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Backward Stochastic Evolution )
Equations in UMD Banach Spaces Shethie

Qi Lii and Jan van Neerven

Dedicated to Ben de Pagter on the occasion of his 65th birthday

Abstract Extending results of Pardoux—Peng and Hu-Peng, we prove well-
posedness results for backward stochastic evolution equations in UMD Banach
spaces.

Keywords Backward stochastic evolution equations - Brownian filtration -
Stochastic integration in UMD Banach spaces - y-radonifying operators -
y-boundedness

1 Introduction

In this paper we extend the classical results of Pardoux and Peng [25] and Hu and
Peng [14] on backward stochastic differential equations to the UMD-valued setting.
We consider backward stochastic evolution equations (BSEEs) of the form

dU() + AU(t)dt = f(t, U(t), V(t))de + V(t)dW (), te][0,T],
U(T) =ur,

(BSEE)

Q. Li
School of Mathematics, Sichuan University, Chengdu, China
e-mail: lu@scu.edu.cn

J. van Neerven (P<)
Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
e-mail: J.M.A.M.vanNeerven @TUDelft.nl

© Springer Nature Switzerland AG 2019 381
G. Buskes et al. (eds.), Positivity and Noncommutative Analysis,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-10850-2_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10850-2_21&domain=pdf
mailto:lu@scu.edu.cn
mailto:J.M.A.M.vanNeerven@TUDelft.nl
https://doi.org/10.1007/978-3-030-10850-2_21

382 Q. Lii and J. van Neerven

where —A is the generator of a Cy-semigroup S = (5(7));>0 on a UMD Banach
space X and W = (W (t))i¢[0,7] is a standard Brownian motion. Our results
extend to finite-dimensional Brownian motions and, more generally, to cylindrical
Brownian motions without difficulty, but we do not pursue this here in order to keep
the presentation as simple as possible. Denoting by ' = {.%;};¢[0,7] the augmented
filtration generated by the Brownian motion W, the final value ur is taken from
LP(Q2, %7; X), the closed subspace L”(2; X) of all functions having a strongly
Zr-measurable pointwise defined representative. The mapping f is assumed to be
F-adapted and to satisfy suitable integrability and Lipschitz continuity requirements
with respect to the natural norm arising from the L”-stochastic integral in X. We
will be interested in L?-solutions (U, V') with values in X.

BSEEs, as infinite dimensional extensions of backward stochastic differential
equations, arise in many applications related to stochastic control. For instance,
the Duncan—Mortensen—Zakai filtration equation for the optimal control problem
of partially observed stochastic differential equations is a linear BSEE (see, e.g.,
[4]); in order to establish the maximum principle for the optimal control problem of
stochastic evolution equations one needs to introduce a linear BSEE as the adjoint
equation (see, e.g., [22, 37]); in the study of controlled non-Markovian SDEs the
stochastic Hamilton—Jacobi—Bellman equation is a class of fully nonlinear BSEEs
(see, e.g., [11, 26]); and when the coefficients of the stochastic differential equation
describing the stock price are random processes, the stochastic version of the Black-
Scholes formula for option pricing is a BSEE (see, e.g., [23]).

In a Hilbert space setting, BSEEs have already been studied in [14]; see also
[1, 2, 12, 20-22] and the references cited therein. In [9, 23, 24] the existence of a
solution in the Sobolev space W2 is obtained, in [3, 10] the existence of a solution
in L9, and in [29] the existence of a solution in Holder spaces.

In the present paper, we study BSEEs in the abstract framework of evolution
equations on UMD Banach spaces. The main results in [9, 10, 23, 24] are covered
by our results. Furthermore, our results can be used to show the well-posedness
of many other backward stochastic partial differential equations, such as 2m-order
backward stochastic parabolic equations.

The second-named author would like to use this opportunity to express warm-
felt gratitude to Ben for invaluable mentorship and support throughout an entire
mathematical career. Thanks for all, Ben!

2 Preliminaries

In this section we recall some useful concepts and results which will be used
in the course of the paper. Proofs and more details, as well as references to the
literature, can be found in the papers [5, 18, 30, 34], the lecture notes [7, 19], and
the monographs [15, 16, 27].
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Unless stated otherwise, all vector spaces are assumed to be real. We will
always identify Hilbert spaces with their duals by means of the Riesz representation
theorem.

2.1 y-Boundedness

Let X and Y be Banach spaces and let {y,},>1 be Gaussian sequence (i.e., a
sequence of independent real-valued standard Gaussian random variables).

Definition 2.1 A family .7 of bounded linear operators from X to Y is called y-
bounded if there exists a constant C > 0 such that for all finite sequences {xn}ff:l
in X and {T,l}f:[:1 in Jwe have

2

N
EH Z VYnTnXn
n=1

Clearly, every y-bounded family of bounded linear operators from X to Y is
uniformly bounded and sup, . 7|7 || #x,y) < C, the constant appearing in the above
definition. In the setting of Hilbert spaces both notions are equivalent and the above
inequality holds with C = sup,. 7T | #x. )

y-Boundedness is the Gaussian analogue of R-boundedness, obtained by replac-
ing Gaussian variables by Rademacher variables. This notion was introduced and
thoroughly studied in the seminal paper [6].

