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Fuzzy Logic Control and Reinforcement
Learning-Based Paradigm
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1Delft University of Technology, 2629 HS Delft, The Netherlands (e-mail: M.S.W.Munster@student.tudelft.nl)

ABSTRACT An aging population puts a pressure on health-care workers working with dementia patients
globally. A potential solution is to provide care with Socially Assistive Robots (SARs), i.e. robots who
help people through social interaction. However, for effective care these SARs must be able to personalize
their behavior to individual patients and adapt this behavior to changes in the patient’s preferences. This
paper presents the decision making process of a SAR that enables the SAR to personalize its behavior
to the personality of the patients and adapt this behavior to their current state-of-mind. The system
consists of a Fuzzy Logic Control personalization module, which personalizes the SAR’s behavior and a
Reinforcement Learning based decision making module together with a Fuzzy Logic Control reward module
for the adaption of the personalized behavior. The personalization of the SAR’s behavior is assessed by
comparing the output of the system with answers from a survey. The average scatter index over all different
behavioral parameters of the SAR is 20.4%. The adaptation of the behavior is assessed with computer-based
simulations, where an overall accuracy of 81.8% is achieved. A third experiment is carried out to assess the
effect of adding the Fuzzy Logic Control personalization module to the system. This experiment shows
that adding the personalization module to the decision making system of the SAR decreases the time for
the learning process to converge with 13.3%. Although the first assessments of the system look promising,
more extensive experiments should be held in later stages of the research. A crucial experiment that must be
held in future research is performing real-life interactions between dementia patients and the SAR, in such
an experiment the functionality of the system really can be assessed.

INDEX TERMS Socially Assistive Robots, Personalization, Adaptation, Reinforcement Learning, Fuzzy
Logic Control, Dementia Care

I. INTRODUCTION

The world population is aging, meaning that the percentage
of people over 65 is growing [1]. Consequently, there is a
rise in the number of people suffering from dementia. Ferri
et al. in [2] estimate the global number of dementia patients to
double every 20 years, with a total rising up to 81 million by
2040. Providing personalized care to dementia patients is a
demanding task for health care workers. An aging society and
increasing number of dementia patients confine care-givers
from giving personalized one-on-one care. Mierlo et al. in
[3] show that personalized care positively affects the well-
being of dementia patients, whereas lack of personalized care
reduces the quality of life of these patients.

Epp in [4] describes the method of person-centered de-
mentia care to achieve personalized care. In contrast to the
traditional culture of dementia care, where the focus lies
on the disease and in which individuality is depreciated,

person-centered dementia care focuses on the appreciation of
individual patients. Care-givers take into account the desires
and capabilities of patients to provide care that fits their
specific preferred ways of living. Person-centered dementia
care improves the quality of life of dementia patients. Fur-
thermore, it reduces agitation among the patients as they
are given more freedom in scheduling the activities they
do, example given meal time, bed time or activities in the
caring home. However, person-centered dementia care is
time consuming and expensive [3]. With the current rise
in the number of dementia patients, innovative technologies
for personalized care are required to reduce the pressure on
health-care workers.

An emerging field in robotics called Socially Assistive
Robots (SARs), introduces a potential solution for person-
centered dementia care despite the growing number of de-
mentia patients. SARs are robots that assist people through
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social interactions [5]. To date, their main applications are
health care, education, and entertainment [6].

SARs have various applications in dementia care. A widely
used application of SARs in dementia care is assistance
during therapy sessions. Animal-like robots are given to
patients in therapy sessions to engage the patient in the
session. Marti et al. in [7] use Paro, a seal robot that reacts
to touch by moving its tail and eyes. Paro is given to patients
during therapy sessions, after which the therapists records the
interactions between the patient and robot. The results show
that patients seem less stressful when interacting with Paro.
Furthermore, Paro makes it easier for the therapists to initiate
a conversation with the patients and the patients are more
engaged in the therapy sessions.

Moyle et al. in [8] used Paro in a similar way. However,
here Paro was not given in a therapeutic setting, instead the
patients were free to interact with it as they pleased. Their
results stress the importance of person-centered care. Differ-
ent patients had different responses to Paro. For example, one
patient was so engaged with the robot, she started talking to
it and hugged it a lot, whereas another patient did not even
want to accept Paro when it was handed to her. Moreover,
patients responded differently on different occasions where
they interacted with the robot. This stresses two crucial
considerations when applying SARs in dementia care. First
of all, different patients respond differently to the SAR.
Therefore, it is necessary to personalize the SAR’s behavior
to an individual patient, i.e. the SAR creates a behavior
that is distinctive for patients with different characteristics.
Secondly, individual patients respond differently in different
sessions. Therefore, the SAR’s behavior must be adaptive to
handle changes in the responses of patients, i.e. the SAR must
display different behaviors in different scenarios.

Moro et al. in [9] perform research on a SAR that helps
people with cognitive impairments in daily life activities and
personalize its behavior to the preferences of the patient. The
robot is taught behaviors necessary to assist a patient by
means of demonstration. Currently, the SAR is only taught
to assist patients in the process of tea making, in the future
additional activities will be investigated. Example behaviors
that the SAR has learned from demonstration are different
steps in the process of tea making, correcting patients when
an incorrect step is performed, and re-engaging patients when
they are distracted. The SAR decides which behavior is
required in a certain situation using a decision tree. A second
characteristic of the SAR is that it can personalize the behav-
iors in terms of speech content (assertive versus suggestive)
and movement activity. The demonstrations of the behaviors
are performed by multiple graduates with distinctive ways of
assisting the elderly. Therefore, the demonstrations differ in
speech content and movement activity, each demonstration is
labeled by its level of assertiveness versus suggestiveness and
its level of movement activity. With Reinforcement Learning
(RL), the robot learns to select which type of behavior is
preferred by an individual patient. The personalization of
the SAR behavior is assessed with computer simulations of

cognitive models of potential patients. The results of the
study show that the SAR was able to display the correct
behavior in 93% of the times. In future research, real-life
user studies are performed to see whether the robot functions
correctly on real patients.

Tapus et al. in [10] performed research on a SAR that
can adapt the difficulty of a game in cognitive training for
dementia patients. They have designed a SAR to encourage
dementia patients during a game called ’Name that tune’,
where the patients hear songs after which they must click the
corresponding button and sing along. The SAR assists the
patients by explaining the rules of the game and providing
them with hints helping them to click the right button. With
these hints, the SAR was able to adapt the difficulty of the
game to the performance of the patient, measured by the
patient’s number of correct answers and their reaction time.
Possible hints that the SAR could give are reminding the
patients they must press a button and point in the direction of
the right button. The results show that the performance of the
patients increases over a series of training sessions, indicating
improvement in their cognitive abilities. Furthermore, the
patients became more engaged over the sessions.

These last two examples show that personalization and
adaptation both have been used in SARs for dementia care.
However, to the best of our knowledge no research on SARs
in dementia care has been looking into a SAR that both
personalizes its behavior to individual patients and adapts
this behavior to changes in the preferences of this patient in
different situations. Likewise, research on personalized and
adaptive SAR behavior in fields other than dementia care also
is limited to either personalization or adaptation, not both.

Clabaugh et al. in [11] developed a SAR system to assist
children with autism spectrum disorder (ASD) in a set of
mathematical games. The system personalized difficulty of
the games and hints provided to complete the games to the
mathematical competence of the children. The aim of the
system was to develop the mathematical skills of the children
by finding the right difficulty for each individual child, where
they were sufficiently challenged but still engaged in the
game. The results show that the children were more engaged
when interacting with the system when it was personalized
to their level of challenge and feedback. Hence, the children
improved their mathematical skills significantly.

Tsiakas et al. in [12] discuss the developmental process
of a system with a similar aim as [11]. As part of cogni-
tive training, for children with learning issues for example,
the difficulty and type of feedback in a sequencing task is
personalized to the skill of the participant. Based on real-
life data from students, user models are created that describe
the success ratio and engagement levels at different difficulty
levels of the sequencing task. Policies are learned to select the
right task difficulty and type of feedback for these user mod-
els. Similar as in [11], the difficulty and the type of feedback
should be chosen such that the participant is challenged but
does not become disengaged with the task. When the policies
are learned for each user model, the difficulty and feedback
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can than be personalized by selecting the right policy after
conducting a skill assessment on the participant. The result
of their research is that they came up with a set of user
models which contained policies to change the difficulty of
the game and the SAR’s feedback for different performance
and engagement levels of the participant.

Tapus and Mataric in [13] assist patients in post-stroke
rehabilitation therapy by motivating the patient through so-
cial interaction. The robot personalizes its behavior to the
personality of the patient. Participants in the experiment were
asked to fill in a questionnaire to determine their level of
extroversion. Based on how extrovert or how introvert the
participants were, the vocal content, the activity level and the
proxemics, i.e. the amount of distance kept between the robot
and the participant, could be changed. For example, for a par-
ticipant showing high levels of extroversion, the robot gave
challenging comments with high pitch and volume, showed
high levels of activity, and kept less distance towards the
participant. Whereas for a more introvert participant the robot
gave more nurturing comments on low pitch and volume,
showed lower activity levels, and kept more distance to the
participant. Every participant was assisted by the robot in
two different situations, one where the behavior was matched
to the personality of the participant and one where the be-
havior was selected randomly. The results of the experiment
indicated that the participants preferred the behavior that
matched their personality over the random behavior.

As the results of [8] show that every dementia patient
responds differently to a SAR and that an individual patient
responds differently on different occasions, this research
focuses on designing the decision making process for a SAR,
which allows it to personalize its behavior to an individual
patient and adapt this behavior to changes in this patient’s
preferences. Similar to [13] the SAR personalizes its behav-
ior to the personality of the patient. After personalizing the
behavior to the patient’s personality, the SAR adapts this
behavior to changes in the preferences of the patients based
on their current state-of-mind.

II. MAIN CONTRIBUTIONS AND STRUCTURE
Research has been performed on either personalizing SAR
behavior or adapting it. However, to the best of our knowl-
edge no research has been performed on both personalizing
the behavior to the user as well as adapting it to changing cir-
cumstances. This paper presents the decision making process
for a SAR that can personalize its behavior to the personality
of a dementia patient and adapt it to the current state-of-
mind of this patient. In order to do this, two decision making
modules are developed: (1) a decision making module relying
on Fuzzy Logic Control (FLC) for personalizing the SAR
behavior and (2) a RL based decision making module to adapt
the personalized behavior to the current state-of-mind of the
patient. Moreover, the SARs in the established researches are
designed for particular tasks, such as cognitive games. The
decision making system introduced in this paper is designed
to assist patients in their daily routines.

The paper starts with a description of the designed system
where the working principles of the modules of the decision
making process are discussed, and the reasoning for choosing
the selected control methods is explained. The system de-
scription is followed by an assessment of the decision mak-
ing modules, where experiments on the individual decision
making modules and the system as a whole are explained
and their results are discussed. Finally, the conclusions of the
research are drawn and recommendations for future research
are made in the conclusion.

III. SYSTEM DESCRIPTION
As previously mentioned, the problem for the SAR behavior
is twofold. First of all, the SAR must personalize its behavior
to the personality of the patient. Secondly, the SAR must
adapt its behavior to changes in the patient’s state-of-mind.
The behavior of the SAR focuses on interacting with the
patient in their daily routines. Therefore, the behavior of the
SAR consists of the following parameters:
• Amount of speech
• Volume of speech
• Gestures
• Interactive comments (energetic versus cautious)
• Motivating comments (cooperative versus challenging
• Feedback (realistic versus nurturing)
• Proxemics
Examples for the comments that the SAR might give are:
• Energetic comment: ’Hey, I’ve got an amazing idea on

what we could do right now. Let’s play this real fun
board game.’

• Cautious comment: ’Maybe we can play this board
game, it could be fun.’

• Cooperative comment: ’Let’s see if we can extend our
walk with one more round around the block. Together
we can make it.’

• Challenging comment: ’I bet you cannot do another
round around the block, but feel free to prove me wrong.’

• Realistic feedback: ’This week the exercises did not go
well, try to improve next week as it helps you to stay fit.’

• Nurturing feedback: ’This week’s exercises did not go
as well as usual, maybe you were a little tired this time.
Next week they’ll probably go better again.’

The proxemics is the distance that the SAR maintains to
the patient.

Fig. 1 illustrates the decision making process of the SAR.
The decision making system consists out of two modules: (1)
an FLC module for the personalization of the SAR’s behavior
and (2) an RL module for the adaptation of it.

A. FUZZY LOGIC CONTROL PERSONALIZATION
MODULE
Personalizing the SAR behavior is required based on the
first observation made in [8] which indicates that each de-
mentia patient responds differently to interacting with SARs.
Therefore, the personalization side of the decision making

3



FIGURE 1. Schematic view of the different elements used to develop the
proposed decision making module for SARs.

process generates an initial behavior for the SAR that suits
the personality of the patient.

The reason to personalize the SAR’s behavior to the per-
sonality of the patient is because [13] shows that people
prefer to interact with a robot that has a personality which
resembles their own personality. In their research the target
was to motivate patients in post-stroke therapy. Therefore,
they focused on personalizing the SAR’s vocal content, ac-
tivity level, and proxemics, which are parameters that are
related to the extroversion-introversion personality trait. In
our research the focus is on assisting dementia patients via
social interaction in daily routines, making other personality
traits besides extroversion relevant too [14]. Therefore, this
research considers the Big-Five personality traits [15] for the
personalization of the SAR’s behavior to its patients.

The Big-Five personality is a widely used approach to
describe someone’s personality and it includes five main
traits: Openness to experience, conscientiousness, extrover-
sion, agreeableness, and neuroticism.

Openness to experience describes a person’s imagination
and acceptance for new experiences. People scoring high on
openness are open-minded, imaginative and tolerant. They
are curious to try out new things and engage in new ideas.
People low on openness are more down-to-earth and conven-
tional.

Conscientiousness is concerned with someone’s feeling
of responsibility. Conscientious people are more careful,
organized and scrupulous. They pay attention to details and
aim to finish tasks successfully. People with low levels of
conscientiousness are irresponsible and disorganized.

Extroversion measures the level of sociability and ex-
citability. People with high levels of extroversion are more
sociable, assertive and active. They pursue excitement and
challenge. People scoring low on the extroversion trait are
more reserved and cautious.

Agreeableness relates to someone’s intentions. Individuals
high in agreeableness are modest, cooperative and trustwor-
thy. They are concerned about the feeling of others and show
interest in them. People low on agreeableness are suspicious,
irritable and competitive. Sometimes people low on agree-
ableness can even be manipulative.

Neuroticism marks someone’s emotional stability. People
with high neuroticism are anxious, insecure and depressed.
People scoring low on neuroticism are more laid back, emo-
tionally stable and can handle stress very well.

Currently the research is in a preliminary phase and fo-
cuses on personalizing and adapting the way in which the
SAR interacts with the patients. The traits extroversion,
agreeableness and neuroticism are traits that come out during
interactions with other people, for example whether some-
one is talkative or anxious. Whereas the traits openness to
experience and conscientiousness are more in line with mo-
tivational goals such as stimulation and achievement values,
making these more task related [15]. Therefore, only the traits
extroversion, agreeableness and neuroticism are included in
the system for now. In later stages of the research the SAR
should also be able to suggest activities to the patients. Then
the latter two traits, openness to experience and conscien-
tiousness, are included in the system too.

Moreover, Tapus and Mataric in [13] mirrored the per-
sonality traits of the robot to the personality of the patient.
However, research on the influence of the personality of
therapists, especially on the traits of agreeableness and neu-
roticism, does not confirm a positive impact when having
congruence between the personalities of clients and patients
[16]. Therefore, instead of mirroring the personality of the
SAR, knowledge that humans use in their daily interactions
is implemented in the personalization module of the SAR.

This is achieved with FLC. FLC is a rule-based method
that is comparable to the way humans think. In FLC the rules
rely on linguistic terms instead of mathematical rules [17].
The linguistic terms are described with fuzzy sets, which
unlike classic sets allow partial membership to the set. The
FLC process consists out of three steps: (1) fuzzification,
i.e. transforming real-life crisp input values into fuzzy input
values; (2) inference, i.e. generating fuzzy output values
using the system’s fuzzy rule-base and the fuzzy input values;
(3) defuzzification, i.e. transforming the fuzzy output values
back to real-life crisp output values. The fuzzy rule-base of
the inference system consists of a set of "If ..., then ..." rules,
the first part of these rules ("If ...") is called the antecedent
and the second part of the rules ("then ...") is called the
consequent.

FLC is selected for personalizing the SAR’s behavior for
the following main reasons:

1) No mathematical models exist that describe the relation
between someone’s scores for the Big-Five personality
traits and what type of behavior they prefer in social
interactions. Human knowledge on these relations does
exist, making it possible to capture the relations with
linguistic terms in the fuzzy if-then rule base. Example
given, Roccas et al. in [15] describes the preferences
people generally have when they possess the different
personality traits.

2) The personality traits are measured along a spectrum,
someone’s personality is not defined by having certain
traits but by the extent someone displays the traits.
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Therefore, interpreting the personality scores as precise
crisp values is prone to mistakes. In FLC the personality
traits can be treated as fuzzy variables, where the vari-
ables can be described with fuzzy sets that allow partial
membership.

3) Rule-based approaches based on fuzzy logic, such as
FLC, are the closest methodologies to the reasoning and
decision making of humans [18], [19]. Therefore, it is
assumed that FLC provides the SAR with personaliza-
tion capabilities as close as possible to the personaliza-
tion procedure by humans.

Other control techniques, such as Artificial Neural Net-
works [20] and RL [21] have been considered for the person-
alization of the SAR behavior as well. However, these meth-
ods require a lot of training and for Artificial Neural Net-
works also a large data set with example relations between a
person’s personality scores and their behavioral preferences.
Collecting such data sets can be very time consuming. FLC
only requires the expert knowledge, which readily is avail-
able. Therefore, FLC is selected for personalizing the SAR’s
behavior over Artificial Neural Networks and RL.

