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Abstract

This thesis gives a thorough description of the mathematical tool called reflection positivity, which
can be used to prove the occurrence of phase transitions in physical models. A major result, al-
though already known, is a theorem that gives tractable conditions on the Hamiltonian such that
the Boltzmann functional is reflection positive. In this thesis, the theorem is used to give condi-
tions on free parameters in four different models, such that the model is reflection positive with
respect to certain chosen reflections. The evaluated models are (a) the antiferromagnetic quantum
Heisenberg model; (b) the spin ice model; (c) the 6-vertex model and (d) the 16-vertex model. For
the Heisenberg model we found that for reflections in a reflection plane there are certain param-
eter values such that the Boltzmann functional is reflection positive, this is an already known and
published result. For the spin ice model we found that for the spin invariant reflection there is no
symmetry that yields a reflection positive Boltzmann functional, this is a new result. For both the
6-vertex and 16-vertex model we showed that, for certain energy values, the Boltzmann functional is
reflection positive with respect to reflections in the diagonal, which are also new results. In the case
of the 16-vertex model, this boils down to checking whether or not a matrix is positive semidefinite.
Using this result we showed that energy values that allow for the existence of magnetic monopoles
do not yield a reflection positive Boltzmann functional. A topic for further research is investigating
the occurrence of phase transitions in the models that are shown to be reflection positive, for which
chessboard estimates seem to be a promising approach. Furthermore, in this thesis it was not rig-
orously proved that the spin ice model with a spin inverting reflection gives a reflection positive
Boltzmann functional for rotational symmetry or symmetry in a reflection plane. This is believed to
be true, but does require further investigation.
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1
Introduction

Ice melts at around 273 Kelvin, while other materials melt at different temperatures. The magnetiza-
tion of ferromagnets is lost at high temperatures. These are examples of fascinating phenomena in
equilibrium statistical mechanics, called phase transitions. In physics there are a lot of approximate
methods to explain or otherwise justify phase transitions, but a thorough mathematical description
exists only for a few simple cases, and then only for simplified versions.

One of those mathematical approaches to phase transitions in lattice spin models is based on
the technique of reflection positivity. This is a technique in statistical physics that was developed
in the late 1970s by Dyson, Lieb, Simon, Fröhlich, Israel and Spencer [DLS78, FILS78, FSS76]. Using
reflection positivity, one can usually utilize two types of arguments to prove phase transitions. The
first one is to derive the infrared bound, where spin interactions are interpreted as a random walk.
The second is using the so called chessboard estimates, where the Cauchy-Schwartz theorem is
utilized to be able to draw conclusions about a model as a whole by evaluating only a small part of
the model.

Reflection positivity is not only used to prove phase transitions. In fact, the technique was first
developed in the early 1970s in constructive quantum field theory by Osterwalder, Schrader, Glimm,
Jaffe and Spencer [OS73b, OS73a, OS75, GJS74, GJS75]. At first, the similarity between the two fields
was not obvious. However, recently a general framework for reflection positivity was introduced by
Jaffe and Janssens, in the extensive work ’reflection positive doubles’ [JJ17]. Janssens is one of the
supervisors of this thesis.

In order to prove reflection positivity for a physical model, one generally needs to make three
choices. The first two are often determined by the model itself, those are the considered lattice
and the description of the Boltzmann functional. The final choice is what reflection one is going
to evaluate. A prerequisite is often that the lattice is reflection invariant, which means it possesses
some sort of symmetry.

In the work of Jaffe and Janssens it is shown that under a few conditions checking reflection
positivity boils down to checking some tractable conditions on the Hamiltonian. Specifically, one
needs to check whether the Hamiltonian can be split up in three parts such that the first only con-
tains interactions on one side of the reflection plane, the second is the reflection of the first and the
third is contained in the so-called reflection positive cone.

In this thesis we aim at proving or disproving reflection positivity in different models using one
of the two methods described above. The first model we evaluate is the antiferromagnetic quantum
Heisenberg model, where we treat both the nearest neighbour and the long-range variant for a re-
flection in a reflection plane. This result is already known and used, as described in [FSS76, DLS76],
moreover it is treated as an example in [JJ17]. For the second, third and fourth model we aim at
proving new results. The second model is the spin ice model described in [CMS08], where we look
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into all possible reflections that leave the considered pyrochlore lattice invariant. The third and
fourth model are ice type models being the 6-vertex and 16-vertex model, respectively, based on the
description in [Bax73]. Here we look into diagonal reflections.

In Chapter 2 we provide the reader with the necessary definitions and theorems from different
fields of mathematics and physics, that are used intensively throughout this thesis. In Chapter 3
we give a description of reflection positivity, all definitions and theorems of this chapter are directly
from [JJ17], or slight simplifications. In Chapter 4 we show how reflection positivity can be used to
prove phase transitions. This chapter is based on a set of lecture notes given in [Bis09].

Finally, in Chapters 5, 6, 7 and 8 the Heisenberg model, spin ice model, 6-vertex model and 16-
vertex model are treated in respective order. Reflection positivity is evaluated for different types of
reflections, that are suited for the specific models.

This thesis has been written as part of the double bachelor’s degree Applied Mathematics and
Applied Physics at the Delft University of Technology.



2
Mathematical and Physical tools

This chapter is devoted to cover material from different fields of mathematics and physics that is
used throughout this thesis. Necessary definitions and theorems are formulated in the sections
below. In this chapter, most of the stated theorems are proved for completeness. Reading these
proofs is not necessary for understanding the thesis, however, the reader is invited to do so.

In Section 2.1, the concept of a ∗-algebra is introduced, which is used intensively throughout
this thesis. In Section 2.2, some equivalence relations regarding positive semidefinite matrices are
proved. Then, in Section 2.3, some useful definitions and theorems concerning quotient spaces
and positive semidefinite forms are formulated. In Section 2.4, material in the field of analysis and
probability theory is treated. Finally, in Section 2.5, some terms regarding lattice statistical physics
are introduced.

2.1. Algebras, rings and fields
In this thesis we use the notions of a field and an algebra over a field extensively, therefore these
definitions will be properly defined. For more concepts from abstract algebra we refer to a general
textbook such as [HGK04, Gij17].

Let us start by defining a ‘ring’.

Definition 2.1 ([HGK04]). A ring is a nonempty set A together with two binary algebraic opera-
tions, ′+′ and ′·′, that we call addition and multiplication, respectively, such that for all a,b,c ∈ A the
following axioms are satisfied:

1) a + (b + c) = (a +b)+ c (associativity of addition);
2) a +b = b +a (commutativity of addition);
3) there exists an element 0 ∈ A, such that a +0 = 0+a = a (existence of a zero element);
4) there exists an element x ∈ A, such that a +x = 0 (existence of "inverses" for addition);
5) (a +b) · c = a · c +b · c (right distributivity);
6) a · (b + c) = a ·b +a · c (left distributivity).

We will write ab instead of a ·b to indicate multiplication. A ring with some additional structure
is called a field, which is properly defined as follows.

Definition 2.2 ([HGK04]). A division ring D is a nonzero ring (i.e. a ring containing more elements
then only the zero element) for which all nonzero elements form a group under multiplication. A
commutative division ring is called a field.

With these definitions we can define an algebra.

3
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Definition 2.3 ([HGK04]). An algebra over a field k is a set A which is both a ring and a vector space
in such a manner that the additive group structures are the same, and the axiom

(λa)b = a(λb) =λ(ab), (2.1)

is satisfied for all λ ∈ k and a,b ∈ A.

In this thesis we mainly work with a ∗-algebra A over the complex numbers, which is an asso-
ciative algebra with involution ∗ over a commutative ring R (C) with involution ,̄ satisfying (ab)∗ =
b∗a∗ and (λa+µb)∗ = λ̄a∗+µ̄b∗ for all a,b ∈A andλ,µ ∈ R (orC). Finally, we will need a subalgebra.

Definition 2.4 ([HGK04]). A subalgebra over a field k is a subset S of an algebra A, that carries over
and is closed under the operations on A.

2.2. Positive semidefinite matrices
In this thesis, positive semidefinite matrices will be used extensively. In this section, we treat some
properties of positive semidefinite matrices used in further proofs. We will freely use some basic
concepts of linear algebra, that can be looked up in literature such as [Ver17]. For a standard inner
product there are two possibilities: it can be defined such that it is linear in the left or in the right
component. We will use the convention often used by physicists, which is an inner product that is
linear in the right component.

We first define what it means for a matrix to be positive semidefinite.

Definition 2.5. A Hermitian matrix A ∈ Mn(C) is called positive semidefinite if for every z ∈Cn

z∗Az ≥ 0. (2.2)

Note that this definition is also applicable for matrices with real components. An important
equivalence relation for positive semidefinite matrices is given in the next theorem.

Theorem 2.1. Let A ∈ Mn(C) be a Hermitian matrix, then the following are equivalent.
a. The matrix A is positive semidefinite.
b. All eigenvalues of A are nonnegative.
c. The matrix can be written as R∗R for some (not necessarily square) matrix R.

Proof. "a ⇒ b" Let the eigenvalues of A be given by λ1, ...,λn . Since the matrix A is Hermitian, we
can choose a basis B = {q1, ...,qn} of Cn consisting of eigenvectors of A. Since A is positive semidef-
inite, it follows that for i = 1, , ,n, q∗

i Aqi = λi |qi |2 ≥ 0, from which we conclude that the eigenvalues
are nonnegative.

"b ⇒ c" Suppose all eigenvalues are nonnegative (and thus real). Since A is Hermitian, we can
write A = Q∗DQ, where Q ∈ Mn(C) and D is a diagonal matrix with eigenvalues on the diagonal.
Since all eigenvalues are nonnegative, we can find a Hermitian matrix C such that D =C 2. But then
A = D∗C∗C D = R∗R, where R = C D . Note that possible zero rows in R, resulting from identically
zero eigenvalues, can be removed, causing a non-square matrix R.

"c ⇒ a" Suppose that we can write A = R∗R for some matrix R, and let z ∈ Cn . Then z∗R∗Rz =
(Rz)∗Rz = |Rz|2 ≥ 0. Since z arbitrary, this proves the claim.

Another useful property of positive semidefinite matrices, is that they can be written as sums of
projection matrices.

Definition 2.6. Let u,v ∈Cn . The projection of u on v is given by

Pv(u) = 〈v,u〉
〈v,v〉 v, (2.3)
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where 〈·, ·〉 denotes the Euclidean inner product. This is a linear transformation, and can thus be
written as Pv(u) = Pvu, where Pv is the projection matrix on v given by

Pv := v̂v̂∗, (2.4)

where v̂ is the vector pointing in the direction of v with unit length, v̂ = v
|v| .

Theorem 2.2. Projection matrices are positive semidefinite.

Proof. The proof follows immediately from Theorem 2.1.

A straightforward yet useful property of projection matrices is the fact that they have one eigen-
value equal to 1, and the rest of the eigenvalues are equal to 0. This can be shown by choosing an
orthogonal basis of Rn containing the vector on which is projected.

Theorem 2.3. Let A ∈ Mn(C) be a Hermitian matrix. Then A is positive semidefinite if and only if
we can write P =∑k

i=1 ai Pqi
, where ai are positive constants and Pqi

are projection matrices.

Proof. "⇒" A is Hermitian, so we can decompose A = QDQ∗, where Q = [q1, ...,qn] and D is a
diagonal matrix with the non-negative eigenvalues λ1, ...,λn of A on the diagonal. But then A =
λ1q1q∗

1 + ...+λnqnq∗
n which is a positive sum of projection matrices.

"⇐" Suppose we can write A =∑k
i=1 ai Pqi

as described, and let z ∈Cn be arbitrary. Then

z∗Az = z∗(
k∑

i=1
ai Pqi

)z =
k∑

i=1
ai (z∗Pqi

z),

and since projection matrices are positive semidefinite, this is a sum of positive coefficients and
thus positive.

2.3. Quotient spaces and positive semidefinite forms
Throughout this thesis we will not only use positive semidefinite matrices; sometimes we will talk
about a positive semidefinite form. In this section we show that the quotient space of a vector space
with the kernel of a positive semidefinite form induces a normed vector space, where the norm
comes from an inner product. From this vector space one can construct a Hilbert space. We, fur-
thermore, prove the Cauchy-Schwartz inequality for positive semidefinite forms.

The definition of a vector space and a subspace can be found on page 16 and 27, respectively, of
[Ver17]. Note that a vector space has great resemblance with an algebra. In particular, an algebra
is a vector space operated with multiplication of the elements. Using subspaces we can construct
more vector spaces.

Definition 2.7. If V is a vector space over a field K and W is a subspace of V , then we define V /W
as the quotient space, containing all cosets [v], where [v] = v+W = {v+w : w ∈W }.

In particular, quotient spaces are vector spaces, which is shown in the following theorem.

Theorem 2.4. Let V be a vector space over a field K and let W be a subspace of V , then the quotient
space V /W is also a vector space with operations

1. [v]+ [w] = [v+w] for all [v], [w] in V /W
2. c[v] = [cv] for all c in K and [v] in V /W

Proof. The proof consists of two parts. First we show that the operations are well-defined, then we
show that the operations satisfy the eight axioms.

We show that addition and scalar multiplication are independent of the chosen representative.
For this, let v and u be representatives for [v] and [u] respectively, then [v]+[u] = [v+u]. Now suppose
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we had chosen other representatives v’ and u’, then it is enough to show that [v’+u’] ⊆ [v+u]. Since
v’ ∈ [v], we can write v’ = v+w1 with w1 ∈W . Similarly u’ = u+w2. We find [v’+u’] = {v’+u’+w : w ∈
W } = {v+u+w1 +w2 +w : w ∈W } ⊆ {v+u+w : w ∈W } = [v+u], where associativity of vector spaces
and the definition of subspaces is used.

Now let v be a representative for [v] and let c ∈ K , then c[v] = [cv]. Suppose that v’ is another
representative for [v], then it is enough to show that [cv’] ⊆ [cv]. Since v’ ∈ [v], we can write v’ = v+ŵ
with ŵ ∈W . Then [cv’] = {cv’+w : w ∈W } = {c(v+ŵ)+w : w ∈W } = {cv+cŵ+w : w ∈W } ⊆ {cv+w : w ∈
W }, where we have used the distributive property of vector spaces and the definition of subspaces.
It is thus shown that addition and scalar multiplication are well-defined.

What remains is to show that the eight axioms are satisfied, which follows quickly from the fact
that V is a vector space. We conclude that V /W is indeed a vector space.

Definition 2.8. A sesquilinear form S on a vector space V over C is a function S : V ×V → C that is
linear in one argument, and antilinear in the other:

- B(u+u’,v) = B(u,v)+B(u’,v)
- B(u,v+v’) = B(u,v)+B(u,v’)
- B(c̄u,v) = B(u,cv) = cB(u,v)

We will now move to positive semidefinite forms. Let us first state some definitions.

Definition 2.9. A positive semidefinite form over a vector space V over C is a Hermitian sesquilinear
form 〈·, ·〉 : V ×V →C such that 〈v,v〉 ≥ 0 for all v in V . Notice that because the form is Hermitian, we
have 〈v,v〉 ∈R for all v in V .

Definition 2.10. The kernel of a sesquilinear form S on a vector space V is the set Ker(S)= {u ∈ V :
S(u,v) = 0 for all v ∈V }.

A useful property of a kernel is the fact that it is a subspace.

Theorem 2.5. The kernel of a positive semidefinite form 〈·, ·〉 on a vector space V over C is a sub-
space of V .

Proof. We show the three properties of a subspace.
Let u and v in Ker(〈·, ·〉), and choose w in V arbitrary. Then 〈u+v,w〉 = 〈u,w〉+〈v,w〉 = 0+0 = 0,

so u+v ∈Ker(〈·, ·〉).
Let v in Ker(〈·, ·〉), c inC, and choose w in V arbitrary. Then 〈cv,w〉 = c̄〈v,w〉 = c̄0 = 0 so cv ∈Ker(〈·, ·〉).

Notice that by choosing c = 0 it follows that 0 ∈Ker(〈·, ·〉).

