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Abstract: Radio frequency interference, which makes it difficult to produce high-quality radar
spectrograms, is a major issue for micro-Doppler-based human activity recognition (HAR).
In this paper, we propose a deep-learning-based method to detect and cut out the interference
in spectrograms. Then, we restore the spectrograms in the cut-out region. First, a fully convolutional
neural network (FCN) is employed to detect and remove the interference. Then, a coarse-to-fine
generative adversarial network (GAN) is proposed to restore the part of the spectrogram that
is affected by the interferences. The simulated motion capture (MOCAP) spectrograms and
the measured radar spectrograms with interference are used to verify the proposed method.
Experimental results from both qualitative and quantitative perspectives show that the proposed
method can mitigate the interference and restore high-quality radar spectrograms. Furthermore,
the comparison experiments also demonstrate the efficiency of the proposed approach.

Keywords: image restoration; radar micro-doppler spectrogram; fully convolutional network;
generative adversarial network

1. Introduction

Human target detection and activity recognition in radar are attracting more and more
attention recently, and have been applied in many areas, such as assisted living [1] and health
monitoring [2]. Compared with optical sensors and infrared sensors, radar has its unique
advantages such as robustness to the environment, low-power, penetrability, and protecting visual
privacy [3]. Micro-Doppler (MD) spectrograms are often used for human activity recognition due to
the characteristic of MD effect [4–8]. The MD effect refers to the additional frequency modulations
on the returned radar signals, which are induced by the rotation, vibration, and other motions of
human limbs. Since the motion patterns of different human activities are diverse, the micro-Doppler
frequencies in the returned radar signals are activity-specific. As a result, the time-varying MD
frequencies in spectrograms are vital to classify human activities.

However, in the real world, there is often interference that impacts the quality of the radar
spectrograms, making the performance of the models for activity recognition drop significantly.
In such circumstances, how to mitigate the interference and restore clear radar spectrograms
becomes an essential topic to be investigated. Many anti-interference methods employing digital
signal processing techniques have been proposed [9–11]. However, these methods mainly focus
on the interference mitigation task. In addition, the radar signals that are impacted by the interferences
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cannot be recovered well, especially those disturbed by the interferences with long time duration or
large frequency bandwidth.

Furthermore, deep-learning (DL) technique has been used for interference mitigation.
Huang et al. [12] proposed a generative adversarial network (GAN) to remove the noise in radar
spectrograms. This method shows the possibility of combining traditional methods with deep-learning
approaches. However, this method may affect parts of the spectrogram without interference and
introduce new uncertainties. Fan et al. [13] proposed a deep residual network for narrow-band
interference and wide-band interference mitigation. Ristea et al. [14] proposed fully convolutional
neural networks (FCNs) to remove the interference in the FMCW signals and outputs the corresponding
clean range profiles. In this approach, the main goal is to mitigate the interference, but how to restore
the interfered signals with good quality is not considered.

However, the main goal of these methods is to mitigate the interference in the radar images.
How to restore the part of radar signals that are influenced by interference was not considered.
To eliminate interferences, some useful radar signals are discarded during the interference mitigation
process. In this paper, we propose a deep-learning method for both interference mitigation
and radar spectrogram restoration. In contrast to the previous interference mitigation work,
we integrate the interference mitigation and spectrogram restoration together and try to minimize
the impact of interference cancellation on the spectrogram. It is noted that the proposed method
can restore the spectrogram where the interference has long time span or long frequency span with
sufficient accuracy.

Specifically, the proposed DL method is composed of two parts: an FCN for interference mitigation
and a coarse-to-fine GAN for spectrogram restoration. We use the FCN as the first step to distinguish
the interference part from the spectrogram. In addition, there is localization information in the mask
produced by the FCN. Subsequently, a coarse-to-fine GAN is adopted for the further spectrogram
restoration. The spectrogram, together with its mask, is then fed into the GAN for restoration.
With the information of interference localization, the part of the spectrogram that is contaminated by
the interference can be restored with better quality. Experimental results demonstrate from both
qualitative and quantitative perspectives that the proposed DL model is effective in mitigating
the interference and in obtaining a high-quality spectrogram.

