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Introduction

With the demand for air travel projected to double by 2040 at an annual average rate of 3.4%[48], airport ca-
pacity is emerging as a crucial constraint in air transport operations. While the conventional response might
involve the construction of new airports or expanding existing ones, such measures often carry the potential
for adverse environmental impacts on nearby communities. This concern has led to the implementation of
noise regulations, restricting the maximum allowable exposure to aircraft noise for residents. Beyond noise,
airports struggle with additional environmental challenges, notably fuel consumption and associated emis-
sions.

In response to these challenges, a model was developed at Delft University of Technology by Delsen[24]. This
model, designed to concurrently optimize fuel burn and minimize noise annoyance while efficiently schedul-
ing flights to runways and respecting airport capacity, has undergone subsequent refinements led by van der
Meijden [106] and Abbenhuis [1], shaping its continued evolution. However, the existing model is not without
limitations, particularly in terms of computational performance and the accurate modeling of noise annoy-
ance.
This research aims to enhance the existing model, aiming for increased computational performance for prac-
tical implementation in day-to-day operations. Moreover, the objective is to present a more accurate depic-
tion of noise annoyance stemming from the allocation of flights to runways, with a specific emphasis on
mitigating environmental impacts on nearby communities. The potential improvements hold the potential
to increase airport capacity while adhering to stringent environmental regulations.

As the aviation industry prepares for a future with greater demands for air travel, this research aims to pro-
vide valuable insights and contribute significantly to the discussion on sustainable airport operations. By
addressing issues such as efficiency, noise reduction, and environmental concerns, the research hopes to of-
fer a strong framework for optimizing airport operations to meet the evolving global aviation needs.

The report is structured as follows. In Part I, the scientific paper is outlined, encompassing the methodology,
results, and conclusions. Moving on to Part II, the literature review is presented, articulating the motivation
for this research and discussing the identified literature. Finally, Part III encompasses all supporting work,
including the previous research on which this study is built, along with verification and validation processes
and additional results.
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Flexible Runway Scheduling with non-linear Noise Restrictions using
a Tabu Search Algorithm

Sam Lagerwij∗

Delft University of Technology, Delft, The Netherlands

Abstract

In response to the growing demand for air travel, major airports are approaching critical thresholds in their
infrastructure capacity. As the transportation sector continues to expand, it is increasingly important to
address environmental concerns that arise from aspects, such as noise annoyance and fuel consumption. This
paper aims to enhance the existing Flexible Runway Scheduling Model (FRSM) by integrating a tabu search
algorithm with Receding Horizon Control (RHC), introducing non-linear noise restrictions, and implement-
ing more sophisticated fuel burn modeling. The main goal is to evaluate how certain improvements affect
the FRSM. To achieve this, a methodology has been developed that uses a multi-objective tabu search algo-
rithm to minimize both fuel consumption and noise annoyance while assigning flights to runways. This study
provides a comprehensive analysis of Amsterdam Airport Schiphol (AAS) across different scenarios, ranging
from a 1.5-hour flight schedule to a full-day simulation, revealing significant findings. For the 1.5-hour and
six-hour scenarios, the tabu search algorithm achieves a 55% and 87.3% reduction in computational time
with marginal losses of 0.73% and 0.19% in solution accuracy for fuel burn optimization. Throughout all
scenarios, the tabu search algorithm consistently results in a reduction of highly annoyed individuals ranging
from 2.14% up to 62.5% compared to the existing FRSM, demonstrating its effectiveness. Moreover, the
algorithm minimizes the impact on the flight schedule in terms of delay. Notably, as the flight schedule
length increases, the performance of the tabu search algorithm improves compared to the existing FRSM.
A sensitivity analysis optimization horizon indicates a positive effect on results, albeit with an associated
computational cost. In conclusion, this study showcases the positive impacts of the remodeled FRSM, en-
abling a faster and more accurate trade-off. The research findings provide valuable insights for optimizing
runway scheduling at major airports while balancing efficiency gains with environmental considerations.

Keywords: Runway capacity, Scheduling Model, Tabu Search, Metaheuristics, Noise Annoyance, Fuel
Consumption, Receding Horizon Control

1 Introduction
In today’s changing world of global air travel, the air transport industry is recovering from the disruptions
caused by the COVID-19 pandemic. The industry is working hard to recover, and the predictions show a strong
comeback. Year-on-year, the industry experienced a 40.1% increase in passenger traffic measured in revenue
passenger-kilometers (RPKs), and by September 2023 the industry reached 92.9% of pre-pandemic levels [IATA,
2023]. These signs of recovery forecast a future recovery wherein the demand for air travel is anticipated to
double by the year 2040, growing at an annual average rate of 3.4%.
As demand continues to rise, major airports are approaching the maximum capacity of their infrastructure and
environmental thresholds due to escalating air traffic volumes. Runways are often recognized as the primary
bottlenecks within airport infrastructure, significantly contributing to delays. The airport its overall capacity
heavily relies on the operational efficiency of its runways. Constructing new airports or expanding existing ones
stands as a potential remedy for congestion. However, these actions may result in adverse environmental effects
on nearby communities, as highlighted by [Visser et al., 2008].
In recent years, the population residing near airports has increased, implying a larger number of people affected
by aircraft-induced noise, as noted in the analysis by [Ganic et al., 2015]. Aircraft noise has become a signifi-
cant source of concern for local communities, impacting both current airport operations and efforts to enhance
airport capacity. Consequently, it has become a critical issue that significantly influences future traffic growth.
The need for increased airport capacity alongside reduced noise disturbance and greater full efficiency led to
the development of a new model. Delsen initially proposed a flexible runway allocation method [Delsen, 2016],
proving its effectiveness in optimizing and trading off fuel burn and noise emission without using a preference
list. Subsequent improvements by Van Der Meijden led to a more precise aircraft representation in the model,
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eliminating consideration for only two types of aircraft and implementing pair-wise separation[van der Meij-
den, 2017]. Recent research performed by [Abbenhuis, 2021] transformed the model from an allocation to a
scheduling model. This change involved altering decision and auxiliary variables making the scheduling model
more suitable for complex runway systems. Furthermore, assigning continuous delays to the scheduled flights
prevents the model from becoming infeasible. Regarding noise modeling, the Aviation Environmental Design
Tool (AEDT) is used to estimate the noise. However, the current model still faces challenges concerning compu-
tational performance, noise limits, and fuel burn modeling. Currently, the Flexible Runway Scheduling Model
(FRSM) is modeled as a Mixed-Integer Linear Programming (MILP) problem. This research aims to remodel
the existing flexible runway scheduling model by employing a different modeling approach. This will allow for
an assessment of how utilizing a different solving method impacts the current model. Furthermore, non-linear
and more detailed constraints can be incorporated for noise disturbance and fuel consumption.
Literature offers several approaches to address the Runway Scheduling Problem (RSP) beyond employing MILP
methods. Genetic algorithms, tabu search, and simulated annealing are prominently featured in existing liter-
ature. Additionally, other metaheuristics, such as ant colony optimization (ACO) and variable neighborhood
descent have been utilized.
For this research, a deterministic approach has been chosen due to its easy implementation, adeptness in navi-
gating extensive solution spaces, effectively overcoming local optima, and delivering near-optimal, high-quality
solutions. Previous literature highlights three notable applications of tabu search in addressing the RSP. In
research performed by [Atkin et al., 2007], the focus was on optimizing take-off scheduling to maximize runway
throughput. They employed various metaheuristics (steeper descent, tabu search, and simulated annealing) and
evaluated their performance, with the tabu search displaying slightly superior results. In a broader context,
[Soykan and Rabadi, 2016] proposed a tabu search-based approach for the general RSP across multiple indepen-
dent runways, utilizing a two-step methodology: the first step involved computing an initial solution through
a greedy approach, followed by a tabu search algorithm to enhance the initial solution. Further research by
[Soykan and Rabadi, 2022] emphasized multi-objective runway operations scheduling. Their approach involved
solving the problem through a hybrid tabu/scatter search algorithm. Results showcased the effectiveness of the
proposed model, indicating computational times suitable for practical applications. Since the tabu models have
solely undergone testing with relatively small flight schedules and in less complex airport environments, the
computational demands are likely to remain considerably high. To address this challenge, an approach incorpo-
rating a receding horizon control (RHC) strategy is adopted in this research. This strategy, as demonstrated by
[Zhan et al., 2010], integrated an ACO variant known as an ant colony system with RHC to resolve the RSP for
a single runway. Subsequent enhancements by [Wu et al., 2019] to Zhan his model specifically target the reso-
lution of the multi-runway RSP. Their research indicates a substantial reduction in computational complexity,
demonstrating that the proposed approach yields reasonable results.
However, the literature has not yet fully explored the combination of a multi-objective tabu search algorithm
in combination with an RHC strategy. Therefore, this research focuses on enhancing the FRSM by addressing
its shortcomings. Implementing a tabu search algorithm as the new modeling method has the potential to
demonstrate its impact on the model. An additional advantage of this algorithm is its capability to incorporate
non-linear elements, thereby improving the representation of noise annoyance, which exhibits a non-linear re-
lationship. Additionally, utilizing a sliding time window approach can reduce the computational burden of the
model, resulting in reduced computation time. This enhancement enables quicker evaluation of flight schedules
and the possibility to handle larger schedules compared to the previous model.
This paper is structured in the following way. First, the methodology is presented in section 2, including in-
formation about separation modeling, fuel burn, noise annoyance, and the tabu search algorithm. Second, the
case studies are described in section 3. section 4 presents the results of the case study and sensitivity analysis.
section 5 provides a detailed discussion of the obtained results. Finally, section 6 presents the conclusions drawn
from this study, and section 7 provides recommendations based on the findings.

2 Methodology
This study aims to develop an improved FRSM by employing an alternative optimization technique and refining
fuel burn and noise modeling alongside a sliding time window. The methodology is divided into distinct parts,
starting with separation modeling, and then progressing to fuel burn and noise annoyance modeling. The
subsequent phase of the methodology focuses on the mathematical model and the tabu search algorithm.

2.1 Single Runway Separation Modeling
Separation modeling plays an important role in runway scheduling. Minimum separation is dependent on opera-
tion type, weight class, and runway. The separation modeling is based on the research performed by [Abbenhuis,
2021] and [van der Klugt, 2012]. The separation is determined by considering a leading and following aircraft.
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Four distinct combinations on a single runway arise from these aircraft: two consecutive arrivals, two consecutive
departures, an arrival followed by a departure, and a departure followed by an arrival. For these combinations,
different equations are applied to calculate the separation time, which varies based on the specific runways in use.

When dealing with two consecutive arrivals on a single runway, the minimum separation time Ti,j is dependent
on the approach speed of the two aircraft. If the approach speed of flight Vi is smaller than flight Vj , Equation 1 is
used. Conversely, if Vi is larger than Vj , Equation 2 is used to compute the separation time. Here, n represents
the common approach path, and the required longitudinal separation si,j is determined in compliance with
RECAT-EU regulations[Rooseleer et al., 2018]. For both equations, the separation time is the maximum of the
required longitudinal separation and the Arrival Runway Occupancy Time (AROT).

Ti,j = max

[
si,j
Vj

, AROTi

]
(1)

Ti,j = max

[
n+ si,j

Vj
− n

Vi
, AROTi

]
(2)

These two consecutive arrivals can also take place in opposite directions on the same runway. In this case,
the minimum separation time is determined by the Minimum Vectoring Altitude (MVA), the Rate of Descent
(ROD), and a communication buffer, c̄, as shown in Equation 3.

Ti,j =
MVA

ROD
+ c̄ (3)

These two situations can also be applied to two consecutive departures. The minimum separation time for
two departures on a single runway is determined via the Time Based Separation (TBS) minima according to
RECAT-EU[Rooseleer et al., 2018], and the Departure Runway Occupancy Time (DROT) via Equation 4. This
equation can also be used for a departure followed by an arrival.

Ti,j = max [TBSi,j , DROTi] (4)

The minimum separation time for two consecutive departures on opposite runway ends can be determined using
Equation 5. Additionally, the separation time for a scenario where an arrival is succeeded by a departure on
the same runway is expressed in Equation 6.

Ti,j = DROTi (5)

Ti,j = AROTi (6)

The final operational mode involves a departure followed by an arrival on opposite runway ends. The minimum
separation requirement is contingent upon the rate of descent (ROD) of the arriving aircraft, the rate of climb
(ROC) of the departing aircraft, and the MVA. The calculation for the minimum separation can be derived
using the equation presented in Equation 7.

Ti,j =
MVA

ROD
+DROTi +

MVA

ROC
(7)

At airports where runways are closely situated or dependencies arise from trajectory intersections, additional
separation requirements are introduced. This aspect has been investigated by [van der Klugt, 2012], and the
precise equations governing the separation time for these dependencies are incorporated in this study. For a
more comprehensive understanding and detailed equations, readers are referred to the research from [van der
Klugt, 2012].

2.2 Fuel Burn Calculations
The fuel burn model is built upon the research performed by [Abbenhuis, 2021] and [van der Meijden, 2017],
with some modifications as explained in this section. All computations are obtained from the user manual
of the Base of Aircraft Data (BADA) [Nuic, 2010]. Determining the overall fuel burn for each flight and
runway combination involves segmenting both departure and arrival trajectories. Each trajectory comprises
three segments. Departure trajectories consist of the gate-to-runway segment, the initial climb, and the climb
segment up to 10,000 feet. Arrival trajectories are divided into the Initial Approach Fix (IAF) to the Final
Approach Fix (FAF), FAF to the runway, and runway to gate segments.
The total fuel burn is calculated according to Equation 8, with the fuel burn per segment obtained via Equation 9.
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TFB =
∑
s∈S

TFBs (8)

TFBs =
Ds · ṁf

VTAS
(9)

The fuel flow during the segments ṁf can be obtained via Equation 10 and is dependent on the thrust specific
fuel consumption, CT , and the net thrust from the engines THR

ṁf = CT · THR (10)

For the jet and turboprop engines, the thrust specific fuel consumption, CT , is obtained according to Equation 11
for jet engines, and Equation 12 for turboprop engines. CT is a function of true airspeed, VTAS , and the first
Cf1, and second Cf2, max climb thrust coefficients.

CT = Cf1 ·
(
1 +

VTAS

Cf2

)
(11)

CT = Cf1 ·
(
1− VTAS

Cf2

)
·
(
VTAS

1000

)
(12)

The equation for calculating the maximum climb thrust for jet engines is provided in Equation 13, and for
turboprop engines, in Equation 14. These equations are formulated to determine the maximum climb thrust
under standard atmospheric conditions, and the thrust is expressed in Newtons. The thrust value is contingent
on two key parameters: the geopotential altitude denoted as Hp and the true airspeed represented by VTAS .

(Tmax climb)ISA = CTc,1 ·
(
1− HP

CTc,2
+ CTc,3 ·H2

P

)
(13)

(Tmax climb)ISA =
CTc,1 ·

(
1− HP

CTc,2

)
VTAS

+ CTc,3 (14)

For all types of engines, the maximum climb thrust undergoes correction for temperature deviations from the
standard atmosphere, denoted as ∆T , as outlined in Equation 15. Where Teff is determined via Equation 16.
CTc,4 is the second thrust temperature coefficient.

Tmax climb = (Tmax climb)ISA · (1− CTC,5 · (∆T )eff ) (15)

∆Teff = ∆T − CTc,4 (16)

Delay is incorporated differently for arriving and departing aircraft. For inbound aircraft, the delay is assigned
at the IAF. When the delay remains below 120 seconds, the delay is modeled as an extension of the approach
trajectory, mirroring the flow equal at the IAF. However, if the delay exceeds 120 seconds, the aircraft will enter
a holding pattern. This holding pattern, typically executed as a "race track pattern" around the IAF, consists of
two straight legs plus two 180-degree turns. Due to this, the fuel burn will be higher compared to an extended
approach trajectory. To incorporate this turn, a 10% increase in fuel flow is assumed [Airbus, 2004].
During taxiing for departing flights, the delay is allocated while the aircraft is on the ground. To determine this
delay fuel, the fuel flow during the taxi segment is quantified in kilograms per second [kg/s] and then multiplied
by the duration of the delay. The fuel flow during taxi is assumed to be 7% of the maximum thrust[Khadilkar
and Balakrishnan, 2012].

2.3 Noise Annoyance Modeling
The second objective of the model is to reduce the noise annoyance in the surrounding area of the airport.
As aircraft noise is a non-stationary noise signal, the duration of the noise has to be taken into account. To
measure the annoyance during a noise event, the Sound Exposure Level (SEL) is used. SEL denotes a constant
one-second duration, T0, which holds an energy level equivalent to the fluctuating level across the entire event
and can be calculated using Equation 17.

SEL = 10 log

[
1

T0

∫ T

0

10
LA(t)

10 dt

]
(17)

A noise modeling tool is used to determine the SEL value for all the aircraft types and runway combinations.
For this, the Aviation Environmental Design Tool (AEDT) developed by the FAA is used[Lee et al., 2022]. The
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AEDT is a software tool that integrates established noise and emission models. The AEDT offers accurate
predictions of noise impact at specific points of interest. For this research, all the different combinations of run-
ways, Standard Instrument Departures (SIDs), and Standard Arrival Routes (STARs) are modeled according
to Schiphol its Aeronautical Information Services (AIS)[LVNL, 2023].

To capture the effect of noise in airport communities due to air traffic activities the day-evening-night level
LDEN noise metric is used. This metric is calculated via Equation 18, where Tref indicates the period. The
penalty associated with a noise event in the evening or night is represented by wi. With a 5 dB penalty for
noise during the evening (19.00-23.00), and a 10 dB penalty for noise during the night (23.00-7.00)[Crocker,
2007].By adding up the number of flights and the associated SEL value, the LDEN value can be computed.

LDEN = 10 log

[
F∑
i=1

10
SELi+wi

10

]
− 10 log

[
Tref

T

]
(18)

The current model lacks the incorporation of penalties for increased noise levels. To address this, a non-linear
metric has been selected for this research. The metric measures the number of Highly Annoyed (HA) people
and represents a dose-response relationship. It has been incorporated in the Dutch Aviation Act, which has
formed the legal framework for AAS since 2003. This framework aims to restrict the environmental impact
around the airport. This protection is provided by the "Criteria of equality", which restricts the number of HA
people within LDEN contours[Welkers et al., 2021]. The limit value for the number of HA people within the 48
dB(A) LDEN contour for AAS is 166,500, and 45,000 for the number of severely sleep-disturbed people (SDP)
within the 40 dB(A) Lnight contour[Welkers et al., 2021].
To determine the number of annoyed people, three steps have been taken. Firstly, locations where the LDEN

value is 48 dB(A) or above have been identified. Next, using Equation 19[Heblij and Derei, 2019], the percentage
of HA people has been calculated. The LDEN can be calculated using Equation 18. Finally, the percentage
has been multiplied by the number of people living at the grid point. The total number of HA people has been
determined by adding the number of HA people per grid point.
The same procedure is used to determine the number of SDP. To obtain the percentage of SDP Equation 20 is
used.

%HAP = 1− 1

[1 + e(−7.7130+0.1260·LDEN )]
(19)

%SDP = 1− 1

[1 + e(−6.2952+0.0960·Lnight)]
(20)

To determine the population count at specific grid points, an analysis of data obtained by the Central Bureau
of Statistics (CBS) has been conducted. This dataset is structured according to the Rijksdriehoeksstelsel,
compromising x and y coordinates representing the population density at those respective coordinates. Each
grid point in this dataset covers an area of 500 square meters. To align the coordinates obtained from the AEDT
with the Rijksdriehoeksstelsl coordinate system, a conversion process has been implemented. This conversion
involved a data accumulation method wherein the corresponding CBS coordinates were matched with each
AEDT grid point. This process resulted in a population file containing the number of people at each grid point
as per the AEDT layout. The visual representation of this outcome can be seen in Figure 1, showcasing the
distribution of populated grid points.

Figure 1: AEDT grid combined with population data used as input for the model.
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The observed highest population density on the upper right side of AAS can be attributed to the proximity of
Amsterdam in this area. Amsterdam, being a major urban center, is likely to contribute significantly to the
concentration of inhabitants, resulting in the densely populated region observed on that side of AAS.

2.4 Receding Horizon Control
The concept of Receding Horizon Control (RHC) involves breaking down the original problem into smaller sub-
problems within a sliding time frame, which reduces the computational burden. It relies on two key parameters,
the scheduling window time interval and the receding horizon width. Figure 2 shows how RHC works. Within
a designated horizon, full optimization is executed utilizing all available information. However, only scheduling
decisions on the initial time interval are put into action. By ensuring that the time window for each horizon
is smaller than the entire flight schedule, this approach significantly reduces the computational load, enabling
real-time computations.

Figure 2: Graphical representation of RHC [Zhan et al., 2010]

When employing the RHC strategy in the FRSM, the problem is divided into several sub-problems by the RHC
principle. The number of sub-problems is dependent on the length of the flight schedule. For each sub-problem,
information is collected from the start to the end of the window size. The objective function is exclusively
applied to the window currently undergoing optimization. For the research shown in this paper, a window size
of 30 minutes is chosen with a window shift of 15 minutes.
It is important to know that previous window data contributes to noise and separation considerations. To
maintain adequate separation in the current window, the flight schedule from the previous window is essential.
Regarding noise, the noise emitted by earlier flights is taken into account. Time plays a significant role in
noise calculations, as illustrated in Equation 18. Whenever the window shifts, the noise budget increases by the
duration of that shift in seconds. The noise produced by flights that are already optimized guides the starting
point for the new optimization at each grid point.

2.5 Mathematical Model Formulation
This section introduces the mathematical model underlying the tabu search algorithm. It begins with an
overview of the sets and parameters involved in the model, followed by a fundamental Mixed Integer Program-
ming (MIP) formulation. The basis of this formulation is derived from the model presented in [Al-Salem et al.,
2012] and adapted from the earlier model introduced in [Abbenhuis, 2021] to accommodate the new objective
function.
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2.5.1 Sets and Parameters

Sets

• F : Number of flights

• R: Number of runway ends

• Rr: Runway ends closed for operation

• P : Number of gridpoints

Decision variables

• xr
f : Scheduling of flight f on runway r

• Tf : Operating time of flight f

• Df : Delay of flight f

• Dfh: Holding delay of flight f

• yi,j : 1 if flight i is operating before flight j

• Dtotal: Total delay of all flights

• gxy: 1 if the noise annoyance limit is reached
at grid point xy

Parameters

• crf : The fuel burn of flight f on runway r

• cdf : Delay fuel burn of flight f

• cdfh: Holding delay fuel burn of flight f

• nf : Normalization factor for fuel

• nn: Normalization factor for noise

• HAPxy: Highly annoyed people at grid point
xy

• Sij : Required separation between flight i
and flight j

• copt: Small penalty

• α: Weighting factor fuel

• β: Weighting factor noise

2.5.2 Objective Function and Constraints

The multi-objective minimization problem is presented below.