Positive semidefinite forms satisfy the Cauchy-Schwartz inequality.

Theorem 2.6. Let 〈·, ·〉 be a positive semidefinite form on a vector space V over C. Then for every
vector v,w in V the Cauchy-Schwarz inequality,

|〈v,w〉|2 ≤ 〈v,v〉〈w,w〉, (2.5)

is satisfied.

Proof. Let t in R and choose v,w ∈V arbitrary. We find

0 ≤〈v− t〈v,w〉w,v− t〈v,w〉w〉
=〈v,v〉−〈v, t〈v,w〉w〉−〈t〈v,w〉w,v〉+〈t〈v,w〉w, t〈v,w〉w〉
=〈v,v〉− t〈v,w〉〈v,w〉− t〈v,w〉〈w,v〉+ t 2〈v,w〉〈v,w〉〈w,w〉
=〈v,v〉−2t |〈v,w〉|2 + t 2|〈v,w〉|2〈w,w〉.
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Since this is a real parabola taking only non-negative values, it follows that the discriminant is non-
positive, thus

4|〈v,w〉|4 −4|〈v,w〉|2〈v,v〉〈w,w〉 ≤ 0.

As v and w arbitrary, the Cauchy-Schwarz inequality follows.

Theorem 2.7. The kernel of a positive semidefinite form is {0} if and only if the positive semidefinite
form is an inner product.

Proof. Note that if the kernel of a positive semidefinite form on a vectorspace V equal is to {0}, then
for every v 6= 0 in V there exists a w 6= 0 sucht that 〈v,w〉 > 0. Using the Cauchy-Schwarz inequality
(2.5), this means 〈v,v〉 > 0. Since v is arbitrary, it follows that the positive semidefinite form is an
inner product. Now suppose that the positive semidefinite form is an inner product, then 〈v,v〉 > 0
is satisfied for all v 6= 0 in V , and thus the kernel equals {0}.

A positive semidefinite form on a vector space induces inner product spaces. Using these space
one can construct Hilbert spaces, which is a complete, normed vector space, where the norm is
induced by an inner product.

Theorem 2.8. Let 〈·, ·〉 be a positive semidefinite form on a vector space V overC. Then 〈·, ·〉 induces
a positive semidefinite form on the vector space V /Ker(〈·, ·〉). In particular it is positive definite.

Proof. Let v be a representative for [v] and w a representative for [w]. Than 〈[v], [w]〉 = 〈v,w〉. We
show that this is well-defined on V /Ker(〈·, ·〉), and thus independent of the chosen representative.
For this, let v’ and w’ be different representatives for [v] and [w] respectively. Since v’ ∈ [v] we find
v’ = v+n1 with n1 ∈ Ker(〈·, ·〉). Similarly w’ = w+n2. Then 〈v’,w’〉 = 〈v+n1,w+n2〉 = 〈v,w〉+〈v,n2〉+
〈n1,w〉+〈n1,n2〉 = 〈v,w〉 where all other terms are zero because n1,n2 ∈ Ker(〈·, ·〉).

Positive definiteness of the bilinear form follows because for [v] with representative v ∉ Ker(〈·, ·〉)
we have 〈[v], [v]〉 = 〈v,v〉 > 0.

2.4. Analysis and probability theory
In this thesis we use measures and functionals extensively. Recall that a σ-algebra on a set S is a
family containing the empty set, the whole set S, complements of sets and countable unions of sets.
With this we can define a measure.

Definition 2.11 ([Dud02]). A function µ :A→ [0,∞] on a σ-algebra is called a measure if it satisfies
1) µ(A) ≥ 0 for all A ∈A,
2) µ(;) = 0
3) For any countable collection (Ak )k≥1 of disjoint sets in A,

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak ). (2.6)

We often work with a probability space, which is defined as follows.

Definition 2.12 ([Dud02]). A triple (Ω,A,µ) is called a probability space if A is a σ-algebra on the
setΩ, and µ is a measure on A satisfying µ(Ω) = 1.

We can define measurable functions on a sample space, such a function is called a random vari-
able. The set of all random variables acting on the probability space is an algebraA. The expectation
E :A→C of a random variable is defined as

E(A) =
∫
Ω

Adµ. (2.7)

The expectation is an example of a functional.
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Definition 2.13. A linear functional τ on a vector space V over a field K is a linear map τ : V → K .

Besides the expectation, an example of a functional is the trace of a matrix.
In most applications in this thesis, we investigate classical models, where we can either use the

Gibbs measure or the Boltzmann functional. The Riesz representation theorem allows us to freely
switch between measures and functionals. The statement of the Riesz representation theorem is as
follows.

Theorem 2.9 ([Rud86]). Let X be a locally compact Hausdorff space, and let Λ be a positive linear
functional on the space of compact supported continuous functions Cc (X ). Then there exists a σ-
algebra M in X which contains all Borel sets in X , and there exists a unique positive measure µ on
M which representsΛ in the sense that

Λ( f ) =
∫

X
f dµ, for every f ∈Cc (X ), (2.8)

and which has the following additional properties

1. µ(K ) <∞ for every compact set K ⊂ X .

2. For every E ∈M, we have
µ(E) = inf{µ(V ) : E ⊂V ,V open.

3. The relation
µ(E) = sup{µ(K ) : K ⊂ E ,K compact

holds for every open set E , and for every E ∈M with µ(E) <∞.

4. If E ∈M, A ⊂ E , and µ(E) = 0, then A ∈M.

2.5. Lattice spin models
Throughout this thesis we use a lot of terms connected to lattice statistical physics. The ones that
we use most extensively will be clarified here, for more information on the subject one can use e.g.
[Sim13, Thi19]

There are several possible definitions of a lattice. In this thesis we use different definitions, de-
pending on the considered model. The definition that imposes the least structure is the one that
defines a lattice as a countable set of points in d-dimensional space. With this definition we often
require the constraint that the lattice must have some sort of internal structure, such as being in-
variant under a reflection in a reflection plane. In other words, when the lattice is cut in half, the
two parts need to be equal.

A definition that imposes more structure to the lattice is the following:

Definition 2.14 ([Sim13]). A lattice Λ is an infinite set of points defined by an integer sum of a set of
linearly independent primitive lattice vectors.

In simple terms, every lattice point λ ∈Λ has the same surrounding. Such a lattice comes with a
reciprocal lattice, that is defined as follows.

Definition 2.15 ([Sim13]). Given a (direct) lattice Λ, a point λ′ is in the reciprocal lattice if and only
if

e iλ·λ′ = 1, (2.9)

for all points λ ∈Λ. Here the dot product λ ·λ′ means the standard inner product.
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In a classical model, we often consider a spin Sλ on every lattice point λ. This is a random
variable taking values in a closed subset Ω of Rv for some v ≥ 1. In the case of a finite lattice, we
sometimes need spins outside of this lattice to properly define the law of of SΛ. The configuration
of spins outside of the lattice will be referred to as SΛc .

For a square N×·· ·×N lattice, a special boundary condition is the periodic boundary condition.
This wraps the lattice around a torus, which can nicely be visualized in two dimensions.

Figure 2.1: Visualization of a two-dimensional cubic lattice with periodic boundary condition.

The energy of a certain configuration of spins on a lattice, is described by the Hamiltonian. This
Hamiltonian can often be written as a sum over the lattice points. In the most general form we have

H = ∑
λ∈Λ

hλ(S), (2.10)

where S is the spin configuration in the lattice, and hλ is the energy to which λ contributes.
For a finite number of possible spin configurations, we can define a probability on every config-

uration, in terms of the Hamiltonian. This probability is given by

P(S) = e−βH(S)

Z
, (2.11)

where Z is the partition function, a normalisation constant equal to the sum over all configurations
at inverse temperature β, Z =∑

S e−βH(S). This probability can also be written as a measure.
In case of an infinite amount of possible spin configurations we can not give a finite probability

to every configuration. We then define the probability measure, called the Gibbs measure,

µ
(SΛc )
Λ,β (dSΛ) := e−βHΛ(S)

ZΛ,β(SΛc )

∏
x∈Λ

µ0(dSx ). (2.12)

Here S := (SΛ,SΛc ) is the spin configuration, with SΛ the configuration of spins inside the lattice,
and SΛc the configuration of spins outside the lattice, the boundary spins.

By the Riesz representation theorem we can exchange the role of the Gibbs measure with a func-
tional. The expectation of a random variable A is defined as

E(A) :=
∫
Ω

Aµ(SΛc )
Λ,β (dSΛ) =

∫
Ω

A
e−βHΛ(S)

ZΛ,β(SΛc )

∏
x∈Λ

µ0(dSx ). (2.13)

We call this expectation the Boltzmann functional τH . The background functional τ is the second
integral without the fraction. When disregarding the partition function, which is a positive constant,
we can thus define τH (A) = τ(Ae−H ).

This concludes this chapter. We will now move on to defining reflection positivity using the tools
developed in this chapter.



3
Reflection positivity

In this chapter, an introduction to reflection positivity is given. The material is based on the frame-
work described in ’reflection positive doubles’ [JJ17] by Arthur Jaffe and Bas Janssens, the latter being
one of the supervisors of this thesis.

We begin the chapter by developing a general framework for reflection positivity in Section 3.1,
covering a wide variety of classical and quantum mechanical systems. We introduce the basic con-
cepts needed to treat reflection positivity in a more specific setting than treated in [JJ17], because
where Jaffe and Janssens developed a general framework for bosonic, fermionic and parafermionic
systems, in this thesis we only work with bosonic systems. The consequence of this, is that we only
talk about bosonic ∗-algebras, whereas Jaffe and Janssens developed their framework for the more
general graded algebras. This makes the proofs somewhat more straightforward. In Section 3.2, we
state and prove a theorem regarding reflection positivity. This theorem provides us with tractable
conditions on the Hamiltonian, and can be used to prove reflection positivity.

I would like to emphasize that this chapter is merely a collection of already known definitions
and results. The stated theorems and proofs are already known and published. For additional infor-
mation on reflection positivity, see [JJ17] or [Bis09].

3.1. Defining reflection positivity
Let A be a ∗-algebra. The algebra A is required to be a locally convex topological algebra. This
means that A is a locally convex (Hausdorff) topological vector space, for which multiplication is
separately continuous.

To define reflection positivity, we need a reflection Θ : A→ A. This is defined in the following
way.

Definition 3.1. A reflectionΘ :A→A is a continuous, anti-linear homomorphism which squares to
the identity.

We could have chosen to make Θ a continuous, linear antihomomorphism. Then one should
replaceΘ(A) withΘ(A∗) in the remainder of this thesis.

Using this reflection, we let A+ be a distinguished subalgebra of A, and write A− :=Θ(A+) for its
reflection. Now define A−A+ := {A−A+ : A± ∈A±}. Then we require that the linear span of A−A+ is
dense in A and the elements of A± satisfy the commutation relation

A−A+ = A+A− for A± ∈A±. (3.1)

If these requirements hold, we call A the double of A+A−.
Reflection positivity is defined for reflection invariant functionals.

10
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Definition 3.2. A functional % :A→C is reflection invariant if %(Θ(A)) = %(A) for all A ∈A.

Furthermore we need the notion of sesquilinear forms.

Definition 3.3. Let % be a neutral functional on A. Then 〈A,B〉Θ,% is the sesquilinear form on A+,
with

〈A,B〉Θ,% = %(Θ(A)B), (3.2)

for A,B ∈A+.

Now we are in the position to define reflection positivity.

Definition 3.4. Let % : A→C be a neutral linear functional. Then % is reflection positive on A+ with
respect toΘ if the form (3.2) is positive semidefinite,

〈A, A〉Θ,% = %(Θ(A)A) ≥ 0, (3.3)

for all A ∈A+

Using these definitions we can formulate and prove some propositions.

Proposition 3.1. Let % be a continuous functional on A. Then the sesquilinear form (3.2) is Hermi-
tian on A+ if and only if % is reflection invariant.

Proof. Let A,B ∈A+. Using the commutation relation (3.1) we have AΘ(B) =Θ(B)A. Then 〈B , A〉Θ,% =
%(Θ(B)A) = %(AΘ(B)) and 〈A,B〉 = %(Θ(A)B). If we set X =Θ(A)B andΘ(X ) = AΘ(B), we see 〈B , A〉 =
〈A,B〉 for all A,B ∈A+ if and only if %(X ) = %(Θ(X )) for all X ∈A−A+. Now using continuity of the
functional % and the fact that A−A+ is dense in A, the result follows.

Proposition 3.2. Every continuous, reflection positive functional % :A→C is reflection invariant.

Proof. Let A,B ∈A+, then since the functional is sesquilinear and positive semidefinite, we have

〈A+B , A+B〉Θ,% = 〈A, A〉Θ,%+〈A,B〉Θ,%+〈B , A〉Θ,%+〈B ,B〉Θ,% ≥ 0,

so we find 〈A,B〉+〈B , A〉 ∈R. Since A,B arbitrary, we conclude that the sesquilinear form is Hermi-
tian, and thus by Proposition 3.1 we conclude that it is reflection invariant.

Proposition 3.3. Let % : A→C be a functional. Then % is reflection positive on A+ if and only if it is
reflection positive on A−.

Proof. Let A,B ∈A−, then we can define the sesquilinear form on A− by 〈A,B〉Θ,% := %(Θ(A)B). Now
using the commutation relation we find 〈A,B〉Θ,% = %(Θ(A)B) = %(BΘ(A)) = 〈Θ(B),Θ(A)〉Θ,% where
Θ(A),Θ(B) ∈A+. Then reflection positivity of the sesquilinear form on A+ is equivalent to reflection
positivity of the sesquilinear form on A−.

Using a reflection positive functional, a quantum Hilbert space can be constructed. For this an
inner product is needed. This inner product is formed by using the positive semidefinite sesquilin-
ear form on the quotient space of the subalgebra A+ and the kernel of the sesquilinear form. As
proved in Section 2.3, this is valid.

Definition 3.5. Let % be a reflection positive functional on A. Let N ⊆ A+ be the kernel of the

positive semidefinite form 〈A,B〉Θ,%. Then the quantum Hilbert space HΘ,% is the closure of A+�N ,
with inner product induced by the positive definite form 〈A,B〉Θ,%.

A useful tool to prove reflection positivity, is making use of the reflection-positive cone. In the
bosonic setting, we define this cone as follows.
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Definition 3.6. The reflection-positive cone K+ ⊆A is the set

K+ = {Θ(A)A|A ∈A+}. (3.4)

We denote the convex hull of K+ by co(K+) and its closure by co(K+). We show that the set of
continuous, reflection positive functionals on A is precisely the continuous dual cone of co(K+) in
A.

Proposition 3.4. Let % :A→C be a continuous, linear functional. Then the functional % is reflection
positive if and only if the functional % is nonnegative on co(K+).

Since the proof for graded algebras is equal to the proof for our more specific bosonic algebra,
this proposition won’t be proved here, but can be read in [JJ17], Proposition I I .18. The idea of the
proof is that both statements are equivalent with the functional % being nonnegative on K+, which
follows from Definition 3.6 and continuity of %.

We will go a bit more into depth on the reflection positive cone, since it is a useful tool for reflec-
tion positivity. First of all we prove that K+ is multiplicatively closed.

Theorem 3.5. The cone K+ is multiplicatively closed, and it is pointwise invariant under reflection.

Proof. To show that the cone is multiplicatively closed, we showK+K+ ⊆K+. Let A1, A2,B1,B2 ∈A+,
then

(Θ(A1)B1)(Θ(A2)B2) =Θ(A1)Θ(A2)B1B2 =Θ(A1 A2)B1B2. (3.5)

To show that the one is pointwise invariant under reflection, we show thatΘ|K+ = I d . Let A,B ∈A+.
Then the reflection ofΘ(A)B equals is

Θ(Θ(A)B) = AΘ(B) =Θ(B)A. (3.6)

In particular,Θ(A)A is reflection invariant.

Theorem 3.5 needs to be extended to the closure co(K+) of the convex hull co(K+) of K+, since
we are mainly interested in continuous reflection positive functionals. A useful characterization of
co(K+) is given in the following proposition.