Rules are generated for the FLC module to describe the
relation between the personality traits of the patient and
the behavioral parameters of the SAR. All rules have the
following general formulation: "If personality trait 1 is A1,i

and/or personality trait 2 is A2,j and/or personality trait
3 is A3,k, then behavioral parameter is Bm" In this for-
mulation personality trait 1, 2 and 3 refer to extroversion,
agreeableness and neuroticism respectively. A1,i, A2,j , A3,k

for i = 1, ..., NA1 , j = 1, ..., NA2 , and k = 1, ..., NA3

are fuzzy sets corresponding to the linguistic terms used
to categorize the personality traits. Example given, when
the personality traits are all categorized as low, medium, or
high then NA1

= NA2
= NA3

= 3. Moreover, Bm for
m = 1, ..., NB is a fuzzy set corresponding to the linguistic
terms that are used to describe the nature of the behavioral pa-
rameters, i.e, amount of speech, volume of speech, gestures,
interactive comments, motivating comments, feedback, and
proxemics. Here NB is the number of categories to describe
the behavioral parameter.

The rules for the FLC module are inspired by expert
knowledge taken from literature. Roccas et. al in [15] give
a broad overview of the characteristics that belong to the five
personality traits of the Big-Five model. Here the relation
between the personality traits and parameters such as amount
of speech, volume of speech and the different types of com-
ments are addressed. Hostetter and Potthoff in [22] describe
the relation between the personality traits extroversion and
neuroticism and the number of gestures a person makes. Ta-
pus and Mataric in [13] investigated the relation between the
trait extroversion and several elements of the SAR’s behavior.
The elements they considered are a SAR’s vocal content,
activity levels and proxemics. The vocal content included the
amount of nurturing versus challenging feedback, pitch, and
volume. The activity level was described by the amount of
movement. The knowledge from these sources are used to

set-up the rules to define the relationship between a patient’s
personality and the behavior they wish to see from the SAR.

Currently, the focus of the decision making system lays
on the social interaction between the patient and the SAR.
However, later on in the research the SAR should also be
able to suggest activities to keep patients entertained. Which
type of activities a person likes to do also depends on their
personality. For example, people scoring high on openness to
experience like to do more creative activities [23]. Therefore,
in later stages of this research, the list of behavioral elements
for the SAR behavior is extended with elements that capture
types of activities and other activity related behavioral ele-
ments, such as spontaneity. The rules to describe the relation
between the personality traits and which activities a patient
might like will also be inspired on expert knowledge from
literature.

The FLC module uses Mamdani inference and the center
of gravity method for defuzzification [24]. The literature
could not be used to construct the membership functions of
the fuzzy sets for the linguistic terms. Therefore, a survey is
held to collect data on the relation of people’s personality and
their preferences on the different behavioral elements. The
survey was completely anonymous and has been approved by
the Ethics committee of the TU Delft. About two thirds of the
responses of this survey are used to optimize the membership
functions of the fuzzy rules. The remainder of the responses
is used for verification of the FLC personalization module,
which is discussed in the results. More on this survey and
the construction of the membership function is explained in
Section IV-A.

B. REINFORCEMENT LEARNING BASED DECISION
MAKING MODULE
The second observation made by [8] was that the same patient
responded differently in different sessions with the SAR.
Therefore, personalizing the SAR’s behavior to an individual
patient is not sufficient but the behavior must also be made
adaptable to changes in the preference of this patient in differ-
ent circumstances. As this research focuses on providing care
to the dementia patients by means of social interaction and, in
the future, suggesting activities, the patient’s state-of-mind is
considered as the circumstance to adapt the initial behavior to
because a person’s state-of-mind affects its social interactions
[25]. Thus, the SAR changes its behavior to changes in the
state-of-mind of its patient. Adapting the behavior of the
SAR is achieved with RL. RL is selected for the behavior
adaptation as it is able to tackle the adaptivity problem for
each individual patient without requiring large amounts of
training data.

FLC is suitable to personalize the SAR behavior to the
patient’s personality as this can be captured with rules to link
the behavior to the different personality traits. However, how
the SAR should adapt its behavior in a certain state-of-mind
is dependent on the preferences of the individual patient.
For example, one patient might want the SAR to lower the
amount of speech when they feel sad, while another patient
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FIGURE 2. Process of the RL based decision making module.

might want the SAR to increase the amount of speech in this
situation. Therefore, it is impossible to set up rules that lead
to a solution that fits all patients. Methods such as Artificial
Neural Networks require a large data set for training the SAR.
Collecting such a data set is a time consuming process and is
out of the scope of this research. Moreover, the SAR would
learn the preferences of the patients included in the data set.
In case a patient has totally different preferences than the
patients in the data set, the SAR will not be able to adapt
its behavior to the wishes of the patient. RL is able to learn
to adapt the behavior according to the preferences of each
individual patient. Therefore, RL is selected as the method to
adapt the behavior of the SAR to the current state-of-mind of
the patient.

The RL based decision making module works in a loop
which is illustrated in Fig.2. At the start the RL based
decision making module receives the personalized values for
the behavioral parameters from the FLC module. The RL
module explores how to adapt this behavior for different
states-of-mind of the patient by interacting with the patient
and analyzing how the updated behavior affects the state-of-
mind of the patient. The effect of the changed behavior is
used to compute a reward (see Section III-B2 for details) with
which the SAR can determine which actions are effective and
which are not.

For the RL framework, the state sk is the state-of-mind
of the patient and the action ak is the change in one of the
behavioral parameters. The subscript k is used to specify
the interaction step. It relies on Q-learning with an ε-greedy
policy [21] to adapt the initial behavior of the FLC module to
the current state-of-mind of the patient. Q-learning assigns a
Q-value to each state-action pair, the pair with the highest Q-
value is selected as most favorable action in the respective
state. In the iterative loop described above the Q-value is
updated according to:

Qupdated(sk, ak) = Q(sk, ak)+

α

(
r(sk, ak) + γmax

a∈A
Q(sk+1, a) −Q(sk, ak)

)
(1)

In this equationQ(sk, ak) is the current Q value for the state-
action pair, α is the learning rate of the system, r(sk, ak) is

the reward that the system receives when selecting action ak
in state sk, γ is a discount factor and maxa∈AQ(sk+1, a),
with A the set of all actions, is the maximum Q-value in
state sk+1 which is obtained by selecting the optimal action
for that state. The SAR determines the next action, i.e. a
behavioral element change, according to an ε-greedy policy.
Here in ε% of the cases the SAR chooses a random action, the
remaining cases the SAR chooses the action with the highest
Q-value.

It is the task of the RL module to find the best action for all
combinations of parameters and the current emotional state
of the patient. After sufficient interactions, the module should
have converged and the best actions of all parameters can be
selected to get the optimal robot behavior for the patient in
each emotional state.

1) Feedback for the Reinforcement Learning adaptation
module
The RL module adapts the SAR’s behavior based on the
state-of-mind of the patient. However, the state-of-mind is an
abstract concept, which refers to the overall cognitive state of
a person. Therefore, it is more intuitive and straightforward
to provide quantified scores for several basic emotions and to
compute the state-of-mind from these emotions.

Retrieving feedback on the actions taken by the SAR is
done by asking the patient to provide scores for 8 basics
emotions, which are:

• Excitement
• Joy
• Satisfaction
• Relaxation
• Boredom
• Sadness
• Stress
• Anger

These emotions are selected as they allow to create degrees
into the state-of-mind of the patient. For example, if the
patients gives back a high score for excitement this leads to a
very high state-of-mind, but if it has a more neutral state-of-
mind it will provide a high score for relaxation or boredom.
Humans can experience emotions in a fuzzy way, for example
when feeling joyful someone can still feel stressed to some
extent. Consequently, to incorporate the feedback of the pa-
tient into the adaptation module of the SAR, the emotions are
represented as fuzzy variables. The scores for the emotions
are fed into a fuzzy logic inference system that establishes
the current state-of-mind of the patient. According to the
estimated state-of-mind of the patient, a reward is computed
and assigned to the performed action of the SAR. The details
of this FLC reward module are explained in Section III-B2.

Another reason for selecting emotions to retrieve feedback
from the patients is that, unlike the state-of-mind of a per-
son, emotions can be automatically detected by computer-
vision systems. Also for the Nao robot, an automatic emotion
detection system has been developed [26]. Perhaps, when
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using automatic emotion detection, the system detects other
emotions than the ones currently used in the decision making
system. In that case, the rule-base from the fuzzy inference
system in Section III-B2 must be adapted to incorporate the
detected emotions. When the SAR can detect the emotions
automatically, it does not have to rely on the feedback given
by the patients. However, before automatic emotion detection
can be implemented in the decision making system of the
SAR, more research has to be performed to see if the emotion
detection systems also work for people with dementia. Auto-
matic emotion detection might not be applicable for patients
in advanced stages of dementia or dementia combined with
other cognitive impairments such as Parkinson’s Disease
[27].

2) Fuzzy logic based reward module
For the RL module to learn which action to use in which
state-of-mind, it is dependent on the rewards it receives for its
actions. However, no mathematical relations exist that explic-
itly describe how emotions, state-of-mind and a successful
social interaction with the patient are related to each other.
Instead the relationships can be formulated intuitively with
linguistic fuzzy rules. Hence, the RL adaptation module uses
a FLC reward module to compute the rewards for its actions.
The FLC reward module has two tasks: (1) to compute the
state-of-mind of the patient from the emotional feedback
the SAR received and (2) to compute a reward from the
new state-of-mind and the change in state-of-mind. The FLC
reward module has a fuzzy inference system for both tasks.

The first system determines the patient’s state-of-mind
based on the scores provided on the various emotional states.
The rule-base for the fuzzy inference system to compute
the patient’s state-of-mind consists of rules that relate one
or two of the retrieved emotions with the realized state-of-
mind of the patient. The rules can be written in the following
general form: "If emotion 1 is E1,i and emotion 2 is E2,j ,
then state-of-mind is Sk." In this formulation emotion 1 and
emotion 2 refer to the feedback from the patient on the
respective emotions, E1,i and E2,j , for i = 1, ..., NE1 and
j = 1, ..., NE2 , are the fuzzy sets corresponding to the
linguistic terms used to categorize the emotions, state-of-
mind refers to the realized state-of-mind of the patient after
the interaction and Sk, for k = 1, ..., NS , is the fuzzy set
corresponding to the linguistic terms used to categorize the
realized state-of-mind of the patient. The inference system
uses Mamdani inference with center of gravity method for
defuzzification.

The second task of the FLC reward module is to compute
the rewards based on the change in the patient’s state-of-mind
after interacting with the SAR. The reward must favor actions
that improve the patient’s state-of-mind or stabilize their
positive state-of-mind. For instance, if the state-of-mind of
the patient improves after interacting with the SAR, the cor-
responding action/behavior of the SAR should be rewarded
positively. On the contrary, whenever the state-of-mind of
the patient worsens, the corresponding action/behavior of the

TABLE I. Reward components based on the new state-of-mind

New state-of-mind rq(sk+1)
Very good 2.5

Good 1.5
Neutral 0

Bad -1.5
Very bad -2.5

SAR should be rewarded negatively. Moreover, the intensity
of the change of the state-of-mind is factored into the reward,
so actions that result in a big change in the state-of-mind
are rewarded/penalized heavier than actions that result in a
smaller change in the state-of-mind. Therefore, the reward for
the RL based decision making module has two components:
(1) the new state-of-mind of the patient, a better state-of-
mind results in a higher reward, and (2) the change in the
state-of-mind of the patient, the reward is higher when the
patient goes from a bad state-of-mind to a good state-of-mind
than when the patient stays in a good state-of-mind. The first
component that is purely related to the new state-of-mind of
the patient is treated as the quality related part of the reward,
the component that is related to the relative change in the
state-of-mind of the patient is treated as the intensity related
part of the reward. As a result, when the initial state-of-mind
of the patient is sk and the SAR takes action ak, which results
in the new state-of-mind sk+1, the reward r(sk, ak) for the
state-action pair is given by:

r(sk, ak) = rq(sk+1) + ri(sk, sk+1) (2)

In this equations rq(sk+1) is the quality related reward
component, which is based on the new state-of-mind of the
patient. Table I shows the values for rq(sk+1) based on the
new state-of-mind of the patient. ri(sk, sk+1) is the intensity
related component of the reward. This part of the reward is
computed with the second fuzzy inference system of the FLC
based reward module and depends on the change in the state-
of-mind of the patient. The rules for this inference system are
written in the following general form: "If old state-of-mind is
Oi and new realized state-of-mind is Rj , then ri(sk, sk+1)
is Il." In this formulation Oi and Rj , for i = 1, ..., NO

and j = 1, ..., NR, are the fuzzy sets corresponding to the
linguistic terms used to categorize the old and realized state-
of-mind of the patient respectively, Il, for l = 1, ..., NI ,
is the fuzzy set corresponding to the linguistic terms used
to categorize the intensity related reward component for
the adaptation module. The inference system uses Mamdani
inference with center of gravity method for defuzzification.

IV. EXPERIMENTS
The different modules of the SAR’s decision making process
are assessed by a set of experiments. The FLC based decision
making module for personalizing the behavior is assessed
with a survey to compare the output of the SAR with the
answers provided by the participants of the survey. The
participants are not real dementia patients, as finding such a
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FIGURE 3. Membership functions of the antecedent of the second Mamdani
inference system.

group is considered out of the scope of this research. For the
experiment the relation between someone’s personality and
the desired behavior of the SAR is investigated. Therefore
no special requirements are set for the participants of the
survey. A group of 20 people, including both male and female
participants aged between 20 and 70, have completed the
survey for the assessment of the decision making system of
the SAR. The RL based decision making module and the FLC
reward module to adapt the SAR’s behavior are assessed with
an experiment in which simulated patients interact with the
SAR. This section discusses the setup of the experiments and
their results.

A. FLC DECISION MAKING MODULE EXPERIMENT
The first experiment is to assess the functioning of the FLC
decision making module, which sets up an initial behavior
based on the patient’s Big-Five personality scores. This sec-
tion starts with the implementation of the experiment after
which the corresponding results are discussed.

The rule-base used for the personalization is presented in
Table II. The membership functions of the FLC personaliza-
tion module are shown in Fig. 3 and Fig. 4.

1) Experiment Description

For the assessment of the FLC decision making module a
survey [28] is distributed in which the participants are asked
to provide the results of a Big-Five personality test [29] along
with their preferences in situations that might occur between
a patient and a SAR. The survey is completely anonymous
and has been approved by the Ethics Committee of the TU
Delft. In total 20 participants have completed the survey,
these participants were not dementia patients. Finding de-
mentia patients willing to participate in this experiment was
considered out of the scope of this research. also it is assumed
that if the personalization to a person’s personality works for
non-dementia patients, it works for dementia patients as well.
However, in future stages of the research the system must also
be tested on dementia patients.

The survey contained questions that sketched social situa-
tions in which the different behavioral elements of the SAR
play a crucial role. The participants are presented with two
example behaviors in these social situations and are asked to
provide their preference between the two behaviors on a scale
of 1 to 5. An example question of the survey is:

Imagine you need a nurse to explain you how to use your
new medications. One nurse has a strong loud voice, while
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FIGURE 4. Membership functions of the consequent of the second Mamdani
inference system.

the other nurse is more soft-toned. Which of the two nurses
would you prefer to explain you the instructions?

In this question the participants are asked to provide their
preference on the behavioral element volume of speech,
the survey contained questions like these for all behavioral
elements of the SAR.

In order to assess the functioning of FLC decision making
module the answers of the survey are compared to the output
of the system. The personalization of the SAR behavior is
assessed based on the Root Mean Squared Error (RMSE)
over the 6 participants used for verification. The RMSE is
calculated according to:

RMSE(i) =

√∑n
p=1(bSAR

p (i) − bsurveyp(i))2

n
(3)

In this equation i is an index, with i = 1, ..., 7, corresponding
to the different behavioral parameters of the SAR, n is the
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TABLE II. Rule base for the FLC personalization module.

If Antecedent 1 and/or Antecedent 2 Then Consequent
If extroversion is Low - - Then Amount of speech is Low
If extroversion is Medium - - Then Amount of speech is Medium
If extroversion is High - - Then Amount of speech is High
If extroversion is Low - - Then Volume of speech is Soft
If extroversion is Medium and Neuroticism is Low Then Volume of speech is Medium
If extroversion is Medium and Neuroticism is Medium Then Volume of speech is Medium
If extroversion is Medium and Neuroticism is High Then Volume of speech is Soft
If extroversion is High and Neuroticism is Low Then Volume of speech is Loud
If extroversion is High and Neuroticism is Medium Then Volume of speech is Loud
If extroversion is High and Neuroticism is High Then Volume of speech is Medium
If extroversion is Low and Neuroticism is Low Then Gestures is Low
If extroversion is Low and Neuroticism is Medium Then Gestures is Medium
If extroversion is Medium and Neuroticism is Low Then Gestures is Medium
If extroversion is Medium and Neuroticism is Medium Then Gestures is Medium
If extroversion is High or Neuroticism is High Then Gestures is High
If extroversion is Low - - Then Interactive comments is Cautious
If extroversion is Medium - - Then Interactive comments is Neutral
If extroversion is High - - Then Interactive comments is Energetic
If Agreeableness is Low - - Then Motivating comments is Challenging
If Agreeableness is Medium - - Then Motivating comments is Neutral
If Agreeableness is High - - Then Motivating comments is Cooperative
If Neuroticism is Low - - Then Feedback is Realistic
If Neuroticism is Medium - - Then Feedback is Neutral
If Neuroticism is High - - Then Feedback is Nurturing
If extroversion is Low and Agreeableness is Low Then Proxemics is High
If extroversion is Low and Agreeableness is Medium Then Proxemics is High
If extroversion is Low and Agreeableness is High Then Proxemics is Medium
If extroversion is Medium and Agreeableness is Low Then Proxemics is High
If extroversion is Medium and Agreeableness is Medium Then Proxemics is Medium
If extroversion is Medium and Agreeableness is High Then Proxemics is Low
If extroversion is High and Agreeableness is Low Then Proxemics is Medium
If extroversion is High and Agreeableness is Medium Then Proxemics is Low
If extroversion is High and Agreeableness is High Then Proxemics is Low

number of participants, bSAR
p is the output behavior of the

SAR for participant p and bsurveyp is the preferred behavior
of participant p received from the survey. From the RMSE it
still can be difficult to determine how well the personalization
works. Therefore, also the scatter index (SI) is computed. The
SI divides the RMSE with the average value of the observed
value to account for the range over which the values are
observed. The SI is computed according to:

SI(i) =
RMSE(i)

1
n

∑n
p=1 b

SAR
p (i)

(4)

From the total of 20 answers received on the survey 2 were
incomplete, making these unusable. From the remaining 18
answers, two-thirds are used for optimization of the member-
ship functions of the fuzzy logic inference system. One-third
of the answers is used for the assessment of the FLC based
decision making module.

