuits”, in IEEE Computer Society Annual Symposium
on VLSI, ISVLSI 2014, Tampa, FL, USA, July 9-11, 2014 (2014), pp. 528–
533.

195S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations
Against Side-Channel Attacks and Glitches”, in ICICS, Vol. 4307, LNCS,
Raleigh, NC, USA (2006), pp. 529–545.

196O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede, “Con-
solidating Masking Schemes”, in Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, Vol. 9215, edited by R. Gennaro and M.
Robshaw, Lecture Notes in Computer Science (2015), pp. 764–783.

197H. Kim, S. Hong, and J. Lim, “A Fast and Provably Secure Higher-Order
Masking of AES S-Box”, in CHES, Vol. 6917, edited by B. Preneel and T.
Takagi, LNCS (2011), pp. 95–107.

198J. Coron, J. Großschädl, and P. K. Vadnala, “Secure Conversion between
Boolean and Arithmetic Masking of Any Order”, in Cryptographic Hard-
ware and Embedded Systems - CHES 2014 - 16th International Work-
shop, Busan, South Korea, September 23-26, 2014. Proceedings, Vol. 8731,
edited by L. Batina and M. Robshaw, Lecture Notes in Computer Science
(2014), pp. 188–205.

199J. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and D. Naccache, “Low-
Cost Countermeasure against RPA”, in Smart Card Research and Advanced
Applications - 11th International Conference, CARDIS 2012, Graz, Aus-
tria, November 28-30, 2012, Revised Selected Papers, Vol. 7771, edited by
S. Mangard, Lecture Notes in Computer Science (2012), pp. 106–122.

200Xilinx, Virtex-6 Libraries Guide for HDL Designs (UG623, v 13.1), Primitive:
Six-input, 2-output, Look-Up Table, http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_1/virtex6_hdl.pdf, 2011.

201S. Bhasin, S. Guilley, F. Flament, N. Selmane, and J.-L. Danger, “Counter-
ing Early Evaluation: An Approach Towards Robust Dual-Rail Precharge
Logic”, in WESS, Scottsdale, Arizona, USA. DOI: 10.1145/1873548.1873554
(2010), 6:1–6:8.

http://dx.doi.org/10.1109/HST.2012.6224321
http://dx.doi.org/10.1109/HST.2012.6224321
http://dx.doi.org/10.1109/HST.2012.6224321
http://dx.doi.org/10.1007/978-3-319-12060-7_19
http://dx.doi.org/10.1007/978-3-319-12060-7_19
http://dx.doi.org/10.1109/ISVLSI.2014.24
http://dx.doi.org/10.1109/ISVLSI.2014.24
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-44709-3_11
http://dx.doi.org/10.1007/978-3-662-44709-3_11
http://dx.doi.org/10.1007/978-3-662-44709-3_11
http://dx.doi.org/10.1007/978-3-642-37288-9_8
http://dx.doi.org/10.1007/978-3-642-37288-9_8
http://dx.doi.org/10.1007/978-3-642-37288-9_8
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/virtex6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/virtex6_hdl.pdf

338 References

202R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
The SIMON and SPECK Families of Lightweight Block Ciphers, Cryptology
ePrint Archive, Report 2013/404, http://eprint.iacr.org/2013/404,
2013.

203S. Bhasin, T. Graba, J. Danger, and Z. Najm, “A look into SIMON from
a side-channel perspective”, in 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2014, Arlington, VA, USA,
May 6-7, 2014 (2014), pp. 56–59.

204L. Sauvage, M. Nassar, S. Guilley, F. Flament, J.-L. Danger, and Y. Mathieu,
“Exploiting Dual-Output Programmable Blocks to Balance Secure Dual-
Rail Logics”, International Journal of Reconfigurable Computing (IJRC),
edited by Hindawi, DOI: 10.1155/2010/375245, 12 (2010).

205W. He, A. Otero, E. de la Torre, and T. Riesgo, “Customized and Auto-
mated Routing Repair Toolset Towards Side-Channel Analysis Resistant
Dual Rail Logic”, Microprocessors and Microsystems, edited by Elsevier,
DOI: 10.1016/j.micpro.2014.02.005 (2014).

206M. G. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust Protection
against Fault Injection Attacks on Smart Cards Implementing the Ad-
vanced Encryption Standard”, in DSN, Florence, Italy (2004), pp. 93–101.

207A. Moradi and V. Immler, “Early Propagation and Imbalanced Routing,
How to Diminish in FPGAs”, IACR Cryptol. ePrint Arch., 454 (2014).

208G. Piret and J.-J. Quisquater, “A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and Khazad”, in CHES, Vol. 2779,
LNCS, Cologne, Germany (2003), pp. 77–88.

209N. Selmane, S. Guilley, and J.-L. Danger, “Setup Time Violation Attacks on
AES”, in EDCC, The seventh European Dependable Computing Confer-
ence, ISBN: 978-0-7695-3138-0, DOI: 10.1109/EDCC-7.2008.11 (2008),
pp. 91–96.

210S. Guilley, S. Chaudhuri, L. Sauvage, T. Graba, J.-L. Danger, P. Hoogvorst,
V.-N. Vong, M. Nassar, and F. Flament, “Shall we trust WDDL?”, in Future
of Trust in Computing, Vol. 2, edited by Vieweg+Teubner, DOI: 10.1007/978-
3-8348-9324-6_22. Berlin, Germany (2008), pp. 208–215.

211A. Boscher and H. Handschuh, “Masking Does Not Protect Against Dif-
ferential Fault Attacks”, in FDTC, 5th Workshop on Fault Detection and
Tolerance in Cryptography, IEEE-CS, DOI: 10.1109/FDTC.2008.12, Wash-
ington, DC, USA (2008), pp. 35–40.

212Y. Monnet, M. Renaudin, R. Leveugle, C. Clavier, and P. Moitrel, “Case
Study of a Fault Attack on Asynchronous DES Crypto-Processors”, in FDTC,
Vol. 4236, Lecture Notes in Computer Science, Yokohama, Japan (2006),
pp. 88–97.

http://eprint.iacr.org/2013/404
http://dx.doi.org/10.1109/HST.2014.6855568
http://dx.doi.org/10.1109/HST.2014.6855568
http://dx.doi.org/10.1109/HST.2014.6855568
http://eprint.iacr.org/2014/454

References 339

213A. Dehbaoui, A. Mirbaha, N. Moro, J. Dutertre, and A. Tria, “Electromag-
netic Glitch on the AES Round Counter”, in Constructive Side-Channel
Analysis and Secure Design - 4th International Workshop, COSADE 2013,
Paris, France, March 6-8, 2013, Revised Selected Papers, Vol. 7864, edited
by E. Prouff, Lecture Notes in Computer Science (2013), pp. 17–31.

214S. Ordas, L. Guillaume-Sage, K. Tobich, J. Dutertre, and P. Maurine, “Evi-
dence of a Larger EM-Induced Fault Model”, in Smart Card Research and
Advanced Applications - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected Papers, Vol. 8968,
edited by M. Joye and A. Moradi, Lecture Notes in Computer Science
(2014), pp. 245–259.

215Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and K. Ohta,
“Fault Sensitivity Analysis”, in CHES, Vol. 6225, Lecture Notes in Com-
puter Science, Santa Barbara, CA, USA (2010), pp. 320–334.

216D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA)”, English, International Journal of Informa-
tion Security 1, 36–63 (2001).

217M. Naehrig, R. Niederhagen, and P. Schwabe, “New software speed records
for cryptographic pairings”, in Progress in Cryptology – LATINCRYPT
2010, Vol. 6212, edited by M. Abdalla and P. S. Barreto, Lecture Notes in
Computer Science, Updated version: http://cryptojedi.org/papers/
#dclxvi (2010), pp. 109–123.

218A. Guillevic and D. Vergnaud, “Genus 2 Hyperelliptic Curve Families with
Explicit Jacobian Order Evaluation and Pairing-Friendly Constructions”,
English, in Pairing-Based Cryptography — Pairing 2012, Vol. 7708, edited
by M. Abdalla and T. Lange, Lecture Notes in Computer Science (Springer
Berlin Heidelberg, 2013), pp. 234–253.

219M. Joye and M. Tunstall, eds., Fault Analysis in Cryptography, Information
Security and Cryptography (Springer, 2012).

220I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on Elliptic
Curve Cryptosystems”, in CRYPTO ’00: Proceedings of the 20th Annual
International Cryptology Conference on Advances in Cryptology (2000),
pp. 131–146.

221D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract)”, in EUROCRYPT,
Vol. 1233, edited by W. Fumy, Lecture Notes in Computer Science (1997),
pp. 37–51.

222J. Blömer, M. Otto, and J.-P. Seifert, “Sign Change Fault Attacks on Elliptic
Curve Cryptosystems”, English, in Fault Diagnosis and Tolerance in Cryp-
tography, Vol. 4236, edited by L. Breveglieri, I. Koren, D. Naccache, and

http://dx.doi.org/10.1007/978-3-642-40026-1_2
http://dx.doi.org/10.1007/978-3-642-40026-1_2
http://dx.doi.org/10.1007/978-3-642-40026-1_2
http://dx.doi.org/10.1007/978-3-319-16763-3_15
http://dx.doi.org/10.1007/978-3-319-16763-3_15
http://dx.doi.org/10.1007/978-3-319-16763-3_15
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1007/s102070100002
http://cryptojedi.org/papers/#dclxvi
http://cryptojedi.org/papers/#dclxvi
http://dx.doi.org/10.1007/978-3-642-36334-4_16
http://dx.doi.org/10.1007/11889700_4
http://dx.doi.org/10.1007/11889700_4

340 References

J.-P. Seifert, Lecture Notes in Computer Science (Springer Berlin Heidel-
berg, 2006), pp. 36–52.

223G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, and J. Zapalowicz, “Syn-
thesis of Fault Attacks on Cryptographic Implementations”, in Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, Scottsdale, AZ, USA, November 3-7, 2014, edited by G.
Ahn, M. Yung, and N. Li (2014), pp. 1016–1027.

224R. Lashermes, M. Paindavoine, N. El Mrabet, J. J. Fournier, and L. Goubin,
“Practical Validation of Several Fault Attacks against the Miller Algorithm”,
in Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014 Work-
shop on, Busan, Korea (2014), pp. 115–122.

225J. Blömer, R. Gomes Da Silva, P. Gunther, J. Krämer, and J.-P. Seifert, “A
Practical Second-Order Fault Attack against a Real-World Pairing Imple-
mentation”, in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2014 Workshop on, Busan, Korea (2014), pp. 123–136.

226J. Blömer, P. Günther, and G. Liske, “Tampering Attacks in Pairing-Based
Cryptography”, in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2014 Workshop on, Busan, Korea (2014), pp. 1–7.

227N. El Mrabet, J. J. Fournier, L. Goubin, and R. Lashermes, “A survey of
fault attacks in pairing based cryptography”, English, Cryptography and
Communications, 1–21 (2014).

228D. Wagner, “Cryptanalysis of a provably secure CRT-RSA algorithm”, in
ACM Conference on Computer and Communications Security, edited by
V. Atluri, B. Pfitzmann, and P. D. McDaniel (2004), pp. 92–97.

229C. Giraud, “An RSA Implementation Resistant to Fault Attacks and to
Simple Power Analysis”, IEEE Trans. Computers 55, 1116–1120 (2006).

230A. Boscher, R. Naciri, and E. Prouff, “CRT RSA Algorithm Protected Against
Fault Attacks”, in WISTP, Vol. 4462, edited by D. Sauveron, C. Markan-
tonakis, A. Bilas, and J.-J. Quisquater, Lecture Notes in Computer Science
(2007), pp. 229–243.

231D.-P. Le, M. Rivain, and C. H. Tan, “On Double Exponentiation for Se-
curing RSA against Fault Analysis”, in CT-RSA, Vol. 8366, edited by J.
Benaloh, Lecture Notes in Computer Science (2014), pp. 152–168.

232S.-K. Kim, T. H. Kim, D.-G. Han, and S. Hong, “An efficient CRT-RSA al-
gorithm secure against power and fault attacks”, J. Syst. Softw. 84, 1660–
1669 (2011).

233D. Karaklajic, J. Fan, J. Schmidt, and I. Verbauwhede, “Low-cost fault de-
tection method for ECC using Montgomery powering ladder”, in Design,
Automation and Test in Europe, DATE 2011, Grenoble, France, March 14-
18, 2011 (2011), pp. 1016–1021.

http://dx.doi.org/10.1145/2660267.2660304
http://dx.doi.org/10.1145/2660267.2660304
http://dx.doi.org/10.1145/2660267.2660304
http://dx.doi.org/10.1109/FDTC.2014.21
http://dx.doi.org/10.1109/FDTC.2014.21
http://dx.doi.org/10.1109/FDTC.2014.22
http://dx.doi.org/10.1109/FDTC.2014.22
http://dx.doi.org/10.1109/FDTC.2014.10
http://dx.doi.org/10.1109/FDTC.2014.10
http://dx.doi.org/10.1007/s12095-014-0114-5
http://dx.doi.org/10.1007/s12095-014-0114-5
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.04.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2011.04.026
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5763165
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5763165
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5763165

References 341

234A. Shamir, Method and apparatus for protecting public key schemes from tim-
ing and fault attacks, Patent Number 5,991,415; also presented at the rump
session of EUROCRYPT ’97, 1999.