Proposition 3.6. Let K ∈A. Then K ∈ co(K+) if and only if both:
1) The element K can be written as a finite sum

K = ∑
I ,J∈I

J I JΘ(C I )C J , (3.7)

with C I ∈A+ labelled by a finite set I .
2) Let (J I J )I be the matrix with entries J I J , labelled by I , J ∈ I . Then (J I J )I is positive semi-

definite.

Proof. "⇒" Every K ∈ co(K+) can be written as a finite convex combination K =∑
r∈I prΘ(Xr )Xr of

elements of K+. In particular, it is of the form (3.7) with (J I J ) = p IδI J .
"⇐" Suppose that K is of the form (3.7), then the matrix (J I J )I has nonnegative eigenvalues

pr . Now choose orthonormal eigenvectors (xr
I )I∈I and define Xr = ∑

I xr
I C I , then Xr ∈A+ and K =∑

r prΘ(Xr )Xr ∈ co(K+).

Now we can characterize the closure co(K+) of co(K+) as follows:

Corollary 3.7. An element K ∈A is in co(K+) if and only if K = limn→∞ Kn , with Kn ∈ co(K+) as in
(3.7).
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Corollary 3.8. The closed, convex cone co(K+) is multiplicatively closed, and it is pointwise invari-
ant under reflection.

For the proof of the latter we refer to Corollary IV.6 in [JJ17] , since the proof for graded algebras
is equal to the one for bosonic algebras.

In the applications in this thesis, the functionals τH are perturbations of a fixed functional τ
by the Hamiltonian H . Here the Hamiltonian H ∈ A is a reflection invariant operator, Θ(H) = H ,
and τ : A→ C is a continuous, reflection positive functional on A. If the exponential series for e−H

converges, then the Boltzmann functional τH :A→C is defined by

τH (A) = τ(Ae−H ). (3.8)

The Boltzmann functional is continuous and reflection invariant, since both A 7→ Ae−H and A 7→
τ(A) are continuous, and both H and τ are reflection invariant. Furthermore, if τH is reflection
positive for H ∈A, then it is reflection positive for every shift H ′+∆I with ∆ ∈R, since τH ′ = e−∆τH .

To show that τH is reflection positive, the first step is to show that the background functional τ
is reflection positive. This can be done using the following factorization criterion.

Definition 3.7. Let τ : A→ C be a continuous, reflection invariant functional. Then τ is factorizing
if there exists a continuous functional τ+ on A+ such that

τ(Θ(A)B) = τ+(A)τ+(B), (3.9)

for all A,B ∈A+.

Since τ is reflection invariant, this is equivalent to

τ(AB) = τ−(A)τ+(B), (3.10)

for A ∈ A−,B ∈ A+. Here τ−(B) := τ+(Θ(B)) for B ∈ A−. The factorizing functional τ is uniquely
determined by τ+ : A+ → C since the span of A−A+ is dense in A. If the background functional is
factorizing, it is reflection positive. This is shown in the following proposition.

Proposition 3.9. Every factorizing functional τ :A→C is reflection positive.

Proof. Let A ∈A+, then τ(Θ(A)A) = τ+(A)τ+(A) ≥ 0.

A useful property to determine conditions on H such that τH is reflection positive, is the notion
of strictly positive functionals.

Definition 3.8. The functional τ+ :A+ →C is strictly positive if

τ+(A∗A) > 0, (3.11)

for all nonzero A ∈A+.

If τ is factorizing such that τ+ is strictly positive, then the scalar product 〈A,B〉 = τ+(A∗B) on A+
is nondegenerate.

One of the ways to determine whether the functional τH is reflection positive, is by using the
matrix of coupling constants. For this, we require that A+ has a countable Schauder basis.

Definition 3.9. A Schauder basis is a countable, ordered set {v I }I∈I of elements in A+ such that
every A ∈A+ has a unique expansion A =∑

I∈I aI v I .

Using the Gram-Schmidt procedure, a Schauder basis {C I }I∈I of A+ with the following proper-
ties can be found:
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B1. There is a unit C I0 = 1, for some distinguished index I0 ∈ I .
B2. For all I , J ∈ I , one has τ+(C∗

I C J ) = δI J , where δ is the Dirac delta function.
B3. The linear span of {C I }I∈I is dense in A+.

Any set {C I }I∈I satisfying B1− 3 is a Schauder basis, since every A ∈ A+ has a unique expansion
A =∑

I∈I aI C I , with aI = τ(C∗
I A).

Using the orthogonal basis of A+, we construct a basis of A by defining the operators

BI J =Θ(C I )C J , and B̂I J =Θ(C∗
I )C∗

J . (3.12)

These operators are dual in the sense that

τ(B̂I J BI ′ J ′) = δI I ′δJ J ′ , (3.13)

which is easily shown by using the commutation relation and the fact that the functional is factor-
izing and thatΘ(A)Θ(B) =Θ(AB).

As the linear span of A−A+ is dense in A, every A ∈A has a convergent expansion

A = ∑
(I ,J )∈I×I

aI J BI J . (3.14)

This sum requires an order on I×I which can be obtained in a natural way from the order on I .
The expansion (3.14) of A ∈A is unique, and the coefficients aI J = τ(B̂I J A) depend continuously

on A, which is a consequence of (3.13).
SinceΘ(BI J ) = B J I , an operator A ∈A is reflection invariant,Θ(A) = A, if and only if the matrix is

(aI J )I is Hermitian.
Every Hamiltonian H ∈A has a unique expansion

−H = ∑
(I ,J )∈I×I

J I JΘ(C I )C J . (3.15)

The matrix (J I J )I describes the couplings between C J ∈A+ andΘ(C I ) ∈A−.

Definition 3.10. The matrix (J I J )I is called the matrix of coupling constants.

In the matrix of coupling constants, the term J I0 J0 describes the coefficient of the identity. Fur-
thermore the terms J I0 J describes couplings inside A+ and the terms J I I0 describe couplings inside
A−. The terms J I J with I , J 6= I0 describe couplings between A− and A+

Definition 3.11. The submatrix (J 0
I J )I\{I0} of (J I J )I , consisting of elements with I , J 6= I0, is called the

matrix of coupling constants across the reflection plane.

Proposition 3.10. If the matrix of coupling constants (J I J )I is Hermitian, then H is reflection in-
variant. If it is positive semidefinite, then −H ∈ co(K+)

Proof. Reflection invariance follows from the fact that A ∈A is reflection invariant if and only if the
matrix of its expansion is Hermitian. Furthermore, −H ∈ co(K+) since every finite partial sum of
(3.15) is of the form (3.7) if the matrix (J I J )I is positive semidefinite.

Using the developed framework, we can find necessary and sufficient conditions to prove re-
flection positivity.
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3.2. Characterization of reflection positivity
We wish to determine whether or not τH is reflection positive in terms of tractable conditions on
the Hamiltonian H . For this we assume

Q1. A is a locally-convex, topological algebra.
Q2. A is the double of A+.
Q3. τ :A→C is continuous and reflection positive.
Q4. The algebra A+ is a ∗-algebra, and A+ admits an unconditional Schauder basis.
Q5. The functional τ :A→C factorizes into τ+ and τ−.
Q6. The functional τ+ :A+ →C is strictly positive.

If we furthermore require that the exponential exp : A→ A is continuous, and β 7→ exp(−βH)
is differentiable at zero, we can state the following theorem with necessary and sufficient condi-
tions for reflection positivity of the Boltzmann functional. This theorem is used to prove reflection
positivity in the applications of Chapter 5, 6, 7 and 8.

Theorem 3.11. Let τ be a continuous, factorizing functional on A, and suppose that τ+ is strictly
positive. Let H ∈A be a reflection invariant operator. Then the following are equivalent:

a. The Boltzmann functional τβH is reflection positive for all 0 ≤β.
b. There exists an ε> 0 such that τβH is reflection positive for 0 ≤β< ε.
c. The matrix (J 0

I J )I of coupling constants across the reflection plane is positive semidefinite.
d. There is a decomposition H = H− + H0 + H+, with H+ ∈ A+, with −H0 ∈ co(K+), and with

H− =Θ(H+).

We will prove this theorem with help of a sufficient condition for reflection positivity, and a
necessary condition.

If we only assume Q1-3 and the natural condition that exp : A → A is continuous, already a
sufficient condition for reflection positivity of the Boltzmann functional τH (A) = τ(Ae−H ) for an
element H ∈A can be found. This sufficient condition will be constructed below.

Proposition 3.12. Let A 7→ τ(A) be a continuous, reflection positive functional on A, and let K1,K2 ∈
co(K+), Then the functionals

A 7→ τ(K1 A), A 7→ τ(AK2), and A 7→ τ(K1 AK2),

are also continuous and reflection positive.

Proof. Using Proposition 3.4, it suffices to show that if A ∈ co(K+), then also K A, AK , and K AK in
co(K+), which follows from Corollary 3.8. Since multiplication is separately continuous, the conti-
nuity follows from continuity of τ.

Proposition 3.13. Suppose that −H ∈ co(K+), and that the exponential series

exp(−H)− I =
∞∑

k=1

1

k !
(−H)k (3.16)

converges in A. If τ is a continuous, reflection positive functional, then the Boltzmann functional
τH (A) = τ(Ae−H ) is also continuous and reflection positive. Its reflection positive inner product
dominates that of τ,

〈A, A〉Θ,τH ≥ 〈A, A〉Θ,τ for all A ∈A+. (3.17)
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Proof. Since co(K+) is a closed convex cone, that is multiplicatively closed, we find that every partial
sum of (3.16) is contained in the cone and thus e−H − I ∈ co(K+). Now using Proposition 3.12, the
functional A 7→ τ(A(e−H − I )) is continuous and reflection positive. It follows that

τH (Θ(A)A) = τ((Θ(A)A)e−H ) ≥ τ(Θ(A)A) ≥ 0,

for all A ∈A+. In particular, τH is reflection positive.

Theorem 3.14. Suppose that the exponential series exp(A) =∑∞
k=0

1
k ! Ak converges for all A ∈A, and

that exp : A→ A is continuous. Let τ : A→ C be a continuous, reflection positive functional. Let
H ∈A admit a decomposition

H = H−+H0 +H+, (3.18)

with H+ ∈ A+, −H0 ∈ co(K+), and with H− = Θ(H+). Then the Boltzmann functional τH (A) =
τ(Ae−H ) is continuous and reflection positive.

Proof. For ε> 0, define Hε ∈A by

Hε = H0 −Θ(ε−1I −εH+)(ε−1I −εH+).

Let A ∈A+. As −Hε ∈ co(K+), by Proposition 3.13 we have

τ((Θ(A)A)e−Hε) ≥ 0. (3.19)

Since additive constants in the Hamiltonian do not change reflection positivity, we have H ′
ε = H −

ε2Θ(H+)H+, which satisfies
τ((Θ(A)A)e−H ′

ε) ≥ 0.

Since limε↓0 H ′
ε = H and exp :A→A is continuous, we conclude

lim
ε↓0

τ((Θ(A)A)e−H ′
ε) = τ((Θ(A)A)e−H ) ≥ 0.

Remark 3.15. If H satisfies the condition of Theorem 3.14, then the Boltzmann functional τβH is
reflection positive for all β≥ 0.

One might notice that this is the statement d ⇒ a in Theorem 3.11. In addition to Q1-3 we now
also assume Q4-6.

Lemma 3.16. Suppose that the exponential series for exp(−βH) converges, and is differentiable at
β= 0. If τβH is reflection positive for all β ∈ [0,ε), then

τ((Θ(A)A)H) ≤ 0, (3.20)

for all A ∈A+ with τ(Θ(A)A) = 0.

Since the proof of this lemma is equal to the proof of Lemma V.8 in [JJ17], one can read it there.

Theorem 3.17. Suppose there exists an ε > 0 such that the map β 7→ exp(−βH) is well-defined on
β ∈ [0,ε), and differentiable at β = 0. If τβH is reflection positive for all β ∈ [0,ε), then the matrix
(J 0

I J )I\{I0} of coupling constants across the reflection plane is positive semidefinite.



3.2. Characterization of reflection positivity 17

Proof. Let A ∈ A+ with τ+(A) = 0. Since τ factorizes, we have τ(Θ(A)A) = |τ+(A)|2 = 0. Now insert
the expansion (3.15) into the expression (3.20), and use commutativity to find

0 ≤ ∑
I ,J∈I

J I Jτ((Θ(A)A)(Θ(C I )C J )) = ∑
I ,J∈I

J I Jτ(Θ(AC I )AC J ) = ∑
I ,J∈I

J I J ᾱIαJ , (3.21)

with αI = τ+(AC I ). Note that αI0 = τ+(A) = 0. It suffices to check 0 ≤ ∑
I ,J J I J χ̄IχJ for vectors (χI )I

with finitely many nonzero entries. Our attention can be restricted to vectors for whichχI0 = 0, since
we are interested in positivity of the submatrix (J 0

I J )I\{I0} of coupling constants across the reflection
plane.

Let (χI )I be a vector as described above, and set A = ∑
I∈I χI C∗

I . Note that τ+(AC I ) = χI , since
τ+(C∗

I C J ) = δI J . Combining this with (3.21), gives 0 ≤∑
I ,J J 0

I J χ̄IχJ as required.

One might notice that this is the implication b ⇒ c in Theorem 3.11. Now we are finally in the
position to prove Theorem 3.11, so let us proceed.

Proof of Theorem 3.11. The implication a ⇒ b is clear. The implication b ⇒ c is Theorem 3.17. For
c ⇒ d , note that since H ∈A is reflection invariant and (J 0

I J )I\{I0} is positive semidefinite, we can de-
compose H as H = H++H0+H− with −H0 ∈ co(K+), H+ ∈A+ andΘ(H+) = H−, where the operators
H0 and H+ are given in terms of the matrix of coupling constants by

−H0 =
∑

I ,J∈I\{I0}
J 0

I JΘ(C I )C J , (3.22)

−H+ = 1

2
J I0 J0 1+ ∑

J∈I\{I0}
J I0 JC J . (3.23)

Finally implication d ⇒ a is Theorem 3.15.

In the applications described in this thesis, most important are the equivalencies a ⇐⇒ c and
a ⇐⇒ d , since c and d are properties of the Hamiltonian H that can concretely be examined.

With the proof of Theorem 3.11 the necessary material on reflection positivity is covered. It
remains to show how these rather abstract properties of functionals can be used to prove phase
transitions. That will be the topic of the next chapter.



4
Phase transitions

One of the main applications of reflection positivity, is establishing the occurrence of phase tran-
sitions. In this chapter a brief overview of how reflection positivity can be used to prove phase
transitions is given. This generally boils down to two types of arguments one can make, the first is
based on infrared bounds, while the second is based on chessboard estimates.

The chapter consists of three sections. In Section 4.1 we explain how a phase transition is math-
ematically defined. In Section 4.2 the method of proving phase transitions using the infrared bound
is treated. Finally in section 4.3 it is explained what chessboard estimates are, and how they can be
used to prove phase transitions.

This chapter is meant as a mere overview of how to use reflection positivity in practice. In this
thesis, the theory will not be applied to the models that are studied, therefore the exact proofs of
the stated theorems will not be discussed. For a more complete overview, where all definitions and
theorems are stated in more detail, we refer the reader to the lecture notes provided by Marek Biskup
[Bis09] or the book by Sacha Friedli and Yvan Velenik [FV17].

4.1. Defining phase transitions
To describe phase transitions, we will slightly alter the framework developed in Chapter 3.1, since we
work with probability measures instead of functionals. Given a finite setΛ⊂Zd together with a spin
configuration SΛ := (Sx )x∈Λ, where Sx takes values in a probability spaceΩ for all x ∈Λ, and given a
Hamiltonian HΛ and boundary condition SΛc , the Gibbs measure inΛ is the probability measure on
ΩΛ given by

µ
(SΛc )
Λ,β (dSΛ) := e−βHΛ(S)

ZΛ,β(SΛc )

∏
x∈Λ

µ0(dSx ). (4.1)

In Section 2.5 we have already shown that this measure is the ’dual’ of the Boltzmann functional.
To identify phase transitions, this measure needs to be extended to infinite volume, for which a
distinguishing property of Gibbs measures is used.

