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Translational Statement

Here, we demonstrate an integrated multimodal mo-
lecular imaging workflow combining untargeted imag-
ing mass spectrometry and multiplexed
immunofluorescence microscopy onto a single tissue
section to enable the discovery of lipid profiles associ-
ated with glomerular cell types and structures. This
method establishes a toolbox for precision medicine,
allowing for the discovery of cell type–specific molecular
profiles within tissue microenvironments. This frame-
work can be applied to study the localization and al-
terations of biomolecules among cell types of the
kidney, and the resulting spatially derived lipid
Glomeruli filter blood through the coordination of podocytes,
mesangial cells, fenestrated endothelial cells, and the
glomerular basement membrane. Cellular changes, such as
podocyte loss, are associated with pathologies like diabetic
kidney disease. However, little is known regarding the in situ
molecular profiles of specific cell types and how these profiles
change with disease. Matrix-assisted laser desorption/
ionization imaging mass spectrometry (MALDI IMS) is well-
suited for untargeted tissue mapping of a wide range of
molecular classes. Importantly, additional imagingmodalities
can be integrated with MALDI IMS to associate these
biomolecular distributions to specific cell types. Here, we
integrated workflow combining MALDI IMS and multiplexed
immunofluorescence (MxIF) microscopy. High spatial
resolution MALDI IMS (5 mm) was used to determine lipid
distributions within human glomeruli from a normal portion
of fresh-frozen kidney cancer nephrectomy tissue revealing
intra-glomerular lipid heterogeneity. Mass spectrometric
data were linked to specific glomerular cell types and
substructures through new methods that enable MxIF
microscopy to be performed on the same tissue section
following MALDI IMS, without sacrificing signal quality from
either modality. Machine learning approaches were
combined enabling cell type segmentation and identification
based on MxIF data. This was followed by mining of cell type
or cluster-associated MALDI IMS signatures using
classification and interpretable machine learning. This
allowed automated discovery of spatially specific molecular
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markers for glomerular cell types and substructures as well as
lipids correlated to deep and superficial glomeruli. Overall,
our work establishes a toolbox for probing molecular
signatures of glomerular cell types and substructures within
tissue microenvironments providing a framework applicable
to other kidney tissue features and organ systems.

Kidney International (2025) 107, 332–337; https://doi.org/10.1016/
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biomarker candidates elucidate the relationship be-
tween renal cellular organization and molecular
K idney physiology is driven by highly organized multi-
cellular functional tissue units (FTUs) comprising the
nephron. Probing the molecular profiles of specific

tissue features across spatial scales, from entire FTUs to cell
types, while maintaining spatial context, is critical for

distributions.
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understanding both normal and diseased cellular functions.
For example, glomeruli are complex FTUs that filter blood
with the help of unique cell types, such as podocytes,
mesangial cells, and fenestrated endothelial cells, organized
around the glomerular basement membrane.1 Diseases of the
kidney, such as diabetic kidney disease, can alter glomeruli,
leading to podocyte loss, expansion of the mesangium, and
thickening of the glomerular basement membrane.2–4

Determining the distribution of biomolecules among these
cell types in healthy glomeruli is necessary to better under-
stand cellular changes in diseased states.5 Imaging technolo-
gies are emerging to address the challenge of defining
molecular characteristics of tissue features with increasing
specificity.6 Several large-scale consortia, including the Hu-
man Biomolecular Atlas Program7 and the Kidney Precision
Medicine Project,8 are applying these approaches to construct
molecular atlases of the human kidney.

Immunofluorescence microscopy is commonly used to
map the distribution of specific proteins and delineate the
cellular organization of tissues.9 Recent advancements in
highly multiplexed methods allow more comprehensive
spatial cell typing and the ability to reveal cellular organiza-
tion. However, multiplexed immunofluorescence (MxIF) is
targeted and limited to proteins, omitting other key molecular
classes.10 Matrix-assisted laser desorption/ionization imaging
mass spectrometry (MALDI IMS) addresses this limitation by
enabling untargeted, high spatial resolution imaging (<10 mm
pixel sizes) of drugs, metabolites, lipids, glycans, and proteins,
making it ideally suited for molecular discovery.11,12 Multi-
modal approaches combining MALDI IMS and MxIF allow
hundreds of molecular features detected by IMS to be asso-
ciated with specific tissue features and cell types.