Min Z = α · nf

∑
f∀F

[(∑
r∀R

crfx
r
f

)
+ cdfDf + cdhfDfh

]

+β · nn

∑
xy∀P

gxy HAPxy + copt ·Dtotal (21)

R∑
r=1

xr
f = 1, ∀f ∈ F (22)

F∑
f=1

xr
f = 0, ∀r ∈ Rr (23)

Tf −Df = TSf , ∀f ∈ F (24)

Tj ≥ Ti + Sij − (1− yij) , ∀i, j ∈ F, i ̸= j (25)
The objective function, as described in Equation 21, consists of three terms. The first term aims to minimize fuel
consumption when allocating runways to flights. This factor depends on the fuel cost associated with assigning
flight f to runway r and incorporates a penalty for any delay assigned to the flight. As clarified in the fuel
burn modeling section, this penalty escalates when the flight enters holding mode. The second term focuses
on minimizing noise disturbance. If the LDEN threshold of 48 dB(A) is surpassed, the cost of annoyance is
determined by the number of highly annoyed people living at that specific grid point, represented by a non-linear
relationship. The final component relates to total delay minimization. To ensure the assignment of all flights
without excessively delaying any single flight or disproportionately scheduling flights on the most noise-preferred
runway, a small penalty is integrated into the objective function. This inclusion ensures efficient and balanced
runway scheduling.
As the problem is multi-objective and the two objectives have different units, a normalization has to be applied
to both, indicated by nf and nn. The normalization is established by considering the range between the minimal
and maximal solutions for both fuel and noise outcomes per window. This chosen range enables a dimensionless
trade-off. The specific normalization method for fuel is presented in Equation 26.

nf =
1

max
(
f
noiseopt
fuel − minffuelopt

fuel

) (26)
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Moreover, for this specific problem, the weighted sum method is adopted as the normalization technique. This
method transforms a multi-objective optimization problem into a single-objective one. It involves the utilization
of weighting coefficients, denoted as α and β, which are multiplied by the objective function. Through this
approach, the weighting coefficients allow adjustment to entirely optimize for a single objective or any desired
trade-off combination. Notably, these coefficients fall within a range from 0 to 1 and maintain a relationship
where β = 1− α.
Constraint Equation 22 ensures that each flight lands on or takes off from exactly one runway. If runways are
closed for operation, due to maintenance, extreme wind conditions, or other factors Equation 23 ensures that
these runway ends are not used for operations. To determine the delay time of a flight regarding the operating
time and original scheduled operating time of the flight, Equation 24 is used. To ensure that the separation
between flights is satisfied, Equation 25 is employed. However, this constraint is only valid when flight i takes
place before flight j.

2.6 Tabu Search
A tabu search algorithm has been used in this research to evaluate the effect of a different solving method. The
main goal is to solve the FRSM quicker and implement non-linear elements. The tabu search algorithm is a
type of search method that focuses on finding a single solution. It was first introduced by [Glover and Laguna,
1998], and can be used in a variety of optimization problems. However, it needs to be adjusted for each specific
problem. In this section, a detailed explanation of the algorithm is provided, starting with the initial solution
generation process.

2.6.1 Initial Solution Generation

Starting with a viable solution can enhance both the outcome’s quality and reduce the computational time
required. Therefore in this research, the initial solution is obtained through a greedy algorithm based on the
dispatching (priority) rule. This rule, commonly used in machine scheduling, prioritizes jobs awaiting processing
on a machine. This concept can be adapted to the context of FRSM, in which the runways serve as machines
and the flights the jobs to be scheduled. When a runway becomes available, a dispatching rule inspects the
waiting flights and selects the flight with the highest priority. These rules have proven to obtain a reasonably
good solution in a relatively short time.
This approach is adapted for this research and is called the "Target Time First" greedy algorithm. In the
algorithm, the flights are assigned to a runway in the order of ascending scheduled operating times. At each step,
it looks for the most cost-efficient assignment for the unscheduled flight with the earliest scheduled operating
time (SOT). While scheduling, it takes into account the assignment of previous flights. When all the flights
are assigned to a runway the initial cost is computed and an initial feasible flight schedule is produced as the
output. Algorithm 1 presents the pseudo-code for the creation of this initial solution generation.

Algorithm 1 Target Time First greedy heuristic algorithm for initial solution generation
1: Input List of flights F , list of runways R, separation matrix S, fuel burn matrix FB
2: Initialization sort aircraft ordered in ascending scheduled operating time (SOT) (1 to F )
3: for f = 1 to F do
4: for r = 1 to R do
5: fuel cost = FBr

f

6: Calculate Efr (Earliest feasible time flight f can operate from runway r)
7: end for
8: Calculate operating time Tf = min{Eir | r in R}
9: end for

10: Calculate the objective function according to Equation 21
11: return Initial solution
12: Output A feasible solution with runway and operating time per flight

2.6.2 Tabu Search Algorithm

Before explaining the functioning of the tabu search algorithm used in this research, it is essential to understand
the foundational principles of this algorithm as outlined in [Lieberman and Hillier, 2021]. The tabu search
algorithm is a widely employed metaheuristic method that incorporates intuitive concepts to guide the search
process away from local optima. Its fundamental idea lies in maintaining a short-term memory, known as the
"Tabu List". This list records recent moves or solutions, called "tabu moves", which are prohibited from being
revisited in future moves. These moves are forbidden for a user-defined number of iterations. This mechanism
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prevents the algorithm from becoming trapped in local cycles or repeatedly revisiting sub-optimal solutions.
However, there exists one exception for a tabu move: when such a move improves the best-known solution
throughout the search. This exceptional scenario is recognized as an aspiration condition.
The tabu search algorithm starts with a feasible initial trial solution and explores the solution space by making
small modifications or moves to reach neighboring solutions. During the search process, the algorithm evaluates
the quality of each neighbor using an objective function. It is not required that every new solution should
be better than the previous solution. The algorithm continues with iterating until a stopping criteria is met,
such as a fixed amount of CPU time, or a fixed number of consecutive iterations without improvement in the
objective value. Furthermore, the algorithm stops when there are no feasible moves into the local neighborhood
of the current trial solution.
The greedy heuristic algorithm provides a good initial solution. The flight schedule and objective function of
this initial solution are used as input for the Tabu Search algorithm to perform an improving search until the
termination criteria are satisfied. The best solution found during this process is returned as the final solution.
The basis structure of the algorithm can be seen in Figure 3. One element of this algorithm is not explained
yet, which is the neighborhood generation.

2.6.3 Neighborhood Generation

The tabu search algorithm employs a comprehensive neighborhood generation strategy centered on two key
operations: swapping the order of flights and the reassignment of runways allocated to flights. This method
is used to explore the solution space effectively. The swapping process allows the algorithm to explore various
sequences of flights, aiming to minimize delays and optimize the scheduling of flights on the runways. Concur-
rently, the dynamic alteration of runway assignments for flights introduces an additional layer of exploration.
This approach facilitates the discovery of optimal or near-optimal solutions.
It is important to highlight that the search space is constrained for both maneuvers. Specifically, when swap-
ping flights, the algorithm focuses solely on flights within a Specified Window (SW) to optimize the model its
performance. Similarly, in the case of runway reassignment swaps, the availability of runway ends depends on
the operation type, considering that certain runways may not be accessible for either landing or takeoff.

2.6.4 Complete Overview of the Algorithm

The complete tabu search algorithm combined with the sliding time window approach can be seen in Figure 3.
The first step is to initialize the parameters for the sliding time window, with window size set to 30 minutes,
and window shift to 15 minutes. The starting point of the optimization is the first window, indicated by k
= 1. Subsequently, all flights within the k-th RHC stage, operating within the window size, are selected for
optimization. Upon optimization, the results of the flights within the scheduled window are stored, while those
outside the current window are moved to the subsequent window for further optimization with the adjusted
operating time. The final step entails verifying if all flights are scheduled. If so, the algorithm is terminated.
Otherwise, the optimization progresses to the next window with k incremented by one.

The algorithm shown in Figure 3 operates on an input data set comprising a flight schedule, separation details,
population statistics, noise metrics, and fuel consumption data. Pre-processing this data yields essential matri-
ces: a separation matrix, fuel consumption matrix, and noise emission matrix. The core concept of the FRSM
primarily relies on a tabu search algorithm implemented with a sliding time window.

3 Description of the Case Studies
The analysis of the FRSM utilizes Amsterdam Airport Schiphol (AAS). AAS accommodates a total of 6 runways,
equating to 12 potential runway ends for operations. However, the Oostbaan, encompassing runway ends 04 and
22, is omitted from the analysis as it has a very short runway and is mostly used for General Aviation, private jets,
and helicopters. The remaining five runways are strategically oriented to accommodate varying wind directions,
ensuring near-constant operability. It is important to note that certain runway ends are restricted for either
take-off or landing. Specifically, for departing aircraft, operations are generally limited on the following runway
ends: Aalsmeerbaan 36R, Kaagbaan 06, and Polderbaan 18R. Conversely, for arriving aircraft, the following
runway ends face operational restrictions: Aalsmeerbaan 18L, Kaagbaan 24, and Polderbaan 36L [Schiphol,
2023].
For the analysis, multiple flight schedules dated from 2019 are used. These schedules are formulated using
authentic flight data extracted from specific days in 2019 and adjusted to function as input for the model. The
adjustments involve integrating arrival or departure trajectories based on the designated sector, which relies on
the origin or departure data. Additionally, every aircraft is categorized into the correct weight class according
to the RECAT-EU regulations[Rooseleer et al., 2018]. The final stage involves assigning a pier to each flight to
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Figure 3: Flowchart of the complete algorithm including the moving horizon and tabu search

facilitate the calculation of taxi fuel consumption, achieved by considering the aircraft type and carrier.
The goal of the analysis is to assess how employing an alternative-solving approach impacts the outcomes
of the model in contrast to the MILP model. To conduct this comparison, the MILP model formulated by
[Abbenhuis, 2021] is reconfigured and utilized for the evaluation. The optimization process is conducted using
the commercial solver Gurobi. Due to the inclusion of a non-linear element for noise annoyance in the new
model, direct optimization of noise objectives is unfeasible as a MILP model cannot handle non-linear elements.
Consequently, the LDEN limit for the noise optimization has been established at 48 dB(A). In the event of this
limit being exceeded, the total population residing at the respective grid point will be considered. The metric
of HA people can be calculated retrospectively.
The tabu search algorithm is implemented in Python, where multiprocessing is employed to accelerate the
optimization process. Specifically, this approach involves parallel computation of the objective function for all
generated neighbors in each iteration, significantly enhancing the overall speed of optimization.
Four distinct scenarios are considered in the analysis, with an outline of the schedules presented in Table 1. As
the flight schedule expands in size, these scenarios reflect varying degrees of complexity. This expansion allows
an analysis of both models’ behaviors, enabling an observation of how they manage and adapt to the increased
volume of flights. The 90-minute scenario originates from Abbenhuis his research appendix dated August 2019,
whereas the six-hour scenario spans from August 23, running from 9:00 AM to 3:00 PM. The daytime scenario
is drawn from August 20, covering the period from 7:00 AM to 7:00 PM. The full-day scenario originates from
July 15, encompassing 24 hours from 00:00 to 23:59. Notably, the noise calculation for this scenario includes an
evening penalty applied to flights between 7 PM and 11 PM and a night penalty for flights occurring between
11 PM and 7 AM.
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Table 1: Flight schedules created for the analysis

Flight schedule Total flights Arriving flights Departing flights Flight schedule
duration [hours]

90-minute 122 55 67 1.5
Six hour 471 180 291 6
Daytime 1,033 511 522 12
Full day 1,508 754 754 24

4 Results
This chapter reveals the findings of the enhanced FRSM. The chapter is arranged in the following manner: firstly,
a comparison is made between the objective functions of both models to assess the accuracy of the improved
model. Secondly, a comparison of computational times is conducted to determine the impact of the new model
on computational performance. To further investigate the computational performance, a convergence analysis is
carried out. Following this, the performance of both models on the trade-off is demonstrated through a Pareto
Front, after which the noise annoyance and runway allocation are presented. Lastly, a sensitivity analysis is
performed for the optimization horizon of the tabu search algorithm.

4.1 Objective Function Comparison
To evaluate the performance of both models concerning the main objective functions, a fuel-focused optimization
(α = 1) and a noise-focused optimization (β = 1) is conducted. For fuel optimization, this entails the total
fuel burn emitted by all flights, while for noise optimization, the metric is the number of HA people. The fuel
optimization results are presented in Table 2, and for noise in Table 3. The results show that, for the 90-minute
and six-hour scenarios, the MILP outperforms in terms of the fuel consumption objective. Conversely, for
the daytime and full-day flight schedules, the tabu search algorithm performs slightly better. Regarding noise
optimization, the tabu search algorithm outperforms the MILP in all scenarios. It is essential to mention that
the MILP optimization for full-day noise did not converge effectively. Consequently, the obtained solution can
not be considered a genuine comparison. When the process fails to converge effectively, it means it is unable
to find an optimal solution within the specified parameters. However, it has been included in the table as a
reference point, acknowledging its limitations in convergence.
The variation in the number of HA people across the scenarios can be attributed to several factors. In the first
scenario, a notable proportion of Lower Medium weight class aircraft is present compared to the other scenarios.
The disparity between the six-hour and daytime scenarios can be allocated to the higher prevalence of aircraft in
the upper heavy and lower heavy wake turbulence categories in the six-hour scenario. These aircraft emit more
noise, resulting in an elevated count of HA people. Additionally, the full-day scenario contains flights during the
evening and night, which incur a noise penalty. This penalty significantly influences the LDEN value, leading
to a higher count of HA people compared to other scenarios.

Table 2: Fuel optimized solution cost comparison

Flight schedule Tabu search MILP Difference
90-minute 87,470 86,839 +0.73%
Six hours 366,422 365,712 +0.19%
Daytime 645,996 648,443 -0.38%
Full day 933,819 943,100 -0.98%

Table 3: Noise optimized solution cost comparison

Flight schedule Tabu Search MILP Difference
90-minute 71,618 73,186 -2.14%
Six hours 90,469 111,580 -18.92%
Daytime 76,047 113,986 -33.29%
Full day 108,482 289,444 -62.5%

In addition to the primary objectives of minimizing fuel burn and the number of HA people, another important
parameter is the delay. The FRSM incorporates the capability to delay specific flights either to meet separation
requirements or to enhance the overall optimization. An analysis is conducted by comparing scenarios focused
either on fuel optimization or noise optimization. The total delay is obtained and divided by the total amount
of flights in the scenario. The outcomes are presented in Table 4 for fuel optimization and Table 5 for noise
optimization.
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Table 4: Average delay in seconds per flight fuel
optimization comparison

Flight schedule Tabu Search MILP Difference
90-minute 24.54 24.08 +1.09%
Six hour 8.14 15.74 -48.28%
Daytime 7.94 18.92 -58.03%
Full day 9.98 18.31 -45.49%

Table 5: Average delay in seconds per flight noise
optimization comparison

Flight schedule Tabu Search MILP Difference
90-minute 32.20 27.06 +18.99%
Six hour 10.61 15.27 -30.5%
Daytime 9.58 19.85 -51.74%
Full day 8.89 8.72 +1.95%

In the context of the 90-minute scenario, it is evident that the MILP model exhibits a slightly lower average
delay in comparison to the tabu search approach. This pattern diverges in the other three scenarios, where the
tabu search demonstrates a lower average delay. In the case of the six-hour scenario, this is accompanied by
a slightly higher fuel burn. However, for the daytime and full-day scenarios, this trade-off is associated with a
lower total fuel burn. Notably, substantial differences in average delay for noise optimization are observed. In
the 90-minute scenario, MILP outperforms tabu search in terms of average delay, yet this does not translate
into a better objective function. For both the six-hour and daytime scenarios, the tabu search exhibits not only
a lower average delay but also a lower fuel burn and lower noise annoyance. This trend can be attributed to the
increased complexity of the flight schedule. In contrast, for the full-day scenario, MILP yields better results in
terms of average delay. This can be explained by the lower density of flights over the 24-hour duration, allowing
the MILP to more effectively assign flights to runways. However, it is important to note that this solution
did not converge properly, preventing definitive conclusions. Further analysis also shows the effectiveness of
assigning a small penalty to the total delay as it is not desirable to delay one aircraft in favor of others. The
table shows that the average delay does not exceed 32.2 seconds, a threshold considered acceptable.
The information presented in this section allows to make a comparison between the accuracy of the tabu search
model and the MILP model. However, it does not provide any information about the computational time
required for these solutions. This aspect will be further explained in the next section.

4.2 Computational Performance
The computational performance of both models is assessed using different methods. The tabu search algorithm
allows easy retrieval of computational performance by measuring the time elapsed between the algorithm’s
initiation and completion. Conversely, the MILP solver continues until the solution converges within a 0% gap
range, which is not observed across all the scenarios within a reasonable amount of time. However, to manage
computation, a time restriction of 1200 seconds is imposed for the 90 minute flight schedule, while larger scenarios
are allocated a time limit of 1800 and 5200 seconds. Additionally, a 7200-second limit is set for obtaining
objective values for a comprehensive comparison between fully fuel-optimized and noise-optimized scenarios.
These time constraints help regulate and ensure a standardized assessment of computational performance across
varied scenarios and models. An overview of the difference in computational time for both the tabu search
algorithm as the MILP is shown in Figure 4

Figure 4: Computational time overview tabu search and MILP for all the scenarios

The correlation between the number of flights in the schedule and the computational time is evident from the
figure and flight schedules. The greater the number of flights, the longer the computational time required. For
smaller flight schedules, the computational time for noise and fuel optimization falls within a similar range.
However, for longer flight schedules, noise optimization consumes significantly more time. This disparity arises
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from the more extensive noise calculations, necessitating the examination of each neighbor solution across all
900 grid points, which is not required in fuel optimization.
Furthermore, the widening gap between fuel and noise optimization duration can be attributed to the employ-
ment of multiprocessing for noise calculations. Multiprocessing efficiency diminishes as data sets expand. The
division of work among multiple processors takes longer with larger data sets, contributing to the increasing
gap between the longer flight schedules.
Despite the differences in the optimization of both objectives, it can be seen from the figure that they are
considerably faster compared to the computational time required for the MILP optimization. However, it is
essential to note that these times are user-defined settings, as discussed earlier in this section. To enhance the
understanding of the solution and its quality concerning computational time, an examination of convergence
will be an intriguing avenue for exploration. This analysis will be conducted in the subsequent section.

4.3 Convergence Analysis
Solely evaluating the computational time of the MILP lacks context, as it might discover a promising outcome
quickly and allocate the remaining time to fine-tune the solution for optimal convergence. To assess this
behavior, the convergence of the MILP is graphically depicted concerning fuel burn, mirroring the objective
function of the tabu search algorithm. The fuel burns objective function value from the tabu search algorithm
is represented by a dashed line. Observing the intersection of both lines allows for a meaningful evaluation of
the model its actual performance and convergence behavior. The convergence plot for the 90-minute scenario
can be seen in Figure 5 and for the six-hour scenario in Figure 6.

Figure 5: Convergence plot MILP fuel burn opti-
mization 90-minute scenario

Figure 6: Convergence plot MILP fuel burn opti-
mization six-hour scenario

In the 90-minute scenario, the optimal objective line intersects with the tabu search objective line at 220 seconds,
allocating the remaining time for optimization convergence towards the best bound. Examining Figure 4, it is
notable that the tabu search algorithm achieves its optimal solution within 99 seconds, marking a significant
55% reduction in computational time compared to the MILP.
In the six-hour scenario, this reduction is even more pronounced. The intersection of the best objective line
with the tabu objective occurs at 1616 seconds, well within the MILP time limit of 1800 seconds. Conversely,
the tabu search algorithm accomplishes the optimal solution for fuel optimization in 206 seconds, showcasing
an 87.3% reduction in computational time.
Due to the non-linear nature of the noise objective function in the tabu search, direct integration into the MILP
optimization is not feasible, making a convergence analysis unattainable. Despite this constraint, valuable
insights emerged during the optimization phase. It became evident that the convergence of noise optimization
takes longer, and this delay can be attributed to the heightened computational demands originating from the
more complex calculations involved in noise optimization.
Besides optimizing one main objective, a multi-objective optimization will be performed for both models in the
next section.

4.4 Pareto Front
For visualizing the impact of different weight factors, a series of scenarios were analyzed through the creation
of a Pareto Front. This front has been constructed by assigning weights ranging from 0 to 1 in increments of
0.1. Each weight value was utilized to optimize the objective function, thereby enabling the exploration of the

13



relationship between fuel consumption and noise annoyance across various combinations.
To facilitate the selection of the most suitable solution, reference lines for noise and fuel have been plotted.
The noise reference line has been derived from the Schiphol 2019 annual report [Royal Schiphol Group, 2020],
specifically obtained from the recorded number of HA people amounting to 142,000. Conversely, the fuel
reference case was generated by optimizing solely for fuel consumption using the original flight schedule and
its runway configuration. These reference lines serve as benchmarks against which the Pareto solutions can be
compared and evaluated. The Pareto front is plotted for the 90-minute scenario in Figure 7 and for the six-hour
scenario in Figure 8.

Figure 7: Tabu search and MILP Pareto Front 90-
minute scenario

Figure 8: Tabu search and MILP Pareto Front six-
hour flight schedule

Comparing both scenarios reveals similarities in the behavior exhibited by the MILP and tabu Pareto plot
analyses. In the context of the 90-minute scenario, the tabu algorithm demonstrates superior performance
when the focus leans towards optimizing noise. However, this trend shifts when the emphasis moves towards fuel
optimization. Notably, both MILP and tabu approaches, exclusively optimizing for noise result in a solution that
results in a higher fuel burn compared to the fuel reference scenario. In the case of the six-hour scenario, a more
equitable performance is observed, with the tabu search yielding the most optimal solution for complete noise
optimization. However, this accomplishment is accompanied by a notable increase in total fuel consumption,
albeit still lower than the reference scenario. Importantly, both initial points reside within the boundaries of
the fuel reference scenario.
In both scenarios, the tabu search achieves fuel savings compared to the reference scenario for multi-objective
weighting. This positioning is near the left bottom of the Pareto curve, ensuring a balance between fuel efficiency
and staying below the noise reference limit. The fuel saving can vary from 6.7% for the 90-minute scenario to
15.5% for the six-hour scenario. The difference between the fuel savings can be explained by the investigation
of the reference runways, the operation type, and the orientation of the flights. The six-hour scenario contains
more departing flights, where more savings can be accomplished compared to arriving flights. Furthermore,
the departure trajectories for the 90-minute scenario are mostly located to the south, where already the most
fuel-optimal runway is used, which reduces the potential for fuel saving.
In the case of the daytime and full-day scenarios, the MILP approach encountered challenges, failing to converge
for various weightings in a reasonable amount of time, thereby hindering the creation of a Pareto plot to depict
trade-offs. This again shows the main limitation of the MILP approach, which is the long runtime. Conversely,
the tabu search method proved more adaptable to handle these large flight schedules, successfully generating a
Pareto plot.
Both Pareto plots indicate that both approaches have their objectives in the same range. However, further
analysis is required to determine if the modeling methods make different choices regarding runway allocation.
This analysis will be carried out in the next section.

