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ABSTRACT
Data Integration has been a long-standing and challenging problem
for enterprises and researchers. Data residing in multiple hetero-
geneous sources must be integrated and prepared such that the
valuable information that it carries, can be extracted and analysed.
However, the volume and the velocity of the produced data in addi-
tion to the modern business needs for real-time results have pushed
data analytics, and therefore data integration, towards data streams.
While data integration is a hard problem in and of itself, integrating
data streams becomes even more challenging. Streams are charac-
terized by their high velocity, infinite nature and predisposition to
concept drift.

The goal of this doctoral work is to design and provide scalable
methods to support data integration tasks on massive data streams,
i.e., support streaming data integration. The aim of this work is
threefold. First, we aim at developing and proposing streaming
methods to compute temporal stream data-profiles and summaries
that can describe the dynamic state of a stream in the course of
time. Second, we aim at developing methods and metrics of stream
similarity. Those methods and metrics can serve as means to detect
similar or complementary streams in a streaming data lake. Finally,
we aim at optimizing distributed streaming similarity joins - a very
important operation that precedes entity linking and resolution.
This paper discusses exciting challenges and open problems in the
field, and a research plan on tackling them.

1 INTRODUCTION
Modern enterprises are gathering huge volumes of data either to
perform business analytics or manage efficiently their assets. This
data resides in disparate sources and although it can convey the
same or related information, it can differ considerably in structure
and representation based on the different conventions of the man-
aging teams. This untamed heterogeneity leads to the so called
data integration problem. Traditionally, data integration has been
a manual process upon targeted static sources. The last decades,
plenty of research time has been invested to automate and improve
the accuracy of data integration tasks [11, 24, 25]. At the same time,
a fair amount of work [14, 15, 19] has been done towards improv-
ing the efficiency of data integration tasks in static and dynamic
databases. However, due to the ever-growing volume and velocity
of produced data as well as the demand for data-driven real-time
applications, streaming data analytics have emerged. To ensure the
quality of these analytics, streaming data must be prepared and
integrated in a real-time fashion.
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Recognizing the growing need for efficient streaming data in-
tegration, in this project we aim at providing scalable streaming
methods to facilitate integrating massive data streams. Essentially,
a streaming data integration pipeline consists of multiple basic data
integration tasks adapted and optimized to handle data streams. For
this doctoral work, our efforts focus on three main tasks: stream
profiling, stream discovery and similarity joins. We recognize that
these tasks play a major role in data integration pipelines and they
are integral for the efficiency of those pipelines. On the one hand,
with stream profiling and stream discovery, temporal profiles can
be computed and used for discovering possibly related streams to
optimize downstream data integration tasks. On the other hand,
similarity joins are an integral data integration task with applica-
tions to data cleaning and entity resolution but not limited to those.
Summarizing, we aim at adapting and optimizing these basic tasks
for data streams in order to improve the efficiency of a streaming
data integration pipeline. Our ultimate goal is to enable the real-
time results needed to ensure the quality of real-time data analytics.
We plan on evaluating our work in real-word use cases provided
by our industrial partner, ING.

2 MOTIVATION & CHALLENGES
In many modern enterprises, different teams publish their stream-
ing datasets to an internal streaming data lake where other teams
can access them. However, it is very rare for the published streams
to come with valuable time-related metadata. This results to hun-
dreds or even thousands of data streams published in an internal
repository but never harnessed because of lacking documentation
and valuable metadata. Unfortunately at the moment of writing, the
only way of organising and harnessing all these streams is through
long valuable labour hours of manual exploration and integration.
The existing tools cannot deal with the massive rate of thousands
of incoming data per second that usually characterizes modern data
streams. Another major challenge is also the fact that streams are
possibly unbounded datasets meaning that their volume is growing
infinitely. This also means that are not at our disposal at their full
prior to their processing, i.e., the whole dataset is not available
when it starts to be processed. All of these in combination with the
fact that data streams might suffer from concept drift every other
day renders the task of handling these data streams too complex
for existing tools.