MALDI IMS and MxIF are traditionally performed on
serial sections. As modern instrumentation enables higher
spatial resolution IMS, there is a greater need for multimodal
imaging experiments to be performed on the same tissue
section. Although serial tissue sections remain appropriate for
comparing larger-scale tissue features, cellular structures at a
given location can change substantially between serial sec-
tions. Initial examples of these workflows have shown the
potential for IMS-MxIF–integrated workflows but were
limited in their spatial specificity and strategies for cross-
modality data mining.13–15 Here, we demonstrate integrated
methods for performing high spatial resolution MALDI IMS
and MxIF on a single tissue section, allowing IMS-reported
molecular distributions to be directly correlated with MxIF-
delineated tissue features, enabling automated discovery of
in situ molecular marker candidates for glomerular cell types
and substructures.

METHODS
Tissue sections were collected from a normal portion of fresh-
frozen renal cancer nephrectomy tissue and thaw-mounted
onto glass slides. The sections were prepared for positive
ion mode MALDI IMS, sampling only glomeruli as previously
described.16 Immediately after IMS, sections were fixed for
Kidney International (2025) 107, 332–337
batch MxIF (cyclic-IF)17 analysis using 10 antibodies across 3
cycles. The immunofluorescence intensity signatures were
clustered, segmenting the glomeruli into substructures,
including specific glomerular cell types. Subsequently, a
classification model was trained to recognize MxIF-based
segments using IMS measurements as inputs. The model
was interpreted using Shapley additive explanations
(SHAP),18,19 and a global SHAP score was calculated for each
of the IMS-measured molecular features, generating a ranked
list of relevant biomarker candidates for each glomerular
segment (i.e., cell type and substructure). See Supplementary
Methods and Supplementary Tables S1 and S2 for details.

RESULTS
High spatial resolution IMS methods were optimized to
minimize tissue damage from laser irradiation. After IMS
acquisition, MxIF was performed to map specific cell types
and structures within and surrounding the glomeruli (Table 1
and Supplementary Table S3). Figure 1a and b shows MxIF
data from serial sections without and with a preceding IMS
measurement. The comparison demonstrates the retention of
MxIF stain quality after MALDI IMS for the selected anti-
bodies. IMS data were acquired first as the MxIF workflow
can alter the molecular milieu of the tissue, reducing the
capacity to perform subsequent spatial omics experiments.

Autofluorescence images were used to automatically
outline glomerular tissue areas for MALDI IMS measurement
as previously described.16,20 This enabled rapid acquisition of
intraglomerular lipid distributions for >250 glomeruli per
tissue section.16,20 After IMS, tissue sections were stained with
the antibody panel and imaged. Supplementary Figure S1
shows the whole-slide autofluorescence image, glomerular
measurement regions, MALDI IMS, and MxIF of a single
tissue section.

MxIF pixels within glomerular measurement regions were
clustered using k-means clustering based on the fluorescence
intensities of tensin, podocalyxin, fibronectin, CD31, syn-
aptopodin, and nestin, delineating 6 subglomerular segments,
some of which were enriched for specific glomerular cell
types. Where possible, a segment’s standardized mean anti-
body fluorescence intensity profile (Supplementary Figure S2)
was used to link it to a corresponding cell type. Three
glomeruli are highlighted in Figure 2, displaying lipid distri-
butions uncovered by MALDI IMS (Figure 2a), protein dis-
tributions from MxIF (Figure 2b), and glomerular segments
based on clustering of the MxIF data (Figure 2c). Data from
all modalities were spatially coregistered, allowing the
extraction of MALDI IMS pixels specific to each MxIF-based
glomerular segment and the generation of an average mass
spectrum for each associated substructure and cell type. The
average differences in ion intensity between cluster segments
(i.e., cell type or substructure) are shown in Figure 3a–b and
Supplementary Figures S3–S8.

