
Re-evaluating the Full Landmark Extraction Algorithm
A Performance Analysis of FULL

Noah Tjoen

Supervisor(s): Dr. S. Dumančić, I.K. Hanou

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Noah Tjoen
Final project course: CSE3000 Research Project
Thesis committee: Dr. S. Dumančić, I.K. Hanou, L. Miranda da Cruz

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Landmarks are propositions or actions that must
be true at some point in every valid solution plan
[16]. Using landmarks, planners can develop solu-
tions more efficiently. Different algorithms exist to
extract landmarks from a planning problem. The
one used in this study is FULL [13], a landmark
extraction algorithm by Marzal et al. from 2011.
In this research, the performance of the FULL al-
gorithm is analysed by comparing the total num-
ber of landmarks found to two other landmark ex-
traction algorithms, namely forward propagation
by Zhu and Givan [22] and backward propagation
by Porteous et al. [16]. The original FULL algo-
rithm is slightly modified, by removing orderings
and disjunctive landmark extraction. FULL is im-
plemented using Julia and was run on five different
domains from the International Planning Competi-
tions. All of these domains are logical and 15 prob-
lems were randomly selected from them. FULL
managed to extract more landmarks in two out of
the five domains, Grid and Logistics, compared to
the two aforementioned algorithms. In the three
other domains, FULL matched the number of land-
marks found by the best out of the two. The two
domains where FULL performed well, were both
transportation domains and this is where FULL’s
performance excels. Runtime was not an issue
when extracting landmarks in four of the five do-
mains. Freecell consistently exceeded the timeout
put in place, likely due to a bug. Furthermore, a
higher number of landmarks is also a desired out-
come due to its use in planners, either as heuristics
or intermediary goals.

1 Introduction
Planning is a notoriously complex task and appears in almost
everything we do. Think of train schedules, conferences or
even a personal daily planner. As it is such a common task,
it is important to find a general approach that facilitates the
process.

Over the last decades, many different planners and plan-
ning algorithms were created. Some of these algorithms are
driven by the use of landmarks. Landmarks are propositions
or actions that must be true at some point in every valid so-
lution plan [16]. This work by Porteous et al. also laid the
foundation for later algorithms, most notably the works of
Hoffman et al.. [7], Zhu and Givan [22], Keyder et al. [9],
and Richter et al. [17].

Marzal et al. [13] came up with a novel technique in
2011 by combining different steps from the earlier mentioned
works to create the FULL algorithm, a full landmark ex-
traction algorithm. Full extraction is defined here by find-
ing the most amount of landmarks possible while using the
most prevalent extraction methods from the time of publica-
tion. This paper compares the FULL algorithm to the individ-
ual algorithms, on which FULL is based, on 12 domains from

the International Planning Competitions (IPC). The FULL al-
gorithm matched the best total number of landmarks in most
domains and even found a new best in five domains when
compared to the number of landmarks found by other land-
mark extraction and generation algorithms.

Since then, new domains and ways to use landmarks have
been proposed. Some examples are different ways to use
landmarks as heuristics in an A* planner and updated do-
mains from the latest IPCs. It is therefore wise to reconsider
the performance of the FULL algorithm, by re-implementing
and re-evaluating it. Thus, this research aims to answer the
following question: How does the performance of the full
landmark extraction algorithm, in terms of the number of
landmarks identified, compare to other landmark algorithms
across different domains?

This question raises further subquestions:
• Is a higher number of landmarks always wanted?

• Which domains are suited for testing the performance
and why?

These questions and the main research question will be
covered in Section 4. Before that, in Sections 2 & 3, further
background on planning and its notations and related work
will be explained respectively. Section 5 shows the results,
while Section 6 will elaborate on the data-gathering process.
Lastly, in Sections 7 & 8, the conclusion of the study and the
suggestions for future research.

2 Background
Before delving into the main content, it is important to clarify
certain concepts that will be used throughout this paper.

