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Abstract

Measuring temperature variations of the deep ocean is necessary to evaluate
the heat flux between the atmosphere and the hydrosphere and thus calibrate
climate change models. In the last two decades a passive alternative to profiling
oceanographic floats has emerged: hydroacoustic thermometry. This method
consists of using the oceanic ambient noise field as a source of acoustic waves
and hydrophone arrays as receivers. These sensors are part of the International
Monitoring System which is in place for the verification of the Comprehensive
Nuclear-Test-Ban Treaty. They are positioned at a water depth of approximately
1 km, in the Sound Fixing and Ranging channel. This channel is a low-
velocity layer that functions as an acoustic wave guide, thus facilitating very
long range propagation with little attenuation. This study analyses transient
signals between 2005 and 2018 triggered by submarine earthquakes and detected
at station H10, situated near Ascension Island in the South Atlantic Ocean.
This station consists of two three-element (triplet) arrays with an aperture of
approximately 2 km each. The triplets are 126 km apart. Array processing
techniques applied to individual triplets are prone to be biased by local conditions
of the array surroundings. We demonstrate that this bias is largely suppressed
when jointly processing both triplets as one six-elements array. Due to the
malfunction of element S1, data quality decreased after October 2013 and our
results are less robust. For the 2005–2013 period, we retrieve a temperature of
4.3 to 4.8 °C.





Contents

1 Introduction 1
1.1 The International Monitoring System . . . . . . . . . . . . . . . . 2
1.2 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical background 7
2.1 The SOFAR channel . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Plane wave beamforming . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Temperature–Sound Speed relation . . . . . . . . . . . . . . . . . 11

3 Methodology 12
3.1 Analysis of hydroacoustic signals . . . . . . . . . . . . . . . . . . 12
3.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 A SOFAR channel signal . . . . . . . . . . . . . . . . . . 15
3.2.2 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Individual triplets vs. joint array . . . . . . . . . . . . . . . . . . 19
3.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results 25
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 32

Acknowledgements 34

Bibliography 35

Appendices 37

Appendix A SOFAR channel in Arctic environment 38

Appendix B Geo. zone for earthquake selection 39

Appendix C The geometry of the problem 41

Appendix D Nine beamforming results 42

Appendix E Change in the results after 2013 46

IV



Contents V

Appendix F Python codes 50
F.1 Data processing/Beamforming . . . . . . . . . . . . . . . . . . . 50
F.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



List of Figures

1.1 The International Monitoring System . . . . . . . . . . . . . . . . 3

1.2 Location and configuration of H10 hydroacoustic array . . . . . . 3

2.1 Sound velocity profile in the ocean . . . . . . . . . . . . . . . . . 8

2.2 An example of acoustic ray propagation in the ocean . . . . . . . 9

3.1 An example of an earthquake signal recorded by a hydroacoustic
array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Geographic zone used for earthquake selection . . . . . . . . . . . 15

3.3 Example of slowness grid, as part of the construction of a
beamforming algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Waveforms of five events highlighting signals that propagated with
a celerity close to the velocity of the SOFAR channel . . . . . . . 17

3.5 Relationship between epicentral distance and back-azimuth
difference between H10N and H10S . . . . . . . . . . . . . . . . . 18

3.6 Beamforming results with SNR > 0.6 at H10N for 2010 . . . . . 21

3.7 Beamforming results with SNR > 0.6 at H10S for 2010 . . . . . . 22

3.8 Beamforming results with SNR > 0.6 at H10 for 2010 . . . . . . 23

4.1 Beamforming results with SNR > 0.6 at H10 between 2005 and
2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Monthly average apparent velocities and temperatures between
2005 and 2018 for the four 5° back-azimuth bins with the largest
coverage through time . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Variation in monthly temperature over time and over each back-
azimuth bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 Acoustic ray propagation in Arctic environment . . . . . . . . . . 38

C.1 The geometry of the problem . . . . . . . . . . . . . . . . . . . . 41

D.1 Beamforming results of a randomly selected 4 < MW < 5 event . 43

D.2 Beamforming results of a randomly selected 5 < MW < 6 event . 44

D.3 Beamforming results of a randomly selected 6 < MW < 7 event . 45

E.1 Beamforming results with SNR > 0.6 at H10 between 2005 and
2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

E.2 Beamforming results with SNR > 0.6 at H10 for 2010 when
excluding array element H10S1 . . . . . . . . . . . . . . . . . . . 48

VI



List of Figures VII

E.3 Monthly apparent velocity and temperature averaged across all
back-azimuth bins at H10 from 2005 to 2018 . . . . . . . . . . . 49



List of Tables

1.1 H10 geographical and geometrical configuration . . . . . . . . . . 4

B.1 Geographic coordinates of the points used to build the polygon of
figure 3.2, used for earthquake selection. . . . . . . . . . . . . . . 40

VIII





1

Introduction

Oceans play a major role in the regulation of global climate. The hydrosphere
covers a vast area of the Earth surface and exchanges large heat flux with the
atmosphere. Anthropogenic activity raises the level of greenhouse gases in the
atmosphere, which warms it up. During the second half of the twentieth century,
sea-surface temperature rapidly increased. However, the increase of sea-surface
temperature is currently fairly slow as heat is being transported to deeper layers
of the ocean, and such deeper heat-sequestration period historically lasted 20 to
35 years (Chen & Tung, 2014). The change in temperature in the oceans affects
the water density and specific volume, which in turn affect oceanic phenomena
such as the global thermohaline circulation and the sea level. It is therefore
important to monitor the temperature in the oceans. Furthermore, it is a crucial
step towards quantifying air-sea heat exchanges in order to calibrate climate
change models.

The surface temperature of oceans is monitored using satellites. To monitor
temperature at depth, free-drifting profiling oceanographic floats are used.
However, their efficiency is very limited because the data acquisition process
is both very localised and sparse along space and time; it is technologically and
economically unfeasible to survey deep ocean temperature over large scales and
extended periods of time using this technique. It has been shown that the speed
of sound c in the ocean is related to the temperature T , salinity S, and depth
z. Medwin (1975) puts in place equation 1.1, also retaken by Medwin and Clay
(1997):

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3

+(1.34− 0.01T )(S − 35) + 0.016z.
(1.1)

By measuring the travel time of an acoustic wave over a known propagation
distance in the ocean, either between a source and a receiver or between

1



2 CHAPTER 1. INTRODUCTION

two receivers, one can calculate the propagation velocity1 and thus infer the
temperature. This method is known as ”hydroacoustic thermometry”. There
are numerous natural sources emitting sound waves in the oceans. For instance
submarine earthquakes, underwater volcanoes, iceberg breaking, whales and
others large mammals are some of them. On top of these, there are sources
due to human activities: ships, seismic surveys, man-made explosions, etc. All
these have an acoustic signature in the ocean.

1.1 The International Monitoring System

In this study, we use data from the hydroacoustic component of the International
Monitoring System (IMS). The IMS is a global network of sensors comprising
four technologies: seismology, hydroacoustic, infrasound, and radionuclide. It
can be seen in figure 1.1. It is in-place for the detection of nuclear explosions
for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The
hydroacoustic component of the IMS is made up of eleven stations submerged
in the oceans. These hydroacoustic stations are in fact positioned at a depth
of 800-1200 m, in the Sound Fixing and Ranging (SOFAR) channel (see section
2.1). They record the continuous hydroacoustic pressure field at a sampling rate
of 250 samples per second.

This study uses signals recorded at H10, a hydroacoustic array located near
the British Overseas Territory of Ascension Island. This small volcanic island is
situated along the Mid Atlantic Ridge (MAR), in the South Atlantic Ocean (see
figure 1.2).

H10 consists of two three-sensor arrays (triplets), situated to the north
(H10N) and to the south (H10S) of Ascension Island. The instruments are
anchored to the seafloor by a mooring system and suspended in the SOFAR
channel at a depth of approximately 850 m by floats. Each triplet has an array
aperture of roughly 2 km. In this study, we process each triplet individually as
well as all six elements together as one joint-array (see table 1.1).

This array has been in place since the early 2000s and is still active in 2020.
This study uses signals from the 24th of March 2005 to the 10th of March 2018.
As of October 2013, array element H10S1 (element 1 of the South triplet) has
stopped recording data due to a malfunction. This issue seems to have an effect
on the other two elements H10S2 and H10S3, and remains unresolved to this
day.

1.2 Previous works

Numerous studies have used various processing techniques to approximate the
propagation velocity of sound in the ocean and approximate the temperature

1”The sound speed in water does not depend on the direction of the ray. Therefore, the names
”sound speed” and ”sound velocity” can be used interchangeably” (Medwin & Clay, 1997).
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Figure 1.1: The sensors of the International Monitoring System (IMS). From Shani-
Kadmiel (2019).

Figure 1.2: Location and configuration of H10. (left) Location overview. (right)
Configuration of H10 around Ascension Island. H10N and H10S are the North and
South triplets of H10, separated by a horizontal distance of 126 km. The great circle
path connecting H10N and H10S has a bearing of 188°. From Evers et al. (2017).
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Table 1.1: Geographical and geometrical configuration of H10. Including the North
array, the South array and the joint array.

Array element Longitude (°) Latitude (°) Depth (m) Aperture (km)

N1 -14.48023 -7.84567 847

2.423
N2 -14.48748 -7.82779 845
N3 -14.50168 -7.84093 850
North centre -14.48985 -7.83813 847

S1 -14.64843 -8.94118 865

2.058
S2 -14.64531 -8.95915 852
S3 -14.66295 -8.95274 863
South centre -14.65221 -8.95101 860

Joint centre -14.57101 -8.39457 854 126.3

based on hydroacoustics. Woolfe et al. (2015) monitored temperature variations
using hydroacoustic thermometry over a period of several years. Their method
consisted of applying cross-correlation to interarray receiver pairs, between array
elements of the North and the South triplets, at Ascension Island and Wake
Island stations. They studied the ambient noise field, with polar ice being a
main contributor. This resulted in nine cross-correlation functions that were
then combined (i.e. beamformed) into a single waveform to continuously track
fine variations. The authors found that over the years, the variations in positive
lag times (during northwards propagation) were similar to the variations in
negative lag times (during southwards propagation). They interpret this as
being due to ”reciprocal changes in the environment, such as ocean sound speed
fluctuations induced by temperature changes, rather than nonreciprocal changes,
such as currents, clock drift, or other signal-processing artifacts” (Woolfe et
al., 2015). Additionally, they derived temperature variations from the lag time
fluctuations and found results to be in good agreement with Argo oceanographic
floats measurements.