An inspiring example, that we also recognized through our in-
dustrial collaboration with ING, is the monitoring of crucial in-
frastructure. Modern enterprises consist of multiple teams which
monitor their own assets and provide alerts for the incident teams.
Although these assets might differ considerably in their represen-
tation in the data provided by each team, they are often closely
related. For any enterprise, it is crucial that an occurring incident
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Figure 1: A streaming data lake applying our streaming
methods. For each stream a temporal profile is computed.
These profiles are used to find similar streams (streams with
the same coloring). The green arrows indicate the matching
records that the similarity join between the related streams
outputs.

will be resolved as fast as possible. It is also crucial that in the pro-
cess of resolving any occurring issue, the involved engineers will
not miss any relevant information. In other words, the monitoring
streams must be integrated in real-time and in an exact manner.

In this project, our goal is to face these challenges and provide
methods that will bring us one step closer to a tool that help a com-
pany tame the streams and take advantage of their rich information.
To ensure the usefulness of our work, we also plan on evaluating it
on a relevant to the given example monitoring case in the industrial
environment of our partner, ING.

3 SCALABLE METHODS FOR STREAMING
DATA INTEGRATION

In this section, we discuss the main three work packages of this
doctoral work, our three scalable streaming methods. First we give
an overview of the envisioned methods. Then we present each task
in details and we discuss the related work.

3.1 Overview of Streaming Methods
Our envisioned methods can be used either individually or in vari-
ous combinations depending on the use case at hand. An overview
of these methods is the following.
Profiling Streams. Our proposed stream profiling method is de-
signed to work on top of a streaming data lake and provide approx-
imate temporal profiles that will describe statistical and semantic

properties of the current state of the stream. These profiles are
constantly updated in an incremental manner to reflect the changes
in the content of the streams.
Finding Related Streams. Based on previously created profiles,
our stream discovery method computes the similarity between
streams in our streaming data lake indicating streams that have a
high chance of being related. These indications of relatedness are
adaptively updated as the streams change over time. The resulting
related streams are either presented to the end user or used to guide
the downstream tasks of a workflow.
Joining Similar Records. Our streaming similarity join method
takes as input two or more streams and outputs all possible record
matches. In order to identify and join the similar records, our
method computes a similarity score through a similarity function.
In this project, the primary focus is to optimize this similarity com-
parison to significantly improve the efficiency of the streaming
integration tasks. The results of our similarity join task can be used
as part of one of the entity resolution pipelines described in [17].

In the rest of the section, we go into details about the individual
tasks that the methods perform and we discuss the related work.

3.2 Profiling Streams
An important step before integrating streams is to compute data
profiles for all the streams in a streaming data lake. Depending on
the nature of the downstream tasks, different types of data profiles
can be of interest. In this project we mainly focus on two types:
basic statistics-based profiles and summaries/sketches.

Basic statistics-based profiles are easier to compute but also less
informative for tasks like a similarity join. These profiles typically
contain information like the cardinalities, the value distributions or
the data types of columns. This information can be used to reduce
the combinations of items to be checked from downstream tasks, e.g.
combinations of attributes or streams to be checked for similarity.
This can be done either in a stream level by identifying streams
with common statistical properties or in column level by narrowing
down the column combinations to be examined. For example, the
value distributions of columns can help identify candidate pairs of
columns on which a downstream similarity join will be performed.

On the other hand, sketches and summaries [7, 13] are harder
to create but they can give a good estimate of the contents of a
stream. Sketches or summaries can be very useful in various prob-
lems like approximate and streaming query processing or dataset
discovery. In [16] summaries are computed for approximate query
answering based on a probabilistic technique that makes use of
Maximum Entropy. In [13], sketches are created for dataset discov-
ery by leveraging bloom filters and a skip list. However, none of
the above techniques incorporates the time factor in their sketches.
In addition, [16] is not targeting data streams and an adaptation is
far from trivial due to the complexity of the technique.