To discover multivariate molecular profiles distinctive for
glomerular cell types and substructures, MALDI IMS and
MxIF data were integrated using interpretable supervised
333



Table 1 | Antibody panel for MxIF microscopy

Target Cell types/structures Cycle Fluorophore Conjugation type

Collagen IV ⍺1/2 Tubular basement membrane, mesangial matrix, and glomerular capsule 1 Cy5 Indirect

Collagen IV ⍺5 Glomerular basement membrane, glomerular capsule, and collecting duct and
distal convoluted tubule basement membrane

1 Cy3 Indirect

Tensin Mesangial cells and vascular smooth muscle cells 1 AF 488 Indirect

Podocalyxin Podocyte cytoplasm and plasma membrane 2 AF 488 Direct

Fibronectin Mesangial matrix and muscularized vessel walls 2 AF 594 Direct

CD31 Endothelial cells 2 AF 647 Direct

Synaptopodin Podocyte cytoplasm and plasma membrane 2 Cy7 Direct

Nestin Podocyte cytoplasm 3 AF 488 Direct

⍺SMA Vascular smooth muscle cells 3 AF 594 Direct

AQP1 Proximal tubules 3 AF 647 Direct

aSMA, a-smooth muscle actin; AQP1, Aquaporin 1, a protein coding gene; MxIF, multiplexed immunofluorescence.
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machine learning. The MxIF-based segments were used as
labels for each IMS pixel, and a classification model was
trained to differentiate glomerular segments (and their
dominant cell types) based on IMS-reported molecular ions.
The mean balanced accuracy, F1-score, precision, and recall
were >85% for all segments (see Supplementary Table S4 for
classification model performance metrics). Subsequently,
SHAP was used to interpret the model and discover
biomarker candidates for each glomerular cluster.18 Given the
model, SHAP ascertains the degree (relevance) and the di-
rection (positive or negative correlation) of influence every
ion has on the recognition of a particular glomerular
segment.18 A global SHAP score was calculated for each IMS-
reported molecule, quantifying its relevance to recognizing a
certain segment and providing a ranked list of biomarker
candidates for each glomerular cell type or substructure (see
Figure 1 | MxIF quality after MALDI imaging mass spectrometry. Com
imaged using MxIF (a) and the other imaged after MALDI IMS measureme
of the 10 antibodies are represented in the highlighted images. Selected
(serial images of the same glomeruli) are provided to compare the stain
represented antibodies was minimally impacted by the MALDI IMS experi
associated with the sectioning thickness between the serial sections sho
(mesangial cells, yellow) between the 2 serial sections, emphasizing the
section. aSMA, a-smooth muscle actin; AQP1, Aquaporin 1, a protein co
imaging mass spectrometry; MxIF, multiplexed immunofluorescence. To
article at www.kidney-international.org.
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Supplementary Figures S9–S12). These data can be repre-
sented as a bubble plot (Figure 3c), where the size of each
bubble indicates the global SHAP importance of a given
molecule (column) for recognizing a given glomerular
segment (row). The color indicates a positive (red) or nega-
tive (blue) correlation of the molecule’s abundance to the
recognition of that segment. Supplementary Figure S13 shows
the entire SHAP bubble plot, and Supplementary Table S5
summarizes the identification details for each molecule rep-
resented in the SHAP outputs.

DISCUSSION
We demonstrate an advanced multimodal workflow
combining MALDI IMS, MxIF, and interpretable machine
learning to uncover in situ molecular profiles of specific cell
types and substructures of FTUs, here aimed at intra-
parison of serial human kidney tissue sections, one only stained and
nt of the glomeruli and then stained and imaged using MxIF (b). Four
regions from the whole slide images that include individual glomeruli
quality between the 2 experiments. The stain quality of the 4