Evers and Snellen (2015) used hydroacoustic detections from earthquakes,
listed in the Reviewed Event Bulletin (REB), which is provided by the CTBTO.
They evaluated the celerity2 to infer the temperature. They observed latitudinal
celerity variations of the range 1 469 to 1 487 m/s, that the authors attributed to
lower temperature in the South Atlantic Ocean than to the North of Ascension
Island. It was also noted that any uncertainty in origin time, location, or picking
of the phase arrivals, will result in faulty celerity values.

Ball et al. (2016) looked at the possibility of investigating crustal structure
using hydrophones instead of ocean bottom seismometers. They cross-correlated
the ambient noise field for elements N1 and S1 (at H10) and found two dominant
modes: one close to the sound velocity of the SOFAR channel and one around
3 000 m/s. By modelling, the authors show that ”the fundamental mode exhibits
strong dependence on the p-wave velocity and thickness of the water layer [i.e.

2Defined as the epicentral distance between the source and receiver divided by the travel time.
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the bathymetry], while the higher mode is sensitive to velocity structure at greater
relative depths in the crust and upper mantle” (Ball et al., 2016).

Evers et al. (2017) studied the ambient noise field at Ascension Island. The
authors used cross-correlation between interarray receiver pairs and showed that
the average cross-correlation has a peak at a lag time of 85.5 s which corresponds
to a horizontal velocity of 1 477 m/s. Moreover, ”in an attempt to increase the
Signal-to-Noise Ratio (SNR) of the image by illuminating it with more acoustic
daylight” (Evers et al., 2017), they beamformed each triplet, and cross-correlated
the best beams (more details on beamforming in section 2.2). Firstly, they
noticed a difference between the apparent velocity3 of each triplet retrieved in
the beamforming approach and the one retrieved by standard cross-correlation.
They interpreted this difference as being due to a certain spatial variability of
the sound speed since the velocity retrieved in the beamforming approach is
an estimate of the local sound velocity (triplet scale) whereas cross-correlation
averages the velocity along the distance separating the two triplets. Secondly,
results showed a higher SNR when cross-correlating array beams instead of
sensor pairs. This is because the beamforming process suppresses much of the
uncorrelated noise. The SNR can be redefined as the ratio between coherent
arrivals (signals) and incoherent arrivals (noise).

In a most recent study, Sambell et al. (2019) cross-correlated element pairs
of the H03S triplet, the southern part of H03, situated around Robinson Crusoe
Island (off the coast of Chile). They studied the ambient noise field and
removed signals linked with transient events with one-bit normalisation. In their
cross-correlations, they found a signal related to noise from the Antarctic ice
field incoming from South-Southwest (Antarctica). The temperature was then
estimated from the lag time of the cross-correlations, assuming a homogeneous
medium and a maximal lag time propagation (along the receiver pair axis).
This analysis resulted in a speed of sound of 1 510 m/s which the authors
concluded to be too high to be physically reasonable. Additionally, they
applied an array-processing technique to beamform the signals and found two
dominant back-azimuths4: Antarctica as well and an underwater volcano. The
apparent velocity retrieved in the beamforming approach corresponded with
the one previously retrieved with cross-correlation (in the back-azimuth range
coming from Antarctica). Moreover, the authors found that the apparent
velocity changes as a function of back-azimuth. This dependency should not
be as the apparent velocity is averaged along the wavefront path, and thus the
resulting apparent velocity should remain equivalent regardless on the direction
the wavefront crosses the array. The authors interpreted this dependency as
a consequence of the surroundings of H03S, most likely related to steep slopes
in the local bathymetry. They hypothesised that using an array with a larger
aperture would reduce the detrimental effect of the surroundings. Comparing the
two processing techniques, it is concluded that beamforming is superior to cross-
correlations for the following reasons: firstly it could detect signal coming from

3The apparent velocity corresponds to the horizontal component of the real velocity.
4The back-azimuth is the bearing of the great circle path from the receiver to the source,

measured in degrees clockwise from North.
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a narrow back-azimuth range (the volcano) and thus appeared more sensitive
to transient events; secondly, wavefront parameters such as back-azimuth and
apparent velocity can be extracted, which provide more information than just
the lag time.

1.3 Research questions

In this study, we apply an array-processing technique to transient signals
generated by submarine earthquakes. Sambell et al. (2019) strongly suggested
that beamforming can resolve transient events more effectively than cross-
correlation, therefore the use of beamforming to analyse earthquake signals seem
more adapted. Moreover, our approach focuses on array-processing to suppress
the uncertainties with regard to the earthquake’s origin time and location as
pointed out by Evers and Snellen (2015). Additionally, in order to minimise
local effects, for example caused by the bathymetry, we jointly process all six
elements. Hence the choice of H10, which is the station with the largest aperture.
Therefore, our goals are:

• To examine if beamforming both array triplets together as one joint array
can suppress the bias in apparent velocity due to local effects.

• Can temperature variations be detected from the apparent velocity
extracted in the beamforming process?



2

Theoretical background

2.1 The SOFAR channel

In the air, sound waves are much more attenuated than electromagnetic waves
(such as light). ”In the sea the reverse is true [. . .] [and] sound waves can
be detected over vast distances and are a much better vehicle for undersea
information than light” (Talley et al., 2011). This is the reason why the IMS
can monitor all oceans using only eleven hydroacoustic stations (see for example
Heaney et al. (2017) for some basin-scale signals). Sound is a mechanical wave
as it propagates via the succession of compression and extension of the elements
of matter it goes through. The speed of a mechanical wave depends on the
compressibility of the medium; a less compressible water means a higher speed of
propagation of a wave. This is due to a quicker transfer of energy as less material
deformation and molecule displacement occur. In sea water, two parameters
strongly affect the compressibility: the pressure and the temperature (the impact
of the salinity is often negligible as we will see in section 2.3). The behaviour of
these three parameters is shown in figure 2.1, for a water column in temperate
latitudes. There is a trade-off between the effects pressure and temperature
have on the speed of sound as a function of depth. In contrast to the pressure,
which linearly increases with water depth, the temperature rapidly decreases
over approximately the first 500 m and then gradually decreases further. The
pressure is strongly correlated with the depth. A high pressure yields a less
compressible water due to the fluid being more rigid because its molecules are
pushed together. Therefore, a water under high pressure intuitively means a high
sound speed. Regarding the temperature, a warm water is less compressible
due to the molecules having more kinetic energy and being less willing to be
pushed together than cold water. Therefore, a warm water means a high sound
speed. The trade-off between the effects of pressure and temperature leads to the
formation of a low velocity layer between the surface and the seafloor. This layer

7
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is situated at the depth where ”the decrease in sound speed due to cooler water is
overcome by [the] increase in sound speed due to higher pressure” (Talley et al.,
2011). The Sound Fixing and Ranging (SOFAR) channel is the name given to
this zone, and the channel axis is centred on the minimum.

Figure 2.1: A water profile from the Pacific Ocean at latitude 39°N. (a) temperature
T and salinity S profiles, (b) sound velocity correction due to salinity ∆cS , temperature
∆cT , and pressure ∆cP , (c) resultant sound velocity c profile showing sound velocity
minimum (SOFAR channel) around 600 m depth. From Talley et al. (2011).

The SOFAR channel acts as a wave guide that can trap acoustic waves and
facilitate their propagation over long distances. Figure 2.2 shows various ray
paths propagating from a source in the SOFAR channel. Note how some of the
rays are bound to a thin layer around the channel axis. Similarly, sound waves
from sources outside the channel can be refracted and become trapped in this
low-velocity wave guide. Whatever is the source depth, sound rays propagating
upwards (at moderate angle) are refracted downwards, cross the SOFAR channel
axis prior to be refracted upwards until crossing the SOFAR channel axis again.
Thus, sound waves oscillate by refraction around the channel axis, hence the
word ”fixing” in the ”SOFAR” acronym. It becomes clear that the SOFAR
channel has a large acoustic exposure as signals always cross it, come back to
it and even stay within it, hence the placement of hydroacoustic instruments in
this layer. Moreover, this behaviour causes the sound to ”diverge cylindrically
rather than spherically” (Medwin & Clay, 1997). This focuses the wave energy
and diminishes the impact of attenuation, enabling acoustic waves to travel
large distances, hence the word ”ranging” in the ”SOFAR” acronym. Similarly,
this horizontal stretch of the ray diminishes the length of their propagation
path which also leads to less attenuation via energy absorption and wavefront
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expansion. However, despite the shorter distance to cover, these rays are not
detected earlier than rays propagating with a larger initial angle of inclination
because the lower propagation speed in the SOFAR channel largely compensates
for the small difference in distance to travel. Rays with the lowest angle of
incidence and which travel the tightest to the channel axis arrive last. Finally,
rays with steep initial angles of inclination are reflected on the seafloor and on
the ocean surface because of the too large amount of steering required to change
their propagation from upwards to downwards and vice versa.

Figure 2.2: Ray diagram for an Atlantic profile situated in temperate latitudes. The
source is on the channel axis, at 1.3 km depth. On the right is the sound velocity profile.
The initial inclination angles are given with respect to the channel axis. Steeper rays
(omitted here, for simplicity) reflect on the seafloor. From Medwin and Clay (1997).

Every structure has a natural frequency. Assuming the maximal thickness
of the SOFAR channel is 400 m, the natural frequency is 3.75 Hz for the lowest
frequency. In other words, frequencies lower than 3.75 Hz have wavelengths
longer than the thickness of the channel and thus are not sensitive to the lower
velocity. Therefore, they cannot get trapped in it. This value is calculated
from the wave equation which links the wavelength λ, the frequency f and the
velocity c as such: c = fλ, and from Talley et al. (2011) we know that ”the
speed does not depend on the frequency”. Moreover, it assumes a velocity close
to 1 500 m/s. Nonetheless, 3.75 Hz is for signals propagating vertically, which
is not of much interest for us as they do not leave the epicentral area. This
low frequency limit of capture is in reality sensibly lower for rays travelling with
some initial inclination angle. It is commonly assumed that the SOFAR channel
can facilitate frequencies of 3 Hz and above due to its limited thickness (e.g.
Evers et al. (2017) and Sambell et al. (2019)).

