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Preface
This thesis is written as part of the graduation project for the Computer Simulations for Science and
Engineering (COSSE) master’s program. The research was conducted for the company Tetrahedron
in the period from November 2019 until July 2020.

Tetrahedron is working on a new design for large offshore cranes that can lift higher. This is necessary
due to the increasing size of offshore wind turbines, and the inability of the conventional cranes to
scale up without needing a larger ship that is carrying them. To compute the forces working on the
trusses of the crane structure, Tetrahedron has developed the software program Automatic Crane
Engineer (ACE). Right now the program can already optimize the crosssectional area of the bars,
but the optimization should be extended to include the shape of the structure itself.
The goal of this research is therefore to extend ACE with the necessary functionalities to perform shape
optimization of the cranes. The research to achieve this goal is structured in two phases. In the first
phase, the literature review part [1], the two research questions have been answered: the formulation of
the crane optimization problem is defined and the best optimization methods for this problem have been
chosen and implemented in Python. These are the Interior point method as proposed by Byrd, Hribar
and Nocedal [2] and the Method of moving asymptotes by Krister Svanberg [3]. As a third method, the
Sequential Least Squares Programming method by Dieter Kraft [4] is also tested.

The present report describes the second part of the research. To keep the report selfcontained,
relevant parts of the literature review report are included. In this report, the selected methods are
investigated in more detail and compared with respect to numerical properties and the final results for
the crane optimization.
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during this research project. Thanks for traveling all the way to Heijplaat with me, spending many
hours meeting about the topic, first physically and later on mostly online due to the corona pandemic.
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it was hard to figure out the next steps.

Many thanks to my colleagues from Tetrahedron, especially to Adriaan Sillem. Thank you for helping
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you for all the advice on the report, on the coding, and on the research itself, and thanks for all the
meetings, even every day during the final part of the research.

For the past two years I had the chance to study at both the TU Berlin and TU Delft, and I would like to
thank the coordinators Reinhard Nabben and Kees Vuik for this opportunity and their guidance during
the COSSE program.
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1
Introduction

The demand for wind turbines with a large efficiency in energy generation is increasing. Larger wind
turbines are more efficient, since the power of the wind turbines is directly related to the size of the area
that the blades cover. Next to that, the wind flows more steadily higher up in the atmosphere. That is
why at the moment, offshore wind turbines are being installed with heights up to 230 meters, and the
expectation is that even higher ones will be built in the near future [5].

Figure 1.1: A luffing boom crane on a jackup ship.

To install such a wind turbine, large cranes that can
lift as high as the wind turbine’s height have to be
used. The cranes are transported on jackup ships.
These are ships that can lift themselves out of the
water and stand on their socalled legs, as can
be seen in Figure 1.1. Using such a larger crane
to install the wind turbines with the conventional
luffing boom crane design that is used nowadays,
would mean that also the jackup ship has to be
replaced by a larger one. This is a considerable
additional cost, since a vessel of that size would
cost around 325 million euros. In comparison, an
already existing ship costs around 150million euros
[6].
That is why the company Tetrahedron is working on
a new design for large offshore cranes that can lift
higher, without the need for bigger jackup ships.

This can be seen in Figures 1.4 and 1.5, where the height of the Tetrahedron crane is compared to that
of the traditional luffing boom crane. Since there is no need to buy a new, bigger ship, Tetrahedron
cranes will make it cheaper to install larger offshore wind turbines in the nearby future. This can be
seen in Figure 1.2.

Next to that, in the contemporary offshore industry, if a costumer wants a slightly different crane design,
the engineers spend much time on the design process by doing computations for each tailormade
crane. Since all ships and load cases are different, this is still frequently done in the industry. To speed
up this design process, Tetrahedron has developed the software program Automatic Crane Engineer
(ACE) to compute the forces working on the crane structure and to optimize the crane for specific loads.
ACE is still under development and one of the goals is to extend the optimizationmodule of the program.

The crane is considered to be a truss structure. This means that it consists of bars that are connected to
each other with pins, also called joints. Other examples in structural engineering that can be modeled
as truss structures are bridges and roofs. In the literature on the optimization of truss structures, three

1



2 1. Introduction

Figure 1.2: Comparison of costs for Tetrahedron crane and conventional luffing boom crane for lifting the 230 meters high wind
turbines. By Tetrahedron [6].

types of optimization are considered, separately or in any combination [7–9]. These are size, shape and
topology optimization [10]. Figure 1.3 compares the different types of optimization for truss structures.
For size optimization, the crosssectional area of the truss members is optimized. This is considered
to be the easiest optimization problem since only one scalar variable per truss member is taken as the
design variables, namely the crosssectional area 𝐴. This type of optimization is also already

implemented in ACE.
Shape optimization takes the position of the joints of
the structure as design variables. Since size and shape
optimization are dependent on each other through certain
constraints like buckling, these need to be optimized
simultaneously. This combined shape and size optimization
will be the topic of interest for this thesis project.
Topology optimization optimizes the connectivity of a
socalled ground structure. The ground structure can be
either an area consisting of very small elements, or a truss
structure with many joints and full connectivity between the
joints. Then, these elements are removed to reduce the
weight of the object. For Tetrahedron, the topology of the
crane is already given and even documented in a patent, so
this type of optimization is unnecessary for them.

The literature report that is part of this research [1] describes
the background information on mechanical engineering,
a mathematical formulation of the problem and different
optimization methods. The goal of the research is stated,
which is to design a more optimal Tetrahedron crane through
a combined shape and size optimization. From this goal, two
research questions arise:

Figure 1.3: Comparison of shape, size, and topology
optimization of the truss given above [11]

• What is the correct formulation of the crane optimization problem?

• What is the best optimization method to solve this crane optimization problem?

To keep the present report selfcontained, relevant parts of this literature review report are included.
Next to the results of the literature report, the research is extended with more insight into two of the
selected methods:

• The InteriorPoint Method with a trustregion strategy by Byrd, Hribar and Nocedal [2]
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(a) Luffing boom crane in rest
position

(b) Tetrahedron crane in rest
position

(c) Luffing boom crane in lifting
position

(d) Tetrahedron crane in
lifting position

Figure 1.4: Comparison of lifting height and resting position of the luffing boom crane (left) and the Tetrahedron crane (right)

• The Method of Moving Asymptotes by Svanberg [12].

The necessary adaptions to make the methods work smoothly are also explained. The third method
that will be tested is the Sequential Least Squares Programming (SLSQP) method by Kraft [4]. This
is a variant on Sequential Quadratic Programming and this type of method will shortly be discussed
as well, as is done in the literature report. Finally, the results are presented and discussed, and some
recommendations on further research are given.
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Figure 1.5: Comparison in lifting height of a luffing boom crane (left) and the Tetrahedron crane (right), on the same jackup
ship. Clearly, the Tetrahedron crane can install larger wind turbines with the same jackup ship.



2
Crane design and conventions

To analyze the crane mathematically, first some background knowledge about the crane and truss
structures is needed. In this chapter, the structure of the crane and its conventions are explained in
detail.

2.1. Crane design
Tetrahedron’s crane design is found in Figure 2.1 together with its reference axes. The origin of the
axes is the center of the slew platform and is indicated by a red point. The slew platform is the black
circle in the figure and connects the crane to the ship. The crane can rotate around the 𝑧axis on this
slew platform. The elements in black are fixed and can not move. They are constructed around the
jackup leg.
The bluedotted element is called the hoist and controls the movement of the orange elements. This
hoist can be shortened or elongated which moves the top of the crane up and down. The crane lifts
loads that are attached to the crane in the top. The load is indicated in the figure with blue arrows.
The structure is symmetric in the 𝑥𝑧plane. Figures 2.2 and 2.3 explain the names of the different
elements and joints.

Figure 2.1: Design of the Tetrahedron crane

5



6 2. Crane design and conventions

Figure 2.2: Elements and nodes of the crane

2.2. Statics of truss structures
The elements of the truss structure are considered to be bars, which are subjected only to axial load,
that is, tensile and compressive forces. This is different from beams, which can also be subjected to
torsion or bending moments [13]. The force 𝜆𝑏 in bar 𝑏 is related to its stress 𝜎𝑏 by the crosssectional
area 𝐴𝑏 as

𝜆𝑏
𝐴𝑏

= 𝜎𝑏 .

If the stresses in the bars become too large, this can lead to structural failure. In the case of compressive
forces, the phenomenon of buckling has to be evaded. Buckling means that the compressive forces on
the bars are so large that the bar deforms laterally. This happens for forces larger than Euler’s critical
load 𝐹𝐸.

If a bar is under tension, the stress should not exceed the yield strength 𝜎yield. This indicates the
transition from elastic to plastic deformation, such that any force larger than the yield strength will
deform the bar permanently, which should by all means be avoided. The yield strength depends on
the type of material of the bar. For different types of steel, the yield strength ranges between 250 and
1650 MPa [14].

2.3. Design space
The design is subject to specific features of the crane andmechanical properties. Together these define
the amount of freedom in the design variables. The set of all these features is called the design space.
The constraints of the optimization problem will follow from this design space.
Next to the mechanical constraints that are discussed in the previous subsection, certain practical
constraints emerge due to for example the ship size and the load shape that have to bemaintained. This
will influence the degrees of freedom of the positions of the joints as well. These practical constraints
will be listed here and are elaborated upon in Chapter 3, and they will be supported with schematic
drawings of the crane and the ship.

We distinguish three different crane positions that are of interest for the design space. The first is
the lowest position when the crane is not being used and the ship can move, the second is the highest
position, at which the crane can move objects on the ship deck. The third position that is of interest is
the design point of the crane. This is a given height and hoist radius at which the crane should be able
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Figure 2.3: Elements and nodes in the base frame

to lift a certain load. The hoist radius is the distance in the 𝑥axis from the Tetrahedron top to the origin
of the crane.

Constraints in the lowest crane position

• In its lowest position, the boom of the crane should be in a horizontal position such that transport
and maintenance is easy. This can be seen in Figure 2.7.

• The hoist of the crane should not extend such that the jib of the crane will touch the mast, see
Figure 3.5.

• The crane will be in its lowest position when the ship is moving. In this case, the structure of the
base frame should not have its center of weight too high, or else the ship might not be able to
drive safely.

Constraints in the highest crane position

• Here, the crane is defined by a minimum hoist radius at which the crane can lift loads from the
deck of the ship.

• There is a minimum clearance between the jib heel and mast top, because the hoist is not able
to completely roll up, see Figure 3.5.

• In this highest position, the jib should not touch the mast of the crane as well.

Constraints on the design point

• The hoist radius, height and load that should be lifted are given. For this position and load, the
stresses in the bars should not exceed the yield stress or Euler’s critical load.

• The load might also be slightly skewed during lifting due to wind which has to be taken into
account. A movement under an angle in the 𝑥𝑧plane is called an offlead, see Figure 2.4c.
Similarly, if the load is skewed in the 𝑦𝑧plane, it is called sidelead.

• To control the stresses in the edges under a side lead, the pendants should have a minimal
tension on them. This way, the horizontal component of the forces can be handled better, and
the crane will not fall over as soon as the maximum side lead is exceeded.

• There should be space between the crane and the hoist that lifts the load, such that the attached
object does not collide with the crane. This distance is called the boom clearance. This is also
given. See Figure 2.4a.
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(a) The minimal boom clearance is marked in
orange. The vertical dotted line shows the load
height and the horizontal dotted line the actual

boom clearance.

(b) The overturning moment 𝑀𝑜 is the moment
of the slew platform around the 𝑦axis. It is the
sum of the moment of the load and the moment
of the weight of the structure around this point.

(c) Load on the Tetrahedron crane in the
𝑥𝑧plane, with an offlead of angle 𝛾. Similarly,
the sidelead is an angle of the vertical load in

the 𝑦𝑧plane.

Figure 2.4: Schematic drawings of the 𝑥𝑧plane of the Tetrahedron crane with a load, showing the minimal boom clearance, the
overturning moment and the offlead angle.

Figure 2.5: Conventional crane on a jackupship
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Figure 2.6: Schematic drawing of the 𝑥𝑦plane at the ship deck. The crane is shown in orange, and the other highlighted object
in green is the other leg of the jackup ship. The black arrow indicates the maximum safe distance 𝑑𝑚𝑎𝑥.

• The moment at the origin of the crane around the 𝑦axis, should not be too large, or the bearing
would break. This moment is called the overturning moment, and its maximum is named the slew
bearing moment. See Figure 2.4b.

Constraints in all positions

• The length of the boom of the crane should not be much bigger than the size of the ship it is
located on. In Figures 2.1 and 2.5 it can be seen that the lengths of the booms are about as long
as the ships for example.

• Since the crane is fixed around one of the legs of the jackup ship, the position of the support
elements is fixed on the crane slew platform. This also implies that the bars of the structure
should be constructed around the leg without touching it. This can be seen in Figure 3.3.

• The other jackup legs limit the distance of the joints from the origin. The crane will simply not fit on
the boat if this limit is exceeded. This is of concern for the hinges of the structure. The distance to
the other legs can be seen for a conventional crane in Figure 2.5, and for the Tetrahedron crane
in Figure 2.6.

• There is a symmetry in the 𝑥𝑧plane for the nodal positions and the crosssectional areas of the
bars, when the crane is not loaded.This can be seen in figure 2.2. The forces in the bars do not
have to be symmetrical however, since the load on the crane can be applied under an angle as
well. Therefore the displacement can also be asymmetric.

• The trusses cannot cross each other. This is the case for every truss structure, but here it mainly
applies to the Tetrahedron heel and the mast top, see Figure 2.3.
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Figure 2.7: Tetrahedron crane as seen in the xzplane with angle 𝜃 from the horizontal position.



3
Mathematical formulation

In this chapter, the optimization problem as explained in Chapter 2 will be translated to a mathematical
formulation. The problem that arises will be a constrained continuous optimization problem. The most
generic formulation for this type of problem can be described as follows:

minimize 𝑓(𝒙)
subject to ℎ(𝒙) = 0

𝑔(𝒙) ≤ 0, (3.1)

where 𝑓 ∶ ℝ𝑛 → ℝ, ℎ∶ ℝ𝑛 → ℝ𝑡, 𝑔∶ ℝ𝑛 → ℝ𝑚, 𝒙 is the vector of design variables, 𝑓(𝒙) is the objective
function , ℎ(𝒙) is the function of equality constraints, and 𝑔(𝒙) is the function of inequality constraints.

The goal of the optimization procedure is to determine the optimal position of the joints of the crane
structure and the optimal thickness of the bars. The set of all design variables is therefore defined as

𝒙 = 𝒩 ∪ {𝐴𝑏 ∣ 𝑏 ∈ ℬ},

where𝒩 is the set of all joints 𝒏, 𝐴𝑏 is the crosssectional area of bar 𝑏, and ℬ is the set of bars in the
structure. These can be described in terms of the joints, for example {𝒏heel, 𝒏top} ∈ ℬ defines the bar
𝑏jib, see Figure 2.2.

The Tetrahedron crane consists of 10 joints and 16 bars, so without taking the boundary conditions
and constraints into account, there would be 3 ⋅ 10+ 16 = 46 design variables. The crane is optimized
in the design point, which is a given height and hoist radius at which the crane should be able to lift a
given load. Therefore, the Tetrahedron top node is fixed. Next to that, the height of the slew platform
is given. This means that the 𝑧coordinate of the supports is also fixed, and not a design variable.
Because of symmetry, the 4 nodes in the 𝑥𝑧plane have a fixed 𝑦coordinate at 0. Similarly, the 6 bars
that lay outside the 𝑥𝑧plane have a symmetric counterpart and only one of the two has to be taken as
a design variable. This reduces the total amount of design variables to 12 variable nodal positions and
10 crosssectional areas.

3.1. Direct stiffness method
To compute the constraints on the stresses from the forces on the crane, the direct stiffness method
is used. This method, which is a special variant of the finite element method [15], computes the
displacement 𝒖 of the nodes in all directions, corresponding with the load case 𝐹. For a truss structure
with 𝑙 directions of displacement, it derives the stiffness equation

𝐾𝒖 = 𝐹,

where 𝐾∈ ℝ𝑙,𝑙 is the stiffness matrix, 𝒖∈ ℝ𝑙 the displacement vector and 𝐹∈ ℝ𝑙 the load vector.

11



12 3. Mathematical formulation

For the crane, the load vector is constructed from three types of loads, namely the weight of the
crane itself called the deadweight, the weight of the object that is lifted, called the external force
𝐹𝑒𝑥𝑡 ∈ ℝ, and the force of the additional masses that are attached to the structure. The additional
masses and external weight are given, but the deadweight is dependent on the shape of the structure
and is therefore updated during the optimization.
As mentioned in Section 2.3, the external force 𝐹𝑒𝑥𝑡 might be under a small angle 𝛾 due to diverse
external conditions, for example the wind. This is called the offlead and/or sidelead angle. In this
case, the force is not fully in the 𝑧direction, but has an additional force in the 𝑥 and 𝑦direction, as can
be seen in Figure 2.4c. The forces on the load node 𝐹𝐿 ∈ ℝ3 that derive from the external forces are
then equal to

𝐹𝐿 = [
−𝐹𝑒𝑥𝑡 ⋅ sin(𝛾offlead)
𝐹𝑒𝑥𝑡 ⋅ sin(𝛾sidelead)

−𝐹𝑒𝑥𝑡
] ,

where 𝛾sidelead is the sidelead angle, and 𝛾offlead the offlead angle.

