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Building energy retrofit-as-a-service: a Total Value of Ownership assessment 
methodology to support whole life-cycle building circularity and 
decarbonisation 

Juan Francisco Azcarate-Aguerrea , Mira Concib , Markus Zilsc, Peter Hopkinsonc and  
Tillmann Kleina 

aFaculty of Architecture and the Built Environment, Delft University of Technology, Delft, The Netherlands; bEIT Climate-KIC, 
Amsterdam, The Netherlands; cExeter Centre for the Circular Economy, University of Exeter Business School, Exeter, UK    

ABSTRACT 
The regulatory drive to accelerate the clean energy and circular economy transitions in the 
European building stock is currently failing to overcome systemic implementation barriers. 
These barriers include high initial investment costs, misaligned financial incentives among stake
holders, and the relatively low cost of less sustainable energy and materials. A Product-Service 
Systems (PSS) approach could successfully overcome many of these barriers by (1) outsourcing 
capital investment, as well as financial and technical risks, (2) providing shared economic incen
tives to collaborating stakeholders, and (3) retaining extended producer responsibility and own
ership over materials and products. However, PSS is still not seen as a viable business model 
when compared to both a standard “ownership” contract and a “no-retrofit” scenario. This paper 
proposes a Total Value of Ownership (TVO) method to evaluate the financial performance of a 
building energy retrofit in terms of Net Present Value, comparing a matrix of scenarios. Results 
show that – when accounting for capital and opportunity costs tied to alternative investments, 
internalising externalities, and monetising soft values such as user productivity and property 
value – a PSS model can deliver the highest NPV. Furthermore, results show that a PSS alterna
tive can act as a positive future-proofing strategy to safeguard the building owner’s position in 
the face of uncertain future market indicators and carbon taxation. Recommendations for policy
makers, investors, financiers, building owners, and end-users are presented to identify the eco
nomic value of PSS contracts, leading to better-informed decisions which can accelerate deep 
energy retrofit of the building stock.   
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Motivation, context, and background 

The relevance of building decarbonisation 

In 2018, the European Commission (EC) published a com
munication confirming “Europe’s commitment to lead in 
global climate action, and to present a vision that can 
lead to achieving net-zero greenhouse gas emissions by 
2050 through a socially-fair transition and in a cost-effect
ive manner” (European Commission 2018). In March 
2020, the EC presented a proposal to enshrine the 2050 
carbon neutrality target for the EU into law (European 
Commission 2020a). The expected contribution to this 
target from the construction and infrastructure industry 
is framed in the EU Clean Energy Package and in the EU 
Circular Economy Package: 

The EU Clean Energy package requires member 
states to prepare national policy measures to achieve 
high renovation rates, smart and decarbonised 
buildings with reduced energy consumption, and 
supplied with renewable energy sources (European 
Commission 2020b). 

The EU Circular Economy Package, adopted in 
March 2019 in its 4th version, states the aims of main
taining the value of products and materials for as long 
as possible, minimise waste and resources use, and 
use products again after they reach their “end-of-life” 
to create further value (European Commission 2019a). 

Approximately 800 million tonnes of partially recyc
lable and reusable construction and demolition waste 
are generated every year (European Commission 
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2019b), but the challenge of whole life cycle building 
decarbonisation in Europe mainly concerns the 
25 billion m2 of usable floor space that has already 
been built. As is well known, renovation rates have 
consistently remained below target (Economidou et at. 
2011), while the average share of renewable energy 
supplied to buildings in the European Union remains 
around 20% (Eurostat 2021). 

Barriers & opportunities 

Extensive literature has validated that existing build
ings can reach net carbon neutrality through the use 
of market-ready, affordable technologies, both from 
the point of view of embodied as well as operational 
carbon (Xing et al. 2011, Lannon et al. 2013, Ferreira 
et al. 2016, Almeida & Ferreira 2017, Conci et al. 2019). 
Common strategies include the use of biomass (i.e. 
timber) as construction material, combined with highly 
insulating envelopes, energy-efficient thermal energy 
systems (such as heat pumps), and renewable energy 
generation (such as photovoltaic cells). 

Despite available technologies, demand for both 
retrofitted and new carbon neutral buildings is low. 
Extensive interviews and surveys among individual 
stakeholders have identified two main barriers to deep 
energy retrofits: a lack of access to initial capital, and 
conflicting incentives in how to invest it (Azcarate- 
Aguerre et al. 2017, Build UP 2020). 