235C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault At-
tacks on RSA with CRT: Concrete Results and Practical Countermeasures”,
in CHES, Vol. 2523, edited by B. S. Kaliski Jr., Ç. K. Koç, and C. Paar, Lec-
ture Notes in Computer Science (2002), pp. 260–275.

236D. Vigilant, “RSA with CRT: A New Cost-Effective Solution to Thwart
Fault Attacks”, in CHES, Vol. 5154, edited by E. Oswald and P. Rohatgi,
Lecture Notes in Computer Science (2008), pp. 130–145.

237M. Joye, P. Paillier, and S.-M. Yen, “Secure evaluation of modular func-
tions”, in International Workshop on Cryptology and Network Security,
edited by R. Hwang and C. Wu, http://joye.site88.net/papers/
JPY01dfa.pdf, Taipei, Taiwan (2001), pp. 227–229.

238J. Blömer, M. Otto, and J.-P. Seifert, “A new CRT-RSA algorithm secure
against bellcore attacks”, in ACM Conference on Computer and Com-
munications Security, edited by S. Jajodia, V. Atluri, and T. Jaeger (2003),
pp. 311–320.

239M. Ciet and M. Joye, “Practical Fault Countermeasures for Chinese Re-
maindering Based RSA”, in Fault Diagnosis and Tolerance in Cryptogra-
phy (2005).

240E. Dottax, C. Giraud, M. Rivain, and Y. Sierra, “On Second-Order Fault
Analysis Resistance for CRT-RSA Implementations”, in WISTP, Vol. 5746,
edited by O. Markowitch, A. Bilas, J.-H. Hoepman, C. J. Mitchell, and J.-J.
Quisquater, Lecture Notes in Computer Science (2009), pp. 68–83.

241Y.-J. Baek and I. Vasyltsov, “How to Prevent DPA and Fault Attack in a
Unified Way for ECC Scalar Multiplication - Ring Extension Method”, En-
glish, in Information Security Practice and Experience, Vol. 4464, edited by
E. Dawson and D. S. Wong, Lecture Notes in Computer Science (Springer
Berlin Heidelberg, 2007), pp. 225–237.

242M. Joye, Fault-resistant calculations on elliptic curves, EP Patent App. EP20,100,155,001
; http://www.google.com/patents/EP2228716A1?cl=en, 2010.

243D. J. Bernstein, T. Lange, and P. Schwabe, “The Security Impact of a New
Cryptographic Library”, in Progress in Cryptology - LATINCRYPT 2012
- 2nd International Conference on Cryptology and Information Security in
Latin America, Santiago, Chile, October 7-10, 2012. Proceedings, Vol. 7533,
edited by A. Hevia and G. Neven, Lecture Notes in Computer Science
(2012), pp. 159–176.

244C. Clavier, “Secret External Encodings Do Not Prevent Transient Fault
Analysis”, in CHES, Vol. 4727, Lecture Notes in Computer Science, Vi-
enna, Austria (2007), pp. 181–194.

http://joye.site88.net/papers/JPY01dfa.pdf
http://joye.site88.net/papers/JPY01dfa.pdf
http://dx.doi.org/10.1007/978-3-540-72163-5_18
http://www.google.com/patents/EP2228716A1?cl=en
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9

342 References

245N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verifi-
cation of a software countermeasure against instruction skip attacks”, J.
Cryptographic Engineering 4, 145–156 (2014).

246V. Leont’ev, “Roots of random polynomials over a finite field”, English,
Mathematical Notes 80, 300–304 (2006).

247M. Dugardin, S. Guilley, M. Moreau, Z. Najm, and P. Rauzy, Using Modular
Extension to Provably Protect Edwards Curves Against Fault Attacks, Cryp-
tology ePrint Archive, Report 2015/882, http : / / eprint . iacr . org /
2015/882, 2015.

248H. M. Edwards, “A normal form for elliptic curves”, Bulletin of the Amer-
ican Mathematical Society 44, 393–422 (2007).

249D. J. Bernstein and T. Lange, “Faster Addition and Doubling on Elliptic
Curves”, in Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryptology and In-
formation Security, Kuching, Malaysia, December 2-6, 2007, Proceedings,
Vol. 4833, edited by K. Kurosawa, Lecture Notes in Computer Science
(2007), pp. 29–50.

250D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted Ed-
wards Curves”, in Progress in Cryptology - AFRICACRYPT 2008, First
International Conference on Cryptology in Africa, Casablanca, Morocco,
June 11-14, 2008. Proceedings, Vol. 5023, edited by S. Vaudenay, Lecture
Notes in Computer Science (2008), pp. 389–405.

251D. J. Bernstein and T. Lange, Explicit-Formulas Database, http://hyperelliptic.
org/EFD/, 2015.

252A. Battistello, “Constructive Side-Channel Analysis and Secure Design:
5th International Workshop, COSADE 2014, Paris, France, April 13-15,
2014. Revised Selected Papers”, in (Springer International Publishing,
Cham, 2014) Chap. Common Points on Elliptic Curves: The Achilles’ Heel
of Fault Attack Countermeasures, pp. 69–81.

253D. Moody and D. Shumow, “Isogenies on Edwards and Huff curves”, Com-
puter Security Division, National Institute of Standards and Technology
(NIST) (2011).

254University of Sydney, Magma Computational Algebra System, http://magma.
maths.usyd.edu.au/magma/.

255P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis”, in, CRYPTO
’99 (1999), pp. 388–397.

256F. Poucheret, K. Tobich, M. Lisart, L. Chusseau, B. Robisson, and P. Mau-
rine, “Local and Direct EM Injection of Power Into CMOS Integrated Cir-
cuits”, in 2011 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy, FDTC 2011, Tokyo, Japan, September 29, 2011 (2011), pp. 100–104.

http://dx.doi.org/10.1007/s13389-014-0077-7
http://dx.doi.org/10.1007/s13389-014-0077-7
http://dx.doi.org/10.1007/s11006-006-0139-y
http://eprint.iacr.org/2015/882
http://eprint.iacr.org/2015/882
http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://dx.doi.org/10.1007/978-3-540-68164-9_26
http://dx.doi.org/10.1007/978-3-540-68164-9_26
http://dx.doi.org/10.1007/978-3-540-68164-9_26
http://hyperelliptic.org/EFD/
http://hyperelliptic.org/EFD/
http://dx.doi.org/10.1007/978-3-319-10175-0_6
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

References 343

257L. Zussa, A. Dehbaoui, K. Tobich, J. Dutertre, P. Maurine, L. Guillaume-
Sage, J. Clédière, and A. Tria, “Efficiency of a glitch detector against elec-
tromagnetic fault injection”, in Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014
(2014), pp. 1–6.

258N. Miura, D. Fujimoto, M. Nagata, N. Homma, Y. Hayashi, and T. Aoki,
“EM attack sensor: concept, circuit, and design-automation methodology”,
in Proceedings of the 52nd Annual Design Automation Conference, San
Francisco, CA, USA, June 7-11, 2015 (2015), 176:1–176:6.

259C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid
prototyping tools for FPGA designs: RapidSmith”, in Field-Programmable
Technology (FPT), 2010 International Conference on (IEEE, 2010), pp. 353–
356.

260W. He, A. Otero, E. de la Torre, and T. Riesgo, “Customized and auto-
mated routing repair toolset towards side-channel analysis resistant dual
rail logic”, Microprocessors and Microsystems 38, 899–910 (2014).

261S. Bhasin, J. Danger, S. Guilley, Z. Najm, and X. T. Ngo, “Linear Comple-
mentary Dual Code Improvement to Strengthen Encoded Circuit Against
Hardware Trojan Horses”, in 2015 IEEE International Symposium on Hardware-
Oriented Security and Trust, HOST 2015, McLean, VA, USA (2015).

262S. Trimberger and J. Moore, “FPGA Security: Motivations, Features, and
Applications”, Proceedings of the IEEE 102, 1248–1265 (2014).

263T. Güneysu and A. Moradi, “Generic Side-Channel Countermeasures for
Reconfigurable Devices”, in CHES, Vol. 6917, edited by B. Preneel and T.
Takagi, LNCS (2011), pp. 33–48.

264S. Bhasin, W. He, S. Guilley, and J.-L. Danger, “Exploiting FPGA block
memories for protected cryptographic implementations”, in ReCoSoC (2013),
pp. 1–8.

265T. Güneysu and C. Paar, “Ultra High Performance ECC over NIST Primes
on Commercial FPGAs”, in CHES (2008), pp. 62–78.

266D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, “Tile Before
Multiplication: An Efficient Strategy to Optimize DSP Multiplier for Ac-
celerating Prime Field ECC for NIST Curves”, in The 51st Annual Design
Automation Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5,
2014 (2014), pp. 1–6.

267T. Güneysu, Getting Post-Quantum Crypto Algorithms Ready for Deploy-
ment.

268W. He, A. Otero, E. de la Torre, and T. Riesgo, “Automatic generation of
identical routing pairs for FPGA implemented DPL logic”, in ReConFig
(2012), pp. 1–6.

http://dx.doi.org/10.1145/2744769.2747923
http://dx.doi.org/10.1145/2744769.2747923
http://dx.doi.org/10.1109/JPROC.2014.2331672
http://dx.doi.org/10.1145/2593069.2593234
http://dx.doi.org/10.1145/2593069.2593234
http://dx.doi.org/10.1145/2593069.2593234

344 References

269M. Kumm, K. Möller, and P. Zipf, “Reconfigurable FIR filter using dis-
tributed arithmetic on FPGAs”, in 2013 IEEE International Symposium
on Circuits and Systems (ISCAS2013), Beijing, China, May 19-23, 2013
(2013), pp. 2058–2061.

270P. Sasdrich, A. Moradi, O. Mischke, and T. Güneysu, “Achieving Side-
Channel Protection with Dynamic Logic Reconfiguration on Modern FP-
GAs”, IACR Cryptology ePrint Archive 2015, 203 (2015).

271F. Madlener, M. Stöttinger, and S. Huss, “Novel hardening techniques against
differential power analysis for multiplication in GF(2n)”, in Field-Programmable
Technology, 2009. FPT 2009. International Conference on (2009), pp. 328–
334.

272S. Ali, R. S. Chakraborty, D. Mukhopadhyay, and S. Bhunia, “Multi-level
attacks: An emerging security concern for cryptographic hardware”, in
Design, Automation and Test in Europe, DATE 2011, Grenoble, France,
March 14-18, 2011 (2011), pp. 1176–1179.

273R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware Trojan: Threats
and Emerging solutions”, in IEEE International High Level Design Val-
idation and Test Workshop, HLDVT 2009, San Francisco, CA, USA, 4-6
November 2009 (2009), pp. 166–171.

274M. Tehranipoor and D. Forte, “Tutorial T4: All You Need to Know about
Hardware Trojans and Counterfeit ICs”, in 2014 27th International Con-
ference on VLSI Design and 2014 13th International Conference on Em-
bedded Systems, Mumbai, India, January 5-9, 2014 (2014), pp. 9–10.

275Z. Chen, X. Guo, R. Nagesh, A. Reddy, M. Gora, and A. Maiti, Hardware
Trojan Designs on BASYS FPGA Board.

276A. P. Johnson, S. Saha, R. S. Chakraborty, D. Mukhopadhyay, and S. Gören,
“Fault Attack on AES via Hardware Trojan Insertion by Dynamic Partial
Reconfiguration of FPGA over Ethernet”, in Proceedings of the 9th Work-
shop on Embedded Systems Security, WESS ’14 (2014), 1:1–1:8.

277S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage, “Hardware
Trojan Horses in Cryptographic IP Cores”, in FDTC, edited by W. Fischer
and J.-M. Schmidt (2013), pp. 15–29.

278Benchmarks, https://www.trust- hub.org/resources/benchmarks,
Accessed: 2015-01-30.

279N. Homma, Y. Hayashi, N. Miura, D. Fujimoto, D. Tanaka, M. Nagata, and
T. Aoki, “EM Attack Is Non-invasive? - Design Methodology and Valid-
ity Verification of EM Attack Sensor”, in Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings (2014), pp. 1–16.

http://dx.doi.org/10.1109/ISCAS.2013.6572277
http://dx.doi.org/10.1109/ISCAS.2013.6572277
http://eprint.iacr.org/2015/203
http://dx.doi.org/10.1109/FPT.2009.5377676
http://dx.doi.org/10.1109/FPT.2009.5377676
http://dx.doi.org/10.1109/VLSID.2014.119
http://dx.doi.org/10.1109/VLSID.2014.119
http://dx.doi.org/10.1109/VLSID.2014.119
http://dx.doi.org/10.1145/2668322.2668323
http://dx.doi.org/10.1145/2668322.2668323
https://www.trust-hub.org/resources/benchmarks
http://dx.doi.org/10.1007/978-3-662-44709-3_1
http://dx.doi.org/10.1007/978-3-662-44709-3_1
http://dx.doi.org/10.1007/978-3-662-44709-3_1

References 345

280S. Ali, D. Mukhopadhyay, and M. Tunstall, “Differential fault analysis of
AES: towards reaching its limits”, J. Cryptographic Engineering 3, 73–97
(2013).