The remainder of this letter is organized as follows. Section 2 describes the proposed DL-based
spectrogram restoration method. Section 3 introduces the simulated radar dataset, the measured radar
dataset, and the detailed experimental implementation. Section 4 presents the experimental results of
the proposed method for interference mitigation and spectrogram restoration. Conclusions are drawn
in Section 5.

2. Radar Spectrogram Restoration Using Deep Learning

2.1. Algorithm Overview

In this section, we provide details of the proposed DL method in which we aim to restore
a clear radar spectrogram by using FCN for interference localization and GAN for interference
mitigation, respectively. The overall pipeline of the proposed method is illustrated in Figure 1.
Specifically, the FCN is trained with the spectrograms where there is interference with the supervision
of the label. Then, when a spectrogram X ∈ Rm×n with interference is fed into the trained FCN.
In this way, a mask M ∈ Rm×n that shows the localization of the interference on the spectrogram is
produced by FCN. Next, as shown in Figure 1a, the GAN is trained with clear radar spectrograms
to learn the data distribution of clear spectrograms for further interference mitigation. By taking
advantage of the mask M, GAN is able to remove the interference accurately, and a clear spectrogram
X
′ ∈ Rm×n is restored. Finally, when a spectrogram with interference is fed into the FCN and fed into

the GAN subsequently, a clear spectrogram can be restored. The proposed method that combines
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interference localization and mitigation together can make the spectrogram restoration more accurate
and effective.

Figure 1. The pipeline of the proposed deep-learning method for interference restoration. (a) The FCN
is trained with the spectrograms where there is interference with the supervision of the label.
Then when a spectrogram with interference is fed into the trained FCN, the FCN can locate
the interference accurately. (b) The GAN is trained with clear radar spectrograms. In this way,
the GAN can learn the data distribution of clear spectrograms for further interference mitigation.
(c) Finally, when a spectrogram with interference is fed into the FCN and fed into the GAN subsequently,
a clear spectrogram can be restored.

2.2. Fully Convolutional Network for Interference Localization

Fully convolutional networks have achieved great success for image segmentation task
in many areas such as natural image processing [15,16], medical diagnosis [17,18] and radar target
recognition [19,20]. The FCN is an extension of the classical convolutional neural network, and the main
idea is to learn a mapping from input pixels to output pixels. It is a deep end-to-end model, which is
composed of convolutional, pooling and upsampling layers.

We use VGG-19 [21] as the backbone of our FCN in this paper. The FCN performs
a pixel-wise classification and classifies every pixel of the input image into one of the three categories
(signal, background and interference). Cross entropy loss is adopted, and the loss function of the FCN
is formulated as follows,

L = − 1
N

N

∑
n=1

M

∑
c=1

yn
c log(pn

c ) (1)

where M is the number of categories and N is the number of pixels in an input spectrogram. yn
c is

the one-hot label of pixel n while pn
c is the predicted result of the FCN for pixel n.

In this way, the interference region on the input spectrogram can be identified by the network,
and a mask that is a three-value intensity image and has the same size as the input spectrogram is
acquired. Furthermore, the localization information produced by FCN is used as the prior information
of the interference, which can make the subsequent interference mitigation process more accurate
and targeted.
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2.3. Generative Adversarial Network for Spectrogram Restoration

After locating the interference, the coarse-to-fine GAN [22] with a contextual attention scheme
is adopted to remove interference and restore clear spectrograms. The architecture of generator
in the GAN, as shown in Figure 2, can be roughly divided into two parts: coarse network and
refinement network. A spectrogram with interferences and a binary mask that is output by the FCN
model to locate the interferences are input to the GAN in pairs. Then, the coarse network makes
an initial coarse restoration of the disturbed area of the spectrogram, and the refinement network takes
the coarse prediction as inputs and makes further refined restoration. The structure of discriminator
in the GAN is shown in Figure 3. A discounted reconstruction `1 loss [22] is used for training the coarse
network, and the refinement network is trained with the reconstruction loss as well as a modified
WGAN-AP loss [23]. At the same time, the discriminator is also trained with the modified WGAN-AP
loss. Furthermore, the discriminator and the refinement network are trained alternatively with this
GAN loss [24]. WGAN uses the Earth-Mover distance [25] W(Pr,Pg) to make the generated data
distribution similar to the real data distribution.