The optimization of the membership functions of the FLC
personalization module focuses on optimizing the member-
ship functions of the consequent, i.e. the seven behavioral
elements. The membership functions for the antecedent, i.e.
the personality traits, are illustrated in Fig. 3. These mem-
bership functions are not optimized as a single personality
trait influences multiple behavioral elements. Therefore, it
is easier to optimize the membership functions of the con-
sequent. During the optimization, different values for the

membership functions have been investigated. The values
that resulted in the lowest error between the output of the
FLC personalization module and the answers provided to the
survey have been selected. The final membership functions
for the sub-module are displayed in Fig. 4.

2) Results

In order to compare the outputs of the survey with the outputs
of the FLC decision making module. The output for each
behavioral element of the FLC decision making module has
been scaled from their respective range to the range of the
survey answers (1 to 5). Having all behavioral elements in
the same range allows for better comparison between the
different elements, that is why the range of 1 to 5 from
the survey answers has been selected. The results of the
comparison between the output of the SAR’s FLC decision
making module and the answers of the survey are illustrated
in Fig. 5 to Fig. 12.

Fig. 5 illustrates the scores for the three personality traits,
extroversion, agreeableness and neuroticism of the partici-
pants of the survey that were used for validation. Fig. 6 to
Fig. 12 each illustrate the outcomes of the personalization
from the FLC decision making module and the answers of
the survey of one the seven behavioral elements.

The RMSE’s and the SI’s of the different behavioral el-
ements are displayed in Table III, the values in the second
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FIGURE 5. Personality scores of the survey participants used for validation.

FIGURE 6. Validation results for the Amount of Speech.

column of the table is the RMSE in the range of 1 to 5. With
these values the personalization of the different behavioral
elements can be compared to each other. The values in the
third column of the table display the RMSE in the range
of the behavioral element, with the respective ranges in
brackets behind them. The fourth column shows the RMSE
as a percentage and the fifth column shows the SI of the
behavioral parameters.

From the bar plots and the values for the RMSE and
SI it can be concluded that personalization works well for
all behavioral elements apart from the Feedback comments.
Most elements have one or two small outliers among the
participants, such as P2 and P4 for the Gestures and P5 for
Motivating comments for example. This is expected as the
literature describes the general preferences of the personality

FIGURE 7. Validation results for the Volume of Speech.

FIGURE 8. Validation results for the Gestures.

FIGURE 9. Validation results for the Interactive comments.

FIGURE 10. Validation results for the Motivating comments.

FIGURE 11. Validation results for the Feedback comments.
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TABLE III. RMSE’s of the different behavioral elements.

Behavioral element RMSE [range 1-5] RMSE [element range] RMSE as % of range SI
Amount of speech 0.42 0.42 [1-5] 10.6% 14.4%
Volume of speech 0.33 1.22 [50-65] 8.14% 2.13%

Gestures 0.74 0.74 [1-5] 18.6% 22.9%
Interactive comments 0.37 9.33 [0-100] 9.33% 12.9%
Motivating comments 0.51 12.8 [0-100] 12.8% 25.0%

Feedback 0.95 23.6 [0-100] 23.6% 52.6%
Proxemics 0.58 10.1 [50-120] 14.5% 13.2%

FIGURE 12. Validation results for the Proxemics.

traits, but in reality it can be the case that a person deviates
from this general preference.

However the Feedback comments have a significant outlier
with P2. The RMSE, as calculated in (3), considers the
squares of the errors, hence larger outliers are penalized heav-
ier. This explains the higher RMSE and SI for the Feedback
comments.

A reason for the large outliers for the Feedback comments
can be that in the survey participants are asked to imagine
themselves in a social situation instead of really experiencing
this situation. The survey describes the situation in words,
which might make it difficult for a participant to imagine
the situation. It could be the case that for the question of the
feedback participants had difficulties to imagine the sketched
situation or interpreted the situation differently than intended,
leading to inaccurate results.

Therefore, in further stages of the research it is crucial
that a test group interacts with the SAR over a longer pe-
riod of time, such that they really experience the situations
with the robot instead of having to imagine them. After the
interactions a survey can be held, which asks about how they
experienced their interactions with the SAR. However, in the
current stage of the research there are not enough resources
nor time for such an experiment.

A second reason for the large outliers in the person-
alization of the Feedback comments is that the expected
relation between neuroticism in the preference in Feedback
comments is not present in the group of participants. People
who score high on neuroticism are more anxious and inse-
cure [15]. Therefore, a more nurturing behavior would be
preferred by people who score high in neuroticism. However,
the results of the personalization do not show this relation.
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FIGURE 13. Membership functions for the patient’s emotional scores.
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FIGURE 14. Membership functions for the patient’s state-of-mind.

For example, the preference for the Feedback comments
for P2 and P6 is approximately the same, while P2 has the
highest level of neuroticism and P6 has the lowest level of
neuroticism.

Hence, it can be the case that there is no relation between
the preference in the Feedback comments and the level of
neuroticism of the participants. Further testing, such as the
experiment where participants interact with the SAR in real
life, can clarify whether the relation exists or not.

B. REINFORCEMENT LEARNING DECISION MAKING
MODULE AND FUZZY LOGIC CONTROL REWARD
MODULE EXPERIMENT
The RL module and the FLC reward module are assessed
together as these modules depend on each other and together
they are responsible for the adaptation of the SAR behavior
to the patient’s current state-of-mind. The rule-base for the
two fuzzy inference systems of the FLC reward module
are presented in Table IV and Table V. The membership
functions of the inference system are illustrated in Fig. 13,
Fig. 14 and Fig. 15.

1) Experiment Description
The modules are assessed based on computer-based simula-
tions of interactions between the SAR and its patient. The
reasons for using computer-based simulated patients, which
were also used in [9], are: (1) With computer-based simulated
patients a large number of interactions can be held in short
periods of time. (2) A wide variety of potential responses
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TABLE IV. Rule base for the first inference system of the FLC reward module.

If Antecedent 1 and/or Antecedent 2 then Consequent
If excitement is very high - - then state-of-mind is very good
If excitement is high and joy is very high then state-of-mind is very good
If excitement is high - - then state-of-mind is good
If joy is very high - - then state-of-mind is good
If joy is high and satisfaction is very high then state-of-mind is good
If joy is high and satisfaction is high then state-of-mind is good
If joy is high and relaxation is very high then state-of-mind is good
If sadness is high and boredom is very high then state-of-mind is bad
If sadness is very high - - then state-of-mind is bad
If stress is very high or stress is high then state-of-mind is bad
If anger is high - - then state-of-mind is bad
If anger is very high - - then state-of-mind is very bad
If anger is high and sadness is very high then state-of-mind is very bad
If stress is very high and sadness is very high then state-of-mind is very bad

TABLE V. Rule base for the second inference system of the FLC reward module.

If Antecedent 1 and/or Antecedent 2 Then Consequent
If old state-of-mind is Very bad and new realized state-of-mind is Very bad Then ri(sk, sk+1) is Negative
If old state-of-mind is Very bad and new realized state-of-mind is Bad Then ri(sk, sk+1) is Neutral
If old state-of-mind is Very bad and new realized state-of-mind is Neutral Then ri(sk, sk+1) is Positive
If old state-of-mind is Very bad and new realized state-of-mind is Good Then ri(sk, sk+1) is Very positive
If old state-of-mind is Very bad and new realized state-of-mind is Very good Then ri(sk, sk+1) is Very positive
If old state-of-mind is Bad and new realized state-of-mind is Very bad Then ri(sk, sk+1) is Negative
If old state-of-mind is Bad and new realized state-of-mind is Bad Then ri(sk, sk+1) is Negative
If old state-of-mind is Bad and new realized state-of-mind is Neutral Then ri(sk, sk+1) is Neutral
If old state-of-mind is Bad and new realized state-of-mind is Good Then ri(sk, sk+1) is Positive
If old state-of-mind is Bad and new realized state-of-mind is Very good Then ri(sk, sk+1) is Very positive
If old state-of-mind is Neutral and new realized state-of-mind is Very bad Then ri(sk, sk+1) is Very negative
If old state-of-mind is Neutral and new realized state-of-mind is Bad Then ri(sk, sk+1) is Negative
If old state-of-mind is Neutral and new realized state-of-mind is Neutral Then ri(sk, sk+1) is Neutral
If old state-of-mind is Neutral and new realized state-of-mind is Good Then ri(sk, sk+1) is Positive
If old state-of-mind is Neutral and new realized state-of-mind is Very good Then ri(sk, sk+1) is Very positive
If old state-of-mind is Good and new realized state-of-mind is Very bad Then ri(sk, sk+1) is Very negative
If old state-of-mind is Good and new realized state-of-mind is Bad Then ri(sk, sk+1) is Negative
If old state-of-mind is Good and new realized state-of-mind is Neutral Then ri(sk, sk+1) is Neutral
If old state-of-mind is Good and new realized state-of-mind is Good Then ri(sk, sk+1) is Neutral
If old state-of-mind is Good and new realized state-of-mind is Very good Then ri(sk, sk+1) is Positive
If old state-of-mind is Very good and new realized state-of-mind is Very bad Then ri(sk, sk+1) is Very negative
If old state-of-mind is Very good and new realized state-of-mind is Bad Then ri(sk, sk+1) is Very negative
If old state-of-mind is Very good and new realized state-of-mind is Neutral Then ri(sk, sk+1) is Negative
If old state-of-mind is Very good and new realized state-of-mind is Good Then ri(sk, sk+1) is Neutral
If old state-of-mind is Very good and new realized state-of-mind is Very good Then ri(sk, sk+1) is Positive
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FIGURE 15. Membership functions for the rewards for the RL based decision
making module.

to the actions selected by the SAR can be simulated and
assessed, without the need of finding a large group of people
that may still not possess preferences with the wide variations
possible for simulated patients. (3) Performing experiments
based on trial and error on real human beings can potentially
be harmful.

The RL decision making module and the FLC reward mod-
ule require feedback on the patient’s emotions, i.e. excite-

ment, joy, satisfaction, relaxation, boredom, sadness, stress,
and anger. Therefore, the simulated patient must be able to
generate responses to the changes in the SAR’s behavior that
consists of scores for these eight emotions.

For each behavioral element of the SAR a table is gener-
ated that includes probabilities for the emotional scores for
the different actions of the SAR, i.e. increase the behavioral
element a lot, increase it moderately, decrease it moderately,
and decrease it a lot. Table VI shows an example response
table for the responses of a simulated patient to changes in
the amount of speech, although it is kept concise by leaving
out several emotions and actions.

For each action the scores for the emotions are divided
into four equal ranges. Probabilities are assigned to these
score ranges, which represent the likelihood that the patient
provides a score within this range as feedback. Using the
probabilities one range is selected, the score for the action
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is a random integer in the selected range. The response of
the patient depends on his or her state-of-mind. Therefore,
the different rows of the table represent the patient’s states of
mind.

Thus, the way to read this table is: When the SAR in-
creases the volume of speech a lot and the patient is in a
good state-of-mind, then the probability for the score for the
emotion excited to be in the range 0-25 is 0%, the probability
for it to be in the range 26-50 is 20%, the probability for it to
be in the range 51-75 is 30%, and the probability for it to be
in the range 76-100 is 50%.

When one of the sore ranges is selected based on the
probabilities in the table, the exact score is computed by
taking a random number in that range. Again it should be
noted that the other emotions but those are left out to keep
Table VI concise.

The data for the response tables of the virtually scripted
patients are produced in two different ways: (1) Based on
survey answers to gather data from real human beings. (2)
Randomly generated responses to gather a wide variety of
responses including extreme cases, which might not be in-
cluded in the survey group.

The survey [30] is held among the same group as the
survey for the assessment of the FLC decision making mod-
ule. This survey contains questions on how the current state-
of-mind of the patients changes when the person they are
interacting with behaves differently than usual. An example
of the questions is:

You are initially in the very good state-of-mind explained
before because of your new car. Imagine a friend asks you
to play a board game with her/him. The way in which your
friend asks to play the board game is described below. Please
indicate how the following ways of asking affect your very
good state-of-mind.

Your friend is significantly more energetic versus cautious
than usual. For instance, the way she/he asks you to play the
game is: ’Let’s play this super fun board game, I am sure
you’ll love it.’

The response tables are generated based on the answers
provided by the participants. Besides the data from real
human beings, also random response tables are generated. In
this way a lot of computer based simulated patients can be
created and a lot of simulations can be run in short periods of
time.

Also with randomly generated response tables more ex-
treme cases can be captured to see whether the learning
process of the SAR converges in these cases too.

For the randomly generated response tables, the tables
are slightly adjusted halfway through the experiment to see
whether the RL decision making module can deal with
changes in the responses of the patients, something that might
happen in real life.

In the experiment it is assessed whether the SAR is able to
adapt its behavior to the preferences of the simulated patient
in different states of mind. In the interactions, the simulated
patient is put into different states of mind. Feedback is gener-

ated based on the response tables of the virtual patients. From
the feedback rewards are computed with the FLC reward
module based on the change in the patient’s state-of-mind.

Over time the learning process of the RL decision making
module should converge, where the SAR selects the best
actions to improve the patient’s state-of-mind or stabilize it
in a positive state-of-mind.

2) Results
The RL decision making module and the FLC reward module
are assessed in the same experiment. In interactions between
the SAR and computer-based simulated patients, the modules
are assessed based on convergence of the learning process
and the performance of the final behavior of the SAR in the
different emotional states of the patients. The two modules
are tested both on the computer-based simulated patients
generated from the survey answers and on the randomly
generated simulated patients.

The convergence of the learning process of the SAR is
assessed by plotting the absolute change of the Q-values of
the RL decision making module. Over time, the absolute
change in Q-value should decrease and the plot of the learn-
ing process should flatten out. When the slope of the plot of
the change in Q-value is approximately 0 (below 0.00005) it
is assumed that the learning process has converged.

The performance of the RL decision making module and
the FLC reward module is determined by comparing the
selected actions after learning with the most optimal action.
This most optimal action is determined by using the fuzzy
inference system to compute state-of-mind of the patient. For
each action a set of emotional scores is determined using the
state transition table of that patient. These emotional scores
are implemented in the fuzzy inference system to compute
the state-of-mind of the patient and the action that results
in the highest realized state-of-mind is considered the most
optimal action. By comparing the action selected from the
Q-values after the learning phase to this most optimal action,
the performance of the RL decision making module can be
determined.

The SAR should select an action for every combination
of behavioral elements (7) and current states of mind (5),
making a total of 35 actions. Therefore, the performance p
of the output of the RL decision making module is calculated
according to:

p =
ncorrect

35
(5)

In this equation ncorrect is the number of correct actions
selected by the SAR.

First the results for the computer-based patient simulations
generated from the survey data are discussed. Fig. 16 illus-
trates the absolute Q-changes of the first participant of the
survey.

The simulations consist of 100,000 interactions with the
computer-based simulated patients. In order to keep the
figures readable, the average absolute change in Q-value is
plotted of every 100 interactions. The blue line in Fig. 16
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TABLE VI. Response of a specific simulated patient to the changes in the volume of speech.

Emotions
Excitement ... Anger

Actions ... ...
Increase a lot Increase Decrease Decrease a lot ... ...
Score ranges Score ranges Score ranges Score ranges ... ...

State-of-mind 0-25 26-50 51-75 76-100 0-25 26-50 51-75 76-100 0-25 26-50 51-75 76-100 0-25 26-50 51-75 76-100 ... ...
Very good 0% 0% 30% 70% 0% 0% 40% 60% 5% 15% 30% 50% 20% 25% 25% 30% ... ...

Good 0% 20% 30% 50% 0% 10% 40% 50% 10% 10% 40% 40% 25% 35% 25% 15% ... ...
Neutral 10% 40% 30% 20% 15% 25% 30% 30% 15% 35% 35% 15% 60% 30% 5% 5% ... ...

Bad 60% 35% 5% 0% 65% 25% 10% 0% 40% 35% 15% 10% 85% 10% 5% 0% ... ...
Very bad 85% 15% 0% 0% 75% 10% 15% 0% 50% 25% 25% 0% 90% 10% 0% 0% ... ...
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FIGURE 16. Results for the learning process of participant 1.

TABLE VII. Results of the learning process for all participants.

Participant Convergence
[interactions] Performance [%]

P1 41,600 91.4
P2 37,300 85.7
P3 31,000 77.1
P4 39,300 82.9
P5 31,600 88.6
P6 28,700 80.0

Average 34,917 84.3

illustrates the average of the absolute change in Q-value over
the last 100 interactions, while the orange line illustrates a
trend line which eases the analysis. Table VII illustrates the
results for the convergence of the learning process and the
performance of the outcome for all participants of the survey.

In Fig. 16 it can be seen that the change in the Q-values
decrease rapidly, which indicates that the learning process is
converging. Around 36400 interactions the slope of the trend
line is below 0.00005, so that is when the learning process
is assumed to be fully converged. In Table VII it can be
seen that the learning process converges for all 6 participants
used for validation, with an average of 34,917 interactions.
The average performance of the selected actions by the RL
decision making module is 84.3%.

Besides the computer-based patients generated from the
survey data, also simulations have been performed with
computer-based patient with randomly generated state tran-
sition tables. For these simulations, the response tables are
slightly adjusted halfway through the experiment (at interac-
tion 50,000) to see if the RL decision making module can
also deal with changing responses of the patient.
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Q-changes over learning period: Randomly generated scripted patient

FIGURE 17. Results for the learning process of a participant with a randomly
generated response table.

TABLE VIII. Results of the learning process for the randomly generated
simulated patients.