2.1 Planning Notation
Planning Domain Definition Language (PDDL) [5] is a stan-
dardised way of describing a planning task. A domain in
PDDL is characterised by three main components:

• Objects: The objects considered in the problem
• Predicates: A list of predicates which describe informa-

tion on the state of an object
• Actions: A list of actions. An action is a triple of the

following:
– Parameters: Parameters needed to perform the ac-

tion
– Preconditions: Predicates needed to perform the

action
– Effects: effects on the rest of the domain whenever

the action is performed
To provide an example, let’s consider the following exam-

ple domain called Blocksworld [20]. The aim in this domain
is to stack blocks on top of each other such that they end up in
a given goal configuration. Figure 1 shows a Blocksworld do-
main with three blocks with the start state on the left and the
goal state on the right. While this example is simple, the prob-
lem sets of Blocksworld can get quite complex, with many
more stacks and blocks.



Figure 1: An example of a Blocksworld problem [19].

Another planning notation commonly used in previous lit-
erature is the Stanford Research Institute Problem Solver
(STRIPS) [4], a predecessor and subset of PDDL. It shares
many similarities with PDDL, as actions and a set of goals
and initial states are also used. The main difference is
in the actions itself. As mentioned earlier in this section,
PDDL defines actions as a triple of parameters, preconditions,
and effects. Instead of using one set for all of the effects,
STRIPS uses two sets: an addition set to represent positive
effects, and a deletion set to represent negative effects. In the
Blocksworld example, a negative effect of picking up a block
would be that it is no longer on the table, while a positive ef-
fect would be that the block would be in the hand. Apart from
this, PDDL and STRIPS operate similarly and can be used
interchangeably. As we will see in Section 3, most previous
methods consider relaxed STRIPS, which removes the delete
list entirely, allowing for easier computation of the planning
graph.

2.2 Planning Graphs
A planning graph is a graph used to represent a planning prob-
lem [1]. In practice, either PDDL or STRIPS is used to fill a
planning graph with nodes. The initial state of the planning
problem is used as the lowest level in the graph. Every sub-
sequent layer is connected to the previous layer through the
means of edges. These edges represent the actions required to
go to the states/nodes in the next layer. Only actions that are
possible, i.e. their preconditions are met at the current level,
can be used to transition to the next level. The final level of a
planning graph consists of the goal state of the problem.

An apparent limitation of this method is the termination of
the process. When creating a graph, a goal state might not be
expanded. This could be due to the graph looping on itself,
creating cycles, or by parts of the graph being disconnected
from the rest [2]. Both of these problems can lead to a high
runtime. In practice, a timeout is used to prevent exponential
runtime.

While state expansion of STRIPS and PDDL are identi-
cal, PDDL provides a more generalised representation of the
planning problem than STRIPS [5]. To account for more gen-
eralisation, most instances in STRIPS are translated into a re-
laxed version. Most often the relaxation removes the delete
list, leaving only the ‘positive’ effects of taking an action. An-
other relaxation which is used for both PDDL and STRIPS is
to allow all actions to be taken from a state, disregarding the
preconditions necessary to take the action. For this paper, this

will not be considered, as none of the subroutines of FULL
require this relaxation. However, both of the aforementioned
relaxations create a new problem. It is now uncertain if the
actions can be taken in a non-relaxed planning. This means a
verification of the original planning problem is required.

2.3 Heuristics and Search
Landmarks are used to guide the search in a planning algo-
rithm to make smarter choices in the planning graph. This
is frequently done by heuristics in combination with a path-
finding algorithm. The most prevalent of these path-finding
algorithms is A* due to its efficiency and guarantee of find-
ing an optimal solution, given that a consistent heuristic is
provided [18]. A* works the same as Dijkstra’s shortest path
algorithm but changes the order of node expansion. While
Dijksta’s algorithm greedily expands nodes, taking the low-
est cost edge first, A* uses a heuristic function.