2 N
< CZEH Z YnXn
n=1

2.2 y-Radonifying Operators

Let H be a Hilbert space with inner product (-|-) and X a Banach space. Let H ® X
denote the linear space of all finite rank operators from H to X. Every element in
H ® X can be represented in the form Zflv:l h, ® x,, where h, ® x, is the rank
one operator mapping the vector h € H to (hlh,)x, € X. By a Gram-Schmidt
orthogonalisation argument we may always assume that the sequence {&;, };11V=1 is
orthonormal in H.

Definition 2.2 The Banach space y (H, X) is the completion of H ® X with respect
to the norm

2>1/2’ @5

N
Sren
n=1

N
= EH X
J(H.X) ( HZ::an n

where {hn}r];’=1 is orthonormal in H and {yn}f;]:l is a Gaussian sequence.



384 Q. Lii and J. van Neerven

Since the distribution of a Gaussian vector in R" is invariant under orthogonal
transformations, the quantity on the right-hand side of (2.1) is independent of the
representation of the operator as a finite sum of the form Z}’]LV=1 h, ® x, as long as
{h,,}r]l\/:1 is orthonormal in H. Therefore, the norm || - ||, (g, x) is well defined.

Remark 2.3 By the Kahane-Khintchine inequalities [ 16, Theorem 6.2.6], for all 0 <
p < oo there exists a universal constant «, depending only on p, such that for all
Banach spaces X and all finite sequences {)cn}r];’=1 in X we have

p)l/p

1 N py1/p N
ES k)" < ]
Kp n=1 n=1

As a consequence, for 1 < p < oo the norm

N
= EH X
VP (H.X) ( nZ::lJ/n n

N

2\ 1/2

) <l S
n=1

’

p)l/p

|30

with {h, };11V=1 orthonormal in H, is an equivalent norm on y (H, X). Endowed with
this equivalent norm, the space is denoted by y? (H, X).

For any Hilbert space H we have a natural isometric isomorphism
y(H,X) =%(H, X),

where % (H, X) is the space of all Hilbert-Schmidt operators from H to X.
Furthermore, for 1 < p < oo and o-finite measures @ we have an isometric
isomorphism of Banach spaces

yP(H, LP (u; X)) = LP (u; y?(H; X)) (2.2)
which is obtained by associating with f € L”(u; y(H; X)) the mapping h’ +>

SR from H to LP(u; X) [16, Theorem 9.4.8]. In particular, upon identifying
y (H, R) with H, we obtain an isomorphism of Banach spaces

y(H, L?(u)) ~ L?(u; H).
When [/ is an interval in the real line, for brevity we write
y(I; X) = y(L*(I), X).

Definition 2.4 A strongly measurable function f : I — X is said to define an
element of y(I; X) if (f,x*) € L?(I) for all x* € X* and the Pettis integral
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operator

s /If(t)g(t) dr

belongs to y (I; X).

Observe that the condition (f, x*) € L>(I) for all x* € X* ensures that fg is
Pettis integrable for all g € L?(I); see [16, Definition 9.2.3] and the discussion
following it.

Throughout the paper we fix a final time 0 < 7" < oo. Forany f € y(0, T; X) it
is possible to define a é-Hﬁlder continuous function [0, T'] > ¢ f(; f(s)ds e X
as follows. We begin by observing that integration operator Is ; : ¢ — f f f(@r)dris
bounded from L2(0, T) to R and has norm (¢ —s)'/2. Therefore, by the Kalton—Weis
extension theorem [16, Theorem 9.6.1] the mapping TM 1P @ x = (Is,1¢) @ x has
a unique extension to a bounded linear operator from y (0, T'; X) to X of the same
norm: || Ls ¢l 2y 0.7:%).x) = Wsell ac20.1)r) = (¢ — $)1/2. We now define, for
geyO,T;X),

t ~
f f(s)ds == I+ f.

Noting that To,tf — ’I?),sf = I~s,,f, we see that t — fé f(s) ds is Holder continuous
of order é and

|

Remark 2.5 We are abusing notation slightly here, as the above integral notation
is only formal since elements in y (0, T'; X) cannot in general be represented as
functions. For the sake of readability this notation will be used throughout the paper.

t
[ 1o s <a=9"irl0r, 2.3)

Treating ¢ as a variable, we may also use the Kalton—Weis extension theorem to
extend f — fo f(s) ds (viewed as a bounded operator on L2(0, T)ofnorm T/ v 2)
to a bounded operator on y (0, T'; X) of the same norm. With the same slight abuse
of notation this may be expressed as

t
T
t— s dsH < . %Y.
H /o f() 0T X) \/2||f||y(0,T,X)

We will need the following elaboration on this theme, which is of some
independent interest. Put

A={(,))e 0, T)Yx 0, T): 0<s<t<T}.
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Lemma 2.6 Ler X and Y be Banach spaces and assume that Y does not contain a
closed subspaces isomorphic to c.

(1) Let M : (0, T) - AX,Y) be a function with the property that t — M (t)x is
strongly measurable for all x € X and assume that M has y-bounded range,
with y-bound y (M). Then the function

t
Of 11> / M@t —s)f(s)ds, feL*0,T)®X,
0
defines an element of y (0, T; Y) of norm

I2f 1y 0.7y < Ty M fllyo1:x)-

2) Let M : A - AX,Y) be a function with the property that (s, t) — M(s, t)x
is strongly measurable for all x € X and assume that M has y-bounded range,
with y-bound y (M). The function

t
Of 1 > / M(s,t)f(s,t)ds, feL*(A)QX,
0
defines an element of y (0, T; Y) of norm

1f 11y 0.7:v) < T2y (M fllyax)-

As a consequence, the mappings f — ®f extend uniquely to bounded operators
from y(0,T; X) to y(0,T;Y) and from y(A; X) to y(0,T;Y), respectively, of
norms at most Ty (M) and T'/?y (M), respectively.

