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by Alexander Thomas Hanke

All modern process development strategies in the biopharmaceutical field,
including those based on mechanistic modelling, are trial and error based.
(Chapter 1)

The amount of information that can be drawn from a chromatogram strictly
depends on the available prior knowledge. (Chapter 2)

The greatest challenge of working in a high-throughput laboratory is not to
interpret the results, but to deal with technical failures. (Chapter 3&4)

A predictive model that requires training will never fail, but never really
work either. (Chapter 5)

As soon as your project description mentions deliverables, you’re an engineer
and not a scientist.

When talking about to the production of biopharmaceuticals, the use of the
terms ‘up- and downstream’ in regard to the process stage would make more
sense when applied the other way around.

Instead of arguing about the problems with traditional scientific publishing,
the scientific community should adopt a wiki-style knowledge sharing
system.

The main purpose of the education system is neither to pass on knowledge
nor teach skills.

When something is not working, trying harder is always the wrong solution.

Universities benefit from creating frustrating conditions for their staff and
students.

These propositions are regarded as opposable and defendable, and have been approved

as such by the promotor Prof. dr. ir. L.A.M. van der Wielen
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Purifying biopharmaceuticals: knowledge-based
chromatographic process development

Abstract

The purification of biopharmaceuticals is commonly considered the bottleneck of the
manufacturing process. An increasing product diversity together with growing
regulatory and economic constraints raise the need to adopt new rational, systematic
and generally applicable process development strategies. Liquid chromatography is
the key step in most purification processes and a well understood unit operation, yet
this understanding is still rarely effectively utilized during process development.
Knowledge of the composition of the mixture, the solutes’ molecular properties and
how they interact with the resins are required to rationalize the design choices. Here
we provide an overview of the advances in the determination and measurement of
these properties and interactions, and outline their use throughout the different stages
of downstream process development.

Keywords: Process Development; Chromatography; High-throughput; Host
Cell Proteins; Mathematical Modelling

Published as: A.T. Hanke and M. Ottens, Trends Biotechnol, 32 (2014): 210-220



Chapter 1

1.1 Introduction

Biopharmaceuticals have been a major driving force for
growth in the pharmaceutical industry in the past years [1]. Over
40% of drugs granted FDA approval in 2012 were
biopharmaceuticals, of which therapeutic proteins, including
monoclonal antibodies (mAbs), constituted the largest group next to
therapeutic peptides [2]. From a manufacturing perspective, the
increased product titres achieved over the last decade have long
shifted the attention towards the downstream process [3]. Despite
increasing competition from non-chromatographic techniques [4],
pressure to reduce costs and increase throughput, packed bed
chromatography is still the dominant technique in biopharmaceutical
purification [5]. This prevalence is mainly due to the high-
resolutions that can be achieved even for highly similar components.
Advances in resin chemistry have alleviated some of the throughput
concerns that packed bed chromatography could handle the
production needs in coming years [6]. If not during early process
stages, then during product polishing where very high purities are
required for therapeutics, it seems unlikely that chromatography will
lose its place in biopharmaceutical manufacturing in the close future.

Besides having to handle increasing production volumes,
downstream scientists and engineers face a plethora of technical,
economic and regulatory challenges. While in the past the
dominance of mAbs as a product class allowed to establish platform
processes that required relatively minor adaptions from product to
product [7], recent trends towards more diverse therapeutic proteins
require more generally applicable process development approaches
[8]. Increased competition through biosimilars catalysed by
abbreviated regulatory pathways have increased the economic
pressure on the manufacturing of biotherapeutics [9]. From the
regulatory side, the ‘Quality by Design’ (QbD) and ‘Process
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knowledge-based chromatographic process development

Analytical Technology’ (PAT) initiatives call for increased process
and product understanding to ensure each process consistently meets
precisely defined quality attributes [10]. Definition of the critical
quality attributes (CQA) and linking them to the underlying critical
process parameters (CPP) requires a thorough and systematic
characterization of the process parameter space.

From a process development perspective this requirement
has rendered trial-and-error based process development and
univariate optimization largely obsolete. This has led to the wide-
spread adoption of high-throughput screening technologies (HTS)
[11]. In this context the relationship between the CPP and CQA is
usually of a statistical nature derived from a Response Surface
Analysis of a Design of Experiments (DoE) or multivariate data
analysis [12,13]. Genetic algorithms are being increasingly
employed to identify optima in the design-space [14,15]. The
combination of these experimental and data processing techniques
has been coined high-throughput process development (HTPD). The
statistical relationship allows to rank CPP by significance of impact
on the CQA but lacks the ability to predict process performance,
limiting their use for process optimization.