Convergence
before change
[interactions]

Convergence
after change
[interactions]

Performance [%]

Average 28,472 54,060 81.7

Fig. 17 illustrates an example of the learning process of
one of the 100 simulated patients with a randomly generated
response table. The absolute change of the Q-value decreases
nicely, but around interaction 50,000 there is a slight increase
in the absolute change of the Q-value after which the it starts
to decrease again. The performance of the output for this
simulated patient is 82.9%.

For the simulated patients with a randomly generated
response table the average convergence time and the average
performance of the outputs are shown in Table VIII. The
learning process for all 100 simulated patients converged
before the adjustments in the response tables, so an extra
column has been added with the average convergence time
after the adjustments in the response tables.

The learning process of the SAR has converged for all of
the 100 passengers. In Table VIII it can be seen that the time
to converge after the adjustments is significantly smaller than
the initial convergence time. This makes sense as the adjust-
ments were small. Hence, for many of the combinations of
the behavioral elements and the current state-of-mind of the
patient the optimal action has not changed. Therefore, the
SAR requires less time to learn and converge.

A second thing to notice from the results for the randomly
generated computer-based simulated patients is that the per-
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formance for these patients is lower than for the simulations
where the simulated patients are based on the survey answers.

Two possible reasons exist for this: (1) the adjustments in
the response tables lead to lower performance values, (2) the
cases for the randomly generated simulated patients are more
complex than the simulated patients based on the survey data.

First of all, the adjustments made to the response tables
halfway through the learning process could result in a lower
performance of the output of the RL decision making module
and the FLC reward module.

With the decaying ε it can be the case that the RL decision
making module does not explore sufficiently anymore to
recover all adjustments in the response tables. In further re-
search it should be explored if different exploration strategies
or RL methods yield an even higher performance.

A second reason for the lower performance with the ran-
domly generated simulated patients is that the RL decision
making module is faced with more complex cases than for
the simulated patients based on the survey data.

As mentioned before the randomly generated simulated
patients contain more diverse responses. Consequently, more
extreme cases are included in the randomly generated simu-
lated patients. Presumably, the RL decision making module
struggles more with these extreme cases resulting in a lower
performance.

Moreover, for some of the combinations, the participants
answered that their state-of-mind would be influenced the
same for multiple actions. As a result, the optimal action
is not a single action but can be multiple actions. When
a participant does not have a preference for an individual
action for many of the combinations, the performance for this
participant automatically will be higher.

Similar to the experiment for the personalization of the
SAR’s behavior, an experiment in which real human beings
interact with the SAR must also be carried out for further
assessment of the adaptation module. In such an experiment
direct feedback can be asked to the participants on how they
experience their interactions with the SAR.

C. COMBINED FUZZY LOGIC CONTROL AND
REINFORCEMENT LEARNING DECISION MAKING
MODULES VERSUS THE INDIVIDUAL REINFORCEMENT
LEARNING DECISION MAKING MODULE
In the previous sections the FLC decision making module
for personalization and the RL decision making module with
the FLC reward module for adaptation have been assessed
separately. This section compares the functioning of the per-
sonalization module and the adaptation modules combined
versus a SAR equipped with just the RL decision making
module and the FLC reward module to assess the benefit of
adding the FLC decision making module for personalization.

1) Experiment
It was observed that the system as a whole is able to converge
to an optimal solution with a performance of around 82%.
However, from that experiment it cannot be assessed what

the influence of the individual decision making modules is. In
the comparison between the individual RL decision making
module and the two combined decision making modules,
the effect of adding the FLC decision making module is
assessed. When combining the RL decision making module
with the FLC decision making module, the initial behavior
of the robot should be closer to the preference of the patient.
Therefore, the learning process should converge quicker for
the combination of the two decision making modules than for
the RL module individually.

Similar to the experiment of the RL decision making
module, the combination of the two decision making mod-
ules is assessed with computer-based simulated patients. The
patients are based on the survey answers from the assessment
of the RL module. However, for better comparison of the
results of the individual RL decision making module and
the two combined decision making modules, randomness
has been reduced as much as possible. Therefore, unlike
with the assessment of the RL decision making module, the
preference of the patient does not change halfway through the
experiment. The randomness in the selection of the actions
for the RL decision making module has not been removed as
this is crucial for the exploration of the system. Furthermore,
as the individual RL decision making module does not have
the FLC decision making module to initialize the behavior of
the SAR, the initialization of the SAR’s behavioral elements
is done randomly for the individual RL decision making
module.

2) Results
The convergence of the combination of the two decision
making modules is compared to the RL decision making
module individually for each combination of patient state-
of-mind and robot behavioral element.

Three patterns stand out in the convergence of the two set-
ups. First of all, there is the favored convergence pattern,
where the initial behavior of the two combined decision
making modules is closer to the behavior preferred by the
patient making the learning process converge quicker than
the individual RL module. This is illustrated in Fig. 18.

However, in some cases the personalization of the FLC
decision making module deviates from the real preferred be-
havior of the patient. Consequently, the random initialization
of the individual RL decision making module might be closer
to the preference of the patient making its learning process
converge faster than for the two combined decision making
modules. This is illustrated in Fig. 19.

Finally, in some cases the personalization actually leads
to a better initialization but due to the randomness in the
exploration phase of the learning process, the individual
RL decision making module converges faster. In the explo-
ration phase random actions are taken to learn which actions
give high rewards. Generally, the learning process converges
faster when the initial behavior is closer to the preference
of the patient. However, when the random actions in the
exploration phase of the learning process takes the behavior
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FIGURE 18. The personalization is closer making the process converge faster
(VoS stands for the parameter Volume of Speech).

FIGURE 19. The random initialization is closer than the personalization (VoS
stands for the parameter Volume of Speech),

of the SAR in the wrong direction, this might lead to a longer
convergence period. This is illustrated in Fig. 20. It should
be noted, that this also works the other way around when the
randomly initialized behavior is closer to the preference than
the initial behavior from the personalization.

Table IX shows the overall results for the comparison of
the learning process of the two decision making modules
combined and the individual RL module for one-third of the
participants of the survey, as was done in the assessment of
the individual decision making modules. The comparison of
the combined decision making modules to the individual RL
decision making module is based on three aspects:

• The overall convergence rate r, i.e. in how many percent
of the cases the learning process converges

• The average convergence time t, i.e. how fast the learn-
ing process converges

• The performance p of the system, similar to the perfor-
mance in section IV-B

The difference in convergence time between the two com-
bined decision making modules and the individual RL mod-
ule is expressed in a percentage which is calculated with:

FIGURE 20. The personalization is closer but due to exploration does not
converge faster (Exc stands for the parameter Interactive comments).

∆%t =
trl − tcombined

tcombined
(6)

First of all, though it is minimal, the overall convergence
rate of the combined decision making modules is higher than
the individual RL decision making module. For the combined
decision making modules there was only one combination
(out of 210) of patient state-of-mind and behavioral element
where the learning process did not converge.

Secondly, and most importantly, the convergence time is
on average 13.3% lower for the combined decision making
modules than for the individual RL decision making module.
As expected, the FLC decision making module created a
better initial behavior leading to a shorter convergence time.
As mentioned before, for individual combinations of patient
state-of-mind and behavioral parameter the randomness in
the exploration phase or the random initialization can lead
to better convergence. However, overall it can be stated that
adding the FLC decision making module to the RL decision
making module leads to a decreased convergence time. This
means behavior of the SAR matches the preference of the
patient quicker when applying the system in real time.

V. CONCLUSION
An aging world population puts an increasing pressure on
health care workers working with dementia patients. The
increasing number of dementia patients confine care-givers
to provide personalized care to their patients. As a result the
quality of the care provided to dementia patients reduces and
the well-being of dementia patients is negatively affected.

As a solution to this increasing pressure on health-care
workers, this paper investigates the possibilities to use so-
cially assistive robots (SARs) to provide care to dementia
patients. SARs are robot that assist people through social
interaction. Currently they are already used to assist ther-
apists in dementia therapy. The results of these researches
show that different patients respond differently to the SAR
and that an individual patient responds differently to the SAR
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TABLE IX. Results of the comparison between the combined decision making modules and the individual RL module.

Participant rcombined[%] rrl[%] tcombined[-] trl[-] ∆t [%] pcombined[%] prl[%]
P1 100 100 422.6 472.9 11.9 92.2 84.3
P2 100 97.1 414.7 485 16.9 83.3 82.0
P3 100 97.1 425.3 480.1 11.3 87.8 85.7
P4 97.1 97.1 398.0 424.9 6.7 89.5 86.5
P5 100 100 408.3 479.9 17.5 76.1 70.1
P6 100 100 399.4 461.0 15.4 85.7 80.3
Average 99.5 98.6 411.4 467.3 13.3 85.8 81.5

on different occasions. Therefore, it is important that a SAR
can personalize its care to an individual patient and adapt
this behavior over changing circumstances. In this paper
the decision process of a SAR is designed that personalizes
its behavior to three of the five Big-Five personality traits
(extroversion, agreeableness and neuroticism) and adapts this
behavior to the current state-of-mind of this patient.

The decision making process of the SAR consists of three
main modules: a Fuzzy Logic Control (FLC) personalization
module for personalizing the SAR’s behavior to the personal-
ity of the patient, and a Reinforcement Learning (RL) based
decision making module together with a FLC reward module
for adaptation of the SAR’s behavior to the current state-of-
mind of the patient.

The FLC personalization module personalizes the SAR’s
behavior to three personality traits of the patient using pre-
defined rules that relate the different elements of the SAR’s
behavior to the patient’s personality traits.

The RL based decision making module adapts the person-
alized behavior to the current state-of-mind of the patient.
The module uses Q-learning to select the right way of adapt-
ing the personalized behavior, such that the adapted behavior
matches the preferences of the patients in their current state-
of-mind.

The FLC reward module computes the reward for the RL
adaptation module, this reward is dependent on the change in
the state-of-mind of the patient. When the state-of-mind of
the patient improves it receives a higher reward than when
the state-of-mind of the patient decreases.

The personalization of the SAR is assessed by means of
a survey. In this survey participants were asked to provide
their scores for the different personality traits, together with
their preferences in certain social situations where the SAR’s
behavioral elements played a crucial role.

For most behavioral elements this first assessment looks
promising. However, for the behavioral element of Feedback
comments the results were not sufficient. Further experiments
are required to investigate whether the personalization does
not work for the Feedback comments because no relation
exists between this behavioral element and the trait neuroti-
cism or that the question in the survey was unclear for the
participants such that the answers did not match the output of
the FLC personalization module.

The adaptation of the SAR is assessed by letting the
SAR interact with computer-based simulated patients. Two
different kinds of simulated patients have been used for

the experiment: simulated patients where the responses are
based on data from a second survey and simulated patients
where the response was random. For the simulated patients
with a random response, the responses were slightly adjusted
halfway through the experiment to see if the SAR could deal
with such changes.

The results of the experiment show that the RL adaptation
module manages to have a converging learning process for
all patients. The performance of the final output of the RL
based decision making module is measured by the amount
of combinations of behavioral element and current patient
state-of-mind for which the selected action actually was the
optimal action. For the simulated patients based on the survey
data an performance of 84.3% is achieved, for the simulated
patients with random responses an performance of 81.7% is
achieved.

The reason for the lower performance of the simulated
patients is on the one hand more extreme cases are included
in the randomly generated simulated patients, on the other
hand the fact that the responses of these simulated patients
were changed halfway through the learning process can cause
a lower performance. Different exploration techniques or
perhaps a different RL method should be investigated to see
whether these can improve the performance for the randomly
generated simulated patients.

When comparing the learning process of the individual
Reinforcement Learning based decision making module to
the combination of the FLC personalization module and the
RL adaptation module it becomes evident that adding the
FLC personalization module makes the learning process of
the SAR converge with on average 13.3%.

The research still is in an early stage, for later stages
of the research several points have to be carried out. First
of all, experiments with real human beings, preferably real
dementia patients, must be conducted. Although the initial
results of the assessment look promising, they are based on
surveys and computer-based simulations. The survey relied
on human interpretation, where participants had to imagine
being in a situation where they interacted with the SAR.
Imagining such situations can be difficult and is sensitive to
the participant’s interpretation of the question. Therefore, an
experiment where people interact with the SAR in real-life is
crucial for further assessment of the decision making process.

Furthermore, besides the behavioral elements for the social
interaction, behavioral elements to select activities for the
dementia patients should be added. When the SAR is able
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to suggest activities to the dementia patients, the extent to
which it can provide care to the patient is increased and their
well-being is further improved. However, for the behavioral
elements to suggest activities, the remaining two traits of the
Big-Five personality traits (openness and conscientiousness)
should also be included in the FLC personalization module as
openness is related to a person’s creativity levels for example.
When the SAR must be able to suggest activities these traits
also become relevant. Suggesting activities to the dementia
patients keeps them entertained, which makes it an important
feature to add in later stages of the research.

Finally, instead of asking the patients to provide feedback
on their emotions to compute the rewards for the RL adap-
tation module, which is achieved with the response tables
in the computer based simulations, the SAR should be able
to detect these emotions automatically. Techniques already
exist that can detect emotion from facial expressions. For
the patients automatic detection of their emotion is more
convenient as they do not have to provide verbal feedback
to the SAR. Moreover, the system likely works faster as
there is no hassle with asking for feedback. Therefore, having
automatic emotion detection would be a great advantage for
the SAR.
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1
Introduction

According to the [1] the world population is ageing, meaning that the percentage of people over 65
is growing. Consequently, there is a rise in the number of people suffering from dementia. Ferri et
al. in [2] estimate the number of dementia patients to double every 20 years, with a total rising up to
81 million by 2040. Providing personalized care to dementia patients is a demanding task for health
care workers. An ageing society and increasing number of dementia patients confine care-givers from
giving personal one-on-one care. Mierlo et al. in [3] show that personalized care positively affects
the well-being of dementia patients. Therefore, the lack of personalized care reduces their quality of life.

Epp in [4] describes person-centred dementia care, an approach to achieve personalized care. In
contrast to the traditional culture of dementia care, where the focus lies on the disease and in which
individuality is depreciated, person-centred dementia care focuses on the appreciation of individual
patients. Care-givers take into account the desires and capabilities of patients to provide care that fits
their preferred way of living. Person-centred dementia care improves the quality of life of dementia
patients. Furthermore, it reduces agitation among the patients as they are given more freedom in
activity scheduling. However, person-centred dementia care is time consuming and expensive [3].
With the current rise in the number of dementia patients, innovative technologies for personalized care
are required to reduce the pressure on health-care workers.

An emerging field in robotics, Socially Assistive Robots (SARs), can form a solution to the increase of
the number of dementia patients. SARs are robots that assist people through social interactions [5].
To date, their main applications are health care, education and entertainment [6]. But, to the best of
our knowledge, SARs have not been used to provide personalized care to improve the quality of life of
the patients. Several researches have been performed on personalizing SAR behavior for short-term
interactions. However, little research has been performed on personalizing care of SAR’s on long-term
basis, as is required for person-centred dementia care.

This literature review is written as part of a research looking into a SAR to improve the quality of
life of people who suffer from dementia. The robot helps patients by providing personalized and
adaptive care in their daily routines. For example, it suggests activities that fit the user’s preferences
to decrease boredom. This paper conducts a literature review on SARs and methods to achieve
personalized care.

1.1. Research Question
Current research on personalized and adaptive SARs in dementia care do not consider long-term
interactions. Instead they are limited to short term interactions, such as individual therapy sessions.
This creates a gap in literature with the aim of the intended research, which concerns personalization
and adaptation for long-term SAR interactions to improve the quality of life of dementia patients.
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The focus of this research is to develop the decision making module of a SAR that is able to personalize
its behavior and interactions with a dementia patient on the patient’s preferences. Taking the gap of
long-term SAR personalization into consideration, the main research question is as follows:

How can a decision making module be developed for a Socially Assistive Robot by means of
techniques from control theory and Artificial Intelligence, such that the robot personalizes its

decision making towards long-term personality traits of dementia patients and exhibits
adaptive behavior to handle changes in the needs and emotional status of patients?

More information about control methods suitable for personalization and adaptation must be gathered
to be able to create the proposed SAR decision making module. Therefore, the following sub-questions
should be addressed to be able to answer the main research question:

1. Which novel control methods exist for personalization of SAR behavior?

2. Which novel control methods exist for adaptation of SAR behavior?

3. Which user attributes and personality traits should be considered in the adaptation and
personalization of the SAR behavior?

1.2. Research Objective
With the research questions established, the following research objective is introduced:

Develop the decision making module of a Socially Assisitive Robot for people with dementia,
which allows the robot to display personalized and adaptive behavior by means of intelligent

robot control.

This objective can be divided into several smaller sub-objectives:

1. Develop a controller that is able to personalize the behavior of a SAR with respect to the long-term
personality traits of a person with dementia.

2. Develop a controller that is able to adapt the behavior of a SAR to the short-term variations in the
needs and emotional status of a person with dementia.

3. Implement the developed decision making module in the humanoid robot Nao.

Nao is a human-like robot equipped with several features that allow for human robot interaction.
Moreover, the Nao robot is fully programmable, thus it allows for easy implementation of the developed
decision making module.

1.3. Report Structure
This literature review covers literature on SARs and techniques from control theory and Artificial
Intelligence (AI) suitable to achieve personalization and adaptation. Chapter 2 contains literature on
SARs. It starts by elaborating on the concept of SARs, in which the definition of SARs, challenges
in the design of SARs and the current applications of SARs are discussed. The concept is followed
by literature in which personalization and adaptation of SARs are used. Chapter 3, 4 and 5 cover the
theory behind novel control methods for personalization and adpatation of robot behavior. Moreover,
they include literature in which these control methods are applied in SARs. The control methods that are
considered are; Fuzzy Logic Control, Artificial Neural Networks and Reinforcement Learning for chapter
3, 4, and 5 respectively. Chapter 6 discusses the proposed solution for the controller for personalize
and adaptive robot behavior for people with dementia.



2
Socially Assistive Robots

This chapter explains the concept of Socially Assistive Robots (SARs) by means of existing literature.
It gives the formal definition of SARs, challenges that exist for designing SARs and their applications.
Furthermore, it covers literature on personalization and adaptation in SARs.