Long-term property assessed clean-energy (PACE) 
investment funds, which pre-finance renovation meas
ures with guaranteed pay back from energy savings 
(www.europace2020.eu) have been developed to 
incentivize building owners and occupiers to invest in 
building decarbonisation by offsetting initial capital 
needs. This approach resulted in the successful large- 
scale deep energy renovations of up to 10,000 apart
ments at a time (Energiesprong 2019), but a challenge 
often encountered is that initial capital costs are not 
compensated over the project’s service life, resulting 
in a net loss for the investor. This can be due to mar
ket forces and/or regulation (e.g. regulatory limits on 
rental prices or markets with fluctuating valuation of 
energy labels and other performance certificates 
(Holtermans and Kok 2019)); due to split incentives 
(e.g. when landlords pay for the renovation but ten
ants pay for operational energy costs (Melvin 2018); or 
because energy cost savings fail to materialise to 
the required extent (e.g. user rebound effect 
(Bourrelle 2014)). 

Reaching carbon neutrality in real estate projects 
also adds a layer of complexity to the already time- 

consuming decision-making structure of building reno
vations: few building professionals have the skills to 
plan and deliver a carbon-neutral building, and few 
clients are willing or equipped to contextualise and 
assess the additional evaluation criteria. This additional 
effort is not monetizable as real estate valuation proc
esses do not – at present – fully or reliably account 
for the value of sustainability, neither in terms of 
energy consumption nor of material circularity 
(Warren-Myers 2013; Rooplal Utmani 2021). Several 
EU-funded projects such as Envest (2019–2021), 
LAUNCH (2019–2021), and TripleA-reno (2018–2021) 
aim to accelerate the demand for deep energy renova
tions. They focus on the investor and building owner’s 
perspective by addressing capitalisation, added-value 
standardisation, and user-acceptance barriers. 

As recognised by the EC, circular strategies can 
generate new revenue streams, because circularity 
hinges on closing material loops – i.e. the secondary 
revalorisation of the stock – which means that “waste” 
materials and components are turned into new prod
ucts at the end of (each of) their service lives (Alhola 
et al. 2017, Hopkinson et al. 2018, Ajayebi et al., 2019, 
Ajayebi et al., 2020, City of Helsinki 2019). This should 
improve on the financial balance of net-zero carbon 
buildings. This potential new revenue stream, how
ever, has so far not motivated a large uptake in this 
kind of projects, mainly due to the fact that the mar
ket for secondary material streams is not yet mature 
or predictable, rendering the long-term value trend of 
such components and materials uncertain. 

Policy could help, first and foremost by regulating 
negative externalities, such as carbon emissions, on 
the grounds of being a societal hazard and a threat to 
the wellbeing of present and future generations. 
Another important step could be to invest public 
funds in increasing construction professionals’ skills 
and capabilities in delivering carbon neutral buildings, 
for example in planning and building with wood, 
designing for disassembly, remanufacturing, carbon 
accounting, and cost-benefit analysis tied to 
Environmental and Sustainability Goals (ESG) credit 
ratings. A notable actor in this area of work is the 
Ex’tax Foundation (www.ex-tax.com), which is helping 
countries to pioneer these approaches. Yet another 
promising policy shift – more radical but which is 
gaining traction – is an increase in taxation of material 
resources and a decrease in taxation of human labour 
(Stahel and Clift 2016, Milios 2021). This measure 
could significantly improve the financial case for 
material resource recovery in advanced economies 
where the cost of labour is a significant barrier to 
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effective material circularity (Matsumoto et al. 2016, 
Milios et al. 2019). 

There is thus a clear need for a collaborative 
approach that aligns levers of technology, finance and 
economics, and policy and regulation. Having estab
lished the role of technology and assuming policy will 
move slowly, we now focus on the economic and 
financial levers, which could be activated through a 
Product-Service System approach. 

Product-Service Systems: a potential energy- 
retrofitting catalyser 

Product-Service Systems (PSS) are a category of busi
ness models which aim to shift the focus of value in 
economic transactions away from that of tangible 
material products, and towards that of the intangible 
functional performance delivered by these products. 
PSS could act as a catalyser of deep building energy 
renovations by (Figure 1):   

1. Offsetting the initial investment to an external 
financing party, therefore unlocking access to 
external capital while avoiding internal opportun
ity costs; 

2. Tying long-term performance-based contracts to 
bespoke sets of indicators, like comfort and 
environmental impact, so that externalities and 
co-benefits can be effectively monetised; and 

3. Retaining materials ownership with the supplier 
(or supplier consortium), who is responsible for 
their performance. Thus incentivising durability, 

reparability, and the recovery of residual value at 
the end of components’ service-lives – i.e. a circu
lar use of resources. 