W(Pr,Pg) = inf
γ∼Π(Pr ,Pg)

E(x,y)∼γ[||x− y||] (2)

where (Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are Pr and Pg,
respectively. E represents the expectation operation, and || · || represents `1 norm. It is noted that
both the reconstruction loss and the GAN loss optimize the model based on pixel-wise `1 distances,
which makes the coarse-to-fine GAN model trained easier and makes the optimization process stabler.

Figure 2. The structure of generator in the proposed GAN for interference mitigation. The descriptions
with a form of “A×B/C, D” represent that there are D convolution kernels with a size of A×B.
In addition, the convolution stride is C. DR refers to dilated rate of dilated convolution.
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Figure 3. The structure of discriminator in the proposed GAN for interference mitigation.
The descriptions with a form of “A×B/C, D” represent that there are D convolution kernels with a size
of A×B. In addition, the convolution stride is C. DR refers to dilated rate of dilated convolution.

The objective function of the adversarial WGAN loss, which is constructed with
the Kantorovich-Rubinstein duality, is formulated as follows,

min
G

max
D∈D

Ex∼Pr [D(x)]−Ex̂∼Pg [D(x̂)] (3)

where D is the set of 1-Lipschitz functions. D(x) and D(x̂) represent the output distributions of the real
sample x and the generated sample x̂. Pg is the model distribution implicitly defined by x̂ = G(z). z is
the input to the generator G. Furthermore, a gradient penalty term [23] is added to the WGAN loss to
form the loss function of WGAN-AP, which is formulated as

λEx̃∼Px̃
(||∇x̃D(x̃)||2 − 1)2 (4)

where x̃ = (1− t)x + tx̂ is sampled from the straight line between points x and x̂ sampled from
distribution Pr and Pg, respectively, and t is sampled from a normal distribution U ∼ [0, 1]. In this
paper, since we only predict hole regions, the gradient penalty is applied only to pixels inside the holes.
As a result, the penalty term is reformulated as follows,

λEx̃∼Px̃
(||∇x̃D(x̃)� (1−m)||2 − 1)2 (5)

where m represents the input mask, as shown in Figure 1c, and the mask value is 0 for missing pixels
and 1 for elsewhere. λ is set to 1 in the experiments.

Furthermore, since convolutional neural networks use local convolutional kernels to process
input data, it is not effective to learn semantic information from distant spatial locations. As a result,
a contextual attention layer is proposed, as shown in Figure 4. It can learn where to extract feature
information from the clean part (background) of the spectrogram to restore the disturbed part
(foreground). Specifically, several patches (3 × 3) are first extracted from the background and
are reshaped to the size of the foreground patch after two downsampling blocks. To measure
the similarities between the foreground patch with the background ones; the normalized inner product
is used between foreground patch m with background patches n,

S =

〈
m
|m| ,

n
|n|

〉
(6)

where S indicates the similarity between m and n. Then, a scaled softmax is used to get the attention
score for each pixel in the background patch n with S∗ = softmax(λ, S), and λ is a constant value. In this
way, the attention scores of the whole background are obtained. Finally, the weighted background
patches are used to reconstruct foregrounds.
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Figure 4. Contextual attention layer. Several patches (3 × 3) are extracted from the background and
reshaped to the size of the missing part feature maps after two downsampling blocks.

3. Experiment Implementation

3.1. Simulated Radar Dataset

Most deep-learning algorithms need a large amount of data for training, but it is very difficult
to collect measured data without noise and interference. So we use the Motion Capture database
(MOCAP) [26] from Carnegie Mellon University (CMU) to simulate a micro-Doppler spectrogram
dataset. MOCAP provides 2605 trials of human activities in 6 categories and 23 subcategories.
Moreover, the captured human motion skeleton consists of 31 joint points. In this paper, we use
six joint points, including the left hand, right hand, thorax, head, left foot, right foot, and five motions,
including walking, running, jumping, boxing and standing.