Heuristics are functions to guide a search towards the goal.
A common heuristic used in A* is to use the greedy function
of Dijkstra, g(n), with the total cost of reaching the goal af-
ter taking that edge, h(n), leading to the heuristic function
cost(n) = g(n) + h(n). This cost is then used to determine
which node to expand first in the A* algorithm.

Many different heuristic functions are possible, but not all
are suitable. To find an optimal solution in a graph, a con-
sistent and admissible heuristic has to be used. A heuristic is
consistent if it never overestimates the growth of the path cost,
while admissibility means that the true cost is never overes-
timated [21]. Consistency implies admissibility, but the con-
trary is not true. However, most admissible heuristics are also
consistent. The earlier-mentioned function is an example of a
consistent and admissible heuristic.

3 Related Work
This section will cover work which is similar or which inspi-
rations are taken from. The papers considered in this section
are chronologically ordered, as the later articles use the dis-
coveries from the earlier papers.

3.1 Landmark Extraction Using Backward
Propagation

As mentioned in the introduction, the paper by Porteous et
al. [16] from 2001 laid the foundation for the use of land-
marks in planning. They first define what landmarks are and
provide extensive mathematical proofs to support their defini-
tions. They then describe a method to extract landmarks from
a relaxed planning graph (RPG). This is done by first creat-
ing the RPG from which a backward graph traversal from the
goals is done. Doing so extracts landmarks as it progresses
with the traversal. As mentioned in Section 2.2, when ex-
tracting landmarks from an RPG, they need to be verified. In
this approach, it is done by checking the following proposi-
tion:



Proposition 1 Given a Planning task P = (O, I,G) and a
fact L. Define PL = (OL, I, G) as follows:

OL := {(pre(o), add(o), ∅) | (pre(o), add(o), del(o)) ∈
O,L /∈ add(o)}

If PL is unsolvable, then L is a landmark in P .

This proposition changes the set of actions to a relaxed set,
where the delete lists are emptied for actions that do not have
fact L in their addition list.

Both the verification and landmarks generation are subrou-
tines of FULL. A critical change FULL makes is immediately
verifying the landmark candidates for the generation of the
RPG. This results in creating a graph of landmarks instead,
which can be used in a later step of FULL.

3.2 Landmark Extraction Using Forward
Propagation

While previous work focuses on the backward traversal of
planning graphs to find landmarks, the paper by Zhu and Gi-
van from 2003 takes a different approach [22]. By using
forward propagation of labels on a regular planning graph,
they were able to find a set of landmarks. As these land-
marks were extracted from the original planning graph, un-
like the work of Porteous et al., no verification of landmarks
is needed. In short, this method starts on the original state
of the planning problem and sets this as the first level. For
each subsequent level, information about the previous levels
is propagated through the form of labels. This process is re-
peated until the goal state has been reached, after which the
labels from the goal states are united, creating a set of land-
marks.

This way of extracting landmarks is another subroutine
used by the full landmark extraction algorithm. In FULL, the
relaxed planning graph is used which adds the need for more
verification. Compared to the backward propagation of the
previous section, forward propagation can find different land-
marks due to the nature of the node exploration. Depending
on the problem, this can lead to more or less landmarks being
found.

3.3 Full Landmark Extraction
Marzal et al. first introduced the FULL landmark extraction
algorithm in 2011 [13]. By combining techniques from the
two papers mentioned previously, they created a new tech-
nique which outperformed the individual algorithms consid-
ered in the paper in terms of landmarks extracted. This algo-
rithm consists of five steps which are as follows:

1. Extract landmarks from a relaxed planning graph [16]

2. Use forward propagation on a relaxed planning graph to
find more landmarks [22]

3. Verify all previously found landmarks using Proposition
1

4. Use verified landmarks to find disjunctive landmarks
[15]

5. Compute dependency ordering between landmarks, i.e.
landmark L happens before landmark L’

The last step of this algorithm is only applied to landmarks
found using Zhu and Givan’s method as the method from Por-
teous et al. already includes this in its landmark extraction.