PSS is not a new concept in the construction and 
real estate management fields. Its overarching value 
proposition, organisational implications, and sustain
ability potential have been recognised for over two 
decades (Leiringer and Br€ochner 2010). Numerous 
authors have identified and highlighted a natural 
alignment between PSS, the Circular Economy, and 
environmental sustainability (Stahel 1997, Mont 2002, 
Vezzoli et al. 2017). Nearly twenty years later, an 
increasingly mainstream interest in the Circular 
Economy has brought the concept of PSS to the fore
ground of a broader societal and industrial debate, at 
least in the Northwestern European context. 

Three main uncertainties regarding the applicability 
and feasibility of PSS have been identified to date: the 
readiness of companies to adopt them, the readiness 
of consumers to accept them, and their environmental 
implications (Mont 2002). A challenge to its wider 
implementation has been recognised as the lack of 
quantitative tools to determine the total value deliv
ered by PSS offerings (Baines et al., 2007, Wang et al., 
2011). These uncertainties and challenges remain 
largely unsolved: suppliers are still mostly reluctant to 
invest resources in a transition for which there is still 
no widespread demand; consumers lack the tools to 
determine whether a PSS alternative is beneficial to 
them beyond the initial investment and; environmen
tal benefits remain largely untested as few companies 
have implemented PSS, and those which have rarely 
publish specific information on its mid- to long-term 
financial and environmental results. 

In the last 10–15 years a small number of authors 
have proposed economic evaluation methodologies 
for the development and implementation of different 
PSS models. 

These analyses have been characterised as: (a) 
highly specific to their regional or sectoral context, 
with limited transferability to other contexts; (b) 
mostly reliant on individual case-studies, or a small 
sample thereof; and (c) largely focussed on abstract 
sources of customer added value (i.e. soft values) 
rather than hard monetised performance evaluation 
(van Ostaeyen 2014, Reim et al. 2015). 

Several methodologies have focussed on supply- 
side readiness by proposing methods for evaluating 
PSS-related cost-savings potential for the manufacturer 
and service provider. They found that PSS savings could 
theoretically result in optimised commissioning costs to 

Figure 1. Three aspects of Product-Service Systems that could 
potentially accelerate the deep energy renovation of the built 
environment while enabling product and material circularity.  
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the customer, however, suppliers have also been rated 
as not always ready to reap such savings (Lind and 
Borg 2010, Straub 2010, van Ostaeyen et al. 2013). 

This paper focuses instead on the demand-side 
readiness by proposing a method for evaluating PSS- 
related cost savings potential for the commercial real 
estate owner and investor. Commercial building own
ers are defined as those for whom the ownership and 
exploitation of real estate represents the core busi
ness, as opposed to public or corporate real estate 
owners for whom the building acts as an operating 
asset to facilitate and enable their core processes and/ 
or value creation activities. The method aims at sup
porting decision-making among both technological 
and contracting alternatives by providing an evalu
ation of Total Value of Ownership (TVO) in terms of 
Net Present Value (NPV) over a specific time frame for 
different building energy retrofit scenarios. A TVO ana
lysis allows the assessment of specific impacts tied to 
a PSS approach thanks to the inclusion of whole life 
cycle timeframe as well as “soft” values and co-bene
fits. Net Present Value allows for the evaluation of 
uncertain future developments through a sensitivity 
analysis, overcoming the barriers of traditional Life 
Cycle Costing (LCC) methodologies when dealing with 
factors such as the (future) value of sustainability, 
externalities, subjective strategic fit, and split owner
ship (Gluch and Baumann 2004, Goh and Sun 2016) 

Method and materials 

Design and structure to test the hypothesis: 
Product-Service Systems have the potential to 
unlock financing for building decarbonisation 

The study is structured in three steps:   

1. Develop a TVO-based evaluation methodology to 
compare a PSS energy retrofitting contracting solu
tion against alternative contracting scenarios. We 
will subdivide the evaluation into a TVO sub-total 
including only “hard” monetary values and a 
TVOþ total including selected “soft” values as well. 

2. Statistically test this methodology using an arche
typal retrofit project based on industry-average 
data for the Dutch commercial real estate and 
construction sectors. The use of a statistical 
model, rather than a (selection of) case-study 
building(s), aims to ensure our results are as 
broad and representative as possible, and not 
determined by the specific project and client char
acteristics of the selected sample. 

3. Perform a dynamic sensitivity analysis through a 
Montecarlo simulation to determine the extent to 
which the different parameters influence the 
financial investment performance of the TVOþ. 
The parameters are selected as a combination of 
the most determinant ones in the archetypical 
static analysis and the most widely ranged for dif
ferent investor profiles (private, corporate, public). 