The stiffness matrix is derived by assembling socalled local stiffness matrices of all bars. The local
stiffness matrix in a onedimensional bar 𝐾𝑏 ∈ ℝ2,2 is dependent on the length 𝐿𝑏 of the bar, Young’s
modulus 𝐸𝑏 and the crosssectional area 𝐴𝑏 of the bar:

𝐾𝑏 =
𝐸𝑏𝐴𝑏
𝐿𝑏

[ 1 −1
−1 1 ] .

The length 𝐿𝑏 is found as the Euclidean distance of the nodes at the ends of the bar, i.e.

𝐿𝑏 = ‖𝒏𝑏2 − 𝒏𝑏1‖2,

where 𝒏𝑏1 is considered the node at the starting point of bar 𝑏 and 𝒏𝑏2 is the node at the end point of
the bar. The choice of which node is the starting or end point, does not matter, as long at it is used
consistently during the computation of the stiffness matrix.
The translation from a onedimensional bar to the threedimensional space is then donewith a transformation
matrix 𝑇𝑏∈ ℝ6,2 that depends on the local basis vector. The local basis vector 𝒄𝑏∈ ℝ3 is the unit vector

𝒄𝑏 =
𝒏𝑏2 − 𝒏𝑏1

𝐿𝑏
of the bar. The transformation matrix is then given as

𝑇𝑏 = [
𝒄𝑏 0
0 𝒄𝑏] .

The local stiffness matrix for the bar in the 3dimensional space 𝐾𝑙𝑏 ∈ ℝ6,6 is then

𝐾𝑙𝑏 = 𝑇𝑏 𝐾𝑏 𝑇𝑇𝑏 =
𝐸𝑏𝐴𝑏
𝐿𝑏

[ 𝑆𝑏 −𝑆𝑏
−𝑆𝑏 𝑆𝑏 ] ,

where 𝑆𝑏= 𝒄𝑏𝒄𝑇𝑏 ∈ ℝ3,3 is part of the block matrix 𝐾𝑙𝑏.
The global stiffness matrix 𝐾 is then found by the summation of all contributions 𝐾𝑙𝑏 of the different
trusses.

If 𝐾 is invertible, we can directly calculate the displacements. However, this is often not possible and
a reduction of the matrix is necessary. This is because the nodes that are fixed are still included in the
matrix. Since these displacements are always 0, the rows and columns corresponding to these nodes
have to be removed. Then, the forces in the bars 𝜆𝑏 can easily be computed with the displacement of
the joints of the bar as

𝜆𝑏 =
𝐴𝑏𝐸𝑏
𝐿𝑏

𝒄𝑇𝑏(𝒖𝑏2 − 𝒖𝑏1).

where 𝒖𝑏1 ∈ ℝ3 and 𝒖𝑏2 ∈ ℝ3 correspond to the displacement at the start and end joint of the truss,
respectively.
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Figure 3.1: Schematic drawing of the 𝑥𝑦plane where elements of the crane are constructed around the jackup leg

3.2. Objective function
The objective is the minimization of the mass of the structure. This will influence the cost of building
the structure. The objective function can therefore be denoted as

𝑓(𝒙) = ∑
𝑏∈ℬ

𝐴𝑏𝐿𝑏(𝒏)𝜌𝑏 , (3.2)

where 𝜌𝑏 is the density of the material, 𝐴𝑏 is the crosssection and 𝐿𝑏 is the length of bar 𝑏, which
depends on the nodes 𝒏. The nodes and the crosssectional area of the bars are the design variables.
The values for 𝜌𝑏 for each bar will be input parameters.
The objective function can be extended with other properties with different weight factors, for example,
overturning moment, compliance and price of the materials.

3.3. Constraints
The constraints define the feasible set in which an optimal solution can be found. They are derived from
the design space and the mechanical properties that are described in Chapter 2. Instead of rewriting
all equations to the form given in Formula (3.1), the equations are denoted such that their meaning
is evident. Some of the properties of the crane translate to upper and/or lower bounds of the design
variables, while others imply an inequality constraint. First, the inequality constraints will be explained
and then the boundary values. Since there are many inequality constraints, they are categorized and
explained in different subsections.

Constraints on stresses
For each bar, we have two inequality constraints as a result of the force limits, one for tensile forces
and one for compressive forces. We use the convention that a positive force denotes tension and a
negative force compression.

As described in Section 2.2, a compressive force should not exceed the critical load. This critical
load of the bar, or Euler’s critical load, is described by the equation

𝐹𝐸 =
𝜋2𝐸𝐼
(𝑘𝐿)2 ,

where 𝐿 is the bar length, 𝐸 is Young’s modulus and 𝐼 is the crosssectional moment of inertia [13].
The effective length factor 𝑘 is determined by the boundary conditions. For pin ends on both sides of
the truss we know 𝑘 = 1.0. This case will be used for truss structures. Young’s modulus is a material
dependent property that describes the stiffness of a material. It holds that 𝐼 = ∫𝑟∈𝐴 𝑟2𝑑𝐴. Here 𝐴 is the
crosssectional area. This shows that the critical load depends only on the geometry of the bar and the
stiffness of the material [14].
To model this value of 𝐼, the crosssectional shape of the bars are assumed to be annuli with thickness
𝑅  𝑟, see Figure 3.2. The area moment of inertia for this type of shape is equal to

𝐼 = 𝜋
4 (𝑅

4 − 𝑟4) .
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Figure 3.2: Annulus shape of the crosssectional shape of the bars.

If we set 𝛼𝑟 = 𝑅, where 𝛼 ∈ (0, 1), we derive the formula

𝐼(𝐴) = 𝐴2
4𝜋 ⋅

1 + 𝛼2
1 − 𝛼2 , (3.3)

where 𝐼 is dependent on the crosssectional area 𝐴. Reasonable values for 𝛼 for the crane structures
are between 0.95 and 0.99.

Since we derive the stresses in the bars from the displacements, we compute the stress belonging
to the Euler force. As described in Section 2.2, these are

|𝜎𝑏| ≤ {
𝜎yield if 𝜎𝑏 ≥ 0
𝜎𝐸 =

𝐹𝐸
𝐴𝑏
= 𝜋2𝐸𝐼

(𝑘𝐿𝑏)2𝐴𝑏
if 𝜎𝑏 < 0.

(3.4)

Another constraint on the stresses in the pendants is imposed, to reduce the effect that the side lead
can have on the structures’ forces. This is can be stated as

𝜎pendants ≥ 𝜎𝑚𝑖𝑛pendants. (3.5)

For a maximum side lead of 3 degrees, this minimum pendant stress 𝜎𝑚𝑖𝑛pendants in the design point for
the Tetrahedron crane is equal to 6.81 ⋅ 106 Nm.

Constraints on supports
Another inequality constraint comes from the supports on the slew platform. Their position in the
𝑥𝑦plane is bounded between the outer radius of the slew platform and the radius of the leg, see
Figure 3.3. It follows that

𝑟leg + 𝑟𝑏 ≤ ‖(𝑛𝑥 , 𝑛𝑦)‖2 ≤ 𝑟platform − 𝑟𝑏 for all supports. (3.6)

Here, 𝑟𝑏 is the radius of the bar which follows from the crosssectional area as

𝑟𝑏 = √
𝐴𝑏

𝜋 ⋅ (1 − 𝛼2) .

Constraint on slew bearing moment
The moment of the crane around the 𝑦axis in the center of the slew bearing should not be too big, or
the crane would fall over. This is called the overturning moment 𝑀𝑜. As can be seen in Figure 2.4b, it
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Figure 3.3: Schematic drawing of the 𝑥𝑦plane at the slew platform(𝑧 = 0). The brown circle represents the leg, the large grey
circle the slew platform, and the smaller grey circles represent the bars

is the sum of the moment that derives from the center of mass of the structure, and the moment of the
load. It can be computed as

𝑀𝑜 = 𝑛top𝑥 ⋅ 𝐹𝑙𝑜𝑎𝑑 + 𝑥center of mass ⋅ 𝑀 ⋅ 9.81,
where 𝑥center of mass is the 𝑥component of the center of mass and 𝑀 is the total weight of the structure,
the socalled deadweight.
For the Tetrahedron design, the maximum slew bearing moment 𝑀𝑚𝑎𝑥𝑜 is equal to 6.55 ⋅ 108 Nm, so
the constraint on the slew bearing moment is

𝑀𝑜 ≤ 𝑀𝑚𝑎𝑥𝑜 = 6.55 ⋅ 108Nm. (3.7)

Constraint on the base frame height
The height of the base frame is limited, because if there is too much weight located high up the ship
and the ship rolls due to waves, it might fall over. Therefore, the 𝑧 component of the center of gravity
of the base frame 𝑧baseframecenter of mass times the weight of this frame is limited by the maximum moment𝑀𝑚𝑎𝑥

𝑧 .
The constraint that derives from this is

𝑧baseframecenter of mass ⋅ 𝑀baseframe ≤ 𝑀𝑚𝑎𝑥
𝑧 . (3.8)

The center of gravity of the base frame structure is computed by taking the mean of the edges times
its density, crosssectional area and the gravitational constant.

Constraints on jackup leg distance
The elements should not touch the jackup leg which is in the center of the structure, see Figure 3.1.
This means that the distance between the element and the origin in the 𝑥𝑦plane should be greater
than 𝑟leg. The shortest distance from a line between the points (𝑥1, 𝑦1) and (𝑥2, 𝑦2), to the origin can be
described as

|𝑥2𝑦1 − 𝑦2𝑥1|
√(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2

.

This formula is derived from the formula for the area of a triangle 𝐴 = 1
2𝑏ℎ, where 𝑏 is the length of a

side and ℎ is the perpendicular height of that side to the top. It follows that the constraint should be
|𝑛2𝑥𝑛1𝑦 − 𝑛2𝑦𝑛1𝑥|

√(𝑛2𝑦 − 𝑛1𝑦)
2 + (𝑛2𝑥 − 𝑛1𝑥)

2
− 𝑟𝑏 ≥ 𝑟leg ∀{𝒏1, 𝒏2} ∈ ℬ. (3.9)
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Constraint on hinge distance
For the hinges, another constraint on their position is that they should not touch the other legs of the
ship, see Figure 2.6. The maximum safe distance to the other leg is denoted by 𝑑𝑚𝑎𝑥 which will be
given as an input value. This results in the constraint

√𝑛2𝑥 + 𝑛2𝑦 ≤ 𝑑𝑚𝑎𝑥 . (3.10)

Because of the symmetry constraint on the hinges, it is sufficient to imply this constraint to only one of
the hinge joints.

Constraints on jib and mast distances
The clearance between the jib heel and mast top, see Figure 3.5, can be described as

‖𝒏heel − 𝒏mast_top‖ ≥ 𝑑hoist, (3.11)

where 𝑑hoist is the minimal clearance needed for the hoist.

The boom clearance is the distance between the load and jib in the design point, as shown in Figure
2.4a. Using the ratios of rightangled triangles as shown in Figure 3.4, it is described as

𝑑boom clearance =
‖𝑛heel𝑥 − 𝑛top𝑥 ‖ ⋅ ‖𝑛top𝑧 − ℎload‖

‖𝑛heel𝑧 − 𝑛top𝑧 ‖
, (3.12)

where ℎload indicates the load height. Since the boom clearance has to be larger than the minimal
boom clearance 𝑑boom clearance

𝑚𝑖𝑛 , the constraint on the boom clearance can be written as

𝑑boom clearance ≥ 𝑑boom clearance
𝑚𝑖𝑛 .

Figure 3.4: Figure of the rightangled triangles used in the calculation of the boom clearance.
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Figure 3.5: Schematic drawing of minimal hoist clearance between the heel and mast top

Constraints on the hoist
First of all, the hoist can at most be in a horizontal position, because after that point, the crane will not
be able to lift the jib. This is limited with a constraint that the heel cannot be higher than the mast top.
Therefore, at minimum hoist radius, it should hold that

𝑛heel𝑧 − 𝑛mast_top𝑧 ≤ 0. (3.13)

Next to that, the heel of the Tetrahedron should be in front of the mast bar to physically be able to lift the
crane with the hoist. The distance form a point to line is used again but now slightly different because
it is necessary to know on which side of the line 𝒏heel is

(𝑛heel𝑥 − 𝑛mast_top𝑥 )(𝑛mast_bottom𝑧 − 𝑛mast_top𝑧 ) − (𝑛heel𝑧 − 𝑛mast_top𝑧 )(𝑛mast_bottom𝑥 − 𝑛mast_top𝑥 ) ≥ 0. (3.14)

How the position of the heel is computed for the minimum and maximum hoist radius is explained in
Section 3.4.

3.4. Movement of the crane
Some constraints are not only valid for the design point, but also have to take the movement of the
crane into account. This holds for the constraints in Equations (3.11) and (3.14).
The positions of the heel and the top of the crane during the movement can be described with angle 𝜃,
as can be seen in Figure 2.7. The minimal hoist radius of the crane is given to determine the movement
of the crane. This is the minimal distance from the Tetrahedron top to the origin in the 𝑥direction. Using
this radius, the positions will be described by the angle 𝜃 around the hinges of the crane. The angle 𝜃
for a given hoist radius 𝑟 is described by

𝜃(𝑟) = arccos( 𝑟 − 𝑛hinge𝑥

𝑟𝑚𝑎𝑥 − 𝑛hinge𝑥
) ,

where the jib of the crane is in horizontal position at the max hoist radius 𝑟𝑚𝑎𝑥.
From this angle, the position of the Tetrahedron top can be determined. In the twodimensional case,
this is equal to

𝒏top𝜃 = 𝒏hinge + ‖𝒏hinge − 𝒏topdesign point‖ ⋅ [cos(𝜃)sin(𝜃)] .

In the threedimensional case, a projection to the 𝑥𝑧plane of the coordinates have to bemade. Similarly,
the position of the heel under angle 𝜃 is described by

𝒏heel𝜃 = 𝒏hinge + ‖𝒏hinge − 𝒏heeldesign point‖ ⋅ [cos(𝜃 − 𝜃
heel)

sin(𝜃 − 𝜃heel)] ,
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Figure 3.6: Drawing of the angle 𝜃heel and its related nodes.

where 𝜃heel is the angle between the pendants and the jib spreaders in the 𝑥𝑧plane, see Figure 3.6.

For the optimization problem, the minimal and maximal hoist radius are given. For the constraint for the
heel to be on the right side (see Equation (3.14)), it is sufficient to check the constraint for the minimal
and maximal hoist radius. For the minimal hoist clearance constraint in Equation (3.11), it is sufficient
to check only for the minimal hoist radius.

Note that the load that is given only has to be lifted for a part of the range [0, 𝜃𝑚𝑎𝑥], because the
crane does not have to carry the same load in all positions.

Total number of constraints
To complete this section, the total amount of constraints for the 3dimensional Tetrahedron crane case
is given.
First of all, the stress constraints (3.4) hold for each bar in the structure. Since only either the compressive
or the tensile constraint can hold, these are taken as one constraint on the stresses as

𝟙{𝜎𝑏≥0} ⋅ (𝜎𝑏 − 𝜎yield) + 𝟙{𝜎𝑏<0} ⋅ (−𝜎𝑏 − 𝜎𝐸) ≤ 0. (3.15)

This has to hold for all bars, which means there are 16 constraints of type (3.15). The other stress
constraint (3.5) only applies to the two pendants, and therefore there are in total 18 constraints on the
stresses of the bars.

The constraints on the supports (3.6) of the crane only have to apply to three of the five supports
because of symmetry. Because the norm of a support has both an upper and a lower bound, this results
in a total of 6 constraints on the supports of the Tetrahedron crane.
The constraint (3.9) only has to be applied to the bars that are close to the leg, namely the jib and
mast spreaders, and the front support legs. Again, the symmetric elements do not have to be taken
into account, and therefore there are in total 3 constraints of this type.
The constraint on the hoist (3.14) has to hold at both the maximum and minimum hoist radius, resulting
in 2 constraints in total.
The other inequality constraints (3.7), (3.8),(3.10), (3.11), (3.12) and (3.13) refer to only one bar or
node, or the structure as a whole, and therefore add only 1 more equality constraint. In total, there are
35 constraints. That is far more than the number of design variables, which is 24, as mentioned in the
introduction of this chapter.

3.5. Bounds
Bounds are a special type of constraint that define upper and/or lower limits on the design variables.
Most design varables are implicitly limited by the constraints that are explained in Section 3.3. Only a
few extra bounds can be set according to physical limitations. First of all, joint 𝒏mast top should be on
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the front side of the leg and the hinges cannot touch the leg, therefore

𝑛mast top𝑥 > 𝑟leg
𝑛hinges𝑥 > 𝑟leg
𝑛hinges𝑦 > 𝑟leg.

The other coordinates and also the crosssectional areas of the bars are limited by an upper and a
lower bound that is set large enough to find reasonable solutions. This is necessary since the Method
of moving asymptotes requires upper and lower bounds 𝒙 and 𝒙, see Section 4.4.