281A. Poschmann, S. Ling, and H. Wang, “256 Bit Standardized Crypto for
650 GE — GOST Revisited”, English, in Cryptographic Hardware and Em-
bedded Systems, CHES 2010, Vol. 6225, edited by S. Mangard and F.-X.
Standaert, Lecture Notes in Computer Science (Springer Berlin Heidel-
berg, 2010), pp. 219–233.

282S. Hajra, C. Rebeiro, S. Bhasin, G. Bajaj, S. Sharma, S. Guilley, and D.
Mukhopadhyay, “DRECON: DPA Resistant Encryption by Construction”,
in AFRICACRYPT, Vol. 8469, edited by D. Pointcheval and D. Vergnaud,
Lecture Notes in Computer Science (2014), pp. 420–439.

283A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight
Block Cipher”, in CHES, Vol. 4727, LNCS, Vienna, Austria (2007), pp. 450–
466.

284V. Izosimov, A. Asvestopoulos, O. Blomkvist, and M. Törngren, “Security-
aware development of cyber-physical systems illustrated with automotive
case study”, in Proceedings of the 2016 Conference on Design, Automa-
tion & Test in Europe (EDA Consortium, 2016), pp. 818–821.

285J. Wan, A. Canedo, and M. A. Al Faruque, “Security-aware functional mod-
eling of cyber-physical systems”, in Emerging Technologies & Factory Au-
tomation (ETFA), 2015 IEEE 20th Conference on (IEEE, 2015), pp. 1–4.

286D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halder-
man, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al., “Imperfect
forward secrecy: How Diffie-Hellman fails in practice”, in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security (ACM, 2015), pp. 5–17.

287N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
Your Ps and Qs: Detection of Widespread Weak Keys in Network De-
vices.”, in USENIX Security Symposium, Vol. 8 (2012), p. 1.

288P. Švenda, M. Nemec, P. Sekan, R. Kvašňovskỳ, D. Formánek, D. Komárek,
and V. Matyáš, “The Million-Key Question–Investigating the Origins of
RSA Public Keys”, in 25th USENIX Security Symposium. Proceedings (2016).

289M. J. Wiener, “Cryptanalysis of short RSA secret exponents”, IEEE Trans-
actions on Information theory 36, 553–558 (1990).

290D. Boneh, G. Durfee, and Y. Frankel, “An attack on RSA given a small
fraction of the private key bits”, in International Conference on the Theory
and Application of Cryptology and Information Security (Springer, 1998),
pp. 25–34.

http://dx.doi.org/10.1007/978-3-642-15031-9_15
http://dx.doi.org/10.1007/978-3-642-15031-9_15
http://dx.doi.org/10.1007/978-3-319-06734-6

346 References

291V. M. Sidelnikov, “A public-key cryptosystem based on binary Reed-Muller
codes”, Discrete Mathematics and Applications 4, 191–208 (1994).

292D. Boneh and G. Durfee, “Cryptanalysis of RSA with private key d less
than N/sup 0.292”, IEEE transactions on Information Theory 46, 1339–
1349 (2000).

293F. Weimer, Factoring RSA Keys With TLS Perfect Forward Secrecy, 2015.
294J. Hastad, “Solving simultaneous modular equations of low degree”, siam

Journal on Computing 17, 336–341 (1988).
295D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking

cryptographic protocols for faults”, in International conference on the the-
ory and applications of cryptographic techniques (Springer, 1997), pp. 37–
51.

296D. Micciancio, “Generalized compact knapsacks, cyclic lattices, and effi-
cient one-way functions”, Computational Complexity 16, 365–411 (2007).

297V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learn-
ing with Errors over Rings”, J. ACM 60, 43 (2013).

298L. K. Grover, “A fast quantum mechanical algorithm for database search”,
in Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing (ACM, 1996), pp. 212–219.

299L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, Report on post-quantum cryptography (US Department
of Commerce, National Institute of Standards and Technology, 2016).

300T. P. Berger and P. Loidreau, “How to mask the structure of codes for a
cryptographic use”, Designs, Codes and Cryptography 35, 63–79 (2005).

301R. Misoczki and P. S. Barreto, “Compact McEliece keys from Goppa codes”,
in International Workshop on Selected Areas in Cryptography (Springer,
2009), pp. 376–392.

302R. J. McEliece, “A public-key cryptosystem based on algebraic coding the-
ory”, JPL DSN Progress Report 4244, 114–116 (1978).

303R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. Barreto, “MDPC-McEliece:
New McEliece variants from moderate density parity-check codes”, in In-
formation Theory Proceedings (ISIT), 2013 IEEE International Symposium
on (IEEE, 2013), pp. 2069–2073.

304Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on MDPC
with CCA security using decoding errors”, in International Conference
on the Theory and Application of Cryptology and Information Security
(Springer, 2016), pp. 789–815.

305A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher”, in International Workshop on Cryptographic Hardware and
Embedded Systems (Springer, 2007), pp. 450–466.

References 347

306J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED Block Ci-
pher”, in Cryptographic Hardware and Embedded Systems–CHES 2011:
13th International Workshop, Nara, Japan, September 28–October 1, 2011,
Proceedings, Vol. 6917 (Springer, 2011), p. 326.

307R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers,
“The SIMON and SPECK lightweight block ciphers”, in Design Automa-
tion Conference (DAC), 2015 52nd ACM/EDAC/IEEE (IEEE, 2015), pp. 1–
6.

308C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P.
Sasdrich, and S. M. Sim, “The SKINNY family of block ciphers and its low-
latency variant MANTIS”, in Annual Cryptology Conference (Springer,
2016), pp. 123–153.

309S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “GIFT:
a small PRESENT”, in International Conference on Cryptographic Hard-
ware and Embedded Systems (Springer, 2017), pp. 321–345.

310M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher for con-
strained environments”, International Journal of Wireless and Mobile Com-
puting 2, 86–93 (2007).

311V. Mikhalev, F. Armknecht, and C. Müller, “On ciphers that continuously
access the non-volatile key”, IACR Transactions on Symmetric Cryptology
2016, 52–79 (2017).

312V. A. Ghafari, H. Hu, and Y. Chen, “Fruit-v2: ultra-lightweight stream ci-
pher with shorter internal state”, IACR Cryptology ePrint Archive 2016,
355 (2016).

313M. Hamann, M. Krause, and W. Meier, “LIZARD–a lightweight stream
cipher for power-constrained devices”, IACR Transactions on Symmetric
Cryptology 2017, 45–79 (2017).

314J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON family of lightweight
hash functions”, in Annual Cryptology Conference (Springer, 2011), pp. 222–
239.

315S. Kumar, J. Haj-Yihia, M. Khairallah, M. A. Elmohr, and A. Chattopad-
hyay, “A Comprehensive Performance Analysis of Hardware Implemen-
tations of CAESAR Candidates”, IACR Cryptology ePrint Archive 2017,
1261 (2017).

316S. Vaudenay, “Security Flaws Induced by CBC Padding-Applications to
SSL, IPSEC, WTLS...”, in International Conference on the Theory and Ap-
plications of Cryptographic Techniques (Springer, 2002), pp. 534–545.

317T Duong and J Rizzo, “BEAST: Surprising crypto attack against HTTPS”,
Blog, September 42, 45–47 (2011).

348 References

318N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and
DTLS record protocols”, in Security and Privacy (SP), 2013 IEEE Sympo-
sium on (IEEE, 2013), pp. 526–540.

319T. Duong and J. Rizzo, The CRIME attack, https://docs.google.com/
presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/

edit#slide=id.g1d134dff_1_222.
320Y. Gluck, N. Harris, and A. Prado, “BREACH: reviving the CRIME attack”,

Unpublished manuscript (2013).
321Microsoft, SecureZeroMemory function, https://msdn.microsoft.com/

en-us/library/windows/desktop/aa366877(v=vs.85).aspx.
322FreeBSD, explicit_bzero - FreeBSD Library Functions Manual, https://www.

freebsd.org/cgi/man.cgi?query=explicit_bzero&sektion=3.
323ISO/IEC, ISO/IEC 9899:201x for C Programming Language, http://www.

open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf.
324Z. Yang, B. Johannesmeyer, A. T. Olesen, S. Lerner, and K. Levchenko,

“Dead store elimination (still) considered harmful”, in 26th USENIX Se-
curity Symposium. USENIX Association (2017).

325A. Moradi, S. Guilley, and A. Heuser, “Detecting Hidden Leakages”, in
Applied Cryptography and Network Security - 12th International Confer-
ence, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings
(2014), pp. 324–342.

326P. Rauzy, S. Guilley, and Z. Najm, “Formally proved security of assembly
code against power analysis - A case study on balanced logic”, J. Crypto-
graphic Engineering 6, 201–216 (2016).

327S. Bhasin, N. Bruneau, J. Danger, S. Guilley, and Z. Najm, “Analysis and
Improvements of the DPA Contest v4 Implementation”, in Security, Pri-
vacy, and Applied Cryptography Engineering - 4th International Confer-
ence, SPACE 2014, Pune, India, October 18-22, 2014. Proceedings (2014),
pp. 201–218.

328J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede,
“State-of-the-art of secure ECC implementations: a survey on known side-
channel attacks and countermeasures”, in Hardware-Oriented Security
and Trust (HOST), 2010 IEEE International Symposium on (IEEE, 2010),
pp. 76–87.

329J.-S. Coron, “Resistance against differential power analysis for elliptic curve
cryptosystems”, in International Workshop on Cryptographic Hardware
and Embedded Systems (Springer, 1999), pp. 292–302.

330K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation”, in Proceedings of the con-
ference on Design, automation and test in Europe-Volume 1 (IEEE Com-
puter Society, 2004), p. 10246.

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit##slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit##slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit##slide=id.g1d134dff_1_222
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366877(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366877(v=vs.85).aspx
https://www.freebsd.org/cgi/man.cgi?query=explicit_bzero&sektion=3
https://www.freebsd.org/cgi/man.cgi?query=explicit_bzero&sektion=3
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

References 349

331J.-L. Danger, S. Guilley, S. Bhasin, and M. Nassar, “Overview of dual rail
with precharge logic styles to thwart implementation-level attacks on hard-
ware cryptoprocessors”, in Signals, Circuits and Systems (SCS), 2009 3rd
International Conference on (IEEE, 2009), pp. 1–8.

332S. Bhasin, S. Guilley, F. Flament, N. Selmane, and J.-L. Danger, “Coun-
tering early evaluation: an approach towards robust dual-rail precharge
logic”, in Proceedings of the 5th Workshop on Embedded Systems Secu-
rity (ACM, 2010), p. 6.

333M. Ender, A. Wild, and A. Moradi, “SafeDRP: Yet Another Way Toward
Power-Equalized Designs in FPGA”, in International Workshop on Con-
structive Side-Channel Analysis and Secure Design (Springer, 2017), pp. 83–
101.

334O. Acıiçmez and W. Schindler, “A Vulnerability in RSA Implementations
Due to Instruction Cache Analysis and Its Demonstration on OpenSSL”, in
Topics in Cryptology – CT-RSA 2008, edited by T. Malkin (2008), pp. 256–
273.

335M. Dugardin, S. Guilley, J.-L. Danger, Z. Najm, and O. Rioul, “Corre-
lated Extra-Reductions Defeat Blinded Regular Exponentiation”, in Cryp-
tographic Hardware and Embedded Systems - CHES 2016 - 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceed-
ings (2016), pp. 3–22.

336Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware”, Journal
of Cryptographic Engineering, 1–27 (2016).

337R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR”, in Security and Privacy (SP), 2013 IEEE Sym-
posium on (IEEE, 2013), pp. 191–205.

338O. Acıiçmez and J.-P. Seifert, “Cheap hardware parallelism implies cheap
security”, in Fault Diagnosis and Tolerance in Cryptography, 2007. FDTC
2007. Workshop on (IEEE, 2007), pp. 80–91.

339O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via branch
prediction”, in Cryptographers Track at the RSA Conference (Springer,
2007), pp. 225–242.

340M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham,
“On subnormal floating point and abnormal timing”, in Security and Pri-
vacy (SP), 2015 IEEE Symposium on (IEEE, 2015), pp. 623–639.

341D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking branch predictors to bypass ASLR”, in Microarchitecture (MI-
CRO), 2016 49th Annual IEEE/ACM International Symposium on (IEEE,
2016), pp. 1–13.

350 References

342Y. Bulygin, “CPU side-channels vs. virtualization malware: The good, the
bad, or the ugly”, Proceedings of the ToorCon (2008).