TVO-based evaluation methodology 
Total Value of Ownership (TVO) is the sum of a proj
ect’s total costs and its total value, including capital 
expenses, such as initial investment in year zero and 
opportunity costs, and indexed future cash flows over 
each planned year of operation (Davis et al. 2005, van 
Ostaeyen 2014), but also other tangible and intangible 
factors as determined by the decision-maker. The 
scenario with the highest TVO is the most financially 
attractive, for the investor who needs to choose 
between alternative projects which offer equivalent 
utility performance. 

A basic approach to the most tangible TVO factors 
is thus determined by the formula: 

TVO ¼ � Px � Ox � Mx � Ex þ Tvþ Rv  

Where:  

Px is the capital cost of the project’s initial invest
ment in e/m2 NFA plus the region’s bank loan serv
icing cost 

Ox is the opportunity cost of capital for the project’s 
initial investment in e/m2 NFA at the region’s 
Weighted Average Cost of Capital (WACC) 

Mx are the indexed future maintenance costs SUM 
of M1, M2, M3, … Mx in e/m2 NFA, plus the cost of 
deferred maintenance in a no-renovation scenario. 

Ex are the indexed future energy costs SUM of E1, E2, 
E3, … Ex in e/m2 NFA 

Rv is the indexed value of rental revenue SUM of R1, 
R2, R3, … Rx in e/m2 NFA 

Tv is the indexed transactional value of property 
appreciation SUM of T1, T2, T3, … Tx in e/m2 NFA 

The extended approach including softer or less tan
gible indicators of value, proposed by this study as 
TVOþ analysis, is determined by the formula: 

TVOþ ¼ TVO � Sx – Hx  

Where:  

Sx are the indexed shadow carbon costs SUM of S1, 
S2, S3, … Sx in e/m2 NFA 
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Hx are the indexed costs of a decrease in staff prod
uctivity due to poor indoor comfort, SUM of H1, H2, 
H3, … Hx in e/m2 NFA 

Cv is the indexed material or components value 
recovered through, respectively, recycling or rema
nufacturing activities, in % of original component 
value indexed at the end of service life. 

We use the TVO and TVOþ formulas to evaluate 
the following matrix: a “Business-as-Usual” (BaU) scen
ario, in which no energy renovation takes place, and a 
decarbonised “Net-Zero” building energy retrofit pro
ject, financed either through a standard ownership 
contract, or through a PSS contract (Table 1). 

Parameters and boundary conditions for selected 
archetypical case-study 
In this section we summarise and justify boundary 
conditions as well as our selection of values to apply 
the TVO-based evaluation method to an archetypical 
case-study project. 

Boundary conditions – geography. The range of 
financial parameter values central to this calculation 
varies across European countries without a recognis
able reciprocal trend. Notably these financial parame
ters are the Weighted Average Cost of Capital (WACC), 
which is the average cost of debt (bank loans) and 
equity (investor’s capital) for commercial projects, and 
labour costs. Both influence initial investment, oppor
tunity costs, and maintenance costs. For this reason, 
we selected the Netherlands as a proxy for a 

Northwestern European country-average evaluation, 
due to its comparable climate, socioeconomic, and 
financial indicators (Stein 2016), as well as its solid 
databases documenting building stock and market pri
ces. To note is that WACC averaged 6.3% in the 
Netherlands and 7.3% in the EU-28 as per the results 
of the Intelligent Energy – Europe project’s DIA-CORE 
(Ortner et al. 2016). 

Boundary conditions – time. We perform the quanti
tative evaluation of Total Value of Ownership (TVO) 
over the next 30 years to align the analysis with the 
EU-wide target of carbon neutrality by 2050. 

Parameters – initial investment and opportunity 
cost. Table 2 summarises Initial investment and oppor
tunity costs parameters. To note is that for the analysis 
presented in this paper we select an average existing 
non-residential building, a category that comprises 
39.3% of Dutch building stock (European Commission 
2021) and has an average area of 2.000 m2 (BPIE 2011, 
Sipma 2019). 