Proof We begin with the proof of (1). The estimate

T t
A.Ammﬂwmw<Tmﬁ

shows that the mapping J; : g — [(s, ) — g(t — s)] is bounded from L0, 7) to
L?(A7) of norm at most 7'1/2. By the Kalton—Weis extension theorem, it extends to
a bounded operator from y (0, T; X) to y (A; X) of the same norm. By the Kalton—
Weis multiplier theorem [16, Theorem 9.5.1], the pointwise multiplier M (acting in
the variable s, so that [(s, ) — g(t — s)] is mapped to [(s, ?) — M(s)g( — s)])
extends to a bounded operator from y (A; X) to y(A; Y) of norm at most y (M).

Next, the estimate
2 T t
dr < T/ / |h(s, 1)|*ds dr
0 0

T t
/ ‘/ F(s, ) ds
0 0
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shows that the mapping J : h +— [t — fé h(s, t)ds] is bounded from L2(A7) to
L2(0, T) of norm at most T2, By the Kalton—Weis extension theorem, it extends
to a bounded operator from y (A; Y) to y (0, T; Y) of the same norm. The mapping
f = &f in the statement of the lemma factorises as ® = J, o M o J; and
therefore extends to a bounded operator from y (0, T; X) to y(0, T; Y) of norm
at most Ty (M).

(2): This is proved similarly, except that the first step of the proof can now be
skipped. O

2.3 UMD Spaces and the Upper Contraction Property

We next introduce the class of Banach spaces in which we will be working.

Definition 2.7 A Banach space X is called a UMD space if for some (equivalently,
forall) 1 < p < oothereisaconstant Cp x > 0 such that for all finite X-valued L?-
martingale difference sequences {d, } _, on a probability space €2 and sequences of
signs {en}n=1 one has

, YN >1.

N N
p p
E| Y enda|” < ) (E|

Every Hilbert space and every space L?(u) with 1 < p < oo is a UMD space.
If X is a UMD space, then the spaces L”(u; X) are UMD forall 1 < p < oo.
Moreover, X is a UMD space if and only X* is a UMD space. Every UMD space
is reflexive (and in fact super-reflexive); it follows that spaces such as cg, C(K),
£%°, L*®(w), £', L'(w), and all Banach spaces containing isomorphic copies of one
of these spaces fail the UMD property (apart from the trivial cases giving rise to
finite-dimensional spaces, i.e., when K is finite or u is supported on finitely many
atoms).

Definition 2.8 A Banach space X has the upper contraction property if for some
(equivalently, for all) 1 < p < oo there is a constant Cp x > 0 such that for all
by and {y,/})_

on independent probablhty spaces 2’ and Q" and {y;,, n} 1 on a probability space
2, we have

finite sequences {xmn} 1 in X and all Gaussian sequences (v,

M N
EH Z Z YmnXmn p E/E” Z Z men Xmn

m=1n=1 m=1n=1

By interchanging the two double sums one obtains the related lower contraction
property, and a Banach space is said to have the Pisier contraction property if it has
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both the upper and lower contraction property. In the present paper we only need
the upper contraction property.

Every Hilbert space and every Banach lattice with finite cotype (in particular,
every space L? () with 1 < p < 00) has the Pisier contraction property. If X has
the upper (resp. lower, Pisier) contraction property, then the spaces L”(u; X) have
the upper (resp. lower, Pisier) contraction property for all 1 < p < oco. Moreover,
if X is K-convex, then X has the upper (resp. lower, Pisier) contraction property if
and only X* has the lower (resp. upper, Pisier) contraction property. Every Banach
space with type 2 has the upper contraction property. The reader is referred to [16,
Section 7.6] for proofs and more details.

The following lemma translates the above definition into the language of y-
radonification. A proof is obtained by noting that for functions in L2(0,T) ®
L2(0, T)® X the lemma follows from the estimate of the definition, and the general
case follows from it by approximation.

Lemma 2.9 If X is a Banach space with the upper contraction property, then for
all f € L*(0,T) ® L*(0, T) ® X we have

£y 0.mx0,1):x) < Cpxl fllyo,1;70.7:x))-

2.4 Stochastic Integration

Let F = (%)te0, ) be a filtration in Q. An X-valued .F-adapted step process is a
finite linear combination of indicator processes of the form 1(5 ;) F®x with F € %
and x € X. The space

Lp(R:;v(0,T; X))
is defined as the closure in L”(€2; (0, T; X)) of the X-valued Z-adapted step

processes. The following result is from [32].

Lemma 2.10 If the process ¢ : [0, T] x Q — X is F-adapted and defines an
element of LP(2; y (0, T'; X)), then it defines an element ong (2; (0, T; X)).

From the point of view of stochastic integration, the raison d’étre for UMD
spaces is the following result of [32].

Theorem 2.11 (Ité Isomorphism) Let X be a UMD space and let 1 < p < oo.
For all F-adapted elementary processes ¢ € LP(2; y(0, T; X)) we have

T t
P P
EH/ ‘f’dWH ~p B sup H/ ‘f’dWH ~p.X “d)”iP(Q;V(O,T;X))
0 ref0,71" Jo

with implied constants depending only on p and X.
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As an immediate consequence, the stochastic integral can be extended to arbitrary
integrands in Lg (R2; (0, T; X)), with the same two-sided bound on their L”-
moments. It can furthermore be shown (see [13]) that the UMD property is
necessary in Theorem 2.11 in the sense that it is implied by the validity of the
statement in the theorem.