4.5 Noise Annoyance and Runway Allocation
In this section, an in-depth analysis of the behavior of both models is conducted, focusing on the aspects of
noise annoyance and runway allocation. The examination is centered around the six-hour scenario, incorpo-
rating a multi-objective weighting. The selection of this scenario allows a comprehensive evaluation of model
performance.
The choice of the point on the Pareto curve, as illustrated in Figure 8, is located close to the left bottom of the
curve. The selected point is strategically positioned to achieve simultaneous reductions in fuel burn and noise
disturbance. In Figure 9 and Figure 10 the runway allocation and noise annoyance grids of both models are
shown for a combination of weights. In Figure 10 the grid points with a population that is Not Highly Annoyed
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(NHA) are shown in grey.
While the values for fuel burn and the number of HA people exhibit a comparable range for both solutions,
several distinctions and similarities can be observed from the graphs. Notably, both solutions demonstrate
minimal utilization of runways 18R and 09. The infrequent use of 18R for arrivals is attributed to the extended
taxi time required from the runway to the pier, given its location furthest from the gates.
Furthermore, the limited usage of 09 for departures can be explained by geographical considerations. Depar-
tures in the eastward direction of AAS from this runway are restrained due to the potential for heightened
noise annoyance, stemming from the proximity of Amsterdam in that particular area. Upon closer examination,
another similarity can be observed in the utilization of runway R36L. Despite its longer taxi time, this runway
experiences frequent use, attributed to the advantageous factor of a sparse population situated on its northern
side, thereby minimizing noise disturbance. A contributing factor to this preference is the observation that 21%
of flights are directed towards the BERGI waypoint, situated in the northern direction. This choice can also be
explained by considering alternative northern heading runways. R36C traverses more densely populated areas,
and R36R is unavailable for departing aircraft. Consequently, R36L emerges as the preferred runway for flights
heading towards the north.
A notable difference between the two solutions can be seen in the utilization of runway 27. The MILP model
exhibits a substantially higher usage of this runway compared to the tabu search approach, particularly for ar-
rivals. This higher usage causes an increased noise annoyance over densely populated areas located east of AAS.
This discrepancy is further highlighted in Figure 10b, where dark red grid points signify a high concentration
of HA people. The tabu search solution, in contrast, opts for alternative runways, mitigating the impact on
noise-sensitive regions.

(a) Tabu: α = 0.3 and β = 0.7 (b) MILP: α = 0.5 and β = 0.5

Figure 9: Runway allocation comparison

(a) Tabu: α = 0.3 and β = 0.7 (b) MILP: α = 0.5 and β = 0.5

Figure 10: Noise annoyance grid comparison

Another interesting aspect to explore is the intensity of noise levels experienced by HA people. Given that
both optimization models pursue distinct objectives in minimizing noise annoyance, the cumulative count of
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HA people for each noise level is obtained from the optimization. The results can be seen in Figure 11, revealing
variations in the distribution of HA people between the two models.
In both figures, a notable concentration of HA people is observed within the 48-60 dB(A) range. Nevertheless, a
noteworthy distinction emerges: in the tabu search approach, the majority of HA people experience lower noise
levels, while the MILP model exhibits a lower count at the lower noise levels and shows three prominent peaks
at higher noise levels. This divergence can be attributed to the fact that, once the noise limit is exceeded, the
MILP model no longer considers the intensity of the noise. This results in individuals being exposed to higher
noise levels compared to the tabu search. The tabu search, on the other hand, accounts for noise intensity,
leading to a decline in the numbers of HA people as noise levels increase. Except for two minor peaks at 63 and
64 dB(A), which can be rationalized by the strategy of avoiding exposure to densely populated areas.

(a) Tabu: α = 0.3 and β = 0.7 (b) MILP: α = 0.5 and β = 0.5

Figure 11: Highly Annoyed people distribution comparison

4.6 Sensitivity Analysis: Optimization Horizon
The performance of the model is significantly influenced by the window width of the sliding time window,
which serves as a crucial parameter. This window width dictates the portion of the flight schedule optimized
within each window, consequently impacting the number of flights considered. To comprehensively evaluate
this impact, a sensitivity analysis is conducted on this parameter, exploring a range from 10 to 30 minutes.
This means a total optimization per shift between 20 minutes and 1 hour. This analysis aims to unveil the
implications of the objective functions resulting from variations in this parameter. The sensitivity analysis is
performed on the six-hour scenario and the result can be seen in Figure 12 for fuel optimization and in Figure 13
for noise optimization.

Figure 12: Fuel optimized sensitivity

16



Figure 13: Noise optimized sensitivity

In the context of fuel optimization, minimal discrepancies in fuel consumption are observed across varying
window sizes. This implies that the 15-minute scenario achieves an almost optimal solution, and this efficiency
remains consistent regardless of the window size. Additionally, both the average delay per flight and the overall
optimization duration are contingent upon the chosen window size. A notable observation is that the 10-minute
window size exhibits a higher average delay, primarily attributable to the reduced opportunities for attaining
an optimal solution within the narrower time frame. Conversely, larger window sizes afford the algorithm more
flexibility, enabling it to sequence flights more optimally. The total optimization duration scales proportionally
with the window size. This scaling effect is evident as smaller window sizes constrain the optimization scope,
leading to fewer flights and a reduced number of neighbor creations and evaluations, which results in a 46.7%
decrease in computational time. Conversely, larger window sizes expand the optimization possibilities, resulting
in a reverse relationship with the optimization duration with an increase of 223.1% for the 30-minute time
window.
In the context of noise optimization, a consistent trend can be observed in both average delay and computational
time. A smaller time window size leads to a 10.4% increase in average delay, while larger window sizes show
a maximum reduction of 34.9%. The differences in computational time are larger, with a substantial 25.6%
decrease for the 10-minute window and a 128.7% increase for the 30-minute window. Upon closer inspection of
both graphs, it becomes apparent that the 15-minute window size consistently yields the best results across fuel,
noise, delay, and computational time optimization. Opting for a smaller time window results in increased delay,
while selecting a larger time window leads to extended computational time with marginal gains in optimization
outcomes.

5 Discussion
The existing FRSM has been modeled as a MILP, presuming linearity in all constraints. In contrast, the
methodology employed in this research utilizes a tabu search algorithm within a moving horizon approach. This
approach allows for the integration of non-linear elements and facilitates an analysis of the impact of a different
solving method.
The results demonstrate that the tabu search algorithm model yields accurate outcomes for both objectives,
fuel burn, and noise annoyance. Concerning fuel optimization, the tabu search performs less optimal for the
90-minute and six-hour scenarios. However, its objective surpasses that of the MILP model as the flight sched-
ule expands. This improvement is primarily attributed to the MILP model and its scalability challenges. The
tabu model, incorporating a moving horizon approach, effectively mitigates these issues by maintaining a more
manageable scale, thereby enhancing its performance on larger flight schedules. In terms of noise optimization,
the tabu search algorithm demonstrates superior performance across all scenarios concerning the number of
HA people. While the improvement is marginal for the 90-minute scenario, exhibiting a 2.14% decrease, it be-
comes more pronounced as the flight schedule expands. Notably, the daytime scenario showcases a substantial
improvement with a 33.29% decrease. It is important to acknowledge that, in the full-day scenario, the MILP
model encountered convergence issues, preventing a proper comparison of results. This limitation stands out as
a primary drawback of the MILP approach.
However, the tabu search approach used in this research also has its limitations. The incorporation of a moving
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horizon introduces a level of complexity to the noise optimization and calculation process. Conventionally,
noise is assessed over 24 hours or an entire year. However, with the moving horizon approach, the noise is
segmented into budgets per horizon. This shift can impact the outcome, given that achieving the optimal noise
result necessitates comprehensive information spanning the entire day. The reference scenario against which
the noise results are compared originates from the noise annoyance measured over an entire year. Consequently,
the comparison may not offer the most precise evaluation, as it involves a certain number of hours or one day
instead of an entire year. Such a comparison might not accurately reflect the impact of external factors, such
as weather conditions, which can play a crucial role over more extended time frames. Furthermore, the arrival
and departure trajectories are based on the information from the AIP, using predefined routes. Specifically, for
arrival trajectories, the assumption is that aircraft go from the IAF to AAS in the direction of waypoint SPL
and then proceed to a runway. This simplification deviates from the more direct paths often taken in real-world
operations. This limitation should be acknowledged as it affects the accuracy of the model in representing actual
aircraft movements.
The improved FRSM reveals promising prospects for real-world applications. Improved computational perfor-
mance makes the model more suitable for real-time operations. Additionally, the incorporation of the dose-
response relationship for noise annoyance positions the model to contribute potentially to increased operations
while adhering to noise regulations. This dual advantage positively impacts both the airport its operations
efficiency and the well-being of residents in the vicinity.
Beyond its noise reduction capabilities, the FRSM its optimization features in fuel consumption, contribute to
a positive environmental footprint. The consequential decrease in emissions in the surrounding airport area
further emphasizes the holistic benefits of the model. By effectively balancing noise disturbance and minimizing
fuel consumption, the improved FRSM could emerge as a useful tool with advantages for airport operations and
the surrounding community.

6 Conclusions
The aim of this study was to enhance the Flexible Runway Scheduling Model (FRSM) by overcoming two pri-
mary limitations, computational performance and simplified noise annoyance modeling. Drawing on the recent
model developed by [Abbenhuis, 2021], the model was redesigned by incorporating a tabu search optimization
technique and integrating receding horizon control to enhance its computational performance. Moreover, the
nonlinear nature of noise has been considered, and the number of Highly Annoyed (HA) people has been used
as a metric to measure it.
To assess the performance of the tabu search model model, four distinct scenarios, varying in the number of
flights and complexity have been compared with the MILP model. The results reveal that integrating the tabu
search algorithm leads to significant computational savings, ranging from 52% for a noise-optimized full-day
flight schedule to 92% for a noise-optimized 90-minute flight schedule. Furthermore, the non-linear noise objec-
tive, aimed at reducing noise annoyance, resulted in a significant enhancement, reducing the noise annoyance
from 2.14% for the 90-minute schedule to 62.5% for the full-day schedule. However, it is worth noting that for
shorter flight schedules, the MILP model outperforms the new model in terms of fuel optimization by 0.73%
and 0.19%. This shows that linearization and simplification do affect the results regarding computational per-
formance and noise optimization, but have limited influence on fuel optimization.
Both the MILP and tabu search algorithms demonstrated similar results concerning the Pareto front, while the
MILP excelled in fuel optimization and the tabu search in noise reduction. The study reveals that reductions
in both fuel and noise annoyance are achievable. For the selected 90-minute scenario fuel savings of 6.7% is
achievable and for the six-hour scenario 15.5% of fuel savings. Both with a reduction in noise annoyance com-
pared to the 2019 Schiphol reference scenario.
Additionally, the model makes divergent choices when allocating flights to runways, achieving the same results
in the objective function. This discrepancy is attributed to the tabu search algorithm incorporating noise an-
noyance on a non-linear scale, which the MILP model does not account for. The differences between the MILP
and tabu search algorithms can be attributed to their respective time horizons. The MILP optimizes the entire
flight schedule in one go, while the tabu search uses a moving horizon optimization approach, optimizing smaller
segments of the schedule.
To address this variability, variable noise budgets specific to each optimization window are utilized for schedul-
ing the flights. Nevertheless, this approach has a limitation where the model is less effective in allocating flights
with sudden spikes in noise levels in the upcoming windows. Despite this limitation, the results show that the
majority of HA people experience lower noise levels compared to the MILP approach. This evidence supports
the efficient functioning of the non-linear implementation of noise annoyance with variable noise budgets.

In summary, this research focuses on an enhanced FRSM, by addressing computational performance and noise
annoyance. The research demonstrates that changing the modeling method results in faster computational
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times and enhances the model its capability to handle larger flight schedules. Additionally, the study highlights
the potential benefits of implementing this approach in daily operations. It also indicates positive impacts on
the surrounding environment in terms of noise representation and fuel reduction.

7 Recommendations
For future research, several improvements can be made to the model to increase the performance in terms of
solution accuracy and computational efficiency.
While this study employed a tabu search algorithm as a novel optimization technique, exploring alternative
optimization methods and evaluating their performance could be valuable. For instance, Multi-Objective Evo-
lutionary Algorithms (MOEAs) present themselves as promising tools adapted to tackling multi-objective func-
tions. The exploration of MOEAs, in addition to the tabu search method, presents an opportunity to potentially
improve the problem-solving capabilities of the model concerning multi-objective trade-offs.
An interesting area for future research involves integrating optimal control methodologies to effectively conserve
fuel during the aircraft its trajectory. While this study considered fixed-length trajectories for both arrival
and departure, existing literature has delved into optimizing either arrival or departure trajectories separately.
Incorporating these trajectory optimizations, whether for arrivals or departures, in conjunction with runway
scheduling optimizations could yield substantial benefits in further reducing fuel consumption and mitigating
noise.
A limitation of the current model lies in the fact that it does not take into account the runway availability
during the allocation of runways to flights. It assumes a best-case scenario where all the runways are available
for operations. The user must manually modify the runways restricted for operations. The consideration of
wind directions and maintenance of runways is crucial as it impacts aircraft operations, affecting takeoff and
landing performance. Incorporating real-time or forecasted wind data into the FRSM can optimize the alloca-
tion of flights by considering wind direction and intensity. Accounting for wind conditions enables the model
to make more informed decisions, such as selecting runways that align favorably with prevailing winds. This
could improve aircraft efficiency, and fuel consumption, and potentially reduce noise levels during takeoffs and
landings.
Additional resources can be allocated to enhance the modeling of fuel consumption. While this study has al-
ready made strides in improving accuracy, further refinement can be achieved by exploring non-linear fuel burn
modeling. Incorporating non-linear fuel burn models could significantly enhance the accuracy of the model
when simulating real-world data.
Lastly, the increased air traffic controller workload should be investigated. Since this model does not consider
the additional attention required for constantly switching runways, further research is needed to determine its
impact on Air Traffic Management (ATM) systems. The most important parameter for the air traffic controller
is to limit the number of runway switching directions.
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Appendices
A Pier assignment
The assumptions concerning flight information and pier assignments are outlined in Table 6. The pier in-
formation is needed for computing taxi fuel, both for departing and arriving flights, as explained in the fuel
burn calculation section section 2.2 of the research paper. This information is obtained through an analysis of
Schiphol data and input provided by the supervisor.

Table 6: Flight info and pier assignment

Pier Airline Weight Class
B KLM Lower Medium
C Transavia, other Upper Medium
D KLM, other Upper Medium
E other Lower Heavy
F KLM Upper Heavy
G other Upper Heavy
H easyJet All
Cargo Cargo airlines All

B Extract of flight schedule
Table 7 shows an extract of the flight schedule used as input for the FRSM with all the information needed.

Table 7: Example of data gathered from AAS flight schedule from August 23 2019

Scheduled operating
time Callsign Airline Aircraft type Operation SID/IAF Weight class O/D data Pier

09:51:00 DAL133 DAL A359 D BERGI UH KDTW G
09:52:00 KLM1555 KLM E75L D LEKKO LM LIMF B
09:52:00 KLM765 KLM A333 A SUGOL UH TNCB F
09:53:00 KLM53W KLM B737 D IVLUT UM EPWA D
09:54:00 EIN603 EIN A320 D BERGI UM EIDW D
09:54:00 AFR71DN AFR A320 D LEKKO UM LFPG D
09:54:00 AUA37H AUA A320 A ARTIP UM LOWW D
09:55:00 KLM31 KLM B772 D BERGI UH CYYZ F
09:56:00 DAL136 DAL A333 A SUGOL UH KDTW G
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1
Introduction

In this chapter, the literature study focusing on runway scheduling in the context of airport operations is in-
troduced. The efficient management of airports is essential for ensuring safe and timely aircraft movements,
which are crucial for global connectivity and economic growth. A critical aspect of airport operations is the
allocation and scheduling of runways, as it directly impacts an airport’s capacity to handle incoming and out-
going flights. First, the background information about runway scheduling is described in section 1.1. Next,
the research context and the reason for the new research is explained in section 1.2. Finally, section 1.3 states
the report structure of this literature study.

1.1. Background Runway Scheduling
Air transportation plays a crucial role in connecting the world nowadays, serving as a key driver of economic
growth and facilitating global mobility. Efficient and effective management of airport operations is vital to
ensure safe and punctual aircraft movements. One critical aspect of airport operations is the allocation and
scheduling of runways, which directly impacts the capacity of an airport to handle incoming and outgoing
flights. This allocation process, which is called the runway scheduling problem, introduces significant chal-
lenges due to the complex nature of air traffic flows, varying flight demand, and operational constraints.
Besides increasing the capacity and efficiency it is crucial to consider the environmental aspects associated
with runway scheduling.
Emissions from aircraft operations contribute to air pollution and climate change. Greenhouse gas emissions,
such as carbon dioxide (CO2), are a major concern due to their role in global warming. Runway scheduling
can impact emissions by influencing aircraft queuing, taxiing, and idling times, which directly affect fuel con-
sumption and, therefor the emissions. By considering the fuel consumption with the allocation of the runway
slots and minimising the taxiing distances, it is possible to reduce emissions and mitigate the environmental
impact of aircraft operations.
Noise pollution is another significant environmental concern associated with airport operations. Aircraft
noise can negatively affect nearby communities’ well-being and quality of life. The scheduling of runway op-
erations play a crucial role in managing noise levels. By implementing noise abatement procedures, such as
preferred runway use, flight path optimisation, and time restrictions on operating hours, airports can miti-
gate the impact of aircraft noise on surrounding areas.

1.2. Research Context
Over the years multiple models are developed to analyse airport capacity with the accuracy of those models
becoming better and better. Depending on the model’s objective, they can analyse the airport capacity and,
for example, environmental impacts. The first model to incorporate both fuel burn and aircraft noise in an
airport capacity model has been developed by Delsen[24]. By using a flexible allocation model the runway
capacity is optimised on both objectives instead of a preference list used by the airport. Further adjustments
to this model have been made by Van Der Meijden [106] to incorporate pairwise flight constraints and im-
plement aircraft-specific constraints instead of generalisation. As this model still had limitations Abbenhuis
[1] changed the optimisation method to a flexible scheduling model and incorporated a method to calcu-
late dependencies for a complex runway system. However, there are still some shortcomings to the current
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model with respect to computational performance, noise limits, and fuel burn modelling during approach
and therefore additional research is needed on this problem.

1.3. Report Structure
This literature study is structured as follows. In chapter 2 the airport capacity is described and all the relevant
theories and calculations are discussed. chapter 3 discusses the fuel burn modelling techniques available and
discusses the important factor that fuel consumption has on airline economics. The aircraft noise modelling
is described in chapter 4, including all the calculations related to aircraft noise and the annoyance of noise.
Furthermore, noise mitigation strategies and regulations are presented. The different mathematical models
and solving methods for the runway scheduling problem are stated and explained in detail in chapter 5.
Finally, chapter 6 presents the research proposal resulting from this literature study.



2
Airport Capacity

This chapter will discuss the subject of airport capacity and the factors influencing this capacity. With some
background information on the topic of airport capacity in section 2.1. section 2.2 starts by explaining the
different definitions of runway capacity and the concept of delay. The different factors influencing the run-
way capacity with explanation are described in section 2.3. The sequencing of aircraft plays an important role
in the runway capacity. The techniques to hold the aircraft during sequencing are discussed in section 2.4.
Another important parameter is the separation, the new separation standards according to RECAT-EU are
explained in section 2.5. section 2.6 describes the way runway capacity is calculated. To help ATC in the run-
way scheduling several decision-support tools are developed. These are stated and explained in section 2.7.
Finally, section 2.8 discusses the available literature on airfield capacity modelling.

2.1. Background Information
Understanding and analysing the airport capacity and the factors influencing this capacity is crucial for air-
port planning and design, as the airfield’s capacity, especially the runway system, is often the primary factor
that determines the total airport capacity. The airport capacity problem started in the early 1990s, at that time
the U.S. transport system was not able to handle the total air traffic demand anymore[7]. This resulted in the
problem becoming a national issue that required collaboration between air transport industry partners and
the government. However, the problem is not easy to solve as capacity expansions are expensive and require
a long lead time. Furthermore, capacity was not well understood and is a very complex issue technically and
operationally. The increase in air travel had led to a situation where the airport capacity could not keep up
with the rising demand, causing congestion and delay. This has resulted in significant inconvenience, declin-
ing quality of service, and safety concerns for both the air transport industry and the travelling public.
The runway complex is often the primary bottleneck of the Air Traffic Management (ATM) system. This is
because air traffic transitions from three-dimensional flows in the airspace to a single-file regime on the run-
way. Increasing runway capacity is often a capital-intensive and time-consuming process because building a
new runway involves many external factors.

2.2. Runway Capacity Measures and Delay
Numerous methods exist to determine runway capacity, each designed to estimate the number of aircraft
movements, including arrivals and/or departures, that an airport’s runway system can handle during a par-
ticular time unit, usually an hour. It is crucial to comprehend the definitions of these alternative measures
to utilise them accurately and prevent misunderstandings. Below four different measures of runway capacity
are stated and explained, all of them coming from Neufville and Odoni [22]

• Maximum Throughput Capacity (MTC)
The MTC is defined as the expected number of aircraft movements that can be carried out within an
hour on a runway system, while complying with ATM regulations and in the presence of continuous
aircraft demand. The MTC depends on the specific conditions under which the runway operations are
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conducted. Level of service (LOS) requirements are neglected in the MTC measure, this means a delay
per movement of a few minutes or several hours is trivial.

• Practical Hourly Capacity (PHCAP)
The PHCAP is defined as the anticipated number of aircraft movements that can be executed within
one hour on a runway system, with an average delay of 4 minutes per movement. The FAA originally
proposed this method in the early 1960s [29]. This definition takes LOS into account and indicates
when the runway system is approaching its capacity when the LOS threshold is exceeded.

• Sustained Capacity
The sustained capacity refers to the number of aircraft movements per hour that can be reasonably
sustained over several hours. The term "sustained" primarily refers to the workload of the ATM system
and the air traffic controllers. The ATM system must operate at full potential to achieve MTC, but this is
not practical for more than a couple of consecutive hours. Therefore, it is suggested that a more realistic
target be established for sustained capacity during periods of several hours or entire days of air traffic
activity. The sustained capacity is around 90 percent of MTC with high maximum throughput capacity
and up to almost 100 percent of MTC with configurations with low maximum throughput capacity [22]

• Declared Capacity
Declared capacity is a similar measure to sustained capacity, based on the same concept. It is defined as
the number of aircraft movements per hour that an airport can handle while maintaining a reasonable
LOS, with the delay being the main indicator of LOS. It forms the basis for the worldwide practice of
"schedule coordination" and "slot allocation". This means that airports affected by congestion ’declar-
ing’ a capacity, which is then employed to establish a cap on the number of movements that can be
scheduled per hour. For example, Schiphol’s declared capacity for the summer of 2023 during day time
is between 106 and 110 movements per hour [36], depending on the ratio of arrivals to departures. The
declared capacity is typically 85-90 percent of the MTC [89].