Initial investment costs include planning and pro
ject management, materials and components, installa
tions, and construction costs, all including Dutch 21% 
VAT. For the renovation, we use the Energy 
Performance Certificate (EPC) label – a rating scheme 
to evaluate the energy efficiency of buildings in the 
European Union (Arcipowska et al. 2014) – to charac
terise a building’s energy-relevant physical characteris
tics. EPC labels range from G, the lowest, to A, the 
highest and most energy efficient. According to 

Table 1. Categorisation of technical and contractual strategies evaluated. 
Project options “Business-As-Usual” Building (no intervention) Net zero carbon Building (after retrofit) Net zero carbon Building (after retrofit)  

Ownership financing Ownership financing Ownership financing PSS financing  

Table 2. Initial investment and opportunity costs parameters.  
Parameter Functional Unit BaU Retrofit (ownership) Retrofit (PSS) Source   

EPC label Grade E A A Arcipowska et al. 2014  
Primary Energy use kWh/m2 NFA/a 265.00 50.00 50.00 Filippidou et al. 2017  
Net floor area NFA 2.000 2.000 2.000   
Planning & PM (15% of 

construction) 
e/m2 NFA N/A � e 52.05 � e 52.05   

Façade retrofit e/m2 NFA N/A � e 128.00 � e 128.00 COBOUW, 2020  
Heat pump energy 

system retrofit 
e/m2 NFA N/A � e 219.00 � e 219.00 COBOUW, 2020  

Depreciation over 
30 years 

% 100% 100% 70%  

Px/Ox Initial investment e N/A 2e 399 2e 399   
Asset-backed loan 

(mortgage) index  
(10-year fixed) 

% 1.60% 1.60% 1.60% https://www.hypotheekvisie.nl/ 
hypotheek-berekenen/ 
hypotheekrente-vergelijken  

WACC commercial sector % 6.30% 6.30% 6.30% Ortner et al. 2016  
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Zebra2020 Data Tool by Enerdata the most common 
EPC label for non-residential buildings in the 
Netherlands is label “E,” comprising 35% of the build
ing stock. This value is consistent with the average for 
the 9 European countries providing data. An EPC label 
“E” translates to a primary energy consumption for 
heating and Domestic Hot Water preparation of 
265 kWh/m2/year (Filippidou et al. 2017). In buildings 
with EPC label “E,” thermal energy is usually generated 
through boilers running on natural gas. An EPC label 
“A” building, in contrast, has a primary energy con
sumption for heating and Domestic Hot Water prepar
ation of <50 kWh/m2/year thanks to an insulated 
façade and typically generated through a heat pump 
system (Figure 2) (Engie.nl, 2012). 

As defined by IEA Annexe 61 (Zhivov et al. 2017), a 
major building renovation project in which site energy 
use intensity has been reduced by at least 50% from 
the pre-renovation baseline is a “deep energy retrofit,” 
so an improvement from EPC label “E” to “A” therefore 
represents a “deep renovation”. We also include 
depreciation, which is tied to the service life of each 
component. For reference, EEFIG De-risking Energy 
Efficiency Projects (DEEP) Platform (https://deep.eefig. 
eu/) lists the initial investment to retrofit a non- 
residential building in the EU-28 at e88/m2 floor area 
for the building envelope and e198/m2 floor area for 
the HVAC system, while data from 8 EU countries pro
vided by Zebra2020 Data Tool results in an average 
investment costs of e430/m2 for a “deep renovation” 
of a non-residential buildings, so that this case falls 
within a realistic range. 

Parameters – indexed costs. Table 3 below summa
rises Indexed parameters, which include maintenance 
costs, energy costs, rental value, and property value. 

To note is that the price of energy for non- 
household consumers in the Netherlands is e0.039/ 
kWh for natural gas, with EU-28 average being e0.032/ 
kWh (Eurostat 2019a), and e0.09/kWh for electricity 
with EU-28 average being e0.12/kWh (Eurostat 2019b). 
4) We assume that the “green power” provider uses 
the same rates. 

A study by ING Real Estate Finance and the 
University of Maastricht found that the Dutch real 
estate market grants a 9.9% rental premium and a 
8.6% property value premium to an EPC label A build
ing compared to the average building (ING Real Estate 
Finance 2017). We use these factors to evaluate the 
potential increase in rental income and property value 
from improved EPC label for an average commercial 
property in the Netherlands, which has a gross rental 
income of e147/m2 NFA and a property value of 
e1.235/m2 NFA. 

Parameters – soft values. Table 4 summarises 
shadow carbon costs, staff productivity costs, and 
recovered material or components prices. 

For the embodied GHG emissions resulting from 
the energy retrofit of a non-residential building we 
take the average from a study evaluating a wide range 
of non-residential case-study buildings with wood, 
concrete, and metal façade constructions (Hildebrand 
2014). We assume a credit for the next life of the com
ponent (offsetting the carbon emissions from virgin 