4
Nonlinear optimization methods

Different optimization algorithms are described in the literature on truss structure optimization. In
this research, the focus is on the ’classical’ methods for general nonlinear optimization problems as
described by Nocedal and Wright [16], and on the class of methods especially developed for structural
optimization, for example the Method of Moving Asymptotes (MMA).
In the literature report, a general introduction to the penalty and augmented Lagrangian methods,
Sequential Quadratic Programming (SQP) and the InteriorPoint Method (IPM) is given, as well as
to the Method of Moving Asymptotes and the globallyconvergent Method of Moving Asymptotes. A
short introduction to SQP methods and especially the SLSQP method by Kraft [4] will be given. Since
the preliminary research (see [1]) showed that the Method of Moving Asymptotes and the IPM as
implemented by Byrd, Hribar and Nocedal [2] were most promising, these methods will be studied
more indepth here. As an introduction to the Method of Moving Asymptotes, the Convex Linearization
Method (CONLIN) method will be explained.

We do not consider the recent trend of optimization methods based on genetic and evolutionary
algorithms [8, 17]. These are metaheuristic algorithms that are based on physical phenomena, such
as the Teachinglearningbased algorithm, the Firefly algorithm or the Harmony search algorithm (see
[18–20]). However, they do not guarantee convergence to locally optimal solutions [10]. Therefore,
they should only be used when gradientbased algorithms are not available or difficult to obtain due to
noisiness of the problem or nonsmoothness [21].

The methods that will be discussed in this chapter have a similar structure for solving Problem (3.1):

Step 1: Start with initial design variables 𝒙, tolerance 𝜀tol, and the method’s other parameters.
Define optimality measure 𝐸.

Step 2: Construct an (easier to solve) subproblem and solve for the approximate solution 𝒙+.
Step 3: Update 𝒙 ∶= 𝒙+ and parameters accordingly
Step 4: Repeat step 2 and 3 until 𝐸 < 𝜀tol

The optimality measure 𝐸 is a function that checks if the first order optimality conditions are fullfilled.
Therefore, we present the necessary conditions for a point 𝒙 ∈ ℝ𝑛 to be a local optimum. From
the KarushKuhnTucker (KKT) theorem, we know that for a constrained problem (3.1), if there is an
optimum 𝒙∗ that holds certain regularity conditions, the KKT conditions have to be satisfied at that point
[22]. The KarushKuhnTucker conditions that have to hold at the optimum (𝒙∗, 𝝀∗) are

∇𝑥ℒ(𝒙∗, 𝝀∗) = 0 (4.1)
ℎ(𝒙∗) = 0 (4.2)
𝑔(𝒙∗) ≤ 0 (4.3)

(𝝀∗𝑔)
𝑇 𝑔(𝒙∗) = 0 (4.4)

𝝀∗𝒈 ≥ 0. (4.5)

21
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Here, the Lagrangian ℒ(𝒙, 𝝀ℎ , 𝝀𝑔) is defined as

ℒ(𝒙, 𝝀ℎ , 𝝀𝑔) = 𝑓(𝒙) − 𝝀𝑇ℎℎ(𝒙) − 𝝀𝑇𝑔𝑔(𝒙),

where 𝝀𝑔∈ ℝ𝑚 is the vector of the Lagrange multipliers of the inequality constraints, and 𝝀ℎ∈ ℝ𝑡 is
the vector of the Lagrange multipliers of the equality constraints. Most numerical methods try to find
a point that suffices for these conditions. Note that these are only necessary conditions, and do not
imply sufficiency in general.

There are many regularity conditions on 𝒙∗ that can be used for the KKTtheorem to hold, but the
most important and one of the strongest is the Linear independent constraint qualification, which is
stated as follows:

Definition 4.1 (Linear independent constraint qualification) Given the point 𝒙∗ and the active set
𝒜(𝒙∗) = { 𝑖 |𝑔𝑖(𝒙∗) = 0 or ℎ𝑖(𝒙∗) = 0}, then the Linear independent constraint qualification (LICQ)
holds if the set of active constraint gradients {∇𝑔𝑖(𝒙∗), ∇ℎ𝑖(𝒙∗), 𝑖 ∈ 𝒜(𝒙∗)} is linearly independent.

The transpose of the Jacobian matrix of the 𝑡 equality constraints is

𝐴ℎ(𝒙) = [∇ℎ1(𝒙), ∇ℎ2(𝒙), … , ∇ℎ𝑡(𝒙)]

and similarly, 𝐴𝑔(𝒙) is transpose of the Jacobian matrix of the inequality constraints. The assumption
of LICQ implies that the matrices 𝐴𝑔(𝒙), 𝐴ℎ(𝒙) have full rank at the solution point 𝒙∗. If this is not the
case, there are redundant constraints, these can be removed with Gaussian elimination or singular
value decomposition techniques.

As said before, the KKTconditions are used for computing the optimality measure 𝐸. Here, themaximum
of the infinitynorm of the equality equations of the KKTconditions at the currect point 𝒙 is often taken,
which is

𝐸(𝒙) =max (‖∇𝑓(𝒙) + 𝐴ℎ(𝒙)𝝀ℎ + 𝐴𝑔(𝒙)𝝀𝑔‖∞, ‖𝝀
𝑇
𝑔𝑔(𝒙)‖∞, ‖ℎ(𝒙)‖∞) .

This will be applied in the Interiorpoint method that is explained in Section 4.2.

4.1. Sequential Quadratic Programming
For Sequential Quadratic Programming (SQP), the nonlinear problem (3.1) is rewritten to a quadratic
subproblem by a quadratic approximation of the Lagrangian and a linear approximation of the constraints.
This is because exact solution methods exist for these quadratic optimization problems, as well as good
approximate solution methods.
The quadratic subproblem for problem (3.1) is defined as

min
𝒙

𝑓(𝒙𝑘) + ∇𝑓 (𝒙𝑘)𝑇 (𝒙 − 𝒙𝑘) + 12(𝒙 − 𝒙
𝑘)𝑇∇2𝑥𝑥ℒ (𝒙𝑘 , 𝝀𝑘) (𝒙 − 𝒙𝑘)

subject to 𝐴𝑇ℎ(𝒙 − 𝒙𝑘) + ℎ (𝒙𝑘) = 0
𝐴𝑇𝑔(𝒙 − 𝒙𝑘) + 𝑔 (𝒙𝑘) ≤ 0, (4.6)

The choice for these approximations is supported by the KKTconditions, since they can be seen as an
application of the Newton method on the KKTconditions [16].
In the formulation of Subproblem (4.6), the computation of the Hessian ∇2𝑥𝑥ℒ is the most expensive.
Therefore, instead of computing the Hessian, this can also be approximated by a matrix 𝐵𝑘 that is
updated each step. An example of such an approximation is the Broyden–Fletcher–Goldfarb–Shanno
(BFGS)method [16].

The Sequential Least Squares Programming (SLSQP) method a variant on the SQP method, which
will be used in the twodimensional experiments in Chapter 5. For this method, the Hessian of the
Lagrangian is approximated with a damped BFGS method that guarantees the positivedefiniteness of
the approximation [4].
To make computations even less expensive, 𝐵𝑘 is decomposed as 𝐵𝑘 = 𝐿𝑘𝐷𝑘𝐿𝑇𝑘 = 𝐿𝑘𝐷1/2𝑘 (𝐿𝑘𝐷1/2𝑘 )𝑇



4.2. Interiorpoint methods 23

where 𝐿𝑘 is a lower triangular matrix and 𝐷𝑘 a diagonal matrix. This is possible because the updated
𝐵𝑘+1 is always positive definite. Then instead of solving the quadratic subproblem, the linear least
squares subproblem

min𝒅∈ℝ𝑛‖(𝐷𝑘)
1
2 (𝐿𝑘)𝑇𝒅 + (𝐷𝑘)−

1
2 (𝐿𝑘)−1∇𝑓(𝒙𝑘)‖

2
subject to 𝐴𝑇ℎ𝒅 + ℎ(𝒙𝑘) = 0 (4.7)

𝐴𝑇𝑔𝒅 + 𝑔(𝒙𝑘) ≤ 0 (4.8)

is solved, where 𝒅 = 𝒙 − 𝒙𝑘.

The Interiorpoint method also applies a similar type of approximation as the SQP method, but first
reformulates the initial optimization problem. This will be explained in the next section.

4.2. Interiorpoint methods
The method that will be elaborated upon in this section is the Interiorpoint method, and in particular
the Interiorpoint method with trust regions as implemented by Byrd, Hribar and Nocedal [2]. Here,
a socalled barrier parameter 𝜇 > 0 is used to make sure the solution does not come too close to
the boundaries of the design space too quickly, and the solution stays in the feasible region. These
methods solve the problem

min𝑥,𝑠 𝑓(𝒙) − 𝜇 ∑𝑚𝑖=1 log 𝑠𝑖
subject to ℎ(𝒙) = 0

𝑔(𝒙) + 𝒔 = 0,
where 𝒔 > 0 are slack variables and log is the natural logarithm. The slack variables are used to
transform inequality constraints into equality constraints. By letting 𝜇 converge to 0, the solution
converges to a feasible optimum. IPM methods are known for good results for problems with a large
amount of free variables [16].

The Lagrangian of this problem is

ℒ(𝒙, 𝒔, 𝝀ℎ , 𝝀𝑔) = 𝑓(𝒙) − 𝜇
𝑚

∑
𝑖=1

log 𝑠𝑖 + ℎ(𝒙)𝑇𝝀ℎ + (𝑔(𝒙) + 𝒔)𝑇𝝀𝑔 . (4.9)

The authors of [2] propose to solve Problem (4.9) using a Sequential Quadratic Programming (SQP)
method with trust regions. Here, the quadratic approximation of the objective function �̃�(𝒙, 𝒔) = 𝑓(𝒙)−
𝜇 ∑𝑚𝑖=1 log 𝑠𝑖 around (𝒙𝑘 , 𝒔𝑘) is

�̃�(𝒙, 𝒔) ≈ 𝑓(𝒙𝑘) − 𝜇
𝑚

∑
𝑖=1

log 𝑠𝑘𝑖 + ∇𝑓(𝒙𝑘)𝑇(𝒙 − 𝒙𝑘) − 𝜇𝑒𝑇𝑆−1𝑘 (𝒔 − 𝒔𝑘)+

1
2 ((𝒙 − 𝒙

𝑘)𝑇∇2𝑥𝑥ℒ(𝒙𝑘 , 𝒔𝑘 , 𝝀𝑘ℎ , 𝝀𝑘𝑔)(𝒙 − 𝒙𝑘) + (𝒔 − 𝒔𝑘)𝑇Σ𝑘(𝒔 − 𝒔𝑘)). (4.10)

Here, Σ𝑘 is a positive definite diagonal matrix that represents either the Hessian of the Lagrangian (4.9)
with respect to 𝒔, or an approximation to it. Next to that, 𝑒 is a vector of ones, and 𝑆𝑘 is the diagonal
matrix 𝑆𝑘 = diag(𝑠1, 𝑠2, … , 𝑠𝑛).
We look for the search directions 𝒅𝑥 and 𝒅𝑠, such that the next iterate is found by

(𝒙𝑘+1, 𝒔𝑘+1) = (𝒙𝑘 , 𝒔𝑘) + (𝒅𝑥 , 𝒅𝑠).
Since we look for the next iterate in each step, we can rewrite (𝒙−𝒙𝑘) = 𝒅𝑥 and similarly, (𝒔−𝒔𝑘) = 𝒅𝑠.
To improve readibility, the arguments of the Lagrangian are also left out hereafter. This leads to the
expression

�̃�(𝒙, 𝒔) ≈ 𝑓(𝒙𝑘) − 𝜇
𝑚

∑
𝑖=1

log 𝑠𝑘𝑖 + ∇𝑓(𝒙𝑘)𝑇𝒅𝑥 − 𝜇𝑒𝑇𝑆−1𝑘 𝒅𝑠 +
1
2 (𝒅

𝑇
𝑥∇2𝑥𝑥ℒ𝒅𝑥 + 𝒅𝑇𝑠 Σ𝑘𝒅𝑠) . (4.11)
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Because we minimize �̃�(𝒙, 𝒔), the first two terms of (4.11) can be dropped since they are independent
of 𝒅𝑥 and 𝒅𝑠. Then, the objective function of the quadratic subproblem is equal to

min
𝑑𝑥 ,𝑑𝑠

∇𝑓 (𝒙𝑘)𝑇 𝒅𝑥 +
1
2𝒅

𝑇
𝑥∇2𝑥𝑥ℒ𝒅𝑥 − 𝜇𝑒𝑇𝑆−1𝑘 𝒅𝑠 +

1
2𝒅

𝑇
𝑠 Σ𝑘𝒅𝑠 . (4.12)

The firstorder Taylor approximation of the constraints is equal to

ℎ(𝒙) ≈ 𝐴ℎ (𝒙𝑘)
𝑇 𝒅𝑥 + ℎ (𝒙𝑘) (4.13)

𝑔(𝒙) ≈ 𝐴𝑔 (𝒙𝑘)
𝑇 𝒅𝑥 + 𝒅𝑠 + 𝑔 (𝒙𝑘) + 𝒔𝑘 . (4.14)

A distinction can be made between IPM methods that use a line search approach and methods that
use a trustregion approach. The method as described by Byrd, Hribar and Nocedal is a trustregion
IPM method, which adds another constraint to the problem, namely

(𝒅𝑥 , 𝒅𝑠) ∈ 𝑇𝑘 . (4.15)

where 𝑇𝑘 is the trust region. The trust region guarantees that the subproblem always has a finite solution
[2].

To determine whether a step heads in the right direction, a merit function 𝜙 is used. This often checks
the two goals of the optimization step: if the objective function value is decreased and if the violation
of the constraints is decreased. Here, it is

𝜙(𝒙, 𝒔; 𝜈) = 𝑓(𝒙) − 𝜇
𝑚

∑
𝑖=1

log 𝑠𝑖 + 𝜈‖[
ℎ(𝒙)

𝑔(𝒙) + 𝒔]‖2
. (4.16)

Combining (4.12), (4.13), (4.15) and (4.16), the following steps are taken at each iteration:

Step 1: Initiate parameters 𝜇 > 0, 𝜀𝜇 > 0, 𝒙𝑘 , 𝒔𝑘 > 0, 𝑘 = 1, set trust region 𝑇𝑘, compute 𝝀ℎ , 𝝀𝑔.
Step 2: Obtain 𝒅𝑥 , 𝒅𝑠 by solving the SQP problem

min
𝒅𝑥 ,𝒅𝑠

∇𝑓 (𝒙𝑘)𝑇 𝒅𝑥 +
1
2𝒅

𝑇
𝑥∇2𝑥𝑥ℒ𝒅𝑥 − 𝜇𝑒𝑇𝑆−1𝑘 𝒅𝑠 +

1
2𝒅

𝑇
𝑠 Σ𝑘𝒅𝑠

subject to 𝐴ℎ (𝒙𝑘)
𝑇 𝒅𝑥 + ℎ (𝒙𝑘) = 𝒓ℎ

𝐴𝑔 (𝒙𝑘)
𝑇 𝒅𝑥 + 𝒅𝑠 + 𝑔 (𝒙𝑘) + 𝒔𝑘 = 𝒓𝑔

(𝒅𝑥 , 𝒅𝑠) ∈ 𝑇𝑘

(4.17)

Step 3: If 𝜙(𝒙𝑘+1, 𝒔𝒌+1, 𝝂) is sufficiently smaller than 𝜙(𝒙𝑘 , 𝒔𝒌, 𝝂), update 𝒙𝑘+1 = 𝒙𝑘 + 𝒅𝑥 ,
𝒔𝑘+1 = 𝒔𝑘 + 𝒅𝑠 and compute new 𝝀ℎ , 𝝀𝑔, possibly increase trust region.

Else, update 𝒙𝑘+1 = 𝒙𝑘 , 𝒔𝑘+1 = 𝒔𝑘 and decrease trust region.
Step 4: Set 𝑘 = 𝑘 + 1.
Step 5: Repeat step 24 until 𝐸(𝒙𝑘 , 𝒔𝑘; 𝜇) ≤ 𝜀𝜇, where

𝐸(𝒙𝑘 , 𝒔𝑘; 𝜇) =max (‖∇𝑓(𝒙) + 𝐴ℎ(𝒙)𝝀𝒉 + 𝐴𝑔(𝒙)𝝀𝑔‖∞, ‖𝑆𝝀𝑔 − 𝜇𝑒‖∞, ‖ℎ(𝒙)‖∞, ‖𝑔(𝒙) + 𝒔‖∞)

The norms in in the computation of 𝐸 are directly related to the KKT conditions, which in this case are
equal to

∇𝑥𝑓(𝒙) + 𝐴𝑇ℎ𝝀ℎ + 𝐴𝑇𝑔𝝀𝑔 = 0 (4.18)
−𝜇𝑆−1𝑒 + 𝝀𝑔 = 0 (4.19)

ℎ(𝒙) = 0 (4.20)
𝑔(𝒙) + 𝒔 = 0 (4.21)

𝝀𝑔 , 𝒔 ≥ 0. (4.22)
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Equations (4.18)(4.19) follow from the fact that the derivative of the Lagrangian is zero at an optimal
point, see Equation (4.1). System (4.18)  (4.22) is called the primal system.