ment and its accompanying sample preparation. The 6 mm difference
ws differing patterns of podocalyxin (podocytes, pink) and tensin
importance of performing multimodal imaging on the same tissue
ding gene; MALDI IMS, matrix-assisted laser desorption/ionization
optimize viewing of this image, please see the online version of this
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Figure 2 | Multimodal molecular imaging data and segmentation maps from 3 selected glomeruli. MALDI ion images for PC(38:4) (m/z
810.600) and SM(d34:1) (m/z 703.575) highlight intraglomerular molecular heterogeneity (a). Overlaid MxIF images of podocalyxin, CD31, and
tensin (b). All k-means clustering-based segments of the MxIF data and, where possible, the glomerular cell type that dominates each segment
(c). MALDI IMS, matrix-assisted laser desorption/ionization imaging mass spectrometry; MxIF, multiplexed immunofluorescence. To optimize
viewing of this image, please see the online version of this article at www.kidney-international.org.
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glomerular features. Our methods maintain proper antibody
staining after MALDI IMS analysis, allowing multiple imaging
modalities to sample the same tissue features (not assured
when using serial sections) and promoting conservative use of
precious tissue samples. Multivariate SHAP analysis provides
a unique fingerprint of positively and negatively correlated
molecular species for every segmented tissue feature
(Figure 3c). Interpreting the data in this way allows high-
dimensional spatial omics data to be mined efficiently and
potential biomarker candidates to be readily discerned for
each substructure or cell type. For instance, phosphatidyl-
choline PC(38:4) detected at m/z 810.600 was determined to
be a positively correlated biomarker candidate for the endo-
thelial cell–related segment and a negatively correlated marker
for the podocyte-related segment. In contrast, sphingolipid
SM(d34:1) (m/z 703.575) was a positively correlated
biomarker candidate for the podocyte-related segment.
Sphingolipids play a role in podocyte homeostasis, mediating
normal and disease-related responses.21 The ceramide chain
of SM(d34:1) is synthesized by ceramide synthase 6 (CERS6),
the expression of which is critical for podocyte cytoskeletal
organization and maintenance of slit diaphragms.22 Based on
our observations of SM(d34:1) as a robust glomerular
biomarker candidate and the previously established molecular
relationship of CERS6 with podocytes, we hypothesize that
Kidney International (2025) 107, 332–337
SM(d34:1) is a critical lipid regulator of podocyte structure
and function. This method also reveals molecular differences
associated with spatial location and localized disease. To
demonstrate this, we performed an intrasample comparison
of 30 deep and 30 superficial glomeruli. A binary classification
model for each cell segment was built and interpreted with
SHAP to assess cell type–specific lipid differences among
these 2 groups. Bar plots showing the molecular markers
correlated with deep and superficial glomerular cell types and
SHAP performance metrics can be found in Supplementary
Figures S14–S17 and Supplementary Table S6. This analysis
uncovered a positive correlation of multiple fatty acylcarnitine
species with cell types of deep glomeruli. Because carnitine is
known to be a key driver of metabolic activity in cells,23 this
observation could lead to studies investigating the connection
between these carnitine species, the metabolic state of long-
looped nephrons, and the functional activity of long-looped
nephrons associated with the medullary vasa recta.24 The
ability to unveil these connections between biomarker can-
didates and known biology points to the potential for our
integrated approach to serve as a molecular discovery tool for
advancing the understanding of mechanisms of cellular
function within tissue microenvironments.

As the most complex kidney FTU, glomeruli serve as a
challenging case study demonstrating the broad applicability of
335
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Figure 3 | Molecular profiles specific to glomerular segments are revealed by integrating IMS and MxIF data. The mass spectral
difference plots show the average ion intensity differences between cluster 1 (primarily mesangial cells) and combined clusters 4 and 6
(primarily podocytes) (a), and clusters 4 and 6 (primarily podocytes) versus cluster 2 (primarily endothelial cells) (b). The bubble plot from the
SHAP analysis (c) summarizes the biomarker candidates for the glomerular segmentations and their dominant cell types and substructures.
The size of each bubble indicates the global SHAP importance of a given ion species (column) to recognizing a given glomerular subarea (and
its dominant cell type) (row), and the color indicates a positive (red) or negative (blue) correlation of the ion species abundance to that cluster’s
recognition. This analysis shows that every glomerular segmentation has its own unique profile of relevant IMS-measured molecular species.
IMS, imaging mass spectrometry; MxIF, multiplexed immunofluorescence; SHAP, Shapley additive explanations.
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our workflow. It can be readily adapted to analyze other FTUs,
including tubules and ducts in the kidney, as well as other
organ types. Although this proof-of-concept study was per-
formed on healthy tissue, it could also be applied to studying
diseases such as chronic kidney disease. For example, as dia-
betic kidney disease progresses, glomeruli undergo podocyte
loss and mesangial cell expansion, but the cellular-level lip-
idomic changes that occur are not well characterized.25 Our
workflow can be used to find specific biomarker candidates for
renal cell types in a spatial context. This could be used to
subtype diabetic kidney disease and other kidney diseases. In
essence, our toolbox offers insight into the complex relation-
ship between the molecular and cellular organization of tissues,
336
paving the way for precision medicine by uncovering how
these relationships are altered in normal aging and disease.
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