2.1. Definition of Socially Assistive Robots
SARs can be seen as the intersection between Socially Interactive Robots (SIRs) and Assisitive Robots
(ARs) [5]. ARs are robots that help human users in various ways, including physical tasks and memory
tasks. SIRs are robots whose tasks main task is social interaction, via gestures or speech for example.
SARs are a combination of ARs and SIRs; their purpose is to assist people through social interaction.

2.2. Challenges in Socially Assistive Robots
Ordinary robotics face challenges such as navigation and decision making, SARs also face challenges
arising from social interaction between the human user and the robot [6].

Fist off all, the robot must understand feedback provided by the user. Humans have different forms
of communication [7]. The most important communication methods are speech and non-verbal
communication through gestures and facial expressions. However, also small social cues, such
as the way someone dresses, can be very informative. For smooth interaction between a user
and a robot, the robot should be able to recognize and understand these forms of communication.
This enables the robot to determine the state or intention of the user and to display the desired behavior.

Secondly, the communication from the robot towards the user should be understandable and in line
with the user’s expectations. The most common forms of communication for SARs are speech and
gestures. The embodiment of a SAR determines which communication types can be used. For
example, [8] uses a SAR that consists solely of a head, this restricts it from using communication
methods such as hand gestures. Moreover, the embodiment of a SAR inflicts an expectation on the
user. For example, a person treats a pet robot differently than a humanoid robot [6].

Finally, the robot should have real time performance. If processing of received data and decisionmaking
take a lot of time, the interaction (if realized at all) is not considered pleasant by the user. Therefore,
the robot must be able to perform in real time to allow for smooth interactions with humans.

2.3. Applications of Socially Assistive Robots
In literature SARs assist people in various ways. These applications differ in form and intention of
the interaction between the robot and humans. The robots are used in short-term interactions to
provide assistance for therapists in individual therapy sessions or to provide help for children in short
educational games. However, the robots may also be used on a long-term basis, for example to assist
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people in daily life or for entertainment purposes [6]. This section elaborates on different applications
of SARs found in literature.

2.3.1. Socially Assistive Robots in Therapy Sessions
SARs can be used as therapy robots, for example in therapy for dementia patients, therapy for children
with Autism Spectrum Disorder and in post-stroke rehabilitation therapy.

Socially Assistive Robots in Dementia Therapy
A review on the use of SARs in elderly care [9] mentions that SARs in elderly care are mainly
categorized in two types: Service robots and Companion Robots, although some robots can be
categorized to both types. Companion robots can be used in therapy sessions. Therefore, for
therapeutic robots for dementia patients only the companion robots are considered, the service robots
are discussed in subsection 2.3.3.

The intention of companion robots is to create a bond between user and robot, similar to the way
people bond with their pets. Therefore, these robots often have an animal-like appearance. Generating
companionship with the robots yields in health benefits and improves the psychological well-being of
patients [9].

A widely used therapy robot is the seal robot Paro. In [10] and [11] Paro is used in intervention
sessions with a therapist or research assistant. During the sessions, patients are given Paro and their
interactions with Paro are recorded. Both studies show promising results. Marti et al. in [10] show
patients engage with Paro and have the feeling they have to take care of it. The patients seem less
stressful when interacting with Paro. Finally, Paro enables the therapist to establish communication
with the patient, something that can be difficult without the pet robot. Moyle et al. in [11] show varying
results, some patients respond positively towards Paro, whereas others have a negative attitude
towards it. Furthermore, individuals respond differently in different sessions. Therefore, the study
concludes that a single approach does not improve the quality of life of all patients and that different
approaches at different times are necessary for an individual patient. Sabanovic et al. in [12] uses
Paro in group sessions to investigate the effect of Paro on the person holding it (primary interactor) and
on the people surrounding it (non-primary interactor). The results of the study show that Paro does
not only stimulate interactions between the robot and the patient, but also contributes in interaction
between participants. Especially non-primary interactors show more activity, for example by looking
at and talking to the person interacting with Paro. However, also the primary interactor shows more
engagement towards the people around him or her.

Another companion robot is NeCoRo, a cat-like robot. Libin and Cohen-Mansfield in [13] compare the
effects of the robotic cat on dementia patients with the effects of a regular plush cat toy. The results
show that both the robotic cat and plush cat decrease the patients’ agitation levels and increase the
patients’ pleasure and interest levels. Of the two cats, the plush toy leads to the largest reduction in
agitation amongst the dementia patients. The patients prefer to hold the plush toy cat over the robotic
one and holding the cat has a more calming effect than interacting with it from a distance. The robotic
cat leads to a more significant increase in pleasure and interest compared to the plush toy cat. In
terms of engagement, the robotic cat has a small positive effect on the engagement of the patients but
its influence is not significant.

Companion robots are not the only type of SARs that are used in therapy for people with dementia.
Tapus et al. in [14] use a SAR in musical therapy for dementia patients. The aim of the robot is to
keep the patients engaged in a game called Name That Tune, where the patients have to recognize
a song, press the button corresponding to the song, mention the song’s name and sing along. The
robot provides assistance by explaining the game to the patients and by giving hints and encouraging
comments. Furthermore, the robot can change the difficulty of the game to the performance of the
user to keep him or her engaged. The results show that the performance of the patients, measured
by the number of correct answers and the time patients take to give a response, has improved during
the experiment. Moreover, caregivers have observed the patients to become more engaged with the
robot and in the game throughout a series of sessions. This shows that SARs can be used in cognitive
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therapy to prevent deterioration of the abilities of people with dementia.

Socially Assistive Robots in Autism Spectrum Disorder Therapy
Besides dementia therapy, SARs are also used in therapy for children with Autism Spectrum Disorder
(ASD). Common characteristics for children with autism are: difficulty developing social skills, a
preference for repetitive behaviors and having stereotypical interests. Therefore, robotic therapy
can be beneficial to children with ASD. Robotic interaction is more predictable than interaction with
a human therapist [15]. Furthermore, children are more engaged with robot therapists, especially
children with autism. Bekele et al. in [16] conduct an experiment on joint attention skills of children
with ASD. In the experiment children, aged between 2 and 5 years old, must coordinate their attention
between a social partner and their environment with the help of attention prompts, for example
gestures or audiovisual stimuli. The social partners are realized by a humanoid robot and a real
human therapist. The experiment also includes a control group of children without ASD as a reference
for the effectiveness of the system. The results show that both groups look significantly more to the
robotic therapist than to the human therapist. However, the difference between looking at the robot
and looking at the human is larger for the group of children with autism. Furthermore, children require
more prompts to shift their attention from the robot to the target than from the human therapist to the
target. This can be a sign of a large interest in the robot. For these two reasons, it is concluded that
SARs have a positive effect on the engagement of children in autism therapy.

Clabaugh et al. in [17] focus not only on developing the social skills of children with autism, but also
their educational skills. It conducts a long-term experiment where a SAR helps young children, aged
between 3 and 7 years old, suffering from ASD with mathematical problems. The SAR is able to adapt
its feedback and the difficulty of the problems to personalize the learning process for every individual
child. The results show that every child, apart from one child who has not completed the experiment,
has improved his or her mathematical skills significantly. Furthermore, the system is successful in
adapting the feedback and difficulty to the individual users.

Socially Assistive Robots in Post-Stroke Rehabilitation Therapy
Finally, SARs can be used in post-stroke rehabilitation sessions. In contrast to regular AR’s in
rehabilitation therapy, SARs often do not help the patient physically but mentally, with encouragement
for example. Matarić et al. in [18] perform a preliminary research on the effectiveness of SARs
in post-stroke rehabilitation therapy. In the experiment patients are asked to perform two tasks: A
magazine shelving task and a voluntary task that requires arm movement. During the tasks, the robot
provides the patients with feedback through sound effects, either with a synthesized voice or a human
voice. The results show that the robot therapist is well received among the patients and influenced their
motivation to exercise positively. In [19] Tapus and Matarić use a SAR for post-stroke rehabilitation
patients, where the type of encouragement is based on the level of extraversion of the patients. A
more detailed discussion of this research is given in subsection 2.4.1.

2.3.2. Socially Assistive Robots as Entertainment
Another application of SARs is entertainment. Various toys which are able to interact with their user
are developed for the entertainment of people [6].

First of all, there is the doll My Real Baby, designed by iRobot. The doll is equipped with actuators in
its face, allowing it to have facial expressions. It can generate sounds using a speaker and senses
with pressure sensors and an accelerometer. The interactive behavior of the doll is based on the
measurements from these sensors. Finally, the doll develops itself like real babies do. Shortly
after purchase it can only produce short infant sounds, later on it makes more advanced and lengthy
sounds. Other socially interactive dolls are Amazing Babies, My Dream Baby and Miracle Moves Baby.

Secondly, pet-like SARs are used for entertainment. The companion robots from subsection 2.3.1 can
also be used for entertainment of non-dementia patients. Fujita and Kitano describe the design of AIBO
in [20]. AIBO is a socially interactive dog designed for entertainment, although it is also used in dementia
care [21]. The strength of pet-like SARs is that they provide entertainment for people in various ways,
e.g., peoply may have fun interacting with the robots and also by observing robot while it plays with a
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ball or while it learns to walk. Some key features of AIBO are its ability to chase bright colored objects
and object avoidance, which are made possible by infrared-sensors and a vision chip enabling color
segmentation. Furthermore, AIBO is equipped with pressure sensors and accelerometers to detect
petting and falling. Other companion robots which also can be used as entertainment are Poo-Chi,
I-Cybie, Me and My Shadow and NeCoRo, the cat-like robot mentioned before.

2.3.3. Socially Assistive Robots as Service Robots
A third application for SARs is service. Service robots assist the user with a specific task. Example
tasks of service robots are welding for industrial service robots and household chores for service robots
in health care. Often these tasks can be performed with general AR’s. However, AR’s generally take
over the full task, whereas SARs can be used to only give mental feedback with the task. The user
still completes the task on his or her own, which gives a feeling of independence. Furthermore, social
interactions with the robot make it more user friendly, through which the user feels more comfortable
with the robot [6].

Moro et al. in [22] perform research on a SAR that helps people with cognitive impairments, such as
dementia, in daily life activities. The robot is taught behaviors necessary to assist patients in daily
life. Example behaviors are inviting the patient to make tea, engage the patient in case he or she is
distracted or correct the patient in case it performs an incorrect step. Afterwards, the robot must learn
to apply the right behavior at the right time. The robot successfully learns the behaviors for tea making
and when to apply them based on user models. In future research, real-life user studies are performed
to see whether the robot functions well on real patients and additional activities are investigated.

In [23] the research behind a SAR named Pearl is considered. Pearl is a SAR serving as assistant in a
nursing home. The robot reminds the residents of events and guides them through the nursing home.
Moreover, the robot has a speech recognition module enabling it to inform the user about the weather,
time or tv-shows when requested. In an experiment the robot is implemented in a real nursing home.
The residents are uniformly positive about Pearl, it succeeds in reminding the elderly of scheduled
appointments, in guiding the residents around the facility when walking assistance is required and in
interacting with the users.

The research on CERO, a robot for assistance in fetch and carry tasks, is discussed in [24]. The robot
can help people with a motion impairment to fetch or deliver objects from specified locations. The
paper considers CERO to be a SAR as the user can operate the robot by means of speech and CERO
can give feedback about the understanding of a task using gestures and spoken feedback. However,
the interactions between CERO and the user remain shallow and are only on the topic of the fetch
and carry task. Moreover, CERO for some fetching tasks CERO relies on people in its environment
to place the object its transportation tray. Therefore, CERO is not considered a SAR in this literature
review but an ordinary AR that is operated by voice.

2.4. Personalization and Adaptation in Socially Assistive Robots
In general, the researches discussed in section 2.3 show that people respond positively towards SARs.
Also SARs that are applied in dementia care are usually well received among the patients. However,
Moyle et al. in [11] conclude that there are differences in the responses between patients and that
individuals respond differently at different times. Therefore, one approach is not the optimal solution for
all patients. For the SAR to be effective for all patients, it must be able to personalize its behavior with
respect to an individual patient and adapt its behavior to variations in the emotional status of this patient.

In literature personalization and adaptation are often interchanged. This literature review considers
personalization as generating a robot behavior in line with the general preferences and capabilities
of a single user. Personalization forms the basis of the robot behavior. Adaptation then adapts this
behavior to variations in the user’s preferences and developments in the user’s capabilities. Variations
in the preferences of the user can be caused by mood changes, developments in the user’s capabilities
relate to progression the user makes in a certain task. The following sections cover the state-of-the-art
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research on personalization and adaptation of SAR behavior.

2.4.1. Personalization in Socially Assistive Robots
In [19] the behavior of a SAR is personalized based on the personality of a particular user. The
SAR is used in post-stroke rehabilitation therapy, where it encourages the patient with verbal cues,
its activity level and its proxemics, i.e., the distance it maintains towards the patient. Based on the
level of extraversion of the patient, the robot changes the type of feedback it gives. For example, for
extravert patients the robot gives comments like ’You can do it!’ on a high pitch and volume. Whereas
for introvert patients the robot gives comments like ’I know it’s hard, but remember it’s for your own
good’ on a low pitch and volume. Furthermore, the SAR can change its distance to the user and its
activity level through the speed and amount of movements it makes. The robot displays higher activity
levels towards extrovert people. Results of the experiment show that people prefer the robot behavior
matching their personality instead of the opposite behavior.

2.4.2. Adaptation in Socially Assitive Robots
Adaptation of SAR behavior is covered in [14], where the difficulty of the game Name That Tune
is changed based on the performance of the user. The robot can assist the patient in three ways:
Not giving a hint (difficult), reminding to push a button (medium) and telling which button to push
(easy). The SAR must adapt the difficulty of the game towards the development of the user. This
development is measured by the number of correct answers and the time the user takes to provide
the answers. Results show that the SAR successfully adapts the game difficulty to the progress of the
users. Initially, a user starts on the easy level where the robot tells which button to choose. However,
the SAR increases the difficulty as the user improves. When a new level turns out to be too difficult
for the user, the SAR returns to the previous level. Eventually, the user performs consistently on the
most difficult level, where no hints are given.

In [16] children with autism have to perform a joint attention task. In this experiment the SAR inlcudes
different prompt levels to shift the attention of the child towards the target. The system can adapt
the prompt level depending on whether the previous level was successful in shifting the attention. In
case the child does not shift his or her attention towards the target, the prompt level is increased.
The different prompts that the SAR can use are head shifting towards the target, pointing towards
the target, giving vocal cues to shift the child’s attention to the target and playing sounds, displaying
pictures or videos at the target location.

2.4.3. Both Personalization and Adaptation in Socially Assistive Robots
Personalization and adaptation are used together in [25] to keep a user engaged in a sequencing
task. User models are used for personalization of the SAR behavior and human feedback is used
for adaptation of the SAR behavior. The user models contain information on which vocal feedback
to give (encouraging or challenging) and on when to increase the difficulty level of the sequencing
task depending the level of engagement of the user. The user models are created for different user
skills under the different difficulty levels. Real-life performance data, collected in performance and
engagement measurements from a group of 69 computer science students, is used for the creation
of the user models. In future work these user models are used for the personalization of the SAR
behavior. Before the sequencing task, the system performs a user skill assessment, in which the
task performance and engagement of the user under different difficulty levels is determined to select
the corresponding user model. The user model forms the personalized basis behavior of the SAR.
Throughout the active phase of the sequencing task, the SAR adapts its behavior using feedback from
the user. This adaptation process is achieved with a method called interactive reinforcement learning,
which is covered in chapter 5.

Clabaugh et al. in [17] describe the design of a SAR providing assistance to children with autism
during various mathematical games. Similar to [25], the robot can adjust the difficulty of the games
and the level of feedback it gives. The experiment is held over the course of a month and 10 different
mathematical games are used in the experiment. In the beginning the system has to find the right level
of challenge and feedback for the user in the different kinds of games. It learns the right levels by
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observing the number of mistakes and the number of help requests that the user makes in the different
kinds of games. Once an initial behavior was established for the child, the system had to adapt the
difficulty of the game and the level of feedback to the progress that the child made in the different
games.



3
Fuzzy Logic Control

The purpose of the research is to develop a decision making module for a SAR that can personalize
its behavior to the long-term personality traits of dementia patients and that can adapt this behavior to
short-term variations in the patient’s emotional status and the environmental status. The following
chapters discuss different techniques from control theory and Artificial Intelligence (AI), that are
suitable for personalized and adaptive behavior in SARs. This chapter considers fuzzy logic control, a
rule-based control method that relies on a set of if-then rules for the decision making. The reasoning
principles of fuzzy logic control are similar to the reasoning process of humans. Ambiguities in the
reasoning and thinking procedures mainly caused by linguistic terms people use to describe real-life
phenomena form challenges in classic control methods. However, fuzzy logic control uses fuzzy sets to
handle these ambiguities [26]. This chapter explains the main idea of fuzzy logic control and discusses
various implementations of fuzzy logic control in the field of SARs.

3.1. Main idea of Fuzzy Logic Control
Fuzzy logic control is a rule-based control method, relying on fuzzy logic. This section explains the
fuzzy process consisting of:

1. Fuzzy sets

2. Fuzzification

3. Inference

4. Defuzzification

3.1.1. Fuzzy Sets
Unlike classical control methods, fuzzy logic control can handle ambiguous data: where classical
controllers rely on crisp data, such as numerical values, fuzzy logic control can also handle ambiguous
data, like linguistic terms [26]. For example, consider a controller for controlling the room temperature,
classic rule-based controllers use rules in the following form: If the temperature rises above 25° set
the motor of the air-conditioning to 100 rotations per minute. However, a rule in a fuzzy logic controller
looks like: If the temperature is high, rotate the motor of the air-conditioning fast. The rule in the fuzzy
logic controller is more like the way people think and reason. This makes it way more ambiguous
than the classical controller, which uses crisp values for actuation. Fuzzy logic control handles these
ambiguities using fuzzy sets [26].