The SOFAR channel is generally located around a depth of 800 to 1200 m,
in tropical and low temperate latitudes. It is at this depth range that the
combination of pressure and temperature yields the slowest medium to propagate
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acoustic waves. Towards the poles, the initial water temperature at the surface
decreases, shifting upwards the sound velocity profile, and causing the SOFAR
channel to be shallower. Until, at latitudes beyond 60°N and 60°S, the SOFAR
channel reaches the surface because the velocity profile solely depends on the
pressure and thus follows its linearly increasing pattern. Therefore, in this polar
environment, rays are systematically refracted all the way up towards the ocean
surface, where they are reflected (see figure A.1 in appendix).

2.2 Plane wave beamforming

Consider a three-dimensional (3D) planar wave field sampled by an arbitrary
array of N receivers on a horizontal xy-plane. The local orientation of this 3D
wave is defined by its inclination angle θ relative to the horizontal, azimuth angle
φ clockwise from North and its horizontal slowness vector ~p defined as:

~p = −c−1
app

(
sinφ
cosφ

)
. (2.1)

Beamforming yields an average array signal, also called ”beam”. In other
words, it drags each array element to the same reference location. To form a
beam, recordings are time shifted accordingly to a specific horizontal slowness
vector ~p. The time shift ti is defined as follows:

ti = −(px · rx + py · ry), (2.2)

where px and py are the slowness components of the slowness vector ~p(px, py)
and rx and ry the offset components of the position of instrument i with regard
to the reference point. The coherency of the time shifted waveform recordings is
evaluated for a range of slowness vectors of interest. The slowness vector ~p that
yields the highest coherency measure is used to retrieve the wavefront parameters
θ and φ. In this study, we use Fisher statistics to evaluate the coherency of a
signal in a sliding processing window in time of size T . The summation process
is defined by Melton and Bailey (1957) in equation 2.3. For a matrix of N traces
and T samples, we have:

F =
T (N − 1)

N(T − 1)

ΣT
t=1(Σ

N
n=1xnt)

2 − 1
T (ΣT

t=1Σ
N
n=1xnt)

2

ΣT
t=1Σ

N
n=1x

2
nt − 1

N ΣT
t=1(Σ

N
n=1xnt)

2
, (2.3)

where xnt are the time-shifted samples and F is the Fisher ratio (abbreviated F-
ratio). Higher F-ratio indicates higher coherency. The derivation of the F-ratio
is an analysis of variance of both noise and signal and is in substance similar to
testing a statistical hypothesis. Hypothesis H0 is that recordings contain only
random noise and hypothesis H1 is that they also contain a common pattern
(i.e. a signal perturbed the ambient field and was recorded by more than one
instrument). If H1 is true, a variance appears in the data which cannot be
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attributed to the noise as it is common to several instruments. Therefore, data
deviates from the mean and have a non-central distribution.

Finally, the apparent velocity and back-azimuth of the most coherent average
array signal in each time window are stored for further processing.

The algorithm used in this study is an in-house developed beamforming
implementation1 of Fisher statistics developed in Melton and Bailey (1957). This
algorithm was already used in previous studies, e.g. Shani-Kadmiel et al. (2018),
and is called via a Python interface: the different codes used as part of our study
are in appendix F.

2.3 Temperature–Sound Speed relation

Equation 1.1 in introduction is a simplified version of the empirical formulation of
Del Grosso (1974). When compared with his formulation, the velocity calculated
has a precision of less than 0.2 m/s, as long as the temperature ranges from 0
to 32 °C, the salinity ranges from 22 to 45 g/l and the depth is not larger than
1000 m. For a given depth, Dushaw et al. (2009) show that change in temperature
is the main cause for sound velocity variation. Others before them had remarked
the same thing: Munk et al. (1995) and Worcester (2001) show that at mid-
latitudes acoustic velocity variations due to change in salinity are about only a
few percent of the extend of the ones caused by change in temperature; Lukas
(2001) shows that in the subtropical gyre near Hawaii, in the upper thermocline,
sound velocity variations due to change in salinity are about 10 times smaller
than the ones caused by changes in temperature. With this in mind, Sambell
et al. (2019) approaches equation 1.1 with a first order approximation, ignoring
higher order terms of the temperature and assuming a constant salinity of 35 g/l.
The temperature becomes:

T =
c− 1449.2− 0.016z

4.6
. (2.4)

Equation 2.4 is the one used in this study to convert sound velocities c to
temperature T values, with z being the depth at which acoustic velocities are
retrieved.

1More information on the beamforming algorithm authors in bibliography: Shani-Kadmiel
et al. (2020).
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Methodology

3.1 Analysis of hydroacoustic signals

In this section, we present the main characteristics of an earthquake signal
recorded by a hydroacoustic array. This short analysis helps to understand the
selection of some of the processing parameters, such as the ones related to the
picking of the waveform interval and the bandpass filter. Figure 3.1a shows the
raw waveforms recorded by the six hydrophones of H10 following a magnitude
6.2 earthquake 5 422 km away. In addition, frames (b) and (c) show, from top
to bottom, the spectogram of the instrument response removed and unfiltered
waveform, its corresponding waveform and the filtered waveform. We focus on
arrivals with a seismic celerity (b) and on arrivals with a hydroacoustic celerity
(c). Seismic waves from a magnitude 6 event and situated more than 5 000 km
away will not have any energy at frequencies higher than 1 or 2 Hz. Consequently,
the presence of energy above 10 Hz in frames (b) invalid the possibility that they
are related to seismic arrivals which shacked the anchorage system. Similarly, the
filtered (0.01–2 Hz) waveform reveals that no coherent arrivals has energy below
2 Hz. These signals were certainly generated by interaction of the seismic waves
with other local features of H10S, e.g. the bathymetry, topography, sediments.
These are secondary sources whose signals can also couple to the water column
and get trapped in the SOFAR wave guide.

The two frequency contents show that noise as well as signals from continuous
sources mostly have energy in the frequency band below 3 Hz because there is
always energy in that band. Regarding acoustic waves (figure 3.1c), it is quite
clear that their signal is broadband. It is however more dominant in the 3–12 Hz
band. This highlights the lower limit of frequencies that can be facilitated by
the SOFAR channel. Moreover, the very small difference between the unfiltered
and filtered (between 3 and 20 Hz) waveforms shows that the signal does not
have much energy in the frequency band above 20 Hz.

12
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Figure 3.1: An earthquake signal recorded by a hydroacoustic array. (a) six raw
waveforms at H10. Highlighted in red are the seismic (left) and acoustic (right) arrivals.
(b) zooms on arrivals with a seismic celerity of element H10S1. From top to bottom,
we see the spectogram of the instrument response removed and unfiltered waveform,
its corresponding waveform and the filtered (0.01–2 Hz) waveform. (c) is like (b) but
for the arrivals with an acoustic celerity. In (c), the bandpass filter used to obtain the
lowest frame is between 3 and 20 Hz.
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The shape of the acoustic signal is quite elongated on figure 3.1c. This is
mostly due to two reasons. Firstly, the patch of seafloor above the source that
vibrates is not punctual and has some size. Some of the patch is closer to the
array, and its emissions thus have a shorter travel time, part of the patch is
further away and its emissions thus have a longer travel time. The symmetry
of the patch also plays a role. Secondly, parts of the wave field also propagated
outside the SOFAR channel and thus with a slightly higher celerity. These waves
thus have a shorter travel time.

3.2 Data processing

In the first place, a catalogue of earthquakes which happened in the Atlantic
ocean basin between 2005 and 2018 was compiled. Figure 3.2 shows the polygon
that was constructed to select the events (the polygon coordinates are in the
appendix in table B.1). For the purpose of this study, we selected earthquakes
with a magnitude larger than 4 to ensure waveforms have a sufficiently large SNR.
Afterwards, events whose distance to the array centre is smaller than eight times
the array aperture of the joint array are disregarded. From figure 3.5, we see that
events closer than this distance lead to a difference in back-azimuth larger than
5° at each triplet. As this difference gets larger, the precision of the retrieved
apparent velocity by beamforming diminishes (see section 3.2.1). Moreover, this
minimum distance ensures that the plane wave approximation holds.

For each event in the catalogue, a time interval was selected around
the acoustic arrivals following equations 3.1 and 3.2. This ensured we are
beamforming hydroacoustic signals and that they were generated by one of
the events in our catalogue. Moreover, limiting the signal duration leads to
a computationally less expensive beamforming. Afterwards, waveforms in this
interval were demeaned, tapered (with a max percentage of 5% and a taper length
of 20 samples) and had the instruments sensitivity removed. Moreover, they were
bandpass filtered between 3 and 20 Hz using a fourth-order Butterworth filter,
accordingly to the explanation of the anatomy of the hydroacoustic signal made
in section 3.1.

Beamforming was applied to a sliding time window of 2.75 s (687 samples)
with an overlap of 50%. The discrete slowness grid was specifically designed for
each event to include a back-azimuth range of +/–15° around the theoretical
back-azimuth between the array geometrical centre and the epicentre, with an
increment of 2°. Sampling only the slowness vectors around the theoretical back-
azimuth is computationally less expensive than if the algorithm had to sample
the entire grid. An example of slowness grid is visible in figure 3.3. Regarding the
apparent velocity, the grid was defined from 1 450 to 1 540 m/s with an increment
of 1 m/s. This velocity range is more centred on the low velocities of the SOFAR
channel and is also the same as the one chosen by Sambell et al. (2019). Using
equation 2.4 we see that every 1 m/s in apparent velocity corresponds to 0.22 °C
in temperature. All six elements of H10 were used for beamforming. However,
after October 2013, array element S1 started malfunctioning and was discarded.
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Figure 3.2: Geographic zone used for earthquake selection on the interactive bulletin
search on the International Seismological Centre (ISC) website.