The degree to which CPP and CQA can be causally linked
reflects the level of process understanding achieved [16,17].
Throughout the biopharmaceutical manufacturing process, both
upstream [ 18], downstream [19] and during formulation [20], there is
a trend to gradually replace statistical and empirical correlations with
mechanistic models. Mechanistic models typically allow more
accurate extrapolation making them very useful as tools for fast and
cheap process optimization. As they are derived from fundamental
principles, mechanistic models reflect a higher level of process
understanding. Most mechanistic models describing
chromatographic separations consist of two parts: equations
describing the fluid flow and mass-transfer in the column and a
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Chapter 1

model to describe the interactions between the sample and the resin
in the form of adsorption isotherms. Experimental approaches to
determine both mass-transfer [21] and resin-interaction parameters
[22] have been extensively reviewed, but require very large numbers
of experiments to gain the parameters needed to model even simple
systems, such as illustrated in Figure 1.1. The availability of these
parameters often restricts the use these modelling tools to
optimization of very specific separation problems during late stages
of process development, when feed compositions are already less
complex and many design decisions have already been made.

Resin 1 - Solvent

+ Bed porosity (e,) ) + Chemical composition
« Particle size distribution (f(s)) +pH
! + Particle porosity (€ ) « buffer capacity (b)
| + Pore size distribution (f(r)) « lonic strength (1)
| «Ligand density (\) + Temperature (T)
| « Conductivity (C)
| p— Resin« Solvent BT
‘ » Ligand charge (v) « Interstitial velocity (u—)
- " s Ligand hydrophobicity (P)  Gradient steepness (G)
B EE A
= %.._. Protein
a oA |+ Molecular mass (M)
o < i
%, )'.. \
g 1 !
— e Protein+ Solvent
% & + Molecular volume (V, )
3 ' : « Molecular diffusivity (D)
kY ' +Charge (2)
| Proteinv Resin .- L « Hydrophobicity (P)
| +Binding equilibrium (K, ) - Solubility (S)
| +Maximum capacity (q,,,,) + 2" osmotic virial coefficient (B, )

+ Pore accessibility (K,)
+ Pore diffusivity (D, --4)
» Surface diffusivity (D.-4)

Figure 1.1. Schematic representation of the processes taking place
inside a chromatographic column on the microscopic scale and the
parameters commonly used to describe protein molecular properties,
resin properties and their interactions. Arrows indicate mass-transfer
effects, solid arrows convection, dashed arrows diffusion, and the
length of each arrow is qualitatively related to the magnitude of the
effect. The exact definitions of
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To bridge the gap between early stage design choices and
advanced stage optimization a variety of process development
assisting tools have emerged that utilize experimentally determined
or empirically derived component properties. Component properties
in this context are considered physico-chemical parameters that
describe the components of interest on a macroscopic level without
taking resin-specific interactions into account. These parameters are
then used to systematically determine a feasible processing pathway,
without making quantitative performance predictions of the
individual steps.

The approaches discussed so far fundamentally differ in
what type of knowledge is generated and how this knowledge is used
to make design decisions. The interplay of knowledge generating and
process design modules is illustrated in Figure 1.2. Combinations of
experimental knowledge generation and model-based process design
modules are commonly referred to as hybrid process development
approaches and offer many practical advantages compared to purely
experimental or model based approaches [23]. Choosing the
approach most suitable for a specific project is not always straight
forward and depends on the available resources and process
development stage. To assist separation scientists and downstream
process engineers in choosing which tools to add to their process
development toolbox, we review recent developments in the
determination of protein properties and resin interaction parameters
and how each can be used for rational design decisions.