In ordinary sets, an element either belongs to or does not belong to a set, there is no situation in
between. Fuzzy sets allow an element to belong to a set to a certain degree that can vary from 0 to 1.
Bai and Wang in [26] give an example of a group of faculty members to clarify the difference between
ordinary sets and fuzzy sets. The group of faculty members consists of 10 people aged between 28
and 61. This group is displayed in Figure 3.1 with their age indicated on the x-axis. From the group of
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faculty members, a set is created with young faculty members. For an ordinary set with young faculty
members, a threshold age must be set to determine whether someone is young or not. For example,
people aged below 40 are considered young, i.e., only the first three members belong to the set of
young faculty members. However, this is different for a fuzzy set, which allows partial membership to
the set. Therefore, if the set of young faculty members is defined as a fuzzy set, then the people who
are aged below 40 can be full members of the set with a membership degree of 1, but people above 40
can still be a partial member of the set. The membership of the faculty members decreases as they are
older. Hence, faculty member 𝑥4, who is 42 years old, still has a membership to the set young faculty
members with a degree of, e.g., 70% (see Figure 3.1, which shows the membership function of the
sets for young faculty members). Faculty member 𝑥5, who is 49 years old, is also still part of the set,
but with a membership of 30%. This example shows that the transition of belonging or not belonging
to fuzzy sets is smoother than the transition for ordinary sets.

Figure 3.1: Group of faculty members and the membership functions corresponding to a classical vs. a fuzzy set [26]

The extent to which an element is part of a fuzzy set is described by membership functions. The
designer of the controller sets the shape of the membership function of a fuzzy set. Example shapes
for the membership functions are given in Figure 3.2 [27].

Figure 3.2: Common shapes for a member function [27]

Similar to ordinary sets, operations such as complement, union and intersection can also be extended
and applied to fuzzy sets. Generally speaking, the complement of a set is its opposite set. Any element
that does not belong to the set, belongs to its complement. This is visualized in Figure 3.3. When having
a fuzzy set, 𝐴, its complement, �̄�, is given by (3.1) [27]:

𝜇�̄�(𝑥) = 1 − 𝜇𝐴(𝑥) (3.1)

Where 𝜇𝐴(𝑥) is the membership degree of the element x to the fuzzy set A.
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Figure 3.3: The complement, �̄� of fuzzy set, 𝐴

The intersection of two sets in general concludes the elements that are present in both sets. For two
fuzzy sets the intersection is the minimum of the membership degrees of every element in these two
sets. The intersection, 𝐶 = 𝐴 ∩ 𝐵, is illustrated in Figure 3.4 and is given by (3.2) [27]:

𝜇𝐶(𝑥) =min{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} (3.2)

Figure 3.4: The intersection of fuzzy sets 𝐴 and 𝐵

The union of two sets is in general the collection of all elements in these sets. For two fuzzy sets
the union is the maximum of the membership degrees of all elements in these two sets. The union,
𝐶 = 𝐴 ∪ 𝐵, is illustrated in Figure 3.5 and is given by (3.3) [27]:

𝜇𝐶(𝑥) =max{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} (3.3)

Figure 3.5: The union of fuzzy sets 𝐴 and 𝐵

When having fuzzy sets in multiple dimensions, the operations projection and cylindrical extension
become relevant. Projection is a reduction in the number of dimensions of a fuzzy set, cylindrical
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extension is increasing the dimensions of a fuzzy set. Take a fuzzy set, 𝐴, in domain 𝑋 × 𝑌 with
𝑋 = {𝑥1, 𝑥2} and 𝑌 = {𝑦1, 𝑦2}. 𝐴 can be defined as in (3.4):

𝐴 = {𝜇1/(𝑥1, 𝑦1), 𝜇2/(𝑥1, 𝑦2), 𝜇3/(𝑥2, 𝑦1), 𝜇4/(𝑥2, 𝑦2)} (3.4)

In this representation, 𝜇1 corresponds to the membership degree of the set on point (𝑥1, 𝑦1), 𝜇2
corresponds to the membership degree of the set on point (𝑥1, 𝑦2), etc. The projection of a fuzzy set
in a certain domain is performed by taking the maximum of the set’s membership degree at the points
belonging to this domain. In the example given by (3.4), the membership degrees 𝜇1 and 𝜇2 correspond
to 𝑥1, the membership degrees 𝜇1 and 𝜇3 correspond to 𝑦1, etc. The projections of fuzzy set, 𝐴, in,
respectively, domains 𝑋 and 𝑌 are given by (3.5) and (3.6) [27] and are illustrated in Figure 3.7:

proj𝑋(𝐴) = {max(𝜇1, 𝜇2)/𝑥1,max(𝜇3, 𝜇4)/𝑥2} (3.5)
proj𝑌(𝐴) = {max(𝜇1, 𝜇3)/𝑦1,max(𝜇2, 𝜇4)/𝑦2} (3.6)

Figure 3.6: Projection of fuzzy set 𝐴 in domains 𝑋 and 𝑌 [27]

Cylindrical extension increases the dimensions of a fuzzy set. Consider the fuzzy set, 𝐴, in domain, 𝑋,
with 𝑋 = {𝑥1, 𝑥2} as given in (3.7). The extension of 𝐴 to the domain 𝑌 with 𝑌 = {𝑦1, 𝑦2} is performed
with (3.8) [27]:

𝐴 = {𝜇1/(𝑥1), 𝜇2/(𝑥2)} (3.7)
ext(𝐴) = {𝜇1/(𝑥1, 𝑦1), 𝜇1/(𝑥1, 𝑦2), 𝜇2/(𝑥2, 𝑦1), 𝜇2/(𝑥2, 𝑦2)} (3.8)
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Figure 3.7: Extension of fuzzy set 𝐴 to domain 𝑌 [27]

3.1.2. Fuzzification
Fuzzy sets form the basis for fuzzy logic control. However, further steps are required to make fuzzy
sets useful for control applications. Fuzzification is the first step in the process of fuzzy logic control. It
is the process of converting real-life data into fuzzy variables and it consists of representing the input
variables by linguistic terms and the derivation of the membership functions [26].

Consider the example of room temperature control. The input variable to the controller is the room
temperature in this case. If the controller classifies the temperature in three categories, it requires
three linguistic terms: Low, Medium and High for example. A possible distribution of the membership
functions for these three categories is shown in Figure 3.8. It can be seen that the categories may
overlap, which means that some temperatures can belong to multiple fuzzy sets. For example, a
temperature of 17° belongs to the set low and to the set medium, these overlaps may lead to smooth
transitions between the two fuzzy concepts low and medium [26]. Examples of commonly used
membership functions are triangular, trapezoidal and singleton membership functions displayed in
Figure 3.2. However, the membership function can also be designed uniquely for a specific controller.
The choice of membership function depends mainly on the application of the controller. For instance,
triangular and trapezoidal functions are suitable for systems that require large dynamic variations in a
short time period, whereas bell shaped functions are better when high control accuracy is required [26].
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Figure 3.8: Example of fuzzification of the variable temperature in three linguistic terms

To summarize, in the fuzzification step, the crisp input variables should be converted into fuzzy
sets (which represent linguistic terms). Each fuzzy set corresponds to a membership function that
mathematically represents the resulting fuzzy input variable.

3.1.3. Inference
Fuzzy inference requires fuzzy inputs and a rule base consisting of logical if-then statements that may
involve fuzzy sets. After the fuzzification procedure, the fuzzy output data is determined based on the
fuzzy rules and the fuzzy input data via fuzzy inference [26].

The first part of the inference process is setting up the rules of the fuzzy rule base. These rules
are simple if-then rules, which show the relation between the input and output sets. The rules are
described with the linguistic terms corresponding to the input data. The use of linguistic terms makes
fuzzy logic control similar to the way humans think and reason [26].

When the inference rules are set up, the output fuzzy sets can be determined from the input fuzzy sets.
One approach to do this is the Mamdani inference, also called the max-min inference. This approach
is summarized in three steps [28], shown in Figure 3.9. The figure displays a model with three rules:

1. If 𝑥 is 𝐴1, then 𝑦 is 𝐵1
2. If 𝑥 is 𝐴2, then 𝑦 is 𝐵2
3. If 𝑥 is 𝐴3, then 𝑦 is 𝐵3

Here 𝑥 is the input variable, 𝐴1, 𝐴2 and 𝐴3 are the fuzzy sets corresponding to the input linguistic terms,
𝑦 is the output variable and 𝐵1, 𝐵2 and 𝐵3 are the fuzzy sets corresponding to the output linguistic terms.
For the given example, the input data, 𝑥, is represented by the fuzzy set 𝐴′.



3.1. Main idea of Fuzzy Logic Control 35

Figure 3.9: The Mamdani inference process

The operations from subsection 3.1.1 are used in the inference process. The first step is to determine
to what degree the individual rules are fulfilled. The fulfillment, 𝛽, is calculated according to (3.9):

𝛽𝑖 =max{𝜇𝐴′(𝑥), 𝜇𝐴𝑖(𝑥)} (3.9)
The 𝑖 in 𝛽𝑖 and 𝜇𝐴𝑖(𝑥) stands for each individual rule, where i for the given example can be 1, 2 or 3.
The top left picture in Figure 3.9 shows the calculation of the fulfillment per rule. For example, rule 3
has a fulfillment of 0. Step two of the inference process is to derive the fuzzy output sets per rule as a
result of their fulfillment. This is shown in the top right of Figure 3.9 and is done via (3.10):

𝜇𝐵′𝑖 (𝑦) =min{𝛽𝑖 , 𝜇𝐵𝑖(𝑦)}∀𝑦 (3.10)
That is for every individual rule the minimum of the fulfillment and output membership function should
be computed. Finally, from the output sets per rule (note that we refer to the sets, whereas the
computations are performed on the corresponding membership functions) the membership function
corresponding to the overall fuzzy output set can be determined, which is shown in the bottom left of
Figure 3.9 and done via (3.11):

𝜇𝐵′(𝑦) = max
∀𝑖∈{1,2,3}

{𝜇𝐵′𝑖 (𝑦)} (3.11)
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3.1.4. Defuzzification
With the fuzzy output set determined in the inference process, the only thing left to do is converting the
fuzzy output set back to a crisp value for the actuators of the system. This is done in the defuzzification
step. Defuzzification can be performed with various methods, where the commonly used methods are
the center of gravity method (COG) and the mean of maxima (MOM) [26], shown in Figure 3.10.

Figure 3.10: Commonly used methods for defuzzification [26]

The COG method calculates a weighted average based on the membership degrees of the output set
over the elements in the output fuzzy set. The crisp value is calculated with (3.12) [26]:

𝑦′ = COG(𝐵′) =
∑𝑛𝑖=1 𝜇𝐵′(𝑦𝑖) ⋅ 𝑦𝑖
∑𝑛𝑖=1 𝜇𝐵′(𝑦𝑖)

(3.12)

Here 𝑛 is the number of elements 𝑦𝑖 in the domain 𝑌. In case of a continuous domain 𝑌, the integral
of the membership should be used. The MOM method calculates the mean value of the elements with
the highest membership degree. The MOM method can be described by (3.13) [26]:

𝑦′ = MOM(𝐵′) =
∑𝑛𝑖=1 argmax𝑦𝑖 (𝜇𝐵′(𝑦𝑖))

𝑛 (3.13)

In this equation only the elements with the maximum membership are considered. In the equation
𝑦𝑖 are the elements with maximum membership and 𝑛 is the number of elements with the maximum
membership. A drawback of the MOM method is that it does not represent the complete shape of the
output fuzzy set. Hence, different fuzzy outputs can produce the same crisp value when the maximum
elements are the same [26].

3.2. Fuzzy Logic Control in Socially Assistive Robots
Little research is performed on fuzzy logic controllers as the sole control element in SARs. Therefore,
in this section we have also included research that combines fuzzy logic control with other control
methods.

One application of fuzzy logic control in the field of SARs is emotion expression, which has been
discussed in [29]. In this paper fuzzy logic control is used to generate facial expressions, allowing
the robots to express emotions like fear, surprise and anger. The robot displays reactive behavior
on people approaching it. Depending on the distance and on the approaching speed of the person,
the robot feels a different mixture of the three emotions and shows a different facial expression. For
example, when a person blocks the SAR by standing still in front of it, the SAR shows an angry face.
The SAR uses two sets of fuzzy rules to express its emotions. One set of rules is used to map the
events (the distance of the person and the approaching speed) to the emotions the SAR feels. The
second set of rules maps these emotions to facial expressions. The rules of this set contain information
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on how to actuate the motors in the robot’s face according to which extent a certain or a mixture of
emotions should be displayed. Enabling a SAR to express emotions is beneficial for the interaction
between a user and a robot. Fuzzy logic control is a suitable approach for the emotional expression
as it has an easy implementation and the design is easy to understand even for non-experts.
Moreover, it allows for smooth transitions of emotions, which makes the robot behave almost like
a human. Finally, fuzzy logic control allows the robot to express a mixture of emotions if this is required.

A combination of neural networks and fuzzy logic control is investigated in [30]. The two control methods
are combined to determine appropriate proxemics, i.e., the distance the robot maintains with respect to
the user. The proxemics are an important feature to make a person feel comfortable when interacting
with the robot. The SARmust adapt the proxemics to the user’s personality and current activity. People
with different personalities differ in the proxemics they prefer to maintain. Furthermore, the preferred
proxemics of a person depend on the activity that this person is performing. Therefore, the robot in
this experiment adapts its proxemics to the personality of the user and on which activity the user is
performing. The decision making module of the SAR exists of two layers. The first layer is used to
assess which type of activity the user is performing. This layer relies on a Naive Bayes classifier to
classify the user’s activity based on sensor data captured with a smart watch worn by the user. The four
activities considered in the experiment are lying, sitting, standing and walking. The second layer adapts
the proxemics of the robot to the Big Five personality traits of the user and the activity that has been
selected in the previous layer. The adaptation process relies on a combination of fuzzy logic control
and artificial neural networks. It uses fuzzy rules, where the output of the rules contains parameters
that can be trained with a neural network. An example rule of the adaptation layer has the following
structure:

If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then 𝑓1 = 𝑎1 ⋅ 𝑥 + 𝑏1 ⋅ 𝑦 + 𝑐1
In this rule 𝑎1, 𝑏1 and 𝑐1 are parameters that can be changed. These parameters are updated with a
neural network, which uses training input data and desired output data to select the right parameters.
The input data 𝑥 and 𝑦 can be the personality traits of the Big Five personality inventory and one of
the four activities which has been identified in the classification layer. Thus, the system in this paper
is not an ordinary fuzzy logic controller but a fuzzy logic controller trained with a neural network.



4
Artificial Neural Networks

Another intelligent control method that can be used for personalized and adaptive SAR behavior is
control with artificial neural networks. Fuzzy Logic Control requires the designer to describe the physics
of the system with a set of if-then rules, whereas artificial neural networks are based on a model free
approach. More specifically, no knowledge of the underlying physics of the system is required for a
decision making module relying on artificial neural networks. In this case, instead of the rules given to
the system by the designer, the artificial neural network is trained based on a set of input-output data
that has been gathered from the controlled system. This chapter explains the working principle behind
artificial neural networks and how they are used in SARs.

4.1. Working Principle of Artificial Neural Networks
The aim of artificial neural networks is to mimic the functioning of the brain in a simplified fashion.
Artificial neural networks can be used to control complex and non-linear systems without requiring
prior knowledge of the exact physics of the system. Different types of artificial neural networks exist,
but they all rely on the same principles. The artificial neural network is built with a set of neurons, where
each neuron receives an input value, processes this input with a function and produces an output value.
Every neuron is connected to at least one other neuron, meaning that the output of the first neuron is
the input to the consecutive neuron. The connection between every pair of neurons is specified by a
weight, which shows the importance of the connection within the artificial neural network. The artificial
neural network learns to approximate the desired output data by changing the weights until satisfactory
outputs are produced [31].

4.1.1. Artificial Neural Network Structure
Many artificial neural network types exist. However, the most typical form of artificial neural networks
is the feed forward artificial neural network [32]. A feed forward artificial network with two hidden layers
is illustrated in Figure 4.1.

38
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Figure 4.1: Structure of a feed forward artificial neural network [33]

In feed forward artificial neural networks, the neurons are ordered in layers. The first layer of the
artificial neural network is the input layer, the final layer is the output layer and all the layers in between
are called hidden layers. The number of neurons in the input and output layers correspond with the
number of inputs and outputs of the system respectively, whereas the number of neurons in the hidden
layers is chosen by the designer of the artificial neural network. The neurons of two consecutive layers
are fully connected, these connections are defined by a weight, 𝑤𝑖𝑗, where 𝑖 is a neuron in a layer and
𝑗 is a neuron in the consecutive layer. Data is fed through the layers, where the neurons transform this
data with an activation function. The input to the activation functions of the neurons are the weighted
sum of the outputs of the neurons in the previous layer. This is summarized in (4.1) [31].

𝑥𝑗 = 𝜎𝑗 (∑
𝑖
𝑤𝑖𝑗𝑥𝑖) (4.1)

In this equation 𝑥𝑗 is the output of a neuron 𝑗 in a layer. 𝜎𝑗 is the activation function corresponding to
the neurons in this layer. The sum in the equation contains 𝑤𝑖𝑗, the weight of the connection between
a neuron 𝑗 and a neuron 𝑖 from the previous layer, multiplied with 𝑥𝑖, the outcome of the neuron in the
previous layer. Different functions can be used as activation function depending on the application of
the artificial neural network, where typical activation functions are: the linear, sigmoid, tanh, ReLu and
Gaussian activation functions [34].

4.1.2. Training an Artificial Neural Network
Artificial neural networks must be trained to be able to produce outputs that are expected from the
artificial neural network. The artificial neural network is trained by updating the weights of the different
connections between neurons. More important connections are given a higher weight than less
important connections. One approach to train artificial neural networks is back-propagation. For the
training process training data is required. This training data consists of expected input data to the
system and the corresponding desired output data [33].

The back-propagation algorithm includes two stages: forward-propagation and back-propagation. In
the forward-propagation stage the output of the artificial neural network with the current weights is
determined. The training input data is fed through the artificial neural network and the output is
calculated by transforming the data with the activation functions of the neurons. The produced output
of the artificial neural network is compared with the desired outputs from the training data and an error
is computed with the squared error function in (4.2) [33].