Lemma 4.1. LetΛ⊂∆⊂Zd be finite sets and let S∆c ∈Ω∆c
. Then (for µ(S∆c )

∆,β −a.e. Sλc ),

µ
(S∆c )
∆,β (·|SΛc ) =µ(SΛc )

Λ,β (·). (4.2)

In other words, conditioning the Gibbs measure in ∆ on the configuration in ∆ \Λ, gives the
Gibbs measure inΛwith corresponding boundary condition. This leads to the following definition.

Definition 4.1. A probability measure on ΩZ
d

is called an infinite volume Gibbs measure for inter-
action H and inverse temperature β if for all finiteΛ⊂Zd and µ−a.e. SΛc ,

µ(·|SΛc ) =µ(SΛc )
Λ,β (·), (4.3)

18
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where µ(SΛc )
Λ,β is defined using the Hamiltonian HΛ.

Remark 4.2. The distinguishing property of Lemma 4.1 is called the DLR condition, named after
Dobrushin, Lanford and Ruelle. One might wonder why we do not use Kolmogorov’s extension
theorem, which is the standard approach to construct infinite collections of dependent random
variables, and uses marginal distributions. This is because in general there is no way to express the
marginals associated to an infinite volume Gibbs measure without making explicit reference to the
latter. Dobrushin, Lanford and Ruelle showed that considering conditional probabilities instead of
marginals is much better suited to our needs.

The set of all infinite volume Gibbs measures at inverse temperature β is denoted by Gβ. We can
now define phase transitions.

Definition 4.2. The model is at phase coexistence (or undergoes a first-order phase transition) when-
ever the parameters are such that |Gβ| > 1.

This definition essentially means that in the thermodynamic limit, providing a complete micro-
scopical description of the system as well as well as fixing the relevant thermodynamic parameters
is not sufficient to completely determine the macroscopic behaviour of the system. Since this is a
rather complicated definition, it may be useful to briefly consider an example.

Example 4.1. Consider the Ising model, that on every lattice point takes the value Sλ = ±1, on a
lattice ΛL := {1, ...,L}d , with Hamiltonian H(S) :=−J

∑
〈x,y〉Sx ·Sy . Set all boundary spins to +1 (the

plus boundary condition). It can be shown that the measure µ+
ΛL ,β tends to a measure µ+ as L →∞.

Similarly for the minus boundary condition, µ−
ΛL ,β→ µ− when L →∞. In dimensions d ≥ 2, it turns

out there exists βc (d) ∈ (0,∞) such that

β>βc (d) ⇒µ+ 6=µ−, (4.4)

which means the model is at phase coexistence, while for β<βc (d) the set of infinite volume Gibbs
measures is a singleton.

This can be interpreted as that for low enough temperatures, the direction of spins in the model
is influenced by the direction of spins far, far away, while for higher temperatures only spins nearby
influence the direction of a spin.

4.2. Infrared bound
Consider the O(n)-model, which is a model on an L×·· ·×L lattice wrapped around a torus TL with
Hamiltonian

H =−1

2

∑
x,y

Jx y Sx ·Sy , (4.5)

where the spins Sx are a priori independent and distributed according to a measure µ0, supported
in the setΩ :=Sn−1 = {z ∈Rn : |z|2 = 1}. We assume the interactions are (a convex combination of)

a) Nearest-neighbour interactions:

Jx,y =
{

1
2d , if |x − y | = 1,

0, otherwise.
(4.6)

b) Yukawa potentials:
Jx,y =Ce−µ|x−y |1 , (4.7)

with µ> 0 and C > 0.
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c) Power-law decaying potentials:

Jx,y = C

|x − y |s1
, (4.8)

with s > d and C > 0.
We furthermore assume the interaction constants to satisfy

1) Jx,x = 0 and Jx,y = J0,y−x ,
2)

∑
x J0,x = 1.

Since all coupling constants are positive, we can interpret the coupling constants as transition
probabilities of a random walk (Xn) on Zd . Explicitely

Pz (Xn+1 = y |Xn = x) := Jx,y , (4.9)

where Pz is the law of a random walk started at site z. This walk can be recurrent or transient, i.e. a
walk started at the origin returns there infinitely, or only finitely many times. We can formulate the
following criterion.

Lemma 4.3. Let Ĵ (k) :=∑
x J0,x e i kx , k ∈ [−π,π]d . Then (Xn) is transient if and only if∫

[−π,π]d

1

(2π)d

1

1− Ĵ (k)
dk <∞. (4.10)

The finiteness of this integral is sufficient for the existence of a symmetry-breaking phase tran-
sition in spin systems of the kind (4.5). This is summarized in the following theorem.

Theorem 4.4. Let (Jx y ) be one of the 3 interactions above. Then global rotation symmetry of the
O(n)-model is broken at low temperatures if and only if the random walk driven by (Jx y ) is transient.

The proof relies on three theorems. For the backward direction, the principal tool is the infrared
bound. To prove the infrared bound, reflection positivity is needed. The formulation of the infrared
bound is the following:

Theorem 4.5. Let L be an even integer and consider the model (4.5) on a torus TL with Gibbs mea-
sure µL,β. Suppose (Jx y ) is one of the three interactions above, and let

cL,β(x) := EµL,β(S0 ·Sx ). (4.11)

Define ĉL,β(k) :=∑
x∈TL

cL,β(x)e i kx . Then

ĉL,β(k) ≤ v

2β

1

1− Ĵ (k)
, k ∈T∗

L \ {0}, (4.12)

where v is the dimension of the spin vectors andT∗
L is the reciprocal torus,T∗

L := { 2π
L (n1, ...,nd ) : ni =

0, ...,L−1}.

Using the infrared bound, the following theorem, which is the backward direction of Theorem
4.4, can be proved.

Theorem 4.6. Consider the O(n)-model with n ≥ 1 and one of the three interactions above. Let

β0 := n

2

∫
[−π,π]d

1

(2π)d

1

1− Ĵ (k)
dk. (4.13)

Then for any β>β0 and anyφ ∈Sn−1 there exists µφ ∈Gβ which is translation invariant and ergodic
such that

1

|ΛL |
∑

x∈ΛL

Sx → m∗φ, µφ−a.s., (4.14)

as L →∞ and for some m∗ = m∗(β) > 0.
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Note that for β0 to exist, the random walk must be transient. The forward direction (4.4) is
proved by the following theorem.

Theorem 4.7. Let n ≥ 2 and consider the O(n)-model with non-negative interaction constants (Jx,y )
satisfying the conditions 1) and 2). Suppose the corresponding random walk is recurrent. Then
every µ ∈Gβ is invariant under any simultaneous rotation of all spins.

These theorems are all restricted to specific situations. The infrared bound is formulated for
periodic boundary conditions on a torus lattice, and the coupling interactions are required to have
a very specific form. There is another way to prove phase transitions, which is using the method of
chessboard estimates.

4.3. Chessboard estimates
In the setting of Section 3, when a functional τ is reflection positive, we can write it as a positive
semidefinite form on A+. By Theorem 2.6 we know that this positive semidefinite form satisfies the
Cauchy-Schwartz inequality. In terms of measures and expectations, that is

[Eµ( f θg )]2 ≤ Eµ( f θ f )Eµ(gθg ). (4.15)

When we work in the specific setting of a torus model, and we consider reflections through sites or
through bonds, then an enhanced version of this inequality is given in the following lemma.

Lemma 4.8. Let µ be reflection positive with respect to a reflection θ and let A,B ,Cα,Dα ∈A+. Then

[Eµ(e A+θB+∑
αCαθDα)]2 ≤ [Eµ(e A+θA+∑

αCαθCα)][Eµ(eB+θB+∑
αDαθDα)]. (4.16)

Note that this version of the Cauchy-Schwarz inequality is useful since we often work with Gibbs
measures, where the exponent plays a major role.

We now restrict our attention further to reflections through planes of sites. Pick two integers,
B < L, such that B divides L and L/B is even. Fixing the origin of the torus, let ΛB the block corre-
sponding to {0,1, ...,B}d , then TL can be covered by translates ofΛB ,

TL = ⋃
t∈TL/B

(ΛB +B t ), (4.17)

where the translates are indexed by the sites in a factor torus, TL/B .

Definition 4.3. A function f :ΩTL →R is called a B-block function if it depends only on {Sx : x ∈ΛB }.
An event A⊂ΩTL is called a B-block event if the indicator function 1A is a B-block function.

Given a B-block function f , and t ∈ TL/B , define θt f the reflection of f into ΛB +B t , that is
constructed by consecutive reflecting along a path fromΛB toΛB +B t . The result is a function that
depends only on {Sx : x ∈ΛB +B t }. Since reflections commute and satisfy θ2 = Id, there are only 2d

distinct functions. The chessboard estimate is now given in the following theorem.

Theorem 4.9. Suppose µ is reflection positive with respect to all reflections between the neighbour-
ing blocks of the form ΛB +B t , t ∈ TL/B . Then for any B-block functions f1, ..., fm and any distinct
t1, ..., tm ∈TL/B ,

Eµ

(
m∏

j=1
θt j f j

)
≤

m∏
j=1

[
Eµ

( ∏
t∈TL/B

θt f j

)](B/L)d

. (4.18)
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This can be reformulated in terms of B-block events A1, ...,Am ,

µ

(
m⋂

j=1
θt j (A j )

)
≤

m∏
j=1

[
µ

( ⋂
t∈TL/B

θt (A j )

)](B/L)d

, (4.19)

where θt (A) := {θt 1A = 1}. The chessboard estimate allows to bound the probability of simultaneous
occurrence of distinctly placed B-block events in terms of their disseminated versions

⋂
t∈TL/B

θt (A).
The quantities to estimate are thus

ZL(A) :=µ
( ⋂

t∈TL/B

θt (A)

)(B/L)d

. (4.20)

Using the chessboard estimate it can be shown that the function A 7→ZL(A) is subadditive.

Lemma 4.10. Let A and A1,A2, ..., be a collection of B-block events such that

A⊂⋃
k
Ak . (4.21)

Then
ZL(A) ≤∑

k
ZL(Ak ). (4.22)

To estimate the ZL-value of an event, the event is covered by the union of a collection of smaller
and easier to compute event for which the ZL value is calculated, and then the results are added.
This gives a bound on the probability of certain events. Using these types of arguments, the idea is
then to show that the set of infinite volume Gibbs measures is not a singleton for certain values of β.

The chessboard estimate is not restricted to cubic lattices. One can show that similar statements
can be proved for, for instance, FCC, BCC or honeycomb lattices.

This concludes the chapter on phase transitions. We will now move on to determine whether or
not certain models equipped with a reflection are reflection positive.



5
Heisenberg model

Now that we have introduced the concept of reflection positivity and have described how it can be
used to prove the occurence of phase transitions, it is interesting to check whether certain models
are reflection positive. We will start with the Heisenberg model, which is a physical model describing
a magnet. A simplified version of the Heisenberg model is the Ising model, which is exactly solved
[Bax82]. For the Heisenberg model we consider a lattice with on every lattice site a spin. This can
either be a classical spin, then we call the model the classical Heisenberg model, or a quantum
spin, in which case we call it the quantum Heisenberg model. In the Hamiltonian there is a free
parameter J . When this parameter is negative, the model is called antiferromagnetic, otherwise it is
called ferromagnetic.

We will consider the antiferromagnetic quantum Heisenberg model. In Section 5.1, we describe
the model in the setting of Chapter 3, such that we can apply the developed theorems. Then, in
Section 5.2, reflection positivity for the nearest neighbour Heisenberg model is evaluated. Finally,
in Section 5.3, reflection positivity for the long-range Heisenberg model will be proved.

5.1. The algebra
We wish to describe the model in the setting of Chapter 3.

Consider a finite lattice Λ ⊆ Rn , where Rn is equipped with the Euclidean metric. On every
lattice site λ ∈ Λ, a spin 1

2 system is located. This is described by the matrix algebra Aλ = M2. The
total system is then given by the algebra

A= ⊗
λ∈Λ

M2(C). (5.1)

The background functional τ is the normalized tracial state, given by

τ(Aλ1 ⊗·· ·⊗ Aλk ) = 1

2k
Tr(Aλ1 ) · · ·Tr(Aλk ) (5.2)

on the pure tensors. We only consider reflections in a reflection plane through bonds. Without loss
of generality, we can thus assume the reflection θ : Λ→ Λ to be a reflection in the first coordinate,
i.e. θ(x1, x2, ..., xn) = (−x1, x2, ..., xn). This splits the latticeΛ in two parts,Λ+ andΛ− := θ(Λ+), having
an empty intersection.

The reflectionΘ :A→A is the antilinear homomorphism given by

Θ(Aλ) = ρ(A)θ(λ), (5.3)

where ρ denotes conjugation by an arbitrary invertible operator R ∈ GLn(C), namely ρ(A) = R AR−1.
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We define
A± = ⊗

λ∈Λ±
Mn(C), (5.4)

then Θ(A+) =A−, and A is the linear span of A−A+. Since A=A−⊗A+, the algebra A is the double
of A+.

Proposition 5.1 ([JJ17]). The tracial state τ is faithful, factorizing, reflection invariant and reflection
positive;

0 ≤ τ(Θ(A)A). (5.5)

Proof. By linearity, it suffices to show reflection invariance on the tensors A = Aλ1 ⊗·· ·⊗ Aλk . This
follows from

τ(Θ(A)) = 1

nk
Tr(R Aλ1 R−1) · · ·Tr(R Aλk R−1) = 1

nk
Tr(Aλ1 ) · · ·Tr(Aλk ) = τ(A). (5.6)

Factorization can be expressed as τ(AB) = τ−(A)τ+(B) for A ∈A− and B ∈A+. The state τ is faithful
since it is a finite tensor product of faithful states, and reflection positive by Proposition 3.9.

Proposition 5.2. The tracial state τ+ is strictly positive.

Proof. Let A ∈A+, then τ+(A∗A) = Tr(A∗A) =∑
i , j Āi j Ai j > 0, whenever A 6= 0.

We lastly need the algebra to admit a basis. For this we fix an orthonormal basis {ci }i∈S of M2(C)
with respect to the inner product (X ,Y ) = Tr(X ∗Y ) such that c0 = 1. The basis is labelled by i ∈ S =
{0,1,2,3}. We choose the Pauli matrices as basis. From this we obtain the tensor product basis

C I =
⊗
λ∈Λ+

ciλ ,

for A+, labelled by I ∈ SΛ+ . This yields the basis

BI J =Θ(C I )C J =
⊗
λ′∈Λ−

Rciθ(λ′) R
−1

⊗
λ∈Λ+

c jλ ,

of A, labelled by (I , J ) ∈ SΛ+ ×SΛ+ .

5.2. Nearest neighbour Heisenberg model
We will turn our attention to the more specific n-dimensional N × N × ...× N lattice Λ ⊆ Zn with
periodic boundary conditions. On every lattice point a quantum spin at spin 1

2 is located. When the
distance between two lattice points is α, the Hamiltonian is given by

−H = ∑
<λ,λ′>

J

αv

∑
a=x,y,z

Sa
λSa

λ′ , (5.7)

where the sum is over all nearest neighbour pairs < λ,λ′ > and v ≥ 0. Sx ,S y ,Sz ∈ M2(C) are Hermi-
tian spin matrices for spin 1

2 , the Pauli matrices. The map X 7→ X̄ flips the sign of S y while leaving
Sx and Sz invariant. The operator R = exp(iπS y ) represents a 180◦-rotation around the y-axis, so
the map X 7→ R X R−1 flips the sign of Sx and Sz , while leaving S y invariant. Therefore the reflection
Θ of the spin matrices is

Θ(Sa
λ) =−Sa

θ(λ). (5.8)

With this reflection, we see that the functional τ is continuous and factorizing on A, and the
functional τ+ is strictly positive. Furthermore, H is reflection invariant, thus we are in the situation
to use Theorem 3.11.
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Theorem 5.3. The functional τβH with reflections in the first component is reflection positive if and
only if J ≤ 0.