Figure 2. Technical sketch of implemented deep energy retrofit measures on the archetypal building. The study is applied to a 
generic, archetypal building based on broad statistical data from the Dutch context in order to overcome the highly specific (and 
thus non-representative) values of any specific case-study project or sample of projects.  
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material extraction) of � 30% in the PSS scenario. The 
operational GHG emissions are calculated using the 
GHG emission factor for Dutch power 0.413 kgCO2e/ 
kWh (RvO 2017), but, assuming the utility sector plays 
its part, in 2050 our target electricity system is carbon 
neutral. The average GHG emissions factor for the 
electricity consumption of the building with EPC label 
“A” between 2020 and 2050 is therefore 0.206 
kgCO2e/kWh, resulting in yearly GHG emissions of 
50 kWh/m2 � 0.206 kgCO2e/KWh ¼ 10 kgCO2e/m2/year 
over the 2020–2050 period. For reference, in the alter
native case of a “green” power provider who can cer
tify 100% electricity generation from renewable 
sources from the first year of operation. The carbon 
emissions of this scenario should therefore be 
accounted for using the factor for value-chain emis
sions for solar and wind power, which is 0.011 
kgCO2e/kWh, resulting in 0.6 kgCO2e/m2/year. 

The hard-monetary cost of poor indoor comfort, 
and its effect on personnel health, well-being, and 
productivity, is the subject of much scientific debate. 
Estimates for economic losses resultant from staff 
absenteeism and presenteeism due to factors such as 
poor thermal comfort, insufficient lighting, poor air 
quality, are often in the range of 2–4% (Olesen 2005, 
Sepp€anen and Fisk 2006, Terrapin Bright Green 2012, 
Feige et al. 2013). For this study we use a conservative 
2% loss, calculated over the average yearly salary of a 
Dutch office worker. 

The current lack of strong secondary material and 
component markets, and the unpreparedness of the 
construction value chain to presently reabsorb the 
residual value of end-of-service components 
effectively – through recycling or remanufacturing 
activities – makes it difficult to project a monetary 
value for such recovery. Expecting such market failures 
to be corrected in the coming decades, because of 
both policy incentives and industry interest, we pro
pose a worst-case 10% residual value of recycled 
materials – largely resultant from the long-term value 
increase trend observed in the London Metals 
Exchange index – and a best-case 30% value recovery 
for high-grade remanufactured components. Current 
examples from other industries point to value recovery 
through effective remanufacturing to be much higher 
than 30% (Santini et al. 2011). 

Results 

Results shows that the Net Present Value (NPV) of the 
investment after 30 years in the Basic TVO model is 
highest for BAU, followed closely by PSS contracting, 

while it is negative for Ownership contracting retrofit. 
This result falls in line with – and explains – the 
observable low retrofitting rates across the EU. PSS 
contracting results in a positive NPV because the 
potential financial profit from an alternative capital 
investment (i.e. the opportunity value of an alternative 
and independent project) over-performs the retrofit 
expenses, even after accounting for the additional 
setup and financing costs resulting from the outsourc
ing of the project’s capital investment, as well as from 
the long-term technical management. 

In the TVOþmodel, accounting for soft costs, the 
overall NPV of the project for the building owner/ 
investor, is lower but still positive when retrofitting 
through PSS contracting, almost unchanged compared 
to Basic TVO when retrofitting through the ownership 
model, and strongly negative when no intervention is 
made (Figure 3). 

Sensitivity analysis 

Dynamic Montecarlo simulation using SimVoi add-in 
For the sensitivity analysis through Montecarlo simula
tion using SimVoi add-in for Microsoft Excel we select 
the parameters most determinant to results of the 
static archetypical Dutch case-study building: Shadow 
Carbon Cost indexation (in years 1–10) and Weighted 
Average Cost of Capital (WACC) to determine 
Opportunity Costs. In addition to WACC, we also test 
the servicing cost of the loan as part of the Initial 
Investment to explore results from the point of view 
of different types of investors (private, corporate, pub
lic), for which this specific parameter can vary 
significantly. 

Variable 1: Shadow Carbon Cost indexation is tested 
in two ranges: (1) A high indexation in the range of 
2–100% over the first 10 years, which reflects the real 
externality costs which the IPCC has established as 
necessary to achieve climate-change mitigation goals 
(de Coninck et al. 2018).; and (2) A low indexation 
range of 2– 10% over the first ten years, which might 
be politically realistic but most likely insufficient to 
achieve sufficient systemic change. 

Variable 2: Opportunity Cost and Initial Investment 
are tested in a range of values provided for WACC 
and servicing cost of the loan through an asset- 
backed loan index. WACC ranges between 2.5% (low- 
risk public funding) and 10.1% (high-risk private equity 
funding), with the most likely mean being the 6.3% 
average value used in the static simulation. The servic
ing costs are tested as an asset-backed loan index 
ranging between 1.5% (representing an owner- 
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occupied property) and 4.5% (high-cost rental mort
gage) (DomiVest 2020). 