Remark 2.12 For ¢ € Lg(Q; y(0,T; X)) we denote by fOTquW the unique
extension of the stochastic integral as guaranteed by the theorem. For ¢t € [0, T']

we write [y ¢ dW := fOT Lo,npdW.

3 Backward Stochastic Evolution Equations: Well-Posedness
Let us now take up our main topic, the study of the backward stochastic evolution
equation (BSEE)

dU(t) + AU(t)dt = f(t,U(t), V(t))dt + V(t)dW (), te][0,T],
UT) =ur.

(BSEE)

The function f also depends on the underlying probability space, but following
common practice we suppress this from the notation. The following standing
assumptions, or, when this is explicitly indicated, a selection of them, will be in
force throughout the remainder of the paper:

(H1) X is a UMD Banach space and 1 < p < oo;

(H2) F = {%}:e0, 1 is the augmented filtration generated by the Brownian motion
W = (W®)te0,115

(H3) ur belongsto L? (2, Fr; X);

(H4) A generates a Co-semigroup S = {S(¢)};>0 on X;

(HS) the set {S(#)}:¢[0,77 1s y-bounded.

If X is isomorphic to a Hilbert space, (HS5) follows from (H4). If X is a UMD
space, (H4) and (HS) are fulfilled when A has maximal L”-regularity on [0, T].
Recall that a densely defined, closed operator A acting in a Banach space X has
maximal LP-regularity on [0, T] if there exists a constant C > 0 such that for every
f € Cc(0, T) ® D(A) there exists a strongly measurable function u : [0, T] — X
with the following properties:

1. u takes values in D(A) almost everywhere and Au belongs to L? (0, T'; X);
2. for almost all ¢ € (0, T') we have

¢ ¢
u(t)+/ Au(s)ds:/ f(s)ds;
0 0
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3. we have the estimate

lAullLr.xy < ClifllLro.1:x)

with a constant C > 0 independent of f.

A systematic discussion of maximal L”-regularity is given in [8], where among
other things it is shown that if A has maximal L”-regularity, then A generates
an (analytic) Co-semigroup. In particular, maximal L”-regularity implies that (H4)
holds. A celebrated result of Weis [36] states that a densely defined closed operator
A in a UMD space X has maximal L”-regularity and only if —A generates an
analytic Co-semigroup on X which is y-bounded on some sector in the complex
plane containing the positive real axis. In particular this implies that (H5) holds.

Examples of operators with maximal L”-regularity include most second-order
elliptic operators on R? or on sufficiently smooth bounded domains in R with var-
ious boundary conditions, provided the coefficients satisfy appropriate smoothness
assumptions. For more details, the reader is referred to [7, 8, 17, 19, 28].

Below we will consider the three special cases where (a) A = 0 and the process
f:[0,T]xQx X xX — X only depends on the first two variables, (b) the process
f [0, T] x 2 x X x X — X only depends on the first two variables, and (c) no
additional restrictions are imposed. The precise assumptions on f will depend on
the case under consideration, but in each of the three cases they coincide with, or
are special cases of, the following condition:

(H6) The function f : [0, T] x 2 x X x X — X has the following properties:

1. f isjointly measurable in the first two variables and continuous in the third
and fourth;
2. forall U,V e Lg(Q; y (0, T; X)) the process

U V) (to)— f(t,o, U, w), V(t, o))

defines an element of Lg(Q; y(0,T; X)),
3. there is a constant C > O such that for all U,V € Lg(Q; y(0,T; X)) we
have

I fC U, WiLr@:yo.1:%)
< CU+Uller;yo,1:x) + VL yo,1;x)));

4. there is a constant L > 0 such that for all U, U, V,V' €
LE(22; (0, T; X)) we have

IfC U VY= fCU L VD Lr@:yo.1:x)

SLUU = Ulller:yo,7:x) + 1V = VilLr@:y0,7:x))-
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A closely related notion of y-Lipschitz continuity has been introduced and
studied in [33]. In the same way as in this reference one shows that if X has type
2 (e.g., if X is a Hilbert space or a space L? () with 2 < p < 00), then the usual
linear growth and Lipschitz conditions

If @ o, x, yl
||f(t,a),x, y) - f(tv-x/v y/)”

Cr@+lxll + Nyl
Ly(llx =x"I+ 1y = ¥'ID,

NN

imply that f satisfies (H6).

Definition 3.1 Assume (H1)-(H6). A mild L?-solution to the problem (BSEE) is a
pair (U, V), where U and V are continuous F-adapted processes defining elements
in LZ(22; (0, T; X)) such that

T T
U(t)—l—/ S(s—t)f(s,U(s),V(s))ds—l—/ Ss—0)V(s)dW(s) = S(T —t)ur,
t t

where the identity is to be interpreted in the sense explained in Sect. 2.2.