Proof. By Theorem 3.11, reflection positivity of the Boltzmann functional is equivalent to the matrix
of coupling constants across the reflection plane being positive semidefinite. If we denote ΛP+ ⊆Λ+
as the set of lattice points satisfying |λ−θ(λ)| = a, then the matrix of coupling constants across the
reflection plane is given by

J 0ab
λλ′ =− J

αv δ
abδλλ′ , (5.9)

where λ,λ′ ∈ ΛP+ and a,b ∈ {x, y, z}. Note that δ is the Kronecker delta. This is a diagonal matrix,
which is positive semidefinite if and only if every component is nonnegative, which proves the the-
orem.

5.3. Long-range Heisenberg model
Consider a finite lattice Λ ⊂ Rn that is invariant for a reflection in the first coordinate. Let Λ+ ⊂ Λ
be the set containing all lattice points with positive first component. For the long range Heisenberg
model, the Hamiltonian is given by

−H = J
∑
λ6=λ′

|λ−λ′|−v
∑

a=x,y,z
Sa
λSa

λ′ . (5.10)

One might notice that, for a cubic lattice as in section 5.2, the nearest neighbour interactions are
equal to the interactions in (5.7). However, we do not necessarily consider a cubic lattice.

We choose the same reflection and functional as in 5.8. Therefore we are in the situation to use
Theorem 3.11. In the following theorem, we give the condition for which the Boltzmann functional
is reflection positive.

Theorem 5.4. The functional τβH is reflection positive with respect to reflections in the first coor-
dinate if and only if J ≤ 0 and v is nonnegative with v ≥ n −2.

The proof of this theorem is postponed to the end of the section, because we first need to de-
velop some theory. Reflection positivity is equivalent to the matrix of coupling constants across the
reflection plane (J 0

I J )I\{I0} being positive semidefinite. We therefore need to prove that this matrix is

positive semidefinite. The matrix (J 0
I J )I\{I0} has elements

J 0
λλ′ =−J |θ(λ)−λ|−v , (5.11)

For the proof we need the following definition

Definition 5.1 ([JJ17]). Let θ : R→ R be an isometry of Euclidean space satisfying θ2 = Id. Then a
function f : Rd → C is called Osterwalder-Schrader positive (or OS-positive) if for all N > 0, for all
z1, ..., zN ∈C and for all r1, ...,rN ∈Rd it holds that

N∑
i , j=1

zi z̄ j f (ri −θ(r j )) ≥ 0. (5.12)

We can state the following condition for the matrix of coupling constants across the reflection
plane.

Proposition 5.5. The matrix of coupling constants across the reflection plane (J 0
I J )I\{I0} as in (5.11)

is positive semidefinite if and only if the function f :Rn →C given by f (x) =−J |x|−v is OS-positive.
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Proof. The proof is straightforward from the definition of Osterwalder-Schrader positive functions.
If we letΛ+ = {λ1, ...,λN } and z1, ..., zN ∈C, then

N∑
i , j=1

zi z̄ j J 0
λiλ j

=
N∑

i , j=1
zi z̄ j (−J )|θ(λi )−λ j |−v .

Positivity of one implies positivity of the other.

We therefore need to show that the function f :Rn →C given by f (x) =−J |x|−v is OS-positive if
and only if J ≤ 0 and v ≥ max{0,n −2}.

5.3.1. 1-dimensional lattice
Let us first focus on the case n = 1. Note that for our lattice we have Λ+ the set of lattice points with
positive first coordinate, which in one dimension is equal to all positive lattice points. The function
|θ(λ)−λ′| is then equal to λ′−θ(λ) for all λ,λ′ ∈Λ+. We formulate the following lemma.

Lemma 5.6. The function f :R≥0 →C given by f (x) = x−v is OS-positive with respect to a reflection
in the first coordinate for v ≥ 0.

Before proving this lemma, we first show that an integral of OS-positive functions over a positive
measure is also OS-positive.

Theorem 5.7. Let fk :Rd →C for k in some set A be OS-positive functions and letµ(dk) be a positive
measure on A. Then the integral

∫
A fkµ(dk) is also OS-positive, provided that it converges.

Proof. Suppose the integral converges. Let N ≥ 0 and choose z1, ..., zN ∈C and r1, ...,rN ∈Rd . Then

N∑
i , j=1

zi z̄ j

∫
A

fk (ri −θ(r j ))µ(dk) =
∫

A

(
N∑

i , j=1
zi z̄ j fk (ri −θ(r j ))

)
µ(dk) ≥ 0,

since it is an integral over a sum of positive functions.

Proof of Lemma 5.6. For v = 0, we find x−v = x0 = 1, which is trivially OS-positive. For v > 0, let
x1, ..., xN ∈R≥0 and z1, ..., zN ∈C. Then

N∑
i , j=1

zi z̄ j e−s|xi−θ(x j )| =
N∑

i=1
zi e−sxi

N∑
j=1

z̄ j e−sx j = |
N∑

i=1
zi e−sxi |2 ≥ 0.

Now using a Laplace transform which can be found in most standard Laplace transform tables, we
find

x−v =
∫ ∞

0

1

Γ(v)
t v−1e−xt d t , (5.13)

where Γ(·) is the Gamma function. Since t v−1 is non-negative for all t ≥ 0, by Theorem 5.7 we con-
clude that x−v is OS-positive for all v ≥ 0 which proves the lemma.

5.3.2. Higher dimensional lattice
Let us now focus on the dimensions n > 1. We have Λ+ the set of lattice points with positive first
coordinate, and θ a reflection in the first coordinate.

Lemma 5.8. The function f : Rn →C given by f (x) = |x|−v is OS-positive with respect to the reflec-
tion θ if and only if v ≥ max{0,n −2}.

A proof based on Fourier and Laplace transformations can be found in the article by Frank and
Lieb [FL09]. A proof based on harmonic analysis and Lie groups can be found in the article by Neeb
and Ólafsson [NÓ14].

Proof of Theorem 5.4. Theorem 5.4 follows by Proposition 5.5 where OS-positivity of the function
follows from Lemma 5.6 and Lemma 5.8.



6
Spin ice model

A spin ice is a magnetic substance that does not have a single minimal energy state. Spin ice models
are characterized by the presence of magnetic moments, that are restricted to point in two possible
directions. In spin ice models magnetic monopoles emerge, which is due to the dipole moment of
the underlying electronic degrees of freedom fractionalising [CMS08].

In this chapter we study whether the spin ice model described in [CMS08, Bra01] is reflection
positive with respect to different reflections. The considered lattice is a pyrochlore lattice. This is
a diamond lattice with halfway between each bond a spin pointing along the bond. Since every
lattice point of a diamond lattice is connected with four bonds, there are four spins adjacent to a
lattice point. In literature there are always two spins pointing towards a lattice point of the diamond
lattice, and two pointing away. We will, however, use the slight modification that the spins can point
in any direction.

In Section 6.1, we describe the model in the setting of Chapter 3, and we evaluate the symme-
tries of the pyrochlore lattice. Then, in Sections 6.2, 6.3 and 6.4, reflection positivity for different
symmetries will be examined.

6.1. Pyrochlore lattice
Spin ice models are characterized by the presence of magnetic moments, further referred to as spins,
µµµi on the sites i of a pyrochlore lattice. This is a lattice consisting of two types of particles, the first
on the sites of a diamond lattice, and the second on the midpoints of the bonds between sites on
the diamond lattice. This causes the lattice of the second to consist of corner touching tetrahedra,
as depicted in Figure 6.1.

The spins µµµi point along the Ising axis of the lattice, which are the diamond lattice bonds. We
can write µµµi = µSi êi with µ the magnitude of the magnetic moment, Si = ±1 the Ising spin and êi

the unit vector in the direction of the Ising axis. The Hamiltonian of the system is described by a
term for the nearest neighbor interaction between lattice points i and j ; < i , j >, and a term for
long-range interactions between lattice points i and j ; (i , j ):

H = J

3

∑
<i , j>

Si S j +Da3
∑

(i , j )

[
êi · ê j

|ri j |3
− 3(êi · ri j )(ê j · ri j )

|ri j |5
]

Si S j . (6.1)

Here ri j is the distance vector between two spins, a is the nearest neighbour distance of the py-
rochlore lattice and D and J are constants, with D the fixed coupling constant of dipolar interaction
and J free. We want to rewrite this Hamiltonian, so that we can use it to check reflection positivity.

27
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Figure 6.1: The pyrochlore lattice consisting of corner sharing tetrahedra. Black bonds represent the diamond lattice.
Source: [CMS08]

6.1.1. The algebra
We wish to write the model in the setting of Chapter 3. For one spin particle, we have two possibili-
ties for the spin vector. Therefore the probability space for one particle λ is given byΩλ = {êλ,−êλ},
where êλ ∈ TλR

3, the tangent space at λ that can be identified with R3. The algebra is given by all
random variables onΩλ. A particular set of random variables is the set of spin variables Sx

λ
, S y

λ
and

Sz
λ

, that take as argument a vector ωλ ∈Ωλ, and returns the x, y or z component of the spin, respec-

tively. At first, you might think that these are linearly independent, but since êa
λ

Sb
λ
− êb

λ
Sa
λ
= 0 for

a,b ∈ {x, y, z}, they are, in fact, dependent.
The whole lattice Λ is countable or finite. If we choose an order of the elements of the lattice,

Λ = {λ1,λ2, ...}, we construct the probability space Ω = ∏
i Ωλi . The algebra is the space of random

variables onΩ, so
A= {F :Ω→C}. (6.2)

Note that this is indeed an algebra, since random variables can be added and multiplied with each
other. A special random variable is again the random variable Sa

i :Ω→ C, given by Sa
i (ω) = ωa

λi
for

λi ∈Λ and a ∈ {x, y, z}.

If we define the random variable Si := [
Sx

i S y
i Sz

i

]T
and let the unit distance vector r̂i j =[

r x
i j r y

i j r z
i j

]T
, and by using the observations made in Appendix A, we can rewrite the Hamil-

tonian given in (6.1) to the somewhat more practical form

H = ∑
<i , j>

〈S j ,−JSi 〉+
∑

(i , j )
〈S j ,

Da3

|ri j |3
[

I3 −3Pr̂i j

]
Si 〉 , (6.3)

where I3 is the 3× 3 identity matrix, and Pu is the projection matrix on a vector u ∈ R3. This de-
scription is, however, not yet complete. As noted before, the elements of the random variable Si are
not independent. This information can be incorporated in the Hamiltonian by using the projection
matrices on the Ising axes êi . So we get

H = ∑
<i , j>

〈S j ,−JPê j Pêi Si 〉+
∑

(i , j )
〈S j ,

Da3

|ri j |3
Pê j

[
I3 −3Pr̂i j

]
Pêi Si 〉 . (6.4)
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This Hamiltonian is a sum of products of random variables contained in A, so we have H ∈ A. To
shorten notation we define the matrix Mi j given by

Mi j =
{

(−J +D)I −3DPr̂i j , i , j nearest neighbours,

D a3

|ri j |3 I −3D a3

|ri j |3 Pr̂i j , i , j non nearest neighbours.
(6.5)

Then we can write
H = ∑

(i , j )
〈S j ,Pê j Mi j Pêi Si 〉 . (6.6)

The used functional is the Boltzmann functional τH :A→C, that is given by

τH (A) = ∑
ω∈Ω

A(ω)e−H(ω). (6.7)

This functional has to be reflection invariant under a reflection Θ : A→A, depending on the used
symmetry for the lattice. Furthermore, in order to use Theorem 3.11, the background functional
needs to be factorizing and this factor has to be strictly positive, both also depending on the reflec-
tionΘ.

6.1.2. Symmetry group pyrochlore lattice
For reflection positivity, we need a reflection. There are several possibilities of reflections in the
pyrochlore lattice that leave the lattice invariant. The symmetry group of the pyrochlore lattice is
the Fd3̄m space group [GC15]. Not surprisingly, this is also the symmetry group of the diamond
lattice. For the pyrochlore lattice, we are especially interested in the point group, which is a group of
isometries that keep at least one point fixed. This does not necessarily have to be a lattice point. For
the diamond lattice, and thus also the pyrochlore lattice, this is the group m3m(Oh) [ML67, Had].
This group contains six 2-fold symmetries, nine reflection planes and an inversion. Furthermore
it contains some higher fold rotations, but since our reflection θ must satisfy θ2 = Id, these are not
interesting for us. The symmetries of interest are shown in Figure 6.2.

Figure 6.2: The symmetries of interest in the pyrochlore lattice. On the left, (a) is a 2-fold symmetry with rotation axis
as shown. In the middle, (b) is a reflection with reflection plane. On the right (c) is an inversion where i and i ′ are
interchanged for i = 1,2,3.

The 2-fold symmetries are rotations around an axis cutting through opposite sides of a tetrahe-
dron, the reflection plane swaps two corners of a tetrahedron and leaves the other corners invariant,
and the inversion swaps lattice points on opposite sides of a shared corner. We will evaluate reflec-
tion positivity for all reflections of the pyrochlore lattice, (a), (b) and (c) in Figure 6.2.



6.2. Reflection positivity for a reflection plane 30

6.2. Reflection positivity for a reflection plane
We first consider a reflection plane with normal vector n̂, situation (b) in Figure 6.2. This reflection
θ divides the lattice in two parts Λ+ and Λ− := θ(Λ+). Their intersection P := Λ−∩Λ+ is the fixed
point set of the reflection θ. We define Ω+ := ∏

j Ωλ j where λ j ∈ Λ+ for all j . When the lattice Λ is
finite, this product is a finite product, otherwise it is countable. From this probability space, we find
the subalgebra A+ of all functions in A that are fully determined by their projection onΩ+, thus

A+ = {F ∈A : F (ω) = F (ω|Ω+)∀ω ∈Ω}. (6.8)

Another way to describe Ω is by using functions, such that Ω = {σ : Λ→ TR3 : π ◦σ(λ) = λ,σ(λ) =
±êλ}. Then we can describe a reflection θ̂ : Ω→ Ω given by θ̂σ(λ) = θ∗σ(θλ). Now we can find
a reflection Θ : A → A that satisfies the reflection invariance property (Def 3.2). This reflection is
given by

Θ(A)(ω) = A(θ̂(ω)). (6.9)

If we consider the spin random variables, we have

Θ(Sa
λ)(σ) = Sa

λ(θ̂σ) = ((I3 −2Pn̂)Sθλ(σ))a , (6.10)

for a ∈ {x, y, z}.
A basis for the random variables at a single lattice point is given by {ciλ}i∈S where S = {1,2} and

c1 = 1λ and c2 = Sx
λ

. From this we obtain the Schauder basis for A+

C I =
∏
λ∈Λ+

ciλ , (6.11)

labelled by an index I ∈ SΛ+ . Note that we can use any rotation of the spin random variable S since
they are dependent, so products of random variables of the form Pêi Si form a Schauder basis as
well, when interpreted as one-dimensional random variables.

As stated before, the background functional τ has to be factorizing with respect to the reflection
Θ. We prove this in the following lemma.

Lemma 6.1. The background functional τ :A→C given by τ(A) =∑
ω∈Ω A is factorizing with respect

to the reflectionΘ of (6.9).

Proof. We use the Riesz representation theorem to switch from the functional τ to a positive mea-
sure µ, such that τ(A) = Eµ(A) for all A ∈A. Now note that two random variables A and Θ(B) with
A,B ∈A+ are independent conditional on the spin configurationΩP on the reflection plane. Invok-
ing reflection invariance of µ(·|ΩP ), we get

Eµ(AΘ(B)|ΩP ) = Eµ(A|ΩP )Eµ(Θ(B)|ΩP ) = Eµ(A|ΩP )Eµ(B |ΩP ). (6.12)

We thus see that the functional τ+ :A+ →C is given by τ+(A) = Eµ(A|ΩP ), and τ is indeed factorizing.

The functional τ+ has to be strictly positive. We show this in Lemma 6.2

Lemma 6.2. The functional τ+ :A+ →C is strictly positive.

Proof. A simple calculation shows

τ+(A∗A) = Eµ(A∗A|ΩP ) = Eµ(|A|2|ΩP ) > 0, (6.13)

whenever A 6= 0.