The algorithm by Marzal et al. is the main inspiration for
this paper. However, there are a few differences. The first of
which is the removal of Step 4. This is due to this paper’s
availability, as neither the author nor the institution where
it was originally published has it in possession. Orderings
are mainly used for running a planner with landmarks. As
this paper is only concerned with finding the total number of
landmarks, the dependency orderings in Step 5 add redundant
computational complexity and will thus not be considered.

4 Methodology
Before delving into the findings, we need to fully define the
algorithm used and explain all the domains, out of which
landmarks will be extracted.

4.1 The Full Landmark Extraction Algorithm
As briefly described in Section 3.3, the full landmark extrac-
tion algorithm used here consists of four steps, as opposed to
the five-step procedure used in the reference paper. Each of
these steps contains a subroutine of the algorithm.

The algorithm starts by creating a relaxed planning graph
and extracting possible landmarks from it. As mentioned in
Section 3.1, this is done by creating a planning graph, after
which backwards propagation on this graph is used to extract
landmarks. These landmarks are then immediately verified
using Proposition 1 and are stored in a graph, constructing a
graph of landmarks and the orderings between them.

This is then followed by extracting landmark candidates
using forward propagation of labels, described by Zhu and
Givan [22]. These labels contain information about the pre-
vious layers of the planning graph, like all previously vis-
ited nodes and all actions taken. By using a relaxed planning
graph for this step instead of a regular planning graph, the al-
gorithm has fewer options to consider when expanding nodes,
theoretically leading to a faster runtime.

However, this means that verification of these landmarks is
necessary, hence the next step of the algorithm. Using Propo-
sition 1, found landmarks from Step 2 can be verified.

Lastly, the landmarks found in the first step and the veri-
fied landmarks from the previous step are merged to create
a final set of landmarks, which will be used to measure the
performance of FULL.

This leaves us with the following definition of FULL:

1. Extract landmarks from a relaxed planning graph using
backward propagation [16]

2. Use forward propagation on a relaxed planning graph to
find more landmarks [22]

3. Verify landmarks found in Step 2 using Proposition 1.
4. Merge verified landmarks from Step 3 with landmarks

found in Step 1



4.2 Testing Domains
As the algorithm used is now defined, it is also important to
decide the planning domains used. In general, there are two
different types of planning domains: logical and numerical.

Logical domains consist of actions and states which can
only take boolean values. The Blocksworld domain from Sec-
tion 2 is a good example of a logical domain. The position of
the blocks can either be true if the block is at a certain po-
sition or false if it is not. Within logical domains, a division
can also be made into transportation and non-transportation
domains [6]. Transportation domains involve the transporta-
tion of some object, i.e. packages, trucks or people, while
non-transportation domains, like Blocksworld, do not have
this requirement.

Numerical domains are different to logical domains, as
they can also take numerical values as well as boolean values.
An example is the Zeno-Travel domain [11]. In this domain,
passengers need to be transported between multiple cities on
planes, which have different speeds, fuel levels and passenger
counts. This makes these domains much more complex and
allows for the generation of a wider spread of landmarks.

For this study, only logical domains will be used due to the
nature of the implementation of the algorithm and its land-
marks. The limitations of the implementation will be further
discussed in Section 8.

To continue with the descriptions of domains used for this
study, we will consider the Logistics domain [3]. This domain
consists of packages that need to be delivered within and be-
tween cities. The packages can move between cities through
the means of planes, and within cities via trucks. This domain
is also a logical domain. Some landmarks to think of for this
domain are a package being on a plane or a truck being at a
certain airport.

The next domain to consider is called Freecell [11]. Free-
cell is a variant of the popular card game Solitaire. The goal
of this game is to move all cards into piles of the four suits
in ascending order, starting with Ace. Cards are dealt face up
in eight columns, from which they can be moved to the other
columns, the corresponding suit pile or one of four free cells.
Cards can only be stacked on each other if the card on top is
of a different suit and lower cost than the card below, i.e. a
seven of spades can be stacked on top of an eight of hearts.
An example of a landmark found in the Freecell domain is
that a card has to be at a free cell spot in the final plan.