The center frequency of radar used in simulation is 1.7 GHz, and bandwidth is 800 MHz.
This experiment simulates a person moving towards the radar. The sampling frequency is 3 GHz.
The received radar data are divided into several segments of 1 s. In addition, the overlap between
adjacent segments is 0.9 s. Then a 1024-point Short-Time Fourier Transform (STFT) is used to process
the data segments as follows.

STFT(t, f ) =
∫

x(t + τ)g(τ)exp(−j2τ)dτ (7)

where x(t) is the received signal, g(t) is a sliding window function (e.g., a Hamming window), t is time,
and f is frequency. Furthermore, to simulate the interference in the simulated radar spectrograms,
we use additive white Gaussian noise (AWGN) with different time span and frequency span as
interference and add them to spectrograms.

3.2. Measured Radar Dataset

The measured radar data are collected with a UWB radar module named PulsON 440. The center
frequency is 4.0 GHz, and the pulse bandwidth is 1.8 GHz. The experiment is performed in an indoor
environment. The radar is placed at the height of 1 m, and activities are performed in the line of
sight of the radar. The measurement range of the radar is between 1.5 m and 7.5 m. The motion
data of the following five activities are collected: (a) directly walking towards/away from the radar
(walking); (b) boxing while standing in place (boxing); (c) directly running towards/away from
the radar (running); (d) jumping forward (jumping); and (e) running in a circle (circle running).
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Since it is difficult to collect a measured dataset with specific interference, we add AWGN to
a random section of the origin radar spectrograms to simulate the accidental interference during
the data acquisition.

3.3. Measure Metrics

To evaluate the anti-interference situation, we use Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) as evaluation metrics [27]. PSNR is calculated by inputting the mean square
error (MSE) of two input images. It shows the gap between the pixels of two images. SSIM focuses
more on the similarity between structure and contrast of images.

MSE =
1
n2

n−1

∑
i=0

n−1

∑
j=0

[x(i, j)− y(i, j)]2 (8)

PSNR = 10 log10(
Max2

MSE
) (9)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(10)

where Max is the maximum value a pixel can take, µx is the average value, σ2
x is the variance, σxy is

the covariance, and c is a constant.

3.4. Training Details

For simulated radar data, the short-time Fourier transform (STFT) is performed first. A time
window of 0.1 s is adopted with an overlap of 0.09 s. Then, the spectrogram, which is defined as
the square modulus of the STFT with normalization, is obtained. For measured radar data, the moving
target indicator (MTI) is adopted to remove the background clutter. Then, the measured spectrograms
are obtained with the same process of simulated spectrograms.

The micro-Doppler spectrograms with a size of 256 × 256 without interference is shown
in Figure 3. During training, we use ImageNet [28] to pre-train GAN to reduce training time and
improve training effect. The parameters of FCN is initialized with those of the pretrained VGG-19.
There are approximately 1000 pictures prepared for training, 80% of which is used for training while
the others for testing. During testing, the mask produced by FCN is input to the GAN together with
the masked image.

All experiments are implemented on TensorFlow [29] v1.3, CUDA V8.0, with GPU GTX1080TI.
Batch size is set to 16; the learning rate is set to 0.0005 and 0.0001 for the GAN and FCN, respectively.
After the proposed hybrid FCN and GAN model is trained, we use the trained model on a test
dataset to obtain the test results and verify the performance of the proposed method. To simulate
the radar signals with diverse interferences, we randomly set the values of SNR, interference duration,
interference bandwidth, and interference intensity. Then, 100 interferences are simulated and added
to clear radar signals to form a test radar dataset. When we have m radar spectrograms and add
the 100 interferences on each of the spectrograms, 100 × m different spectrograms with interferences
are obtained. Next, we test the trained hybrid model on the test data, and the statistical average
values of PSNR and SSIM can be obtained and shown in the experimental results for further
analysis, respectively.