We are now in the situation of Theorem 3.11, since τ is a continuous, factorizing functional on
A, τ+ is strictly positive and H is a reflection invariant operator. Thus we know that the functional
τβH is reflection positive for all 0 ≤β if and only if the matrix (J 0

I J )I of coupling constants across the
reflection plane is positive semidefinite. Let us first focus on a situation where we have only two
spin particles.
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6.2.1. Nearest neighbour interactions
We will first check reflection positivity in the case of a reflection invariant lattice with only two neigh-
bouring spins, spin i and spin j := θ(i ). Due to the geometry of the model, these spins are corner
points of the same tetrahedron. The Hamiltonian of this lattice is simply

H = 〈Pê j S j , Mi j Pêi Si 〉 . (6.14)

We want to write this in the form (3.15). Let us define R := (I −2Pn̂) as in (6.10), then R is an idem-
potent matrix and we can write H = 〈Pê j R2S j , Mi j Pêi Si 〉. Since RS j =Θ(Si ) we thus have

H = 〈Pê j RΘ(Si ), Mi j Pêi Si 〉 . (6.15)

Finally, note that in general for a spin k we have RPêθ(k) = Pêk R. From this description we find that
the matrix of coupling constants across the reflection plane is given by

(J 0
I J )I =−Pêi RMi j Pêi =−〈êi ,RMi j êi 〉Pêi . (6.16)

This matrix has eigenvalues λ1,2 = 0 and λ3 =−〈êi ,RMi j êi 〉.
Since we are looking at two neighbouring spins, without loss of generality the basis can be cho-

sen in such a way that the reflection plane is the x-z plane, and the spins are orthogonal to the
x-direction. This is shown in Figure 6.3.

Figure 6.3: Two nearest neighbour spins with a reflection plane equal to the x-z plane, and spins in the y-z plane. Left is
spin j , right spin i .

Using the description above, we can exactly calculate the matrix of coupling constants across
the reflection plane. The results are summarized in the following lemma.

Lemma 6.3. The matrix of coupling constants (J I J )I given in (6.16) for the reflection through a
reflection plane of two nearest neighbour spin particles is reflection positive if and only if J ≤−5D .

Proof. The matrix (J I J )I is positive semidefinite if and only if all eigenvalues are non-negative. We
therefore need to check for which values of J we have −〈êi ,RMi j êi 〉 ≥ 0.

Note that êi = [
0 cosφ sinφ

]T
and thus ê j = [

0 −cosφ sinφ
]T = Rêi . Furthermore we
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know r̂i j = n̂. So we calculate

−〈ei ,RMi j ei 〉 =−〈e j , Mi j ei 〉

=−[
0 −cos(φ) sin(φ)

]−J +D 0 0
0 −J −2D 0
0 0 −J +D

 0
cos(φ)
sin(φ)


=−[

0 −cos(φ) sin(φ)
] 0

(−J −2D)cos(φ)
(−J +D)sin(φ)


=−((J +2D)cos2(φ)+ (−J +D)sin2(φ)) ≥ 0.

Rewriting gives
J (cos2(φ)− sin2(φ))+2D cos2(φ)+D sin2(φ) ≤ 0,

and thus

J ≤ D
−2cos2(φ)− sin2(φ)

cos2(φ)− sin2(φ)
.

Note that the two spins are part of the same tetrahedron, and thus using Appendix A we know that

cos(φ) = r̂i j ·êi =
√

2
3 , which thus gives J ≤−5D . For the converse, we can make the same arguments

in opposite direction.

Remark 6.4. When we choose the reflection to be spin inverting, i.e. Θ(Sa
λ

)(σ) =−Sa
λ

(θ̂σ) =
− ((I3 −2Pn̂)Sθλ(σ))a , the Hamiltonian H in (6.15) changes to H = −〈Pê j RΘ(Si ), Mi j Pêi Si 〉. This
results in a minus sign in front of the matrix of coupling constants across the reflection plane (6.16).
Therefore the nonzero eigenvalue obtains a minus sign, which flips the inequality in Lemma 6.3 to
J ≥−5D . The meaning of a spin inverting reflection can best be explained with help of a figure.

Figure 6.4: The reflection (6.10) starts with a spin on one side of the reflection plane (a), this is reflected to the other side
(b) and then rotated such that it points in the direction of the Ising axis (c). A spin inverting reflection furthermore inverts
the direction of the spin (d).

The reflection of (6.10) that leaves the spin invariant, starts with step (a) in Figure 6.4 and then
consists of the steps (b) and (c). For a spin inverting reflection we furthermore let the spin point in
the opposite direction, shown in (d).

6.2.2. Non nearest neighbour interactions
Consider the same situation as in Figure 6.3, but with the spins not being nearest neighbours. The
Hamiltonian is the same as (6.15) and the matrix of coupling constants is equal to (6.16). The differ-
ence with the nearest neighbour interaction is the matrix Mi j , as described in (6.5).

Lemma 6.5. The matrix (J I J )I is negative semidefinite for the reflection (6.10). In particular the
matrix has one negative eigenvalue.
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Proof. The matrix (J I J )I is negative semidefinite if and only if the eigenvalues are nonpositive, so
we need to check that −〈êi ,RMi j êi 〉 ≤ 0.

By choosing the appropriate basis, shown in Figure 6.3, we calculate

−〈ei ,RMi j ei 〉 =−〈e j , Mi j ei 〉

=−D
a3

|ri j |3
[
0 −cos(φ) sin(φ)

]1 0 0
0 −2 0
0 0 1

 0
cos(φ)
sin(φ)


=−D

a3

|ri j |3
(2cos2(φ)+ sin2(φ)) ≤ 0.

Since D and a are positive constants, we conclude that we must have cos2(φ)+1 ≥ 0 which is true for
all φ. The inequality is strict as cos2(φ) ≥ 0 for all φ, so we indeed have one negative eigenvalue.

Remark 6.6. When we choose the reflection to be spin inverting, i.e. Θ(Sa
λ

)(σ) =−Sa
λ

(θ̂σ) =
− ((I3 −2Pn̂)Sθλ(σ))a , the Hamiltonian obtains a minus sign. This results in a minus sign in front of
the matrix of coupling constants across the reflection plane, which thus makes it a positive semidef-
inite matrix.

6.2.3. A larger lattice
Consider a pyrochlore latticeΛ, that is invariant under a reflection θ in a reflection plane. Assuming
the lattice is big enough, that is, there is a spin which reflection is not its nearest neighbour, the
Boltzmann functional τH is not reflection positive. This assumption is valid, since the lattice is
likely to look like a bigger version of Figure 6.1, which already satisfies the assumption. The result
for reflection positivity is proved in the following theorem.

Theorem 6.7. For a big enough pyrochlore lattice Λ, the Boltzmann functional τβH is never reflec-
tion positive with respect to the reflection (6.10).

Proof. By Theorem 3.11 reflection positivity of the Boltzmann functional is equal to the matrix of
coupling constants across the reflection plane (J 0

I J )I\{I0} being positive semidefinite.
Since we assumed the lattice to be big enough, there is a spin i which reflection θ(i ) is not one

of its nearest neighbours. This means somewhere on the diagonal of (J I J )I\{I0}, we have the matrix
(6.16). By Lemma 6.5 we know this matrix is negative semidefinite, with one negative eigenvalue
λ. But then we can find a vector q such that

∑
I ,J∈I\{I0} q∗

I J I J qJ = λ|q|2 < 0, and thus the matrix of
coupling constants across the reflection plane is not positive semidefinite.

6.2.4. Spin inverting reflection
In Theorem 6.7 we have shown that, for the reflection (6.10), the Boltzmann functional is never
reflection positive for a large enough lattice. However, the same proof can not be applied to the spin
inverting reflection

Θ(Sa
λ)(σ) =−Sa

λ(θ̂σ) =− ((I3 −2Pn̂)Sθλ(σ))a . (6.17)

We wish to get a bit more insight in this reflection. For this, consider the lattice of Figure 6.5, com-
posed of two corner sharing tetrahedra. The reflection through a plane then leaves the shared corner
and two opposite corners invariant, and swaps the other two corners in a tetrahedron.

The Hamiltonian is given by (6.6). The reflection naturally splits the lattice in the lattice points
on different sides of the plane, Λ+ and Λ−, with intersection being the fixed point set of the reflec-
tion. Let this fixed point set be P . We can then split the Hamiltonian in H = H++H0 +H− with

H0 =
∑

i , j∈Λ+\P
〈Sθ( j ),Pêθ( j ) Miθ( j )Pêi Si 〉 . (6.18)



6.2. Reflection positivity for a reflection plane 34

Figure 6.5: Two corner sharing tetrahedra with parallel ground planes, one of the tetrahedra is rotated π radians around
the normal vector of the ground plane.

Using the same steps as in Section 6.2.1 we can rewrite this to

H0 =
∑

i , j∈Λ+\P
〈Θ(S j ),−Pê j RMiθ( j )Pêi Si 〉 . (6.19)

The matrix of coupling constants across the reflection plane is thus given by

J 0
i j = Pê j RMiθ( j )Pêi = 〈ê j ,RMiθ( j )êi 〉 ê j ê∗i = 〈êθ( j ), Miθ( j )êi 〉 ê j ê∗i , (6.20)

for i , j ∈Λ+ \ P .

Lemma 6.8. The matrix of coupling constants across the reflection plane (6.20) is positive semidef-
inite if and only if J ≥−37

8 D .

Proof. We calculate the eigenvalues of J 0
i j . For this let Λ+ \ P = {λ1,λ2}, and choose uλi , vλi and wλi

pairwise orthogonal such that uλi = êλi for i = 1,2. Now define the basis

B :=
{[

uλ1

0

]
,

[
0

uλ2

]
,

[
vλ1

0

]
,

[
0

vλ2

]
,

[
wλ1

0

]
,

[
0

wλ2

]
,

}
,

where 0 ∈R3 is the zero vector. Using a change of basis we then calculate

Ji j = 〈êθ( j ), Miθ( j )êi 〉 , (6.21)

for i , j = 1,2, and 0 otherwise. This is a square 6× 6 matrix of rank 2, so we have four times the
eigenvalue 0. After substituting known values as calculated in Appendix A, the left upper matrix of
(6.21) becomes

J I J =
[ J+5D

3
D
8

D
8

J+5D
3

]
. (6.22)

This matrix has eigenvaluesλ1 = 8J+43D
24 andλ2 = 8J+37D

24 and is thus positive semidefinite if and only
if J ≥−37

8 D . Since a change of basis does not change the eigenvalues, this proves the lemma.
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Using Lemma 6.8 we can not yet prove that the Boltzmann functional of a bigger lattice is re-
flection positive. However, the result for two tetrahedra does give a strong believe that there exists
values of J such that the model is reflection positive using a spin inverting reflection.

Another interesting configuration are two spins on either side of the reflection plane with re-
flections that are not their own nearest neighbours. It is worth noting that the author numerically
evaluated the situation with two spins on a line orthogonal to the reflection plane, pointing in the
same direction. For that situation the matrix of coupling constants across the reflection plane stayed
positive semidefinite, which further amplified the believe that the model is reflection positive with
respect to a spin inverting reflection. These results are however not incorporated in this thesis.

6.3. Reflection positivity for an inversion
Consider an inversion in a lattice point, situation (c) in Figure 6.2. This inversion can be seen as
a reflection θ in a point λ, that divides the lattice in two parts Λ+ and Λ− := θ(Λ+), where their
intersection P is the set only containing λ. Define Ω+ := ∏

j Ωλ j where λ j ∈Λ+ for all j . From this
probability space, we find the subalgebra A+ of all random variables in A that are fully determined
by the projection of their argument on Ω+, thus defined in the same way as (6.8). Similar to the
reflection in a reflection plane, the reflection Θ : A → A is given by (6.9). If we consider the spin
random variables, we have for spin i

Θ(Sa
i )(σ) = Sa

i (θ̂σ) =−Sa
θi (σ), (6.23)

for a ∈ {x, y, z}. The background functional τ can be factorized as τ(Θ(A)B) = τ+(A)τ+(B), and this
factor τ+ is strictly positive. The proof is equal to the proof of Lemma 6.1 and Lemma 6.2. Further-
more we can construct a Schauder basis for A+ in a similar way as for the reflection plane.

We are now in the situation of Theorem 3.11, so τβH is reflection positive for all 0 ≤β if and only
if the matrix (J 0

I J )I of coupling constants is positive semidefinite. Let us first focus on a situation
where we only have two tetrahedra.

6.3.1. Two tetrahedra
Consider the lattice Λ as shown in Figure 6.5, composed of two corner sharing tetrahedra with par-
allel ground planes. One of the tetrahedra is rotated over π radians around the normal vector of the
ground plane intersecting the shared corner. A spin is located on every cornerpoint of the tetrahe-
dra as described for the pyrochlore lattice. Without loss of generality we let the shared corner be the
origin.

Then we can write the Hamiltonian in the form H = H++H0 +H− with

H0 =
∑

(i , j )
〈−Θ(S j ),Pê j Miθ( j )Pêi Si 〉 , (6.24)

where the sum is over i , j ∈Λ+ \ {0}. From this we find the matrix of coupling constants across the
reflection plane

J 0
i j = Pê j Miθ( j )Pêi = 〈ê j , Miθ( j )êi 〉 ê j ê∗i =−〈êθ( j ), Miθ( j )êi 〉 ê j ê∗i , (6.25)

for i , j ∈Λ+ \ {0}. This matrix is indefinite, which we prove in the following lemma.

Lemma 6.9. The matrix of coupling constants across the reflection plane J 0
i j as in (6.25) is indefinite.

Proof. The matrix is indefinite if and only if it has negative and positive eigenvalues, so we compute
the eigenvalues. For this, letΛ+\{0} = {λ1,λ2,λ3}. Then choose uλi , vλi and wλi pairwise orthogonal
such that uλi = êλi for i = 1,2,3. Now define the basis

B :=


uλ1

0
0

 ,

 0
uλ2

0

 ,

 0
0

uλ3

 ,

vλ1

0
0

 ,

 0
vλ2

0

 ,

 0
0

vλ3

 ,

wλ1

0
0

 ,

 0
wλ2

0

 ,

 0
0

wλ3

 , (6.26)
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where 0 ∈R3 is the zero vector. After a change of basis, this reduces the matrix J 0
i j to

Ji j =−〈êθ( j ), Miθ( j )êi 〉 , (6.27)

for i , j = 1,2,3, and 0 otherwise. Since this is a square 9×9 matrix of rank 3, we have six times the
eigenvalue 0. After substituting known values as calculated in Appendix A, the left upper matrix of
(6.27) becomes

J I J =−D


1
8

1
3
p

3
1

3
p

3
1

3
p

3
1
8

1
3
p

3
1

3
p

3
1

3
p

3
1
8

 . (6.28)

This matrix has eigenvalues λ1 = −D 9+16
p

3
72 < 0 and λ2,3 = −D 9−8

p
3

72 > 0, so it is indefinite. Since a
change of basis does not influence the eigenvalues, this proves the lemma.

6.3.2. A larger lattice
Consider a pyrochlore lattice Λ, that is invariant under an inversion θ in a lattice point λ. Assume
the tetrahedra that contain λ are part of the lattice, which is a valid assumption since the lattice is
likely to look like a bigger version of Figure 6.1. Then the Boltzmann functional τβH is not reflection
positive with respect to the reflection (6.23), which is proved in the following theorem.

Theorem 6.10. For a finite pyrochlore lattice Λ with an inversion in a lattice point λ contained in
two tetrahedra, the Boltzmann functional τβH is never reflection positive for the reflection (6.23).

Proof. The proof is similar to that of Theorem 6.7. Construct a vector q such that
∑

I ,J∈I\{I0} qI (J 0
I J )I\{I0}qJ =

λ|q̃|2 < 0, then (J 0
I J )I\{I0} is not positive semidefinite, which proves the theorem.