The penultimate domain is named Miconic [3]. In this
domain, an elevator can move between floors and transport
passengers to their selected floors. There are no restrictions
on the number of people in the elevator at once, however,
there are variations of this domain where this not is the case.
It is unnecessary to consider these variations as the origi-
nal domain is complex when many passengers and floors are
present.

The last domain to be used is called Grid [14]. This domain
consists of locations on a NxN grid. A robot can move one
grid square at a time, either horizontally or vertically. Some
squares are locked and the robot can only move to it by un-
locking it. The key must have the same shape as the lock
for it to be unlocked. The keys must be picked up and can
themselves be in locked locations.

5 Experimentation & Results
This section gives a visualisation of all the results found dur-
ing the study. Firstly, the performance criteria and problem
selection are explained, after which the final results are shown
and analysed.

5.1 Performance Criteria
As the research question states, FULL was tested on the num-
ber of landmarks found. This method was chosen because it is
consistent regardless of the implementation of the algorithm
and hardware specifications. However, the runtime was still
meaningful to consider. While a higher number of landmarks
may be found using FULL, the runtime could also increase
substantially, leading to an inefficient extraction.

This algorithm was implemented in Julia. Julia is one of
the fastest programming languages among different applica-
tions [8], making runtime less of a limiting factor. This is par-
ticularly convenient for larger problem sets, where the graph
computation and traversal can take polynomial to exponential
runtime.

It was still required for a timeout to be put in place, as
certain problems regarding runtime can arise, mentioned in
Section 2.2. For this study, a 10-minute timeout for each
problem was used. This bound is theoretically tight enough
for all problems to finish. However, the results may vary on
machine specifications. Less memory or lower CPU clock
speeds could lead to more timeouts.

The results from a study by van Maris showed that a higher
number of landmarks is preferable whenever landmarks are
used as intermediary goals or pseudo-heuristics in a planner
[12]. When more landmarks are available, especially when
ordered, the runtime of planners increases significantly. Thus,
the more landmarks extracted by FULL, the better.

5.2 Problem instance selection
As mentioned in Section 4.2, the FULL algorithm was run
on various domains. Various problem instances were ran-
domly picked within these domains while ensuring complex
instances were still considered. Where possible, 15 problems
were selected to run FULL on. This depended on the avail-
ability of the problem set of the IPC. These results were then
compared to other landmark extraction algorithms, namely
forward propagation [22] and backward propagation [7], both
subroutines of the FULL algorithm. Finally, the different do-
mains were compared to each other, to determine which do-
mains FULL performs better on.



5.3 Blocksworld

Figure 2: Full landmark extraction plotted against forward and
backward propagation of landmarks on various problems from the
Blocksworld domain. Problems along the x-axis are sorted by in-
creasing complexity.

The total number of landmarks extracted using FULL
(blue), as well as the backward and forward propagation (or-
ange and green respectively) are plotted against the respective
problem number in the Blocksworld domain (Figure 2). The
problems on the x-axis are displayed in increasing order in
terms of complexity. Problem 1 contains only three blocks in
a simple start and goal configuration, while Problem 99 has
47 blocks and a hard goal state. Figure 2 shows that FULL
extracts the same number of landmarks as backward prop-
agation. Forward propagation finds fewer landmarks. This
could be due to the simple nature of the domain, as there is
not much information to propagate through the labels.

5.4 Logistics

Figure 3: Full landmark extraction plotted against forward and back-
ward propagation of landmarks on various problems from the Lo-
gistics domain. The problems on the x-axis are sorted by increasing
complexity.

In Figure 3, landmark extraction of the Logistics domain can
be seen. The landmarks extracted by FULL (blue), back-
ward propagation (orange), and forward propagation (green)

are plotted against the problem instances from the Logistics
domain, which are sorted in order of increasing complexity.
Figure 3 shows that FULL extracts more landmarks than both
other algorithms starting from problem 27. In the instances
prior, FULL matches the number of landmarks extracted by
backward propagation. The forward propagation consistently
performs worse than the other two methods in this domain.
However, forward propagation finds different landmarks from
backward propagation, indicated by a higher number of land-
marks extracted by FULL.