Figure 4 shows the results of the Montecarlo 
simulation after 1000 simulations based on random 
triangular distribution function. 

The results of the dynamic study show that the 
highest NPV (6.970 EUR/m2) is found with the BAU (no 
intervention) scenario when Shadow Carbon Cost 
Indexation is 2.0%, WACC is 10.1% and loan interest 
rate is 1.5%. The same parameters also result in the 
highest NPV the PSS model can achieve, 6.045 EUR/ 
m2. In the case of the Ownership-based scenario the 
same best-case parameters result in a relatively small 
positive performance (49 EUR/m2), as added values 
largely fail to compensate for opportunity costs. The 

worst performance for all scenarios occurs when 
Shadow Carbon Costs Indexation over the first ten 
years is at its highest (10% or 100% per year), and 
loan interest rate is at its highest (4.5%). The BAU 
scenario will then have its worst performance 
(� 30.887 EUR/m2) when the WACC is highest (hence 
highest opportunity losses). The Ownership and PSS 
scenarios will have their worst performance when the 
WACC is at its lowest (2.5%) resulting in NPV’s of 
� 5.492 EUR/m2 and 2.679 EUR/m2, respectively.  

Conclusions 

The static (archetypical Dutch case-study building) and 
dynamic (Montecarlo simulation) provide clear 

Figure 3. Total Value of Ownership comparison (in e/m2) between three strategic scenarios for a potential deep commercial 
building energy renovation project over 30 years. The results of the 30-year cashflow are also summarised in terms of the NPV of 
each investment scenario.  

NPV a�er 1000 simula�ons

Variable 1 BaU OWN PSS NPV
Low shadow costs 
indexa�on (2% to 

10%/year over first 
ten years)

€       6.970 €                   49 €     6.045 Max

Va
ria

bl
e 

2€        4.773 €                   10 €     4.790 Mean
€           982 -€                 122 €     2.679 Min

High shadow costs 
indexa�on (2% to 

100%/year over first 
ten years)

€        6.970 €                   49 €     6.045 Max
€        2.743 €                 291 €     4.444 Mean
-€     30.887 -€             5.492 €     2.679 Min

Figure 4. Results of the dynamic Montecarlo simulation. The colour gradient highlights investment performance, with dark green 
representing the better-performing cases, yellow reprsenting intermediate results, and dark red representing the worst-perform
ing cases.  
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evidence that Product-Service System (PSS) financing 
of a deep building energy retrofit can act as a future- 
proofing alternative for building owners and investors. 
It allows them to still benefit from the opportunity 
value of alternative investments by unlocking (part of) 
the initial capital – or credit – available to them. It 
also allows owners to benefit from hard and soft 
added values such as a premium on rental income 
and transactional value due to better energy and 
indoor comfort performance. Meanwhile, it limits the 
investment decision’s sensitivity to potential losses 
caused by decreased user productivity (e.g. due to 
poor indoor comfort) or by an increase in shadow 
costs (e.g. from higher carbon taxation resultant from 
governance changes). 

The Montecarlo simulation shows that, under most 
conditions and when accounting for at least present- 
level carbon taxation, the PSS retrofit can be the safest 
strategic option. Under specific conditions (i.e. very 
low carbon tax indexation and opportunity value pos
sibilities), Business-as-Usual (BaU; no intervention) per
forms best, but PSS still provides the best Mean and 
Minimum performance results, while achieving 
Maximum (best-case) results within a reasonable range 
of the BaU scenario. 

The results would point to a PSS retrofitting alter
native being a promising strategy to:   

1. Overcome decision threshold barriers: For example, 
from investors who are not considering a deep 
energy retrofit due to the opportunity cost of 
using their potential leveraged capital for a more 
attractive or more core-business-related invest
ment, and 

2. Decrease sensitivity to market conditions, by limit
ing the range of financial performance of the 
retrofit investment, particularly on the Minimum 
(worst-case) end, while providing futureproofing 
to uncertain changes in policy such as car
bon taxation. 

The ownership-based retrofit scenario shows a 
mostly neutral performance, meaning the value cre
ated by the retrofit is in most cases offset by its cap
ital costs and foregone opportunity value. This 
represents a risk to the average investor in case the 
added values (e.g. rental income and transactional 
value) fail to materialise due to worse-than-expected 
market conditions. Again, this explains the empirical 
evidence of real estate market across Europe, and the 
constant failure to meet deep energy retrofitting quo
tas through traditional decision-making and project 
finance means. 