Remark 6.11. The result of Theorem 6.10 also holds for a spin inverting reflection, i.e. Θ(Sa
i )(σ) =

−Sa
i (θ̂σ) = Sa

θi (σ)). Using this reflection the Hamiltonian H0 in (6.24) obtains a minus sign, and thus
the matrix of coupling constants across the reflection plane obtains a minus sign. This however still
results in an indefinite matrix, for which the same proof holds.

6.4. Reflection positivity for a 2-fold symmetry
The method for a 2-fold symmetry is very similar to the method for a reflection in a plane. Consider
a rotation around an axis through a tetrahedron, situation (a) in Figure 6.2. This rotation is a 2-fold
symmetry that can be seen as a reflection θ in an axis u, that divides the lattice in two parts Λ+
and Λ− := θ(Λ+), with empty intersection. Define Ω+ := ∏

j Ωλ j where λ j ∈ Λ+ for all j . From this
probability space, we find the subalgebra A+ of all random variables in A that are fully determined
by the projection of their argument on Λ+, thus defined in the same way as (6.8). Similar to the
reflection in a reflection plane, the reflection Θ : A → A is given by (6.9). If we consider the spin
random variables, we have for spin i

Θ(Sa
i )(σ) = Sa

i (θ̂σ) = (RuSθi (σ))a , (6.29)

for a ∈ {x, y, z}. Here Ru is the rotation matrix around the axis u. The background functional τ can be
factorized as τ(Θ(A)B) = τ+(A)τ+(B), and this factor τ+ is strictly positive. The proof is equal to the
proof of Lemma 6.1 and Lemma 6.2, except we do not need to condition on the spin configuration
of the fixed point set of the reflection, since that is empty. Furthermore we can construct a Schauder
basis for A+ in a similar way as for the reflection plane.

We are now in the situation of Theorem 3.11, so τβH is reflection positive for all 0 ≤β if and only
if the matrix (J 0

I J )I of coupling constants across the reflection plane is positive semidefinite. Let us
first focus on a situation where we have two spins that lie in the plane through their lattice point
and rotation axis.
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6.4.1. Two spins
Consider the lattice Λ as shown in Figure 6.6, consisting of two lattice points that are not nearest
neighbours with spin vector that lies in a plane through the lattice point and the rotation axis. Sup-
pose furthermore that j = θ(i )

Figure 6.6: Two lattice points with spin vector that lies in a plane through the lattice point and the rotation axis, and is
rotated over φ degrees.

The Hamiltonian of this situation is given by

H = 〈Pê j S j , Mi j Pêi Si 〉 . (6.30)

We want to write this in the form (3.15). Since Ru is idempotent, we can write H = 〈Pê j R2S j , Mi j Pêi Si 〉.
Since we have RuS j = Θ(Sθ( j )) = Θ(Si ) and, for a general spin k, RuPêθ(k) = Pêk Ru, the Hamiltonian
can be rewritten to

H = 〈Θ(Si ),Pêi RuMi j Pêi Si 〉 . (6.31)

This gives the matrix of coupling constants across the reflection plane

(J 0
I J )I =−Pêi RuMi j Pêi =−〈êi ,RuMi j êi 〉Pêi . (6.32)

We now formulate the following lemma.

Lemma 6.12. The matrix (J 0
I J )I is negative semidefinite for the reflection (6.29). In particular the

matrix has one negative eigenvalue.

Proof. The proof is an exact copy of the proof of Lemma 6.5.

Remark 6.13. Similar to the reflection plane in Section 6.2, the matrix (J 0
I J )I for the situation in Fig-

ure 6.6 is positive semidefinite for a spin inverting reflection, i.e. Θ(Sa
i )(σ) =−Sa

i (θ̂σ) =−(RuSθi (σ))a .

6.4.2. A larger lattice
Consider a pyrochlore lattice Λ, which is invariant under a rotation θ in an axis u. Assuming the
lattice contains the situation of Figure 6.6, and the rotation is given by (6.29), the Boltzmann func-
tional τH is not reflection positive. This assumption for the lattice is valid, since the lattice is likely
to look like a bigger version of Figure 6.1, which satisfies the assumption. The result is proved in the
following theorem.

Theorem 6.14. For a big enough pyrochlore latticeΛ, the Boltzmann functional τβH is never reflec-
tion positive with respect to the reflection (6.29).



6.4. Reflection positivity for a 2-fold symmetry 38

Proof. The proof is similar to the proof of Theorem 6.7, and uses Lemma 6.12.

Remark 6.15. The proof of Theorem 6.14 can not be applied to the spin inverting reflection

Θ(Sa
i )(σ) =−Sa

i (θ̂σ) =−(RuSθi (σ))a , (6.33)

since the matrix of Lemma 6.12 is positive semidefinite for this reflection. There is reason to believe
that this reflection will result in a reflection positive Boltzmann functional. This believe is supported
similar to the believe in Section 6.2, for the reflection plane with spin inverting reflection.
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6-vertex model

The 6-vertex model is an example of an ice type model. It is a two dimensional version of the spin ice
model considered in the previous chapter. We consider a square lattice where on every edge a spin
is located. For every lattice point there are two spins pointing towards the vertex, and two pointing
away. To every configuration an energy is assigned. The model is based on the one described in
[Bax73].

In this chapter we evaluate reflection positivity with respect to diagonal reflections. In Section
7.1, the model is translated to the framework developed in Chapter 3. Then, in Section 7.2, the
energy values for which the model is reflection positive will be calculated.

7.1. A description of the model
Consider a square N ×N latticeΛ⊆Z×Zwrapped around a torus, and place an arrow on each bond
such that at every vertex two arrows are pointing outwards, and two are pointing inwards. There are(4

2

)= 6 possible configurations, as shown in Figure 7.1.

Figure 7.1: The six possible configurations in the 6-vertex model.

To every configuration, we assign the energy εi ∈ R, such that the Hamiltonian of the system is
given by

H =
6∑

i=1
Ni εi , (7.1)

where Ni is the number of times that the specific configuration is found.

7.1.1. The algebra
We wish to translate the model to the setting of Chapter 3. For this, consider the reciprocal lattice
of Λ, which we call Λ′. This is the N ×N lattice with lattice points { 2π

N (i , j ) : i , j ∈ {0, ..., N −1}}. Now
consider functions ω : Λ′ → Z, satisfying |ω(λ)−ω(λ′)| = 1 for nearest neighbour λ,λ′ ∈ Λ′. If we
then look at a plaquette in the reciprocal lattice, there are, up to an additional constant, six possible
configurations, as depicted in Figure 7.2.

39



7.1. A description of the model 40

Figure 7.2: The six possible configurations in the reciprocal lattice of the 6-vertex model.

These configurations are the same as the configurations in 7.1. If we interpret the configurations
in 7.2 as a ’mountain scenery’, or in other words, a solid on solid model, and we want to walk a path
with the mountain always on our right hand, then we walk exactly in the direction of the arrows in
Figure 7.1. For instance, when we walk between a ’0’ and a ’1’, we need a path in the upper direction;
0 ↑ 1, such that the mountain (the ’1’) is to our right hand. The similarity of the configurations is
shown in Figure 7.3.

Figure 7.3: The six configurations are equal, and we can interpret them as a ’mountain scenery’ and paths with the moun-
tain to our right hand.

Another way of interpreting the arrows in Figure 7.3 is as the divergence and rotation of a vector
field. We thus see that we can describe the probability space of possible configurations as

Ω= {ω :Λ′ →Z : |ω(λ)−ω(λ′)| = 1 for nearest neighbour λ,λ′ ∈Λ′}/Z, (7.2)

where [ω] = [ω̄] whenever ω̄−ω ∈ Z. Now we define the algebra as all random variables acting on
the probability space, i.e.

A= {F :Ω→C}. (7.3)

This is indeed an algebra, since we can add and multiply random variables. A special random vari-
able in this algebra is the Hamiltonian, which we can write as

H([ω]) =∑
p

h([ω]|p ), (7.4)

where the sum is over all plaquettes in the lattice, and h([ω]|p ) is the Hamiltonian restricted to a
plaquette p. This restriction is one of the configurations shown in Figure 7.2, so we have h([ω]|p ) = εi

depending on the configuration of [ω]|p .

7.1.2. The reflection
There are several possible lattice invariant reflections in the torus lattice. We choose to look at the
diagonal reflections, as depicted in Figure 7.4. The reason for this is that the plaquettes on the
reflection line of a diagonal reflection do not influence each other. Such a reflection θ splits the
lattice into two partsΛ+ andΛ− := θ(Λ+). Their intersection is the fixed point set P of the reflection
plane.

We can now define the probability space Ω+ by using the reciprocal lattice Λ′+ of Λ+. This re-
ciprocal lattice contains exactly all points on one side of the reflection plane, including the point on
the reflection plane, as indicated with black bullet points in Figure 7.4. ForΩ+, we then have

Ω+ := {ω :Λ′
+ →Z : |ω(λ)−ω(λ′)| = 1 for nearest neighbour λ,λ′ ∈Λ′

+}/Z. (7.5)
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Figure 7.4: The diagonal reflection in the 6-vertex model on the reciprocal lattice. The reflection θ and some plaquettes
are shown.

From this we find the subalgebra A+ of all functions in A that are fully determined by their value on
Ω+, thus

A+ = {F ∈A : F ([ω]) = F ([ω]|Λ′+)}. (7.6)

SinceΩ is finite, there exists a basis for the subalgebra A+.

7.1.3. The functional
The functional we use is the Boltzmann functional τH :A→C. Since our lattice is discrete and finite,
it is given by

τH (A) = ∑
[ω]∈Ω

A([ω])e−H([ω])

Z
, (7.7)

where Z ≥ 0 is the partition function. Since τH has to be reflection invariant under the reflection
Θ :A→A, we choose the reflection to be given by

Θ(A)([ω]) = A(θ̂([ω])), (7.8)

where θ̂ :Ω→Ω is given by θ̂(ω)(λ) =ω(θ(λ)).
From the reflection invariance property we can furthermore conclude that the following condi-

tion on the energies of the six configurations must be satisfied,

ε1 = ε3 = a, ε5 = c,

ε2 = ε4 = b, ε6 = d ,
(7.9)

where a,b,c,d ∈R. We have equality of ε1 and ε3, and equality of ε2 and ε4, since these are diagonal
reflections of each other, and we want reflection invariance in both diagonal directions.

We furthermore need the background functional τ to be factorizing and strictly positive, which
can be proved similar to Lemma 6.1 and Lemma 6.2.

7.2. Reflection positivity of the 6-vertex model
We want the functional to be reflection positive, which will likely further restrict the values of the
energies. Since the functional τ is continuous and factorizing on A, τ+ is strictly positive, and the
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Hamiltonian H ∈A is a reflection invariant operator, by Theorem 3.11 we know that the Boltzmann
functional τβH is reflection positive for all β ≥ 0 if and only if there is a decomposition H = H−+
H0 +H+ with H+ ∈A+, H− =Θ(H+) and −H0 ∈ co(K+).

If we let H+ be the sum over all plaquettes above the reflection line, as indicated with the small
dashed lines in Figure 7.4, then indeed H− = Θ(H+) regarding the energy values in (7.9). We thus
need to check that the negative sum over all plaquettes on top of the reflection line, −H0, is con-
tained in the reflection positive cone. This we will prove in Theorem 7.1. The plaquettes in H0 are
indicated with the bigger dashed lines in Figure 7.4. The reflection positive cone is the closure of
the convex hull of K+ = {Θ(A)A : A ∈A+}. Note that for every A ∈A+, we also have c A ∈A+ for every
c ∈C. Therefore for any B ∈K+, we have kB ∈K+ where k ∈R≥0.

Theorem 7.1. The Hamiltonian −H0 is contained in co(K+) for both diagonal reflections if and only
if the energies assigned to the different configurations as in (7.9) satisfy c,d ≤ 0 and −pcd ≤ a,b ≤ 0.

We will prove Theorem 7.1 with help of a lemma, in which we consider only one plaquette.

Lemma 7.2. Let −B be a random variable acting on a single plaquette, taking values as in (7.9) on
the different configurations. Then −B ∈ co(K+) for both diagonal reflections if and only if c,d ≤ 0
and −pcd ≤ a,b ≤ 0.

Proof. "⇒" Suppose −B ∈ co(K+), then we can write −B as a convex sum of elements in K+. First
consider only one of the diagonal reflections. Let us focus on a random variable in A+ and the
restriction of its argument to the plaquette on the reflection plane. There are, up to a constant, four
possible configurations for the argument, as shown in Figure 7.5.

Figure 7.5: The four possible configurations when restricting the argument of an element in A+ to a plaquette on the
reflection plane.

Define a random variable A ∈A+ that on this plaquette takes the values

A =


α if the restriction to the plaquette has configuration α′,
β if the restriction to the plaquette has configuration β′,
γ if the restriction to the plaquette has configuration γ′,
δ if the restriction to the plaquette has configuration δ′,

(7.10)

and zero elsewhere. Then forΘ(A)A we find for the configurations of Figure 7.2,

Θ(A)A =



ᾱα if the plaquette has configuration 1,

δ̄β if the plaquette has configuration 2,

γ̄γ if the plaquette has configuration 3,

β̄δ if the plaquette has configuration 4,

δ̄δ if the plaquette has configuration 5,

β̄β if the plaquette has configuration 6.

(7.11)

Since we can write −B as a sum with positive coefficients of random variables of the form (7.11), we
infer that a, c and d are nonpositive. To determine the restriction on b, observe that we can write[

ββ̄ βδ̄

γβ̄ γγ̄

]
=

[
β

γ

][
β̄ γ̄

]
, (7.12)
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which is the projection matrix on the vector
[
β γ

]T
. Then we can write the matrix

M =
[−d −b̄
−b −c

]
, (7.13)

as a sum with positive coefficients of matrices of the form (7.12). Now using Theorem 2.3, we know
that M must be positive semidefinite, so it has a nonnegative determinant. This gives the restriction
|b| ≤p

cd .
Reflection positivity for a reflection in the other diagonal switches the roles of a and b, and will

thus yield the restrictions b,c,d ≤ 0 and |a| ≤p
cd . This proves the right implication.

"⇐" Suppose a, b, c and d satisfy the restrictions of the lemma. Then for both reflections, we
want to construct a random variable in co(K+) that is exactly equal to B . First consider the reflection
in the lower-left to upper-right diagonal. Then using Theorem 2.3 we can write the matrix M =
λ1q1q∗

1 +λ2q2q∗
2 , where M as in (7.13) and λ1 and λ2 the eigenvalues of M . This is a sum with

positive coefficients of projection matrices. Now let A1, A2 ∈ A+ be as in (7.10) with coefficients

satisfying |α| = |γ| =
√−a

λi
, β the first component of qi and δ the second component of qi for i = 1,2.

Then −B = λ1Θ(A1)A1 +λ2Θ(A2)A2. For the other reflection we do the same but with the roles of
a and b swapped. Then indeed −B ∈ co(K+) for both diagonal reflections, which proves the left
implication.

Proof of Theorem 7.1. "⇐" We want to write −H0 as a sum with positive coefficients of elements
in K+. Since we consider a finite N × N lattice and due to periodic boundary conditions, H0 is
the sum over N plaquettes. Using Lemma 7.2 we know that there exist random variables in −B ∈
co(K+) such that we have reflection positivity for one plaquette. If we label the plaquettes in H0

by p1, ..., pN , we can construct a random variable Bpi on every plaquette, taking the values of −B
on that plaquette. Then we have Bpi ∈ co(K+) and −H0 = ∑N

i=1 Bpi , so −H0 is a sum with positive
coefficient of elements in K+, thus −H0 ∈ co(K+). This proves the left implication.

"⇒" Now suppose −H0 ∈ co(K+). Since different plaquettes in H0 overlap in only one corner,
they don’t interact, so −H0 can be written as a sum of random variables acting only on a single
plaquette. Lemma 7.2 now proves the right implication.

We conclude that the 6-vertex model on an N ×N lattice with diagonal reflections, is reflection
positive whenever the energy values satisfy c,d ≤ 0 and −pcd ≤ a,b ≤ 0.