3.2.1 A SOFAR channel signal

We have taken several steps to extract the part of the signal that is propagating in
the SOFAR channel. Failure to do so would result into beamforming retrieving
imprecise apparent velocities, because the velocities sampled by beamforming
would correspond to none of the true velocities which yielded the coherent
arrivals. Moreover, as we are only interested in the acoustic part of the signal that
is propagating in the SOFAR channel, much computational cost can be saved
by only beamforming this part of the signal. We extract a window around the
acoustic arrival by approximating the start and end time, t1 and t2 respectively,
as a function of the origin time t0, the epicentral distance r, and two bounding
celerity values chosen to be cmax = 1600 m/s and cmin = 1400 m/s in this
study. Equations 3.1 and 3.2 show the obtaining of the start time and end time,
respectively.

t1 = t0 +
r

cmax
(3.1)

t2 = t0 +
r

cmin
(3.2)

These celerity range bounds were chosen to allow ample time before and after
the actual range of interest, which is 1540 m/s and 1450 m/s. This time interval
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Figure 3.3: Example of slowness grid for an event whose theoretical back-azimuth
is 285°. On the x and y axis are the slowness vectors along the x and y dimension
respectively, from a bird’s eye view. This grid is built with an increment of 2° in the
back-azimuth range 270–300° (i.e. 285°+/–15°) and with an increment of 1 m/s in the
velocity range 1450–1540 m/s.

is broader also to ensure that a maximum of signals travelling across the array
in the SOFAR channel are captured. For instance, it can take some time for an
acoustic wave to propagate from the seafloor until it gets fixed in the SOFAR
channel. During this time span the wave does not propagate at the velocity of
the SOFAR channel yet.

Figure 3.4 shows the stacked waveforms of the North and South triplets, for
five random earthquakes. In black is the part of the signals that is meant to later
be beamformed. Firstly, a back-azimuth difference is visible when the epicentre
is situated relatively close to the array. Secondly, the further the epicentre is
situated from H10, the broader becomes the time interval and the smaller is the
signal amplitude. Thirdly, the signature of the stacked waveforms generated by
the passage of the same plan wave over the arrays look similar.

The geometry of the problem we are solving implicates that the back-azimuth
of the planar wave field remains constant at each array element so that the
apparent velocity can be calculated precisely in the beamforming process. To
conform to this, we ensure that the direction of the propagating signal across
both triplets is similar (see figure C.1 in appendix). This is achieved by selecting
events that are detected at both triplets with similar back-azimuths. Figure
3.5 presents the absolute difference in the theoretical back-azimuth between the
North and South triplets as a function of epicentral distance. In this study,
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Figure 3.4: Zero-phase stacked signals of five random events (a to e) from the year 2010,
sorted by epicentral distance. For each of them, upper and lower frames correspond to
the North and South triplet, respectively. In black is the part of the signal that travelled
with a celerity between 1 400 and 1 600 m/s. All waveforms are demeaned, tapered and
have the instruments sensitivity removed. Moreover, the black waveforms are tapered a
second time and bandpass filtered between 3 and 20 Hz. On the map, green dots show
the earthquake epicentres and the red triangle shows H10 location.
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we set a minimum distance criterion of height times the joint array aperture
(1 010 km), which ensures the back-azimuth difference is not larger than 5°. As
a result of this criterion, we can also assume that the curvature of the wavefront
is negligible and that the plane-wave approximation holds.
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Figure 3.5: Absolute difference in the theoretical back-azimuth between the North and
South triplets in function of epicentral distance. The red dashed line symbolises the
minimum epicentral distance (1 010 km) criterion used in this study.

3.2.2 Beamforming

Beamforming is used in the frame of an inverse problem approach. Indeed, it
enables us to retrieve the “distinctive details of the propagation at a time and
space to deduce the parameters and processes of the particular ocean through
which the sound has travelled” (Medwin & Clay, 1997). Medwin and Clay
(1997) also call this inverse view “acoustical oceanography”. More concretely,
beamforming is a method which cancels out incoherent noise and enhances signal
by combining traces. The best beam is the name given to the average array signal
obtained from the slowness vector yielding the maximum F-ratio.

One of the main advantage of beamforming is that it can evaluate the time
shift of a certain range of both apparent velocities and back-azimuths chosen
beforehand. This makes beamforming very practical from a computational
cost point of view and also to verify prior knowledge. The beamforming
algorithm used in this study is called a ”time domain Fisher detector”. ”Time
domain” because samples are shifted in time, and ”Fisher detector” because
the summation process calculating the degree of coherency of each set of
delayed traces uses Fisher statistics. For long time periods, traces are not
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compared and analysed along the entire signal duration at once, but rather
one window of samples at a time. Henceforth, the word ”detection” will refer
to the beamforming results of the best beam of one window. The three figures
in appendix D show some beamforming results for earthquakes with different
magnitudes at arrays with different number of elements. The window duration
is 2.75 s, and there is a 50% overlap between each window. It is visible that
detections with the highest F-ratio are the ones linked with the passage of the
signal over the array. More importantly, they also show more constancy in both
apparent velocity and back-azimuth and are associated with a higher SNR.

3.3 Individual triplets vs. joint array

From the equation of the F-ratio (equation 2.3), Melton and Bailey (1957) also
derived a relation between the SNR on the number of traces N and the F-ratio
F :

F = N · SNR 2 + 1. (3.3)

It results that a beam has an SNR increase of
√
N under the assumption of

uncorrelated noise. Therefore, the SNR increases if more sensors sample the
wave field, as more elements confirm the presence of coherent arrivals. This was
similarly discussed by Woolfe et al. (2015), who suggested that both triplets
can be jointly process in a beamforming procedure with an associated error e
proportional to:

e α
1√

T/L ·
√
MN

. (3.4)

N and M are the numbers of elements in each array, T is the window duration
and L is the distance between the two array centres. Equation 3.4 indicates that
the error is inversely proportional to the product of the number of elements in
each array. A smaller error obviously means a larger SNR. Regarding the first
term, it acts as a normalising factor.

To compare beamforming results using each triplet individually versus
processing all six elements as one joint array, we examine one year of earthquakes
from the compiled catalogue. Figures 3.6 and 3.7 show detections that were
detected at the North and South triplets, respectively, with an SNR larger
than 0.6. The top frames (a) show a histogram of the detections in 5° back-
azimuth bins. The middle frames (b) show detections as a function of time and
back-azimuth, colour-coded by apparent velocity. The bottom frames (c) show
apparent velocity and 95% confidence interval in each back-azimuth bin.

Not all events that are detected at H10N (North triplet) are detected at
H10S (South triplet) and vice versa. Beamforming at H10N picks up more
earthquakes from the North with a back-azimuth range of 300°–5° (figure 3.6a),
whereas beamforming at H10S picks up more earthquakes from the South with
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a back-azimuth range of 170°–210° (figure 3.7a). Moreover, a close inspection
of the average apparent velocity per back-azimuth bin shows that the apparent
velocity changes as a function of back-azimuth. Sambell et al. (2019) observed a
similar dependency of apparent velocity as a function of back-azimuth at H03S
(near Robinson Crusoe Island, off Chile) and attributed it to local effects, most
likely related to steep slopes in the local bathymetry.

Figure 3.8 shows all detections that were detected at the joint array with
an SNR larger than 0.6. We note that although less events are detected in
total, the apparent velocity variation as a function of back-azimuth is almost
completely suppressed and that confidence intervals are generally smaller — with
the exception of very poorly sampled back-azimuth bin. We therefore conclude
that joint-array beamforming is superior to individual triplet beamforming to
retrieve an accurate apparent velocity. This method is thus more appropriate
for assessing parameters which necessitate high accuracy and precision, such as
the water temperature.

3.4 Post-processing

For each event, detections with an SNR higher than 0.6 are selected and the
associated wavefront parameters — namely back-azimuth and apparent velocity
— are aggregated per back-azimuth bins of 5°. Using an SNR threshold of 0.6
further constrains the detections to the main part of the SOFAR channel and
ensures that the F-ratio remains above a value of 2. For instance, by looking at
the three figures in appendix D, it is visible that detections with an SNR of 0.6
and above have an increased F-ratio and thus are linked with the passage of a
coherent wave field over the array and correspond to a more consistent apparent
velocity and back-azimuth. Furthermore, even for a magnitude 6 event (figure
D.3), for which a particularly high SNR is expected, 0.6 is a good threshold to
conserve only the main part of the signal without the less coherent tails (at least
for the joint array, which is the array this study focuses on).

Afterwards, the apparent velocity is averaged per month over each back-
azimuth bin and the confidence interval of 95% is calculated. Monthly back-
azimuth bins containing less than six detections are disregarded. For the analysis
of the temperature over time, only the four back-azimuth bins with the most
monthly bins between 2005 and 2018 are retained. In descending order, these
are the 5° bins centred on 187.5°, 192.5°, 307.5° and 302.5°. For each of them,
monthly average velocities and temperatures are fitted in order to highlight
eventual trends over time. We choose a polynomial regression because cyclic
temperature variations (e.g. due to seasonal variations) are negligible at the
latitude and depth of H10 (Locarnini et al., 2010). Furthermore, we use a
polynomial of the second degree. This choice is made upon a trial-and-error
process: a second degree polynomial advantageously offers a bit more flexibility
in the fitting than a first degree one, without the complexity of higher degree
polynomials; our goal is to detect general trends. Moreover, each of the four
back-azimuth sets of monthly results is fitted for the 2005–2018 period and the
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Figure 3.6: Detections at H10N (North
triplet) with SNR > 0.6 for 2010. (a)
Probability distribution per 5° back-
azimuth bin. (b) Back-azimuth as a
function of time, colour coded by apparent
velocity. (c) Average apparent velocity and
95% confidence interval per back-azimuth
bin. (d) Location of events which triggered
at least one detection with an SNR >
0.6. Dashed lines show the two back-
azimuths with the most detections and the
red triangle shows H10 location.
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Figure 3.7: Detections at H10S (South
triplet) with SNR > 0.6 for 2010. (a)
Probability distribution per 5° back-
azimuth bin. (b) Back-azimuth as a
function of time, colour coded by apparent
velocity. (c) Average apparent velocity and
95% confidence interval per back-azimuth
bin. (d) Location of events which triggered
at least one detection with an SNR > 0.6.
The dash line shows the back-azimuth with
the most detections and the red triangle
shows H10 location.
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Figure 3.8: Detections at H10 (joint
array) with SNR > 0.6 for 2010. (a)
Probability distribution per 5° back-
azimuth bin. (b) Back-azimuth as a
function of time, colour coded by apparent
velocity. (c) Average apparent velocity and
95% confidence interval per back-azimuth
bin. (d) Location of events which triggered
at least one detection with an SNR > 0.6.
The dash line shows the back-azimuth with
the most detections and the red triangle
shows H10 location.
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2005–2013 one in order to also make an evaluation that is not impacted by the
malfunction of element S1. Therewith, the regression is conducted once with no
weighting applied on the monthly results, and once with a weighting inversely
proportional to the 95% confidence interval of the monthly averages. This means
that the larger the confidence interval of a certain month, the less the average
apparent velocity or temperature associated to this month contributes to the
polynomial regression. In conclusion, each of the four back-azimuth bin is fitted
four times.