Most of the work of the algorithm is done in the second step when solving the subproblem (4.17). If the
solution of (4.17) lies in the trust region, the residuals 𝒓 ℎ , 𝒓𝑔 would be 0 and the Hessian ∇𝑥𝑥ℒ positive
definite, in which case the problem can be solved with Newton’s method. This method finds a root of a
function 𝐹(𝒙) by solving a system of the form

∇𝐹(𝒙𝑘)(𝒙𝑘+1 − 𝒙𝑘) = −𝐹(𝒙𝑘)

In general, this method has quadratic convergence. For the optimization, we take the KKTsystem
(4.18)(4.22) as the function 𝐹, which finds a root for 𝒅𝑥 , 𝒅𝑠 , 𝝀𝑔 , 𝝀ℎ . This results into the system

⎡
⎢
⎢
⎣

∇2𝑥𝑥ℒ 0 𝐴ℎ(𝒙𝑘) 𝐴𝑔(𝒙𝑘)
0 Σ𝑘 0 𝐼

𝐴𝑇ℎ(𝒙) 0 0 0
𝐴𝑇𝑔(𝒙𝑘) 𝐼 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝒅𝑥
𝒅𝑠
𝝀+ℎ
𝝀+𝑔

⎤
⎥
⎥
⎦
= −

⎡
⎢
⎢
⎣

∇𝑥𝑓(𝒙)
−𝜇𝑆−1𝑒
ℎ(𝒙)

𝑔(𝒙) + 𝒔

⎤
⎥
⎥
⎦
, (4.23)

where Σ𝑘 is the Hessian with respect to 𝒔. For this primal system, Σ𝑘 is equal to the diagonal matrix
containing the second derivatives of the Lagrangian with respect to 𝒔, which is

Σ𝑘 =
𝜕2ℒ
𝜕𝒔2 =

𝜕
𝜕𝒔 (−𝜇𝑆

−1𝑒 + 𝝀𝑔) = 𝜇𝑆−2𝑘 .

Since we only take the equality equations of the KKT conditions into account with the Newton method,
the nonnegativity of Equation (4.22) cannot be guaranteed. If we rewrite condition (4.19) to

𝑆𝝀𝑔 − 𝜇𝑒 = 0 (4.24)

by multiplying with 𝑆, this forces 𝑠𝑖 ⋅ 𝜆𝑔,𝑖 to take positive values. Equations (4.18), (4.20)(4.22) together
with (4.24) form the socalled primaldual system. Even though Equations (4.19) and (4.24) are
mathematically equivalent, the latter has proven to perform better computationally [2]. This is because
for (4.24), the derivative with respect to 𝒔 is 𝝀𝑔, which remains bounded as 𝑠𝑖 → 0.
For the primaldual system with Equation (4.24) instead of (4.19), the second line of the Newton’s
system would change into

Λ𝑔𝒅𝑠 = −𝑆𝝀𝑔 + 𝜇𝑒, (4.25)

which can be rewritten as

𝑆−1Λ𝑔𝒅𝑠 + 𝝀𝑔 = 𝜇𝑆−1𝑒. (4.26)

This shows that in the primaldual case, the system (4.23) can be used, but now Σ𝑘 = 𝑆−1Λ𝑔. This
performs better when 𝒔 → 0 than the Σ𝑘 for the primal system.

In the selected algorithm, the primaldual approach is used, since it is likely to perform better .
From the computational research, it tends that this method is less likely to violate the constraint of
nonnegativity for the slack variables than the primal method, while it still moves into the direction of the
solution [2].

However, we cannot assume that the solution of the subproblem lies in the trust region 𝑇𝑘 with
Newton’s method as explained above. This is why residuals 𝒓ℎ , 𝒓𝑔 are defined. The problem is divided
into two steps, the socalled vertical and horizontal step, that make sure that a solution is found in the
trust region. This approach is closely related to the approach taken for solving the system that derives
from the MMA method, and will be explained in Section 4.5.

4.3. Convex linearization methods
As an introduction to the Method of Moving asymptotes, the principle of Convex linearization methods
will be explained. Thesemethods are based on the usage of a different type of quasilinear approximations,
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which assures convexity of the approximation. The method is developed for optimization problems with
only inequality constraints, described as

min
𝒙

𝑓(𝒙), (𝑥 ∈ ℝ𝑛) (4.27)

subject to 𝑔(𝒙) ≤ 0, (4.28)
𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑗 𝑗 = 1,…𝑛 (4.29)

The approximation is not actually linear, because it also contains reciprocals for some of the variables
𝑥𝑗, to construct a convex approximation. This firstorder convex approximation for the objective funtion
(4.27) is equal to

�̃�𝑘(𝒙) = 𝑓(𝒙𝑘) +∑
+

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

⋅ (𝑥𝑗 − 𝑥𝑘𝑗 ) −∑
−
(𝑥𝑘𝑗 )2

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

( 1𝑥𝑗
− 1
𝑥𝑘𝑗
) (4.30)

where the symbols ∑+, ∑− mean to sum over the terms for which 𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

is positive or negative,

respectively. It is clear that at the point 𝒙𝑘, we get 𝑓𝑘(𝒙𝑘) = 𝑓(𝒙𝑘). The derivative of (4.30) is

𝜕�̃�𝑘(𝒙)
𝜕𝒙 =∑

+

𝜕𝑓(𝒙)
𝜕𝑥𝑗

−∑
−
(𝑥𝑘𝑗 )

2 𝜕𝑓(𝒙)
𝜕𝑥𝑗

⋅ −1𝑥2𝑗

which is equal to 𝜕𝑓(𝒙𝑘)
𝜕𝒙 for 𝒙 = 𝒙𝑘. This shows that �̃�𝑘(𝒙) is indeed a first order approximation. The

function is also convex, since for all 𝑡 ∈ (0, 1), it holds that

�̃�𝑘(𝑡𝒚 + (1 − 𝑡)𝒛) = 𝑓(𝒙𝑘) +∑
+

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

(𝑡𝑦𝑗 + (1 − 𝑡)𝑧𝑗 − 𝑥𝑘𝑗 ) −∑
−
(𝑥𝑘𝑗 )2

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

( 1
𝑡𝑦𝑗 + (1 − 𝑡)𝑧𝑗

− 1
𝑥𝑘𝑗
)

= 𝑡 ⋅ 𝑓(𝒙𝑘) + (1 − 𝑡) ⋅ 𝑓(𝒙𝑘) +∑
+

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

⋅ (𝑡𝑦𝑗 − 𝑡𝑥𝑘𝑗 + (1 − 𝑡)𝑧𝑗 − (1 − 𝑡)𝑥𝑘𝑗 )−

∑
−
(𝑥𝑘𝑗 )2

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

( 1
𝑡(𝑦𝑗 − 𝑧𝑗) + 𝑧𝑗

− 1
𝑥𝑘𝑗
)

≤ 𝑡 [𝑓(𝒙𝑘) +∑
+

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

⋅ (𝑦𝑗 − 𝑥𝑘𝑗 ) −∑
−
(𝑥𝑘𝑗 )2

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

( 1𝑦𝑗
− 1
𝑥𝑘𝑗
)]+

(1 − 𝑡) [𝑓(𝒙𝑘) +∑
+

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

⋅ (𝑧𝑗 − 𝑥𝑘𝑗 ) −∑
−
(𝑥𝑘𝑗 )2

𝜕𝑓(𝒙𝑘)
𝜕𝑥𝑗

( 1𝑧𝑗
− 1
𝑥𝑘𝑗
)]

= 𝑡�̃�𝑘(𝒚) + (1 − 𝑡)�̃�𝑘(𝒛), ∀𝒚, 𝒛 ∈ ℝ𝑛 .

Here, to show that 1
𝑡(𝑦𝑗−𝑧𝑗)+𝑧𝑗

≤ 𝑡
𝑦𝑗
+ 1−𝑡

𝑧𝑗
= 𝑡(𝑧𝑗−𝑦𝑗)+𝑦𝑗

𝑦𝑗𝑧𝑗
, the fractions are crossmultiplied as

𝑦𝑗𝑧𝑗 ≤ −𝑡2(𝑦𝑗 − 𝑧𝑗)2 + 𝑡𝑦𝑗(𝑦𝑗 − 𝑧𝑗) + 𝑡𝑧𝑗(𝑧𝑗 − 𝑦𝑗) + 𝑦𝑗𝑧𝑗
= (𝑡 − 𝑡2)(𝑦𝑗 − 𝑧𝑗)2 + 𝑦𝑗𝑧𝑗
= 𝑡(1 − 𝑡)(𝑦𝑗 − 𝑧𝑗)2 + 𝑦𝑗𝑧𝑗

where both 𝑡(1 − 𝑡) ≥ 0 and (𝑦𝑗 − 𝑧𝑗)2 ≥ 0. Similar to (4.30), for the constraints, the convex
approximation is equal to

�̃�𝑘𝑖 (𝒙) = 𝑔𝑖(𝒙𝑘) +∑
+

𝜕𝑔𝑖(𝒙𝑘)
𝜕𝑥𝑗

⋅ (𝑥𝑗 − 𝑥𝑘𝑗 ) −∑
−
(𝑥𝑘𝑗 )2

𝜕𝑔𝑖(𝒙𝑘)
𝜕𝑥𝑗

( 1𝑥𝑗
− 1
𝑥𝑘𝑗
) . (4.31)

This method is developed by Fleury and Braibant [23] and is proven to be the most conservative
approximation amongst all approximations that combine direct and reciprocal variables [24].
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Based on this type of quasilinear approximation, Fleury developed CONLIN especially for structural
optimization problems, which solves the subproblems in the dual space. The dimension of this dual
space is relatively low for problems with many design variables and less constraints. That makes the
method very useful for these kind of optimization problems. Another advantage is that the intermediate
solutions of this method that are found by solving the subproblems iteratively, are steadily improving
feasible designs [25].

Because the Hessian entry is 0 for the socalled ’fixed’ variables, it is difficult to solve the problem
with Newtonlike methods, since the Hessian might be singular.
The convergence of the CONLINmethod is proven for concave initial objective functions and constraints,
but it is also shown that a generalization of this convergence to other problems is impossible. A more
general approach like the Method of Moving Asymptotes (MMA) can avoid the necessary assumption
of concave functions.

4.4. Method of Moving Asymptotes
The Method of Moving Asymptotes is developed in 1987 by Krister Svanberg, especially for solving
nonlinear structural optimization problems as we are dealing with in this research [12]. The method is
a generalization of the CONLIN method and is suited well for problems with a not too large number of
constraints [26].
In each iteration, a subproblem is generated by socalled ’moving asymptotes’, and then solved. The
examples in [12] show that the convergence of the process is sped up with respect to the CONLIN
method and the overall process is stabilized.

Since the method is originally described for only inequality constraints, the same problem as
(4.27)(4.29) is treated in this section. However, to ensure solvability of the problem, the auxiliary
variables 𝒚 ∈ ℝ𝑚 are added to the problem as

min
𝒙,𝒚

𝑓(𝒙) +
𝑚

∑
𝑖=1
(𝑐𝑖𝑦𝑖 +

1
2𝑦

2
𝑖 ) (4.32)

subject to 𝑔(𝒙) − 𝒚 ≤ 0 (4.33)
𝒙 ≤ 𝒙 ≤ 𝒙, 𝒚 ≥ 0, (4.34)

with 𝑐𝑖 a large number, to ensure that in the optimum, 𝒚 = 0. If there is no feasible optimum for the
original problem, the solution that is given by the method has some 𝑦𝑖 > 0.
The steps that the algorithm takes are:

Step 1: Initiate 𝒙, 𝒚, 𝒙, 𝒙, 𝑳𝑘 , 𝑼𝑘 , 𝜶𝑘 , 𝜷𝑘. Here, 𝜶𝑘 and𝜷𝑘 are themove limits and should be chosen
such that

𝐿𝑘𝑗 < 𝛼𝑘𝑗 < 𝑥𝑗 < 𝛽𝑘𝑗 < 𝑈𝑘𝑗 ∀𝑗 = 1,… , 𝑛

Step 2: Solve the subproblem

min
𝒙,𝒚
�̃�𝑘(𝒙) +∑

𝑖∈ℐ
(𝑐𝑖𝑦𝑖 +

1
2𝑦

2
𝑖 )

subject to �̃�𝑘(𝒙) − 𝒚 ≤ −𝒓𝑘

𝜶𝑘 ≤ 𝒙 ≤ 𝜷𝑘
𝒚 ≥ 0

(4.35)

where �̃�𝑘 and �̃�𝑘 are approximations of 𝑓 and 𝑔 for iteration 𝑘.

Step 3: Update 𝒙, 𝒚 and repeat Step 12 until convergence.

The name ’moving asymptotes’ comes from the chosen bounds 𝐿𝑘𝑗 < 𝑥𝑗 < 𝑈𝑘𝑗 , where both 𝐿𝑗 and 𝑈𝑗
can vary during the iterations. The choice of these asymptotes is very important for the behavior of
the method. Different choices for 𝐿𝑘𝑗 and 𝑈𝑘𝑗 are made in the literature [12, 27]. For simplicity of the
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notation, the superscript 𝑘 for 𝐿𝑗 , 𝑈𝑗 , 𝒓, �̃� and �̃� will be left out hereafter.
In each iteration 𝑘, the values for �̃�(𝒙) are approximated by

�̃�𝑖(𝒙) =
𝑛

∑
𝑗=1
(

𝑝𝑖𝑗
𝑈𝑗 − 𝑥𝑗

+
𝑞𝑖𝑗

𝑥𝑗 − 𝐿𝑗
)

where

𝑝𝑖𝑗 = {
(𝑈𝑗 − 𝑥𝑘𝑗 )

2 𝜕𝑔𝑖(𝒙𝑘)
𝜕𝑥𝑗

if 𝜕𝑔𝑖(𝒙
𝑘)

𝜕𝑥𝑗
> 0

0 if 𝜕𝑔𝑖(𝒙
𝑘)

𝜕𝑥𝑗
≤ 0

𝑞𝑖𝑗 = {
0 if 𝜕𝑔𝑖(𝒙

𝑘)
𝜕𝑥𝑗

≥ 0

−(𝑥𝑘𝑗 − 𝐿𝑗)
2 𝜕𝑔𝑖(𝒙𝑘)

𝜕𝑥𝑗
if 𝜕𝑔𝑖(𝒙

𝑘)
𝜕𝑥𝑗

< 0.

As can be seen, the value of the derivative of 𝑔𝑖 at 𝒙𝑘 determines whether 𝑝𝑖𝑗 or 𝑞𝑖𝑗 is equal to zero.
This is similar to CONLIN, since the approximation function �̃�𝑘𝑖 (𝒙) can also be rewritten to

�̃�𝑖(𝒙) =∑
+

𝑝𝑖𝑗
𝑈𝑗 − 𝑥𝑗

+∑
−

𝑞𝑖𝑗
𝑥𝑗 − 𝐿𝑗

.

A similar approximation �̃�𝑘(𝒙) is computed for the objective function 𝑓(𝒙). The residual is defined as

𝑟𝑖 = 𝑔𝑖(𝒙𝑘) −
𝑚

∑
𝑗=1
(

𝑝𝑖𝑗
𝑈𝑗 − 𝑥𝑘𝑗

+
𝑞𝑖𝑗

𝑥𝑘𝑗 − 𝐿𝑗
) .

The advantage of this quasilinear approximation �̃�𝑘+𝒓𝑘 is that it is convex. It is a first order approximation,
since

�̃�𝑘(𝒙𝑘) = 𝑔(𝒙𝑘) and
𝜕�̃�𝑘
𝜕𝑥𝑗

= 𝜕𝑔
𝜕𝑥𝑗

at 𝒙 = 𝒙𝑘 .

Moreover, since the second derivatives of �̃�𝑘𝑖 + 𝒓𝑘 are given by
𝜕2𝑔𝑖
𝜕𝑥2𝑗

=
2𝑝𝑖𝑗

(𝑈𝑗 − 𝑥𝑗)
3 +

2𝑞𝑖𝑗
(𝑥𝑗 − 𝐿𝑗)

3

𝜕2𝑔𝑖
𝜕𝑥𝑙𝜕𝑥𝑗

= 0 if 𝑗 ≠ 𝑙

and 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are both nonnegative, the second derivative is positive definite and therefore the
approximation is a convex function. Because of this convexity, the KKTconditions are not only necessary
but also sufficient conditions for optimality [16]. This means, that if a point 𝒙∗ fulfills the KKTconditions,
it is an optimum. At the point 𝒙 = 𝒙𝑘 , the second derivatives are equal to

𝜕2𝑔𝑖
𝜕𝑥2𝑗

= {

2𝜕𝑔𝑖/𝜕𝑥𝑗
𝑈𝑗−𝑥𝑘𝑗

if 𝜕𝑔𝑖𝜕𝑥𝑗
> 0

−2𝜕𝑔𝑖/𝜕𝑥𝑗𝑥𝑘𝑗 −𝐿𝑗
if 𝜕𝑓𝑖𝜕𝑥𝑗

< 0.

This shows that the second derivatives are larger if 𝐿𝑗 and 𝑈𝑗 are chosen closer to the approximation
𝑥𝑘𝑗 . Conversely, if 𝐿𝑗 and 𝑈𝑗 are chosen very far away from 𝑥𝑘𝑗 , then the approximation becomes almost
linear.