Policy recommendations and research limitations 

In view of the results, the authors recommend develop
ing standardised valuation models which account for 
energy and carbon savings, circular use of resources, 
increased rental income potential and property value, 
and other hard and soft costs and values. This to 
enable monetisation of co-benefits (or co-liabilities) that 
would incentivize capital flow towards performance- 
based building energy retrofit solutions (Den Heijer, 
2013). This paper proposed a Total Value of 
Ownership (TVO) methodology for accounting for a 
specific set of values during the investment analysis 
process. While regional average figures were used, the 
authors acknowledge that in the case of both hard 
and soft values and costs, the actual figures used in 
an investment analysis are deeply specific to each 
type of building owner down to the individual 
organisation. 

Figure 5 presents a first approach, and non- 
exhaustive list of hard and soft values and costs which 
the authors believe should be standardised and con
sidered when making building (retrofit) investment 
decisions, and which should therefore be the focus of 
further study. 

Only the individual characteristics and goals of an 
organisation can determine the value that different 
benefits and co-benefits have in the process of pursu
ing these goals. For example, corporate and public 

Figure 5. Non-exhaustive diagram of soft and hard values and 
costs which the authors recommend should be further studied 
and standardised. Policy instruments such as energy labelling 
and carbon taxation, and market instruments such as commer
cial certification standards are shown as examples of methods 
for the negative (cost) and positive (value) monetisation of 
soft parameters.  
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real estate owners are less likely to benefit from the 
potential rental income increase resultant from a bet
ter-performing building, as these organisations tend to 
be owner-occupiers of their buildings. Increase in 
property value, however, can still be considered as a 
hard benefit, since the building can be used as collat
eral for other investment projects the organisation 
might want to undertake in the future. The benefit of 
the approach presented in this paper is to account 
for: a. opportunity cost (and value) of alternative 
financing models, and b. monetised softer values 
which are usually considered only as abstract (but 
financially irrelevant or uncertain) co-benefits. The use 
of a statistical model based on Dutch national average 
figures – rather than a (set of) specific case-study 
building(s) – aims to account for the individual charac
teristics of each building owner and their specific 
value assessments. Any size of case-study building 
dataset would still represent only a limited sample 
with non-replicable results. 

To overcome the barrier of higher Net Present 
Value (NPV) for no intervention scenarios, policy could 
help by demanding periodic technical reporting from 
owners of currently financed (e.g. mortgaged build
ings) and penalising them for deferred maintenance, 
on the grounds that it will result in loss of value or 
higher future reinvestment requirements. 

Lowering capital costs for projects that meet a cer
tain decarbonisation performance or material circular
ity objective is another powerful tool available to 
decision-makers in public policy, as well as to invest
ors such as banks, to increase demand for such 
interventions. 

In the case of soft costs such as user comfort and 
performance, which are the subject of scientific 
debate, the authors propose that building owners use 
an inverse approach: Namely, to calculate at which 
cost of personnel productivity drop or shadow carbon 
taxation does the decision not-to-renovate become 
untenable. Such risks can then be considered when 
making long-term strategic decisions. 

Because commercial parties generally have a high 
Weighted Average Cost of Capital (WACC), the costs of 
externalising energy retrofits trough PSS might not be 
drastically different compared to financing the entire 
project themselves. In the case of this type of owner, 
whether public or corporate, the attractiveness of PSS 
models lies in ease of processes in the achievement of 
soft social and environmental values related to their 
real estate portfolio. The methodology applied in this 
paper can be adapted for use in residential buildings. 
In this case the authors have decided not to do so 

since residential buildings are both technically (i.e. 
solid walls rather than curtain walls) and administra
tively (i.e. decentralised rather than centralised financ
ing and decision-making) different from commercial 
ones, and the two sets of results would render the 
outcomes of this study too complex and confusing. 

Finally, to upscale a PSS financing model for build
ing retrofits and through it enable the transition to a 
circular economy, it is crucial to (1) develop standar
dised contracting and financing models to lower setup 
and management costs and (2) develop a track record 
of implemented PSS models. This will support their 
bankability and insurability, i.e. lower interest rates 
and financial premiums to cover risk and uncertainty. 
Previous work (Azcarate-Aguerre et al. 2018) has high
lighted that it is unlikely for façade suppliers to be 
able to pre-finance Facades-as-a-Service (a sub-type of 
PSS) offerings. This restriction sets service providing 
parties in the construction industry apart from the 
great PSS transition success cases of other sectors (van 
Ostaeyen 2014) and illustrates the need to create well- 
founded financial cases for third-party investors and 
other financial institutions. 

Regulatory measures, corporate responsibility initia
tives and emerging societal trends can support each 
other. This can allow for rapid change as demon
strated – for instance – by the successful Energy 
Labelling of Buildings (EU Directive 2002/91/EC) sys
tem being replicated in many parts of the world. 
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