4

Results

4.1 Description

Figure 4.1 summarises all the earthquakes in our catalogue that were detected at
the joint array with an SNR larger than 0.6. As before, the top frame (a) shows a
histogram of the detections in 5° back-azimuth bins. The middle frame (b) shows
detections as a function of time and back-azimuth, colour-coded by apparent
velocity. The bottom frame (c) shows apparent velocity and 95% confidence
interval in each back-azimuth bin.

A large proportion of detections (41%) comes from the South Sandwich
Islands and ends up in the two bins centred on back-azimuths 187.5° and 192.5°.
These bins have apparent velocities considerably lower than their less sampled
neighbours: approximately 1 482 m/s compare to 1 493 m/s. Despite being less
sampled, these neighbouring bins still have very small confidence intervals. It is
also visible that the apparent velocity is higher in the back-azimuth range 280°
to 300°, with values above 1 500 m/s (light green and yellow dots). Moreover,
more detections occur after October 2013 in this back-azimuth range. On top
of this the overall number of detections increases after 2016 and they are spread
more continuously across many back-azimuths.

Figure 4.2 shows the monthly average velocities and temperatures of the
four back-azimuth bins with the most monthly bins. They almost correspond
to the four bins with the largest amount of detections visible in frame 4.1a.
A second degree polynomial regression is used to fit the results, for both the
2005–2013 (green) and 2005–2018 (blue) periods, as well as with (solid) and
without (dashed) weighting applied on the results. The weighting on a data
point is inversely proportional to its confidence interval. These back-azimuth
bins conveniently avoid arrivals detected in the back-azimuth range 280–300°
which contain rather high apparent velocities.

Firstly, we can see that the monthly averages, before 2013, are mostly

25
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between 4.0 and 5.0 °C. Secondly, they are often within a 0.5 °C interval from
the fitting polynomials, and the monthly 95% confidence intervals are mostly
1.0 to 2.0 °C wide. With the exception of back-azimuth bin 187.5° which shows
an extraordinarily small variability in both monthly averages and confidence
intervals, especially for the 2008–2010 period. All four bins show globally an
increase in confidence interval after October 2013, except eventually for back-
azimuth bin 302.5° where the confidence intervals are already rather large before
2013. The same goes for the variability of the averages, on top of which an
upwards trend emerges. This leads to the 2005–2018 curves (blue) to increase
over time, with the exception of back-azimuth bin 192.5° weighted. Regarding
the 2005–2013 period, all bins show a slight upwards trend in temperature, and
the weighted and unweighted regressions are similar.



4.1. DESCRIPTION 27

0

2

4

6

8
Pr

ob
ab

ilit
y 

(%
) 28% 13%

(a)

2006

2008

2010

2012

2014

2016

2018(b)

30 60 120 180 240 300 0 30
Backazimuth (°)

1460

1480

1500

1520

Ap
p.

 v
el

. (
m

/s
)

(c)

1460

1470

1480

1490

1500

1510

1520

1530

Ap
pa

re
nt

 v
el

oc
ity

 (m
/s

)

Figure 4.1: Detections at H10 (joint array) with SNR > 0.6 between 2005 and 2018.
(a) Probability distribution per 5° back-azimuth bin. (b) Back-azimuth as a function
of time, colour coded by apparent velocity. (c) Average apparent velocity and 95%
confidence interval per back-azimuth bin.
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Figure 4.2: The four back-azimuth bins with the largest coverage through time (from
(a) to (d)). The back-azimuth indicates the centre of the bin. For each bin are shown the
monthly average apparent velocities and temperatures as well as their 95% confidence
intervals. A polynomial regression of the second degree fits the averages for the 2005–
2018 and the 2005–2013 periods, in blue and green respectively. In addition, the fitting
is applied once with weighting (solid lines) and once without any (dashed lines): the
weighting of one data point is inversely proportional to its confidence interval.
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4.2 Interpretation

The relatively high apparent velocities in the back-azimuth range 150° to 180° in
figure 4.1c resembles the bias discussed with regard to figures 3.6c and 3.7c.
However, we do not think that this bias reappears so strongly in the joint
array beamforming results when averaging detections over a longer period of
time. Indeed, figure E.1 in appendix, shows that this velocity–back-azimuth
dependency is reduced when disregarding detections which occurred after the
malfunction of hydrophone S1 (i.e. after October 2013). The same goes for
back-azimuth bins situated between 310° and 350°. Therefore, we interpret that
when the joint array is reduced to five elements, the retrieved apparent velocity
could become more prone to change as a function of back-azimuth — like it is
the case for the triplets individually.

To investigate the more numerous detections with a high apparent velocity
recorded after 2016, we re-beamformed earthquakes that happened in 2010 but
excluding array element S1. Results are in appendix in figure E.2. The apparent
velocity is much less constant than in figure 3.8c and confidence intervals are
also larger. Moreover, a pattern similar to the one in figure 4.1b after 2016
is visible. Consequently, we interpret that the absence from the beamforming
processing of data from element S1 led to retrieving more detections after 2013
— but more especially after 2016 for an unknown reason. We also saw in section
3.3 that the beamforming process for the joint array retrieved less detections
than for the individual triplets. We can think of three potential reasons for this:
(1) the presence of Ascension Island that could block some signals propagating
from one triplet to the other; (2) the F-ratio is divided by the number of array
elements which leads to a smaller SNR for detections at the joint array (see also
the bottom frames of the three figures in appendix D); (3) the back-azimuth of
the planar wave field can vary slightly between each element location, variation
that would be larger for the joint array and thus leads to a larger decrease in
SNR.

Figure E.3 shows the monthly average temperature across all back-azimuth
bins as a function of time. Although this method cannot be applied to retrieve
a precise value for the temperature, it has at least the advantage of also
putting in evidence that, after the malfunction of element S1, the retrieved
apparent velocity and temperature both suddenly increase and also have a larger
variability.

Regarding the high apparent velocities in the back-azimuth range 280° to
300°, a velocity of 1 500 m/s corresponds to a temperature of 8 °C. This is too
large to be physically reasonable. Indeed, in the World Ocean Atlas (2009),
Locarnini et al. give a temperature of 5.0 °C, for a depth of 850 m; as for
Evers et al. (2017), cross-correlating the array beams resulted in a velocity
of approximately 1 481 m/s (4 °C). Consequently, it seems that joint-array
beamforming could not avoid the apparent velocity to be biased for this back-
azimuth range. As a result, detections in this back-azimuth range should
not be used for retrieving accurate temperature variations over time (they are
conveniently not part of the four bins with the largest coverage through time).
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We have seen that the malfunction of element S1 leads to considerable
changes in the beamforming results. Figure 4.2 shows monthly averages and
therefore allows us to study separately the 2005–2013 period, from the 2005–2018
period. Regarding potential dependency between velocity and back-azimuth,
they are certainly minor and would be systematic errors as they depend on the
back-azimuth. As a result, they would probably shift up or down equivalently
all data points but not modify our understanding of the temperature evolution
over time. Firstly, before 2013, the monthly average temperatures are mostly
between 4.0 and 5.0 °C which is in the range of values given in the literature. For
back-azimuth bins 187.5°, 192.5° and 307.5° the blue curves matches the green
ones relatively well. It is only after 2013, that the blue curves show a more rapid
increase. This increase can well be seen on figure 4.3 which shows the variation
in monthly temperature over time and over each back-azimuth bin. For back-
azimuth bin 302.5°, the increase is even too rapid for the blue and green curves
to match before 2013. This is due to too numerous high velocity detections
after 2013 which could be caused by the inclusion in the bin of some of the high
velocity detections of the back-azimuth range 280–300°. This could explain why
this bin’s polynomial fit is the highest and why this bin’s results have the largest
confidence intervals.
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Figure 4.3: Back-azimuth as a function of time, colour coded by variation of monthly
temperature. The colour shows the difference between the bin temperature and the
average temperature of its entire back-azimuth bin.

After 2013, the increase is more rapid for the unweighted fits in all bins:
it shows that monthly averages with high values also have large confidence
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intervals. The weighted fit of back-azimuth bin 192.5° is the only one to show a
decrease in temperature after 2013. Overall, the 2013–2018 period appears not
reliable enough to highlight temperature trends, the fault of the introduction of
many detections with high apparent velocity and velocity averages with large
confidence interval. We think this behaviour is linked with the malfunction of
element S1.

Regarding the 2005–2013 periods, the weighted and unweighted fits are
similar, except for the back-azimuth bin 302.5° where the weighted regression
gives lower values. We interpret this as a possible indication that the weighted
fit is less sensitive to the eventual inclusion of high velocities in the bin and thus
weighting the results could be more advantageous than not weighting them.

We think that the very small confidence intervals in bin 187.5° could be linked
with the fact that this bin has the most detections. However, this would not
explain why the temperature varies very little between 2008 and 2010. Neither
events nor detections are more numerous during this period. Consequently, it
might also be that some particularly similar earthquakes happened along these
couple of years in the South Sandwich archipelago.

To summarise, we think that detections after 2013 are not satisfying to
retrieve the temperature accurately and that back-azimuth bin 302.5° is the least
accurate of the four analysed due to its large confidence intervals. The average
temperature of the three others is between 4.3 and 4.8 °C, for the 2005–2013
period. Moreover, there might also be a slight temperature increase of 0.2 °C.
However, this is statistically not robust since we estimate having a precision
of 0.5 °C (4.8-4.3 °C) and since our beamforming processing has a minimal
resolution of 0.22 °C.