For numerical stability, the values for 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are actually taken as

𝑝𝑖𝑗 = (𝑈𝑗 − 𝑥𝑘𝑗 )
2
(1.001(𝜕𝑔𝑖𝜕𝑥𝑗

(𝒙𝑘))
+
+ 0.001(𝜕𝑔𝑖𝜕𝑥𝑗

(𝒙𝑘))
−
+ 10−5
𝑥𝑗 − 𝑥𝑗

)

𝑞𝑖𝑗 = (𝑥𝑘𝑗 − 𝐿𝑘𝑗)
2
(0.001(𝜕𝑔𝑖𝜕𝑥𝑗

(𝒙𝑘))
+
+ 1.001(𝜕𝑔𝑖𝜕𝑥𝑗

(𝒙𝑘))
−
+ 10−5
𝑥𝑗 − 𝑥𝑗

) .
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Here,

(𝜕𝑔𝑖𝜕𝑥𝑗
(𝒙𝑘))

+
=max {𝜕𝑔𝑖𝜕𝑥𝑗

(𝒙𝑘) , 0} , and (𝜕𝑔𝑖𝜕𝑥 (𝒙
(𝑘)))

−
=max {−𝜕𝑔𝑖𝜕𝑥 (𝒙

(𝑘)) , 0} .

The values for 𝜶𝑘 and 𝜷𝑘 are chosen such that the next step is close enough to the previous one, and
they are defined as

𝛼𝑘𝑗 =max {𝑥𝑗 , 𝐿𝑗 + 0.1 (𝑥𝑘𝑗 − 𝐿𝑗) , 𝑥𝑘𝑗 − 0.5 (𝑥𝑗 − 𝑥𝑗)}
𝛽𝑘𝑗 =min {𝑥𝑗 , 𝑈𝑗 − 0.1 (𝑈𝑗 − 𝑥𝑘𝑗 ) , 𝑥𝑘𝑗 + 0.5 (𝑥𝑗 − 𝑥𝑗)} .

The last parameters that have to be defined are the upper and lower asymptotes 𝑈𝑗 and 𝐿𝑗 . They are
defined through the former two iterations 𝑘 − 1 and 𝑘 − 2 as

𝐿𝑘𝑗 = 𝑥𝑘𝑗 − 𝛾𝑘𝑗 (𝑥
(𝑘−1)
𝑗 − 𝐿(𝑘−1)𝑗 )

𝑈𝑘𝑗 = 𝑥𝑘𝑗 + 𝛾𝑘𝑗 (𝑈
(𝑘−1)
𝑗 − 𝑥(𝑘−1)𝑗 )

,

where

𝛾𝑘𝑗 =
⎧

⎨
⎩

0.7 if (𝑥𝑘𝑗 − 𝑥
(𝑘−1)
𝑗 ) (𝑥(𝑘−1)𝑗 − 𝑥(𝑘−2)𝑗 ) < 0

1.2 if (𝑥𝑘𝑗 − 𝑥
(𝑘−1)
𝑗 ) (𝑥(𝑘−1)𝑗 − 𝑥(𝑘−2)𝑗 ) > 0

1 if (𝑥𝑘𝑗 − 𝑥
(𝑘−1)
𝑗 ) (𝑥(𝑘−1)𝑗 − 𝑥(𝑘−2)𝑗 ) = 0

.

It is clear that for 𝛾𝑘𝑗 > 1, the interval between the lower and upper asymptotes will become larger
compared to 𝛾𝑘𝑗 = 1, and that this interval decreases for 0 < 𝛾𝑘𝑗 < 1. For the iterations 𝑘 = 1, 𝑘 = 2,
the parameter 𝜸𝑘 is chosen as 0.5.

Now that the subproblem is completely defined, the approach to solving the problemwill be explained.
First, the Lagrangian of (4.35) is defined as

ℒ(𝒙, 𝝀, 𝝃, 𝜼, 𝝁) = �̃�(𝒙)+
𝑚

∑
𝑖=1
𝑐𝑖𝑦𝑖+

1
2𝑦

2
𝑖 +

𝑚

∑
𝑖=1
𝜆𝑖 (�̃�𝑖(𝒙) − 𝑦𝑖 + 𝑟𝑖)+

𝑛

∑
𝑗=1
(𝜉𝑗(𝛼𝑗 − 𝑥𝑗) + 𝜂𝑗(𝑥𝑗 − 𝛽𝑗))−

𝑚

∑
𝑖=1
𝜇𝑖𝑦𝑖 ,

where 𝝀, 𝝃, 𝜼 and 𝝁 are the Lagrange multipliers corresponding to the different inequality constraints of
(4.35). This can be rewritten as

ℒ(𝒙, 𝝀, 𝝃, 𝜼, 𝝁) = 𝜓(𝒙, 𝝀) +
𝑛

∑
𝑗=1
(𝜉𝑗(𝛼𝑗 − 𝑥𝑗) + 𝜂𝑗(𝑥𝑗 − 𝛽𝑗)) +

𝑚

∑
𝑖=1
(𝑐𝑖𝑦𝑖 +

1
2𝑦

2
𝑖 − 𝜆𝑖𝑦𝑖 + 𝜆𝑖𝑟𝑖 − 𝜇𝑖𝑦𝑖)

where 𝜓(𝒙, 𝝀) = �̃�(𝒙) + ∑𝑚𝑖=1 𝜆𝑖(�̃�𝑖(𝒙) + 𝑟𝑖). With this, we can construct the KKTconditions of the
problem. These are equal to
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𝜕𝜓
𝜕𝑥𝑗

− 𝜉𝑗 + 𝜂𝑗 = 0, 𝑗 = 1,… , 𝑛 (𝜕ℒ/𝜕𝑥𝑗 = 0) (4.36)

𝑐𝑖 + 𝑦𝑖 − 𝜆𝑖 − 𝜇𝑖 = 0, 𝑖 = 1,… ,𝑚 (𝜕ℒ/𝜕𝑦𝑖 = 0) (4.37)

�̃�𝑖(𝒙) − 𝑦𝑖 + 𝑟𝑖 ≤ 0, 𝑖 = 1,… ,𝑚 (4.38)
𝛼𝑗 ≤ 𝑥𝑗 ≤ 𝛽𝑗 , 𝑗 = 1,… , 𝑛 (4.39)

𝑦𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 (4.40)

𝜆𝑖 (�̃�𝑖(𝒙) − 𝑦𝑖 + 𝑟𝑖) = 0, 𝑖 = 1,… ,𝑚 (4.41)
𝜉𝑗 (𝛼𝑗 − 𝑥𝑗) = 0, 𝑗 = 1,… , 𝑛 (4.42)
𝜂𝑗 (𝑥𝑗 − 𝛽𝑗) = 0, 𝑗 = 1,… , 𝑛 (4.43)

−𝜇𝑖𝑦𝑖 = 0, 𝑖 = 1,… ,𝑚 (4.44)

𝜉𝑗 ≥ 0 and 𝜂𝑗 ≥ 0, 𝑗 = 1,… , 𝑛 (4.45)
𝜇𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 (4.46)
𝜆𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 (4.47)

where Equations (4.36)(4.37) correspond to Equation (4.1), Equations (4.38) (4.40) to Equation
(4.3), Equations (4.41)(4.44) to Equation (4.4) and lastly, Equations (4.45)(4.47) to Equation (4.5) of
the general KKTconditions.
As with the interiorpoint method, this system is solved with a primaldual method. Therefore, the next
section gives a general introduction to primaldual solution methods.

4.5. Primaldual solution methods
Primaldual methods take the approach to update both the design variables, or primal variables, and
the Lagrange multipliers, or dual variables, in each iteration, while satisfying 𝝀 ≥ 0 elementwise, strictly.
This is done by perturbing the Equation (4.4) of the KKT system with the negative of a small parameter
𝜀 > 0. By making 𝜀 go to 0, the solution of the initial KKT system is attained. For the general problem
(3.1) with slack variables introduced for the inequality constraints, this would result in the perturbed
KKT conditions

∇𝑥ℒ(𝒙∗, 𝝀∗𝑔𝝀∗ℎ) = 0
ℎ(𝒙∗) = 0

𝑔(𝒙∗) + 𝒔 = 0

(𝝀∗𝑔)
𝑇 𝑔(𝒙∗) − 𝜀𝑒 = 0

𝝀∗𝑔 > 0
𝒔 ≥ 0.

(4.48)

For the interiorpoint method, the term 𝜇𝑒 in Equation (4.24) can be seen as a perturbation of the initial
optimization problem, where 𝜇 → 0.
Conversely, it also holds that Equations (4.48) are the KKT conditions of the convex problem

min
𝒙,𝒔

𝑓(𝒙) − 𝜀 ∑
𝑖=1𝑚

log 𝑠𝑖

subject to 𝑔(𝒙) + 𝒔 = 0
ℎ(𝒙) = 0
𝒔 > 0.

(4.49)

The difference is only that the condition (𝝀∗𝑔)
𝑇 𝑔(𝒙∗)−𝜀𝑒 does not derive from the inequality constraints,

but as the derivative of the Lagrangian to 𝒔.
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It is clear that the primaldual approach of theMMA and the IPM are related, but the application of the
approach differs between the two methods. MMA uses a linesearch method, and the IPM implements
a trustregion approach. They will therefore be discussed separately

Primaldual approach on the Interior Point method subproblem
The primaldual approach for the interiorpoint method decomposes the subproblem in two steps: the
vertical steps attempts to satisfy the constraints, and the horizontal step searches for an optimal point
in the region. The vertical step will be discussed first.

A problem with an optimization method that applies a trustregion instead of a linesearch approach,
is that it might not be feasible to satisfy the constraints in the region. Therefore, instead of trying to
satisfy them exactly, the distance of the constraints is minimized in the sense of least squares. This
leads to the system

min
𝑣

‖𝐴𝑇ℎ𝒗𝑥 + ℎ(𝒙)‖
2
2+‖𝐴

𝑇
𝑔𝒗𝑥 + 𝒗𝑠 + 𝑔(𝒙) + 𝒔‖

2
2

subject to ‖(𝒗𝑥 , 𝑆−1𝒗𝑠)‖2 ≤ 𝜁𝑇𝑘
𝒗𝑠 ≥ −𝜏𝒔.

Here, 𝒗 is the vertical step, 𝜁 and 𝜏 are parameters between 0 and 1. The first constraint is derived from
the facts that the trust region (𝒗𝑥 , 𝒗𝑠) has to be smaller than the trust region radius, and that the slack
variables should also not approach zero too quickly. Therefore, 𝒗𝑠 is scaled with 𝑆−1 that penalizes
near the boundary. The second constraint implies that the slack variables should remain positive. This
constraint is equal to

𝒔 + 𝒅𝑠 ≥ (1 − 𝜏)𝒔

where 𝜏 ∈ (0, 1), often chosen very close to 1. This problem is solved with the dogleg method [16],
which is a cheap computation and finds the best feasible vertical step.

The horizontal step uses the vertical step for the definition of the residuals 𝒓ℎ and 𝒓𝑔 and this
together with Equations (4.17) leads to the feasible quadratic subproblem

min ∇𝑓𝑇𝒅𝑥 − 𝜇𝑒𝑇𝑆−1𝒅𝑠+
1
2 (𝒅

𝑇
𝑥∇2𝑥𝑥ℒ𝒅𝑥 + 𝒅𝑇𝑠 Σ𝒅𝑠)

subject to 𝐴𝑇ℎ𝒅𝑥 = 𝐴𝑇ℎ𝒗𝑥
𝐴𝑇𝑔𝒅𝑥 + 𝒅𝑠 = 𝐴𝑇𝑔𝒗𝑥 + 𝒗𝑠

‖(𝒅𝑥 , 𝑆−1𝒅𝑠)‖2 ≤ 𝑇𝑘
𝒅𝑠 ≥ −𝜏𝒔.

Say 𝒅 = 𝒗+𝒘, where 𝒅 is the total search direction, then we still need to compute 𝒘, which is tangent
to the constraints. Defining �̃� = [ 𝒅𝑥𝑆−1𝒅𝑠] = [

𝒗𝑥
�̃�𝑠]+[

𝒘𝑥
�̃�𝑠] as change of variables for the steps and defining

𝐺 = [∇
2
𝑥𝑥ℒ 0
0 𝑆Σ𝑆] leads to the optimization problem

min
�̃�
𝑞(�̃� + �̃�) ≡ 𝑞(�̃�) + ∇𝑓𝑇𝒘𝑥 − 𝜇𝑒𝑇�̃�𝑠 + (𝐺�̃�)𝑇�̃� +

1
2 (�̃�

𝑇𝐺�̃�)

subject to 𝐴𝑇ℎ𝒘𝑥 = 0
𝐴𝑇𝑔𝒘𝑥 + 𝑆�̃�𝑠 = 0

‖�̃�‖22 ≤ 𝑇2𝑘 − ‖�̃�‖22
�̃�𝑠 ≥ −𝜏𝑒 − �̃�𝑠

To solve this problem, the conjugate gradient method is applied to the objective function, while forcing
the iterations to satisfy the constraints [2].
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Primaldual approach on the Method of Moving Asymptotes subproblem
As stated in the beginning of this section, the conditions (4.41)(4.44) are perturbed with a small number
𝜀 > 0. But first, the inequality constraint (4.38) is rewritten to an equality constraint with slack variable
𝒔, resulting in

𝑔𝑖(𝒙) − 𝑦𝑖 + 𝑟𝑖 + 𝑠𝑖 = 0, 𝑖 = 1,… ,𝑚. (4.50)

Then, condition (4.41) can be written in terms of 𝑠𝑖. Perturbing the conditions (4.41)(4.44) as in (4.48)
results in

𝜆𝑖𝑠𝑖 − 𝜀 = 0, 𝑖 = 1,… ,𝑚 (4.51)
𝜉𝑗 (𝑥𝑗 − 𝛼𝑗) − 𝜀 = 0, 𝑗 = 1,… , 𝑛 (4.52)
𝜂𝑗 (𝛽𝑗 − 𝑥𝑗) − 𝜀 = 0, 𝑗 = 1,… , 𝑛 (4.53)

𝜇𝑖𝑦𝑖 − 𝜀 = 0, 𝑖 = 1,… ,𝑚. (4.54)

Since with the perturbed system, the inequality constraints should hold strictly, the ′ ≥′signs for
Equations (4.39)(4.40) and (4.45)(4.47) are replaced with a strict ′ >′sign.
The system for Newton’s method for these new conditions is then equal to

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ψ 𝐴𝑇 −𝐼 𝐼
𝐼 −𝐼 −𝐼

𝐴 −𝐼 𝐼
⟨𝝃⟩ ⟨𝒙 − 𝜶⟩
⟨−𝜼⟩ ⟨𝜷 − 𝒙⟩

⟨𝝁⟩ ⟨𝒚⟩
⟨𝒔⟩ ⟨𝝀⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Δ𝒙
Δ𝒚
Δ𝝀
Δ𝝃
Δ𝜼
Δ𝝁
Δ𝒔

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛿𝑥
𝛿𝑦
𝛿𝜆
𝛿𝜉
𝛿𝜂
𝛿𝜇
𝛿𝑠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4.55)

The signs ⟨⋅⟩ indicate that the vector is translated into a diagonal matrix, i.e. ⟨𝝃⟩ = diag(𝜉1, 𝜉2, … , 𝜉𝑛).
The matrix Ψ ∈ ℝ𝑛,𝑛 is a diagonal matrix with (Ψ)𝑗𝑗 =

𝜕2𝜓
𝜕𝑥2𝑗

. System (4.55) can be simplified to

[
𝐷𝑥 𝐴𝑇

𝐷𝑦 −𝐼
𝐴 −𝐼 −𝐷𝜆

] [
Δ𝒙
Δ𝒚
Δ𝝀
] = − [

�̃�𝑥
�̃�𝑦
�̃�𝜆
] (4.56)

where
𝐷𝑥 = Ψ+ ⟨𝒙 − 𝜶⟩−1⟨𝝃⟩ + ⟨𝜷 − 𝒙⟩−1⟨𝜼⟩
𝐷𝑦 = ⟨𝐼⟩ + ⟨𝒚⟩−1⟨𝝁⟩
𝐷𝜆 = ⟨𝝀⟩−1⟨𝒔⟩

�̃�𝑥 =
𝜕𝜓
𝜕𝒙 − 𝜀⟨𝒙 − 𝜶⟩

−1𝑒 + 𝜀⟨𝜷 − 𝒙⟩−1𝑒

�̃�𝑦 = 𝒄 + 𝒚 − 𝝀 − 𝜀⟨𝒚⟩−1𝑒
�̃�𝜆 = 𝑔(𝒙) − 𝒚 + 𝒓 + 𝜀⟨𝝀⟩−1𝑒.

The equations of the rows beloning to lagrange multipliers 𝝃, 𝜼, 𝝁 and to the slack variables 𝑠 in system
(4.55) are elimited by the substitutions

Δ𝝃 = −⟨𝑥 − 𝛼⟩−1⟨𝝃⟩Δ𝒙 − 𝝃 + 𝜀⟨𝒙 − 𝜶⟩−1𝑒
Δ𝜼 = ⟨𝜷 − 𝒙⟩−1⟨𝜼⟩Δ𝒙 − 𝜼 + 𝜀⟨𝜷 − 𝒙⟩−1𝑒
Δ𝝁 = −⟨𝒚⟩−1⟨𝝁⟩Δ𝒚 − 𝝁 + 𝜀⟨𝒚⟩−1𝑒
Δ𝒔 = −⟨𝝀⟩−1⟨𝒔⟩Δ𝝀 − 𝒔 + 𝜀⟨𝝀⟩−1𝑒.