𝐸 = 1
2

𝑛

∑
𝑗=1
(𝑦𝑗 − 𝑦d𝑗 )

2
(4.2)
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In this equation 𝑛 is the number of neurons in the output layer, 𝑦𝑗 is the output of a neuron in the output
layer and 𝑦𝑑 is the corresponding desired output of this neuron. Then, in the back-propagation stage,
the squared error is minimized by updating the weights of the artificial neural network. This is achieved
by feeding the computed error back into the artificial neural network and determining its gradient with
respect to the connection weights. The weights are then updated according to (4.3) [33] [31].

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) − 𝜂 ⋅
𝜕𝐸
𝜕𝑤𝑖𝑗

(4.3)

Here 𝜂 is a learning ratio, which the designer can use to tune the learning process of the artificial
neural network. The back-propagation method is based on the steepest descent minimization, a
first-order gradient method [31]. However, other methods for training the artificial neural network
are also available. For instance, training artificial neural networks can also be done with the
Levenberg-Marquardt algorithm, a second order gradient method [35].

4.2. Artificial Neural Networks in Socially Assistive Robots
A widely used application of artificial neural networks is recognition in computer vision [32]. This is
also the most common application of artificial neural network in SARs. Therefore, artificial neural
networks are mainly applied in the data analysis stage of SARs instead of in the control stage if SARs.
This section discusses the applications of artificial neural networks in the field of SARs

Bera et al. in [36] and Garcia et al.in [37] use artificial neural networks to determine the emotional
state of the user. Bera et al. in [36] use a person’s walking trajectory and his or her facial expression to
determine the emotional state. The emotional states are measured in four categories: angry, happy,
sad and neutral based on the pleasure and arousal dimensions. Two video streams are used to
determine the emotional state, one from a fixed overhead camera and one from a camera on the SAR.
The overhead camera collects the trajectory parameters of pedestrians, whereas the robot camera
detects the facial features. The trajectory features are mapped to an emotional state using linear
regression from a user study. The facial features are fed to a convolutional artificial neural network,
which is trained with an emotion dataset, to compute the corresponding emotion. The computed
emotions can than be used for a socially aware SAR. Garcia et al. in [37] also uses a convolutional
artificial network to map facial expressions to emotional states. The artificial neural network is trained
with an emotional faces database and can detect seven different emotions: angry, disgust, fear, happy,
neutral, sad and surprised. The artificial neural network focuses on the shape of the mouth, eyes
and eyebrows to detect the emotional states. These features are highlighted by running the images
through Gabor filters, which are powerful filters for edge detection. After training the artificial neural
network it has been tested on the humanoid robot Nao. The results of the real-time test of recognizing
emotions with Nao are significantly lower than from the classification of the training data. This is
caused by the fact that the conditions in of the faces in the training data are optimal and in the real-life
test this is not the case. The ability to recognize emotional states enables a SAR to communicate
more effectively with humans and perhaps adjust the SAR’s behavior to the emotional state of the user.

Martinez-Martin and Cazorla in [38] use an artificial neural network to recognize physical exercises
performed by elderly. The output of the artificial neural network is a skeleton that visualizes the
limb positions of the patient. The SAR reminds the elderly of scheduled exercise sessions. In these
sessions it explains which exercises to perform and monitors the patient’s execution of the exercises.
The robot gives the elderly feedback on their performance. Furthermore, their performance is recorded
such that a therapist can analyze it and follow the patient’s progress.

Moreover, as discussed in section 3.2, artificial neural networks are combined with fuzzy logic control in
[30]. Here fuzzy logic control is used as the main controller for the proxemics of a SAR, where the fuzzy
rules depend on adaptive parameters. Artificial neural networks are used to train these parameters and
improve the functionality of the fuzzy logic controller.



5
Reinforcement Learning

A final method for personalization and adaptation that is considered in this literature review is
reinforcement learning. Similar to artificial neural networks, reinforcement learning is a model free
approach. However, where artificial neural networks require training data to learn the expected
behavior, reinforcement learning does not. This chapter starts with an explanation of the basic
working principles of reinforcement learning. This is followed by the description of different forms of
reinforcement learning. Finally, examples of reinforcement learning in SARs are discussed.

5.1. Working Principle of Reinforcement Learning
Reinforcement learning relies on the interactions of an agent (for instance, an agent that should make
decisions about taking some actions in an unknown environment) with the environment and learning
which actions have a positive result when trying to achieve a certain goal. This is similar to the way
people learn throughout their lifetime. For example, when a child touches a hot pan, it hurts and the
child knows not to do this in the future. In reinforcement learning rewards are given to an agent when
it performs an action. Depending on the quality of the action with respect to the desired goal, the
given reward is high or low. The agent learns by updating its behavior such that it can maximize the
rewards it receives. Thus, in the learning process the agent is not told what behavior is expected from
the agent, but the agent should discover this by itself [39].

Some crucial concepts in reinforcement learning are: agent and environment, policy, reward function
and the value function. The agent is the decision maker, which interacts with its environment. The
interaction between the agent and the environment is displayed in Figure 5.1.

Figure 5.1: The interaction between an agent and its environment (recreated from [39])
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The agent makes its decisions based on a policy. The agent performs different actions depending on
the the state of the environment. For example, consider a mobile robot that must avoid obstacles in its
environment. When this robot senses that the path in front of it is clear, it continues to drive straight
ahead. However, when it notices that it approaches an obstacle, it makes a turn to avoid this obstacle.
The reward function determines the reward that the agent receives for a given action. The reward
function is set up by the designer of the reinforcement learning system. Based on the rewards, the
agent knows whether an action is desirable or not. In the case of the mobile robot, a small positive
reward can be given to the robot every time step that it has not collided with an obstacle and a large
negative reward can be given in case of a collision. The reward function only provides short-term
feedback on whether an action is good or bad. However, the goal of the agent is to maximize the
rewards over the entire length of operation. Hence, the value function is introduced. The value function
assigns a value to different states, the higher this value the more desirable the state. The agent must
find actions that lead to the states with higher values. The value function can be seen as the expected
sum of future rewards and indicates which actions are desirable in the long run. It can be the case that
an action has a low reward but leads to a state with a high value. Then, despite the low immediate
reward, this action is still desirable in the long run [39].

Initially, the agent has no information about the environment. Therefore, the agent starts to interact
with the environment to gather information in episodes. The agent learns by taking actions, receiving
rewards and updating the value functions. However, as the agent gathers more information a challenge
of balancing the exploitation and exploration of the environment is raised. Exploiting the environment
means taking actions that have resulted in high rewards in the past. Exploiting is in line with the goal
of maximizing the agent’s reward. However, it can be the case that there are states with high rewards
which the agent has not visited yet. Therefore, the agent also must explore the environment to discover
new states with high rewards. The designer of the agent must find a good balance between exploring
and exploiting the environment to allow the agent to learn the optimal solution to the problem. This
balance can be implemented in the policy. Three possible policies are:

Random: a random action is selected from the set of possible actions

Greedy: the agent takes the action with the highest value function

𝜖-Greedy: in 𝜖 percent of the cases, the random policy is used. The other times the greedy policy is
used

The random policy has full exploration, the greedy policy has full exploitation. The 𝜖-greedy policy is
suitable to balance exploration and exploitation [39].

5.2. Forms of Reinforcement Learning
Different approaches to reinforcement learning exist. This section discusses the following forms of
reinforcement learning:

1. Q-learning

2. Deep Reinforcement Learning

3. Policy-Gradient Reinforcement Learning

5.2.1. Q-learning
Q-learning is applied to discrete systems with a limited number of states and actions. Instead of the
value function, Q-learning uses a value called the Q-value to determine which action to take. The
Q-value does not assign a value to each individual state but to every state-action combination, these
values are stored in a table. When the agent is in a certain state it looks up the Q-values for this state
and selects an action according to its policy. The exact algorithm works as follows [39]:
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1. Initialize 𝑄(𝑠, 𝑎)

2. Repeat for a specific number of episodes

(a) Determine starting state, 𝑠
(b) Repeat for a specific number of steps in the episode

i. Determine corresponding action, 𝑎, based on the policy derived from 𝑄 and 𝑠
ii. Take action 𝑎
iii. Observe the reward, 𝑟, and the new state, 𝑠′
iv. Update Q-value according to: 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾max𝑢𝑄(𝑠′, 𝑢) − 𝑄(𝑠, 𝑎)]
v. Update 𝑠 to 𝑠′

(c) Stop episode if target is reached or the maximum number of steps is exceeded

In the Q-value update step max𝑢𝑄(𝑠′, 𝑢)means taking the maximum Q-value for the new state. Here 𝑢
means every possible action that can be taken in the new state, the action which results in the highest
Q-value should be taken. 𝛼 is the learning rate of the reinforcement learning system, a high learning
rate leads to larger updates of the Q-values. 𝛾 is a discount factor on future rewards incorporated in
the Q-values. 𝛼 and 𝛾 are set by the designer of the reinforcement learning system. The discount
factor allows the designer of the reinforcement learning system to account for uncertainties about
whether these future rewards are received. Thus, in summary, in the Q-learning algorithm the agent
explores the environment in episodes. The episode lasts for a predefined number of time steps or
until a terminating state is reached. Every time step the agent takes an action according to the policy,
which can be a greedy or 𝜖-greedy policy for example. Next it observes the reward and new state.
Then it updates the Q-value for the state-action pair using the received reward and maximum Q-value
of the new state. Finally, the state is updated and the process is repeated [39].

The main advantage of Q-learning is that the method is easy to implement. However, Q-learning
is limited in its applications, i.e., it can only be used for systems with discrete state-action spaces.
Furthermore, when the state-action space becomes too large the system requires a lot of memory and
the performance of the system reduces time-wise.

5.2.2. Deep Reinforcement Learning
When the state space becomes large, Q-tables take too much time and memory. This requires a
more advanced form of reinforcement learning: Deep Reinforcement Learning. Deep reinforcement
learning combines classic reinforcement learning with artificial neural networks. The deep version of
Q-learning is called Deep Q-Networks (DQN) [40].

DQN’s do not use a table to determine the Q-values, but they calculate the Q-value using artificial
neural networks. Two artificial neural networks are used in the DQN method: A prediction and a target
artificial neural network. The predictor artificial neural network predicts the Q-value for the current
state, whereas the target artificial neural network is used to give a target Q-value required to update
the prediction artificial neural network. The steps of the algorithm are similar to the original Q-learning
method apart from the Q-value update. The deep learning method works as follows [41]:

1. Initialize predictor artificial neural network, 𝑄, with weights 𝜃

2. Initialize target artificial neural network, �̂�, with weights �̂� = 𝜃

3. Repeat for a specific number of episodes

(a) Determine starting state, 𝑠
(b) Repeat for a specific number of steps in the episode

i. Determine action, 𝑎, based on the policy and the Q-values determined by the prediction
artificial neural network, 𝑄

ii. Take action 𝑎
iii. Observe the reward, 𝑟, and the new state, 𝑠′
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iv. Calculate themaximumQ-value of the new state using the target artificial neural network
�̂�

v. Update the weights, 𝜃, of 𝑄 based on the following error: (𝑟 + 𝛾max𝑢�̂�(𝑠′, 𝑢) − 𝑄(𝑠, 𝑎))
2

vi. Update 𝑠 to 𝑠′
vii. After a predefined number of steps reset weights �̂� equal to 𝜃, such that �̂� = 𝑄

(c) Stop episode if target is reached or the maximum number of steps is exceeded

In the update step of the weights max𝑢�̂�(𝑠′, 𝑢) means taking the maximum Q-value of the outcome of
the target artificial neural network for the new state. Here 𝑢 means every possible action that can be
taken in the new state, the action which results in the highest Q-value should be taken. 𝛾 is a discount
factor on future rewards incorporated in the Q-values. The discount factor allows the designer of the
reinforcement learning system to account for uncertainties about whether these future rewards are
received. 𝛾 is set by the designer of the reinforcement learning system. Furthermore, the designer
must set a number of steps after which the weights of the target artificial neural network are updated.
This update is simply copying the current weights of the prediction artificial neural network. The target
artificial neural network increases stability in the learning process. Furthermore, a replay memory can
be used to increase stability of the learning process [41]. When using a replay memory the artificial
neural network is not directly trained by interacting with the environment, which means that only the
most recent experience is used for training. Instead, the interactions (states, actions, rewards and new
states) of the agent are stored in a large table, the artificial neural network then trains by taking random
batches from this table. Learning from a memory replay has the advantage that the state action pairs
can be used more than once for the training process. Furthermore, the convergence properties of the
training process are improved.

An advantage of DQN is that it can handle large state-action spaces, because Q-values are
approximated with artificial neural networks instead of a Q-table. However, similar to Q-learing, in
their original form, DQN’s are also limited to discrete state-action spaces [40].

5.2.3. Policy Gradient Reinforcement Learning
Another form of reinforcement learning that is discussed in this literature review is Policy Gradient
Reinforcement Learning. Policy Gradient methods do not rely on value functions or Q-values to select
the actions, but they use a parameterized policy to select an action. Rewards and values can still be
used to train the policy parameters. The parameters of the policy are described by 𝜃 and the policy is
defined by (5.1). It describes the probability that action, 𝑎, is taken when the environment is in state, 𝑠,
and the policy has parameters, 𝜃 [39].

𝜋(𝑎|𝑠, 𝜃) = Pr {𝑎𝑡=𝑎|𝑠𝑡=𝑠,𝜃𝑡=𝜃} (5.1)

The policy is updated with a gradient ascent method based on the gradient of the parameters with
respect to a performance measure, 𝐽(𝜃). This update is described by (5.2) [39].

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝐽(𝜃𝑡) (5.2)

Where 𝛼 is the learning rate of the system. A common algorithm for policy gradient reinforcement
learning is REINFORCE. The REINFORCE algorithm uses the expected sum of rewards as
performance measure, 𝐽(𝜃). When performing the Policy Gradient Theorem described in [39], the
policy parameter update for the REINFORCE algorithm is equal to (5.3).

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 ⋅ 𝐺𝑡∇𝜃 ln𝜋 (𝑎𝑡|𝑠𝑡 , 𝜃) (5.3)

In this equation 𝐺𝑡 is the t-step return which is calculated by summing the discounted rewards of the
future steps: 𝐺𝑡 = 𝑟1 + 𝛾 ⋅ 𝑟2 + 𝛾2 ⋅ 𝑟3 + ... + 𝛾𝑡−1 ⋅ 𝑟𝑡, where 𝛾 is a discount factor set by the designer,
𝑡 is the time step until which the return is considered and 𝑟1, 𝑟2, etc. are the rewards received at the
corresponding time steps.

Policy gradient reinforcement learning has the advantage that it can handle continuous systems and
stochastic policies. Furthermore, the updates in policy gradient methods are smoother than the updates
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in value-based methods [39]. However, policy gradient methods have the pitfall of getting stuck in a
local optimum [40].

5.3. Reinforcement Learning in Socially Assistive Robots
Reinforcement Learning is a widely used method for adaptation in SAR systems. It allows the SAR to
adapt its behavior to the preferences of the user without the necessity of training data.

Q-learning is used to adapt the assistance provided by a SAR during a game of memory (finding pairs
of identical cards) in [8]. A SAR provides assistance to the user when he or she loses the attention to
the game and gives the user positive feedback. The SAR must show different behaviors depending on
the user’s states and the game’s state. The user’s states are the user’s gaze and speech. A human
researcher helps the SAR to categorize the user’s gaze and speech in terms of whether he or she
and how bad he or she requires assistance. For example, if the user searches all cards and gives a
comment like: ”I don’t know where the matching card is anymore”, it is an indication for the human
researcher to send an assistance request to the SAR. The researcher must categorize the severity of
the request in three levels. The SAR uses the severity of a help request together with the game’s state,
i.e., the number of identical pairs that remain to be found to determine which behavior to display. The
robot can provide feedback to the user in different ways, such as gazing in the direction of the right
card, facial expressions to show that the user is near the right card, head gestures to steer the user
to the right card or by using speech either to motivate the user if he or she is distracted or to tell the
answer. In the reinforcement learning process the SAR learns to select the right type of feedback for
the combinations of the game’s state and the severity of the help request. The reward function of the
reinforcement learning system prioritizes the use of the more subtle types of feedback. For example
letting the SAR gaze in the direction of the right card is preferred over letting the SAR tell which is the
right card, because this increases the difficulty for the user. Therefore, the rewards for the SAR are
higher if it successfully helps the user with a more subtle type of assistance (gazing to the right card)
than when it successfully helps the user with a very direct type of feedback (telling the right answer).

Tsiakas et al. in [25] and Clabaugh et al. in [17] use reinforcement learning to change the difficulty of
the task and the type of feedback a SAR gives to its user. Tsiakas et al. in [25] use a SAR to help
people with cognitive impairments with a sequencing task (the user must repeat a sequence of As,
Bs and Cs). Clabaugh et al. in [17] use a SAR to assist children with autism spectrum disorder in a
set of mathematical games. However, the concept of providing adaptive feedback and changing the
difficulty of the task is the same for the two experiments. The goal of having adaptive feedback and
task difficulty is to keep the user engaged. If the task is too easy, the user might get bored. If the task
is too difficult, the user might give up. Therefore, it is important to change the difficulty of the task
to fit the capabilities of the user and still remain challenging enough for the user. In both papers the
performance of the user forms the basis of the reward function. Higher rewards are given when the
user successfully completes more difficult tasks. Therefore, the SAR aims to assist the user such that
he or she can complete the most difficult tasks.

In [22] Q-learning is used for a SAR that should learn to assist elderly with daily activities. In this
paper, the robot learns to help patients with tea making. In the first stage of the research the robot is
taught different behaviors using a method called learning from demonstration. Example behaviors of
the SAR are inviting the patient to make tea, giving instructions on how to perform a step or correcting
the patient if a step is performed incorrectly. Q-learning is used to learn the SAR to apply the right
behavior at the right time, because the most effective behavior of the robot depends on the user’s
state. The user’s states consist of the user’s functioning states and the user’s activity states. The
user’s functioning states consider the following five mental states: focused, distracted, having a
memory lapse, showing misjudgement and being apathetic. The user’s activity state consider the
actions that can be performed by the patient: successfully completing a step, being idle, repeating a
step, conducting a step incorrectly or declining to continue the activity. The rewards given to the SAR
depend on the user’s execution of the different steps in the process of tea making. Negative rewards
are given to the SAR when the user repeats a previous step, performs an incorrect step or declines to
perform the step. Positive rewards are given to the SAR when the user successfully completes the
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right step necessary for tea making.