4. Experimental Results

In this section, we conduct interference mitigation and spectrogram restoration experiments
with both simulated and measured data to demonstrate the effectiveness of the proposed method.
Qualitative and quantitative evaluations are adopted. Moreover, to demonstrate the efficiency of
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the proposed method, we compare its performance with several typical interference mitigation and
spectrogram restoration methods. The details of the methods for comparison are presented below.

• Zeroing [11], which is a simple and well-known approach, is treated as a baseline during
the experiments. It performs interference mitigation by simply setting the time domain samples of
interference to a value of zero. The prior information on the position of the interference in the time
domain is known.

• FCNs [14] uses FCNs to remove the interference in the FMCW signals and outputs the
corresponding clean range profiles. In this approach, the main goal is to mitigate the interference,
and how to restore the interfered signals with good quality is not considered.

• ResNet [13] adopts the deep residual network (ResNet) for interference mitigation in synthetic
aperture radar (SAR). In detail, an interference detection network and an interference mitigation
network are proposed respectively to remove interference and restore clean SAR images.

4.1. Results of the Simulated Data

4.1.1. Qualitative Evaluation

The qualitative performance of the proposed hybrid FCN and GAN model and the other three
interference mitigation methods is shown in Figure 5. The clear simulated radar spectrograms are
shown in Figure 5a, and the simulated spectrograms with diverse interferences are shown in Figure 5b.
From Figure 5c, we can find that the proposed FCN-based interference mitigation method is able
to accurately locate the position of the interferences and move them. Furthermore, it can be seen
from Figure 5d that the proposed coarse-to-fine GAN can restore the part of the spectrogram that
is impacted by the interference. It can be seen that the spectrograms are restored with good results,
and are highly similar to the clean radar spectrograms, demonstrating that the proposed GAN for
radar spectrogram restoration with good performance. Figure 5e–g shows the restored spectrograms
using the methods Zeroing, FCNs and ResNet. As shown in this figure, the method Zeroing removes
not only the interference but also the parts of spectrograms that are impacted by the interferences.
Moreover, the methods FCNs and ResNet cannot remove the interference clearly. In addition, compared
with FCNs, ResNet restores the interfered spectrograms with better performance.

4.1.2. Quantitative Evaluation

Furthermore, the performance comparison from the quantitative perspective is conducted to
verify the efficiency of the proposed hybrid FCN and GAN model. And the results are listed
in Table 1. As shown in this table, the proposed GAN-based approach achieves the best performance
among the four interference mitigation methods. In particular, a PSNR of 65.714 has been achieved,
demonstrating that the proposed method is able to accurately detect the interference and remove
the interference as much as possible. Moreover, the highest SSIM of 0.930 is also obtained by
the GAN-based approach, indicating that the approach has good performance on restoring radar
spectrograms and reconstructing the interfered time-frequency information. Additionally, followed by
the method FCNs, ResNet achieved the second-best performance with an PSNR of 63.364 and a SSIM of
0.926. The two quantitative results are consistent with the qualitative results shown in Figure 5. Finally,
the method Zeroing achieved the worst performance with an PSNR of 35.210 and a SSIM of 0.720.
It is mainly because it performs interference mitigation by simply setting the time domain samples of
interference to a value of zero. In this way, not only the interferences are mitigated, the radar signals
are removed.
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Figure 5. Results of the proposed method and three state-of-the-art methods on the simulated data.
(a) The clean radar spectrograms. (b) The spectrograms with diverse interference. (c) The locations of
interference detected by the proposed FCN model. The red boxes represent the ground truth of the locations
of interferences. (d) The radar spectrograms restored with our method. (e) The spectrograms restored with
Zeroing. (f) The spectrograms restored with FCNs. (g) The spectrograms with restored ResNet.
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Table 1. Performance Comparison with the Simulated Radar Data.