13



Chapter 1

] Trial experiments CQA
5 check
©
% Process parameter optimization
[ t
Heuristic Design Rules-of-Thumb
k Property
58 determination
28 > Protein Multivariate calibrations CQA
it heck
S g properties chec
=g (@)
& ‘»n
Molecular analysis Protein q)
"L_r‘ »? ™ properties . -c
. 1"]%’;“%(" o g\mu\atlcn w)
.14 o S.
fa, o
e B @
(9
Isotherm Parameter O
determination regression S
Interaction Mechansistic CQA o_

models

check

parameters

t Resin
ql : properties

Figure 1.2. A schematic representation of the different downstream
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operations. The experiments that need to be performed are positioned
at the left, generated intermediate data classes in the centre and how
they are converted to a process design on the right. Before a design is
accepted its ability to meet the CQAs is evaluated. Trial and error
process development (yellow) includes what is often referred to as
experimental process development and subclasses of this approach
can be distinguished by the number of experiments considered and
the efficiency of the optimization loop, ranging from univariate
optimization to genetic algorithms. The properties based approach
(green) most closely corresponds to heuristic process development.
The molecular interactions based approach can be viewed as purely
model based or an hybrid experimental approach depending on how
the data sources are combined. It should be noted that the trial and
error and interactions based approach can lead to multiple feasible
process options. When multiple processes that comply with CQA
requirements are identified, economic performance indicators should
be included in the decision process.
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Purifying biopharmaceuticals:
knowledge-based chromatographic process development

Box 1. The Purification Challenge

The purification of a biopharmaceutical is not a simple task.
Besides the cell debris, host cell proteins, DNA, endotoxins and
viruses that need to be removed, product related impurities such as
product moieties that are misfolded, aggregated, carry the wrong
post-translational modifications or are otherwise chemically
degraded may complicate the purification, due to their high
similarity to the target molecule. Achieving the high levels of
product purity required for the use as an active pharmaceutical
ingredient, requires a complex cascade of unit operations. An
example of a relatively simple process is given in Figure 1.3. The
complexity of such multi-stage processes poses two major challenges
to the downstream process developer. The effects that small
variations in the upstream process and the quality of the chemicals
and auxiliary materials can have on the performance of unit
operations further downstream must be accounted for in the process
control strategy. Similarly the dependencies of the single unit
operations need to be considered during the earlier stages of process
development, when the choice for specific unit operations and their
position in the process are decided.

Despite  the importance of understanding these
dependencies, most process development approaches only consider
the optimization of individual unit operations outside of the context
of the process in its entirety. In most cases the unit operations are
chosen and optimized sequentially in the downstream direction, as
the changes in feed composition due to the prior unit operation affect
the choice of the subsequent unit operation [24]. In many cases this
simplification is necessary, as the exponential increase in possible
unit operations sequences with increasing number of unit operations
to be considered quickly becomes unmanageable within the
timeframe available for process development when time-consuming
experimentation is involved. The downside of such a sequential
approach is that it poses the risk of missing the global optima by
excluding options choosing a worse performing early step followed
by a more efficient subsequent step might lead to a more economical
process. With increasing availability of powerful supercomputers the
time and resource limitation no longer holds for in-silico process
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optimization. Given enough computational power all, or a large
subset of possible flowsheet options can be optimized and evaluated
in parallel.

Upstream Primary Capture Viral removal #1
recovery
% % g % g g @ g g
Multi-stage : ; ; ; g
Cell Culture Centrifugation Protein A pH Adjustment  Filtration
Polishing Viral removal #2 Filling
NN
) o imEsEsnus ) 2 »
INEEREEEN dee
20-50 nm cut-off Ultrafiltration
CEX = AEX/HIC/MMC Viral Filtration Diafiltration

Figure 1.3. Simplified platform process for the production of
monoclonal antibodies (MAbs) in bulk form [7]. In reality the cells
undergo a series of inoculum steps and seed reactors before reaching
the production reactor. The downstream process, usually considered
to start after primary recovery, mostly consists of at least two
chromatographic separations to reach the desired purity. Regulations
require at least two orthogonal methods of virus removal, commonly
low pH inactivation and viral filtration. The greatest process
diversity lies in the polishing steps where the choice for the
combination of Cation Exchange (CEX), Anion Exchange (AEX),
Hydrophobic Interaction (HIC) and Mixed-Mode Chromatography
(MMC) is based on the characteristics of the impurities to be
removed. After rebuffering by diafiltration further processing steps
follow for the drug to reach its final formulation.

1.2 Process development based on
molecular properties

The thermodynamic interactions and mass-transfer effects
occurring during liquid chromatography are very complex in nature.
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It has been shown that a proteins shape and heterogeneity of surface
characteristics can lead to a non-random distribution of binding
orientations during the adsorption process [25]. Nevertheless, Asenjo
et al. have demonstrated in numerous cases that fairly simple
macroscopic molecular properties can be used to make qualitative
predictions towards the efficiency of a separation step [26-28]. The
property or combination of properties to consider depends on the
principle of separation.