The system can be reduced further, by substitutions of Δ𝒚, and either Δ𝝀 or Δ𝒙. The smallest system
is chosen, which depends on if there are more constraints than variables (𝑛 > 𝑚) or the other way
around. The system depending only on the dual variables 𝝀 is

(𝐷𝜆𝑦 + 𝐴𝐷−1𝑥 𝐴𝑇) Δ𝝀 = �̃�𝜆𝑦 − 𝐴𝐷−1𝑥 �̃�𝑥 , (4.57)
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which is preferred if there are more variables than constraints. The system only depending on the
primal variables 𝒙 is

(𝐷𝑥 + 𝐴𝑇𝐷−1𝜆𝑦 𝐴) Δ𝒙 = −�̃�𝑥 − 𝐴𝑇𝐷−1𝜆𝑦 �̃�𝜆𝑦 , (4.58)

which is preferred if there are more constraints than variables. Here, 𝐷𝜆𝑦 = 𝐷𝜆 + 𝐷−1𝑦 and
�̃�𝜆𝑦 = �̃�𝜆 + 𝐷−1𝑦 �̃�𝑦.
The left hand side matrix of equations (4.57) and (4.58) are the Schur complements of

[𝐷𝑥 𝐴𝑇
𝐴 −𝐷𝜆𝑦] [

Δ𝒙
Δ𝝀] = − [

�̃�𝑥
�̃�𝜆𝑦
] .

The inverse matrices of 𝐷𝑥 , 𝐷𝑦 and 𝐷𝜆 are needed for these eliminations, and therefore it is necessary
that 𝐷𝑥 , 𝐷𝑦 and 𝐷𝜆 are wellconditioned in order for the reduced systems to be numerically accurate.
From the substitutions, the values for all Δ𝒙, Δ𝒚, Δ𝝀, Δ𝝃, Δ𝜼, Δ𝝁, 𝒔 can be updated.

The method of moving asymptotes uses a linesearch method, where 𝜏 is the step size. Let 𝒘 =
(𝒙, 𝒚, 𝝀, 𝝃, 𝜼, 𝝁, 𝒔), then the iteration 𝑘 updates the values as

𝒘𝑘+1 = 𝒘𝑘 + 𝜏𝑘 ⋅ Δ𝒘𝑘 (4.59)

and such that the positivity conditions of (4.39)(4.40) and (4.45)(4.47) are not violated. To find a good
𝜏, first choose the largest number 𝑡 ≥ 1 such that

𝑥𝑗 + 𝑡Δ𝑥𝑗 − 𝛼𝑗 ≥ 0.01 (𝑥𝑗 − 𝛼𝑗) ∀𝑗
𝛽𝑗 − (𝑥𝑗 + 𝑡Δ𝑥𝑗) ≥ 0.01 (𝛽𝑗 − 𝑥𝑗) ∀𝑗

(𝒚, 𝝀, 𝝃, 𝜼, 𝝁, 𝒔) + 𝑡 ⋅ (Δ𝒚, Δ𝒛, Δ𝝀, Δ𝝃, Δ𝜼, Δ𝝁, Δ𝜻, Δ𝒔) ≥ 0.01 ⋅ (𝒚, 𝒛, 𝝀, 𝝃, 𝜼, 𝝁, 𝜻, 𝒔).

The new point should also be better than the last one, and therefore there should be a decrease in the
norms of the lefthand sides of the KKT conditions. We set

𝜏 = {max(𝑡, 𝑡/2, 𝑡/4, 𝑡/8, …) | ‖𝛿(𝒘 + 𝜏 ⋅ Δ𝒘)‖2 < ‖𝛿(𝒘)‖2},

where 𝛿(𝒘) is the residual vector defined by the left hand sides of the perturbed KKT conditions (4.36)
(4.39), (4.50) and (4.51)(4.54).

To summarize this section, the steps for the primaldual method of theMethod of Moving Asymptotes
are stated. These are taken every time Subproblem (4.35) is solved.

Step 1: Set initial values for 𝒘𝑘 and 𝜀, 𝑘 = 1.

Step 2: Compute Δ𝒘𝑘 by solving the perturbed KKTsystem with Newton’s method

Step 3: Compute step size 𝜏𝑘 and update 𝒘𝑘+1 = 𝒘𝑘 + 𝜏𝑘Δ𝒘𝑘

Step 4: If ‖𝛿 (𝒘𝑘+1) ‖∞ < 0.9𝜀𝑘, update 𝜀 as 𝜀𝑘+1 = 0.1𝜀𝑘, else, 𝜀𝑘+1 = 𝜀𝑘

Step 5: Repeat Step 24 until 𝜀 ≤ 10−1 and ‖𝛿 (𝒘𝑘+1) ‖∞ < 0.9𝜀𝑘.

4.6. Comparison of methods
The methods above all have their advantages and disadvantages, and the selection of one over the
other is largely based on the type of nonlinear optimization problem. The methods will be compared in
relation to the crane optimization problem.

The interiorpoint methods often performwell for largescale applications. However, they are sensitive
to the choice of the initial parameters and the manner in which the barrier parameter 𝜇 is updated. If the
problem is badly scaled, this might be a problem. There are again many different software packages
that differ in their approach, and packages that combine SQP and IPM [2].

Schittkowski (2003, [28]) made a comparison between the MMA and SQP method. Since the
IPM method that is discussed in Section 4.2 uses a similar quadratic approximation as with SQP, this
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comparison is useful in showing the differences between the quasilinear and secondorder approximation
subproblems. In the comparison, the gradients are approximated with a fivepoint difference formula
and the comparison is made for the success rate and the number of function evaluations. The function
evaluations are a useful performance parameter since for practical applications, this dominates the
computation time. For a standard test set of 306 problems, the SQP method clearly outperforms the
MMA method in both success rate and function evaluations. The success rate is 100% compared to
93% for the MMA method. This might be because many test cases involve highly nonlinear objective
functions, and since the MMA method only applies a firstorder approximation, it performs worse.

For specifically structural optimization problems however, the MMA method performs better. It
needs less function evaluations than the SQP method, but still the reliability of the method is lower than
the SQPmethod, which has a higher success rate (84% compared to 73% for a tolerance level of 0.01).
For very large problems (more than 106 variables), the MMAmethod is still able to solve them, whereas
the SQP method is more suited for small optimization problems [28]. Similar results have been found
by Schittkowski in 1994 [29], where the SQP method has the highest robustness compared to all other
methods, but it can be a bit slower in computation time of structural optimization compared to MMA. A
disadvantage of the MMA method is that there are asymptotes for which the initial and updated values
influence the computation time.
A summary of the comparison between the methods that are mentioned here can be found in Table
4.1. The column ’Convergence’ indicates how often the method finds an optimal point, and the column
’Scalability’ indicates how well the algorithm is suited for largescale problems. The plus and minus
symbols indicate how well the method performs on that property , in comparison to the other methods
that are discussed in this Chapter. The scale ranges from – to ++.

Method Convergence Scalability Simplicity
IPM + ++ +
SQP ++  +
MMA +/ ++ 

Table 4.1: Comparison of methods on convergence, scalability and simplicity
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2D experiments

In this chapter, the optimization algorithms’ performances are compared for four test cases. They are
all structural optimization problems where the size and shape of the structures are the design variables,
and the stresses in the elements are constrained. All these experiments are in two dimensions, because
this is a good check of the algorithms before moving towards the 3dimensional final problem. The four
test cases are:

• The 10bar truss problem, see Figure 5.1a

• Michell’s arch, see Figure 5.1b

• The 2D luffing boom crane, see Figure 5.1c

• The 2D Tetrahedron crane, see Figure 5.1d.

(a) 10bar truss. (b) Michell’s arch.

(c) 2D luffing boom crane. (d) 2D Tetrahedron crane.

Figure 5.1: Initial structures of the test cases. For the cranes, the elements are numbered. This numbering is used to
distinguish the crosssectional areas, yield strength and stresses of each bar.

35
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The 10bar truss problem and Michell’s arch have been studied in many articles to test algorithms
on shape, size and topology optimization (see for example [9, 30, 31]). The weight of the structure
is minimized with constraints on the internal forces of the trusses by yield stress and Euler force, and
additional upper and lower bounds on the design variables to limit their movement.
The other two test cases are more related to the final problem of this research, and other constraints
as explained in Chapter 3 are added to the stress constraints here, such as the constraint on the
overturning moment (3.7). All constraints are inequality constraints. The parameters for the cranes are
derived from ACE.

5.1. Optimization methods
For the test cases, three methods are selected to compare the results from:

• The least squares SQP method by Kraft [4], named SLSQP with the implementation provided in
the Python package scipy.optimize

• The InteriorPoint Method with a trustregion strategy by Byrd, Hribar and Nocedal [2], also with
the implementation provided in the python package scipy.optimize

• The Method of Moving Asymptotes by Svanberg as described in Section 4.4.

For the Method of Moving Asymptotes, illconditioning of the matrix solved in the primaldual method
can be a problem. Therefore, the objective function, constraints and design variables have to be
properly scaled. As described in [3], for the parameters that are used in that document, the objective
function has to be scaled such that

1 ≤ 𝑓(𝒙) ≤ 100
and the constraints should also be scaled such that

1 ≤ 𝑔𝑖(𝒙) ≤ 100, 𝑖 = 1,… ,𝑚

and the values of the design variables should be between 0.1 and 100.
If the stress constraints and objective function are not scaled, their values are in the order of 108 and
105 respectively, which results in an illconditioned matrix when solving the problem. Therefore, the
objective function is scaled as

𝑓(𝒙) = ∑
𝑏∈ℬ

𝜌𝑏𝐴𝑏𝐿𝑏 ⋅
1

𝜌𝑚𝑎𝑥

and the stress constraints are scaled as

𝜎𝑏 − 𝜎yield𝑏

𝜎yield𝑚𝑎𝑥
≤ 0

for tensile stress and as

(− 𝜋2𝐸𝑏𝐼
(𝐾𝐿𝑏)2𝐴𝑏

− 𝜎𝑏) ⋅
1

𝐸𝑚𝑎𝑥 ⋅ 𝜋2
≤ 0

for compressive stress.

5.2. Gradient computation
For all methods, the partial derivatives of the objective function and the constraints have to be given
as an input by the user, since these are used in the algorithm. If they are not available, they can
be approximated numerically by a 2point finite difference scheme. If the gradients are available, the
algorithm might be quicker because it can skip this approximation, and it is of course more accurate.
Therefore, the gradient of the objective function (3.2) is derived analytically. The constraints are
approximated with the finite difference scheme, since the constraints differ for the various test cases
and the derivation of the Jacobian for the stress constraints involves the inverse of the stiffness matrix
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in each step, which is computationally expensive.
The gradient of the objective function is equal to

∇∑
𝑏∈ℬ

𝐴𝑏𝐿𝑏𝜌𝑏 = ∇𝑓(𝒙) = [
𝜕𝑓
𝜕𝒏𝜕𝑓
𝜕𝑨
] ,

where the derivatives of 𝑓 to the nodal positions is equal to

𝜕𝑓
𝜕𝒏𝑑 =∑

𝑒∈ℰ
𝜌𝑒𝐴𝑒

𝜕𝐿𝑒
𝜕𝒏𝑑 ,

where ℰ(𝒏𝑑) is the set of edges that are connected to node 𝒏𝑑, and index 𝑑 ∈ {1, 2} indicates if node
𝒏𝑑 is marked as the start or end node of the edge, respectively. The derivative of the length of the edge
with respect to node 𝒏𝑑 is equal to

𝜕𝐿𝑒
𝜕𝒏𝑑 = {

𝒏1𝑒−𝒏2𝑒
‖𝒏2𝑒−𝒏1𝑒‖

if 𝑑 = 1

𝒏2𝑒−𝒏1𝑒
‖𝒏2𝑒−𝒏1𝑒‖

if 𝑑 = 2.

the derivative to the crosssectional area of a bar 𝑏 is equal to

𝜕𝑓
𝜕𝐴𝑏

= 𝜌𝑏 ⋅ 𝐿𝑏 .

Now that the optimization methods are defined, the results of the test cases are presented in Sections
5.3  5.6.

5.3. 10bar truss problem
For the 10bar truss problem, a vertical load is attached on the bottomright node and the structure is
fixed by the two leftmost nodes, as can be seen in Figure 5.1a. The parameters that are chosen for
this problem can be found in Table 5.1. This problem has 16 design variables and 10 constraints. The
parameter 𝑑 determines the initial positions for the nodes as can be seen in Figure 5.1a. Choosing
𝛼 = 0 for determining the thickness of the annulus of the crosssectional area of the bars indicates that
𝑟 = 0 and therefore that the crosssectional area of the bars is a disc, see Figure 3.2.

d 9.5 m load force 890748 N
Initial A 0.2 m2 𝛼 (for I) 0
𝜌 2768 kgm−3 k 1
E 6.9 ⋅ 109 Pa max move node 5 m
𝜎yield 1.72 ⋅ 108 Nm−2 min A 0.01 m2

Table 5.1: Parameters and initial design variables for the 10bar truss problem

The results of this test case can be found in Figures 5.2, 5.3, 5.4, 5.5 and Table 5.2. Figures
5.5 shows the absolute values of the stresses in the bars, together with their maximum value as the
dotted line in the corresponding color. From this, it can be seen that the MMA and IPM method have
converged and found a similar feasible solution, but the SLSQP method stops after three iterations
with an infeasible solution. The SLSQP method termintates because it cannot find a negative search
direction in that point anymore. Scaling the problem as with the MMA method helps a bit, but the result
is still far from optimal. The feasible results look similar to the figure of shape optimization in Figure 1.3.

Another notable result is the difference in time and number of iterations for the IPM andMMAmethod
in Table 5.2. It can be seen in Figure 5.4b that for the IPM method, the crosssectional variables do not
change much anymore after 150 iterations. This is due to the small trustregion at this point, which is
why it cannot change the variables much anymore. Choosing a less accurate tolerance parameter for
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(a) SLSQP (did not converge) (b) IPM (c) MMA

Figure 5.2: Size and shape optimization for the 10bar truss. Initial trusses in red, optimized trusses in blue.

(a) SLSQP (b) IPM (c) MMA

Figure 5.3: Weight of the structure during the iterations.

(a) SLSQP (b) IPM (c) MMA

Figure 5.4: Crosssectional areas of the bars of the structure during the iterations.

the trust region reduces this amount of steps, but also decreases the accuracy a little.

For the MMA method, the first few steps attain values for which the solution is infeasible, which can
be seen in 5.3c and 5.5c. This is due to the perturbation parameter 𝜀 as explained in Section 4.5, which
allows the method to search for solutions outside of the feasible region in the first steps. When this
parameter becomes smaller, this is less likely to happen.

5.4. Michell’s arch
For Michell’s arch, the size and parameters of the structure are taken from (Wang, 2002) [30] and can
be found in Table 5.3.
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(a) SLSQP (b) IPM (c) MMA

Figure 5.5: Stresses of the bars of the structure during the iterations. The dotted lines show the maximum stress for the bars in
the corresponding color.

Time (s) Feasible iterations Final weight (kg)
MMA 203 yes 96 10871.37
IPM 410 yes 501 10960.04
SLSQP 1 no 3 3043.80

Table 5.2: Results for the 10bar truss structure for the three different methods. Feasible indicates whether or not the solution is
feasible.

d 0.5 m load force −2 ⋅ 106 N
Initial A 0.05 m2 𝛼 (for I) 0
𝜌 7.8 ⋅ 103 kgm−3 k 1
E 2.1 ⋅ 109 Pa max move node 0.5 m
𝜎yield 2.4 ⋅ 108 Nm−2 min A 0.01 m2

Table 5.3: Parameters and initial design variables for the Michell’s arc problem

The results for this method can be found in Figures 5.6, 5.8 and 5.7. Since again, the SLSQPmethod
produces infeasible solutions because of a positive directional derivative, only the other two methods
are compared here. The final values are similar, see Table 5.4. The archlike shape is wellknown in
bridge design and distributes the weight evenly over the elements. The optimal shape is therefore very
intuitive here. There is a big difference in how these final values of the two methods are attained. In the
first steps, the crosssections differ much more for the IPM method, whereafter the optimal values are
slowly attained. In comparison, the MMA method here does not attain values for the design variables
that are outside of the limits, and the trend is more alternating than decreasing between steps 5 and
20. After that, only small changes in the design variables are made.

For the IPM method, after 60 steps the design variables are very close to the final variables. These
are also compared to the final variables in Table 5.4. The last 0.48 kg reduction in weight for the IPM
method takes 217 steps, which takes very long in comparison with the reduction in the first 60 iterations.
If this quicker but less accurate termination is desired, the tolerance level for the IPM method can be
increased. Table 5.5 shows how the minimum radius of the trust region (xtol) influences the termination
of the method. It can be seen that a lower tolerance decreases the runtime drastically, without losing
much accuracy for the optimum. The reduction of the tolerance level to 10−2 would be a good option
for speeding up the method without losing too much accuracy.