343D. J. Bernstein, “Cache-timing attacks on AES”, (2005).
344G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar, “Fine grain Cross-

VM Attacks on Xen and VMware are possible!”, IACR Cryptology ePrint
Archive 2014, 248 (2014).

345Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack.”, in USENIX Security Symposium
(2014), pp. 719–732.

346D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches.”, in USENIX Security
Symposium (2015), pp. 897–912.

347D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ Flush: a fast
and stealthy cache attack”, in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (Springer, 2016),
pp. 279–299.

348Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud.”, in USENIX Security symposium
(2012), pp. 159–173.

349A. Richter, C. Herber, H. Rauchfuss, T. Wild, and A. Herkersdorf, “Perfor-
mance isolation exposure in virtualized platforms with pci passthrough
i/o sharing”, in International Conference on Architecture of Computing
Systems (Springer, 2014), pp. 171–182.

350W. Song, J. Kim, J.-W. Lee, and D. Abts, “Security vulnerability in processor-
interconnect router design”, in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (ACM, 2014), pp. 358–
368.

351X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama, “Towards
optimization-safe systems: Analyzing the impact of undefined behavior”,
in Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (ACM, 2013), pp. 260–275.

352Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks”, in Annual International Cryptology Conference
(Springer, 2003), pp. 463–481.

353D. B. Roy, S. Bhasin, S. Guilley, J.-L. Danger, and D. Mukhopadhyay, “From
theory to practice of private circuit: A cautionary note”, in Computer De-
sign (ICCD), 2015 33rd IEEE International Conference on (IEEE, 2015),
pp. 296–303.

354A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: exposing the per-
ils of security-oblivious energy management”, in 26th USENIX Security
Symposium (2017).

References 351

355T. Pöppelmann, T. Oder, and T. Güneysu, “High-Performance Ideal Lattice-
Based Cryptography on 8-Bit ATxmega Microcontrollers”, in Progress in
Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryp-
tology and Information Security in Latin America, Guadalajara, Mexico,
August 23-26, 2015, Proceedings (2015), pp. 346–365.

356Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede, “Ef-
ficient Ring-LWE encryption on 8-bit AVR processors”, in International
Workshop on Cryptographic Hardware and Embedded Systems (Springer,
2015), pp. 663–682.

357J. Howe, C. Moore, M. O’Neill, F. Regazzoni, T. Güneysu, and K. Beeden,
“Lattice-based Encryption over Standard Lattices in Hardware”, in Pro-
ceedings of the 53rd Annual Design Automation Conference (ACM, 2016),
p. 162.

358T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced lattice-based signa-
tures on reconfigurable hardware”, in International Workshop on Crypto-
graphic Hardware and Embedded Systems (Springer, 2014), pp. 353–370.

359H. Chen, K. Lauter, and K. E. Stange, Attacks on search RLWE, https://www.microsoft.com/en-
us/research/publication/attacks-on-search-rlwe/, 2015.

360R. Cramer, L. Ducas, C. Peikert, and O. Regev, “Recovering short gen-
erators of principal ideals in cyclotomic rings”, in Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(Springer, 2016), pp. 559–585.

361E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-Quantum Key
Exchange-A New Hope.”, in USENIX Security Symposium (2016), pp. 327–
343.

362J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P.
Schwabe, and D. Stehlé, CRYSTALS – Kyber: a CCA-secure module-lattice-
based KEM, tech. rep. (2017).

363P. FIPS, “180-4”, Secure hash standard (SHS), March (2012).
364M. J. Dworkin, SHA-3 standard: Permutation-based hash and extendable-

output functions, tech. rep. (2015).
365CAESAR: Competition for Authenticated Encryption: Security, Applicability,

and Robustness, See http://competitions.cr.yp.to/caesar.html.
366T. Tal Be’ery and A. Shulman, “A perfect crime? only time will tell”, Black

Hat Europe 2013 (2013).
367C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power analysis in the

presence of hardware countermeasures”, in International Workshop on
Cryptographic Hardware and Embedded Systems (Springer, 2000), pp. 252–
263.

368J. McCarthy and J. Painter, “Correctness of a compiler for arithmetic ex-
pressions”, Mathematical aspects of computer science 1 (1967).

http://competitions.cr.yp.to/caesar.html

352 References

369J. A. Painter, Semantic correctness of a compiler for an Algol-like language,
tech. rep. (STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE,
1967).

370V. D’Silva, M. Payer, and D. Song, “The correctness-security gap in com-
piler optimization”, in Security and Privacy Workshops (SPW), 2015 IEEE
(IEEE, 2015), pp. 73–87.

371C. Deng and K. S. Namjoshi, “Securing a compiler transformation”, in In-
ternational Static Analysis Symposium (Springer, 2016), pp. 170–188.

372GIZMODO, The Trillion Fold Increase In Computing Power, Visualized, https:
//gizmodo.com/the-trillion-fold-increase-in-computing-power-

visualiz-1706676799.
373C. Carvalho, “The gap between processor and memory speeds”, in Proc.

of IEEE International Conference on Control and Automation (2002).
374Y. Wang and G. E. Suh, “Efficient timing channel protection for on-chip

networks”, in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM Interna-
tional Symposium on (IEEE, 2012), pp. 142–151.

375R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK lightweight block ciphers”, in Proceedings of the
52nd Annual Design Automation Conference, San Francisco, CA, USA,
June 7-11, 2015 (2015), 175:1–175:6.

376C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P.
Sasdrich, and S. M. Sim, “The SKINNY Family of Block Ciphers and Its
Low-Latency Variant MANTIS”, in CRYPTO (2), Vol. 9815, Lecture Notes
in Computer Science (2016), pp. 123–153.

377S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “GIFT: A
Small Present - Towards Reaching the Limit of Lightweight Encryption”,
in Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings, Vol. 10529, Lecture Notes in Computer Science (2017), pp. 321–
345.

378T. B. S. Reis, D. F. Aranha, and J. López, “PRESENT Runs Fast - Efficient
and Secure Implementation in Software”, in Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings (2017), pp. 644–664.

379K. Bhargavan and G. Leurent, “On the Practical (In-)Security of 64-bit
Block Ciphers”, in ACM CCS 2016 - 23rd ACM Conference on Computer
and Communications Security (2016), pp. 456–467.

380A. Chakraborti, N. Datta, A. Jha, C. M. Lopez, M. Nandi, and Y. Sasaki, ES-
TATE, Submission to the NIST Lightweight Cryptography project, 2019.

https://gizmodo.com/the-trillion-fold-increase-in-computing-power-visualiz-1706676799
https://gizmodo.com/the-trillion-fold-increase-in-computing-power-visualiz-1706676799
https://gizmodo.com/the-trillion-fold-increase-in-computing-power-visualiz-1706676799
http://dx.doi.org/10.1145/2744769.2747946
http://dx.doi.org/10.1145/2744769.2747946
http://dx.doi.org/10.1145/2744769.2747946
http://dx.doi.org/10.1007/978-3-319-66787-4_31
http://dx.doi.org/10.1007/978-3-319-66787-4_31
http://dx.doi.org/10.1007/978-3-319-66787-4_31
http://dx.doi.org/10.1145/2976749.2978423
http://dx.doi.org/10.1145/2976749.2978423

References 353

381S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin, Y.
Sasaki, S. M. Sim, and Y. Todo, GIFT-COFB v1.0, Submission to the NIST
Lightweight Cryptography project, 2019.

382A. Chakraborti, N. Datta, A. Jha, and M. Nandi, HYENA, Submission to
the NIST Lightweight Cryptography project, 2019.

383A. Chakraborti, N. Datta, A. Jha, C. M. Lopez, M. Nandi, and Y. Sasaki,
LOTUS-AEAD and LOCUS-AEAD, Submission to the NIST Lightweight
Cryptography project, 2019.

384S. Gueron and Y. Lindell, Simple: a simple AEAD scheme, Submission to the
NIST Lightweight Cryptography project, 2019.

385S. Banik, A. Bogdanov, T. Peyrin, Y. Sasaki, S. M. Sim, E. Tischhauser, and
Y. Todo, SUNDAE-GIFT v1.0, Submission to the NIST Lightweight Cryp-
tography project, 2019.

386T. Iwata, M. Khairallah, K. Minematsu, T. Peyrin, Y. Sasaki, S. M. Sim,
and L. Sun, Thank Goodness It’s Friday (TGIF), Submission to the NIST
Lightweight Cryptography project, 2019.

387L. May, L. Penna, and A. Clark, “An Implementation of Bitsliced DES
on the Pentium MMXTM Processor”, in Information Security and Privacy,
edited by E. P. Dawson, A. Clark, and C. Boyd (2000), pp. 112–122.

388C. Wolf, RISC-V Bitmanip Extension, 2020.
389D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großschädl, and A.

Biryukov, “Triathlon of lightweight block ciphers for the Internet of things”,
J. Cryptographic Engineering 9, 283–302 (2019).

390P. Schwabe and K. Stoffelen, “All the AES You Need on Cortex-M3 and
M4”, in Selected Areas in Cryptography - SAC 2016 (2016), pp. 180–194.

391S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards Sound Approaches
to Counteract Power-Analysis Attacks”, in Advances in Cryptology — CRYPTO’
99, edited by M. Wiener (1999), pp. 398–412.

392A. Biryukov, D. Dinu, Y. Le Corre, and A. Udovenko, “Optimal First-Order
Boolean Masking for Embedded IoT Devices”, in Smart Card Research
and Advanced Applications, edited by T. Eisenbarth and Y. Teglia (2018),
pp. 22–41.

393C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, Ascon v1.2, Sub-
mission to Round 1 of the NIST Lightweight Cryptography project, 2019.

394A. Adomnicai, J. J. Fournier, and L. Masson, Masking the Lightweight Au-
thenticated Ciphers ACORN and Ascon in Software, Cryptology ePrint Archive,
Report 2018/708, 2018.

395S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “GIFT:
a small PRESENT”, in International Conference on Cryptographic Hard-
ware and Embedded Systems (Springer, 2017), pp. 321–345.

http://dx.doi.org/10.1007/s13389-018-0193-x
http://dx.doi.org/10.1007/978-3-319-69453-5_10

354 References

396M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar, and T. Yalçın,
“Block ciphers–focus on the linear layer (feat. PRIDE)”, in International
Cryptology Conference (Springer, 2014), pp. 57–76.

397Xilinx, Virtex-5 FPGA System Monitor, http://www-inst.eecs.berkeley.
edu/~cs150/fa13/resources/ug192.pdf.

398B. Preneel and T. Takagi, eds., Cryptographic Hardware and Embedded Sys-
tems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
– October 1, 2011. Proceedings, Vol. 6917, LNCS (Springer, 2011).

399P. Paillier and I. Verbauwhede, eds., Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, Septem-
ber 10-13, 2007, Proceedings, Vol. 4727, LNCS (Springer, 2007).

400W. Fischer and N. Homma, eds., Cryptographic Hardware and Embedded
Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, Septem-
ber 25-28, 2017, Proceedings, Vol. 10529, Lecture Notes in Computer Sci-
ence (Springer, 2017).

http://www-inst.eecs.berkeley.edu/~cs150/fa13/resources/ug192.pdf
http://www-inst.eecs.berkeley.edu/~cs150/fa13/resources/ug192.pdf

Appendix

355

15
chapter 5

.1. Proof of Theorem 5.4.3

In order to prove the Theorem 5.4.3 let us first introduce some lemmas. By Re-
mark 2 the only random parts of are the noise and the mask. As a consequence the
random variable (|M =m) depends only on the noise, and is equal to:

(|M =m) =− 2× 1
2n

2n−1∑
ω=0

[(
Φ (ω)⊕m+N (1)

ω −
n
2

)
×
(
Φ (ω) +N (2)

ω −
n
2

)]
.

(1)

(|M =m) = m− n
2

− 2×N (1)
ω ×

(
Φ (ω)− n

2

)
− 2×N (2)

ω ×
(
Φ (ω)⊕m− n

2

)
− 2×N (1)

ω ×N
(2)
ω .

(2)

(|M =m) can be split into a deterministic part and a random part:

(|M =m) = −2× (Sd + Sr) ,

where

Sd =
(
Φ (ω)⊕m− n

2

)
×
(
Φ (ω)− n

2

)
,

Sr =N (1)
ω ×

(
Φ (ω)− n

2

)
+N (2)

ω ×
(
Φ (ω)⊕m− n

2

)
+N (1)

ω ×N
(2)
ω .

Sd = (U ⊕M −U ⊕M)× (U −U ⊕M) |M =m

= −1
2
m+

n
4

by [99] ,

where U denotes a random variable drawn uniformly over F n
2 .