5.5 Freecell

Figure 4: Full landmark extraction plotted against forward and back-
ward propagation of landmarks on various problems from the Free-
cell domain. Problems along the x-axis are sorted by increasing
complexity.

Figure 4 shows the number of landmarks extracted by
FULL (blue), backward propagation (orange), and forward
propagation (green) in the Freecell domain. All extraction
methods find four landmarks across the different problem
sets. This is likely due to a bug in reading the domain by
all the algorithms considered. As the Freecell domain always
contains four goal states, the landmarks found by the three
methods consist of these states. The fact a bug occurred in
this domain is also apparent when analysing the runtime of
this domain, which can be seen in Section 5.9.



5.6 Miconic

Figure 5: Full landmark extraction, and forward and backward land-
marks propagation plotted against each other on various problems
from the Miconic domain. Problems along the x-axis are sorted by
increasing complexity.

Figure 5 displays the extraction of landmarks by FULL
(blue), backward propagation (orange), and forward propa-
gation (green) in the Miconic domain. The number of land-
marks found using backward propagation in this domain is
substantially lower compared to those found by the other two
algorithms. Forward propagation also finds the same land-
marks as backward propagation does. This means that the
number of landmarks found by FULL is capped by the land-
marks found in forward propagation.

5.7 Grid

Figure 6: Full landmark extraction plotted against forward and back-
ward propagation of landmarks on various problems from the Grid
domain. Problems along the x-axis are sorted by increasing com-
plexity.

In Figure 6, landmark extraction of the Grid domain can
be found. The landmarks extracted by FULL are in blue, the
ones extracted using backward propagation are in orange, and
those found by forward propagation are in green. As men-
tioned at the beginning of this section, 15 problems were se-
lected per domain where possible. For Grid, only five were

available. The graph only shows four of these problems, as
Problem 3 timed out within the given time frame of 10 min-
utes. FULL performed as expected for the other four prob-
lems, finding more landmarks than both methods. Backward
propagation found more landmarks than forward propagation,
but some different landmarks were extracted using the lat-
ter. This led to FULL finding more landmarks than backward
propagation.

5.8 Domain comparison

Figure 7: Total number of landmarks extracted by FULL across all
considered domains, in increasing order of total landmarks found.

Figure 7 shows the number of landmarks found by FULL.
Each box represents the total number of landmarks found
across all problem instances for each domain. The line within
each boxplot shows the median number of landmarks found
across each domain, while the whiskers show the outliers.

The Grid domain has the smallest number of outliers, while
Logistics has the most. This could be explained by the num-
ber of problems considered for Grid. The median for all do-
mains but Grid lay around the mean, which is desired. This
means that the outliers do not influence the overall results and
that the data points are distributed normally.

FULL finds the most landmarks in the Logistics domain,
although the complexity of this domain is similar to the rest.
A possible explanation for this is that Logistics categorises
objects differently. Logistics divides its objects into trucks,
planes, airports, locations, and packages. The other domains
only use a maximum of two different types of objects. From
this, we can conclude that FULL extracts more landmarks if
more object types are defined in a domain.



5.9 Runtime comparison

Figure 8: Runtime of FULL on all considered domains, in increasing
order of total time taken.

In Figure 8, the runtime of FULL is plotted in seconds
across every domain. The runtime for all problems in Free-
cell was extremely high, relative to the number of landmarks
found. This could be explained by a possible bug mentioned
in Section 5.5. For the rest of the domains, the runtime was
less of an influential factor. No domain had any notable out-
liers, with a tight spread on each box. The total execution
time for even the most complex problems was less than one
minute across all domains, meaning a tighter timeout could
have been used.