In the aviation sector, when demand exceeds the capacity at a given component of an airport or airspace this
will result in system delays. Delay can be defined as the increase in time to operate compared to a "normal"
nondelayed operation. This increase in time can manifest in different ways, such as waiting in queues or
delays in executing operations, or a reduction in speed due to congestion. At an airport, an operation can be
defined as a takeoff or landing on the airfield, or the processing of a passenger through the terminal. In the
airspace, an operation can be defined as an aircraft travelling through a specific sector or airspace [44].
Following Neufville and Odono [22] two types of delays can occur, overload delays and stochastic delay. Over-
load delays occur when the demand rate exceeds the capacity for a significant time. Delays can also occur
when the demand rate is less than but reasonably close to the service rate. Even if the demand rate is less than
the capacity for the entire day, "spikes" in the demand or variability in the inter-arrival or inter-departure
times end in delays. This can form clusters and result in queues of aircraft on the ground or in the air. When
the demand rate is smaller than the capacity but in the proximity, it may take a while for the queues to disap-
pear.
The airport runway system can be seen as a queuing system. A queuing system consists of a user source, a
queue, and service facility with 1+ parallel servers [90]. The server in the case of the runway system is the
ANSP providing the ATC within the region of a specific airport.
The utilisation ratio, ρ, is defined as the demand rate, λ, divided by the service rate, µ, as shown in Equa-
tion 2.1. An equilibrium only exists when ρ is smaller than 1.

ρ = λ

µ
(2.1)

In a steady state system the delay, D, is proportional to the relationship shown in Equation 2.2. When ρ is
bigger than 1 the delay of the system will increase rapidly.

D ∼ 1

1−ρ
(2.2)

Figure 2.1 gives a graphical representation of the delay as a function of capacity and demand. Both the PHCAP
and the MTC can be seen in the figure, with the 4 minutes acceptable delay as proposed by the FAA.
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Figure 2.1: Delay as a function of capacity and demand [44]

The figure indicates the difference between the PHCAP and the MTC, as the practical capacity is defined in
terms of delay, and the throughput capacity is not.
To calculate the expected time a user spends in the queue, the Pollaczek-Khinchin formula can be used, which
is given in Equation 2.3. Where the user is in this case the arriving or departing aircraft. A Poisson distributed
demand is assumed, meaning independent inter-arrival times between the users. Wq is the expected time in
queue per aircraft, and the arrival rate of aircraft is defined by λ. Furthermore, the equation is dependent on
the variance of service time, σ2

T , the expected service time, E(T ), and the rate of service, µ.

Wq =
ρ

[
1+ σ2

T
E 2(T )

]
2µ(1−ρ)

(2.3)

2.3. Runway Capacity Factors
Runway capacity can vary as a result of a wide range of causative factors. To have a clear overview of the
different factors related to runway capacity, they are classified into five different categories. The categories
are based on the research performed by Zhao et al. [113] on dynamic capacity-demand balance research and
are shown in Table 2.1.

Table 2.1: Classification of Runway Capacity Factors[92]

Category Description
Operation/procedures Factors related to anything that makes activities function as addressed
The geometry of airside facilities Factors related to physical characteristics of airside facilities
Aircraft performance Factors related to aircraft characteristics of airside facilities
Human factors Factors related to pilot, ATC officer and human-related
External Factors excluding 4 categories above and unmanageable factors

In the following subsections, the main runway capacity factors will be discussed, starting with the runway
configuration

2.3.1. Runway Dependencies
When the airport consists of multiple runways the layout of the runways is an important factor influencing
the runway capacity. Dependencies between those runways could occur and separation regulations are de-
pendent on the runway operations. Research done by van der Klugt[105] shows five different categories of
dependencies. All of them are discussed in this subsection, starting with converging and diverging runways.
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Converging and Diverging Runways
Runways that do not intersect, but converge or diverge towards each other are known as converging and di-
verging runways. During certain operation modes, such as departing-arriving or arriving-arriving, the missed
approach paths may intersect, while some runway layouts can cause issues with jet blasts or wake turbulence
on the ground. These dependencies are shown in Figure 2.2.

Figure 2.2: Operations on converging and diverging runways[105].

The wake turbulence and jet blast cause the operation of one runway to interfere with the operation on the
other runway shown in Figure 2.2 a. The countermeasure depends on the exact layout of the runways, the
type of operation, and the aircraft type.
The missed approach is shown in Figure 2.2 b and c. The first case of missed approach is when the departure
path crosses the missed approach path of arrival. To avoid this from happening a departure is only allowed
when the arriving aircraft has a specific distance from the runway. The second case is when the missed ap-
proach track of two arriving aircraft intersects. The countermeasure is applying a separation between two
arrivals on different runways, which is called "staggering".

Intersecting Runways
The runway dependencies with intersecting runways are coming from the jet blast and wake turbulence com-
bined with the point of the runway intersection. Intersecting runways can be used for multiple operations,
shown in Figure 2.3. To minimise runway dependencies and optimise the use of intersecting runways, air-
ports often employ several strategies. These can include using staggered runway approaches and creating
designated holding areas for aircraft waiting to take off or land. The highest capacity of runways that inter-
sect is usually achieved when the intersection is at the very beginning of both runways in the direction of
operation [22].

Figure 2.3: Operations on intersecting runways [105].

Mixed Mode
Mixed-mode operations refer to the use of a single runway for both departures and arrivals. In alternating
mixed mode operation, which is used when the arrival/departure ratio is around 1, each arrival is followed
by a departure (A-D-A-D-...). Other patterns are used when the ratio is not equal to one, such as increasing
gaps between arrivals to fit more departures (A-D-D-A-...) or fitting departures into some arrival gaps (e.g.
A-A-D-A-A-...).
To ensure safe operations, separation regulations exist for both combinations. For a take-off roll to com-
mence, three conditions must be met: the preceding aircraft must have left the runway, the next arrival must
be at a specified distance from the runway threshold when the departure is released, and the next arrival
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must be at or before the latest point before the threshold where a missed approach can be initiated when the
departure lifts off.

Parallel Runways
Parallel runways are runways whose centerlines are aligned and may be used simultaneously for takeoffs and
landings. These runways are typically found at large airports where there is a high volume of air traffic. To
ensure safe operations on parallel runways, some specific rules and procedures must be followed. The sepa-
ration regulations are dependent on the distance between the centerlines of the runways and the operational
mode and direction of the runway. Four different operating modes for parallel runways are known[82].

[noitemsep]Independent parallel approaches Dependent parallel approaches Independent parallel de-
partures Segregated parallel operations

To allow parallel operations the minimum distance between the runway centerlines has to be 760 m[82]. The
runways are considered as one single runway when this distance is smaller.
The first two modes mentioned above are approaches, for the first one no special separation conditions apply.
However, for the second mode, there are some dependencies. One form of segregated operation is semi-
mixed parallel operations. This means that one runway is only used for either approaches or departures.

2.3.2. Runway Occupancy Time
The Runway Occupancy Time (ROT) affects the time interval between successive takeoffs or landings on a
runway. A longer ROT can result in a greater time gap between the departure of the arrival of aircraft, which
reduces the overall number of operations that can be accommodated on the runway in a given period. The
influence on the runway capacity may seem small, but the saving of a few seconds per movement can result
in a big increase in the capacity. Saving 5 seconds per movement has the potential to increase capacity by 1.
to 1.5 movements per hour[27].
The ROT is defined differently for arriving and departing aircraft. The Runway Occupancy Time of Arrival
(ROTA) is defined as the time interval between crossing the beginning of the portion of the runway usable
for landing and the aircraft tail vacating the runway [83]. The Runway Occupancy Time of Departure (ROTD)
is the time interval between crossing the holding stop bar and the main gear lifting off the runway [83]. The
ROT of an aircraft is influenced by many factors, such as the aircraft type, speed, and weather conditions.

2.3.3. Separation
Separation has a significant impact on runway capacity. The separation requirements between aircraft are
established to ensure safe operations and prevent collisions, which are critical to maintaining high safety
standards.
Wake turbulence is created behind an aircraft in flight, particularly in the wake of the wings. The wake turbu-
lence is turbulent air and can be hazardous to other aircraft flying nearby. The ICAO has established standard
wake turbulence separation regulations. These regulations prescribe minimum separation distances that air-
craft must maintain. The wake turbulence is dependent on the aircraft size, therefore the ICAO has created
categories, called "Wake Turbulence Categories" (WTC), which are based on the Maximum Take Off Weight
(MTOW) of the aircraft. The different categories and their corresponding MTOW are shown in Table 2.2. Orig-
inally, only three categories were introduced. However, with the introduction of the Airbus A380, the Super
Heavy (J) category was added.

Table 2.2: ICAO Wake Turbulence Categories [82]

Code Class MTOW [kg] Example Aircraft
J SUPER MTOW ≈ 560,0000 Airbus A380
H HEAVY MTOW ≥ 136,000 B763, A346
M MEDIUM 7,000 <MTOW <136,000 AT45, B738
L LIGHT MTOW ≤ 7,000 General Aviation

There are two types of separation, namely Time-Based separation (TBS) and Distance-based separation (DBS).
The wake turbulence is the main factor influencing the separation values. Table 2.3 shows the DBS and Ta-
ble 2.4 the TBS according to the ICAO. The values shown in parentheses are not based on the wake vortex
separation, but on the minimum radar separation, which is common 3 nmi
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Table 2.3: Distance-based separation minima [82]

Following Super Heavy Medium Light
Lead
Super - 6 7 8
Heavy - 4 5 6
Medium (3) (3) (3) 5
Light (3) (3) (3) (3)

Table 2.4: Time-based separation minima [82]

Following Super Heavy Medium Light
Lead
Super - 120 180 180
Heavy 60 90 120 120
Medium 60 60 60 120
Light 60 60 60 60

2.3.4. Aircraft Mix and Sequencing
The sequencing of aircraft plays a crucial role in determining the capacity of a runway. Sequencing is the
process of determining the order in which aircraft will take off or land on the runway. Different sequencing
techniques can have a significant impact on runway capacity. The most common sequencing technique is
based on the First-Come First-Served (FCFS) rule. This rule is based on the Estimated Time of Arrival (ETA)
and the Estimated Take-off Time (ETT) of each aircraft. For arriving aircraft the sequencer computes the
Scheduled Landing Time (SLT) based on the ETA obtained when an aircraft enters the airport’s radar taking
into account the separation requirements [75]. The FCFS heuristic is widely used due to its easy implemen-
tation, low controller workload and it provides fairness among aircraft. However, the technique may not
provide optimal sequences regarding runway throughput or average delay due to the presence of WV separa-
tions. This is especially the case in congested airports.
To address this issue other sequencing techniques are developed, for example, CPS (Constrained Position
Shifting), which was introduced by Dear [23]. CPS involves shifting the position of an aircraft in the landing
sequence, while maintaining a safe distance from other aircraft, to reduce delays and increase runway capac-
ity. With CPS the aircraft is not allowed to shift more than a given number of positions from its FCFS position.
It has the benefit of treating equitably and reducing the solution time of exact scheduling techniques. The
improvement of CPS compared to FCFS can be seen in Figure 2.4.

Figure 2.4: Comparison of FCFS and CPS [52]

The FCFS requires a total of 452 s to land the four aircraft in the sequence, whereas the CPS methods require
316 s and 238 s, depending on the number of position shifts. One could argue that a possible downside of the
CPS could be the degradation of fairness among the aircraft. However, as aircraft are only able to shift a given
number of positions from its FCFS position this remains limited. Furthermore, the time improvement gained
due to CPS will decrease delays, and this benefits airlines.
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2.3.5. Weather and Wind Conditions
Weather and wind can play a crucial role in runway capacity. ATC needs to consider various meteorological
factors when determining which runways to use and in which direction to operate the aircraft.

Visibility, Ceiling, and Precipitation
Cloud ceiling and visibility are the two parameters that determine the weather category. Under conditions
of poor visibility, ATC becomes more cautious. This results in longer aircraft separations and greater runway
occupancy times. When the visibility or cloud ceiling falls below certain prescribed values, Instrument Flight
Rules (IFR) are employed. If the visibility is very poor and the clouds are extremely low, the Low Visibility
Procedures (LVP) take effect. This applies several safety precautions, such as runway protection with stop bar
lights and increased aircraft separation. There are four categories of LVP, ranging from A to D, with D applying
to the poorest conditions[68].
Precipitation and icing have the negative potential of affecting the runway capacity, because of poor visibility,
braking action, and deicing. In case of extreme weather events, such as snowstorms and thunderstorms, the
airport can be temporarily closed.

Wind Direction and Strength
Wind strength and direction can have a significant impact on runway capacity. The wind strength can affect
the take-off and landing performance of an aircraft, with stronger winds potentially requiring larger sepa-
ration distances between takeoffs and landings. Crosswinds can also impact the safe operation of aircraft
and may require runway closures or restrictions. A runway can be used only when crosswinds are within
prescribed limits and tailwinds do not exceed 5 or 6 knots [22]. The wind direction can impact runway con-
figuration and availability. Airports typically have designated runways for specific wind directions, and if the
wind direction is different than the usual direction, it may require a change in runway configuration and limit
the runway capacity.
ATC has a significant degree of flexibility in deciding which runways to use and the direction of operation
when the wind speed is below 5 knots, which are called "calm" conditions. To determine the active runways
and direction of operation during these situations, multiple factors such as maximizing runway capacity or
reducing environmental impacts may be considered.

2.4. Holding Techniques
As discussed in subsection 2.3.4 sequencing influences the capacity of the runway. However, the techniques
covered typically assume that the aircraft is "waiting" in the air or on the ground and can land or take off at
any time. Sometimes unpredictable delays can make it difficult to follow the original schedule, leading to
some aircraft holding before landing or taking off. For aircraft taking off this can easily be solved by creat-
ing "holding positions" on the ground. Landing aircraft can be redirected via trombone arrival routes, these
routes are pre-defined cycling tracks in the arrival route that some aircraft follow until they receive clearance
from ATC[9].
The literature discusses also other techniques used for holding aircraft, such as Vector For Space (VFS), which
stretches the path of an aircraft instead of letting it fly the direct path between two points[14] or Holding Pat-
terns (HP), which are waiting loops on the different flight levels. These loops have a constant delay associated
with them, typically 4 minutes. For short delays, the VFS is an efficient solution to implement a delay in the
model. Nevertheless, in instances where delays exceed a certain threshold, HP actions will be the superior
choice. Consequently, within the framework of the proposed model, an integration of these two approaches
can be employed to achieve optimal management of delay.

2.5. RECAT-EU
The introduction of the Airbus A380 created a new development in the ATM world, as it required a new ap-
proach to the designing of wake turbulence separations. This led to a revision of the traditional ICAO pro-
visions as explained in subsection 2.3.3 because the A380 overtook the largest passenger aircraft generating
greater vortices than those from the "Heavy" category [91]. The RECAT-EU aims to safely increase arrival
and/or departure capacity at airports by redefining wake turbulence categories and their corresponding sep-
aration minimums. The ICAO separations are dependent on the MTOW of the aircraft and defined on the
worst case in each scenario. This causes over-separation in many instances, each category may include a
wide range of different-sized aircraft with high deviation in the MTOW. The over-separation means a loss
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of runway throughput and therefore a sub-optimal airport capacity. The RECAT-EU divides the Heavy and
Medium categories into two different categories, furthermore a new Super Heavy category was created for
the A380. This process can also be seen in Figure 2.5.

Figure 2.5: Categorisation process and criteria for assigning an existing aircraft into RECAT-EU scheme[91]

By introducing the new categories new separation minima were introduced. The same approaches are used
compared to the ICAO WTC separation minima, resulting in new DBS minima and new TBS minima. The
separation minima used for the RECAT-EU wake turbulence categories are shown in Table 2.5. The first value
in the table indicates the distance-based separation between aircraft in Nautical Miles (NM), and the second
value represents the time-based separation in seconds between aircraft.

Table 2.5: RECAT-EU separation in NM / seconds [91]

Follower
Super
Heavy

Upper
Heavy

Lower
Heavy

Upper
Medium

Lower
Medium

Light

Lead A B C D E F
Super Heavy A 3/80 6/100 6/120 7/140 7/160 8/180
Upper Heavy B 3/80 3/80 3/80 4/100 5/120 6/140
Lower Heavy C 3/80 3/80 3/80 3/80 4/100 6/120
Upper Medium D 3/80 3/80 3/80 3/80 3/80 5/120
Lower Medium E 3/80 3/80 3/80 3/80 3/80 4/100
Light F 3/80 3/80 3/80 3/80 3/80 3/80

Besides the wake turbulence separation minima, the ROT was also adjusted. The ROT is dependent on several
factors, such as landing weight, brake setting, flap setting, approach speed, etc. The Departure Runway Occu-
pancy Time (DROT) and the Arriving Runway Occupancy Time (AROT) for the different RECAT-EU categories
can be seen in Table 2.6.

Table 2.6: Runway Occupancy Times for the RECAT-EU categories [57]

RECAT- EU Category DROT [s] AROT [s]
Super Heavy 51.7 47
Upper Heavy 50 47
Lower Heavy 50 45
Upper Medium 40 45
Lower Medium 35.3 45
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2.6. Runway Operation Modelling
Besides understanding the definitions and factors influencing the runway capacity, it is essential to estimate
the actual capacity of the runway system. The first model developed to estimate the capacity of a single
runway was done by Blumstein [16]. It is only applicable for arrivals, but with the same approach it can extend
to departures or mixed operations. This section will discuss the theory behind runway operating modelling
and explain the arrival mode, departure mode, and maximum throughput capacity calculations.

2.6.1. Arrival Mode
The arrival mode is shown in Figure 2.6, with a single runway system. Aircraft will descend towards the merge
point, indicated as a gate in the figure until they touch down on the runway. The final approach is typically be-
tween 5 and 8 nmi and during the approach the aircraft should follow the separation regulations as explained
in subsection 2.3.3. Furthermore, the runway has to be clear before the next aircraft can arrive.

Figure 2.6: Runway capacity modelling for arrival mode [22]

To calculate the minimum separation time between two arriving aircraft Figure 2.6 can be used as a reference.
With n being the length of the common final approach path. Consider the case in which an aircraft of type
i is landing, followed immediately by another aircraft of type j . Both aircraft have their speed, indicated by
Vi and V j . The ROT of the leading aircraft is indicated by ROTi . The minimum longitudinal separation while
they are both airborne, according to the ICAO or RECAT-EU regulations, is included with si j . The minimum
possible time interval between the leading and following aircraft, Ti j , is the minimum time separation be-
tween the two landing aircraft that can be achieved without violating any ATM separation regulations. Upon
approach two different cases can occur:

Closing case

In the closing case, vi ≤ v j occurs when the trailing aircraft has a higher or equal speed than the leading
aircraft. This means that the separation between the successive aircraft decreases during the approach. The
separation is at the lowest point when the leading aircraft is at the runway threshold. The minimum required
arrival time is calculated via Equation 2.4.

Ti j = max

[
si j

v j
,ROTi

]
(2.4)

Opening case

The situation when vi > v j is called the "opening case", because the separation distance between both air-
craft increases due to the higher approach speed of the leading aircraft. The difference in approach speed is
incorporated in the calculation of the minimum required arrival time interval shown in Equation 2.5.

Ti j = max

[
n + si j

v j
− n

vi
,ROTi

]
(2.5)
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2.6.2. Departure Mode
The Inter-Departure Time (IDT) is used for the minimum separation times for departing aircraft. The IDT is
defined as the maximum of the TBS minimum according to the ICAO or RECAT-EU regulations and the DROT
of the leading aircraft. The IDT can be calculated via Equation 2.6.

Ti , j = max
[
T BSi , j ,DROTi

]
(2.6)

2.6.3. Maximum Throughput Capacity
In reality, achieving the exact separation as proposed by the separation matrix T is extremely difficult. As
the operation involves human factors, it is expected that deviations from Ti j occur. In general pilots and air
traffic controllers have a natural tendency to be very cautious and conservative with decisions resulting in
separations that are larger than the theoretical values for Ti j . The separation model explained in this section
can be adapted to include a Buffer Time (BT). This BT can be added to the separation time from the model
which results in a new Ti j . With this new Ti j and the probability for all class pairs pi j the expected value of
Ti j between consecutive landings can be calculated via Equation 2.7.

E(t ) =∑
i

∑
j

pi j Ti j (2.7)

With the expected amount of time between consecutive operations known, the MTC µ can be calculated with
Equation 2.8.

µ= 1

E(t )
(2.8)

2.7. Decision-support Tools
Whereas the calculation described in the previous section are easy to solve for one or a pair of aircraft, it
quickly becomes more difficult and impossible to solve as a human. Therefore decision-support tools are
created to support air traffic operators at the airport.
There is a various amount of decision-support tools to help manage the flow of arriving and departing air-
craft. One of them is the Center-TRACON Automation System (CTAS) developed by NASA and the FAA[52],
which has three different functions. The traffic management advisor for runway assignment and scheduled
landings, the descent advisor for guiding aircraft to metering fixes, metering fixes are specific points along an
established air route over which aircraft will be metered before entering the terminal airspace surrounding
airports, and the final approach sequencing tool for providing speed and heading recommendations. Fur-
thermore, the CTAS has an additional function that aids in managing departing aircraft [26].
In Europe, the Arrival MANager (AMAN) tool serves a similar purpose to the CTAS, assisting controllers with
guiding arrival flows in terminal areas to the runway or metering fixes. There are different versions of the
AMAN tool, the basic one can provide a landing sequence, a timeline with a view of the runway threshold,
and a target landing time for each aircraft. Advanced versions can offer additional control actions such as
radar vectoring for altitude, speed, and heading. However, unlike CTAS, AMAN tools cannot detect or resolve
conflicts, which can increase the workload on controllers in busy airspace [64]. A new version of AMAN,
called Extended AMAN (E-AMAN), includes the airspace up to 500 nm around the airport, whereas the normal
version covers around 100 to 200 nm. This extension aims to reduce congestion, noise, and fuel burn in the
airspace near airports by sequencing aircraft earlier [74].
The European tool for departure operations is called Departure MANager (DMAN). It is used for managing
and merging departure flows in en-route traffic.