356

.1. Proof of Theorem 5.4.3 357

(|M =m) = 4×
(
σ2

2n
× n

2
+
σ4

2n

)
. (3)

Recall that the random variable (|M =m) can be write as in Lemma .1; thus (|M =m) =
4× (V1 +V2 +V3 +C1 +C2 +C3), where

V1 =N (1)
ω ×

(
Φ (ω)− n

2

)
,

V2 =N (2)
ω ×

(
Φ (ω)⊕m− n

2

)
,

V3 =N (1)
ω ×N

(2)
ω ,

C1 = 2×N (1)
ω ×

(
Φ (ω)− n

2

)
,N

(1)
ω ×N

(2)
ω ,

C2 = 2×N (2)
ω ×

(
Φ (ω)⊕m− n

2

)
,N

(1)
ω ×N

(2)
ω ,

C3 = 2×Cov

[
N

(1)
ω ×

(
Φ (ω)− n

2

)
,

N
(2)
ω ×

(
Φ (ω)⊕m− n

2

)]
.

Let us now prove that C1 = C2 = 0. First we have:

N
(1)
ω ×

(
Φ (ω)− n

2

)
,N

(1)
ω ×N

(2)
ω =C(1)

1 −C
(2)
1 ,

with

C
(1)
1 = Φ (ω)×N (1)

ω ,N
(1)
ω ×N

(2)
ω

=
1
2n

2n−1∑
ω′=0

Φ (ω)×N (1)
ω ,N

(1)
ω′ ×N

(2)
ω′ .

The random variables N (i)
ω , where i ∈ {1,2} and ω ∈ F n

2 are mutually independent
and independent with all the Φ (ω). Thus we have:

∀ω,ω′ ,Φ (ω)×N (1)
ω ,N

(1)
ω′ ×N

(2)
ω′ = 0

⇐⇒ 1
2n

2n−1∑
ω′=0

Φ (ω)×N (1)
ω ,N

(1)
ω′ ×N

(2)
ω′ = 0

⇐⇒ C
(1)
1 = 0 .

358 . Appendix chapter 5

Besides

C
(2)
1 =

n
2
×N (1)

ω ,N
(1)
ω ×N

(2)
ω

=
n
2
× 1

2n

2n−1∑
ω′=0

N
(1)
ω ,N

(1)
ω′ ×N

(2)
ω′ .

As N (i)
ω , where i ∈ {1,2} and ω ∈ F n

2 , are mutually independent, we have:

N
(1)
ω ,N

(1)
ω′ ×N

(2)
ω′ = 0, ∀ (ω,ω′) ∈ F n

2 ×F
n

2

⇐⇒ C
(2)
1 =

n
2
×N (1)

ω ,N
(1)
ω ×N

(2)
ω = 0

⇐⇒ 1
2n

2n−1∑
ω=0

N
(1)
ω ×

(
Φ (ω)− n

2

)
,

1
2n

n−1∑
ω=0

N
(1)
ω ×N

(2)
ω = 0 .

Identically we prove that:

N
(2)
ω ×

(
Φ (ω)⊕m− n

2

)
,N

(1)
ω ×N

(2)
ω = 0 .

As a consequence C1 = C2 = 0. Let us now study C3. By the bi-linearity of the
covariance C3 can be rewritten such that:

C3 =
2

22n

2n−1∑
ω=0

2n−1∑
ω′=0

N
(1)
ω ×

(
Φ (ω)− n

2

)
,N

(2)
ω′ ×

(
Φ (ω)⊕m− n

2

)
.

But

N
(1)
ω ×

(
Φ (ω)− n

2

)
,N

(2)
ω′ ×

(
Φ (ω)⊕m− n

2

)
=N (1)

ω ×
(
Φ (ω)− n

2

)
×N (2)

ω′ ×
(
Φ (ω)⊕m− n

2

)
−N (1)

ω ×
(
Φ (ω)− n

2

)
×N (2)

ω′ ×
(
Φ (ω)⊕m− n

2

)
.

By definition, N (1)
ω is independent from Φ (ω). Thus:

N
(1)
ω ×

(
Φ (ω)− n

2

)
=N (1)

ω ×
(
Φ (ω)− n

2

)
= 0 and

N
(1)
ω ×

(
Φ (ω)− n

2

)
×N (2)

ω′ ×
(
Φ (ω)⊕m− n

2

)
= 0 .

N
(1)
ω is independent from

(
Φ (ω)− n2

)
×N (2)

ω′ ×
(
Φ (ω)⊕m− n2

)
. ThusN (1)

ω ×
(
Φ (ω)− n2

)
×N (2)

ω′ ×
(
Φ (ω)⊕m− n

2

)
=

0, which implies that C3 = 0. As a consequence (|M =m) = 4× (V1 +V2 +V3).

.1. Proof of Theorem 5.4.3 359

V1 =N (1)
ω ×

(
Φ (ω)− n

2

)
=

1
22n

2n−1∑
ω=0

N
(1)
ω ×

(
Φ (ω)− n

2

)
+

2
22n

∑
06ω<ω′62n−1

N
(1)
ω × (Φ (ω)) ,N (1)

ω′ × (Φ (ω′)) . (4)

As N (1)
ω × (Φ (ω)) ,N (1)

ω′ × (Φ (ω′)) = 0, the terms in Eq. (4) are all null. It can be

noticed that Φ (ω)− n2 = 0 as Φ (ω) is uniformly distributed over S2n and N (1)
ω = 0.

As a consequence:

N
(1)
ω ×

(
Φ (ω)− n

2

)
= Φ (ω)− n

2
×N (1)

ω , hence

V1 =
1

22n

2n−1∑
ω=0

σ2 × n
4

=
1
2n
× σ2 × n

4
.

Identically, we have

V2 =N (2)
ω ×

(
Φ (ω)⊕m− n

2

)
=
σ2

2n
× n

4
= V1 , and

V3 =
1
2n

2n−1∑
ω=0

N
(1)
ω ×N

(2)
ω =

σ4

2n
.

Finally

(|M =m) = 4×
(
σ2

2n
× n

2
+
σ4

2n

)
.

Then let us prove the Theorem 5.4.3.

Lemma .1 gives us the value of the variance of the noise. Then by the definition of
the , we have:

,M > X(3),M ⇐⇒ M
(|M =m)

>
M

N3

⇐⇒ 4×
(
σ2

2n
× n

2
+
σ4

2n

)
6 σ2

⇐⇒ 2n−1 −n
2

> σ2

360 . Appendix chapter 5

.2. Proof of the propositions of Sect. 5.4.5

A. Proof of Prop. 5.4.5

By Theorem 2 in [121, Appendix A.2] (extended version of [120]) we have that the
of is given by

= min
k,k?

κ
(
k? , k

)
2
(
κ′(k? ,k)
κ(k? ,k) −κ (k? , k)

)
+ 2

∑
i∈{0,2}d
i,(0,...,0)

∏
1≤δ≤d

(
α
−iδ
δ · σ

iδ
δ

)
= min
k,k?

κ
(
k? , k

)
2
(
κ′(k? ,k)
κ(k? ,k) −κ (k? , k)

)
+ 2

(
α−2

1 σ2
1 +α−2

2 σ2
2 +α−2

1 σ2
1α
−2
2 σ2

2

) .

B. Proof of Prop. 5.4.5

m() −m()

m()
=

(
log(1−)

−
log(1−)

)
×

log(1−)

= − 1 ,

which indeed does not depend on .

C. Proof of Prop. 5.4.5

Let us now compute the difference of traces needed to reach any .

m() −m() =
log(1−)

−
log(1−)

Let us rewrite using α = α1 = α2. In such case:

m() −m() =
log(1−)

−
log(1−)

=
log(1−)

−
log(1−)

=
(
2α−2 log(1−)

κ (k? , k)

)(
1 +α−2σ2

)(
σ2 − 4

(
σ2

2n
n
2

+
σ4

2n

))

The attacks perform similarly whenm−m = 0 which implies (σ2−4×
(
σ2

2n ×
n
2 + σ4

2n
)

=
0. Notice that we recover here the results of the Subsect. 5.4.3.

.3. Proof of Theorem 5.5.3 361

In order to find the noise when the maximum occurs let us compute the derivative
in σ2:

d
(
m() −m()

)
dσ2 =((
α−2 − 4α−2

2n
× n

2

)
+
(

8α−2

2n
+ 2α−4 − 8α−4

2n
× n

2

)
σ2 − 12α−4σ4

2n

)
×
(
2

log(1−)
κ (k? , k)

)

The maximum occurs when
d(m()−m())

dσ2 = 0 which not depends on the .

.3. Proof of Theorem 5.5.3

Similarly to the Remark 2 we have ∀i < d:

(d|Mi =m) =
−2
d2n

∑
ω∈F2n

j∈J1,dK

[(
Φ (ω)⊕m+N (1)

(ω,j) −
n
2

)

×
(
Φ (ω) +N (2)

(ω,j) −
n
2

)]
.

As the i is fixed for each share we have removed it from the index position.

(d|Mi =m) = 4×
(
σ2

d × 2n
× n

2
+

σ4

d × 2n

)
, (5)

where d is the number of share of the high-order masking scheme and i < d.

Lemma .3 is a straightforward extension of Lemma .1.

Exploiting Lemma .3 let us prove Theorem 5.5.3.

As Lemma .3 gives us the variance of the noise of the second-order leakage we have

362 . Appendix chapter 5

∀i < d

d,Mi > X
(3)
i ,Mi

⇐⇒ M
(d|Mi =m)

>
M

N
(3)
i

⇐⇒ 4×
(
σ2

d × 2n
× n

2
+

σ4

d × 2n

)
6 σ2

⇐⇒
(
n− d × 2n−1

) σ2

d × 2n−1 +
σ4

d × 2n−2 6 0.

The upper bound of the interval are the σ2 where σ2 , 0 and:

σ4

d × 2n−2 =
(
d × 2n−1 −n

) σ2

d × 2n−1

⇐⇒ σ2 =

(
d × 2n−1 −n

)
2

⇐⇒ σ2 = d × 2n−2 − n
2
.

It implies that the size of Useful Interval of Variance is given by d × 2n−2 − n2 .

.4. Affine model

A. Proof of Lemma 5.6.1

(Ψα (U)−Ψα (U))×
(
Ψβ (U ⊕ z)−Ψβ (U ⊕ z)

)
=

(
α ·U −α ·

(1
2

1
))
×
(
β · (U ⊕ z)− β ·

(1
2

1
))

=
(
α ·

(
U − 1

2
1
))
×
(
β ·

(
(U ⊕ z)− 1

2
1
))

=
(1

2
α ·U

)
×
(1

2
β ·

(
U ⊕ z

))
=

1
4

(
αU

(
U ⊕ z

)
β
)
,

where U denotes 2
(
U − 1

2 1
)
.

It can also be noticed that: U = −
(
(−1)U1 , . . . , (−1)Un

)
, and thus (U ⊕ z) = −

(
(−1)U1+z1 , . . . , (−1)Un+zn

)
.

.4. Affine model 363

Moreover

U
(
U ⊕ z

)
=U,

(
U ⊕ z

)
=⇒

(
U

(
U ⊕ z

))
i,j

= (−1)Ui , (−1)(Uj+zj)

=⇒
(
U

(
U ⊕ z

))
i,j

= 0 if i , j or
(
U

(
U ⊕ z

))
i,j

= (−1)zj if i = j .

Eventually, we have:

(Ψα (U)−Ψα (U))×
(
Ψβ (U ⊕ z)−Ψβ (U ⊕ z)

)
= −1

4
(α � β) · z = −1

4
(α � β) · 2

(
z − 1

2
1
)

= −1
2

(α � β) · z+
1
4

(α � β) · 1 = −1
2

(α � β) · z+
1
4
α · β .

B. Proof of the Theorem 5.6.3

Similarly to Eq. (1) we have:

(|M =m) =− 2× 1
2n

2n−1∑
ω=0

[(
α · (Φ (ω)⊕m) +N (1)

ω −
1
2

(α · 1)
)

×
(
α · (Φ (ω)) +N (2)

ω −
1
2

(α · 1)
)]
.

(|M =m) = 4×
(
n

2n+1 × σ
2 +

σ4

2n

)
.

Similar to proof of Lemma .1 (see Appendix .1) using the affine model instead of
the Hamming Weight and Assumption 1.

Then we can prove the Theorem 5.6.3.

Lemma B gives us the value of the variance of the noise. Then by the definition of
the , we have:

364 . Appendix chapter 5

,M > X(3),M

⇐⇒ α2 ·M
(|M =m)

>
α ·M
N (3)

⇐⇒
1
4 4α4

4×
(
σ2

2n+1 ×n+ σ4

2n
) > 1

4n

σ2

⇐⇒ σ2

4
× 4α4 − σ2

2n+1 ×n
2 − σ

4

2n
×n > 0

⇐⇒ σ2 ×
(

1
4
× 4α4 − 1

2n+1 ×n
2 − σ

2

2n
×n

)
> 0

⇐⇒ 1
4
× 4α4 − 1

2n+1 ×n
2 − σ

2

2n
× 2α2 > 0

⇐⇒ 2n

4
× 4α4

n
− 2n

2n+1 ×
n2

n
> σ2

⇐⇒ 4α4 × 2n−2

n
− n

2
> σ2

C. Proof of Corollary 5.6.3

Let us first prove the following result: Let x ∈ Rn and let p,q two integers such
that p > q > 0. Then:

n
1
p−

1
q qx 6 px 6 qx . (6)

These two bounds are tight. Indeed,

∀i, j,xi = xj =⇒ n
1
p−

1
q qx = px

∃i/xi , 0 and ∀i , j,xj = 0 =⇒ px = qx .