40 5. 2D experiments

(a) IPM (b) MMA

Figure 5.6: Size and shape optimization for Michell’s arch. Initial trusses in red, optimized trusses in blue.

(a) IPM (b) MMA

Figure 5.7: Weight of the structure during the iterations.

(a) IPM (b) MMA

Figure 5.8: Crosssectional areas of the bars of the structure during the iterations.

5.5. 2D Luffing boom crane
The twodimensional luffing boom crane is a very simple crane design, which is perfect for the first test
case for a crane. It is also used as a test case in ACE, which is where most of the parameters are
taken from. This is done for the starting position of the nodes, the element’s density, yield strength and
Young’s modulus, and also the load force. Here, the density, yield strength and Young’s modulus are
not the same for each element. The other parameters and initial values are found in table 5.6.

Next to the constraints on the stresses, the overturning moment as described in Equation (3.7) is
taken as a constraint. The maximum overturning moment is taken as 6.55 ⋅ 108Nm. This overturning
moment constraint together with the four stress constraints on each of the bars results in five constraints
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MMA IPM IPM after 60 steps
Time (s) 136,96 530 109,04
Feasible yes yes yes
iterations 31 277 60
Final weight (kg) 581.08 581.08 581.56

Table 5.4: Results for Michell´s arch for MMA and IPM method.

xtol value final weight (kg) iterations comp. time (s)
10−8 581.08 533 851.23
10−6 581.09 329 569.61
10−4 581.08 277 532.62
10−2 581.12 176 380.85

Table 5.5: Results for differrent xtol parameter values for Michell’s arch, solved with the IPM method. Default value for xtol is
10−8.

Initial A 0.5 m2 max move node 10 m
𝛼 (for I) 0.9 min A 0.01 m2

k 1

Table 5.6: Parameters and initial design variables for the twodimensional luffing boom crane.

in total. The crosssectional area of each bar is a design variable, as well as the 𝑥 and 𝑦coordinate
of the hinge. This results in six design variables.

(a) IPM (b) MMA

Figure 5.9: Size and shape optimization for the twodimensional luffing boom crane. Initial trusses in red, optimized trusses in
blue.

This problem is run with the methods IPM and MMA. Since Table 5.5 showed that a tolerance level
of 1 ⋅ 10−2 gives accurate enough results for the IPM method, this is used in the 2D luffing boom crane
case. The results can be found in Figures 5.9, 5.10, 5.11, 5.12. Again, both methods give similar results
and the MMA method is faster. The extra constraint on the overturning moment does not influence the
optimization: Table 5.7 shows that the results are similar in this case. This means that the constraint
is not active in the optimal point. It does however influence the time and number of iterations that the
algorithms need.

It can also be seen in Figure 5.9 that mostly the crosssectional area of the structure is decreased.
This has the largest influence on the weight, especially in the first iterations. This means that in the
first steps of the optimization, the gradient in the initial point has much higher values for the derivatives
with respect to the crosssectional areas.
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(a) IPM (b) MMA

Figure 5.10: Weight of the twodimensional luffing boom crane during the iterations.

(a) IPM (b) MMA

Figure 5.11: Crosssectional area of the bars of the twodimensional luffing boom crane during the iterations. Element 1
corresponds with blue, element 2 with yellow, element 3 with green and element 4 with red.

(a) IPM (b) MMA

Figure 5.12: Stresses and maximal stresses during iterations for the twodimensional luffing boom crane. Element 1
corresponds with red, element 2 with green, element 3 with yellow and element 4 with blue.

From graph 5.12b it can be seen that in the first steps, the stresses get very large and exceed the
feasible values for the MMA method. This is due to too small crosssectional areas, as can be seen
in Figure 5.11b. Later, the stresses tend to obtain the maximum values. This is due to the penalty
parameter that is used in this method, which is still small in the first steps and therefore allows to
search for solution outside the feasible region. This is different from the trustregion method since in
5.12a it can be seen that the maximum stresses are not exceeded that much.
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with overturning moment constraint without overturning moment constraint
MMA IPM MMA IPM

Time (s) 17.7 25.4 34.15 46.4575
Feasible yes yes yes yes
Iterations 26 87 19 264
Weight (kg) 444382.05 444382.05 444382.06 444382.05
node1 (15.612, 26.645) (15.613, 26.645) (15.613, 26.645) (15.613, 26.645 )
A1 (m2) 0.07760 0.07759 0.07759 0.07759
A2 (m2) 0.1754 0.1754 0.1754 0.1754
A3 (m2) 0.46576 0.46576 0.46576 0.46576
A4 (m2) 0.01611 0.01612 0.01612 0.01612

Table 5.7: Table with final values for the optimization of the twodimensional luffing boom crane constrained on stresses and
overturning moment.

5.6. 2D Tetrahedron crane
For the optimization of the twodimensional Tetrahedron crane, more constraints than just on stress
have to be added to retrieve a useful solution. This is because the structure has three nodes that are
free variables, which are restricted to some of the constraints that are elaborated upon in Chapter 2.
The initial shape of the crane can be seen in Figure 5.1d, and the parameters and initial crosssections
can be found in Table 5.8.

Initial A 0.5 m2 max move node 40 m
𝛼 (for I) 0.95 min A 0.01 m2

k 1

Table 5.8: Parameters and initial design variables for the twodimensional Tetrahedron crane.

The nodes that are free are the hinge, the heel and the mast top, see also Figure 2.3. Next to the
constraints on stresses, shape of the crane is constrained by

• Themaximumoverturningmoment𝑀𝑚𝑎𝑥𝑂 as described in Equation (3.7). Themaximumoverturning
moment in the design point is set to 6.55 ⋅ 108 Nm.

• The minimal distance between the mast and the heel, as described in Equation (3.11). This is 9
meters.

• The heel position, which does not touch themast in both the lowest and highest position. Therefore,
the heel has to be on the right side of the mast in both positions, see Equation (3.14).

• The heel position, which should always be below the mast top.

• The minimum boom clearance as described in Equation (3.12). At a height of 107 meters, the
minimal distance from the load line of the load to the jib is at least 12 meters.

In total, this problem has 14 design variables and 15 constraints, whereas for the luffing boom crane,
there were less constraints than design variables. The mathematical formulation for these constraints
can be found in Chapter 3. Most of these extra constraints do not have to be scaled since their values
are already between 1 and 100, except for the overturning moment. This is scaled as

𝑀𝑂 −𝑀𝑚𝑎𝑥𝑂
107 ≤ 0.

The results for the twodimensional Tetrahedron crane for the MMA and the IPM can be found in
Figures 5.13  5.16 and Table 5.9. Here, a difference in the results of the two methods can be seen.
The IPM method does not converge if the starting values as indicated in Table 5.8 are used. This is
because these initial design variables are further away from the optimum than before, and the trust
region is decreasing too quickly for the method to reach the optimum. The tolerance level is reached
before the constraints are satisfied, which results in an infeasible solution. This can be solved by
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MMA IPM
Time (s) 49.73 457.5
Feasible yes yes
Iterations 28 596

Weight (kg) 5.3533 ⋅105 5.12107 ⋅105
hinge xcoordinate (m) 15.414 5.984
hinge ycoordinate (m) 43.69 62.64

mast top xcoordinate (m) 4.11 4.23
mast top ycoordinate (m) 70.48 71.85

heel xcoordinate (m) 15.48 15.86
heel zcoordinate (m) 65.28 66.54

back leg A (m2) 0.15 0.14
front leg A (m2) 0.15 0.01

mast A (m2) 0.27 0.35
mast spreader A (m2) 0.057 0.096
jib spreader A (m2) 0.14 0.099

pendant A (m2) 0.025 0.024
hoist A (m2) 0.029 0.060
jib A (m2) 0.35 0.34

Table 5.9: Results of the size and shape optimization of the twodimensional Tetrahedron crane.

choosing better initial design variables. Since the optimal values are known from the MMA method,
this can be done, but it is of course inefficient if it is necessary to run the optimization twice with different
methods. The results for the IPM method found by replacing the initial crosssectional areas of 0.5 m2

with

A1 A2 A3 A4 A5 A6 A7 A8
0.2 0.2 0.3 0.05 0.1 0.03 0.03 0.4.

Here, the numbering of the elements corresponds with Figure 5.1c. Even when the initial design
variables are very close, the method still takes a long time computing. Eventually, a solution is found,
but this time it is different from the MMA optimum and the final weight is less than the final weight of the
MMA optimization, see Table 5.9. Especially the stresses in the elements 2 and 5, the front supports
and the jib spreaders, are very different, as can be seen in Figure 5.16. It makes sense that the stresses
that are different are the compressive stresses, since for the tensile stresses, the maximum 𝜎𝑚𝑎𝑥yield is a
constant which is attained for both the MMA and IPM method.

Even though the result from the IPM method is feasible according to the constraints, it is not a
practical solution. This is because is no boom clearance at the minimum hoist radius, so nothing can
be lifted at this position, see Figure 5.17a. However, this is not implemented as a constraint.

As can be seen in Figure 5.13, the base of the frame gets higher than the original configuration,
and in Figure 5.17 it can be seen the maximum limit of the 𝑦coordinate of the heel is reached, since it
is at the same height as the mast top. Due to these findings, Tetrahedron thought of the constraint on
the height of the base frame that is described in Section 3.4 in Equation (3.8).

In addition, the hinge is closer to the crane than in the original configuration. This is because the
only constraint that influences this is the overturning moment, and the increase of overturning moment
is compensated with a shorter jib, which is the element with the largest crosssectional area and is also
very long. This element therefore has a large mass and thus a big influence on the center of gravity of
the structure. When the sidelead and offlead are included to the load vector, the hinges would also
likely move away from the origin.

As can be seen by the examples in this chapter, both the IPM and the MMA method attain an
optimum for all twodimensional experiments. Most often it is the same configuration, except for
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(a) IPM (b) MMA

Figure 5.13: Size and shape optimization for the twodimensional Tetrahedron crane. Initial trusses in red, optimized trusses in
blue.

(a) IPM (b) MMA

Figure 5.14: Weight of the twodimensional Tetrahedron crane during the iterations.

(a) IPM (b) MMA (c) legend

Figure 5.15: Crosssectional areas of the bars during the iterations. The numbers of the legend correspond with the numbers in
Figure 5.1d.

the Tetrahedron crane test case. For the 10bar truss problem and Michell’s arch, the results also
correspond with the literature. IPM takes a much longer time to reach the final weight with the default
tolerance level 10−8, but the computation time can be drastically reduced if the tolerance level is
increased to 10−2. The decrease in accuracy is then still small, and insignificant on the scale of a
crane structure. Therefore, both methods will be tested on the threedimensional Tetrahedron crane
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(a) IPM (b) MMA (c) legend

Figure 5.16: Stresses and maximal stresses during iterations for the twodimensional Tetrahedron crane. The numbers of the
legend correspond with the numbers in Figure 5.1d.

(a) IPM (b) MMA

Figure 5.17: Crane in design point, highest and lowest hoist radius position. The crane is set to be horizontal in the lowest
position, and to not touch the mast in the highest position.

problem.



6
3D experiment: Tetrahedron crane

In this chapter, the results of the threedimensional Tetrahedron crane are presented and discussed.
This does not only include a comparison betweenMMA and IPM, but also an insight in how the alteration
of certain constraint parameters influence the results. Finally, some convergence results are discussed
as well.

6.1. Problem definition
For this final problem, all constraints that are elaborated upon in Chapter 3 are used for the optimization
of the 3D Tetrahedron crane. The parameters are listed in Tables 6.1, 6.2 and 6.3. The initial values
come from Tetrahedron, and the parameter values are also selected in consultation with Tetrahedron.

node 𝑥coordinate (m) 𝑦coordinate (m) 𝑧coordinate (m) additional weight (kg)
Supports back 4.5 4.5 4.25 225761
Supports front 4.5 4.5 4.25 1.425⋅105
Support center 5.5 0 4.25 1 ⋅104
Hinge 17 15 34.25 60683
Mast top 7.5 0 64.25 6.5 ⋅104
Heel 15.18 0 53.51 6.5 ⋅104
Top 40 0 151.25 2.6 ⋅105

Table 6.1: Initial positions and additional weight at each node. For symmetric nodes, the coordinates indicate the right node.

Edge Initial 𝐴 (m2) 𝜌 (kg3m−1) 𝐸 (Pa) 𝜎yield (Nm−2)
Jib 0.168 7850 210⋅109 ⋅ 0.77 690⋅106
Pendant 0.05 1400 116⋅109 850⋅106
Hoist 0.0902 6366 100⋅109 ⋅ 0.7 917⋅106
Jib spreader 0.0766 7850 210⋅109 ⋅ 0.95 360⋅106
Front leg 0.177 7850 210⋅109 ⋅ 0.85 360⋅106
Back leg 0.207 7850 210⋅109 360⋅106
Mast 0.16 7850 210⋅109 ⋅ 0.8 690⋅106
Mast spreader 0.0333 7850 210⋅109 690⋅106
Back cross 0.0517 7850 210⋅109 ⋅ 0.85 360⋅106
Transverse 0.0459 7850 210⋅109 ⋅ 0.5 360⋅106

Table 6.2: Initial crosssectional areas, densities, Young’s moduli and yield strength for all edges. For symmetric elements, the
values are applicable to both members.

If any of the values is altered for the results, this will be indicated.

47
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Parameter value
𝑟leg 2.5 m
𝑟platform 7.05 m
𝐹load 1.25 ⋅ 103 ⋅ 9.81 ⋅ 1.1 N
offlead 1 degree
sidelead 3 degrees
𝑀𝑚𝑎𝑥𝑜 6.55 ⋅ 108 Nm
𝑑𝑚𝑎𝑥 22.5 m
𝑑hoist 7 m
𝑑𝑚𝑖𝑛boom clearance 11 m
ℎload 102.75 m
max hoist radius 100 m
min hoist radius 20 m
𝑀𝑚𝑎𝑥
𝑧 9.684 ⋅ 106

𝛼 0.98
k 1

Table 6.3: Parameter values for the optimization problem. All parameters are explained in Chapter 3.

6.2. Comparison new method with existing optimization method
The results for the optimization of the 3dimensional Tetrahedron crane with the Method of Moving
Asymptotes are discussed in this section, and compared to the already existing optimization method.
A comparison is made between the methods’ computation time, the amount of weight reduction and
the robustness of the methods. To make a good comparison, the existing optimization method will first
be explained.
The optimization method that is implemented in ACE, minimizes the weight of the structure with the
crosssectional areas of the bars as design variables. The method follows the following steps:

Step 1: Set sufficiency factor 𝑝 ∈ (0, 1), sufficiency step Δ𝑝, max sufficiency factor 𝑃, max forces
of edges 𝜆𝑚𝑎𝑥, crosssectional area decrease step 𝑠 ∈ (0, 1).

Step 2: Compute the forces in the elements of the crane 𝜆𝑏, under a discretization of all positions
of the crane.

Step 3: For each bar, it is checked if the force is close enough to the maximum force, as

|𝜆𝑏|𝑚𝑎𝑥 ∈ [ 𝑝 ⋅ |𝜆𝑚𝑎𝑥|, |𝜆𝑚𝑎𝑥| ] .

If this is not the case, there can be two situations:

– |𝜆𝑏|𝑚𝑎𝑥 < 𝑝 ⋅ |𝜆𝑚𝑎𝑥| ∶
Update the crosssectional area of 𝑏 as

𝐴𝑏 ∶= 𝐴𝑏 − 𝑠 ⋅ (𝐴𝑏 − 𝐴𝑚𝑖𝑛𝑏 ) .

Here, 𝐴𝑚𝑖𝑛𝑏 is the minimal crosssectional area that would be able to withstand the
force 𝜆𝑚𝑎𝑥.

– |𝜆𝑏|𝑚𝑎𝑥 > |𝜆𝑚𝑎𝑥| ∶
Return to previous crosssectional areas, and reduce the crosssectional area decrease
step with

𝑠 ∶= 𝑠2.
Step 4: If the forces are close enough to 𝜆𝑚𝑎𝑥 , update 𝑝 ∶= 𝑝 + Δ𝑝 and repeat step 23.

Step 5: Repeat Step 24 until 𝑝 > 𝑃.
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Figure 6.1: Result for the new design of the Tetrahedron crane after size and shape optimization with the method of moving
asymptotes.

An advantage of this model is that it computes the forces in all positions. However, it does not always
converge to a solution if the sufficiency factor or the step size for adjusting the crosssections are
not chosen well. The MMA and IPM method also needs proper scaling of the constraints to find a
good solution, but the scaling is not very sensitive. Next to that, the new model also includes shape
optimization, which is a big advantage over the already existing method. Also taking the Euler buckling
into account is another advantage with respect to the existing method.

The graph of the resulting crane of the MMA method can be found in Figure 6.1 and the comparison
with the ACE method can be found in Table 6.4. The methods are compared for starting values of
𝐴 = 1.0m2 for all bars, which is why the original crane in Figure 6.1 has very thick elements. From
Table 6.4 it can be seen that the MMA method is faster than the existing method, and needs about
half the amount of iterations in comparison with the ACE method. And, more importantly, the weight is
reduced more.