2.8. Airfield Capacity Models
This section will discuss the information found on existing capacity models. Airfield capacity models can be
classified according to three aspects: level of detail, methodology, and coverage.
The level of detail can be divided into macroscopic, mesoscopic, and microscopic. Macroscopic models in
general focus more on providing approximate answers mainly for planning and design purposes. They are
less detailed and can therefore explore a wide range of possible scenarios. Mesoscopic models are more
detailed than macroscopic, but still focused on strategic planning. It uses simulation modelling but can gen-
eralise parameters, depending on the level of detail needed, which reduces the computational time. Micro-
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scopic models provide information with a high level of detail. They are mainly used for tactical issues and
aim at an exact representation of the various processes that take plat at the airport.
The models can be divided into analytical and simulation models. The level of detail and the methodology are
dependent on each other in most cases. Microscopic models are always simulations, whereas macroscopic
models are mostly analytical and can sometimes be converted to simulations.
Lastly, the airfield models can be divided into three scopes, the taxiway system and apron area, the runway
system, and integrated models.
A complete overview of the available airfield models sorted by the level of detail, methodology, and coverage
can be seen in Table 2.7. All the models stated are explained in more detail in the upcoming subsections.

Table 2.7: Overview of airport capacity models [72], [79]

Coverage/Scope
Level of detail Aprons and taxiways Runway and final approach Integrated model

Macroscopic
Horonjeff model
and extensions

Blumstein model and extensions MACAD

FAA Airfield Capacity Model
DELAYS
LMI Capacity and Delays Model
AND

Mesoscopic runwaySimulator
ACATS

Microscopic STROBOSCOPE SIMMOD
TAAM
The Airport Machine
HERMES
RAMS Plus
Total AirportSim
AirTOp
CAST

2.8.1. Macroscopic Models
Blumstein [16] developed the first analytical model to estimate the runway capacity. The model is set up for
calculating the capacity with a single runway system for arrivals only while taking ATM separation into ac-
count. It assumes continuous demand of operation. The mean time interval between landings depends on
the length of the common final approach path, separation requirements, and fleet mix. The model formed
the basis for runway capacity modelling and over the years several extensions to the model have been made.
The first extension was made by Harris [40]. He included departures and mixed operations in the model and
introduced stochastic parameters. Hockaday and Kanafani [43] made improvements to the model developed
by Harris. They introduced the effect of wake turbulence in the separation, and the derivation of optimal
operating strategies of arrivals and departures. Furthermore, the model includes the runway capacity for a
runway system with different configurations of multiple runways.
The Blumstein model and its extensions served as the basis for the FAA Airfield Capacity model. This model
uses the same method, but is transformed into computer language, which has the advantage of faster calcu-
lations. The first version of the FACM was released during the 1970s by Peat, Marwick, Mitchell and Company,
and McDonnel Douglas Automation. It calculates the MTC of the runway system for 15 different runway con-
figurations. 4 main configurations are used to make the combinations, single runway, closely-spaced parallel,
medium-spaced parallel, and crossed runways.
The model was updated in a later stadium by the MITRE Corporation [103]. Several new features were imple-
mented in the upgraded versions. Such as the capability to compute the runway capacity for more complex
runway systems, the model logic was changed, which resulted in reduced running time and/or improved ac-
curacy. Furthermore, it could compute multiple different operations in one single run.

To overcome the limitations encountered by the Blumstein model, the LMI Capacity and Delays model was
developed with the NASA Terminal Area Productivity (TAP) program [60]. One of the main features of the
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model is that it tries to include the operational side of the airport itself. Variables such as approach speeds,
ROTs, and delay in communication between airport controllers and pilots are incorporated in the model as
random variables. The basis is a model that computes the capacity of a single runway for one kind of oper-
ation only, arrivals, departures, or for mixed operations. The output of the LMI Capacity model is a runway
capacity curve, which is a boundary that defines the limits of the maximum throughput capacities that can
be attained at the runway, taking into account all arrival and departure mixes that can occur [35]. If a point
lies inside the runway capacity envelope this means the runway has sufficient capacity to serve x arrivals and
y departures per hour.
A different model, not directly related to estimating the runway capacity, is the AND (Approximate Network
Delays) model. AND is a network queuing model developed at MIT Operations Research Center [79]. It was
first conceptualised by Malone [69] and developed further by Pyrgiotis et al. [87]. The model is not directly
related to estimating the runway capacity, but it has the goal to analyse the impact of airline schedules, traffic
volume, and airport capacity on flight delays. DELAYS is used as a software in the AND model to solve the
equations related to delay, with AND being the analytical tool.

All the models mentioned previously focus on the runway and final approach operations. However, the Man-
tea Airfield Capacity and Delay (MACAD) model is an integrated airfield model [101]. It is developed by the
Athens University of Economics and Business and integrates macroscopic airside models to provide approx-
imate estimates of the capacity and delays related to every element of the airfield. As the model is fast, flexi-
ble, and easy to use it is used for strategic decision making. MACAD consists of five different models: airside,
weather, detailed schedule generation, coordination, and running the model. The methodology of the model
is based on the LMI Capacity and Delays model, but the main difference is the single-runway model has been
extended to two-runway configurations.
To calculate the delays at the runways MACAD uses an analytical queuing model, not a simulation. DELAYS,
a queuing model that computes delays numerically, is used in MACAD. It is a slightly modified version com-
pared to the original version of DELAYS, where the robustness is increased.

2.8.2. Mesoscopic Models
Mesoscopic models are classified between macroscopic and microscopic models. The main mesoscopic
model known for airfield capacity is the runwaySimulator model. It was first developed under the name of
Airport Capacity Analysis Through Simulation (ACATS) in 2005 by Barrer and Kuzminski [12]. Barrer improved
this model in 2007 under the name of runwaySimulator [11]. The models were developed by the MITRE Cor-
poration and are used for runway system capacity estimation. In 2011 MITRE began to improve the model
regarding its capabilities and maintainability, which resulted in an improved runwaySimulator model [56].
The goal of the model is to provide the speed and simplicity of an analytical model without the limitations
regarding complex runway sets. Furthermore, the model has to be efficient, flexible, and ready to be applied
to any airport in the world while keeping the computational time low. The runwaySimulator model is ranked
between an analytical and a simulation model. The accuracy regarding complex runway systems is much
higher compared to analytical models, with the computation time being much faster than simulation-based
models. The input parameters of the model consist of the runway configuration, traffic demand characteris-
tics, and the ATC separation rules. A detailed air traffic schedule is not needed for the model, which decreases
the complexity compared to microscopic models.
In a study performed by Kim and Hanssen [55] the FAA Airfield Capacity Model is compared with the run-
waySimulator model. The study showed that both models predict a higher capacity compared to the em-
pirical capacity. Especially the Visual Meteorological Conditions (VMC) capacities are overestimated. The
runwaySimulator estimates are typically better than the FAA model, which was expected.

2.8.3. Microscopic Models
In microscopic models, the aircraft are simulated as individuals, and the model creates and records their in-
teractions with each other and their environment. The most well known microscopic models, as shown in
Table 2.7, are explained in this subsection, starting with STROBOSCOPE.

STROBOSCOPE is a capacity and delay estimation activity-based simulation system developed by Martinez,
Trani, and Ioannou [70]. The model is different compared to classical runway capacity and delay simulation
tools, which use objects moving through the model’s network. STROBOSCOPE makes use of network nodes
that represent activities or tasks performed by various resources.
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The Airport and Airspace Simulation Model (SIMMOD), developed by the ATAC corporation can be used
to simulate various amount of operations. Ranging from a full individual airfield to a regional volume of
airspace. The main outputs of the model are aircraft travel times, flows and throughput capacity per unit of
time, delays, and fuel consumption [79]. SIMMOD is based on a node-link model, with each link and node
being able to accommodate one single aircraft at a time. The model solves for converging aircraft and the
aircraft paths can be set up by the user or via a shortest path (Dijkstra) algorithm. The setup of the model is
a time-consuming process, as the complete network structure of the airfield and/or airspace simulated has
to be mostly done by hand. The average set-up time for a typical major airport is approximately 2 days. The
main drawback of the model is that SIMMOD makes use of a 1-dimensional model, only checking for con-
flicts along the aircraft’s longitudinal path.

The main competitor of the SIMMOD is TAAM (Total Airspace & Airport Modeller), developed by the Preston
Group (TPG) in corporation with the Australian Civil Aviation Authority (CAA). It is a large scale detailed fast-
time simulation package for modelling entire air traffic systems [17]. TAAM can be used both for planning
and for analysis of ATM concepts and takes as input air traffic schedules, environment descriptions, aircraft
flight plans, air traffic control, and output control rules. The main outputs of the model are delays, conflicts,
airport capacity, noise, fuel burn, and costs. TAAM is a 4D flight path simulation tool and is therefore more
realistic than SIMMOD, which is 1-D.

One of the new generation gate-to-gate fast-simulation tools is AirTOp [5]. It is a modular software that allows
users to assess and improve airport and airspace capacity by modelling various kinds of airport operations.
There is no big difference in modelling the airfield itself, but the major advantage is the possibility of quickly
integrating future or customer-specific ATC concepts. The interface of AirTOP is easy to use, leading to faster
results and better cost efficiency.

The HEuristc Runway Movement Event Simulation (HERMES) tool is a fast-time simulation developed by the
British Civil Aviation Authority/ National Air Traffic Services (CAA/NATS) [79]. The runway capacity can be
estimated with both current and future demand, as well as for potential technological advancements. Addi-
tionally, it can be utilised to assess infrastructure modifications such as adjustments to runway length. The
main emphasis is put on runway operations. With the input being traffic recordings and the output delays to
all flights simulated. HERMES is only designed for Heathrow and Gatwick airport and cannot model runway
crossings. The tool is suitable for cases where minor changes in demand have a significant impact on delays.

The Airport Machine is developed by Airport Simulation International (ASI) and is a tool for simulating in
detail all aspects of airfield operations [79]. A similar node-link structure as SIMMOD is used and includes
the complete operation from a few minutes before landing until a few minutes after takeoff. It has a good
graphical interface and outputs the flows and delays at specific locations. The model is not easy to use and
users have to follow extensive training. However, the user interface is remarkably better compared to that of
SIMMOD.

Total AirportSim is a model developed by LeTech in corporation with IATA in 2001 [58]. The model originates
from improvements made to the SIMMOD model by LeTech, slowly increasing towards a model capable of
simulating a total airport. Total AirportSim consists of 3 modules; the airport/runway module, gate module,
and terminal module. The airport/runway module is an improved alternative to FAA’s SIMMOD. It supports
SIMMMOD data format with enhanced GUI using fast-time engines. Total AirportSim can simulate the rela-
tionship between airspace, runway, gate, and terminal and is a cost-effective solution for all planning designs.
Finally, CAST is a scalable and modular aviation simulation tool and is developed by Airport Research Center
(ARC) [4]. It comprises simulation-, allocation-, and optimisation systems for pedestrian, vehicle, and aircraft
traffic as well as process models of landside, terminal, airside, and airspace. CAST is used by many airports
around the world, such as Abu Dhabi Airport, Prague Airport, Düsseldorf Airport, Toronto Pearson, etc. CAST
solutions offer numerous benefits that result in cost reduction for investments and operations, accelerated
decision-making and planning processes, and support for smooth, safe, and punctual operations. With CAST,
organisations can seamlessly integrate strategic and tactical planning, as well as operational and real-time
optimisation, into their workflows.
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Fuel Burn Modelling

The aviation industry relies on accurate fuel burn modelling to optimise efficiency, reduce costs, and mitigate
environmental impacts. In the process of runway scheduling, the fuel burn is dependent on the routes flown
by the aircraft. For example, when a noise-optimised track is flown this can lead to additional fuel usage. This
fuel burn increase is not favoured by the airlines.
This chapter will explain the influence of fuel cost in aviation, fuel economics, and the cost structure of an
airline in section 3.1. section 3.2 states the current state-of-the-practice fuel burn models and explains the
methods used in those models to calculate the fuel burn. Finally, section 3.3 discusses the influence of opti-
mal control theory on fuel consumption during the approach phase.

3.1. Airline Fuel Economics
Fuel costs play an important role in the economic dynamics of the airline industry. With jet fuel being a pri-
mary expense for airlines, understanding the relationship between fuel economics, the airline cost structure,
and the influence of fuel cost is crucial. This section dives into the different aspects of fuel economics, explor-
ing how fuel costs influence an airline’s overall cost structure and examining strategies employed by airlines
to manage this significant expenditure.

3.1.1. Airline Cost Structure
Before diving into the actual fuel burn modelling itself, it is important to understand the impact of fuel price
on aircraft cost and airline economics. The focus is on the airline operating costs, as the fuel price is part of
this division. The Total Operating Cost (TOC) can be divided into the Indirect Operating Cost (IOC) and the
Direct Operating Cost (DOC). The DOC is directly related to the aircraft type itself, while the IOC is more de-
pendent on the strategy of the airline [62]. Flight crew allowance, aircraft fuel, and oil, aircraft maintenance,
and ground handling are examples of DOC. The DOC can be subdivided into Fixed Direct Operating Cost
(FDOC) and Variable Direct Operating Cost (VDOC). The fuel costs are part of the VDOC as well as mainte-
nance and crew cost. A breakdown of the TOC can be seen in Figure 3.1

Total Operating Cost

Indirect Operating Cost Direct Operating Cost

Fixed Direct Operating
Cost

Variable Direct Operating
Cost

Figure 3.1: Total Operating Cost breakdown

43
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3.1.2. Aviation Fuel Cost
The fuel cost for an airline is dependent on two factors. Namely, the actual fuel price and the fuel consump-
tion. The key factors that affect the price of jet fuel are crude oil prices, refining and distribution costs, sea-
sonal demand, taxes and regulations, and currency exchange rates. Fluctuations in global oil supply and
demand, geopolitical events, and economic factors can all contribute to changes in crude oil prices.
The price of jet fuel has a significant influence on the total costs of an airline. The fuel cost form almost 18% of
the total operating cost of an airline as seen in Figure 3.2. Together with the labor cost it forms half of the total
airline costs. When the price of jet fuel increases, it directly affects the fuel costs of the airline. This can put
pressure on profitability, especially if the airline is not able to transfer these increased costs to the passengers.

Figure 3.2: Passenger airlines operating costs United States 2019 [3]

Figure 3.3 shows that the fuel prices have been fluctuating substantially over the past 7 years. The red line
indicates the jet fuel price and the blue line is the crude oil price. As can be seen from the figure these two are
heavily correlated. The peak of both the crude oil price and the jet fuel price at the beginning of 2023, is due to
sudden loss of supply from Russia as a result of Russia’s invasion of Ukraine. The spread between the jet fuel
price and the crude oil price is lifted by the strong post-Covid recovery in demand for air transportation[47].

Figure 3.3: Jet fuel price developments, Jet Fuel & Crude Oil price ($/barrel)[47]

To mitigate the impact of fuel price fluctuations, airlines participate in fuel hedging strategies. With fuel hedg-
ing airlines sign a financial contract to secure fuel at pre-determined prices for longer periods. If an airline
has hedged a portion of its fuel consumption at a lower price, it can provide a measure of protection against
sudden price spikes. On the other hand, when the fuel price decreases, the airline does not fully benefit from
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the lower fuel prices due to its hedging contract.
Rising fuel prices will make airlines look for ways to reduce fuel consumption. This can include measures
such as optimising flight routes, improving airline maintenance to ensure optimal fuel efficiency, and invest-
ing in newer and more fuel-efficient aircraft. By minimising the fuel consumption, airlines can mitigate the
effect of high fuel prices on their total costs.

3.2. Existing Fuel Burn Models
As fuel has a big impact on the operating cost of the airline much research is done in the field of fuel burn
and fuel consumption. Especially in times of rising fuel costs, improved algorithms have been developed for
modelling fuel consumption. This section will discuss the existing fuel burn models and explain the theory
behind the fuel consumption for each of the models.

3.2.1. Base of Aircraft Data
The base of Aircraft Data (BADA) is an Aircraft Performance Model (APM) developed and maintained by EU-
ROCONTROL [78] and it consists of two models: the APM and the Airline Procedure Model (ARPM). Each
aircraft model is described by coefficients that serve as input for the APM and ARPM.
Currently, two versions of BADA are being developed, BADA v.3 and BADA v.4. Both are based on the same
modelling approach with the same structure and elements. In the early 90s, BADA 3 was created to provide
realistic modelling of aircraft performance within a nominal flight envelope. With the introduction of BADA
applications dependent on APM increased significantly with the need for more advanced features to support
ATM modelling and simulation requirements. These requirements include increased accuracy, complete cov-
erage of the operation envelope, better representation of different flight phases, and support of different types
of operations. Studies have been performed to investigate whether BADA would be suitable to achieve the
levels of accuracy that are needed and comply with the new requirements. The results show that BADA 3
cannot provide the needed level of accuracy over the entire flight envelope. This has been a driving force for
the development of BADA 4, to provide accurate modelling of aircraft performance across the entire flight
envelope.
The further development of BADA 3 was complicated due to the lack of high-quality reference data, and the
requirement that the model should be kept simple due to limited computing capabilities. The BADA 4 model
has been developed on the improved high-quality aircraft performance reference data and computing capa-
bilities. Dimensionless variables are used in BADA 4, which prevents mistakes, and allows the discovery of
physical similarity relationships.
The BADA model is based on the total energy model (TEM) of an aircraft, which equates the work done by
forces acting on the aircraft to the rate of increase in potential and kinetic energy [19]. This leads to Equa-
tion 3.1.

(T −D)VT AS = mg
dh

d t
+mVT AS

dV T AS

d t
(3.1)

Whereas both BADA models are based on the same TED of an aircraft, the fuel consumption modelling is
different. The fuel consumption calculations are shown in more detail in the following subsections, starting
with BADA 3.

Fuel Consumption BADA 3
For jets and engines the TSFC, CT (kg/min*(kN)), is specified as a function of true airspeed, VT AS (knots). The
TSFC can be calculated via Equation 3.2. C f 1 and C f 2 indicate aircraft-specific fuel consumption coefficients
that are obtained by BADA.

CT =
(
1+ VT AS

C f2

)
C f1 (3.2)

The nominal fuel flow fnom (kg/minute) can then be calculated via Equation 3.3, with T being the aircraft’s
total net thrust from the engines (kN).

fnom =CT ·T (3.3)

These expressions are used for all flight phases except during cruise and for descent/idle operations. For the
runway capacity model, the cruise operations are not important, as only aircraft in departing and arriving
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operations are considered. For idle thrust or descent operations the minimal fuel flow fmi n is used. The
minimal fuel flow is dependent on the altitude of the aircraft above sea level, h. The relationship is shown in
Equation 3.4.

fmin =
(
1− h

C f4

)
C f3 (3.4)

Fuel Consumption BADA 4
The BADA 4 model uses a different approach compared to BADA to calculate the fuel consumption. Each
type of engine has a separate fuel consumption model, all part of the Propulsive Forces Model (PFM). The
model includes the contribution from all engines and provides the fuel consumption as a function of air-
speed, throttle parameter, and atmospheric conditions. The general formulation of the fuel consumption F
[kg/s] is shown in Equation 3.5 [77].

F = δ ·θ 1
2 ·Wmref ·a0 ·L−1

HV ·CF (3.5)

The fuel flow is calculated with the pressure ratio δ, temperature ratio θ, the reference mass, mr e f [kg] from
the PFM, the weight force, Wmr e f [N], at mr e f , the speed of sound, a0 [m/s], at MSL in standard atmosphere,
the fuel lower heating value from the PFM LHV [m2/s2] and the fuel coefficient CF , which is dependent on
the type of engine. The fuel coefficient CF is determined by Equation 3.6.

CF =
{

CF, idle when idle rating is used

max
(
CF, gen ,CF, idle

)
when a non-idle rating or no rating is used

(3.6)

The idle fuel coefficient for the turbofan engine is calculated via Equation 3.7 as a function of Mach number
and the atmospheric conditions.

CF,idle =
 fi1 +fi2δ+fi3δ

2

+(
fi4 +fi5δ+fi6δ

2
) ·M

+(
fi7 +fi8δ+fi9δ

2
) ·M2

 ·δ−1θ−
1
2 (3.7)

The general fuel coefficient CF,g en is calculated as a fourth-order polynomial of M with coefficients that are
fourth-order polynomials of CT as shown in Equation 3.8.

CF, gen = f1 + f2CT + f3C 2
T + f4C 3

T + f5C 4
T

+ (
f6 + f7CT + f8C 2

T + f9C 3
T + f10C 4

T

) ·M

+ (
f11 + f12CT + f13C 2

T + f14C 3
T + f15C 4

T

) ·M 2

+ (
f16 + f17CT + f18C 2

T + f19C 3
T + f20C 4

T

) ·M 3

+ (
f21 + f22CT + f23C 2

T + f24C 3
T + f25C 4

T

) ·M 4

(3.8)

Where CT is the thrust coefficient and M is the Mach number.
It should be noted that the equation takes up to 25 non-idle rating fuel coefficients, fi , to calculate CF,g en , but
the number of coefficients is not fixed and depends on the quantity and quality of available data. This results
in simpler expressions most of the time where some of the fi coefficients are equal to zero.

3.2.2. Aviation Environmental Design Tool
The Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT).
This tool is a software system designed to model aircraft performance in both space and time, providing esti-
mates for fuel consumption, emissions, noise, and the resulting air quality impact.
AEDT employs two different methods to calculate the fuel consumption for fixed-wing aircraft on various
flight path segments[59]. The first method, available in both terminal and en-route areas, utilises Section
3.9 of the BADA 3 user manual[19] and is discussed in Equation 3.2.1. It is used to determine the fuel con-
sumption for each flight segment. The second method, exclusive to the terminal area, employs the Senzig-
Fleming-Iovinelli (SFI) method as described in subsection 3.2.4 to calculate the fuel consumption for each
segment. Beyond the terminal area, AEDT relies on the BADA 3 method. In cases where fixed-wing aircraft
lack thrust data in their performance calculations, AEDT utilises the Boeing Fuel Flow Method 2 (BFFM2)
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subsection 3.2.3 to determine the fuel flow. While the majority of aircraft using the BFFM2 method are mili-
tary, some civil aircraft that do not include the thrust data in their profile definitions also utilise this method.
The BADA 4 analysis of the profiles use the BADA 4 fuel model to calculate the fuel flow through the engines.
When BADA 4 thrust data is available, the BADA 4 fuel data is also used by the AEDT. However, when this
data is not available, AEDT switches automatically to, sequentially, either the SFI, BADA 3, or BFFM2 fuel
consumption methods. This depends on the first available source of data.
It is important to note that all these methods specify the fuel flow rate. In the case of the SFI and BFFM2
methods, AEDT calculates the fuel consumption in a segment by multiplying the fuel flow rate per engine
by the duration of the segment and the number of engines on the aircraft. For the BADA 3 method, AEDT
calculates the fuel consumption in a segment by multiplying the fuel flow rate for all engines by the segment
duration.