5

Conclusion

In conclusion, this study shows that it is possible to retrieve accurately the
deep ocean temperature using passively recorded hydroacoustic signals from
submarine earthquakes. These signals were recorded at H10, a hydroacoustic
array near Ascension Island, which consists of two triplet of hydrophones —
whose separation is much larger than their respective aperture. The method
used in this study consists of beamforming the six hydrophones together, as part
of one large array. As beamforming algorithm, we use a time domain Fisher
detector.

After beamforming one year of data, it results that less detections with an
SNR larger than 0.6 are retrieved for the joint array than for each individual
triplet. We attribute this difference to three reasons: (1) Ascension Island
could block some signals propagating from one triplet to another; (2) the Fisher
ratio is divided by the number of array elements in the beamforming algorithm;
(3) the planar wave field back-azimuth can vary slightly between each element
location, variation that would be larger for the joint array and thus leads to a
larger decrease in SNR. In any case, for the joint array results, the quality of
the retrieved apparent velocity is greatly increased as it appears much more
constant across all back-azimuths; i.e. the velocity is much less dependent
on the direction the plan wave propagated through the array, compare to the
beamforming results of the individual triplets. Therefore, this method is less
sensitive to local effects, such as the nearby bathymetry. Moreover, we see that
well covered back-azimuths have very small 95% confidence intervals.

Afterwards, detections are divided into 5° back-azimuth bins and monthly
average temperatures are derived from the apparent velocity for each back-
azimuth bin. When analysing the four back-azimuth bins with the most
temporal coverage, we retrieve an average temperature of 4.3 to 4.8 °C, between
March 2005 and October 2013. Unfortunately, detections obtained from signals
recorded after October 2013 could not lead to well-actionable results, because
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of a malfunction in array element S1. A temperature of 4.3–4.8 °C is in good
agreement with the literature, where values between 4.0 °C and 5.0 °C are given
for a depth of 850 m and a latitude of -8°. Between 2005 and 2013, we may
also see a temperature increase of 0.2 °C, however it is not statistically robust.
The robustness could perhaps be enhance by using a smaller velocity increment
(<1 m/s) in the construction of the slowness grid.

Finally, the research could be taken further by applying the method used
in this study on other hydroacoustic stations of the IMS and retrieve the
temperature. However, one limitation of this method is the fact that no major
spatial obstacle (e.g. an island) must be situated between the two triplets of
hydrophones. For instance, H03, near Robinson Crusoe Island is not appropriate
whereas H11, near Wake Island in the North West Pacific Ocean, does offer the
possibility of jointly processing the two triplets as the island does not create
any significant shadow zone. A next step would also be to operate over larger
distances in order to determine an average temperature at very large scale, and
track its variation over time. Perhaps, cross-beam correlation techniques (cross-
correlating array beams retrieved by array processing of the six hydrophones)
could be conducted between different IMS stations.
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A

SOFAR channel in Arctic
environment

Figure A.1: Ray diagram for a profile situated in an Arctic environment. The source is
on the channel axis, at the surface. On the right is the sound velocity profile. The initial
inclination angles are given with respect to the channel axis. Steeper rays (omitted here,
for simplicity) reflect on the seafloor. From Medwin and Clay (1997).
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B

Coordinates of the geographic zone
used for earthquake selection
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40 APPENDIX B. GEO. ZONE FOR EARTHQUAKE SELECTION

Table B.1: Geographic coordinates of the points used to build the polygon of figure
3.2, used for earthquake selection.

Point Latitude (°) Longitude (°)

1 -68.339 -53.315
2 -67.748 39.674
3 -36.731 35.543
4 -36.327 18.755
5 -18.499 10.767
6 -10.954 11.822
7 2.704 7.340
8 4.546 2.682
9 3.406 -9.008
10 12.278 -18.676
11 25.216 -17.042
12 30.068 -10.934
13 33.100 -10.088
14 35.494 -6.992
15 36.648 -9.831
16 43.900 -9.945
17 44.745 -3.386
18 49.997 -6.699
19 51.762 -12.033
20 63.004 -3.946
21 63.004 -36.993
22 52.708 -54.396
23 46.873 -50.792
24 31.219 -79.884
25 23.253 -72.765
26 18.497 -61.076
27 10.592 -59.054
28 -5.772 -32.862
29 -21.844 -39.103
30 -45.938 -64.415
31 -60.094 -62.218
32 -62.763 -53.341
33 -68.339 -53.315



C

The geometry of the problem

Figure C.1: A1 and A2 are two arrays and the distance between their centres is
measured along the propagation path of the planar wavefront. From Shani-Kadmiel
(2019).
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D

Beamforming results for an
earthquake per magnitude and per
array
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Figure D.1: Beamforming results of a randomly selected 4 < MW < 5 earthquake at (a) the North triplet, (b) the South triplet and (c) the
joint array. From top to bottom, frames show: the frequency spectrum, the best beam, the back-azimuth, the apparent velocity and the F-ratio.
For the last three, one data point represents one detection. Figures are displayed with a 0.6 SNR threshold (white data point when below).
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Figure D.2: Beamforming results of a randomly selected 5 < MW < 6 earthquake at (a) the North triplet, (b) the South triplet and (c) the
joint array. From top to bottom, frames show: the frequency spectrum, the best beam, the back-azimuth, the apparent velocity and the F-ratio.
For the last three, one data point represents one detection. Figures are displayed with a 0.6 SNR threshold (white data point when below).
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Figure D.3: Beamforming results of a randomly selected 6 < MW < 7 earthquake at (a) the North triplet, (b) the South triplet and (c) the
joint array. From top to bottom, frames show: the frequency spectrum, the best beam, the back-azimuth, the apparent velocity and the F-ratio.
For the last three, one data point represents one detection. Figures are displayed with a 0.6 SNR threshold (white data point when below).
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Figure E.1: Detections at H10 (joint array) with SNR > 0.6 between 2005 and October
2013, i.e. until the malfunction of array element S1. (a) Probability distribution per 5°
back-azimuth bin. (b) Back-azimuth as a function of time, colour coded by apparent
velocity. (c) Average apparent velocity and 95% confidence interval per back-azimuth
bin.
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Figure E.2: Detections at H10 (joint array) with SNR > 0.6 for 2010, and when
excluding array element S1 from the beamforming process. (a) Probability distribution
per 5° back-azimuth bin. (b) Back-azimuth as a function of time, colour coded by
apparent velocity. (c) Average apparent velocity and 95% confidence interval per back-
azimuth bin.
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Figure E.3: Monthly (a) apparent velocity and (b) temperature averaged across all
back-azimuth bins as a function of time, at H10. Confidence intervals of 95% are also
shown. When averaging, no weighting is applied regarding the number of detections per
back-azimuth bin. The dash blue line shows the malfunction of array element S1, and
the two dashed red lines show the average before and after.
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Python codes

F.1 Data processing/Beamforming

1 ## GET PACKAGES AND FUNCTIONS ##
2 from obspy import read_events
3 from obspy import UTCDateTime
4 from obspy.geodetics.base import gps2dist_azimuth
5 from obspy.core.event import Catalog
6 from pysabeam import Array, Grid, array_process, read
7

8 ## CALL EVENTS AND ARRAYS ##
9 events = read_events(’Results/2010/Atlantic_2010_new.xml’)

10 path = ’/vardim/home/kadmiel/Data/Hydro’
11

12 array_N = Array(’H10N.xml’)
13 array_S = Array(’H10S.xml’)
14 array_NS = Array(’H10.xml’)
15

16 # Uncomment to exclude element S1 from array geometry
17 #array_S.exclude(elements=’S1’, remove_completely=True)
18 #array_NS.exclude(elements=’S1’, remove_completely=True)
19

20 ## DEFINE PARAMETERS ##
21 # For waveform extraction
22 sofar_vmin = 1400
23 sofar_vmax = 1600
24 freqmin = 3
25 freqmax = 20
26

27 # For slowness grid construction
28 app_vel_min = 1450
29 app_vel_max = 1540
30 app_vel_increment = 1
31 theta_padding = 15
32 theta_increment = 2

50
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33

34 # For beamforming
35 window_length = 2.75
36 overlap = 0.5
37 threads = 4
38

39 ## BEAMFORMING ##
40 bad_events = []
41 bad_events_2 = []
42

43 for event in events:
44

45 # Look for events info
46 lon = event.origins[0].longitude
47 lat = event.origins[0].latitude
48 origintime = event.origins[0].time
49 mag = event.magnitudes[0].mag
50

51 for array in [array_NS, array_N, array_S]:
52

53 try:
54 distance, az, baz = gps2dist_azimuth(lat, lon, array.

center[1], array.center[0])
55 if distance < 8 * array.aperture:
56 break
57

58 except Exception as e_2:
59 print(e_2)
60 bad_events_2.append(event)
61 array.reset_exclude()
62 continue
63

64 # Get waveforms
65 starttime = origintime + distance / sofar_vmax
66 endtime = origintime + distance / sofar_vmin
67

68 # Construct slowness grid
69 grid = Grid(app_vel_params=(app_vel_min, app_vel_max,

app_vel_increment),
70 theta_params=(baz-theta_padding, baz+theta_padding

, theta_increment))
71

72 try:
73 # Beamforming
74 result = array_process(
75 array, path, grid=grid,
76 starttime=starttime, endtime=endtime,
77 event=event, wlen=window_length, overlap=overlap,
78 filter_params=dict(type=’bandpass’, freqmin=freqmin,

freqmax=freqmax, corners=4, zerophase=True),
79 method=’timefisher’,
80 threads=threads
81 #exclude=’S1’ # Uncomment to exclude element S1 from

beamforming
82 )
83

84 except Exception as e:
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85 print(e)
86 bad_events.append(event)
87 array.reset_exclude()
88 continue
89

90 # Write to disk
91 result.force_to_netcdf(
92 f’Results/{origintime.year}/Beamformed_events/{origintime.

strftime("%Y%m%d%H%M%S")}_M{mag}_{array.name}.nc’
93 )
94

95 # Store unbeamformed events which rose an error
96 catalog = Catalog(bad_events)
97 catalog.write(’Results/2010/Bad_events_atlantic_2010.xml’, format=’