6 Responsible Research
During this research, no personal data was used. All domains
and problem sets were taken from the IPC and are publicly
available [3][11][14]. 15 problems were chosen for each do-
main from problem sets of different sizes. When the size
of the problem set was less than 15, all problems were se-
lected from the domain. This was only the case for Grid.
These problems were chosen using a random number gen-
erator to avoid any bias. However, this caused other issues
regarding runtime, but this will be further discussed in Sec-
tion 8. The data shown in the results was generated using
self-written code, with no assistance from Large Language
Models, like ChatGPT. The code for FULL, backward propa-
gation, and forward propagation can be found on the TU Delft
repository. The data visualisation and reporting are also un-
der the Netherlands Code of Conduct for Research Integrity
[10]. The same applies to the rest of the methods used in this
report, such as citing and adding references to give original
authors credit.

7 Conclusion
From the results in the previous section, a few things can be
concluded. Firstly, FULL finds more or the same amount
of landmarks in all problems than the forward and backward
propagation. Hence it is proven that overall FULL performs
better and is a more reliable way to extract landmarks as it
is never outperformed by the other two methods considered.
While more landmarks were expected to be found by FULL
than the other two landmark extraction algorithms across all

problems, matching them is a good finding. Furthermore, a
higher number of landmarks extracted means an improved
runtime when landmarks are used in combination with plan-
ners as heuristics [12].

Some of the domains used were more suited to highlight
the performance of FULL, namely Grid, Logistics, and Mi-
conic. This is due to these domains being transportation do-
mains, according to the definition by Helmert [6], while the
other domains are not.

In the future, more non-transportation domains could be
considered to see whether the performance of FULL is also
limited in these domains. Another possible avenue of ex-
ploration is to analyse the quality of the landmarks that are
found. While currently only the total number of landmarks is
found, the quality of these landmarks varies. Thus, the land-
marks found by FULL could be used in combination with var-
ious planners to test if the quality matters in future research.
An additional recommendation is to analyse the runtime us-
ing the landmarks found by FULL.

8 Discussion
Three of the five domains used, Blocksworld, Freecell and
Logistics, were evaluated in the original paper by Marzal et
al. [13]. From these three domains, Blocksworld and Logis-
tics showed similar results. Both studies showed an increase
or match in terms of the number of landmarks found com-
pared to the other algorithms considered.

For the Freecell domain, the version of FULL by Marzal
et al. discovers a very high number of landmarks compared
to the version implemented for this study. However, the pa-
per also states that the other sub-algorithms find hundreds of
landmarks. This was not the case during this study. As men-
tioned in Section 5.5, four landmarks were found over all the
problem instances. This could likely be attributed to the poor
translation from the PDDL file to the input used for FULL, as
only the goal states were found as landmarks.

As mentioned in Section 4.2, the way landmarks are im-
plemented limits the use of numerical domains. Currently,
landmarks are represented as a fact pair. This pair has an ac-
tion or predicate from the planning graph alongside a boolean
value, indicating whether the landmark is true in a given state.
Since boolean values are used instead of numerical values, us-
ing numerical domains is impossible. Reimplementing land-
marks using terms would be an alternative and allow numeri-
cal domains to be used.

The runtime results displayed in Section 5.9, may vary de-
pending on the hardware used. However, the ratio between
the domains will stay the same as the complexity of the do-
mains can not change. Only one problem timed out, which
was Grid 3. This could be due to a deadlock occurring by the
robot using the keys in the wrong order.

Lastly, tighter runtime bounds could have been used. As
seen in Section 5.9, the runtime only exceeded a minute on
the bugged Freecell domain. Tighter bounds would have re-
sulted in a faster data-gathering process, which could have
allowed for more problem instances or different domains to
have been considered.



Acknowledgements
I would like to express my appreciation to my responsible
professor, Dr. S. Dumančić, and my supervisor, I.K. Hanou,
for their efforts during this study, for providing meaningful
feedback during the weekly meetings and their openness to
answering questions whenever necessary. I would also like to
thank my research group members, B. van Maris, P. Tervoort.,
K. Yang, and P. Hengst, for their teamwork and their work
ethic during this project, pushing each other to achieve better
results.