3.2.3. Boeing Fuel Flow Method 2
The Fuel Flow Method 2 is developed by DuBois and Paynter from The Boeing Company [25]. The reason
behind the method was to come up with a method to model fuel flow in a less rigorous way than the P3T3
method. This is a model for calculating aircraft engine emissions of NOx, HC, and CO. The method relies on
proprietary data from aircraft and engine manufacturers. To provide a transparent method for calculating the
aircraft engine emissions several nonproprietary fuel flow-based methods have been developed. The "Fuel
Flow Method 2" is one of them and can be used for emissions certification, and fuel flow methods and can
give approximations on emissions on the order of around 10 to 15 % for NOx compared to the P3T3 method.
The BFFM2 method to calculate the fuel flow is shown in Equation 3.9. The equation calculates the fuel
flow at non-reference conditions, W f (kg/s), and is dependent on the Modal-specific adjustment factors, Bm ,
fuel flow at reference conditions, RW f [kg/s], Mach number, M, Static Temperature ratio, δ, and the Static
Pressure ratio θ.

W f =
BmRW f δ

θ3.8e0.2M 2 (3.9)

The fuel flow at reference conditions used in the BFFM2 is the fuel flow data retrieved from the ICAO Aircraft
Engine Emissions Databank.

3.2.4. Senzig-Fleming-Iovinelli (SFI) Model
The BADA fuel consumption model uses an energy-balance thrust model with the Thrust Specific Fuel Con-
sumption (TSFC) as a function of airspeed. Research shows that the BADA performs well in cruise conditions,
with differences of 3% compared to reported fuel burn data [61]. However, it is observed that BADA has short-
comings in the Terminal Manoeuvring Area (TMA) concerning airline fuel consumption.
A new method to model the fuel consumption in the TMA has been proposed by Senzig and Flemming [96].
The objective was to make it more accurate, take into account the proprietary interest of manufacturers, be
suitable for existing and planned environmental models, and have a proposed target accuracy of 5% to make
it interesting enough for decision-makers. The major consideration for the new TSFC algorithm for the TMA
area is the type of thrust model used.
All major engine manufacturers use a function of Mach, thrust, and altitude to present the TSFC of their
engines. For the departure TSFC algorithm a linear relationship between those parameters is used, extended
with a dependence on the square root of the temperature ratio θ from Hill and Petersen[42]. This results in a
departure TSFC given in Equation 3.10.

TSFC/
p
θ = K1 +K2M +K3hMSL +K4F /δ (3.10)

The arrival TSFC algorithm is also based on Hill and Petersen [42], with the implementation of modifications
proposed by Yoder [108]. Equation 3.11 shows the arrival TSFC algorithm for fuel consumption in the TMA.

TSFC/
p
θ =α+β1M +β2e−β3(F /8/F0) (3.11)

The determination of fuel consumption coefficients for a specific airframe/engine combination involves the
generation of airplane performance data for the TMA area. This data is collected and organised into a unified
structure, which is then subjected to statistical analysis.
The results are implemented in the aviation environmental impact model of the FAA, the AEDT.
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3.3. Optimal Control and Fuel Consumption
Besides modelling the fuel consumption itself with aircraft performance models another factor that can in-
fluence the fuel consumption during flight is the trajectory of the aircraft. Research has been performed on
the Aircraft Trajectory Optimization Problem (ATOP), which aims to determine the optimal trajectory for an
aircraft within a given set of dynamic constraints[95]. These constraints define the feasible motion of the air-
craft. the ATOP system takes into account the initial and expected final state of the aircraft, which includes its
position, altitude, speed, and climb angle in a specific TMA.
The objective of the ATOP system is to find the best aircraft trajectory based on a specific performance in-
dicator, which is typically chosen to minimise travel time, fuel consumption, or noise emissions. To achieve
this the ATOP is formulated as an optimal control problem. By solving this problem, the reference trajectory
for each aircraft flying through a specific part of the TMA can be obtained, ensuring efficient flight operations
while maintaining safety standards.
This section will describe the mathematical formulation of the optimal control problem, the possibilities for
solving the ATOP, and discuss ways to incorporate the ATOP in the RSP.

3.3.1. Aircraft Trajectory Optimisation Problem
The ATOP is a simplified optimal control problem that models the dynamics of an aircraft as a two-dimensional
point mass. It involves the state variables z,h, V, and γ, which represent the aircraft’s position, altitude, speed,
and climb angle.
The control variables in the ATOP areα and T, which represent the angle of attack and the thrust of the aircraft.
An example of the mathematical formulation of the ATOP with the variables as described above is described
in Equation 3.12 and is obtained from Samà et al.[95]. The parameter ω is responsible for the optimisation
of either the minimum travel time (ω = 1), the minimum fuel consumption (ω = 0), or a combination of the
two when ω has a value between 0 and 1. The constraints are responsible for establishing the initial and final
states of the problem and setting boundaries for the state variables.

min ω ·τi + (1−ω) · [∫τi
0 T (t )/Tmaxd t

]
s.t.
ż(t ) =V (t )cosγ(t ) for a.e. t ∈ (0,τi )
ḣ(t ) =V (t )sinγ(t ) for a.e. t ∈ (0,τi )
V̇ (t ) = T (t )−D(t )

m − g · sinγ(t ) for a.e. t ∈ (0,τi )

γ̇(t ) = L(t )−m·g ·cosγ(t )
m·V (t ) for a.e. t ∈ (0,τi )

0 ≤ T (t ) ≤ Tmax for a.e. t ∈ (0,τi )
0 ≤α(t ) ≤αmax for a.e. t ∈ (0,τi )
Vmin ≤V (t ) ≤Vmax ∀t ∈ (0,τi )
LOADmin ≤ L(t )

m·g ≤ LOADmax ∀t ∈ (0,τi )

V (t ) · sinγ(t ) ≤ 0 ∀t ∈ (0,τi )
(z,h,V ,γ)(0) = (

z0,h0,V0,γ0
)

(z,h,V ,γ) (τi ) = (
zi ,hi ,Vi ,γi

)
τi ∈ [0,+∞)
(z,h,V ,γ) ∈W 1,∞ (

[0,τi ] ,R4
)

(T,α) ∈ L∞ (
[0,τi ] ,R2

)
.

(3.12)

3.3.2. Solving the ATOP
To solve the ATOP the most used technique in optimal control theory is the discretize-then-optimize tech-
nique. It approximates the original infinite-dimension problem with a suitable finite-dimensional one. The
approximation is solved and the final solution is interpreted as an approximation of the solution of the orig-
inal problem. Several tools exist to solve the ATOP, the software used by Samà et al [95] from the previous
section is OCPID-DAE1, which is produced at the Munich University of the Federal Armed Forces. Further-
more, there are packages for MATLAB and Python to solve optimal control problems. For MATLAB Gauss
Pseudospectral Optimization Software (GPOPS) is a suitable tool for solving non-sequential multiple-phase
optimal control problems. The most used package for Python is Gekko, which is an optimisation framework
capable of handling differential-algebraic equations. For this research Python will be used for all the coding,
so if the optimal control problem will be incorporated Gekko is going to be used as the software.
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3.3.3. Implementation of the ATOP in The Runway Scheduling Model
It is important to consider how the ATOP can be implemented in the runway scheduling model as both prob-
lems are heavily dependent on each other. However, in literature, the two problems are usually studied and
solved separately. Still, some literature was found on the combination of the ATOP and the RSP.
One of the first combinations of the ASP and ATOP was developed by Hansen[39], he used genetic algorithms
for the routing and sequencing of arriving aircraft in a multiple runway system. The major limitation of the
model was that the approach routing was modelled as a choice of approach routes. The algorithm would
choose the best fit instead of optimising the approach trajectory.
A hybrid optimisation algorithm has been developed by Toratani et al. [104]. The objective was to minimise
fuel consumption during the approach trajectory while simultaneously optimising the TMA entry point and
place in the landing queue.
Finally, Sama et al. [95] develop a framework for the lexicographic optimisation of both based on the order of
importance of the performance indicators. The primary indicator establishes the initial issue to be optimised.
Subsequently, the problem solutions are examined to address certain constraints in optimising the secondary
problem, which is related to the less important performance indicator. The results of this approach can be
seen in Figure 3.4

Figure 3.4: Results of the lexicographic approach[95]





4
Noise Modelling

Aircraft noise generated during takeoff and landing operations has a significant impact on nearby communi-
ties surrounding airports. In this chapter, the subject of noise modelling is treated. Starting with the different
noise sources generated by an aircraft, including airframe noise and engine noise, are discussed in section 4.1.
The calculations needed to measure aircraft noise and the different metrics used to define the perception of
noise are explained in section 4.2. section 4.3 touches upon the measurement of noise annoyance and the
mitigation strategies used to reduce the noise annoyance. Finally, section 4.4 mentions and explains the most
used noise modelling tools.

4.1. Sources of Aircraft Noise
Aircraft noise arises from various sources within an aircraft. Two primary contributors to this noise are the
airframe and the engines[97]. Understanding the noise generated by these components is essential for devel-
oping effective noise reduction strategies. This section explains in more detail what causes the airframe and
engine noise and the improvements made to reduce the noise generated. Starting with airframe noise.

4.1.1. Airframe Noise
With the increasing bypass ratios of aircraft engines since the 1970s, airframe components have emerged as
a significant source of aircraft noise[15]. During the approach, airframe noise has the potential to surpass
other sources and become the dominant contributor to the overall noise experienced on the ground. On
commercial aircraft, the main sources of aircraft noise are the wing systems including the High Lift Devices
(HLD), the airbrakes, the landing gear, and all the imperfections on the airframe [73].

4.1.2. Engine Noise
The combustion engines have consistently been one of the primary sources of noise on aircraft, regardless
of the flight situation. For conventional combustion engines, the overall engine noise is mainly determined
by the noise generated by the fan and the jet. While these two sources have dominated noise generation
for decades, recent advancements in engine design, such as increased engine bypass ratios and improved
fan design, have started to decrease their presence and contribute to noise reduction. Although the main
objective of the modifications has been to improve the engine performance, they have also led to a decrease
in noise generation from the fan and the jet[15].
The introduction of higher bypass ratios in engines has resulted in reduced jet exhaust velocities, leading to
a significant decrease in jet noise. Furthermore, advancements in fan blade design and the arrangement of
rotor-stator components have also led to noise reduction. Another innovation that has reduced fan noise
emission is the implementation of specially designed acoustical lining concepts. As the jet and fan noise is
so dominant, other noise sources of the engine are still less relevant in the context of overall engine noise.
However, if the jet and fan noise is further reduced through advanced design or specific operating conditions
like flight idle, the engine core can have a noticeable impact on the overall engine noise.
Figure 4.1 gives an overview of the main aircraft noise sources for both the airframe and the engine. Where
the airframe noise sources are in black and the engine noise sources are in red.
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Figure 4.1: Overview of main aircraft noise sources[32]

4.2. Aircraft Noise Calculation
Aircraft noise relies on a level of "annoyance". To model aircraft noise it is of great importance to explain
what annoyance means and how subjective perceptions can be quantified to provide meaningful engineering
metrics. Unlike physical measures such as acoustic pressure (Sound Pressure Level), which can be directly
measured, annoyance is a subjective experience that can only be interpreted. Aircraft noise presents unique
challenges in measurement due to its complex nature, which requires numerical operations, tone corrections,
weighting, and integration for accurate assessment[33].
A human perceives noise not only based on the Sound Pressure Level (SPL), as shown in Equation 4.1, but
also on frequency, duration, regularity, and time of the day[97]. This section will explain those factors and the
calculations behind them based on the noise reader of Simons [97].

SPL = 10log

(
p2

e (t ))

p2
e0(t )

)
(4.1)

4.2.1. Weighted Sound Pressure Level
Noise can have different frequencies, which influences the observed loudness. The SPL does not include this
loudness. To determine the loudness of a signal, the sound pressure levels in various frequency bands are
determined. After that, the SPL values are weighted according to one of the weighting functions. The most
used weighting function is called A-weighting and is based on the equal loudness contour at 40 phon. To
calculate the A-weighting function ∆L A Equation 4.2 is used.

∆L A =−145.528+98.262log f −19.509(log f )2 +0.975(log f )3 (4.2)

By using Equation 4.2 the overall A-weighting sound pressure level L A can be determined with a summation
over the frequency bands, i , as shown in Equation 4.3

L A = 10log
∑

i
10

SPL(i )+∆L A (i )
10 (4.3)

4.2.2. Sound Exposure Level
The calculations shown so far are only for stationary noise signals. However, as aircraft noise is non-stationary,
the duration of the noise has to be incorporated. As the human ear is not only sensitive to the maximum
noise level but also to the duration of the noise event it is not possible to simply take the maximum value
of L A . To measure the annoyance during a noise event Sound Exposure Level (SEL) is used. SEL refers to
a constant level of one-second duration T0 that encompasses the same amount of energy as the fluctuating
level throughout the entire occurrence and can be calculated via Equation 4.4.

SEL = 10log

[
1

T0

∫T

0
10

L A (t )
10 d t

]
(4.4)
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4.2.3. Day-Evening-Night Average Level
To capture the effect of noise in airport communities due to air traffic activities the day-evening-night level
(DENL) is used. This evaluates the noise at different times of the day and puts different penalties on noise
events in the evening or night. Equation 4.5 shows how the LDE N is calculated, where the time span is in-
dicated with Tr e f . This variable is often equal to 24 hours or a year. The wi term represents the penalty
associated with a noise event in the evening or at night. The definitions of the time and the corresponding
penalty can be seen in Table 4.1. All the noise events, F , that take place in the specified time are accumulated
and the LDE N is calculated in dBA.

LDE N = 10log

[
1

Tr e f

F∑
i=1

10
SELi +wi

10

]
(4.5)

Table 4.1: Day-evening-night average level penalties[21]

Day Evening Night
Time [hrs] 07.00-19.00 19.00-22.00 22.00-07.00
Penalty [dB(A)] 0 5 10

As the metric used to calculate LDE N is based on a logarithmic scale, it is not directly usable for linear op-
timisation. It is still unsure which exact solving method is going to be used in the final model. However, to
keep all the options open, the method to convert the estimated noise data towards a linear function will be
explained. The first step is to convert the SEL into the Acoustic Energy Level (AEL) via Equation 4.6. Here E0

is the reference sound exposure.

AEL = Ei

E0
= 10

SELi
10 (4.6)

By combing Equation 4.5 and Equation 4.6 a new function for LDE N is retrieved as shown in Equation 4.7.
This equation can be used in a linear optimisation model, eventually.

LDE N = 10log

[
F∑

i=1
wi

Ei

E0

]
−10log

[
Tr e f

T0

]
(4.7)

4.3. Noise Annoyance and Mitigation
Aircraft noise has emerged as a prominent source of noise annoyance in many communities. The increasing
volume of air traffic and the expansion of airports have led to concerns regarding the impact of aircraft noise
on the quality of life. This chapter will discuss the measurement of annoyance and how this influences com-
munities. Furthermore, the mitigation strategy developed by the ICAO to reduce aircraft noise, the Balanced
Approach, is explained.

4.3.1. Measurement of Annoyance
The LDE N has a good correlation with community annoyance. This is illustrated in Figure 4.2, which shows
the percentage of highly annoyed people as a function of LDE N . The figure is constructed with surveys among
communities and it can be seen that around 30% of the population is highly annoyed by a noise level of 55
dBA. However, it is important to note that considerable variations can exist among different airports. Further-
more, noise annoyance is not only dependent on the noise acoustics itself but also on demographic, social,
and personal factors.
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Figure 4.2: Percentage of highly annoyed people versus LDE N for various airports[37]

In a research performed by Miedema and Oudshoorn [71] the relationship between the percentage of highly
annoyed (HA) people and the DENL exposure metrics was investigated. They performed research on noise
caused by road traffic, railway traffic, and aircraft. The relationship for aircraft is shown in Equation 4.8 and
indicates the percentage of people that get highly annoyed by the noise caused by aircraft. The level of an-
noyance is determined by a combination of emotional as well as physical factors that contribute to the per-
ceivance of noise.

%H A =−9.199 ·10−5(LDE N −42)3 +3.932 ·10−2(LDE N −42)2 +0.2939(LDE N −42) (4.8)

4.3.2. Balanced Approach
As explained in the previous section aircraft noise is the most significant cause of adverse community reac-
tions. This trend is projected to persist across most regions worldwide in the foreseeable future. Therefore,
the ICAO developed the Balanced Approach to Aircraft Noise Management and this policy was adopted in
2001[50]. In this section, a comprehensive overview of the Balanced Approach will be given and the four key
elements will be explained. The full explanation can be found in Guidance on the Balanced Approach to Air-
craft Noise Management [81].
The Balanced Approach involves a systematic process for addressing noise concerns at specific airports. It
consists of a comprehensive analysis of available measures aimed at reducing noise. These measures can be
divided into four key elements, as illustrated in Figure 4.3. The primary objective is to tackle noise issues
at each airport individually and determine the most cost-effective and environmentally beneficial measures.
The four principal elements are explained in more detail in the upcoming sub-subsections.

Figure 4.3: The four principal elements of the Balanced Approach to Aircraft Noise Management[50]
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Reduction of Noise at Source
The first element of the Balanced Approach is the reduction of noise at the source. Since the 1970s, aircraft
noise has been regulated through the establishment of noise limits for aircraft. These limits are defined in the
form of Standards and Recommended Practices (SARPs) and are still in use today.
The noise regulations on aircraft are outlined in Annex 16, Volume 1 to the Convention on International Civil
Aviation (the "Chicago Convention") [80]. The primary objective of noise certification is to guarantee the in-
corporation of the latest available noise reduction technology into aircraft design. This certification process
includes procedures that are relevant to daily operations, with the ultimate goal being to ensure that the noise
reduction offered by the technology is translated into reduced noise levels around airports.
The SARPs define three reference measurement points for noise certification: approach reference points,
sideline references, and flyover reference points. The Standards also determine noise limits as a function of
MTOW to incorporate the effect that heavier aircraft, produce more noise than lighter aircraft. This set the
standard for the Chapter 2 Noise Standard. After the introduction of Chapter 2, aircraft became quieter due
to the introduction of high bypass ratio jet engines. This resulted in a new, more strict noise standard intro-
duced by the ICAO in 1977, called Chapter 3 Noise Standard. Even more noise reduction technologies were
incorporated in the following years and this improved aircraft noise performance towards a higher level, re-
sulting in the introduction of the Chapter 4 Noise Standard in 2001.
In 2014, a new increase in stringency of 7 Effective Perceived Noise (EPNdB) was adopted by the ICAO. The
Chapter 14 Noise Standard for jet and propeller-driven aircraft. An overview of all the chapters and the rela-
tionship between EPNdB and MTOW is illustrated in Figure 4.4. The Chapter 14 Noise Standard will be the
ICAO standard for the coming years and is applicable for aircraft types submitted on or after 31 December
2017.

Figure 4.4: The ICAO Noise Standards for aeroplanes [51]

It is expected that, due to the implementation of the new Chapter 14 Noise Standard, over one million individ-
uals that are affected by DENL of 55 dB could be removed between 2020 and 2036. This results in a significant
reduction in the number of people affected by significant aircraft noise.

Land-use Planning and Management
Land-use planning and management are crucial for ensuring the compatibility of activities around airports.
The primary objective is to minimise the impact of aircraft noise on nearby residents by implementing spe-
cific land-use zoning and compatible land usage within airport areas[110].
The ICAO is continuously developing a policy on land use planning and management, outlined in the Assem-
bly Resolution A40-17, Appendix F. Its goal is to minimise the aircraft noise impact through various measures.
These measures include locating new airports away from noise-sensitve areas, considering protective mea-
sures for existing and planned land use from the earliest stages of airport development, defining protection
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zones around airports with varying noise limits based on the population size and air traffic forecasts, enacting
legislation and providing guidance to ensure compliance with land use criteria, and informing communities
near airports about aircraft operations and their environmental effects.
The ICAO guidance on this subject is contained in the ICAO Doc 9184 manual[49].

Another noise management tool is the introduction of noise charges. Although efforts are being made in
reducing aircraft noise at the source, airports still require noise mitigation or prevention measures. Those
noise related should be designed to recover only the costs associated with alleviating or preventing noise,
and should not discriminate among users for the operation of certain aircraft.

Noise Abatement Operational Procedures
Airport operations also present impacts in terms of the noise that reaches the ground. ICAO plays a role in
supporting the development standardisation of safe and cost-effective low-noise operations procedures for
aircraft. These procedures contain various options such as noise preferential runways and routes, as well as
noise abatement procedures during take-off and landing.

Departure Procedures
The ICAO PANS-OPS, Volume 1, contains general guidance on the development of two Noise Abatement
Departure Procedures (NADPs). These procedures consist of two main types: NADP1, which focuses on min-
imising noise close to the airport, and NADP2, which aims to reduce noise further along the departure path.
Both procedures end at an altitude of 1000 meters, but it is important to consider the potential noise reduc-
tion benefits or deterioration above this altitude in specific areas[110]. The differences between NAPDP 1 and
2 are the thrust or power reduction altitudes and the high-lift device retraction-acceleration segments.
Today, the operational opportunities for reducing the departure noise also include Continuous Climb Oper-
ations (CCO), Noise Preferential Routes (NPR), Noise Preferred Runway operations, alternation and respite,
and usage of Performance Based Navigation (PBN).

Arrival Procedures
Continuous Descent Arrival (CDA) is a concept that has been developed to reduce or minimise constant al-
titude segments during aircraft approach flights and focus on flying along descent segments. By employing
this concept, aircraft can descend with reduced thrust, at or near idle thrust, resulting in lower noise levels
compared to level flight segments. Furthermore, CDAs consider environmental factors such as emissions and
fuel burn, while ensuring safe and efficient ATM.
To address community noise concerns and optimise operational efficiency, airports may designate a specific
landing runway for noise abatement purposes. Safety remains the top priority when considering such mea-
sures, but community noise considerations can be taken into account.
The deployment of PBN procedures has become more common at airports. It has the benefits of enhanced
airport capacity, emissions reduction, and reduced noise exposure. However, it is important to note that
PBN may lead to more predictable and precise flight paths, resulting in a concentration of air traffic along
designated routes. Therefore, it is crucial to consider the impact on the surrounding population and take
appropriate measures to mitigate potential noise effects.

Operating Restrictions
The Balanced Approach guidance recommends avoiding applying operating restrictions as a first measure to
reduce noise. However, if the combined effectiveness of the first three elements is insufficient to reduce noise
levels, operating restrictions may be considered.
In response to noise concerns, some countries have considered banning certain noisy aircraft from operating
at airports sensitive to noise. From 1980, the focus was on Non-Noise Certificated (NNC) aircraft to Chapter 2
aircraft in the 1990s, and currently to the noisiest Chapter 3 aircraft. However, implementing such operating
restrictions can have significant economic implications for both domestic and international airlines operat-
ing at affected airports.
Currently, many ICAO member states have already phased out NNC and Chapter 2 aircraft. Regarding Chap-
ter 3 aircraft, the ICAO urged states to refrain from imposing operating restrictions on such aircraft at airports
without thoroughly assessing available measures to address the specific noise issue in line with the balanced
approach.
Apart from phasing out aircraft, other potential operating restrictions can be employed, including curfews,
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nighttime limitations, noise quotas/budgets, cap rules, non-addition rules, and restrictions related to the
nature of the flight.