Assumptions (H5) and (H6) imply, via the Kalton—Weis multiplier theorem, that
ifU,V e Lg(Q; y (0, T; X)), then for each ¢ € [0, T'] the mappings s > S(s — 1)
f(s,U(s),V(s)) and s — S(s — 1)V (s) define elements in Lg(Q; y(, T; X)).
Therefore by (2.3) the integral

T
/ S(s—1)f(s,U(s), V(s))ds
t

is well defined as an element of L”(2; X), and by Theorem 2.11 the same is true
for the stochastic integral

T
f S(s — )V (s) dW(s).
t

Thus, in hindsight, the identity in Definition 3.1 admits an interpretation in
LP(€2; X) pointwise in ¢ € [0, T], and it is of interest to ask about time regularity
of U.

Proposition 3.2 Assume (HI)—(H6). If (U, V) is a mild L?-solution to the prob-
lem (BSEE), then U belongs to C ([0, T]; L?(2; X)).

Proof 1t is not hard to see that ¢t +— ftT S — 1) f(s,U(s), V(s))ds belongs to
LP(Q2; C([0, T]; X)) (and hence to C([0, T]; L?(£2; X))). Indeed, arguing path-
wise, it suffices to note that for all g in the dense subspace LZ(O, T) ® X of
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y (0, T; X) the mapping ¢ — ftT S(s — t)g(s) ds is continuous and satisfies

sup
1€[0,T]

T
/ S(s — g(s)ds H
t

< sup (T —0)'"Plls > SG = )g@) -1 < TPy )lelyo.r:x0
1€[0,T]
using (2.3), where y (S) is the y-bound of {S(¢) : t € [0, T]}. Similarly the mapping
t— ftT S(s — 1)V (s)dW(s) is seen to belong to C([0, T']; L?(2; X)). Indeed for
adapted X-valued step processes V, which are dense in Lg (2,y(0,T; X)), the
mapping ¢ > ftT S(s — 1)V (s) dW(s) is continuous and satisfies

T
sup Hm—>[ S(s—t)V(s)dW(s)‘
t€l0,T] t

LP(2:X)

Spx sup s = S =DV Lr@iya@—1:%) < YOIV ey 0.7:x)
+€[0,T]

using Theorem 2.11. O

From the proof we see that U is in L?(2; C([0, T]; X)) if and only if ¢
ftT Sis—1)V(s)dW(s)isin LP(2; C([0, T]; X)), but the latter is not to be expected
unless we make additional conditions implying maximal estimates for stochastic
convolutions (such as in [35, Section 4]).

3.1 TheCase A=0, f(t,w,x,y) = f(t,w)

We begin by considering the problem

: dU(t) = f(t)de + V(@)dW (), te€][0,T], 3.0)

U(T) =ur,

assuming (H1)—(H3) as well as
(H6)' f defines an element of L5 (2 y (0, T; X)).
We comment on this assumption in Remark 3.4 below. Even though (3.1) is a special
case of the problem (3.5) considered in the next subsection, it is instructive to treat
it separately.

Following the ideas of [25] we define the X-valued process M by

M) = E(uT - /OT 7(s) ds‘ﬁﬂ).
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By [32, Theorems 4.7, 5.13] this is a continuous L”-martingale with respect to I in
X and there exists a unique V € Lg (2; ¥ (0, T; X)) such that

t
M) =M(Q) —I—/ Vdw. 3.2)
0

By [32, Theorems 4.5, 5.12] and the observations in Sect.2.2 combined with
Lemma 2.10, both M and the F-adapted process

t
U(t) := M(t)+/ £(s)ds (3.3)
0

belong to Lg(Q; y(0,T; X)).

Proposition 3.3 Let (HI)—(H3) and (H6)' be satisfied. Then the problem (3.1)
admits a unique mild LP-solution (U, V). It is given by the pair constructed in (3.2)
and (3.3).

Proof Let U and V be defined by (3.2) and (3.3). We have already checked that U
and V belong to Lg(Q; y (0, T; X)). To show that (U, V) is an LP-solution, note
that

T T
U(t)—i—/ f(s)ds—i—f Vdaw
t t
t T
= (M@ + [ roras)+ [ o+ - mw)
t

T
=/ £(s)ds + M(T)
0
T T
Z/ f(s)ds+(uT—/ f(s)ds)
0 0
=ur.

Concerning uniqueness, suppose ((7 , V) is another L”-solution. Then
~ T ~
U(t)—U(t)—i—/ (V=-V)dW=0 Vvrel0,T] (3.4)
t

Taking conditional expectations with respect to .%; it follows that U H-U@) =0,
where we used [32, Proposition 4.3] to see that the conditional expectation of the
stochastic integral vanishes. Uniqueness of V is already implicit in the uniqueness

part of (3.2). It also follows from (3.4), where U=U gives ftT(V —V)dw =0
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for all t+ € [0, T]. Taking + = 0 and taking L”-means, using [32, Theorem 3.5] it
follows that

T
~ v p
IV = Vlir@:yo.1:x) ~p.x ]EH f V- V)dWH =0
0

and therefore V = V in LP(Q2;y(0,T; X)). |
Remark 3.4 The reader may check that, mutatis mutandis, Proposition 3.3 admits a
version when (H6)' is replaced by the simpler condition f € LHI; (2 L0, T: X)).
That the integral in (3.3) defines an element of Lg (2; (0, T; X)) then follows from
[16, Proposition 9.7.1] . The motivation for the present formulation of (H6)' is that

it is a special case of the assumption (H6) needed in the final section where mixed
LP-L" conditions do not seem to work.