QUAKEML’)
98 catalog = Catalog(bad_events_2)
99 catalog.write(’Results/2010/Bad_events_2_atlantic_2010.xml’, format=’

QUAKEML’)

F.2 Post-processing

1 ## GET PACKAGES AND FUNCTIONS ##
2 import numpy as np
3 import math
4 import matplotlib.pyplot as plt
5 import datetime
6 import xarray as xr
7 import pandas as pd
8 from pysabeam import Array, Grid, array_process, read
9 from scipy.stats import sem, t

10 from glob import glob
11 import warnings
12 warnings.filterwarnings("ignore", category=RuntimeWarning)
13

14 ## DEFINE TWO FUNCTIONS ##
15 def confidence_interval(data, confidence=0.95):
16 """
17 Return the mean and the one sided confidance interval of the ‘‘

data‘‘.
18 """
19 h = sem(data) * t.ppf((1 + confidence) / 2, data.size - 1)
20 return data.mean(), h
21

22 def c2T(c, z):
23 """
24 Calculate temperature in C from sound speed ‘‘c‘‘.
25 """
26 return (c - 1449.2 - 0.016 * z) / 4.6
27

28 ## GET INITIAL DATASET ##
29 results_NS = ’Results/Common_years_results/Datasets/Dataset_H10.nc’ #

Here, for joint array
30 array_NS = Array(’H10.xml’)
31 ds = read(results_NS)
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32 ds = ds.where(ds.snr > 0.6, drop=True).sortby(’time_detection’)
33

34 # wrap baz by 30 degrees
35 wrap_degrees = 30
36 ds[’baz’] = xr.where(ds.baz < wrap_degrees, ds.baz + 360, ds.baz)
37 # Adjust the time extent of the dataset with line below or else
38 #ds = ds.where(ds.time_detection < np.datetime64(’2013-10-20T12

:00:00.000000000’), drop=True)
39

40 ## CALCULATE MEAN APP VEL AND CONF INT PER BAZ BIN ##
41 baz_step = 5 # 5 degrees bins
42 baz_bins = np.arange(0, 360 + baz_step, baz_step) + wrap_degrees
43 baz = baz_bins[:-1] + 0.5 * baz_step # Label at center of bin
44

45 c_app_baz_groups = ds.app_vel.groupby_bins(ds.baz, baz_bins, right=
False, labels=baz)

46

47 c_app_mean = xr.DataArray(np.nan * np.ones_like(baz), coords=[baz],
dims=[’baz’])

48 h = c_app_mean.copy()
49

50 for label, group in c_app_baz_groups:
51 app_vel_, h_ = confidence_interval(group)
52 c_app_mean.loc[dict(baz=label)] = app_vel_ # Loc is to populate

an array
53 h.loc[dict(baz=label)] = h_
54 c_app_baz_groups
55

56

57 ## TO OVERVIEW THE DATA ##
58 from mpl_toolkits.axes_grid1 import make_axes_locatable
59 plt.rc(’font’, size=15)
60 plt.rcParams[’axes.linewidth’] = 2
61 fig, ax = plt.subplots(3, sharex=True, figsize=(12, 12),
62 gridspec_kw=dict(height_ratios=[0.4, 1, 0.4]),
63 constrained_layout=True)
64 ax_histogram = ax[0]
65 ax_detections = ax[1]
66 ax_capp = ax[2]
67

68 # Histogram
69 # Use the same baz bins as before
70 values, bins, patches = ds.baz.plot.hist(
71 bins=baz_bins, weights=(100 * np.ones_like(ds.baz) / ds.baz.size),
72 color=’k’, align=’mid’, ax=ax_histogram
73 )
74 ax_histogram.set_title(’’)
75 ax_histogram.set_ylim(0,8.2)
76 ax_histogram.text( # To annotate out of scope bar
77 bins[values.argmax()]-18, 0.19 * values.max(), f’{values.max():.0f

}%’,
78 ha=’center’,
79 )
80 #ax_histogram.annotate(’13%’, (0.48,0.885), xycoords=’axes fraction’)
81 ax_histogram.set_xlabel(’’)
82 ax_histogram.set_ylabel(’Probability (%)’)
83
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84 # Detections
85 vmin, vmax = 1460, 1530
86 sorted_ds = ds.sortby(’snr’)
87 pc = sorted_ds.plot.scatter(
88 x=’baz’, y=’time_detection’, hue=’app_vel’, s=20, rasterized=True,
89 vmin=vmin, vmax=vmax, ax=ax_detections
90 )
91 cb = fig.axes[-1]
92 cb.set_ylabel(’Apparent velocity (m/s)’)
93 ax_detections.set_xlabel(’’)
94 ax_detections.set_ylabel(’’)
95 ax_detections.set_ylim(datetime.datetime(2005,3,24,0,0,0,0), datetime.

datetime(2018,3,10,0,0,0,0))
96

97 # Apparent velocity mean and confidance interval
98 ax_capp.errorbar(
99 baz, c_app_mean, yerr=h, fmt=’none’, ecolor=’silver’, capsize=4,

capthick=1,
100 zorder=0
101 )
102 xr.plot.scatter(
103 c_app_mean.to_dataset(name=’c_app_mean’), x=’baz’, y=’c_app_mean’,
104 s=30, c=’k’, zorder=1, ax=ax_capp
105 )
106 ax_capp.set_ylim(vmin, vmax)
107

108 ax_capp.set_xlabel(’Backazimuth ( )’)
109 ax_capp.set_ylabel(’App. vel. (m/s)’)
110 subscripts = [’(a)’, ’(b)’, ’(c)’]
111 for axi, subscript in zip(ax, subscripts):
112 axi.yaxis.set_label_coords(-0.08, 0.5)
113 axi.tick_params(top=True, right=True, length=5, width=1)
114 axi.set_xticks(ticks=[30, 60, 120, 180, 240, 300, 360, 390])
115 axi.set_xticklabels(labels=[’30’, ’60’, ’120’, ’180’, ’240’, ’300’

, ’0’, ’30’])
116 axi.set_xlim([30, 390])
117 axi.annotate(subscript, (-0.15,1), xycoords=’axes fraction’)
118

119 #fig.savefig(f’Results/Common_years_results/Figures/H10_2005_to_2018.
pdf’, bbox_inches=’tight’, dpi=300)

120

121

122 ## GENERATE A MONTHLY TIME VECTOR ##
123 # Dataset ranges from 2005 to 2018
124 time = pd.date_range(
125 pd.to_datetime(ds.time_detection[0].data).date(),
126 pd.to_datetime(ds.time_detection[-1].data).date(),
127 freq=’1MS’,
128 name=’time’
129 )
130 # Initialize a dataset to hold the mean monthly c_app per baz bin
131 monthly_means = xr.Dataset()
132 monthly_means[’app_vel’] = xr.DataArray(
133 np.nan * np.ones((time.size, baz.size)), coords=[time, baz], dims

=[’time’, ’baz’]
134 )
135 monthly_means[’h’] = monthly_means.app_vel.copy()
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136 monthly_means[’T’] = monthly_means.app_vel.copy()
137 monthly_means[’h_T’] = monthly_means.app_vel.copy()
138

139 for i in range(time.size - 1):
140 month = ds.sel(time_detection=slice(time[i], time[i + 1]), drop=

True)
141 if month.time_detection.size == 0: # In case there is no detection

in month bin
142 continue
143 for label, group in month.app_vel.groupby_bins(
144 month.baz, baz_bins, right=False, labels=baz
145 ):
146 if group.size < 2: # Because if only 1 or 0 values,

calculating the mean/conf int don’t make sense
147 continue
148 app_vel_, h_ = confidence_interval(group)
149 monthly_means[’app_vel’].loc[dict(time=time[i], baz=label)] =

app_vel_ # Populate the 2 sheets
150 monthly_means[’h’].loc[dict(time=time[i], baz=label)] = h_
151

152 # Add temperatures
153 T_, h_T_ = confidence_interval(c2T(group, 850))
154 monthly_means[’T’].loc[dict(time=time[i], baz=label)] = T_
155 monthly_means[’h_T’].loc[dict(time=time[i], baz=label)] = h_T_
156

157 # Same but dataset ranges from 2005 to 2013 #
158 time = pd.date_range(
159 pd.to_datetime(ds.time_detection[0].data).date(),
160 ’2013-10-20’,
161 freq=’1MS’,
162 name=’time’
163 )
164

165 # Initialize a dataset to hold the mean monthly c_app per baz bin
166 monthly_means2 = xr.Dataset()
167 monthly_means2[’app_vel’] = xr.DataArray(
168 np.nan * np.ones((time.size, baz.size)), coords=[time, baz], dims

=[’time’, ’baz’]
169 )
170 monthly_means2[’h’] = monthly_means2.app_vel.copy()
171 monthly_means2[’T’] = monthly_means2.app_vel.copy()
172 monthly_means2[’h_T’] = monthly_means2.app_vel.copy()
173

174 for i in range(time.size - 1):
175 month = ds.sel(time_detection=slice(time[i], time[i + 1]), drop=

True)
176 if month.time_detection.size == 0: # In case there is no detection

in month bin
177 continue
178 for label, group in month.app_vel.groupby_bins(
179 month.baz, baz_bins, right=False, labels=baz
180 ):
181 if group.size < 6: # Because if only 1 or 0 values,

calculating the mean/conf int don’t make sense
182 continue
183 app_vel_, h_ = confidence_interval(group)
184 monthly_means2[’app_vel’].loc[dict(time=time[i], baz=label)] =
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app_vel_ # Populate the 2 sheets
185 monthly_means2[’h’].loc[dict(time=time[i], baz=label)] = h_
186

187 # Add temperatures
188 T_, h_T_ = confidence_interval(c2T(group, 850))
189 monthly_means2[’T’].loc[dict(time=time[i], baz=label)] = T_
190 monthly_means2[’h_T’].loc[dict(time=time[i], baz=label)] =

h_T_
191

192

193 ## GENERATE A VELOCITY GRAPH PER MONTHLY-BACKAZIMUTH BIN ##
194 # 3D histogram
195 fig = plt.figure(figsize=(12,8))
196 monthly_means.app_vel.plot(vmin=vmin, vmax=vmax, rasterized=True)
197 ax = plt.gca()
198 plt.rc(’font’, size=15)
199 plt.rcParams[’axes.linewidth’] = 2
200