Zeroing FCNs ResNet Ours

PSNR 35.210 58.935 63.364 65.714
SSIM 0.720 0.887 0.926 0.930

4.2. Results of the Measured Data

4.2.1. Qualitative Evaluation

Figure 6 shows the results of measured radar spectrograms for interference mitigation and
spectrogram restoration with our hybrid FCN and GAN method and the other three state-of-the-art
methods. The clear measured radar spectrograms are shown in Figure 6a, and the corresponding
spectrograms with diverse interferences are shown in Figure 6b. As shown in Figure 6c,d,
the proposed method can locate the interference and restore the spectrograms with acceptable
performance. Furthermore, though the FCN sometimes removes only the interference but also
some original micro-Doppler frequency components, the GAN can restore the removed frequency
components, which makes up for the weakness of the FCN model. As a result, with the collaboration
of the FCN and the GAN, the interference is removed, and the interfered spectrograms are
restored. Figure 6e–g shows the results of the three compared methods on the measured data.
Similar performance to that on the simulated radar spectrograms is achieved. Compared with FCNs,
ResNet can remove more interference while FCNs can restore more information of the interfered
spectrograms. However, from the qualitative perspective, the performance of all three methods is
worse than our DL method.

4.2.2. Quantitative Evaluation

Furthermore, the quantitative evaluation in the performance of the three compared methods
and the proposed hybrid FCN and GAN model is conducted with the measured radar data.
The performance comparison results are listed in Table 2. It can be seen that the proposed method
achieves the highest PSNR and the best SSIM. In particular, the average PSNR and SSIM of
the restored spectrograms with Zeroing are both the lowest, followed by those of the spectrograms
with FCNs. In addition, the average PSNR of spectrograms with ResNet is 51.249, and the average
SSIM is 0.822. The highest PSNR of 51.724 and SSIM of 0.864 demonstrate that the proposed
method can remove most of the interference while restoring the original spectrograms to the utmost.
Additionally, the method FCNs and the method ResNet achieved similar performance for interference
mitigation and spectrogram restoration. Furthermore, the same as the quantitative performance
on the simulated radar spectrograms, the performance of the method Zeroing is the worst with a PSNR
of 39.053 and a SSIM of 0.767.

In particular, we further analyze the performance of four methods (Zeroing, FCNs, ResNet and
the proposed hybrid FCN and GAN model) on the measured radar spectrograms by calculating
the PSNRs and SSIMs of the spectrograms corresponding to ’walking’, ’running’, ’jumping’, ’boxing’
and ’circle running’. The PSNRs and SSIMs are listed in Table 3. It can be seen that our method achieved
the best performance for the activities ’jumping’, ’boxing’, and ’circle running’. As for ’walking’ and
’running’, the PSNR of spectrograms with the FCNs method is the highest, though our method obtains
the highest SSIM. It may be because the FCNs method focuses more on interference mitigation instead of
spectrogram restoration. As a result, the PSNR is high since the interference is mitigated to the utmost.
However, how to restore the parts of the spectrograms that are contaminated by the interferences
is not well considered in the FCNs method. In contrast, in our proposed method, the GAN part
mainly focuses on spectrogram restoration, which makes a high SSIM possible. Furthermore, as shown
in Table 3, the PSNR and SSIM of FCNs on the spectrograms corresponding to ’walking’, ’running’,
’jumping’ and ’boxing’ are higher than those of ResNet. In contrast, the PSNR and SSIM of ResNet
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on the spectrograms corresponding to ’circle running’ are higher than those of FCNs. However,
as shown in Table 3, the average performance of ResNet on the whole spectrogram dataset is better
than that of FCNs.

Figure 6. Results of the proposed hybrid FCN and GAN method and three state-of-the-art methods
on the measured data. (a) The clean radar spectrograms. (b) The spectrograms with diverse types of
interferences. (c) The locations of interferences detected by the proposed FCN model. The red boxes
represent the ground truth of the locations of interferences. (d) The radar spectrograms restored with
our method. (e) The spectrograms restored with Zeroing. (f) The spectrograms restored with FCNs.
(g) The spectrograms with restored ResNet.
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Table 2. Performance Comparison with the Measured Radar Data.