3.2 TheCase f(t,w,x,y) = f(t,w)

We now consider the problem

: dU(@t)+ AU@)dt = f(t)de + V(£)dW(), te][0,T], 35)

U(T) =ur,
assuming (H1)—(H4) and (H6)'. Our proof of the well-posedness of the prob-
lem (3.5) relies on the following lemma, where s and o denote two time variables;

the dependence on w is suppressed. To give a meaning to the expression in the
second condition below we recall from (2.2) the isomorphism of Banach spaces

v, T; LP(Q:Y)) =) LP(Q2; ¥ (0, T; Y)).
This isomorphism allows us to interpret, in condition (2) below, k as an element of
y(0,T; Lg(2; v (0, T; X))).

Lemma 3.5 Let (HI), (H2), and (H6) be satisfied. There exists a unique k €
Lg (; y(0,T; y(0, T; X))) satisfying the following conditions:

(1) almost surely, k is supported on the set {(s,0) € [0, T] x [0, T]: o < s},
(2) foralmost all s € [0, T] we have

F8)=Ef(s) + / ks, o) dW(o) in LP(2; X);
0
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(3) we have the estimate

Ikl e iy ©,7:70.1:3)) Sp.x 1flLr:y0,7:3))-

The precise meaning of condition (1) is that for almost all w € 2, the operator
k(w) € y(0,T; y(0, T; X)) vanishes on all f € L>(0, T) ® L*(0, T), which, as
functions on (0, T) x (0, T), are supported on the set {(s,0) € (0,T) x [0,T] :
o > s}

Proof Since by assumption f € Lg (€2; y(0,T; X)), we may pick a sequence of
adapted step processes { f,};2 | such that f;, — f in LP(Q;y(0,T; X))) asn —
oo. For each n > 1 we then may write

Ny—1
fas @)= Ay (ki (@)
i=0
where {0, ts,1, -+ , ta,nN, } 1S a partition of [0, T'] and the random variables §, ; €

LP(2; X) are strongly .%;, ,-measurable. By [32, Theorem 3.5] there exist k,; €
LE(S2: v (0, i3 X)) such that

In,i
Eni = E&, -I-/ kni dW.
0

In what follows we will identify k, ; with elements of Lg (2; (0, T; X)) in the
natural way. Put

Ny—1

k(5. 0) ==Y Ly 1010 (0,1, (@ Vn i (0).
=0

Each k,, satisfies the support condition of (1) and
\)

Fuls) = Efu(s) + / k(s 0) AW (0). (3.6)
0

Choose an orthonormal basis {h;};>1 for L%(0, T) and let {y]f}j>1 be a Gaussian

sequence on an independent probability space (2, P’). Then, by [16, Theorem
9.1.17], the Itd isomorphism of Theorem 2.11, and the stochastic Fubini theorem
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(see, e.g., [31]) and keeping in mind the support properties, we have

s = uls, ) = KanCs, ')Hﬁ(o,T;LPm;y(o,T;X)»

p

p E . .
LP(2;7(0,T; X))

T
Doyl hi)kn(s.) = ki(s. ) ds‘
0

j>1

T T
:,,,XE/EHZ;/;/O /0 hj(s)(kn(s,a)—km(s,cr))dde(cr)Hp
>

T K p
=EE Z y]{ / hj(s) / (kn(s,0) —ki(s,0))dW (o) ds
izt 70 0
$ )4
=, IEHS > /0 (kn (5, ) — k(5. a))dW(cr)Hy(O’T;X)

=Els = 1) = fu() = () = Efu N0 o 1),
(3.7)

and therefore
|'s = kn(s, ) — ks, ')||V(O’T;LP(Q;V(O’T;X))) Spx 1w = fullLr@iy©.7:x))-

Since {f,,}"ioz1 is a Cauchy sequence in y (0, T; L?(2; X)), the estimate (3.7)
implies that {k,l};’l‘;1 is a Cauchy sequence in y (0, T; LP(2; y(0, T; X))). Let
ke yOT; LP(R2;¥(0,T; X)) =~ LP(2;y(0,T; y(,T; X))) be its limit. By
adaptedness of the k, we have Lg (; 70, T; y(0,T; X))), and by passing to the
limit n — oo in (3.6), assertions (1) and (2) are obtained.

Similar to (3.7) we have

s = kn(s, )y ,7:20y0.7:%)) Sp.x | fully©,7:070:%))- (3.8)

Letting n — oo in (3.8) we obtain assertion (3). |

Proposition 3.6 Let (HI)—(H5) and (H6)' be satisfied and assume in addition that
X has the upper contraction property. Then the problem (3.5) admits a unique mild
LP-solution (U, V).

Proof We extend the argument of [14] to the UMD setting. As in Sect.3.1,
by martingale representation in UMD spaces there is a unique element ¢ €
LZ(2; ¥(0, T; X)) such that forall 7 € [0, T,

t
E(ur|%#:) = Eur ~|—/ ¢ dW in L?(Q2; X). 3.9
0
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Put

T
U@) = ]E(S(T — Duy — f S(s — 1) f(s)ds ‘ %).

t

Letk € Lg (2; (0, T; y(0,T; X))) be the kernel obtained from Lemma 3.5. Then
for almost all s € [0, T'] we have

f(s) =Ef(s) +/‘ k(s, o) dW (o). (3.10)
0

By (3.9) (applied to t and 7" and subtracting the results),

T
ur — E(ur|.%,) = / b dwW. G.11)
t
The definition of U, together with (3.10) and (3.11), implies that
T s
U(t) = B(S(T — Dur|Fp) — (/ S(s — t)(Ef(s) +/ k(s, U)dW(a)) ’3@) ds

t 0

T t
— S(T — OE@ur| %) —/ S(s — t)(IEf(s) +/ k(s, a)dW(a)) ds

t 0

T T K
=S(T—t)<uT —/ ¢dW) —/ S(s—t)(f(s)—/ k(s,a)dW(a)) ds.
t t t
(3.12)

We will analyse the two terms on the right-hand side separately.