201 cb = fig.axes[-1]
202 cb.set_ylabel(’Apparent velocity (m/s)’)
203 ax.set_xlabel(’Backazimuth ( )’)
204 ax.set_ylabel(’’)
205 ax.tick_params(top=True, right=True, length=5, width=1)
206 ax.set_xticks(ticks=[30, 60, 120, 180, 240, 300, 360, 390])
207 ax.set_xticklabels(labels=[’30’, ’60’, ’120’, ’180’, ’240’, ’300’, ’0’

, ’30’])
208 ax.set_xlim([30, 390])
209

210

211 ## GENERATE A TEMPERATURE GRAPH PER MONTHLY-BACKAZIMUTH BIN ##
212 # 3D histogram
213 fig = plt.figure(figsize=(12,8))
214 T_mean = (monthly_means.T - monthly_means.T.mean(axis=0))
215

216 T_mean.plot(
217 cmap=’RdBu_r’, center=0,
218 vmin=-3, vmax=+3,
219 rasterized=True
220 )
221 ax = plt.gca()
222 plt.rc(’font’, size=15)
223 plt.rcParams[’axes.linewidth’] = 2
224

225 cb = fig.axes[-1]
226 cb.set_ylabel(’Averaged monthly-backazimuth bin temperature\n \u2012

averaged backazimuth bin temperature ( C )’)
227 ax.set_xlabel(’Backazimuth ( )’)
228 ax.set_ylabel(’’)
229 ax.tick_params(top=True, right=True, length=5, width=1)
230 ax.set_xticks(ticks=[30, 60, 120, 180, 240, 300, 360, 390])
231 ax.set_xticklabels(labels=[’30’, ’60’, ’120’, ’180’, ’240’, ’300’, ’0’

, ’30’])
232 ax.set_xlim([30, 390])
233

234 fig.savefig(f’Results/Common_years_results/Figures/Temp_monthly_bins.
pdf’, bbox_inches=’tight’, dpi=300)

235
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236

237 ## SORT THE DATASET IN TERM OF MONTHLY COVERAGE ##
238 # This index sorts the monthly means dataset by time coverage per baz

bin
239 _sort_by_time_coverage_ = monthly_means.app_vel.count(’time’).argsort

().data
240 # For example the baz with the best coverage is 187.5:
241 monthly_means.sel(baz=monthly_means.baz[_sort_by_time_coverage_[-1]])
242

243

244 ## TRACKING OF THE TEMPERATURE - POLYNOMIAL REGRESSION ##
245 # Figure settings
246 fig = plt.figure(figsize=(10,15))
247 gs = fig.add_gridspec(4, 2)
248 ax1 = fig.add_subplot(gs[0, 0])
249 ax2 = fig.add_subplot(gs[1, 0])
250 ax3 = fig.add_subplot(gs[0, 1])
251 ax4 = fig.add_subplot(gs[1, 1])
252 fig2 = plt.figure(figsize=(10,15))
253 gs2 = fig.add_gridspec(4, 2)
254 ax5 = fig2.add_subplot(gs2[2, 0])
255 ax6 = fig2.add_subplot(gs2[3, 0])
256 ax7 = fig2.add_subplot(gs2[2, 1])
257 ax8 = fig2.add_subplot(gs2[3, 1])
258

259 poly_deg = 2 # Degree of polynomial regression
260

261 axs1 = [ax1, ax3, ax5, ax7]
262 axs2 = [ax2, ax4, ax6, ax8]
263 baaz = -1
264

265 for axi, axj in zip(axs1, axs2):
266 mm = monthly_means.sel(baz=monthly_means.baz[

_sort_by_time_coverage_[baaz]])
267 mm2 = xr.Dataset.dropna(mm, dim=’time’, how=’any’) # Drop NaN

otherwise fitting fails
268 mm2 = mm2.where(mm2.h > 0.1, drop=True) # Remove zero

values otherwise polyfit weighting fails
269

270 mm_shorter = monthly_means2.sel(baz=monthly_means2.baz[
_sort_by_time_coverage_[baaz]])

271 mm2_shorter = xr.Dataset.dropna(mm_shorter, dim=’time’, how=’any’)
272 mm2_shorter = mm2_shorter.where(mm2_shorter.h > 0.1, drop=True)
273

274 # App vel
275 axi.errorbar(x=pd.to_datetime(mm2.time.data), y=mm2.app_vel, yerr=

mm2.h, linestyle=’None’, color=’k’, marker=’.’, ms=3, ecolor=’
silver’, capsize=2, capthick=1, elinewidth=1, rasterized=True)

276 params = np.polyfit(mm2.time.astype(’datetime64[D]’).astype(int),
mm2.app_vel, poly_deg)

277 axi.plot(pd.to_datetime(mm2.time.data), np.polyval(params, mm2.
time.astype(’datetime64[D]’).astype(int)), color=’dodgerblue’,
linestyle=’--’, linewidth=2, rasterized=True)

278 params = np.polyfit(mm2.time.astype(’datetime64[D]’).astype(int),
mm2.app_vel, poly_deg, w=1/mm2.h)

279 axi.plot(pd.to_datetime(mm2.time.data), np.polyval(params, mm2.
time.astype(’datetime64[D]’).astype(int)), color=’dodgerblue’,
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linewidth=2, rasterized=True)
280

281 params = np.polyfit(mm2_shorter.time.astype(’datetime64[D]’).
astype(int), mm2_shorter.app_vel, poly_deg)

282 axi.plot(pd.to_datetime(mm2_shorter.time.data), np.polyval(params,
mm2_shorter.time.astype(’datetime64[D]’).astype(int)), color=

’limegreen’, linestyle=’--’, linewidth=2, rasterized=True)
283 params = np.polyfit(mm2_shorter.time.astype(’datetime64[D]’).

astype(int), mm2_shorter.app_vel, poly_deg, w=1/mm2_shorter.h)
284 axi.plot(pd.to_datetime(mm2_shorter.time.data), np.polyval(params,

mm2_shorter.time.astype(’datetime64[D]’).astype(int)), color=
’limegreen’, linewidth=2, rasterized=True)

285

286 # Temp
287 axj.errorbar(x=pd.to_datetime(mm2.time.data), y=mm2.T, yerr= mm2.

h_T, linestyle=’None’, color=’k’, marker=’.’, ms=3, ecolor=’
silver’, capsize=2, capthick=1, elinewidth=1, rasterized=True)

288 params = np.polyfit(mm2.time.astype(’datetime64[D]’).astype(int),
mm2.T, poly_deg)

289 axj.plot(pd.to_datetime(mm2.time.data), np.polyval(params, mm2.
time.astype(’datetime64[D]’).astype(int)), color=’dodgerblue’,
linestyle=’--’, linewidth=2, rasterized=True)

290 params = np.polyfit(mm2.time.astype(’datetime64[D]’).astype(int),
mm2.T, poly_deg, w=1/mm2.h_T)

291 axj.plot(pd.to_datetime(mm2.time.data), np.polyval(params, mm2.
time.astype(’datetime64[D]’).astype(int)), color=’dodgerblue’,
linewidth=2, rasterized=True)

292

293 params = np.polyfit(mm2_shorter.time.astype(’datetime64[D]’).
astype(int), mm2_shorter.T, poly_deg)

294 axj.plot(pd.to_datetime(mm2_shorter.time.data), np.polyval(params,
mm2_shorter.time.astype(’datetime64[D]’).astype(int)), color=

’limegreen’, linestyle=’--’, linewidth=2, rasterized=True)
295 params = np.polyfit(mm2_shorter.time.astype(’datetime64[D]’).

astype(int), mm2_shorter.T, poly_deg, w=1/mm2_shorter.h_T)
296 axj.plot(pd.to_datetime(mm2_shorter.time.data), np.polyval(params,

mm2_shorter.time.astype(’datetime64[D]’).astype(int)), color=
’limegreen’, linewidth=2, rasterized=True)

297

298 baaz -= 1
299

300 plt.rcParams[’axes.linewidth’] = 1
301

302 for ax in [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8]:
303 ax.set_xticklabels(labels=[’’])
304 ax.set_yticklabels(labels=[’’])
305 ax.tick_params(top=True, right=True, length=6, width=1)
306 for ax, subscript in zip([ax1, ax3, ax5, ax7], [’(a)’, ’(b)’, ’(c)’, ’

(d)’]):
307 ax.set_ylim([1472,1495])
308 ax.annotate(subscript, (-0.15,1.1), xycoords=’axes fraction’)
309 for ax, subscript in zip([ax2, ax4, ax6, ax8], [’(a)’, ’(b)’, ’(c)’, ’

(d)’]):
310 ax.set_ylim([2,7])
311 ax.annotate(subscript, (-0.15,1.05), xycoords=’axes fraction’)
312 for ax in [ax1, ax2, ax5, ax6]:
313 ax.yaxis.set_label_coords(-0.25, 0.5)
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314 for ax in [ax2, ax4, ax6, ax8]:
315 ax.set_xticklabels(labels=[’04’, ’2006’, ’08’, ’10’, ’12’, ’14’, ’

16’, ’18’]) # Added also 2004 due to a bug
316

317 ax1.set_title(’Backazimuth bin: 187.5 \n’)
318 ax3.set_title(’Backazimuth bin: 192.5 \n’)
319 ax5.set_title(’Backazimuth bin: 307.5 \n’)
320 ax7.set_title(’Backazimuth bin: 302.5 \n’)
321 for ax in [ax1, ax5]:
322 ax.set_ylabel(’Apparent velocity (m/s)’)
323 ax.set_yticklabels(labels=[’1470’, ’1475’, ’1480’, ’1485’, ’1490’,

’1495’])
324 for ax in [ax2, ax6]:
325 ax.set_ylabel(’Temperature ( C )’)
326 ax.set_yticklabels(labels=[’2’, ’3’, ’4’, ’5’, ’6’, ’7’])
327

328 fig.savefig(f’Results/Common_years_results/Figures/
Monthly_app_vel_and_temp_per_baz.pdf’, bbox_inches=’tight’, dpi
=300)

329 fig2.savefig(f’Results/Common_years_results/Figures/
Monthly_app_vel_and_temp_per_baz2.pdf’, bbox_inches=’tight’, dpi
=300)
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