4.3.3. Noise Regulations at Schiphol Airport
As Amsterdam Airport Schiphol (AAS) will be used as input for the model it is interesting to have an overview
of the noise regulations present at the the airport.
The Dutch Aviation Act has formed the legal framework for Schiphol Aiport since 2003. The Dutch Aviation
Act is stated that the airport decree contains rules and limits that limit the environmental impact around the
airport. This protection is provided by "criteria of equality’, which limit the number of houses, highly annoyed
people, and severely sleep-disturbed people within Lden and Lni g ht contours. Table 4.2 shows the criteria of
equality corrected for the use of the European Doc29-model.

Table 4.2: Criteria of equality[107]

Criteria of equality Limit value
Number of houses within the 58 dB(A) Lden contour 13,600
Number of highly annoyed people within the 48 dB(A) Lden contour 166,500
Number of houses within the 48 db(A) Lni g ht contour 14,600
Number of severely sleep disturbed people within the 40 dB(A) Lni g ht contour 45,000

Due to the conversion from the NRM to the Doc29 method, a new function with respect to the number dose-
response relationship was needed. Based on research performed by the NLR[41] a new relationship has been
established for the number of highly annoyed people as seen in Equation 4.9.

EG H = 1− 1[
1+e(−7.7130+0.1260∗ Lden )

] (4.9)

The same has been done for the number of severely sleep-disturbed people, which resulted in Equation 4.10.

ESV = 1− 1[
1+e(−6.2952+0.0960× Lnight )

] (4.10)

4.4. Noise Modelling Tools
Aircraft noise modelling in airport environments serves various purposes, including estimating cumulative
noise exposure and identifying the affected population in specific areas. These models play a crucial role in
establishing dose-response relationships. The ICAO offers guidance on the use of these models and provides
methods for assessing the acoustic characteristics of different sources related to aircraft noise events[109].
This section will give an overview of the major noise modelling tools and they will be explained in more
detail.

4.4.1. Integrated Noise Model
The Integrated Noise Model (INM) is a computer model designed by the FAA to assess the effects of aircraft
noise near airports[30]. It was based on the algorithm and framework from the SAE AIR 1845 standard to
estimate noise levels, taking into account factors such as operation mode, thrust setting, source-receiver
geometry, acoustic directivity, and environmental conditions. By using Noise-Power-Distance (NPD) data,
the INM provided estimates of noise contours for specific areas or noise levels at predetermined locations.
The model output for noise could be exposure-based, maximum-level-based, or time-based.
The INM had many analytical uses, such as:

• Assessing current aircraft noise impacts: The model could evaluate the existing noise effect in the vicin-
ity of an airport or heliport, providing a quantitative understanding of the noise levels experienced by
the surrounding community

• Analysing changes in noise impact due to runway modifications: By inputting new information related
to new or extended runways or runway configurations the INM could estimate and compare the result-
ing noise impacts.
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• Evaluating changes in noise impact resulting from traffic demand and fleet mix: This analysis was use-
ful in forecasting and managing future noise levels

• Assessing noise impacts of new operational procedures: The information provided by INM regarding
altered flight paths, modified approach/departure procedures or changes in airspace management was
valuable in designing noise abatement strategies.

The INM has been replaced by the AEDT as of May 2015. The AEDT will be discussed in the following subsec-
tion.

4.4.2. AEDT
As stated above the AEDT is the replacement of the INM and are both developed by the FAA. The AEDT is a
new software tool that integrates established noise and emissions models. Its purpose is to analyse the im-
pact of noise and emissions on one another.
The AEDT tool set combines and replaces five legacy noise and emissions models. The models, namely the
Emissions and Dispersion Modeling System (EDMS), Integrated Noise Model (INM), Noise Integrated Rout-
ing System (NIRS), System for Assessing Aviation’s Global Emissions (SAGE), and Model for Assessing Global
Exposure to the Noise of Transport Aircraft (MAGENTA), have been integrated into the AEDT to facilitate a
more streamlined and efficient assessment of inter-dependencies.
The AEDT offers accurate predictions of noise impact at specific points of interest or within defined noise
contours. Furthermore, the output of the AEDT has a broad range of noise metrics. Such as, SEL, DENL,
L Aeq , and L Amax [76]

4.4.3. Dutch Aircraft Noise Model (NRM)
Another model developed for predicting aircraft noise in The Netherlands, and particularly at Schiphol Air-
port is called "Nederlands Rekenmodel (NRM)" and it comprises the following steps[98]:

1. A system of aircraft classes is established that represents groups of aircraft types with similar weight and
noise characteristics. The classification is based on the MTOW of the aircraft, which is divided into nine
weight categories. Each weight category is further associated with four noise classes, determined by
aircraft noise certification data. This results in a total of 36 aircraft classes, with each class represented
by a single aircraft.

2. Flight profiles for different aircraft are established based on the specific procedure and flight distance.
A flight profile table outlines the altitude, flight speed, and corresponding thrust settings for various
segments of the flight distance. These profiles are designed for optimal conditions. However, the ac-
tual flight profile may deviate due to factors such as pilot input and specific aircraft configurations.
There are nine procedures for take-off and three procedures for landing. For each of these procedures,
extra class numbers include information about the distance to the destination or additional informa-
tion about the landing procedure. Fixed flight profiles have been determined for each procedure/class
combination.

3. The noise characteristics of a representative aircraft are documented in an NPD table, which contains
information on the overall A-weighted SPL (in dB(A)). This data is provided for specific combinations
of source-receiver distances (m) and engine settings (kN or rpm). For combinations that are not in
the NPD table, linear interpolation is used. It is important to note that the NPD data assumes that the
aircraft is an omnidirectional point source.

4. The overall A-weighted SPL retrieved from the NPD tables correct for the lateral attenuation effect using
simple empirical formulas. These corrections account for factors such as ground attenuation, meteo-
rological effects, and the directionality of the aircraft sound.

5. Finally, to analyse the noise levels of a specific flight movement, a grid is defined on the ground. The
grid coordinates consist of an x-coordinate parallel to the flight path and a y-coordinate perpendicular
to it. For a given fixed grid point, the distance and thrust setting are determined based on the flight
profile, which provides information about the flight as a function of time. By using the ground velocity
data in the flight profile table, the corresponding time values are calculated. The L A is computed over
time by linearly interpolating the relevant data from the NPD table. Using the L A values versus the time
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curve, the SEL metric is evaluated using Equation 4.4. These steps are repeated for each defined grid
point, resulting in a noise contour that represents the SEL metric for the specific flight movement.

While there are similarities in the modelling tools for aircraft noise, there are also notable differences that can
lead to varying results. Both the INM and the NRM utilise NPD look-up tables for their calculations. However,
one key difference between both models lies in the treatment of lateral sound attenuation. This difference
in calculations results in the INM predicting higher noise levels in close proximity to the airport and a lower
noise load at greater distances from the airport[20]. Furthermore, the NRM is a point-based model, and the
INM is a segment-based calculation model.

4.4.4. ECAC Noise Model
Where the United States developed the AEDT, the European Union developed its own noise modelling tool,
namely the Doc29 model. The European Civil Aviation Conference (ECAC) Doc.29 (Doc29) operates as a seg-
mentation model, designed to assess aircraft noise generated by individual flight instances[85]. It achieves
this by combining the sound emissions of distinct sound-producing elements known as flight path segments.
Each flight path segment represents a specific section of the aircraft’s trajectory, encompassing all the rele-
vant flight geometric and operational variables at its starting and ending points. By combining multiple flight
path segments, a segmented flight path is constructed, providing a comprehensive depiction of the aircraft’s
motion throughout the flight event.
Once the flight path has been determined, the relevant parameters such as aircraft position, speed, engine
power, and bank angle are inputted into suitable equations at the endpoints of each segment. These equa-
tions then yield the corresponding noise levels at specific receiver positions, resulting in a comprehensive
assessment of the noise generated by the aircraft.
The Doc29 model provides the noise levels of a single flight event by performing the following operations:

1. Calculate the ground track via flight data analysis

2. Calculate the flight profile by synthesis from ANP procedural steps

3. Merge ground track and flight profile to obtain a segmented flight path

4. Calculate the sound levels generated by each segment as specified ground locations

5. Superpose the effect of all segments to obtain the final noise levels at those locations

As of August 2016, the government of the Netherlands decided to replace the NRM with a calculation method
based on Doc29.
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Mathematical Problems and Solving

Methods

The main problem related to airport capacity is the Runway Scheduling Problem (RSP) which can be split
into two types of problems. The Aircraft Landing Problem (ALP) and the Aircraft Take-off Problem (ATP).
In general, the ALP and ATP involve two main steps. First, an available runway is assigned to each aircraft
that is ready to land or take off. Then, a scheduled landing or take-off time is allocated to each aircraft.
When both problems are combined, it is called the Aircraft Scheduling Problem (ASP), which is more realistic,
because ATC has to handle both arriving and departing traffic [52]. The first known publication about the RSP
was written by Dear in 1976[23]. Nevertheless, the solution approaches employed for the ALP, ATP, or ASP
can prove to be valuable in addressing the RSP. Hence, this chapter also encompasses a discussion of these
problems along with their relevant literature. It begins with an explanation of the existing mathematical
models in section 5.1, followed by an exploration of the various solution methods and illustrative examples
from literature in section 5.2. Finally, the receding horizon theory is examined in detail in section 5.3.

5.1. Mathematical Models
In the mathematical formulation of the RSP, several operational constraints have to be taken into consider-
ation. The most important constraint is the safety separation between consecutive aircraft, followed by the
time window in which the aircraft has to land, taking into account fuel consumption. The objective function
is dependent on the decision maker, which can be the airport, the airline, the government, ATC, etc. An ex-
ample of the main objective of the airport is to maximise the punctuality relative to the operating schedule.
More examples of other decision-making objectives can be found in a review performed by Bennell et al. [14].

The input for the RSP is a set of runways, and a set of aircraft ready to land or take off. A pre-defined time
window, with a possible preferred time for the landing or take-off is known for each aircraft. In its simplest
form, the RSP involves initially assigning an available runway and a scheduled time of operation, all while
considering the relevant constraints.
Mathematical formulations of the RSP can be classified according to several parameters:

• The availability of the input data: When all the parameters of the model are known in advance, the
model is static. The model is dynamic when some input parameters are unknown or subject to change
within the considered time horizon.

• The uncertainty of the parameter value: The model can be categorised as either deterministic or under
uncertainty based on the level of uncertainty associated with the parameter values. The parameter
values are known in a deterministic model. However, in an uncertain model, certain parameter values
are not precisely known, and they exhibit variability within a specific range or distribution.

• The number of runways and their configuration: The complexity of the model can vary based on the
number of runways and its configuration. It can be a single-runway system or a multi-runway system
with various configurations. Different runway systems may require specific constraints and optimisa-
tion techniques.
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• The objective function: The objective of the model plays an important role in the optimisation of the
model. The choice of the objective function depends on the specific goals and priorities of the runway
scheduling process.

• The constraints taken into account: With the separation constraint being the most fundamental one.

5.2. Solving Methods
There are several methods proposed in the literature to solve the RSP, from exact approaches, such as dy-
namic programming and mixed-integer programming, to metaheuristic approaches. Those include genetic
algorithms, simulated annealing, tabu search, and ant colony optimisation. Figure 5.1 shows an overview of
the different solving methods that were found in the literature.

Optimisation
techniques

Exact Solving
methods Metaheuristics

Dynamic
Programming

Mixed Integer
Programming

Tabu Search

Simulated Annealing

Genetic Algorithms

Branch-and-
Bound

Branch-and-Cut

Constraint
Programming

Ant Colony
Optimisation

Variable
Neighborhood

Descent

Figure 5.1: Overview of Optimisation Techniques

In the subsequent subsections, the solving methods will be elaborated upon in greater detail, accompanied
by examples of research conducted in relation to these solving methods. The discussion commences with an
explanation of the exact solving methods.

5.2.1. Exact Solving Methods
The literature discusses several methods to solve the RSP with an exact method. The most common methods
are MIP programming methods and dynamic programming methods. A few studies use a different approach
with constraint programming as the main method. This is done by Van Leeuwen and Van Hanxleden Houwert
[63] to solve the ATP. It is also used by Artiouchine et al.[6] to solve the ALP with an analogy with the K-
king problem. This subsection provides an explanation of the distinct exact-solving methods, alongside an
overview of the relevant research studies regarding these methods.

Dynamic Programming
Dynamic Programming (DP) is a useful mathematical technique for making a sequence of interrelated de-
cisions. A specific mathematical formulation for "the" dynamic programming problem does not exist. Dy-
namic programming is a broad approach to problem-solving, and the equations used must be tailored to
each specific situation. Consequently, solving a problem using dynamic programming requires creativity
and an understanding of the problem’s overall structure. It is essential to recognise when and how dynamic
programming techniques can be applied to effectively solve a problem[65]. A basic feature of a DP problem
is that it can be divided into stages, with a policy decision required at each stage.

One of the first researches using DP to address the ALP has been performed by Psaraftis [86], initially focusing
on a single runway and subsequently expanding it to encompass two runways. The model was extended by
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Briskorn and Stolletz[18] to multiple independent runways. They proved that, within each class, it is optimal
to schedule aircraft according to the FCFS rule. Lieder and Stolletz[66] improved the model made by Briskorn
to incorporate interdependent and heterogeneous runways. Furthermore, they introduced a rolling planning
horizon heuristic.

Mixed Integer Programming

Mixed Integer Programming (MIP) is a mathematical programming technique used to solve optimisation
problems that involve a combination of discrete (integer) and continuous variables. MIP problems involve
optimising an objective function subject to a set of constraints, where some variables can only take on integer
variables. The process of solving a MIP problem typically involves algorithms that explore different combi-
nations of feasible solutions to determine the optimal solution. Branch and bound, branch and cut, and
advanced heuristics are commonly used techniques in MIP solvers. Examples of online solvers are CPLEX
and Gurobi.

The MIP is often used in literature to solve the RSP. As mentioned earlier, Beasley et al. developed the first MIP
model to solve the ALP. The model is extended to incorporate multiple interdependent runways and solved
with CPLEX.
An adaption was made by Briskorn and Stolletz [18] regarding the objective function. They changed it to
account for different aircraft classes and solved it via CPLEX. This resulted in better computational times
compared to the model of Beasley et al. Ghoniem and Farhadi[34] added the ASP to the model of Beasley et
al. Furthermore, they introduced a set-partitioning model with a column-generation approach to solve the
problem. This results in better computational times and the ability to solve for larger instances.

The same model as Beasely et al. has been used by Salehipour et al.[94]. Both models are the same regarding
the decision variables. However, Selehipour et al. simplify some redundant constraints. Furthermore, they
designed a hybrid meta-heuristic applying a simulated annealing framework resulting in a very high-quality
solution in reasonable computation times.
A time-discretization approach has been used by Faye[31], where the planning horizon is divided into time
slots, ensuring that no events occur between consecutive slots. To solve the problem a dynamic constraints
generation algorithm is used, consisting of two main blocks. The first block solves a relaxed version of the
problem by estimating the separation matrices using rank-2 matrices. The second block of the algorithm
looks for pairs of aircraft that may violate the separation constraints and corrects them.
Avella et al.[10] use a time-indexed formulation for the ASP. This is motivated by the fact that time-index for-
mulations offer a good compromise between the compactness of the formulation and the quality of the LP
bounds.
As explained in subsection 2.3.4 sequencing can be changed from FCFS to CPS. CPS is used in the research
performed by Prakesh et al.[84] for the scheduling of both landings and takeoffs on a single runway. The MIP
formulation is split into pairs and solved by using GuRoBi.
All the research mentioned above focuses on mainly one objective; minimising the total weighted delay. How-
ever, other objectives are also researched, including multi-objective problems.
A flexible runway allocation model method was developed by Delsen[24]. The objective function tries to
minimise both fuel and noise exposure to the environment, while taking a variety of constraints into ac-
count. Examples are runway dependencies and noise exposure. A Weighted Sum normalisation is used for
the normalisation of fuel and noise. The outcome is evaluated via a Pareto optimisation, which is validated
by applying the model to several case study scenarios.
Van der Meijden[106] made improvements to the model developed by Delsen. These proposed improve-
ments led to a more accurate representation of the aircraft in the model by introducing pair-wise separation
and using more than two types of aircraft. However, a discrete representation of flight scheduling is used
due to the time steps of 20 seconds. This affects the runway capacity negatively. Moreover, the dependen-
cies between runway systems are not incorporated in the separation modelling, which limits the model. New
research performed by Abbenhuis[1] has changed the model to a scheduling model instead of an allocation
model. By changing the decision and auxiliary decision variables, the scheduling model is more suitable for
complex runway systems. Furthermore, assigning continuous delays to the scheduled flights prevents the
model from becoming infeasible. For the noise modelling, the Aviation Environmental Design Tool (AEDT) is
used to estimate the noise more accurate.
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5.2.2. Metaheuristics
Exact solutions create a feasible and optimal solution for the objective function. However, due to its large
computational time, this approach does not always work. For certain problems, achieving an optimal solu-
tion may prove excessively complex or require excessive computational time. In such scenarios, it remains
crucial to obtain a feasible solution that is reasonably close to optimal. Heuristic methods are commonly
used to search for such a solution. The downside of a heuristic solution method is that heuristics tend to be
ad hoc in nature, which means that each method is designed to fit a specific problem type rather than a vari-
ety of applications. This problem was resolved with the introduction of metaheuristics. A metaheuristic is an
overarching approach that offers a general framework and strategic principles for creating a tailored heuristic
method to address a specific type of problem [65].
As the RSP can be dynamic and an update of solutions is needed when a new event occurs heuristic ap-
proaches and metaheuristics are also researched. This section will discuss three different metaheuristic solv-
ing methods for solving the RSP, based on the most-used techniques in literature, which are Genetic Algo-
rithms (GA), Tabu Search (TS), and Simulated Annealing (SA). Other metaheuristics that are used in literature
are Ant Colony Optimisation (ACO)[112] [13] [54], and Variable Neighborhood Descent (VND) [94] [93].

Tabu Search
Tabu search is a popular metaheuristic algorithm that incorporates intuitive concepts to help the search pro-
cess break free from local optima[65]. The algorithm’s core idea is to maintain a short-term memory, known
as the "tabu list", which keeps track of recent moves or solutions that are prohibited from being revisited
in future moves. This prevents the algorithm from getting stuck in cycles or repeatedly visiting suboptimal
problems.
The Tabu Search algorithm starts with a feasible initial trial solution and explores the solution space by mak-
ing small modifications or moves to reach neighbouring solutions. During the search process, the algorithm
evaluates the quality of each candidate solution using an objective function. The algorithm continues iterat-
ing until a stopping criterion is met, such as a fixed amount of CPU time, or a fixed number of consecutive
iterations without an improvement in the best objective value. Furthermore, the algorithm stops when there
are no feasible moves into the local neighbourhood of the current trial solution.
To commence the discussion of research conducted on the RSP, Atkin et al.[8] introduced a hybrid meta-
heuristic system taking into account a larger number of aircraft that can be managed by a human controller.
Their model puts forward schedules that proactively address potential future challenges.
Research performed by Soykan and Rabadi[99] uses a TS approach for scheduling airport operations on mul-
tiple independent runways. The approach can be divided into two main steps. The first step follows an FCFS
sequence and utilises a greedy algorithm called the Target Time First Greedy Algorithm (TTFGA), which pri-
oritises aircraft landing/take-off by looking at their target times. This minimises the delay of the operation.
The aircraft are assigned to runways accordingly. The initial solution is improved in a second step that makes
use of a TS. Potential solutions are created by changing the order of aircraft landing on the same or different
runways, or by deleting/inserting aircraft off/in sequences. During the search, if a new best value of the ob-
jective is found, an aspiration mechanism is employed to bypass tabu restrictions. The algorithm terminates
when no further improvement is achieved after a specific number of iterations.
New research performed by Soyak and Rabadi[100] focuses on multi-objective runways operations schedul-
ing. A simulation-based optimisation approach is used with a discrete-event simulation component to ac-
count for uncertain conditions and an optimisation component to find a Pareto set of solutions. The prob-
lem is solved with a hybrid Tabu/Scatter Search algorithm due to its large, complex, and unstructured search
space. The main objective of the problem is to maximise runway utilisation and fairness. Results show that
the proposed model is effective and the computational times are suitable for practical applications.

Simulated Annealing
Simulated Annealing, a commonly utilised metaheuristic, is designed to facilitate the exploration beyond lo-
cal optima during the search process. In tabu search, a common approach involves initially ascending the
current hill in the steepest direction until reaching its peak, followed by a gradual descent while simultane-
ously searching for a new hill to ascend. However, this method has a drawback: it consumes a significant
number of iterations to climb each individual hill instead of prioritising the search for the highest hill avail-
able [65]. The approach used in simulated annealing is to focus mainly on searching for the tallest hill.
The simulated algorithm starts with a feasible initial trial solution and uses the move selection rule to select
the next trial solution. When the desired number of iterations has been reached at a certain level of T, T is de-
creased to the next value in the temperature schedule and continues performing iterations at the next value.
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When the desired number of iterations have been performed at the smallest value of T in the temperature
schedule the algorithm is stopped. The best trial solution found in any of the iterations is selected as the final
solution.

The SA framework is used in research performed by [38] by using three types of greedy algorithms. To generate
candidate solutions for Simulated Annealing (SA), the process involves randomly selecting two aircraft and
swapping their positions. The model used improves the computational time and initial solutions. The same
principle of swapping aircraft to generate candidate solutions has been done in the research of Rodrigueez-
Diaz et al.[88]. The model takes WV separation and CPS constraints into account for the problem of schedul-
ing aircraft operations on a single runway. The model outperforms the model of Salehipour et al.[94] in terms
of computational time, but not in terms of percentage improvement. In recent work, performed by Su et
al.[102], SA is used in combination with a large neighbourhood search algorithm and the receding horizon
control strategy to solve the ARSP. The proposed model and algorithm are evaluated by comparing them to
existing algorithms known for their excellent performance in solving large-scale ARSP. The evaluation demon-
strates that the proposed model and algorithm are both accurate and efficient. Moreover, the algorithm out-
performs other methods in terms of optimisation results when tackling large-scale ARSPs.

Genetic Algorithms
Genetic Algorithms offer a distinct approach as a metaheuristic, differing from the previously mentioned
methods. GAs are known for their ability to effectively explore different areas within the feasible region and
progressively evolve towards the optimal feasible solution[65]. They are used to solve optimisation problems
by iterative evolving a population of candidate solutions to find the optimal or near-optimal solution. The
algorithm’s name comes from the analogy to biological evolution and genetics. GAs mimic the process of
natural selection by applying genetic operators such as selection, crossover, and mutation to candidate solu-
tions.
The algorithm initiates by generating an initial population consisting of feasible trial solutions. The fitness,
which represents the value of the objective function, is then evaluated for each individual within the current
population. The fittest individuals of the current population are selected to become parents. These parents
are paired up randomly and give birth to two children, new feasible trial solutions, whose features are a ran-
dom mixture of the features of the parents. The children are retained and again the best members of the
current population are selected to form a new population of the same size for the next iterations. The fitness
of each new member in the new population is evaluated. The algorithm is terminated when a fixed number of
iterations, a fixed amount of CPU time, or a fixed number of consecutive iterations without any improvement
in the best trial solution is found. The best trial solution found on any iteration is used as the final solution.