References
[1] Avrim L. Blum and Merrick L. Furst. Fast planning

through planning graph analysis. Artificial Intelligence,
90(1):281–300, 1997.

[2] B Bollobás. Modern Graph Theory. Springer New
York, 1998.

[3] Bacchus F. Competition domains, 2000.
[4] R. E. Fikes and N. J. Nilsson. Strips: A new approach

to the application of theorem proving to problem solv-
ing. Artificial Intelligence, 2(3–4):189–208, December
1971.

[5] M Ghallab, C Knoblock, D Wilkins, A Barrett, D Chris-
tianson, M Friedman, C Kwok, K Golden, S Penberthy,
D Smith, Y Sun, and D Weld. Pddl - the planning do-
main definition language. 08 1998.

[6] Malte Helmert. Complexity results for standard bench-
mark domains in planning. Artificial Intelligence,
143(2):219–262, 2003.

[7] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered land-
marks in planning. Journal of Artificial Intelligence Re-
search, 22:215–278, November 2004.

[8] Julialang. Julia micro-benchmarks, 2023.
[9] E Keyder, S Richter, and M Helmert. Sound and com-

plete landmarks for and/or graphs. In Proceedings of the
2010 Conference on ECAI 2010: 19th European Con-
ference on Artificial Intelligence, page 335–340, NLD,
2010. IOS Press.

[10] KNAW, NFU, NWO, TO2-Federatie, Vereniging
Hogescholen, and VSNU. Nederlandse gedragscode
wetenschappelijke integriteit, 2018.

[11] D Long and M Fox. Competition domains, 2002.
[12] B Maris van. Using landmarks as intermediary goals or

as pseudo-heuristics. Bachelor’s thesis, Delft University
of Technology, 2024.

[13] E. Marzal, L. Sebastia, and E. Onaindia. Full extraction
of landmarks in propositional planning tasks. In AI∗IA
2011: Artificial Intelligence Around Man and Beyond,
pages 383–388. Springer Berlin Heidelberg, 2011.

[14] D McDermott. Competition domains, 2000.
[15] J. Porteous and S. Cresswell. Extending landmarks

analysis to reason about resources and repetition.
November 2002. Proceedings of the 21st Workshop

of the UK Planning and Scheduling Special Interest
Group (PLANSIG ’02) ; Conference date: 21-11-2002
Through 22-11-2002.

[16] J. Porteous, L Sebastia, and J Hoffmann. On the ex-
traction, ordering, and usage of landmarks in planning.
Proc. European Conf. on Planning, July 2001.

[17] S Richter, M Helmert, and M Westphal. Landmarks re-
visited. In Proceedings of the 23rd National Conference
on Artificial Intelligence - Volume 2, AAAI’08, page
975–982. AAAI Press, 2008.

[18] S Russell and P Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, 3 edition, February 2010.

[19] B Supervisor, H Fiorino, and C Martin. Interactions in
planning systems.

[20] G. J. Sussman. A computational model of skill acquisi-
tion, August 1973.

[21] N. Yorke-Smith. Algorithms for np-hard problems, part
i – heuristic search, lecture 2: Greedy best-first search.
Lecture Slides.

[22] L Zhu and R Givan. Landmark extraction via planning
graph propagation. June 2003.


	Introduction
	Background
	Planning Notation
	Planning Graphs
	Heuristics and Search

	Related Work
	Landmark Extraction Using Backward Propagation
	Landmark Extraction Using Forward Propagation
	Full Landmark Extraction

	Methodology
	The Full Landmark Extraction Algorithm
	Testing Domains

	Experimentation & Results
	Performance Criteria
	Problem instance selection
	Blocksworld
	Logistics
	Freecell
	Miconic
	Grid
	Domain comparison
	Runtime comparison

	Responsible Research
	Conclusion
	Discussion