7.3. Infinite lattice
Although we will not look at phase transitions in the 6-vertex model, it is interesting to evaluate
reflection positivity of the Boltzmann functional for infinite lattices. For this the proof of Theorem
7.1 does not apply, because H0 is infinite for almost all possible spin configurations. We can however
show that reflection positivity is preserved when taking limits of functionals.

Theorem 7.3. LetA be an algebra with a reflectionΘ :A→A, such thatA is the double ofA+A−. For
N ∈N, let τN :A→C be reflection positive functionals converging to a neutral and linear functional
τ :A→C in the sense that limN→∞τN (A) = τ(A) for all A ∈A. Then τ is also reflection positive.

Proof. Choose A ∈A+. Then τ(Θ(A)A) = limN→∞τN (Θ(A)A) ≥ 0.

Since the Boltzmann functionals that we constructed for the N ×N lattices are also functionals
on the algebraA for an infinite lattice, we can directly apply Theorem 7.3 to show that the Boltzmann
functional on the infinite lattice is reflection positive.
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16-vertex model

The 16-vertex model is a modification of the 6-vertex model described in the previous chapter. In
this model there is no requirement on the number of spins allowed to point towards a vertex. It
has great resemblance to the spin ice model described in Chapter 6, where the spins were also al-
lowed to point in every direction. The difference being the dimension of the two models, and the
formulation of the Hamiltonian. In the case of the 16-vertex model an energy is assigned to every
possible configuration of a vertex with neighbouring spins, which is based on the model described
in [Bax73]. The goal of this section is to find values of the energy such that the model is reflection
positive with respect to diagonal reflections.

In Section 8.1, the model is described in the setting of Chapter 3. Then, in Section 8.2, the values
for which the model is reflection positive are calculated. Finally in Section 8.3, reflection positivity
for the model with energy values that allow for the existence of magnetic monopoles is evaluated.

8.1. A description of the model
The 16-vertex model is an extension of the 6-vertex model. Consider a square N×N latticeΛ⊆Z×Z
wrapped around a torus. On every bond we place an arrow, with no condition on the number of ar-
rows pointing inside or outside of the vertex. There are 24 = 16 possible configurations. To every
configuration we assign the energy εi ∈R, as depicted in Figure 8.1. The configurations are ordered
in orbits under the elements of the reflection group generated by reflections in both diagonals, la-
beled a to g . We will refer to this later.

The Hamiltonian is given by

H =
16∑

i=1
Ni εi , (8.1)

where Ni is the number of times the specific configuration with energy εi is found.

8.1.1. The setting
We wish to translate the model to the setting of Chapter 3. The probability space of the model can
be described by all directed graphs on the N ×N lattice wrapped around a torus, i.e.

Ω= {all graphs G = (V , A) : V vertex setΛ , A directed edges between nearest neighbours}. (8.2)

We then define the algebra as all random variables acting on the probability space,

A := {F :Ω→C}. (8.3)

A special random variable in this algebra is the Hamiltonian.

44
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Figure 8.1: The sixteen possible configuration in the 16-vertex model, with energy εi for i = 1, ...,16. The orbits of con-
figurations under the elements of the reflection group generated by reflections in both diagonals, labelled a to g , is also
shown.

Just as in the 6-vertex model, we choose to look at diagonal reflections. The reason for this,
is that different vertices that are located on top of the reflection plane don’t influence each other,
thus making it easier to use Theorem 3.11. The reflection θ splits the lattice in two parts, Λ+ and
Λ− := θ(Λ+). Their intersection is the fixed point set P of the reflection plane. The probability space
Ω+ is the set of all directed graphs on Λ+. The subalgebra A+ then contains all functions in A that
are fully determined by their value onΩ+. SinceΩ is finite, there exists a basis for this subalgebra.

We use the Boltzmann functional τH :A→C. Since ourΩ is finite, it is given by

τH (A) = ∑
ω∈Ω

A(ω)e−H(ω)

Z
, (8.4)

where Z is the partition function. Since τH has to be reflection invariant under the reflection Θ, we
infer that the reflection is given by

Θ(A)(ω) = A(θ̂ω), (8.5)

where θ̂ :Ω→Ωmirrors the graph in the reflection plane.
From the reflection invariance property already a few conclusions can be drawn on the al-

lowed values of the energy of the vertices. We look at the actions of the Klein-four group K4 =
{I ,σ1,σ2,σ1σ2} where σ1 and σ2 are reflection in the different diagonals. All configurations that
are in the same orbit need to take the same energy value. The orbits are depicted in Figure 8.1. We
conclude that

ε1 =−a ε2 =−b

ε3 = ε4 = ε5 = ε6 =−c ε7 = ε8 = ε9 = ε10 =−d

ε11 = ε12 =−e ε13 = ε14 =− f

ε15 = ε16 =−g .

(8.6)

The functional τ is factorizing and its factor τ+ is strictly positive. The proof of this is similar to
the proof of Lemma 6.1 and Lemma 6.2.
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Remark 8.1. Note that the reflection Θ in (8.5) is different from the one in (7.8). In the 6-vertex
model we formulated the algebra as a ’mountain scenery’, reflecting this scenery in a diagonal sim-
ply reflects the values of the scenery to the other side of the plane. In the 16-vertex model, however,
the reflection changes the direction of the arrows. This difference is visualized in Figure 8.2.

Figure 8.2: On the left a reflection in the 6-vertex model, where the values of the ’mountain scenery’ are reflected. On the
right a reflection in the 16-vertex model, where an arrow is reflected and its direction changes.

8.2. Reflection positivity of the 16-vertex model
We want the function to be reflection positive. Since the functional τ is continuous and factoriz-
ing on A, τ+ is strictly positive, and H ∈ A is a reflection invariant operator, by Theorem 3.11 we
know that the Boltzmann functional τβH is reflection positive for all β ≥ 0 if and only if there is a
decomposition H = H−+H0 +H+ with H+ ∈A+, H− =Θ(H+) and −H0 ∈ co(K+).

If we let H+ be the sum over all vertices above the reflection line, then indeed H− =Θ(H+). We
thus need to check if −H0 is contained in the reflection positive cone. Let us first consider a random
variable acting on only one vertex, then we can formulate the following lemma.

Lemma 8.2. Let −B be a random variable that depends on a single vertex on the reflection line,
taking the values of (8.6). Then −B ∈ co(K+) for reflections in both diagonals if and only if the
matrices

M1 =


a c c f
c e g d
c g e d
f d d b

 , M2 =


a c c e
c f g d
c g f d
e d d b

 (8.7)

are positive semidefinite.

Proof. Let us first consider the reflection in only one diagonal, and focus on a vertex on the reflec-
tion line. The possible configurations of the edges are as given in Figure 8.3.

Figure 8.3: The four possible configurations of the edges for a vertex on the reflection plane.

We define a random variable A ∈A+ that on this vertex takes the values

A =


α if the restriction to the vertex has configuration α′,
β if the restriction to the vertex has configuration β′,
γ if the restriction to the vertex has configuration γ′,
δ if the restriction to the vertex has configuration δ′.

(8.8)
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The random variableΘ(A)A then acts on the configurations of Figure 8.1, and for a vertex p we have
Θ(A)A(p) = ρσ̄ if p is of the form ρ′θ(σ′) for ρ,σ=α,β,γ,δ. This result can be written as a projection

matrix on the vector
[
α β γ δ

]T
, i.e.

αᾱ αβ̄ αγ̄ αδ̄

βᾱ ββ̄ βγ̄ βδ̄

γᾱ γβ̄ γγ̄ γδ̄

δᾱ δβ̄ δγ̄ δδ̄

 . (8.9)

We have −B ∈ co(K+) for this reflection if and only if the matrix M1 of (8.7) is a sum of matrices of
the form (8.9). By Theorem 2.3, we thus know that M1 is positive semidefinite. For the reflection in
the other diagonal, a similar result is obtained for the matrix M2 of (8.7). To prove the converse di-
rection, we can decompose the matrices M1 and M2 in a positive sum of projection matrices, which
are contained in the reflection positive cone of the considered diagonal reflection. This proves the
lemma.

Using Lemma 8.2, we can find a condition for reflection positivity of the whole model.

Theorem 8.3. The 16-vertex model with energy taking the values of (8.6) is reflection positive with
respect to reflections in the diagonal if and only if the matrices M1 and M2 of (8.7) are positive
semidefinite.

Proof. By Theorem 3.11, the first statement is equivalent to having −H0 ∈ co(K+). Equivalence of
the latter with the second statement can be proved in a similar way as in the proof of Theorem
7.1.

Remark 8.4. The result can be extended to an infinite lattice using Theorem 7.3.

8.3. Magnetic monopoles
A special feature of spin ice models, is their allowance for the existence of magnetic monopoles.
Castelnovo, Moessner and Sondhi proposed that the spins in spin ice models can be thought of
as two separated and oppositely charged magnetic monopoles [CMS08]. In the spin ice model of
Section 6, there are then four charges at the center of every tetrahedron. In the ice type models
of Section 7 and 8 there are four charges at every vertex. This results in a local magnetic charge
neutrality. At finite temperature, spin fluctuations create pairs of defects breaking the 2 in, 2 out rule,
which creates the 16 configurations in the 16-vertex model, and is also the reason that we looked at
spins pointing in a random direction in Section 6. The result is that every tetrahedron/vertex carries
a net magnetic charge, depending on the configuration.

The easiest way in which the 16-vertex model allows for monopoles, is by assigning an energy of
n−2 (or a scaled version of these energies) to every vertex, where n is the number of arrows pointing
inside of the vertex. That means that for the energy values of (8.6) we find −a =−2, −b = 2 −c =−1,
−d = 1 and −e = − f = −g = 0. The question that arises is if this model is reflection positive with
respect to reflections in the diagonal. This question is easy to answer, because the Hamiltonian is
not reflection invariant.

We could consider to, instead of an energy n − 2, look at the absolute value of these energies,
i.e. µ|n − 2| with µ > 0. By Theorem 8.3 we have a concrete way of checking reflection positivity.
Substituting the new values of a,b,c,d ,e, f , g in the matrix M1 (or M2), gives

M1,2 =µ


−2 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 −2

 . (8.10)
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Since e∗1µM1,2e1 = −2µ with e1 being the first unit vector, the matrix M1,2 is not positive semidefi-
nite. Therefore the model with these energies is not reflection positive.

Remark 8.5. If we let the energies take values a = b = 2, c = d = 1 and e = f = g = 0 (or scaled by a
factor µ> 0, then the matrix M1,2 is still not positive semidefinite. This can be shown by calculating

the inner product 〈a, M1,2a〉, which will give a negative value for a = [
1−p

2 1 0 0
]T

.

Since we thus do not have reflection positivity with respect to a reflection in the diagonal, this
shows that we can not prove phase transitions using the developed methods of Section 4 in the
16-vertex model, with energy values that allow for the existence of magnetic monopoles. It may,
however, be possible using vertical and horizontal reflections, but that reflection is not evaluated in
this thesis.



9
Conclusion

In this thesis, reflection positivity was studied. Reflection positivity is a mathematical tool with ap-
plications in constructive quantum field theory and statistical physics. In statistical physics, reflec-
tion positivity is used to prove phase transitions in physical models. A brief explanation of different
methods to prove phase transitions was given, based on the description in [Bis09]. An overview of
reflection positivity was given, based on the work ’reflection positive doubles’ by Jaffe and Janssens
[JJ17]. In this overview, the proof of a theorem regarding tractable conditions on a Hamiltonian,
to show reflection positivity of the Boltzmann functional, was given for the more specific case of
bosonic algebras.

The theorem was then applied to prove or disprove reflection positivity in four different physical
models. The first model treated was the antiferromagnetic quantum Heisenberg model, where re-
flection positivity of the Boltzmann functional was shown regarding reflections in a reflection plane.
For both the nearest neighbour and the long-range model, this was done by proving that the so-
called matrix of coupling constants across the reflection plane is positive semidefinite. The result
was obtained by proving that a specific function only depending on the distance between two lattice
points is Osterwald-Schrader positive.

The second model treated was the spin ice model. For this model a pyrochlore lattice with spins
located on the midpoints of the bonds of a diamond lattice was considered. There are three possi-
ble symmetries in this lattice, a reflection in a plane, an inversion and a rotational symmetry. It was
shown that, for these symmetries, the Boltzmann functional with respect to a spin invariant reflec-
tion is never reflection positive, which is a new result. Furthermore, for the inversion it was shown
that the Boltzmann functional is also not reflection positive for a spin inverting reflection. However,
a similar result is not rigorously proved for the reflection plane and rotational symmetry.

The third and fourth models we treated were the 6-vertex and 16-vertex model. These are both
two-dimensional versions of the spin ice model, and are classified as ’ice-type’ models. Using diag-
onal reflections, a restriction on the allowed energy values was given for both models, such that the
Boltzmann functional is reflection positive. These were both new results. Specifically, regarding the
condition for reflection positivity of the 16-vertex model, we formulated and proved a theorem such
that one only needs to check whether a matrix is positive semidefinite to prove reflection positivity
of the model. Furthermore, for the 16-vertex model, we showed that the energy values that allow for
the existence of magnetic monopoles do not give a reflection positive Boltzmann functional.

A topic for further research is proving the occurrence of phase transitions in the models that
were shown to be reflection positive. This is believed to be possible using chessboard estimates, by
showing that the set of Gibbs measures on an infinite lattice is non-singular for certain values of the
inverse temperature. Furthermore, it is interesting to further investigate reflection positivity of the
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Boltzmann functional for the spin ice model, considering spin inverting reflections in a plane or for
a rotational symmetry. This could require computational methods.
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A
Tetrahedra

The corner points of a regular tetrahedon in 3 dimensions (Figure A.1) can be described by the
euclidean space coordinates a = (1,0,0), b = (0,1,0), c = (0,0,1), d = (1,1,1) with midpoint ( 1

2 , 1
2 , 1

2 ).

Figure A.1: A regular tetrahedron with corner points a, b, c and d .

The normalized vectors pointing from the corner points to the midpoints are given by êa =
2p
3

(−1
2 , 1

2 , 1
2 ), êb = 2p

3
( 1

2 ,−1
2 , 1

2 ), êc = 2p
3

( 1
2 , 1

2 ,−1
2 ) and êd = 2p

3
(−1

2 ,−1
2 ,−1

2 ). From this we find the

inner product between two of those vector to be

êi · ê j =
{

1 if i = j ,

−1
3 otherwise,

(A.1)

where i , j ∈ {a,b,c,d}. We furthermore would like to know the inner products between a vector
pointing from corner to corner and a vector pointing from corner to midpoint, i.e. êi · r̂i j and ê j · r̂i j

in the tetrahedron. Using the convention that r̂i j is the unit vector from i to j , we calculate for a
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and b; r̂ab = 1p
2

(−1,1,0). Thus we find

êa · r̂ab =
√

2

3
,

êb · r̂ab =−
√

2

3
.

(A.2)

We can put another tetrahedron on top of the one in Figure A.1, such that they have one shared
corner and their ground plane is rotated π radians. This second tetrahedron has cornerpoints d =
(1,1,1), a′ = (1,2,2), b′ = (2,1,2) and c ′ = (2,2,1) with midpoint ( 3

2 , 3
2 , 3

2 ). We then wist to calculate
the inner product êa · r̂ab′ and êb′ · r̂ab′ . Now r̂ab′ = 1p

6
(1,1,2) and êb′ = êb = 2p

3
( 1

2 ,−1
2 , 1

2 ), so we find

êa · r̂ab′ =
p

2

3
,

êb′ · r̂ab′ =
p

2

3
.

(A.3)

As the inner product is preserved under isometries of the euclidean space, (A.1), (A.2) and (A.3)
are invariant of our basis. This means for instance that we can replace A and B in A.2 with i and j
where i , j ∈ {A,B ,C ,D} and i 6= j . We prove this in the following theorem.

Theorem A.1. Let T : Rn → Rn be an isometry with x 7→ Ax, then the inner product is preserved
under T.

Proof. T is an isometry, so A is an orthogonal matrix. Now let u, v ∈Rn . Then T (u)·T (v) = (Au)T Av =
uT AT Av = uT v = u · v . So indeed the inner product is preserved.
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