Let us first prove the lower bound of Eq. (6). By the Hölder inequality we have:

∑
i

|xi |q 6

∑
i

(|xi |q)P

1
P
∑
i

(1)Q

1
Q

where P =
p

q
and Q =

p

p − q
.

So, we have,
∑
i |xi |q 6 pxqn

1− qp , i.e., pxn
1
p−

1
q 6 px.

Then let us prove the upper bound. We have
∑
i
|xi |q
qxq = 1. Hence, for all 1 6 i 6 n,

|xi |q
qxq 6 1. Therefore, for all i, |xi |

p

qxp 6
|xi |q
qxq , hence

∑
i
|xi |p
qxp 6

∑
i
|xi |q
qxq = 1, which yields the

.4. Affine model 365

announced inequality: pxp 6 qxp.

Let us prove the sufficient conditions when the inequalities become equalities:

∀i, j,xi = xj =⇒ px = |xi |n
1
p and qx = |xi |n

1
q =⇒ px = qxn

1
p−

1
q

∃i,xi , 0 and ∀i , j,xj = 0 =⇒ px = |xi | and qx = |xi | =⇒ px = qx.

The Corollary 5.6.3 is the application of Lemma C with p = 4 and q = 2.

Indeed we have by Theorem 5.6.3 that the useful interval of variance is 0 6 σ2 6

4α4 × 2n−2

n −
n
2 , where 2α2 = n (recall Assumption 1). Then by Lemma C:(

2αn
1
4−

1
2 + 1

2

)4
× 2n−2

n
− n

2
6 4α4 × 2n−2

n
− n

2
6 2α4 × 2n−2

n
− n

2

=⇒
(
2αn

1
4−

1
2

)4
× 2n−2

n
− n

2
6 4α4 × 2n−2

n
− n

2
6 n2 × 2n−2

n
− n

2

=⇒ 2n−2 − n
2︸ ︷︷ ︸

Value of Theorem 5.4.3.

6 4α4 × 2n−2

n
− n

2
6 n× 2n−2 − n

2

16
chapter 7

.5. SPN vs DFA: Good Design Practices

While we have shown that it is almost impossible to design an SPN that provides
the same level of security against DFA as the classical security, in the presence
of non-uniform fault models, the results also show that not all the SPNs with the
same classical security level provide the same level of security against DFA. For
example, GIFT-64 and GIFT-128 required 12 pairs of faulty and non-faulty cipher-
texts with very specific fault models, located in different locations, while AES-128
requires only 2 pairs, with the fault injected in the same location every time and
can be uniformly random. Here, we list some of the techniques we believe make
DFA harder to perform and help GIFT be harder to break than the other ciphers
considered in this paper:

1. Using Sboxes with irregular DDTs and higher linearity means that, on
average, the number of solutions when injecting faults is higher.

2. Using smaller Sboxes means that the gap between the number of pos-
sible solutions for each Sbox before and after applying DFA is smaller,
hence, the information leakage is lower.

3. The lower the branching number of the diffusion layer, the harder it is
to accelerate the attack and reduce the number of faults required.

4. The smaller the ratio between the round key size and the master key
size, the lesser the information leaked during applying DFA on the final
rounds.

5. Using a non-symmetric diffusion layer (e.g. GIFT) makes the JDDT more
complex, as opposed to a symmetric diffusion layer (e.g. PRESENT).

6. While it is a good practice to design the round key to be smaller than
the master key (e.g. LED-128) and the block size (e.g. GIFT), it is not a
good practice to skip adding the round key to some of the final Sboxes
altogether, as this may leak vital information about other Sboxes in the
same round (e.g. SKINNY).

In general, as discussed in Section 7.4.1, the goal of the designer should be to min-
imize the number of active Sboxes before they start interacting with each other.

366

.6. More Case Studies to our Techniques 367

Table 2: The probability of having a key space of size k for the last round key K31 after 2
fault injections

k 0 1 2 3 4 5 6 7 8

P r(x = k) 0.779 0.195 0.0.024 0.002 1×10−4 6×10−6 2×10−7 9×10−9 2×10−10

This can be achieved by having a very slow diffusion when the number of active
Sboxes in a given round is very small (1 or 2), and very fast diffusion, otherwise.
For example, SKINNY has very slow diffusion, but even when 7 out of 16 Sboxes are
active, the 4-round DFA attack we describe in Section 7.6.3 can be still mounted.
However, even if the designer manages to come up with a design that satisfies all
of these guidelines, it is still impossible to prevent DFA against SPNs completely.
So the ultimate goal should be to increase the number of faults required and/or
use other constructions that may prevent DFA.

.6.More Case Studies to our Techniques

A. PRESENT-128 and Practical Implementations of PRESENT: Find-
ing Optimal DFA Attack

PRESENT-128

The key scheduling algorithm for PRESENT-128 is similar to present PRESENT-80
(refer to [177], Appendix II, for full description), where

K31 = [κ127κ126...κ64] (7)

K30 = [κ60κ59... ˜κ19 ˜κ18 ˜κ17 ˜κ16 ˜κ15...κ0]truncate(sb−1([κ127κ126κ125κ124],3)) (8)

We note that only 3 bits overlap between K31 and K30: κ127,κ126, and κ125. How-
ever, since none of these bits is active in round 30, for both the fault locations we
are considering, we conclude that there is no gain in performing step 2 while at-
tacking PRESENT-128. Hence, the number of key candidates for K31 and Km are
231 and 295, respectively. An interesting result is that the increased security of
PRESENT-128 is not just due to the increased Key size, but due to the good design
of the larger key scheduling algorithm, which leads to Pks = 1. However, Table 2
shows that by applying the attack twice, the last round key K31 can be identified as
1 of 8 candidates with probability almost 1. Afterwards, the attack can be applied
to a round-reduced version of PRESENT-128 for each of these candidates, target-
ing K30 as the last round key, resulting in 234 or 26 master key candidates after
applying one or two more faults in round 28, respectively.

Practical Implementations

The attacks described in this section require the injection of a fault δ = [1111]2 in
the output of the sBoxLayer of round 29, in either nibble 7 or nibble 11. While this

368 . Appendix chapter 7

requirement can be challenging, it was shown in [159] that such fault is practically
possible. Moreover, there are a couple of tricks that the attacker can use to get
around this requirement. First, we notice that if instead of injecting δ = [1111]2
at the output of the Sbox, we inject δ

′
= [1000]2 at the corresponding input, there

is a 0.25 chance that the correct fault is triggered at the output. We can observe
the occurrence of the correct value by the number of active groups in round 31.
Besides, if we inject 4 of such faults, there is a very high probability that the re-
quired fault occurs, and the other three pairs can be used to further decrease the
key space size. The same applies for δ

′
= [1111]2, δ

′
= [0110]2, and δ

′
= [0111]2.

Hence, depending on the precision of the equipment the attacker has, he can target
1-, 2- or 3-bit flips with probability 0.25 of getting the required difference, or 4-bit
flips (with probability 1).

Moreover, for some specific implementations, the attack can be performed using
even a single uniform random fault. In case of a software, bit-sliced implementa-
tion of widthw, a uniform random fault is injected in the most significant bit of the
input of the Sbox at nibble 7, round 29. Since each instance is triggered with prob-
ability 0.5, and the instances that are triggered have probability 0.25 of getting the
required difference at the output of the Sbox at round 29, then it is expected that w8
instances will have the required value and w

2 will be active in general, potentially
allowing to even uniquely identify the key using only a single fault. This expecta-
tion can be achieved even using architecture as small as 8-bit micro-controllers.

B. GIFT-64: New Results

GIFT cipher was proposed in CHES 2017 by Banik et al. [395] as a more lightweight
version of PRESENT. It has two versions: GIFT-64 and GIFT-128. Both these ver-
sions have a 128-bit master key, but they differ in the block size, 64 bits and 128
bits, respectively. In this section we analyze only the first version, noting that the
techniques from our paper can bet extended with slight modifications to attack
GIFT-128, as well. The differences between GIFT-64 and PRESENT-128 are as fol-
lows:

1. It runs for 28 rounds only.

2. The Sbox and mixing layer are different.

3. The Key Scheduling algorithm is also different, where 32 bits are ex-
tracted from the key state every round, followed by a linear state update.
The property that is of interest to our analysis is that every 4 consecutive
round keys are independent and uniquely identify the master key.

4. Every round, half of the bits (32 bits), only, are mixed with key bits.

.6. More Case Studies to our Techniques 369

Table 3: Part of the DDT of the Sbox used in GIFT
0 1 2 3 4 5 6 7 8 9 A B C D E F µHW

1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2 2.25

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0 2.25

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0 2.5

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 3

Table 4: Part of the auxiliary DDT of the Sbox used in GIFT with respect to the active key
bits

0 1 2 3 4 5 6 7 8 9 A B C D E F EXP(SOLs)

1 0 0 0 0 0 2 2 0 1 2 2 2 1 0 0 2 20.75

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0 21.5

4 0 0 0 2 0 4 0 4 0 2 0 0 0 2 0 0 21.625

8 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 21

From the structure of GIFT-64, we conclude that the best single-nibble fault value in
round 26 is [1111]2 at the output of one of the Sboxes. Similar to to PRESENT, that
fault value can be achieved by injecting a fault [1000]2 at the input of the Sbox,
with probability 25% (refer to [395], Appendix C.2, for the DDT of GIFT Sbox).
However, due to the properties of the mixing layer, regardless of which nibble the
fault is injected in, such fault will always trigger the four groups of round 27 by
the same four different input differences {[0001]2, [0010]2, [0100]2, [1000]2}, up to
a cyclic rotation operation. Table 3 shows the corresponding rows of the DDT of
GIFT Sbox. Instead of selecting the difference with the largest average Hamming
weight, as in the case of PRESENT, in order to find the average number of active
Sboxes in the last round, in the case of GIFT-64 the average number of Sboxes in
the last round is always 10. Since only two key bits are added to the output of each
Sbox, we need to compute an auxiliary DDT, which corresponds to the number of
solutions of the active key bits, shown in Table 4. Since, in round 28, each group
is triggered with a different input difference, in Table 5 we calculate the different
probabilities for each Sbox in round 28 to be active. Combined with the number
of solutions in Table 4, for every possible input difference, the expected number of
candidates for each group in the last round is computed, which leads to an overall
number of 218.1 key candidates for K28. In order to identify K28 uniquely, we need
3 repetitions of the whole attack, respectively, which reduces the master key space
to 296 keys. The attack then needs to be repeated four times for the 4 last round
keys, required 12 fault injections, on average.

Table 5: The probability distribution of different output bit differences when a single input
bit is active for GIFT Sbox

0 1 2 3 EXP(Sols)

1 0.5 0.5 0.5 0.75 25.452

2 0.5 0.5 0.75 0.5 26.204

4 1 0.5 0.75 0.5 23.384

8 1 1 0.5 0.5 23.059

370 . Appendix chapter 7

C. GIFT-128: New Results

Any two consecutive rounds of GIFT-128 can be viewed as two parallel indepen-
dent instances of GIFT-64. We use this representation for rounds 38 and 39, while
round 40 is the final round and, as explained in Section 7.5, the shuffling and mix-
ing operations in the last round have no effect on our analysis. Hence, the same
analysis used for GIFT-64 can be used for GIFT-128. First, 3 faults are used to re-
cover half the bits of K40, then another three faults are used to recover the other
half. The attack is then repeated for K39.

GIFT-128 is very similar to GIFT-64 except for the following differences:

1. The block size is 128 bits, divided into 8 groups of 4 nibbles, each.

2. 64-bit round keys are used.

3. Only every two successive round keys are independent, as opposed to 4
rounds in the case of GIFT-64.

4. The description of the shuffling operation is slightly different. It can be
viewed as two steps; matrix transposition, followed by interleaving.

From this description, any two successive rounds of GIFT-128 can be viewed as a
pair of parallel and independent two rounds of GIFT-64. Since in the case of GIFT-
128, we need only two round keys, the number of faults and complexity of the
attack is exactly the same as in the case of GIFT-64.