According to [1] there is still much more ground to cover to per-
form incremental, online and temporal profiling. For this project,
it is important that our profiles are computed online and are con-
stantly updated to capture the temporal properties of our streams.
This is not an easy task when data streams are possibly endless,
fast and massive and their statistical values can change often. Time



needs to be incorporated on the profiles and any process must be
incremental to ensure efficiency.

3.3 Finding Related Streams
After computing the desired profile for each stream, we must iden-
tify which of our streams are related based on the profiled infor-
mation. Depending on the type of the collected profiles, different
strategies can be employed.

A simple example, in the case of sketches, is the simple procedure
described in [13]. Here, the authors suggest to use the computed
sketches to acquire a simple estimation of overlapping values be-
tween two sources by computing the overlap between the way
smaller corresponding sketches. This way an estimation of whether
two sources must be integrated or not can be made, as well as an
estimation of the cost of this integration. However, the described
scenario is pretty simple, it uses only sketches and does not incor-
porate time-related capabilities like temporal queries.

A better example to showcase the use of profiles though, is the
data discovery system Aurum [5]. In Aurum, the authors propose
creating a knowledge graph based on previously computed profiles.
The knowledge graph is afterwards queried for dataset discovery
purposes. The computed profiles consists of multiple statistical
properties, discovered dependencies and sketches. These profiles
are used from Aurum to prune the search space and reduce the
similarity comparisons needed to build the knowledge graph. The
authors have opted for a scalable parallel solution that reads the
input once, and they also provide a mechanism for keeping up-to-
date both the profiles and the knowledge graph. However, Aurum
is not designed for streams and does not provide temporal features
both in its profiles and its knowledge base. Thus, temporal queries
are not supported. In a streaming environment and especially for
a crucial task like monitoring infrastructure, such a capability is
essential.

3.4 Joining Similar Streaming Records
Similarity join [3, 6, 22] is the problem of identifying all pairs of
similar records that reside in two or more datasets. A pair of records
is considered similar if the similarity score given by a similarity
function is above a given threshold. In a stream processing model,
the similarity join operation between two given streams is expected
to join similar records from the incoming streams based on the
values of one or more target attributes. In a streaming environment
we can distinguish two types of similarity joins: the full-history
and the windowed joins.

Similarity joins are difficult and time-consuming operations. The
brute force approach has to compare all the data of the first dataset
against the data on the second, leading to a quadratic time com-
plexity, O(𝑛2). When we take into account that a data stream is a
possibly unbounded dataset, it is clear that a brute force solution is
infeasible in a streaming environment. Thus, it is essential that the
performed comparisons between records are reduced by avoiding
unnecessary computations. Additionally, due to the dynamic nature
of data streams any occurring concept drift might result on obsolete
partitions and load skew. To ensure the high efficiency of the task,
we must adaptively partition the data online.

In what follows, we will discuss the main work in the related
fields.
Similarity Joins in Map Reduce. Similarity joins have been stud-
ied a lot for MapReduce environments. In general, MapReduce
methods require their inputs at their full before processing, and
most of them leverage statistics and properties of the datasets to
optimize the task and reduce the transmission and computation
costs. They provide a one-off partitioning scheme which cannot be
updated adaptively on runtime. Thus, they are not trivially appli-
cable on a streaming environment but they are a great inspiration
towards a distributed streaming solution.

There are two main approaches which MapReduce methods usu-
ally follow: Filter & Verification and General Metric Space.The Filter
& Verification methods [20],[10] rely on prefices and signatures
which they leverage to scale out the similarity computations and
filter unnecessary comparisons. On the other hand, General Met-
ric space methods [21],[8] divide the metric space in partitions
to which similar objects are grouped. However, they require that
the similarity function is a metric, or at least a semi-metric. More
specifically, [8] and [21] select random centroids, create an inner
and an outer partition for each by using centroid proximity and
filters, and compute a)the similarity of all pairs of items in an inner
partition and b)the similarity of each item of an outer partition with
all the items within the corresponding inner partition.
Similarity Joins for Data Streams. On the other hand, research
on similarity joins in a streaming environment is very limited. [9]
introduces the problem of streaming similarity self-join. It proposes
a similarity measure which filters out old items and a streaming
framework that leverage an optimized for streaming data state-of-
the-art inverted index. However, the proposed solution runs on a
single machine and thus unable to multiple massive streams for
scalability reasons.