Tapus and Matarić in [19] use policy gradient reinforcement learning to adapt the behavior of a SAR to
the personality of a post-stroke rehabilitation patient. The SAR motivates the patient to participate
in rehabilitation exercises, such as drawing, lifting books, moving pencils and turning pages of a
newspaper. The SAR adapts its behavior according to the level of extraversion of the patients.
The adaptive variables in the robot behavior are: Proxemics, moving speed, the type of feedback
(encouraging or nurturing) and how it brings this feedback to the patient (i.e., with high pitch and high
volume or with low pitch and low volume). The effectiveness of the robot’s behavior is measured and
optimized by means of the number of tasks completed by the patient and the time it takes for the
patient to complete the task. The results of the experiment show that people prefer a robot behavior
that matches their own personality (whereas in this experiment, from the various personality traits
extrovert/introvert has been considered).



6
Proposed Solution

The previous chapters have given a general overview on the concept of SARs and methods to achieve
personalization and adaptation in the behavior of these robots. This chapter dives deeper into the
problem of developing a decision making module for a SAR to improve the quality of life of elderly with
dementia by intervening in their daily routines.

6.1. Considerations
The applications for SARs, discussed in section 2.3, can be categorized in applications with short-term
and long-term use. In this division, short-term use is related to situations where the user is exposed
to the robot for a limited amount of time, for example in therapy sessions. Long-term use of the SAR
relates to service and entertainment robots. This research focuses on a SAR to improve the quality of
life of elderly with dementia. Therefore, it is considered to be a service robot, which is used for longer
periods of time. Example tasks of the robot are:

• Taking the user for a walk when the weather is nice

• Play music if the user feels sad

• Remind the user of group activities if these are planned for the day

As concluded by [11] people vary in their responses to a SAR and individuals respond differently to
SARs at different times. Therefore, a single constant behavior is not the optimal solution for effective
interactions between a SAR and a human. Instead, the robot must display personalized and adaptive
behavior, to account for differences between different people and to account for variations in an
individual’s attitude towards a SAR. Currently, SARs with personalized and adaptive behavior are
mainly used for short-term interactions. From the experiments included in section 2.4, [17] sessions
over the course of a month is the longest lasting experiment. However, this Master thesis research
focuses on personalization and adaptation of SAR behavior for a SAR applied in long-term dementia
care, e.g., as a home assistant that can stay with the person at home for long time periods.

Taking this into consideration, there are two sides to the problem. First of all, a baseline behavior must
be set that matches the general preferences of the user. This is considered as personalization of the
SAR behavior. Tapus and Matarić in [19] show that people prefer SARs whose behaviors match their
own personality. Therefore, the personalization of the proposed SAR for dementia care is based on
the personality of the user. The SAR establishes a baseline behavior on the long-term personality
traits of the dementia patients.

Secondly, the robot must adapt the basis behaviour to variations in the patient’s mental status and to
the environment. These adjustments in the robot’s behavior are considered the adaptation side of the
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robot. If the user is in a bad mood, he or she might prefer not to have long interactions or when the
weather is bad, going for a walk might not be a suitable activity. Through the adaptive behavior, the
SAR becomes a more similar to a human caregiver who takes the current mental status of the patient
into consideration when providing care to the patient.

6.2. Solution
The proposed solution to achieve personalized and adaptive SAR behavior is to combine fuzzy logic
control and reinforcement learning in a modular approach. Fuzzy logic control is used to personalize
the robot’s behavior based on the personality of the user. Reinforcement learning is used to adapt
the base behavior to handle fluctuations in the patient’s mental state and the environmental changes.
This section discusses the approaches to the personalization and the adaptation of the SAR behavior
and explains the reasoning behind decisions that have been made.

Two options have been considered for combining the two control techniques. First of all, a hierarchical
approach has been considered. In the hierarchical approach fuzzy logic control is used as the main
control method and reinforcement learning is used to tune the fuzzy rules in this system. Ye et al.
in [42] use this approach for obstacle avoidance in a mobile robot. However, no literature is found
from this approach in the field of SARs. The second option for combining fuzzy logic control and
reinforcement learning is a modular approach, which is the proposed solution for this thesis. In the
modular approach fuzzy logic control and reinforcement learning are used in different stages of the
decision making module of the SAR. An advantage of this method is that it does not require modification
of the two control mechanisms, but they can be used in their original form. Moreover, the modular
approach allows to take out the fuzzy logic control or reinforcement learning module and implement it in
a different research with minimal adjustments. This is convenient as the research team also performs
research on the use of SARs for children with autism spectrum disorder. The modular approach is
selected over the hierarchical approach for these two reasons.

6.2.1. Personalization with Fuzzy Logic Control
Personalization of the SAR behavior is achieved with fuzzy logic control. The fuzzy logic controller uses
a rule-based approach to match the SAR’s behavior to match the personality of the user. Rules can
be set up to define the main characteristics of the robot’s behavior depending on the user’s personality
traits. Tapus and Matarić in [19] use the extraversion trait for personalization, this is a trait from the
Eysenck Personality Inventory [43]. The extraversion trait is related to excitement and arousal [19].
Therefore, this trait is already visible on a short-term basis. However, the aim of this research is to
create a personalized and adaptive SAR to assist dementia patients in their daily lives for extended
periods of time. Therefore, other personality traits become relevant too. The proposed SAR system
personalizes its behavior according to the Big Five personality traits [44]:

Extraversion: Extraversion measures the level of sociability and excitability. People with high
levels of extraversion are more sociable, assertive and active. They pursue
excitement and challenge. People scoring low on the extraversion trait are more
reserved and cautious.

Agreeableness: Agreeableness relates to someone’s intentions. Individuals high in agreeableness
are modest, cooperative and trustworthy. They are concerned about the feeling of
others and show interest in them. People low on agreeableness are suspicious,
irritable and competitive. Sometimes people low on agreeableness can even be
manipulative.

Openness: Openness describes a person’s imagination and acceptance for new experiences.
People scoring high on openness are open-minded, imaginative and tolerant.
They are curious to try out new things and engage in new ideas. People low
on openness are more down-to-earth and conventional.
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Conscientiousness: Conscientiousness is concerned with someone’s feeling of responsibility.
Conscientious people are more careful, organized and scrupulous. They pay
attention to details and aim to finish tasks successfully. People with low levels
of conscientiousness are irresponsible and disorganized.

Neuroticism: Neuroticism marks someone’s emotional stability. People with high neuroticism
are anxious, insecure and depressed. Often they are upset more easily and sad.
People scoring low on neuroticism are more laid back, emotionally stable and can
handle stress very well.

Extraversion is the measure of sociability of the user. Therefore, the higher the level of extraversion
of the user, the more interactions the robot can have with him or her. Instead of only interacting
with the user if necessity is high, the SAR can also have chats about daily things like the weather.
Furthermore, the ways the robot interacts with the person may be based on the level of extraversion of
the user. As an example, Tapus and Matarić in [19] show that more extravert people prefer challenging
comments on high pitch and volume, whereas introvert people prefer nurturing comments on low pitch
and volume. For this research also the type of activities are important. Introvert people prefer to spent
time alone instead of group activities. Therefore, the SAR can suggest activities like reading a book
to introvert people, whereas it can suggest to participate in group activities of the caring home for
extravert people.

Agreeableness affects the cooperativeness of the user. People who score low on agreeableness are
focused more on their own well being. The SAR can use this trait in the way it motivates people.
For agreeable people the SAR should bring the activities as if they are more of a team effort. For
people who show low levels of agreeableness, the SAR must focus on the benefits for the patient
when motivating the patient to participate in an activity. Furthermore, people low in agreeableness
prefer to work independently. Therefore, a less agreeable patients might not want to participate if
the SAR tells him or her which activities to do. Instead the SAR can give multiple suggestions and
let the patient decide on its own, this way the person feels like it was his or her own plan to do the
activity. These two things might increase the likelihood of less agreeable users to participate in the
activities. Furthermore, people low on agreeableness are competitive, so the SAR can use this trait
to motivate the user to engage in the activities by creating or proposing activities that involve some
levels of competition.

Openness is related to people’s view on trying new things. This can be useful to determine which
activities to propose to the user. People scoring high in openness are more open to new experiences.
Therefore, the robot can suggest new activities to the user every once in a while. Moreover, open
people are generally more creative. Therefore, the SAR can suggest more creative activities, such as
painting, to further motivate or engage the user. People with low levels of openness are less eager to
engage in new activities. Thus, the SAR should suggest completely new activities less often to users
scoring low in openness. Instead the SAR should stick to activities to which the user has responded
positively in the past.

Conscientiousness determines to what extent someone likes structure and feels responsibility. In
case the user has high levels of conscientiousness, he or she prefers to have a fixed schedule. The
robot can take this into account by communicating activities upfront and planning them for specific
time intervals. People low in conscientiousness do not like fixed time schedules. Therefore, the robot
should be more spontaneous for these types of users. Instead of having a schedule of when to do
certain activities, the SAR could suggest improvised activities.

Neuroticism is related to a person’s emotional stability and anxiousness. The SAR should take into
account the level of neuroticism of the person it interacts with in its way of interacting with the user. For
users with high levels of neuroticism, the robot should be careful not to distress the user. For instance,
the SAR should have comforting comments and should try to resolve the user’s insecurities, this can
make neurotic patients feel less anxious. People scoring low on neuroticism do not feel anxious or
insecure. Therefore, the SAR does not require special behavior for these patients.
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Fuzzy logic control is selected for the personalization of the SAR’s behavior for several reasons. First
of all, fuzzy logic control is a rule-based approach, which creates the possibility to set up logical if-then
rules for each personality trait, which is beneficial as the different personality traits influence the robot’s
behavior in different ways. Furthermore, research performed on human personalities, e.g, the authors
in [44] provide expert knowledge on people’s preferences corresponding to the different personality
traits. This expert knowledge can be used in the rules of the fuzzy system. Implementing expert
knowledge in the fuzzy rules during the design phase prevents the system from needing an extensive
learning phase to match the right behavior with the user’s personality.

A second reason to use fuzzy logic control over the other intelligent control methods is that fuzzy
logic can handle partial membership to sets. The personality traits are measured along a spectrum,
someone’s personality is not defined by having certain traits but by the extent someone displays the
traits. Taking extraversion into consideration as an example, someone is not considered fully extravert
or fully introvert. However, someone displays characteristics from extraversion or introversion
and is considered extravert or introvert depending on to which extent he or she displays these
characteristics. Fuzzy logic control can deal with such partial memberships, making it a suitable
method for personalizing the SAR behavior to the user’s personality.

A final reason to use fuzzy logic control for personalization of the SAR’s behavior is that fuzzy logic
control is able to work with ambiguous variables like linguistic terms. Therefore, setting up the rules
for the decision making module is a straightforward task. The personality traits and the corresponding
behavioral elements can be described with words. This makes the control rules easy to understand
even for people without technical knowledge about the robot itself.

6.2.2. Adaptation with Reinforcement Learning
Reinforcement learning is used to achieve adaptation in the robot’s behavior. Behavior adaptation
enables the SAR to adjust its behavior to changing circumstances. For example, the user might
prefer cheerful music when he or she is in a good mood. However, if the user feels sad he or she
might want to listen to calm music. The SAR should learn which preferences the user has in different
circumstances and should hence display a behavior that matches these preferences.

The reinforcement learning method that is planned for the adaptation process is Q-learning. Inputs
to the reinforcement learning module are the user’s states and the environmental states. The
user’s states can include the user’s emotional status (happy, sad, bored, etc.), activity level (tired or
energized) and attentiveness (distracted or paying attention). Environmental states are elements that
influence the activities that can be considered for a user, such as the weather condition or the time of
day. Moreover, the examples for the outputs of an adaptive decision making system for the SAR can
be to suggest an activity for the user, to initiate a conversation with the user or to entertain the user by
playing music.

If it turns out that the total number of input and output state combinations becomes too large or the
input and output states are difficult to describe by discrete variables, deep reinforcement learning can
be selected over Q-learning. However, solving the adaptation problem is attempted with Q-learning
first as its implementation is easier than deep reinforcement learning, which requires a neural network.
Policy gradient reinforcement learning is not selected as it has the possibility to converge to a local
optimum.

Reinforcement learning is selected for the behavior adaptation as it is able to tackle the adaptivity
problem for each individual user and it does not require large amounts of training data. Fuzzy logic
control is suitable to set the baseline behavior of the SAR as this can be captured with rules to link the
behavior to the different personality traits. However, adaptation is used to make the behavior specific to
individual users. Each user has different preferences in different situations, which makes it impossible
to set up rules that lead to a solution that fits all users. For this reason, rule-based approaches like fuzzy
logic control, although suited for the personalization problem, are not suited for the adaptation problem.
Moreover, artificial neural networks are not used to solve the adaptation problem in this thesis, because
they require lots of training data to get to a possible solution. Furthermore, the obtained solution is
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based on the preferences of the dementia patients who have been included in the dataset. Therefore,
the SAR learns adaptations that generally work in certain situations and for certain people. However,
it can be that a user responds differently than the patients included in the dataset, and hence, the
adaptation process may be inefficient for this user. Besides this problem, collecting sufficient training
data from dementia patients is out of the scope of this thesis research. Therefore, reinforcement
learning is selected for this Master thesis as the most suitable approach for the behavior adaptation of
the SAR.

6.3. Implementation
The created decision making module is going to be eveluated via user models, which are computer
simulations of example user personality scores with possible interactions with the SAR, and on people
from the research team. Testing the personalized and adaptive SAR behavior on real dementia
patients is out of the scope of this thesis research, but can be done in future research. The user
models considered for the proposed research exhibit different scores on the Big Five personality traits,
which has an effect on the personalization of the SAR’s behavior. Moreover, these models exhibit
responses (selected from a determined set of potential responses) to the robot’s actions and based on
the different environment states, where these different responses affect the adaptation of the SAR’s
behavior. With these carefully designed user models and scenarios, the developed decision making
system for the SAR can efficiently be assessed for a variety of user identities. Furthermore, the
user models and scenarios allow us to simulate long-term useinteraction scenarios of the SAR with
different potential users in short periods of time, since a series of successive user and environment
states can be easily simulated. Besides the user models, the system is also assessed via real people
from the research team to see if the personalization and adapatation of the behaviors of the SAR also
work well with real human beings. Before implementing the experiments, the participants are asked
to fill in a personality questionnaire to determine their scores on the Big Five personality traits for the
personalization of the SAR’s behavior. A limitation of testing the SAR’s decision making system with
real people is that it takes an extensive period of time. The adaptive side of the SAR focuses on
long-term use, so the test subject should have a lot of interactions with the robot to see if the behavior
adaptation is successful. After the interactions, the people are asked to complete a questionnaire on
their findings of the robot behavior. The content of this questionnaire is yet to be determined. However,
the questions in the questionnaire should fulfill the criteria that a proper and relevant assessment of
the interactions between the SAR and the participant can be established.

The developed decision making module is going to be implemented on a real humanoid robot owned
by the research team: the Nao robot [45]. The Nao robot is a small human-like robot, illustrated in
Figure 6.1. The robot is equipped with:

• Two 2D camera’s for object recognition and facial detection

• Four microphones and speakers for speech

• Speech recognition in 20 languages to understand the user

• 25 degrees of freedom for movement

• Seven touch sensors and an inertial measurement unit for orientation

Furthermore, the Nao robot is equipped with NAOqi, a special software framework that allows to
program the robot. NAOqi is a cross-platform and cross-language framework, thus it works on different
operating systems and accepts the programming languages Python and C++. Therefore, the controller
is written in Python and is implemented on the robot via the NAOqi framework.
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Figure 6.1: Appearance of the Nao humanoid robot [45]

In the design of the decision making module, the face detection of the Nao robot can be used to
recognize the user. Moreover, in [46] Nao is used to detect emotional states of children, which can
be useful and inspirational for the behavior adaptation in this Master thesis project. Nao’s speech
recognition can be used to understand the feedback provided by the user. The Nao robot is a suitable
robot for the assistance of dementia patients. Martin et al. in [47] perform an acceptance test among
a group of dementia patients with a Nao robot, where the results of this test show that most patients
respond positively to Nao and consider it as a child. For some applications a humanoid robot is not
a fitting robot type. Ricks and Colton in [48] conclude that children with autism are more interested
in simplified abstract forms, so non-humanoid robots might be a better option for applications that
address people with autism spectrum disorder. Assisting dementia patients in daily life is chosen as
the application of the SAR, as Nao’s human like appearance might be more effective for dementia
patients than for example children with autism.
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Conclusions

An ageing society leads to a growth in the number of people suffering from dementia. This development
puts an increasing pressure on health care workers in caring homes. Consequently, the care-givers
are limited in the personalization they can give in the care, which reduces the quality of life of patients
with dementia. A potential solution to the problem is to provide personalized and adaptive care with
Socially Assistive Robots. However, from the performed literature study, it turns out that the research
performed on personalized and adaptive SAR behavior is mainly limited to short-term interactions and
usage. Therefore, the following research question has been formulated for this Master thesis project:

How can a decision making module be developed for a Socially Assistive Robot by means of
techniques from control theory and Artificial Intelligence, such that the robot personalizes its

decision making towards long-term personality traits of dementia patients and exhibits
adaptive behavior to handle changes in the needs and emotional status of patients in its

interactions?

The intended SAR decision making module uses two different control methods for the personalization
and adaptation of the robot. First of all, the robot personalizes its behavior to the long-term personality
traits of the user via fuzzy logic control, where rules are set up for the different traits of the Big Five
personality model. The adaptation of the behavior adjusts the robot’s interactions to the changes in
the user’s mental state and in the environmental states. The designed system is going to be assessed
with user model simulations and with real human participants from the research team. The target of
the SAR is to aid dementia patients in their daily routine by providing means of social interactions,
suggesting activities or giving reminders of important events with the aim of increasing the quality of
life of the patients.
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