D. PRIDE: Finding Optimal DFA Attack

PRIDE [396] is an SPN-based cipher that can be considered as from the same fam-
ily of ciphers as PRESENT and GIFT, but targeted towards low latency applica-
tion. Hence, it uses a more complicated diffusion layer to achieve faster diffusion.
In [161], the authors showed that by flipping 16 adjacent bits at the input of the
linear diffusion layer in the second to last round, all the Sboxes in the last round
can be activated with known input difference. However, since flipping 16 bits is
not an easy task and requires high precision, we analyze the last round limiting
the number of bits to be flipped to 4 (single-fault model). The location of the fault
is the same as [161], round r − 1. Injecting faults in earlier rounds does not help
due to the fast diffusion of PRIDE which will increase the number of active inter-
acting Sboxes. This limits the possible fault locations to 16 nibbles. We tested all
the 16 possibilities and found out that the nibbles that maximize the number of
active Sboxes in the last round are nibbles: 1, 5 and 13, with a maximum of 9 ac-
tive Sboxes in the last round. The active Sboxes are shown in Table 6. We notice
that if we use all these three pairs, each Sbox has appeared at least once. Hence, we
conclude that 4 pairs of faulty and non-faulty ciphertexts are required on average

.7. Proofs for Section 7.3 371

Table 6: The active Sboxes in the last round depending on the fault location

Faulty Location Active Sboxes

1 0,2,3,6,7,8,11,12,15

5 0,1,4,5,6,9,10,13,14

13 0,2,3,6,7,8,11,12,15

to uniquely identify the last round key, and then the attack can be repeated for the
previous round. This is double the number of faults required in [161], but using
a simpler and less demanding fault model. The exact complexities are given in
Section 9.1.

.7. Proofs for Section 7.3

If ∆X is sampled from S , such that |S| = z and P (∆X) = px.then the expected num-
ber of leaked bits of K , when ∆Y is observed is

n−
∑
∆X∈S

pxs∆x,∆y∑
∆Xj∈S s∆xj ,∆ypxj

log(

∑
∆Xj∈S s∆xj ,∆ypxj

px
) (9)

Since, using Bayes’ law, we have

P (∆X = ∆x|∆Y = ∆y)

=
P (∆Y = ∆y|∆X = ∆x)P (∆X = ∆x)

P (∆Y = ∆y)

=
P (∆Y = ∆y|∆X = ∆x)P (∆X = ∆x)∑

∆xj∈S P (∆Y = ∆y|∆X = ∆xj)P (∆X = ∆xj)

=
s∆x,∆y

2n P (∆X = ∆x)∑
∆xj∈S

s∆xj ,∆y
2n P (∆X = ∆xj)

.

372 . Appendix chapter 7

Therefore,

H(K |Z1,Z2)

=
∑

∆X∈S
P (∆X = ∆x|∆Y = ∆y)×

(H(X |∆X = ∆x,∆Y = ∆y)− log(P (∆X = ∆x|∆Y = ∆y)))

=
∑

∆X∈S

s∆x,∆y
2n P (∆X = ∆x)∑

∆xj∈S
s∆xj ,∆y

2n P (∆X = ∆xj)
×

log(s∆x,∆y)− log

s∆x,∆y

2n P (∆X = ∆x)∑
∆xj∈S

s∆xj ,∆y
2n P (∆X = ∆xj)

=
∑

∆X∈S

s∆x,∆y
2n px∑

∆xj∈S
s∆xj ,∆y

2n pxj

log(
2n

∑
∆Xj∈S

s∆xj ,∆y
2n pxj

px
)

=
∑

∆X∈S

pxs∆x,∆y

2n
∑

∆Xj∈S
s∆xj ,∆y

2n pxj

(n+ log(

∑
∆Xj∈S

s∆xj ,∆y
2n pxj

px
))

=
∑

∆X∈S

pxs∆x,∆y∑
∆Xj∈S s∆xj ,∆ypxj

log(

∑
∆Xj∈S s∆xj ,∆ypxj

px
)

Given a pair of faulty and correct ciphertexts Z1 and Z2, if ∆X ∈ {0,1}n is a uniform
random variable, then H(K |Z1Z2) = n, regardless of the properties of the function
S(x). Since

H(∆X |∆Y = ∆y)

=−
∑

∆x∈{0,1}n
P r(∆X = ∆x|∆Y = ∆y)log(P r(∆X = ∆x|∆Y = ∆y))

=−
∑

∆x∈{0,1}n

s∆x,∆y
2n

log(
s∆x,∆y

2n
),

and

H(X1|∆X∆Y)

=
∑

∆x∈{0,1}n
H(X1|∆X = ∆x,∆Y = ∆y)P r(∆X = ∆x,∆Y = ∆y)

=
∑

∆x∈{0,1}n

s∆x,∆y
2n

log(s∆x,∆y),

.7. Proofs for Section 7.3 373

from Equation (7.1), we have

H(K |Z1Z2)

=
∑

∆x∈{0,1}n

s∆x,∆y
2n

log(s∆x,∆y)−
s∆x,∆y

2n
log(

s∆x,∆y
2n

)

=
∑

∆x∈{0,1}n

s∆x,∆y
2n

log(
2n

s∆x,∆y
s∆x,∆y) = n

∑
∆x∈{0,1}n

s∆x,∆y
2n

= n

If ∆X = ∆x (constant), then using one pair (Z1,Z2), the key space can be reduced
from 2n to s∆x,∆y . If ∆X is constant, then H(∆X |∆Y) = 0 and H(X1|∆X∆Y) =
H(X1|∆X = ∆x,∆Y = ∆y) = log(s∆x,∆y). Hence, H(K |Z1Z2) = log(s∆x,∆y). Only lin-
ear (affine) Boolean functions achieves the theoretical security bound H(K |Z1Z2) =
n∀∆x, regardless of the distribution of ∆X. In order for a function S(x) to
achieve H(K |Z1Z2) = n∀∆x for any distribution, s∆x,∆y must be equal to 2n or
0 ∀ ∆x,∆y ∈ {0,1}n, which is achieved only by linear and affine functions.

If ∆X = ∆x (constant), then the expected number of leaked bits ofK is n−
∑

∆y∈{0,1}n log(s∆x,∆y)P (∆Y =
∆y|∆X = ∆x). We have

H(K |∆X)

=
∑

∆y∈{0,1}n
H(X |∆X,∆y)P (∆Y = ∆y|∆X = ∆x)

=
∑

∆y∈{0,1}n
log(s∆x,∆y)P r(∆Y = ∆y|∆X = ∆x).

17

chapter 11

.8. Trigger generation for Hardware Trojans

For the hardware Trojan trigger signal, we exploit directly the temperature sen-
sor measurement to generate the trigger signal. The device, used for this experi-
ment, is Xilinx Virtex 5 FPGA mounted on SASEBO-GII boards. As described in
the documentation [397], the temperature measurement is read directly on 10 bits
signal output of system monitor. This output allows a value which varies from 0
to 1023. System monitor measurement allows to sense a temperature in range of
[−273,+230] hence the LSB of the 10 bits output is equal to 1/2. At the normal op-
erating temperature (25), system monitor output is around 605 = b′1001011101.
Thanks to this observation, we decided to use directly the 7th bit of system moni-
tor output as hardware Trojan trigger signal. The hardware Trojan will be activated
when 7th bit of monitor output is high, i.e., when the monitor output is superior
to 640 = b′1010000000. This value corresponds to 42. Therefore the trigger signal
will be active when FPGA temperature is higher than 42. The trigger temperature
can be easily changed according to the design under test. In our case study, a sim-
ple hair dryer of cost $5 is enough to heat the FPGA and reach this temperature.
We assume that a system monitor is already instantiated in the design, to monitor
device working conditions and the alarm is raised at a temperature higher than 42.
In such a scenario, the hardware Trojan trigger part does not consume much extra
logic and would result in a very low-cost hardware Trojan example.

Whenever we need to trigger the Trojan, we bring the heater circuit close to the
FPGA. The FPGA heats up slowly to the temperature of 42 and raises the output
bit to ’1’. At this point, we switch-off the heater. Now this output bit stays ’1’ till
the FPGA cools down below 42, therefore we cannot precisely control the duration
of trigger in terms of cycle count. We further process this output bit of the sys-
tem monitor to generate a precise duration trigger. This can be done with some
extra logic. In other words, we need a small circuit which can generate a precise
trigger signal when the output bit of system monitor goes to ’1’. For the Trojans
in Tab 11.1, we either need a trigger of 1 clock cycle or 12 clock cycles. Both these
triggers can be generated by deploying one LUT and one flip-flop to process output
bit of system monitor. Thus, we can generate a very small trigger circuit to trigger
a zero-overhead hardware Trojan.

374

18

chapter 13

.9. Key schedule in the fixsliced representation

A. GIFT-64

The first step of our proposed key schedule is to rearrange the bits of the first 4
round keys so that they match the fixsliced representation of the internal state
for the first 4 rounds. We recall that it can be done only once, when the encryp-
tion key is being derived and/or stored on the device. Afterwards, we adjust the
key schedule according to the 4 new representations. Because there are 4 differ-
ent representations depending on the round number, there are 4 different ways to
update the key. The new round key representations from rounds 0 to 3 and the
corresponding key update functions are depicted in Figure .1. Note that our ad-
justed key update functions can basically be computed by means of nibble-wise
and word-wise rotations.

B. GIFT-128

In the case of GIFT-128, adjusting the key schedule according to fixslicing is more
tricky since the new and the classical representations of the state are synchronised
after 5 rounds, while the key words will return to their original positions after 4
rounds. We suggest to compute the key schedule in the classical representation for
the first 10 round before rearranging them in order to match the fixsliced repre-
sentation of the state. At this stage, all key words will be expressed in each repre-
sentation, allowing to adapt the key schedule for each of them, without reordering
bits. As stated in Section 13.4.2, each key word will be exclusive-ORed to the state
in the same representation every 10 rounds. After 10 rounds, 2 out of 4 key words
will have been updated thrice while the two others will have been updated twice,
as detailed in Table 7. Therefore, our adapted key schedule relies on double and
triple update functions for each representation, which are illustrated in Figure .7.

375

376 . Appendix chapter 13

Representation # Round #
Round key

U V

0 0 W2‖W3 W6‖W7

1 1 W0‖W1 W4‖W5

2 2 (W6‖W7)1 W2‖W3

3 3 (W4‖W5)1 W0‖W1

4 4 (W2‖W3)1 (W6‖W7)1

0 5 (W0‖W1)1 (W4‖W5)1

1 6 (W6‖W7)2 (W2‖W3)1

2 7 (W4‖W5)2 (W0‖W1)1

3 8 (W2‖W3)2 (W6‖W7)2

4 9 (W0‖W1)2 (W4‖W5)2

0 10 (W6‖W7)3 (W2‖W3)2

1 11 (W4‖W5)3 (W0‖W1)2

2 12 (W2‖W3)3 (W6‖W7)3

3 13 (W0‖W1)3 (W4‖W5)3

4 14 (W6‖W7)4 (W2‖W3)3

0 15 (W4‖W5)4 (W0‖W1)3

1 16 (W2‖W3)4 (W6‖W7)4

2 17 (W0‖W1)4 (W4‖W5)4

3 18 (W6‖W7)5 (W2‖W3)4

4 19 (W4‖W5)5 (W0‖W1)4

0 20 (W2‖W3)5 (W6‖W7)5

...
...

...
...

Table 7: Round keys’ representations depending on the round number. Exponents refer to
the number of times the key words have been updated. Blue and red arrows refer to double
and triple key updates, respectively.

.9. Key schedule in the fixsliced representation 377

i

V U

0

1

2

3

12

13

14

15

8

9

10

11

4

5

6

7

R
ou

nd
0

16

17

18

19

28

29

30

31

24

25

26

27

20

21

22

23

← ↑↑

R
ou

nd
4

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

18

19

20

21

30

31

16

17

26

27

28

29

22

23

24

25

(a) i mod 4 = 0

V U

32

44

40

36

35

47

43

39

34

46

42

38

33

45

41

37

R
ou

nd
1

48

60

56

52

51

63

59

55

50

62

58

54

49

61

57

53

↑ ←←

R
ou

nd
5

44

40

36

32

47

43

39

35

46

42

38

34

45

41

37

33

50

62

58

54

53

49

61

57

52

48

60

56

51

63

59

55

(b) i mod 4 = 1

V U

64

67

66

65

68

71

70

69

72

75

74

73

76

79

78

77

R
ou

nd
2

80

83

82

81

84

87

86

85

88

91

90

89

92

95

94

93

→ ↑↑

R
ou

nd
6

76

79

78

77

64

67

66

65

68

71

70

69

72

75

74

73

82

85

84

83

86

89

88

87

90

93

92

91

94

81

80

95

(c) i mod 4 = 2

V U

96

100

104

108

97

101

105

109

98

102

106

110

99

103

107

111

R
ou

nd
3

112

116

120

124

113

117

121

125

114

118

122

126

115

119

123

127

↓

R
ou

nd
7

108

96

100

104

109

97

101

105

110

98

102

106

111

99

103

107

114

118

122

126

115

119

123

127

116

120

124

112

117

121

125

113

(d) i mod 4 = 3

378
.
A
p
p
e
n
d
i
x
c
h
a
p
t
e
r
1
3

Figure .6: i mod 5 = 4 .42 Figure 9: GIFT-128 double/triple key update functions
from round i to i + 10, according to the different fixsliced representations over 5 rounds. Each cell represents a bit, and the
numbers in the cells then denote the actual index of that particular bit in the 16-bit key word. Note that i mod 5 = 4 refers
to the classical representation. The cell colors match the corresponding slice for the add round key operation.