Zeroing FCNs ResNet Ours

PSNR 39.053 50.273 51.249 51.714
SSIM 0.767 0.812 0.822 0.864

Table 3. Performance on the Measured Radar Spectrograms of Five Human Activities.

Zeroing FCNs ResNet Ours

Walking PSNR 48.557 57.397 56.465 56.805

SSIM 0.883 0.879 0.850 0.906

Running PSNR 33.087 49.025 48.676 47.279

SSIM 0.687 0.769 0.758 0.808

Jumping PSNR 34.904 47.947 46.741 49.039

SSIM 0.695 0.772 0.757 0.836

Boxing PSNR 45.541 55.961 54.483 56.179

SSIM 0.886 0.908 0.903 0.912

Circle Running PSNR 33.177 45.000 45.917 49.267

SSIM 0.685 0.784 0.794 0.856

4.3. Performance Comparison on the Human Activity Recognition Task

In this subsection, to demonstrate the good performance of the proposed method for spectrogram
restoration, we further conduct several task-specific experiments with the restored spectrograms for
HAR. In detail, we first train AlexNet [30], which is a typical deep-learning model for classification,
with clean simulated/measured radar spectrograms. Then, the restored simulated/measured radar
spectrograms are fed into the trained AlexNet for classification. The classification accuracies of
the spectrograms restored with Zeroing, FCNs and ResNet and our hybrid FCN and GAN model
are listed in Table 4. As shown in this table, the restored spectrograms with the proposed method can
be classified with the highest accuracies of 0.947 on the simulated data and 0.915 on the measured data.
Hence, beyond the good performance from a quantitative and qualitative perspective, the performance
for the activity classification task also indicates our method is able to remove the interference while
retaining the valuable information in the original clean spectrograms. On the contrary, the experimental
results of Zeroing, FCNs, and ResNet show that some vital information for activity classification is
missing during the interference mitigation process, which degrades the classification performance.

Table 4. Performance Comparison for Human Activity Recognition with the Restored Spectrograms.

Zeroing FCNs ResNet Ours

Simulated Data 0.855 0.864 0.866 0.947
Measured Data 0.805 0.821 0.819 0.915

5. Conclusions

In this paper, we propose a deep-learning-based model for interference mitigation and
spectrogram restoration. In contrast to the previous interference mitigation approaches, the proposed
method integrates the interference mitigation and spectrogram restoration tasks together, and try
to minimize the impact of interference cancellation on the spectrograms. Specifically, the proposed
method is composed of an FCN and a GAN. The former is used to mitigate inferences, and the latter is
used to restore the parts of spectrograms that is disturbed by the interferences.
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Several experiments with both the simulated and the measured radar spectrograms were
performed to verify the effectiveness of the method. Experimental results show that the proposed
method can restore high-quality radar spectrograms, with higher PSNR and SSIM when compared
with the original interfered spectrograms. Furthermore, the comparison experiments with several
interference mitigation methods demonstrate the superiority of the proposed approach.

In the near future, we will carry out research from the following aspects. First, since the
proposed deep-learning model is not an end-to-end network, we will propose other deep-learning
networks that can integrate the interference mitigation and the spectrogram restoration tasks together.
Additionally, we will try to propose a general method that can mitigate the interference from
different radar signal dimensions, such as 1-dimensional HRPP, 2-dimensional time-range domain,
and 3-dimensional time-range-Doppler domain. Furthermore, we will explore more on how to mitigate
the interferences of different signal types, such as LFM signal and communication signal.
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Abbreviations

The following abbreviations are used in this manuscript:

HAR Human Activity Recognition
MOCAP Motion Capture
MD Micro-Doppler
IMAT Iterative Method with Adaptive Thresholding
RFmin Ramp Filtering
DL Deep-Learning
GRU Gated Recurrent Unit
CS Chirp Sequence
GAN Generative Adversarial Network
AWGN Additive White Gaussian Noise
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
MSE Mean Square Error
STFT Short-Time Fourier Transform
MTI Moving Target Indicator
FCNs Fully Convolutional Neural Networks
ResNet Residual Network
SAR Synthetic Aperture Radar
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