Since by assumption {S(¢) : t € [0, T]} is y-bounded, we may apply the Kalton-
Weis multiplier theorem [16, Theorem 9.5.1] to see that ¢ — S(T — #)[Eur defines
an element of L?(2, y(0, T; X)). By Lemma 2.10 it then defines an element of
Lg (2,0, T; X)). Also, by [32, Theorem 4.5], ¢ ftT ¢ dW defines an element
of LP(2,y(0,T; X)), and by another appeal to y-boundedness, the same is true
for

T
t > S(T—t)f $dw.
t

By Lemma 2.10 this mapping defines an element of Lg(Q, y(0, T; X)).
We now turn to the second term in the right-hand side of (3.12) and consider the
two terms in the integral separately. For the first term we observe that

T
tr—)/ S(s—1)f(s)ds
t
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belongs to L”(2; (0, T; X)) by Lemma 2.6(1). Turning to the second term in the
integral, to see that the mapping

T s
t— / S(s — t)/ k(s,0)dW(o)ds
t t

defines an element of L”(2; y (0, T; X)) we apply the stochastic Fubini theorem,
the isomorphism L”(2; y(0,T; X)) =~ y(0,T; LP(2; X)), Theorem 2.11, the
isomorphism once more, Lemma 2.6(2), the Kalton—Weis multiplier theorem, and
the upper contraction property. This leads to the estimate

T s
t— S(s —t k(s,o)dW (o ds’
H .[ ( )l 5. 0) @ LP(2;y(0,T;X))

_ Ht N /tT /GT S(s — t)k(s, o) ds dW(U)HLp(Q;y(O,T;X))

T T
<px |1 /t /G S6 -k sdW@|

T
~p.X Hf = [" ~ /J S _t)k(s’a)ds] Hy(O,T;LP(Q;y(O,T;X)))

T
=, x| Lycg)S(@—1) | S(s — o)k(s, dA]
p.X H e ["'_) (1<0)5( )/g e | P oy

T
<y(9)|t S(s —o)k(s,o)d
¥e )H ~ [a '—)-/1‘7 (8 = ki, o) S] LP(2;y(0,T;y(0,T;X)))

T
=72, an—)/ S(s —o)k(s,o)ds
)/( )H o ( ) ( ) HLP(Q;;/(O,T;X)))

Spox TV(S)2||k||LP(Q;y(A;X))»

~p.x Ty (211N Lr(©:y (0.7:70.7: X))-
(3.13)

Collecting what has been proved, it follows that U € Lg(Q; y(0,T; X)), the
adaptedness of U being a consequence of Lemma 2.10 and the representation given
by the first identity in (3.12).

By the stochastic Fubini theorem,

T T
Ult)=S(T —tur — / S —1)f(s)ds — / S(T —t)p(o)dW (o)
t t
T /T
+/ / S(s —t)k(s,0)ds dW (o)
t o

T T
= S(T — Hur — f S(s — 1) f(s)ds — / S(o — 1)V (o) dW (o),
t

t
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where
T
o V(o) :=8T —o)p(o) +/ S(s —o)k(s,o)ds (3.14)

is F-adapted. It remains to be checked that the process V defines an element of
Lg (€2; y(0, T; X)). This can be done by repeating the arguments which showed the
corresponding result for U.

Next we prove the uniqueness of the solution. The proof is very similar to the one
for A = 0. Suppose (U V) is another L”-solution to (3.5). Then from the definition
of the mild solution to (3.5), we find that

T
U@t) —U(t) +/ S(s —1)(V(s) — V(s))dW(s) = 0 (3.15)
t

for all ¢ € [0, T] By taking conditional expectations with respect to .%; for (3.15),
we see that T (1) — U(t) = 0. Thus [" S(s — 1)(V(s) — V() dW(s) = 0 for all
t € [0, T]. Taking L?-means, using [32, Theorem 3.5] it follows that

~ T ~
ISC =0T O~ VO w0730 X EH /t St —1)(V(s) = V(s)) dW(s) HP -

Hence, for any ¢ € [0, T'], in L?(2; y (¢, T; X)) we obtain the equality
SC=nV(O) =SC=nV().

To deduce from this that V = V in LP(Q2; y(0,T; X)) we argue pathwise and
prove thatif v € y (0, T) satisfies S(- —#)v(-) = 0in y (¢, T) forall t € [0, T], then
v =0.Fix aninteger N > 1 and set#; = jT/N for j = 0,1, ..., N. Multiplying
the identity S(- — t;)v(-) = 0 by S(tj41 — (- — t;)) on I; := [¢t}, tj41] it follows
that S(T/N)v(-) = 0 as an element of y(¢j,7j41; X), j = 0,1,..., N — 1, and
therefore S(T/N)v(-) = 0 as an element of y (0, T; X). Now we can apply [16,
Proposition 9.4.6] to deduce that v = 0 as an element of y (0, T'; X). m]

3.3 The General Case

In the final section we consider the problem

dU(t) + AU@t)dt = f(t,U(@t), V(@)dt + V()dW (), ¢t e][0,T],

U(T)=ur,
(3.16)

under the assumptions (H1)—(H6).
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Theorem 3.7 Let (HI)-(H6) be satisfied and assume in addition that X has the
upper contraction property. Then the problem (3.16) admits a unique mild LP-
solution (U, V).