In literature GAs were the mostly-used metaheuristic before the use of Tabu Search and Simulated Annealing.
However, still, research is performed with GAs. An example is the research performed by Hu and Paolo [46]
who considered the problem of scheduling aircraft landings on a single runway. They introduced a novel GA
framework based on the ripple spreading on a liquid surface. Furthermore, Sholel et al.[2] solved the ASP with
GAs, with the novelty of finding the best-fit runway configuration that maximises runway throughput. The
selected solution approach employs a GA that involves the co-evolution of a population consisting of can-
didate aircraft sequences and candidate runway configurations. A multi-objective optimisation model was
developed by Zhou and Jiang[114]. The genetic algorithm combined with a sliding time window algorithm
was used to solve the model. The sliding time window algorithm is explained in more detail in section 5.3.
The same method is used to solve the traffic scheduling in airport terminal areas and this has been researched
by Liu et al.[67].

5.3. Receding Horizon Control
The research discussed in this chapter is mainly based on offline optimisation. This refers to the process of
improving a system or process without actively running it in real time or making changes during the process.
For solving dynamic optimisation problems the Receding Horizon Control (RHC) is a very effective tool. The
concept of RHC involves breaking down the original problem into smaller sub-problems within a sliding time
frame. This approach reduces the computational burden and allows for real-time adaption to uncertainties
and disturbances in a dynamic environment[45]. When there are uncertainties or disturbances, the RHC can
detect and solve these in the current or subsequent time frames.
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RHC relies on two parameters, the time interval of a scheduling window, and the width of the receding hori-
zon. Figure 5.2 provides an illustration of RHC where the width of the horizon is 4 times the time interval. The
optimisation is done for all the information available in the width of the receding horizon. However, only the
scheduling decisions for the first time interval are actually implemented, i.e., optimisation is globally made
within the horizon of interest while scheduling decisions are implemented locally in the first interval.

Figure 5.2: Example of RHC for the RSP [111]

The RHC strategy in optimisation problems, and thus the RSP, involves dividing the problem into subprob-
lems using the receding horizon technique. Each subproblem considers environmental information col-
lected from the beginning of the time interval to the end of the time interval. The objective is focused solely
on the specific time interval and the process is repeated for subsequent receding horizons until the entire
problem is solved.
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Research Proposal

In this chapter, the essential background and contextual information that sets the stage for our research pro-
posal is discussed. The overarching problem, its significance, and the rationale behind our literature study
is explored. By providing a comprehensive overview, the aim is to establish a solid foundation upon which
the research questions can be formulated. First, the literature is discussed in section 6.1 to have a clear idea
of what the potential research could be. Taking into consideration the aforementioned information, the re-
search objective is formulated in section 6.2, while the research questions are outlined in section 6.3.

6.1. Discussion Literature
Before the research question is formulated, an overview of the literature found and the potential future work
is stated and discussed. The main objective of this literature review was to identify areas of improvement for
the existing flexible runway scheduling model proposed by Abbenhuis [1], and to explore potential solutions
for these limitations. A comprehensive overview of the findings of the literature can be seen in Table 6.1.
The table shows an overview of the different subjects treated in this literature review and the methods and
assumptions used in previous work. With the findings of the literature study on each of the subjects, potential
research has been formulated, which can serve as a basis for the MSc thesis on the topic of flexible runway
scheduling.

Table 6.1: Overview of potential research for the Thesis

Subject Previous Model Potential research
Optimisation method MILP Tabu Search / Sliding Time Window
Fuel BADA 3 with 3 segments for arrival and 2 segments for departure AEDT / more segments / optimal control
Noise AEDT with 1 general noise limit More detailed noise limits, as the regulations around Schiphol
and the dose-response relationship
Optimal Control N/A Implementation of optimal Control in the approach trajectory

The subjects indicated in the table represent each chapter in the literature study. In the following sub-
sections, a concise overview of the topics is provided, followed by a more comprehensive explanation of
potential research aspects.

6.1.1. Fuel
One of the objectives of the runway scheduling model will be the fuel consumption of the aircraft. During the
literature study, several fuel burn models were found. All the models discussed are based on BADA, which
provides the aircraft performance parameters related to thrust and fuel consumption. Two versions of BADA
exist, namely BADA 3 and BADA 4. BADA 4 provides more accurate modelling of aircraft performance across
the entire flight envelope. However, as the TU Delft does not have access to the newest version of BADA and
not all aircraft types are present in BADA 4, only BADA 3 can be used. The preceding model also relies on
BADA 3, and a simplification was implemented by dividing the arrival trajectory into three segments: Initial
Approach Fix (IAF) to Final Approach Fix (FAF), FAF to Runway, and Runway to Gate. As for the departure
trajectory, two segments were selected: Gate to runway, and Runway to the initial waypoint of the Standard
Instrument Departure (SID). This limits the accuracy of the fuel burn in the runway scheduling model.
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This literature study also discussed the AEDT and the fuel burn modelling method used. It showed that the
AEDT incorporates the SFI model, which increases the accuracy of the fuel burn in the terminal area. Also,
a completely new topic is covered compared to the previous model, the implementation of ATOP during the
approach phase. This can lead to the reduction of fuel consumption while scheduling aircraft to runways.

6.1.2. Noise
The second objective of the model will be to limit the noise exposure during the scheduling of runways to
aircraft. In this literature study, the major noise modelling tools were stated and explained. The main tools
are INM, AEDT, NRM, and ECAC Noise Model. The INM has been replaced by the AEDT and the NRM has
been replaced by the ECAC noise model. Therefore, for the purpose of this research, the noise modelling will
be conducted using either the AEDT model or the ECAC noise model. Given that the AEDT model utilises the
methodologies outlined in the ECAC Doc29 to calculate noise levels, the decision has been made to employ
the AEDT model for generating the noise profiles in the forthcoming study.
Furthermore, it became clear that in the current model, a generalised noise limit is used for the environment
around the airport. This is not realistic, as the noise limit is dependent on the distance from the airport.
The noise regulations regarding Schiphol Airport have been investigated and this has led to an overview of
the current noise regulations and the corresponding noise limits. Consequently, it is interesting for this re-
search to explore the feasibility of integrating variable noise limits into the model, with the aim of reducing
its simplification.

6.1.3. Optimal Control and Trajectory
The implementation of optimal control in the arrival trajectory can be a new addition to the current runway
scheduling model, which can lead to a reduction in fuel consumption. The decision is made to focus on fuel
consumption first and it can potentially be expanded to incorporate noise. It is important to consider how
the ATOP can be implemented in the runway scheduling model. Research has been performed on the Aircraft
Sequencing Problem, but this did not include the allocation of runways to the flights.
Another important subject to consider related to optimal control is the trajectory. For both the fuel burn
and the noise the trajectory flown by the aircraft is an important input parameter. The Aircraft Performance
Data is retrieved from BADA. However, when it comes to the profile and track data, there exist two options
for retrieving the specific information. The tracks can be acquired either through actual track data or by
performing calculations on the map. As for the profile, radar data can be utilised or a predefined profile for
speed versus altitude can be employed. The main question concerning the trajectory lies in the conversion of
this information into thrust, with the mass of the aircraft being the most uncertain variable. Given that this
literature study primarily focuses on the theoretical aspect, the decision regarding which approach to adopt
will be made after gaining familiarity with the software, which will occur during the course of the research
itself. Consequently, this subject will be explored in greater depth within the thesis itself.

6.1.4. Optimisation Method
With the objectives and the potential improvements of the model known, the last topic to cover in the litera-
ture study is the optimisation method. The current model is built as a MILP, and together with the constraint
on pairwise separation, this results in a model with a large computational time. This can be solved by using
a different optimisation method, which is discussed in this literature study. Where MILP is an exact solving
method, metaheuristics can also be used as an optimisation method. These include Tabu Search, Simulated
Annealing, Genetic Algorithms, Ant Colony Optimisation, and Variable Neighbourhood Descent. The litera-
ture study shows that most of the works use heuristic approaches to solve the runway scheduling problem.
Researchers often opt for stochastic approaches due to the intricate nature of the problem at hand. These
methods offer high-quality solutions within shorter computation times compared to exact methods, which
can be computationally demanding. Another reason is the dynamic nature of the problem. In practice, air-
craft dynamically enter the scheduling horizon, which means that an optimal solution for the RSP within a
specific scheduling horizon may not remain optimal when new aircraft are introduced. Consequently, com-
puting new optimal solutions using exact methods can be time-consuming and computationally intensive.
Literature shows that GAs were the mostly-used metaheuristic in the past. However, the Tabu Search and Sim-
ulated Annealing gained much more attention and became the most used metaheuristics. Tabu Search effi-
ciently explores large solution spaces, is effective in overcoming local optima, and can provide near-optimal
and high-quality solutions. The algorithm will perform at its best with a well-defined initial solution. This
can be solved by combining a Tabu search algorithm with a MILP, which leads to an efficient algorithm that



6.2. Research Objective and Context 69

can compute the solution in parallel. For example, the runway allocation is done by the tabu search and the
MILP solves the sequence of the aircraft landing on the specific runway.
To decide which metaheuristic to use in the research a trade-off table is used with important Key Performance
Indicators (KPI). The trade-off is made on four parameters: How easy it is to implement/set up the algorithm,
the ability to overcome local optima and reach the global optimum, the time required by the technique to
converge or reach an acceptable solution, and the ability of the technique to handle larger problem sizes.
The result of the trade-off is presented in Table 6.2.

Table 6.2: Trade-off between selected metaheuristic algorithms

Optimisation Technique Implementation Overcoming local optima Computational Time Scalability
Genetic Algorithms + - - - +
Tabu Search ++ + + ++
Simulated Annealing + - + +

As can be seen from the table, Tabu Search scores the best overall on the KPIs, followed by SA. As the RSP
involves complex constraints and potentially non-linear constraints, Tabu Search may be more suitable.
Finally, to increase the computational performance of the current model, a sliding time window called Reced-
ing Horizon Control can be incorporated into the model. By implementing a sliding time window, the model
assigns flights for example, for the next 30 minutes accurately according to all regulations and for the subse-
quent 30 minutes only determines a rough runway allocation. One factor to take into account is to convert
the yearly noise budget into an hourly noise budget to have a better representation of the aircraft noise.

6.2. Research Objective and Context
Having examined the literature and established a clear difference between the existing flexible runway schedul-
ing model and the desired future model, the research objective can now be formulated.

The objective of this thesis research is to remodel the existing flexible runway scheduling model. By changing
the modelling method, it will be possible to evaluate the effects of a different solving method on the current
model. Furthermore, non-linear and/or more detailed constraints can be incorporated with respect to noise

disturbance and fuel savings.

In accordance with the research objective as described above, the model should be able to assign flights to
a certain optimal runway end. This should be done by taking into account aircraft-specific noise and fuel
burn, the separation between aircraft for both arrival and departure operations, implementation of delay,
and optimal control in the approach trajectory.

6.3. Research Questions
Following the research objective that defines the boundaries of the future model, the research question can
be formulated. The potential research question of this research could be:

"How can the performance of the flexible runway scheduling model be further improved by introducing a
different optimisation technique and by implementing a sliding time window to make the model more

operational to use in day-to-day airport operations, while considering separation, noise annoyance, fuel burn,
and runway capacity?"

After establishing the primary research question, the subsequent sub-questions have been formulated and
are provided below.

1. What is the best alternative optimisation technique to remodel the flexible runway model with a sliding
time window?

2. To what extent does the trade-off between model linearisation and simplification affect the model per-
formance?

3. Which fuel burn models are available and how can they be implemented in the runway model?

4. How can optimal control be incorporated to further reduce fuel consumption during the approach?

5. How can a variable noise limit be incorporated into the model?
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1
Previous Work

The recently created Flexible Runway Scheduling Model (FRSM) represents an advancement over previous
studies conducted by Abbenhuis [1], Delsen [24], and Van Der Meijden [106]. This chapter aims to provide
an outline of the model established by Abbenhuis, serving as the basis for comparing outcomes between the
tabu model and the MILP model.

1.1. Flexible Runway Scheduling Model
This section delves into the most recent iteration of the FRSM crafted by Abbenhuis [1]. The model is struc-
tured as a Mixed Integer Linear Programming (MILP) system, diverging from the approach utilizing a meta-
heuristic tabu search algorithm in the update model.
Firstly, this section starts with the introduction of the objective function. Following this, a detailed presenta-
tion of the constraints is provided and evaluated.

1.1.1. Objective Function
The objective function is given in Equation 1.1 and consists of three parts and is a minimization problem.

min Z =α ·n f

∑
f ∈F

[(∑
r∈R

cr
f xr

f

)
+ cd D f

]
+β ·nn

∑
x y∈P

cx y gx y + copt (OR +Dmax +Tmax) (1.1)

The fuel consumption objective aims to minimize the combined cost of fuel for assigning flight f to runway
r , denoted by the variable cr

f , along with the cost associated with the assigned delay in seconds, indicated by

cd in [kg/s]. Whenever the noise threshold is exceeded, the disturbance cost is determined by the population
count cx y residing in that area.
The third component of the objective function comprises parameters designed to enhance the optimiza-
tion process, incurring a minor penalty denoted by copt . These parameters include Order Changes (OR), the
maximum allowable delay Dmax , and the final parameter Tmax , which ensures the expedient handling of all
flights.

1.1.2. Constraints
The constraints are presented in Equation 1.2 to Equation 1.7. To determine the operating time and assigned
delay, Equation 1.2 is applied, where T S f is the scheduled time of flight f .

T f −D f = T S f ,∀ f ∈ F (1.2)

To ensure that each flight is only assigned to one runway Equation 1.3 is used. If a runway or multiple runways
are closed for operation Equation 1.4 is employed.

R∑
r=1

xr
f = 1 ,∀ f ∈ F (1.3)
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F∑
f =1

xr
f = 0 ,∀r ∈ Rr (1.4)

Flights are allowed to switch order if they are within a specified window (SW) of each other, which on the first
line of Equation 1.5. To ensure that order changes outside this window are prohibited two extra constraints
are necessary. The second line determines the value of the auxiliary decision variable xi , j which can be used
for separation. The third line determines the time between operations and ensures outside the SW a First-
Come, First-Serve principle is used.

xi , j +x j ,i = 1,∀ j 6= i ∧ ∣∣T Si −T S j
∣∣≤ SW

xi , j = 1,∀ j > i ∧ ∣∣T Si −T S j
∣∣> SW

T j −Ti ≥ 0,∀ j 6= i ∧T S j −T Si > SW

(1.5)

Flight separation is guaranteed through Equation 1.6. This constraint is formulated using the big-M method,
allowing activation solely when all decision variables are active; otherwise, the constraint remains inac-
tive. The separation time T r,q

i , j hinges on flight operations, considering aircraft types, their respective weight

classes, and the runways they utilize. To improve model efficiency, emphasis is placed on considering sepa-
ration requirements solely for flights within 2SW.

−M xi , j −M xr
i −M xq

j +T j −Ti ≥−3M +T r,q
i , j

,∀i ∈ F, ∀ j ∈ ∣∣T Si −T S j
∣∣≤ 2SW

,∀r, q ∈ R
(1.6)

An indicator constraint is employed to address noise disturbance, switching the decision variable to 1 when
the noise threshold is surpassed and retaining a value of 0 otherwise. This constraint is depicted in Equa-

tion 1.7. It’s important to highlight that the cost coefficient c f ,r
x y represents the Acoustic Energy Level (AEL)

rather than the Sound Exposure Level (SEL) utilized in the tabu model. The AEL value is derived from the
linearization process applied to the SEL value.

gx y = 1 ←∑F
f =1

∑R
r=1 c f ,r

x y xr
f > Llimit ∀x y ∈ P

gx y = 0 ←∑F
f =1

∑R
r=1 c f ,r

x y xr
f ≤ Llimit ∀x y ∈ P

(1.7)



2
Additional Results

This chapter provides additional results to support the research outlined in the scientific paper discussed in
Part I. The results are presented for each scenario, including visualizations of runway allocation, noise grids,
and noise intensity. Moreover, for scenarios where a comparison with the MILP method was impossible, a
Pareto Front is presented.

2.1. 90-minute flight schedule

(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.1: Additional results fuel optimization 90-minute flight schedule
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(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.2: Additional results noise optimization 90-minute flight schedule
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2.2. Six-hour flight schedule

(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.3: Additional results fuel optimization six-hour flight schedule



78 2. Additional Results

(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.4: Additional results noise optimization six-hour flight schedule

2.3. Daytime flight schedule

Figure 2.5: Pareto Front daytime flight schedule
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(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.6: Additional results fuel optimization daytime flight schedule
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(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.7: Additional results noise optimization daytime flight schedule

2.4. Full day flight schedule

Figure 2.8: Pareto Front full-day flight schedule
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(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.9: Additional results fuel optimization full-day flight schedule
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(a) Runway allocation (b) Runway allocation per weight class

(c) Highly annoyed people heat map (d) Highly annoyed people noise level distribution

Figure 2.10: Additional results noise optimization full-day flight schedule



3
Verification & Validation

3.1. Verification
The findings presented in the scientific paper have undergone rigorous testing to ensure strict adherence to
the model’s specified constraints. The verification process encompasses multiple checks aimed at upholding
the integrity of the model’s outcomes.

An essential verification step guarantees that every flight in the solution adheres to the separation criteria.
This is achieved by implementing a separation check and evaluating all solutions generated by the model.
The definition returns a true statement when all separation criteria are satisfied; otherwise, it returns false
along with details on conflicting flights and runways. Notably, for all solutions produced by the model, the
verification yielded a true statement.
Moreover, the model underwent verification to ensure that all flights possess flight consumption data, indi-
cating the assignment of a valid runway. Runways unavailable for operation were assigned a fuel consump-
tion of 0. Importantly, no flight displayed a value of 0 or exceptionally low. This confirmation extends to the
assignment of delays, as it also contributes to the overall fuel consumption, affirming the reliability of this
aspect of the model.

3.1.1. Separation
To analyze and verify the separation modeling, a small part of the solution of the balanced flight schedule is
used. The flight schedule can be seen in Table 3.1 with the flight number, aircraft type, weight class (WC),
scheduled time, actual operating time, and runway.

Table 3.1: Part of balanced flight schedule

Flight AC type WC Scheduled time Operating time Operation Runway
15 B738 UM 10:40:00 10:40:00 A 18C
16 B739 UM 10:40:00 10:40:30 D 09
17 B763 LH 10:41:00 10:41:05 A 36R
18 A319 UM 10:42:00 10:42:05 A 18R
19 A332 UH 10:42:00 10:42:00 A 18C
20 E290 LM 10:43:00 10:43:00 D 18L
21 B737 UM 10:44:00 10:44:00 A 06
22 B739 UM 10:44:00 10:44:20 D 18L

The arrival of Flight 15 on Runway 18C establishes a dependency on the departure of Flight 16 from Runway
09R, with a prescribed minimum separation time of 30 seconds for the UM-UM weight class combination.
For the subsequent arrivals, Flight 17 and Flight 18, the minimum separation time is contingent upon the ac-
tivities of flights outside this specific schedule. Notably, when two UH aircraft operate in opposite directions,
a minimum separation time of 245 seconds is required. The departure of Flight 22 introduces a separation
time dependency on the departure of Flight 20. According to Recat-EU guidelines [91], the weight class com-
bination LM-UM mandates a minimum separation time of 80 seconds. Analyzing the operating times in
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Table 3.1 it can be found that the flights adhere to these separation requirements and this part of the model
is verified.

3.2. Validation

3.2.1. Handhavingspunten

The noise findings can be verified by referencing the designated "handhavingspunten." An outline of these
points is depicted in Figure 3.1. These handhavingspunten are established within the Schiphol Airport Traffic
Decision (LVB) and are monitored by the Inspection for Transport and Environment (ILT). Within the LVB,
specific limits are outlined for the total noise permissible at AAS. Additionally, the LVB stipulates the maxi-
mum noise levels allowed at 35 enforcement locations surrounding AAS. The ILT is responsible for ensuring
that the overall annual noise production does not exceed the thresholds set at these enforcement points.

Figure 3.1: Handhavingspunten Amsterdam Airport Schiphol [53]

The noise validation of the model involves comparing simulated noise levels at measurement points with
real-world data, as presented in Table 3.2. This comparison indicates that the noise levels closely align with
the actual 2019 data. However, it is worth noting that at some measurement points, the noise exceeds the limit
set by ILT. This deviation occurs because official regulations require noise level calculations on an annual
basis. The simulation computes the LDE N for a full day of operations, potentially allowing for violations on
specific days, compensated by lower noise levels on others. As different runway combinations are utilized
throughout the year, the daily noise loads on the surrounding areas vary accordingly.
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Table 3.2: Validation handhavingspunten full day α = 0.2

Location
Limit value

LDE N [dB(A)]
Simulated value

LDE N [dB(A)]
Percentage

1 55.85 52.89 50.58%
2 57.58 50.16 18.11%
3 58.61 51.96 21.63%
4 58.08 59.47 137.72%
5 57.74 58.00 106.17%
6 59.44 53.89 27.86%
7 57.63 54.56 49.31%
8 58.60 53.21 28.91%
9 57.04 52.38 34.20%

10 59.23 58.75 89.53%
11 58.77 52.00 21.04%
12 58.46 50.33 15.38%
13 57.47 49.93 17.62%
14 56.80 51.64 30.48%
15 57.95 54.01 40.37%
16 56.71 58.43 148.59%
17 56.47 53.48 50.23%
18 60.76 52.64 15.42%
19 54.27 53.16 77.45%
20 58.35 55.30 49.54%
21 57.88 54.47 45.6%
22 57.81 53.96 41.21%
23 57.21 49.04 15.24%
24 57.65 60.94 213.30%
25 57.94 54.96 50.35%
26 55.69 61.64 162.18%
27 56.41 58.10 147.57%
28 55.91 59.46 226.46%
29 57.18 57.79 279.25%
30 58.22 60.36 163.68%
31 58.93 55.30 43.35%
32 57.17 56.79 91.62%
33 56.50 53.66 52.00%
34 57.24 57.41 103.92%
35 57.02 49.2 16.52%

3.2.2. Fuel flow and AEDT
The aircraft-specific fuel flows are validated using the BADA appendix [28]. By undertaking these checks,
the methodologies employed in acquiring the fuel burn characteristics dataset for this research are validated.
The dataset related to aircraft-specific noise emission is sourced from the Aviation Environmental Design
Tool (AEDT)[59], developed by the FAA. It is assumed that this dataset accurately reflects real-world data to a
degree of validity that aligns with the requisites of this research.
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