W6 W7 W2 W3
R
ou

nd
0 24

25

26

27

16

17

18

19

8

9

10

11

0

1

2

3

28

29

30

31

20

21

22

23

12

13

14

15

4

5

6

7

88

89

90

91

80

81

82

83

72

73

74

75

64

65

66

67

92

93

94

95

84

85

86

87

76

77

78

79

68

69

70

71

↑↑ ↑↑↘↙ ↘↙

R
ou

nd
10 30

31

16

17

22

23

24

25

12

13

14

15

4

5

6

7

18

19

20

21

26

27

28

29

0

1

2

3

8

9

10

11

92

93

94

95

84

85

86

87

64

65

66

67

72

73

74

75

80

81

82

83

88

89

90

91

68

69

70

71

76

77

78

79

(a) i mod 5 = 0

W4 W5 W0 W1

R
ou

nd
1 62

54

46

38

60

52

44

36

58

50

42

34

56

48

40

32

63

55

47

39

61

53

45

37

59

51

43

35

57

49

41

33

126

118

110

102

124

116

108

100

122

114

106

98

120

112

104

96

127

119

111

103

125

117

109

101

123

115

107

99

121

113

105

97

R
ou

nd
11

↘↙
52

60

34

42

50

58

32

40

48

56

46

38

62

54

44

36

53

61

35

43

51

59

33

41

49

57

47

39

63

55

45

37

114

122

102

110

112

120

100

108

126

118

98

106

124

116

96

104

115

123

103

111

113

121

101

109

127

119

99

107

125

117

97

105

(b) i mod 5 = 1

W6 W7 W2 W3

R
ou

nd
2 79

77

75

73

95

93

91

89

78

76

74

72

94

92

90

88

71

69

67

65

87

85

83

81

70

68

66

64

86

84

82

80

11

9

7

5

17

31

29

27

10

8

6

4

16

30

28

26

3

1

15

13

25

23

21

19

2

0

14

12

24

22

20

18

R
ou

nd
12 67

65

79

77

85

83

81

95

66

64

78

76

84

82

80

94

75

73

71

69

93

91

89

87

74

72

70

68

92

90

88

86

3

1

15

13

21

19

17

31

2

0

14

12

20

18

16

30

11

9

7

5

29

27

25

23

10

8

6

4

28

26

24

22

(c) i mod 5 = 2

W4 W5 W0 W1

R
ou

nd
3 99

115

98

114

103

119

102

118

107

123

106

122

111

127

110

126

97

113

96

112

101

117

100

116

105

121

104

120

109

125

108

124

39

57

38

56

43

61

42

60

47

49

46

48

35

53

34

52

37

55

36

54

41

59

40

58

45

63

44

62

33

51

32

50

←

R
ou

nd
13 103

121

102

120

107

125

106

124

111

113

110

112

99

117

98

116

101

119

100

118

105

123

104

122

109

127

108

126

97

115

96

114

47

53

46

52

35

57

34

56

39

61

38

60

43

49

42

48

45

51

44

50

33

55

32

54

37

59

36

58

41

63

40

62

(d) i mod 5 = 3

W6 W7 W2 W3

R
ou

nd
4 12

0

4

8

13

1

5

9

14

2

6

10

15

3

7

11

18

22

26

30

19

23

27

31

20

24

28

16

21

25

29

17

76

64

68

72

77

65

69

73

78

66

70

74

79

67

71

75

82

86

90

94

83

87

91

95

84

88

92

80

85

89

93

81

↑ ↑ ↑↑ ↑

R
ou

nd
14 0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

24

28

16

20

25

29

17

21

26

30

18

22

27

31

19

23

68

72

76

64

69

73

77

65

70

74

78

66

71

75

79

67

86

90

94

82

87

91

95

83

88

92

80

84

89

93

81

85

(e) i mod 5 = 4

Figure 9: GIFT-128 double/triple key update functions from
round i to i + 10, according to the different fixsliced repre-
sentations over 5 rounds. Each cell represents a bit, and the
numbers in the cells then denote the actual index of that
particular bit in the 16-bit key word. Note that i mod 5 = 4
refers to the classical representation. The cell colors match
the corresponding slice for the add round key operation.

Figure 9

.10. Additional illustrations 379

.10. Additional illustrations

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

ki+2

ki+3

Figure .8: Classical representation of GIFT-64 over 4 rounds. Each color refers to a slice.
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

k′i

k′i+1

k′i+2

ki+3

Figure .9: Fixsliced representation of GIFT-64 over 4 rounds. Each color refers to a slice.

380
.
A
p
p
e
n
d
i
x
c
h
a
p
t
e
r
1
3

127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

ki+2

ki+3

ki+4

Figure .10: Classical representation of GIFT-128 over 5 rounds. Each color refers to a slice.

.
1
0
.
A
d
d
i
t
i
o
n
a
l
i
l
l
u
s
t
r
a
t
i
o
n
s

381

127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

k′i

k′i+1

k′i+2

k′i+3

ki+4

Figure .11: Fixsliced representation of GIFT-128 over 5 rounds. Each color refers to a slice.

	I Introduction
	Introduction
	Background
	Problem statement and Research questions
	Scope
	The Practical Cryptanalysis (Part II)
	Passive Side Channel Attacks and Countermeasures (Part III)
	Active Side Channel Attacks and countermeasures (Part IV)
	Security design principles (Part V)
	Application of design guidelines: Lightweight cipher secure implementations (Part VI)
	Research questions summary

	Outline and Contributions
	Part II: The Practical Cryptanalysis
	Part III: Passive Side-Channel Attacks and Countermeasures
	Part IV : Active Side-Channel (Fault) Attacks and countermeasures
	Part V: Design considerations and guidelines
	Part VI: Application of design guidelines: Lightweight cipher secure implementations

	II The Practical Cryptanalysis
	Hardware Acceleration Bridging the Gap between Practical and Theoretical Cryptanalysis
	Introduction
	Cryptanalytic Attacks with Tight Hardware Requirements
	Brute-Force Attacks
	Time-Memory-Data Trade-off Attacks
	Parallel Birthday Search Algorithms

	Hardware Machines for Breaking Ciphers
	Brute Force Machines
	Acceleration of Collision Attacks on Hash Functions
	The Factoring Machine
	Molecular Computers
	Blockchain Mining

	Quantum Computers
	Conclusion

	On The Cost of ASIC Hardware Crackers: A SHA-1 Case Study
	Introduction
	Hash Functions and Cryptanalysis
	SHA-1 and Related Attacks.
	Birthday Search in Practice.
	Differential Cryptanalysis.

	Hardware Birthday Cluster
	Cluster Nodes
	Hardware Design of Birthday Slaves

	Verification
	Hardware Differential Attack Cluster Design
	Neutral Bits
	Storage
	Architecture

	Chip Design
	Chip Architecture
	ASIC Fabrication and Running Cost

	Chip layout
	Verification
	Results
	Attack Rates and Execution Time

	Cost Analysis and Comparisons
	264 Birthday Attack
	280 Birthday Attack
	Chosen Prefix Differential Collision Attack
	Limitations

	Conclusion

	III Passive Side-Channel Attacks on implementations
	 On Comparing Side-channel Properties of AES and ChaCha20 on Microcontrollers
	Introduction
	Background
	Target Algorithms
	Side-Channel Attacks and Metrics

	Side-channel Analysis of Target Algorithms
	Towards Side-channel Protection
	Preventing Timing Side-channels
	Preventing Power Side-channels

	Conclusions

	Multi-Variate High-Order Attacks of Shuffled Tables Recomputation
	Introduction
	Preliminary and notations
	Masking scheme with table recomputation
	Algorithm
	Classical attacks
	Classical countermeasure

	Totally random permutation and attack
	Defeating the countermeasure
	Multivariate attacks against table recomputation
	Leakage analysis
	Simulation results
	Theoretical analysis of the Success Rate

	An example on a high-order countermeasure
	Coron masking scheme attack and countermeasure
	Attack on the countermeasure
	Leakage analysis
	Simulation results on Coron masking Scheme

	A note on affine model
	Properties of the affine model
	Impact of the model on the confusion coefficient
	Theoretical analysis
	Simulation results

	Practical validation
	Experimental Setup
	Experimental results

	Countermeasure
	Countermeasure Principle
	Implementations
	Security Analysis
	Implementation analysis

	Conclusions and Perspectives

	Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC
	Introduction
	Related Work
	Methodology
	Trace Characterization
	Feature selection
	Classification Phase

	Experiments
	Hardware Implementation and Evaluation Setup
	Software Implementation and Evaluation Setup
	Experimental Results
	Discussions

	Conclusion

	IV Active Side-Channel Attacks and Countermeasures
	SoK : On DFA Vulnerabilities of Substitution-Permutation Networks
	Introduction
	Background
	Information Theoretic DFA Model: Towards a theoretical security metric for DFA
	DFA against the last round of SPN
	Reduction of the number of faults
	Joint Difference Distribution Table (JDDT)

	Three Round DFA Attack on SPNs
	Single Fault Attacks against real world SPNs
	PRESENT-80/128: Finding Optimal Attack
	AES-128: Matching Best Known DFA Attack
	SKINNY: Matching Best Known DFA Attack

	Conclusion

	Fault Injection attack on Private Circuit II
	Introduction
	Private Circuits I & II in FPGA
	PC-I in FPGA, for k=1
	PC-II in FPGA, for k=t=1
	SIMON 96/96 in Private Circuits II
	Synthesis results for PC-I and PC-II in Xilinx Spartan 6

	Security analysis of PC-II with k=t=1
	Setup time violations
	Timing faults on PC-II with t=1

	Evaluation using faults
	Experiment setup
	Internal and online debug of fault effects
	Results
	Discussion

	Conclusion and perspectives

	Using Modular Extension to Provably Protect Edwards Curves Against Fault Attacks
	Introduction
	Existing Countermeasures for ECC
	Security Analysis of Modular Extension
	Edwards Curves over large-characteristic fields
	Edwards curves
	Twisted Edwards curves

	Practical Study
	Edwards curves
	Twisted Edwards curves
	Discussion

	Performance
	Edwards curve example
	Twisted Edwards curve example: Curve25519 / Ed25519
	Comments about results

	Conclusions

	A novel physical EM Fault coutermeasure
	Introduction
	PLL-Based EMI Countermeasure
	Concept
	Implementation Details

	Design Automation
	Controllable RO Routing Flow
	Co-Integration Flow of Sensor and Crypto Core

	Experimental Evaluation
	Experimental Setup
	Target Circuit
	Experimental Results
	Discussion

	Conclusions

	Reconfigurable LUT: A Double Edged Sword for Security-Critical Applications
	Introduction
	Rationale of the RLUT
	Comparison With Dynamic Configuration
	RLUT and Security

	Destructive Applications of RLUT
	Adversary Model
	Trigger Design the Hardware Trojans
	Trojan Description

	Constructive Applications for RLUT
	Customizable Sboxes
	Sbox Scrambling for DPA Resistance

	Conclusions

	V Security design principles
	Security is an Architectural Design Constraint
	Introduction
	Primitive Level
	Public Key Cryptography
	Post Quantum Public Key Cryptography
	Symmetric Key Cryptography

	Protocol Level
	Data compression techniques used in TLS protocol
	Attacks on the encryption mode used in TLS protocol

	System Level
	Hardware Security
	Software Security
	Hardware/Software Interface Security

	Proposal for a Security Aware Design Flow
	Conclusion

	VI Application of design guidelines: Lightweight ciphers secure implementations
	Fixslicing: A New GIFT Representation
	Introduction
	The GIFT family of block ciphers
	Round function
	Key schedule and round constants

	Naive bitsliced implementation of GIFT
	A new GIFT representation
	GIFT-64
	GIFT-128

	Efficient software implementations of GIFT
	GIFT-64
	GIFT-128
	Without rotate instruction

	Results
	The GIFT block ciphers
	Adding first-order masking
	The GIFT-COFB authenticated cipher

	Conclusion

	VII Conclusion
	Conclusion
	Achievements
	Reflection and future work

	Acknowledgements
	Acknowledgments
	Appendices

	Biography
	List of Publications
	References

	Appendix
	Appendix chapter 5
	Proof of Theorem 5.4.3
	Proof of the propositions of Sect. 5.4.5
	Proof of Prop. 5.4.5
	Proof of Prop. 5.4.5
	Proof of Prop. 5.4.5

	Proof of Theorem 5.5.3
	Affine model
	Proof of Lemma 5.6.1
	Proof of the Theorem 5.6.3
	Proof of Corollary 5.6.3

	Appendix chapter 7
	SPN vs DFA: Good Design Practices
	More Case Studies to our Techniques
	PRESENT-128 and Practical Implementations of PRESENT: Finding Optimal DFA Attack
	GIFT-64: New Results
	GIFT-128: New Results
	PRIDE: Finding Optimal DFA Attack

	Proofs for Section 7.3

	Appendix chapter 11
	Trigger generation for Hardware Trojans

	Appendix chapter 13
	Key schedule in the fixsliced representation
	GIFT-64
	GIFT-128

	Additional illustrations