Proof Following the ideas of [25] the existence proof proceeds by a Picard iteration
argument, where the existence and uniqueness in each iteration follows from the
well-posedness of the problem (3.5) considered in the previous subsection.

Step 1  In this step we prove the existence of an L”-solution on the interval I5 :=
[T — 48, T]foré € (0, T) small enough.

Set Up = 0 and Vy = 0 and define the pair (U, +1, Va+1) € Lﬁ(Q; y(Is; X)) x
Lg (2; y (I5; X)) inductively as the unique mild L?-solution of the problem

dU@t) = —AU@) dt + £, Un(@®), Vo)) dt + V() dW (), t € I,
U(T) = ur.

Note that at each iteration the function ¢t — g,(¢t) := f(t, U,(¢t), V,,(t)) defines an
element of Lg (2; y(Is; X)) by (H6) with norm

el @iy sy S CA MU L2 @iy tzix0) F IVall iy 5ix))
with a constant C > 0 independent of U,, and V,,. By Proposition 3.6,
1Uy — UO”Lg(Q;y(Ia;X)) = ”Ul”Lg(Q;y(Ia;X)) < C(”gO”Lg(Q;y(lg;X)) + ”uT”LP(Q;X)),
Vi - VO”L[];(Q;)/(IS;X)) = ||V1||L§(Q;y(15;x)) < C(Ilgolng(Q;y(IS;X)) + ”uT”LP(Q;X));

where C > 0 is a constant independent of f and ur.
Forn > 1, by (3.12) we can estimate

1Un+1 — U"”Lg(Q;y(Ia;X))

T
<[ / S(s — 1)(gn(s) — gu_1(s)) ds
t

LE(Qy Us; X))

T K
+Hm—>[ S(s—t)/ (kn(s,a)—kn,l(s,a))dW(a)ds‘
t t

Ly (I5: X))

=)+ UI).
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We estimate these terms separately. To estimate (I) we use Lemma 2.6(1) with [0, T']
replaced by Is:

LP(Qsy(Is; X))

0 = /tT S(s = 1)(8n(s) — gn1(5)) ds|

8y (Sllgn — gn—1llLr(:y s x))

NN

Léy(S)NUp — Up—1 ”LEE(Q;)/(IS;X)) +11Vn — Vn71||LEIZ(Q;y(15;X)))v

where y (S) is the y-bound of {S(¢) : ¢ € [0, T]} and L the Lipschitz constant in
(H6). To estimate (IT) we proceed as in (3.13), again with [0, T'] replaced by Is:

T K
(I1) = Hm—>/ S(s—t)/ (kn (s, a)—kn,l(s,a))dW(o—)ds‘
t t

LP(S;y(1s;X))

T
S(s — 0)(kn (s, ) — kn_1 (5, ) ds)

<8y )0 Hf

o LP(Q:y (Is: X))

1/2
= 8"y () Vart = Vall 22y 150

using (3.10) and (3.14) in the last step. Moreover, by Lemmas 2.6(2) and 2.9,
and 3.5,

Vot = Vall L2 @iy (100
<82y () lkn = ku—t lLr @y a0
~p.x 82y () lkn — kn—1llLr(@:y sy (15:0))
Spx 877 ()lgn = &1l Ly 5%
=82y (SIf C Un () Va () = £ Unt O Vart D@y )

1/2
< L2y ($)(UNUn = Un-1ll 2y ryixy + 1Va = Vamill12@ipasix0)-

Combining all estimates, we see that, if § is small enough, the sequences (U}, >1
and {V},},>1 converge in L§ (2; y(Is; X)) to limits U and V. It is clear that the pair
(U, V) is an LP-solution on the interval I;.

Step 2 The arguments in Step 1 show that we always obtain a unique mild L”-
solution if § is small enough. Since the estimates involve constants that are
independent of T, &, and ur, the proof may be repeated with I5 replaced by
any interval [T — 2§, T — §]. In this way we can obtain a global existence result
by partitioning [0, 7'] into finitely many such intervals, and successively solving
the backwards equation proceeding ‘from the right to the left’. This gives us
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solutions for the backward equation on each sub-interval, and it is easy to check
that a global solution is obtained by patching together these local solutions.

Step 3 Finally we prove the uniqueness of the solution. The proof is very similar

to the one for A = 0. Suppose (17, \7) is another L”-solution to (3.16). Then
from the definition of the mild solution to (3.16), we find that

T
U@)—-U(@) +/ Sis—H)(V(s) = V(s))dW(s) =0 (3.17)
t
for all + € [0,T]. By taking conditional expectations with respect to %

for (3.17), we see that U (1) — U(1) = 0. Thus [ S¢s — 1)(V — V) dW(s) = 0
for all t € [0, T]. Taking L?-means, using [32, Theorem 3.5] it follows that

T
~ ~ P
1SC =0T =V w07 ~0-X ]EH / S(s =V (s) = V(5)) dW(s) H —0.
13
Hence, for any ¢ € [0, T'], in y (¢, T')) we obtain the equality
SC=DV() =S¢=nV().

As before this proves that V=V. O
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