For the IPM, the method takes a very long time. This could be expected since it is also slower
than MMA in the test cases. More importantly, the method does not find a solution from this starting
point, which is very far from the feasible set. The constraints on the stresses and overturning moment
are never satisfied during the iterations, and as can be seen in Table 6.4, some of the crosssectional
areas of the bars are negative, which is also a violation of the bounds. A good suggestion to reduce
the computation time of the IPM, is to first run the MMA method and find values that are close to the
optimum, and then use IPM to refine the solution. Therefore, it is important to also test the newmethods
with more reasonable initial crosssectional areas as defined in Table 6.2. But even then, the method
does not find a feasible solution. Therefore, only the results of the MMA method will be discussed in
more detail on convergence, robustness and parameter sensitivity.

In Table 6.5, it can be seen which constraints are active at the optimum of the MMA method with
the configuration as stated in Section 6.1. Most of the stress constraints are active, and if the stress
constraint of an element is not active, then it is active for its symmetric counterpart. This makes sense,
since because there is a sidelead, the symmetric elements are not loaded equally.
Another thing that is interesting, is that the constraint that the heel should not touch the mast in
the bottom position is never attained in any test configuration. This suggests that this constraint is
unnecessary. This does not hold for any other constraint that is inactive in the situation of Table (6.5),
since they are active when the problem has different parameters.
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IPM (infeasible) MMA ACE
Computation time (s) 1726 231 548
Number of iterations 523 27 47
Starting weight (kg) 4.9693 ⋅ 106 4.9693 ⋅ 106 4.9693 ⋅ 106
Final weight (kg) 6.9502 ⋅ 105 5.3109 ⋅ 105 5.62 ⋅ 105
back leg xcoordinate (m) 3.26409 5.90104 4.5
back leg ycoordinate (m) 5.15159 2.08554 4.5
front leg xcoordinate (m) 5.70189 1.4079 4.5
front leg ycoordinate (m) 2.39596 6.15855 4.5
hinge xcoordinate (m) 19.0078 13.64815 17
hinge ycoordinate (m) 12.0686 17.88793 15
hinge zcoordinate (m) 25.27943 32.13689 34.25
center leg xcoordinate (m) 3.62239 5.87866 5.5
mast top xcoordinate (m) 10.281 7.38863 7.5
mast top zcoordinate (m) 63.36764 67.724971 64.25
heel xcoordinate (m) 9.83439 18.96655 15.1789
heel zcoordinate (m) 36.58708 63.58295 53.505
back leg A (m2) 0.11529 0.07789 0.202
front leg A (m2) 0.09546 0.06676 0.168
mast A (m2) 0.1539 0.17069 0.163
transverse A (m2) 1.28206 0.264737 0.0483
mast spreader A (m2) 0.01229 0.02345 0.0337
jib spreader A (m2) 0.00665 0.08262 0.0799
pendant A (m2) 0.01698 0.008 0.051
hoist A (m2) 0.02228 0.01414 0.0926
jib A (m2) 0.31909 0.23328 0.172
back cross A (m2) 0.00165 0.08562 0.0479

Table 6.4: Results of the size and shape optimization and of the existing size optimization implemented in ACE.
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Constraint Active?
overturning moment yes
heel doesn’t touch mast top position yes
heel doesn’t touch mast bottom position no
min mast heel distance yes
heel below mast at top no
min boom clearance no
jib spreader distance from leg no
mast spreader distance from leg yes
support front distance from leg yes
distance hinge to other legs yes
max moment times weight base frame no
support back to leg distance no
support front to leg distance no
support center to leg distance no
support back to outside slew platform yes
support front to outside slew platform no
support center to outside slew platform yes

Element (stress) Active?
back support right yes
back support left no
front support right yes
front support left no
mast yes
transverse yes
mast spreader right yes
mast spreader left yes
jib spreader right yes
jib spreader left yes
pendant right no
pendant left yes (minimum)
hoist yes
jib yes
back cross right no
back cross left yes

Table 6.5: Table showing all constraints and whether or not, at the found optimum with the MMA method, the constraint is
active. The right side shows the elements and whether or not the stress constraint is active, and on the left, the results for the
other constraints are given. For the pendants, it is also checked if the minimum pendant stress of Equation (3.5) is attained.

Figure 6.2: Graph of the norm of the residuals of the KKT conditions per iterations for the Method of Moving Asymptotes. Left is
in linear scale, right is in semilog scale.

6.2.1. Convergence
Figure 6.2 show the evolution of the Euclidean norm of the residuals ‖𝛿(𝑤)‖2 of the perturbed KKT
conditions for the MMA method. This norm ‖𝛿(𝑤)‖2 converges to 0 as 𝜀 → 0, if an optimum is
found. The method is set to terminate if ‖𝛿(𝑤)‖2 < 0.005. From these figures, it can be seen that
the method converges linearly. The rate of convergence is approximately 0.7. The linear convergence
is expected, since the method applies a firstorder quasilinear approximation of the constraints and
objective function.
It is interesting to see that in some steps, the residual norm increases, while the overall trend is a
decrease. This only happens when the residual is small, lower than 0.05. This might happen when 𝜀
decreases, and the decrease of the other terms in Equations (4.51)(4.54) is less.

6.2.2. Robustness
When using the MMA method with initial crosssectional areas of 1 m2, the first few iterations result
in an illconditioned matrix in the primaldual system, with a condition number of around 1018. This is
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Figure 6.3: Optimized weight of Tetrahedron structure for different values of 𝛼.

because the scaling of the method only works for values close enough to the solution. However, within
3 iterations, the solution becomes close enough and the condition number of the matrix decreases
to an acceptable number of 106, and decreases even futher afterwards. If the MMA is used with the
initial values close enough, such as in Table 6.2, there is no such problem as long as the scaling of the
objective function and constraints is done properly, as explained in Section 5.1.
Asmentioned in the beginning of this section, the existingmethod in ACE sometimes does not converge
if the sufficiency factor 𝑝 or the step size for adjusting the crosssectional areas 𝑠 are not chosen well.
The best way of finding a good sufficiency factor is with trial and error, whereas for the MMA method,
it is known that the effects of illconditioning are reduced with proper scaling.

6.3. Parameter sensitivity
It is interesting to see how the solution changes for different values of parameters. This shows how
sensitive the problem is to changes, and also gives an insight in the mechanical properties of the crane.
The parameters that are altered in this Section are the bar thickness and the sidelead. This is because
these parameters are expected to change the shape of the crane a lot, and the change can be explained
through the mechanical aspects of the crane.

𝛼 0.95 0.96 0.97 0.98 0.99
I (A=0.1) 0.0155 0.0195 0.0261 0.0394 0.0792
I (A=0.05) 0.00388 0.00488 0.00653 0.00985 0.0198

Table 6.6: Values of moment of inertia for different bar thickness 𝛼. The crosssectional area of the bars is taken as 0.1 and
0.05.

6.3.1. Bar thickness
This parameter is chosen as an assumption on the thickness of the bars. A reasonable value for
the Tetrahedron crane would be 𝛼 ∈ (0.96, 0.99), since the bars of the structure would be very thin.
The other parameters remain as described in Tables 6.16.3. The influence of 𝛼 on the area moment of
inertia of bars can be seen in Table 6.6. A larger areamoment of inertia will result in a higher critical force
for the bars under pressure. This means the bars under pressure can have a smaller crosssectional
area without failing if 𝛼 is chosen larger.

The element with the most compression is the jib, so for this case it is interesting to see how its
crosssectional area differs for values of 𝛼. If the crosssectional area of the jib is larger, then the other
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𝛼 0,96 0,97 0,98 0,99
total weight (kg) 7.78 ⋅ 105 6.27 ⋅ 105 4.92 ⋅ 105 3.45 ⋅ 105
A jib (m2) 3.78 ⋅ 10−1 2.99 ⋅ 10−1 2.45 ⋅ 10−1 1.82 ⋅ 10−1
A transverse (m2) 4.51 ⋅ 10−1 1.42 ⋅ 10−1 3.64 ⋅ 10−2 2.34 ⋅ 10−2

Table 6.7: Final weight and crosssectional areas of the jib and transverse of the Tetrahedron crane for different values of 𝛼.

elements have to compensate more for this weight to reduce the overturning moment. Therefore, the
weight of the structure is higher when 𝛼 is smaller. This can be seen in Table 6.7 and Figure 6.3. There
is actually a linear relationship between the final weight and 𝛼.

(a) 𝛼 = 0.96 (b) 𝛼 = 0.97 (c) 𝛼 = 0.98 (d) 𝛼 = 0.99

Figure 6.4: Graphs showing the 𝑦𝑧plane of the crane in final configuration for different 𝛼.

Figure 6.5: Graphs showing the constraint on base frame height times weight as in (3.8). The red line shows 𝑀𝑚𝑎𝑥𝑧 and the
blue line is the lefthand side of Equation (3.8). The left graph shows the result for 𝛼 = 0.96, the right graph shows the result for

𝛼 = 0.99.

It is also interesting to see the difference in the values for Constraint (3.8). The values for this
constraint for 𝛼 = 0.96 and 𝛼 = 0.99 can be found in Figure 6.5. For a smaller 𝛼, the maximum height
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times weight of the base frame is attained. The crosssectional area of the transverse has to be much
larger in this case, which is why the weight of the base frame is much larger. To compensate this, the
hinges are positioned very low, see Figure 6.4. For 𝛼 = 0.99, the crosssectional areas of the bars
can become so small that the weight of the base frame is never large enough to reach the maximum
moment 𝑀𝑚𝑎𝑥

𝑧 .

6.3.2. Sidelead
Another interesting factor that influences the crane shape is the sidelead. If the sidelead is higher,
the 𝑦component of the external force is larger. To compensate this force, it is expected that the crane
becomes wider, i.e. the 𝑦coordinate of the hinges gets larger. If the sidelead is 0, the crane should
become as small as possible without touching the jackup leg. The results of this test can be found in
Figure 6.6 and Table 6.8. It can be seen that indeed, the hinges are right above the supports if there
is no sidelead, and they are further away than in the initial configuration if the sidelead is 9 degrees,
which is much higher than the angle that Tetrahedron uses for their calculations.

side lead (degrees) 0 3 6 9
Total weight (kg) 3.91 ⋅ 105 4.92 ⋅ 105 5.64 ⋅ 105 6.42 ⋅ 105
ycoordinate hinge (m) 9.9 13.4 15.6 17.0

Table 6.8: Resulting weight and ycoordinate of the hinge for different sidelead angles.

The 𝑦coordinate of the hinge increases for larger sidelead, as expected. Constraint (3.10) on the
distance of the hinge to the other legs is active for all different values of the sidelead. This means that
for smaller 𝑦coordinates of the hinge, the 𝑥coordinate is larger such that the distance of the hinge to
the origin in the 𝑥𝑦plane is still the same.
The weight of the structure increases for larger sidelead angles. This is because the total force on
the structure increases when the angle is larger, and more importantly, there are more forces in the
horizontal direction. Since the elements move outwards to handle these forces, the element length
increases, which increases the total weight. The increase of weight is approximately 105 kg for each 3
degrees of sidelead that is added.
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Figure 6.6: Graphs showing the shape and sizes of the elements for different sidelead angles. On the top, the sidelead angle
is 0 degrees, and below this angle is 9 degrees.





7
Discussion and recommendations

In this chapter, the results are summarized and discussed, and some recommendations for further
research in this field are made.

The goal of this research was to reduce the weight of the Tetrahedron structure with a combined
shape and size optimization method. To reach this goal, firstly the formulation of the crane optimization
problem is studied thoroughly and aminimization problem is formulated that described the design space
of the crane in a mathematical manner. All physical and mechanical properties that have to be taken
into account are described as constraints on the design variables.
Next to that, a study on different optimization methods is performed to research which method would
be best suited for the crane optimization problem. The methods are also tested in different cases, and
the Method of Moving asymptotes is found to be the most promising method. The resulting code is
written such that it can easily be implemented in the existing program ACE.

The optimization method is now only tested on one configuration for the 3dimensional Tetrahedron
crane, for which Tetrahedron has performed many design iterations to improve the structure before the
crane parameters were final. Therefore the design of the Tetrahedron crane as described in Chapter 6
is already close to the optimum.
The newly developed optimization method will be of even more importance when Tetrahedron starts
the design of a new Tetrahedron crane for a different type of ship or load, which changes the input
parameters drastically. Then, instead of having to start designing from scratch again, the optimization
model will give them a very good starting point from which the new crane design can be made. This
saves Tetrahedron much time and is therefore very valuable for the company.

From the results of Chapter 5 and 6, the Method of Moving Asymptotes seems the most promising
for the optimization of crane structures. The SLSQP method is very sensitive to starting points and
scaling, which almost always gave infeasible solutions and therefore useless results. This method was
therefore dropped after the first 2D experiments and only the other two methods, MMA and IPM, were
tested on the 3dimensional Tetrahedron crane optimization problem.
The interiorpoint method converged for most of the test cases without applying any scaling, and
could therefore be said to be a robust method. However, when the problem size increases for the
3dimensional Tetrahedron crane, the method fails more often than MMA, even with the same scaling
applied. This might be because the difference between the number of constraints and the number of
design variables is much larger for this case. This would be in line with the literature, since here it is
suggested that the IPM method performs well for problems with a large amount of free variables [16],
which is not the case for the crane optimization problem.
The IPM method takes a considerably longer time for the test cases as well. Since the 3dimensional
problem is even larger, even if the method would converge, MMA should be preferred because of
the computation time. It was already expected that the MMA is faster than the IPM method in the
comparison in Chapter 4, and from the results of Chapter 5. MMAonly applies firstorder approximations,
whereas for the IPMmethod, the computation of the approximation of the Hessians takes a considerable
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long time. For the MMA method, if the scaling of the objective function and constraints is done as
explained in Section 5.1, the method converges linearly to an optimum in reasonable time. In Table
4.1, it was however suggested that the Interior point method would have a better convergence succes
rate than MMA. This might still hold for general nonlinear optimization methods, but for structural
optimization problems discussed in Chapters 5 and 6, MMA outperforms IPM. The nonlinearity of the
objective function likely plays a role here, since the secondorder approximation of the objective function
for the IPMmethod is more precise than the approximation of the MMAmethod, as was also suggested
by Schittkowski and Zillober in [28]. The objective function of structural weight is not very nonlinear,
which is why the approximation of MMA is sufficient.
Another advantage of MMA is that its parameters are easier to alter since the code is freely avialable,
whereas the IPM method is part of the scipy package and is therefore a black box method.

The recommendations can be split into two categories. Firstly, the recommendations on the formulation
of the problem will be presented after which recommendations on the optimization methods and the
Python code will be given.

Recommendations  problem formulation
The optimization formulation is of course a simplifiedmodel, and can be extended with other mechanical
principles if found necessary. One example of this is that for now, the crosssectional area of the bar
is considered an annulus with a certain thickness. It might be useful to also consider the parameter 𝛼
which determines this thickness in Equation (3.3), as a design parameter. The formulation might even
be extended with a selection of different shapes for the crosssectional area, such as a box or ellipse.
This would change the optimization problem drastically, however, since this would be a discrete instead
of a continuous design variable. The chosen optimization methods would be no longer applicable to
the problem then.

Another mechanical principle that is neglected in the model right now, is local buckling of the bars. This
is an effect that takes place in thin plates, that locally deforms the plate which results in a failure. Local
buckling might especially be interesting to check if the annulus thickness and/or shape should be taken
as design variables.

One of the differences between the existing model and the new optimization model, is that in the new
model the stresses are only computed in the design point, whereas in the existing model this is done
for all hoist radii. It could be checked what the forces are like in the other positions, but for positions
lower than the design point, the external load has to be reduced as well. Instead of making these
computations, it is now chosen to compute the load curve of the new crane, which indicates what is
the max external load that the crane can carry in each position. This is useful for Tetrahedron, since
the load curve is a good measure of a crane’s performance. If the model should be extended to also
compute the stresses and maybe also other constraints for different hoist radii, this should be done by
including more constraints on the design variables. Here, the movement of the crane as explained in
Section 3.4 should be used to describe the positions of the heel and top for different hoist radii.

The above recommendations wouldmostly influence the constraints, but also the objective functions
might be altered. Instead of only minimizing the structural weight, other factors such as costs or
overturning moment might be added to the objective function. This would be an easy alteration for
Tetrahedron if they consider it necessary in the future. For this research, using the same objective
function made the comparison of the different test cases, methods and the existing algorithm the
easiest.

Recommendations  Optimization methods
Since MMA is the best method for the crane optimization problem, it might be worth it to improve this
method even more. The research on MMA also suggests this, as Svanberg extended the MMAmethod
to a GloballyConvergent Method of Moving Asymptotes (GCMMA) [3]. This uses inner and outer
iterations, where only for each outer iteration, the gradients of the constraints and objective function
have to be calculated. This reduces the computation time. Next to that, the subproblems are strictly
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convex, which means that the subproblems have a unique optimal solution. According to the test case
that is considered in [3], the GCMMAmethod needs less iterations and is less sensitive to the method’s
parameters and therefore more robust.

The Python code is now written as a seperate module, but for an easy use for all employees of
Tetrahedron it has to be implemented as a part of ACE. Using files from the ACE code, some efforts
have already been made to write the code in a similar matter. Next to that, for the documentation of
the code, instruction videos are made that explain all the files seperately, together with a flowchart that
gives an overview on the functions of all the files. With this, the Tetrahedron employees should be able
to use the optimization module by themselves.
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