To the best of our knowledge, the only work dealing with dis-
tributed streaming similarity joins is [23]. It proposes a distributed
streaming similarity join framework that employs a length-based
filter to distribute the data across a cluster of nodes. Because the
lengths of the incoming tuples might change over time, an adaptive
algorithm is also proposed to recalculate the bounds for the length
segments based on the online collected statistics. In addition, in
order to reduce the computations in a node, an inverted index is
built accompanied with a bundle structure to reduce the indexed
records. However, the authors consider full history joins without
proposing any retention policy which is crucial when dealing with
endless streams. In addition, the proposed length-based filter will
struggle to scale out efficiently when all the incoming sets are of
similar length.
Load-Balancing on Streams. Load balancing is a native concern
in distributed stream processing environments, since the statisti-
cal properties of the data change frequently and the systems need
to adapt to achieve full potential. To ensure load balancing, [12]
proposes a new dataflow join operator that can adaptively distrib-
ute records to nodes and perform state repartitioning through a
locality-aware migration strategy. In [18], a streaming variation of
the HyperCube algorithm [2] is presented. The authors divide the
incoming records to heavy and light hitters and process each heavy
hitter in a Hypercube Grid. The characterization of a tuple as heavy



or light hitter, as well as the size of each HyperCube grid is adapted
to the statistics that are gathered online for the join values. These
works focus on distributing the load and do not present solutions
for reducing the needed computations. However, a unified solution
with a load balancing scheme tailored to the distribution scheme
can achieve both goals and provide better results.

Input Streams Physical
Partitioning

Logical
Partitioning

Similarity
Computation

Output of Joined
Records

Statistics
Capturing

Partitioning
Tuning

Figure 2: The Similarity Join process

Our approach.To tackle the streaming challenges we propose a
partitioning scheme based on inner and outer partitions inspired
by the general metric space approaches from MapReduce. First, we
partition the incoming records from our input streams to different
physical nodes based on the proximity to a node’s representative
centroid. Afterwards, we create tighter partitions within a node
in a logical way by leveraging the provided similarity threshold
and creating new logical partitions based on the incoming records.
The last step of our workflow is the actual similarity computation
and the output of the wanted joined pairs. The similarity compu-
tations are restricted to candidate pairs through our tight logical
partitions. In additions, in order to ensure adaptivity, we collect
statistics from the similarity computations sub-task to re-calibrate
both our logical and physical partitions. It is important to notice
that in this project we optimize for high dimensional data. Based
on the latest advances in Deep Learning-based Entity Resolution
[4, 11, 25], word embeddings can be used to capture more effectively
the similarities between records. However, due to their high dimen-
sionality, the similarity computations between two embeddings is
very inefficient. We aim to tackle this inefficiency enabling the use
of word embeddings for similarity joins on streams.
Evaluation. We plan to evaluate our solution on datasets from
[23], real-world datasets provided by our industrial partner, and
synthetic datasets. We plan to compare it against the discussed state
of the art solution [23], and baselines from the general metric space.
Since our goal is to provide real-time results, our evaluation will be
based on metrics like throughput and latency.

4 CONCLUSION
Summarizing, in this paper we present the exciting challenges and
open problems of streaming data integration and a research plan that
aims to provide scalable methods to tackle them. We discuss three
envisioned methods to perform profiling, discovery and similarity
joins on streams. In addition, we present related work for each
task and we discuss their limitations when dealing with streams.
Finally, we shortly present our approach for distributed streaming
similarity joins by leveraging adaptive data partitions.
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