Separation in Size Exclusion Chromatography (SEC) is
based on differences in the molecular size, Ion-exchange
chromatography (IEC) exploits differences in charge, hydrophobic
interaction  chromatography = (HIC) and Reversed Phase
Chromatography (RPC) separate based on surface hydrophobicity
and Mixed-Mode Chromatography (MMC) exploit combinations
thereof. In all these cases the simplification of the parameters lies in
the assumption of uniformity. The probability for the protein’s
behaviour to deviate from this idealization increases for larger
molecules. Within limits such effects can be compensated by
considering composite parameters such as the charge density (net
charge divided by molecular weight) [27].

1.2.1. Determining protein properties

The key advantage of the simplified macroscopic properties
is that they can easily be determined through experiments and do not
require knowledge of the respective protein’s structure or sequence.
An overview of single-parameter experimental techniques is given in
Table 1. There are many different experimental techniques available
to determine each fundamental parameter. For them to be useable
interchangeably in terms of a generalized thermodynamic framework
requires careful consideration of the technique specific influence on
the parameter [29]. The presented selection includes the solubility
and second osmotic virial coefficient. While these parameters are
more commonly linked to non-chromatographic operations such as

17
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precipitation and crystallization, they can impact chromatographic
separation  behaviour when local concentrations become
comparatively high e.g. as under overloading conditions, where
protein-protein interactions are assumed to make a significant
contribution to the free binding energy [30,31].

Many of the experimental techniques mentioned in Table 2,
specifically those involving a separation mechanism, can be
combined to form multi-dimensional characterization schemes.
There are two major advantages to such a setup: combining
techniques increases the information gained per volume of sample
and the gained increased resolution capacity of applying different,
preferably orthogonal, separation techniques allows simultaneous
characterization of multiple species directly from a complex sample.
This has led to the widespread adoption of such techniques as 2D-gel
electrophoresis and 2D-LLC-MS in the proteomics field, where the
analysis of highly complex samples is a daily occurrence [32].

Table 1.1 Analytical and computational methods to obtain
molecular properties of biomolecules

Property Variable with Methods to determine Ref.*
Molecular mass - Mass spectrometry,
Capillary gel electrophoresis,
SDS-PAGE,
Primary sequence
Partial specific ~ Conformation Size-exclusion chromatography,
volume Analytical centrifugation,
Dynamic light scattering, [33]
Crystal structure
Diffusivity Conformation, Dynamic light scattering, [33]
Temperature Aris-Taylor capillaries [21]
Peak parking in non-porous media [34]
columns [35]
H-cell
Net Charge pH Iso-electric focusing
Capillary electrophoresis,
Titration,
DLVO calculations [36]
Hydrophobicity Conformation, Hydrophobic interaction
Temperature, chromatography,
Solvent chemistry, Reversed Phase chromatography, [37]
Tonic strength Hydrophobic imbalance,
Precipitation with ammonium
sulphate, [38]
Primary sequence, [39]
Crystal structure,
Aqueous two phase extraction
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Solubility Conformation, Addition of Lyophilized Protein, [40]
Temperature, Concentration by Ultrafiltration, [40]
pH, Induction of Amorphous [41]
Solvent composition, Precipitation
Tonic strength

B,,/SVC Conformation, Static light scattering, [42]
Temperature, Self-interaction chromatography [43]
pH, in columns, [44]
Solvent composition, Self-interaction chromatography [45]
Tonic strength in microchannels, [42]

Membrane osmometry
Sedimentation equilibrium
measurements

* Unless stated otherwise the technique is described in standard textbooks [46].

Recent years have seen some of these proteomic principles
being applied in a process development context. Glatz et al.
characterized a variety of plant-based transgenic feedstocks with a
3D strategy based on partioning in aqueous two-phase systems
(ATPS) followed by 2D-GE, thereby providing insight into the
proteins’ hydrophobicity, charge and size [39,47,48]. Another
application of multi-dimensional techniques gaining attention is
tracking different HCP levels throughout process development
operations. 2D-differential gel-electrophoresis [49] and 2D-PAGE
with SELDI-TOF MS [50] have been demonstrated as useful tools to
track individual host-cell protein levels throughout various process
stages. A variety of immunospecific methods using poly-clonal anti-
HCP antibodies including ELISAs western blots have been shown to
also be suitable for HCP tracking [51]. These tools could in
principle also be combined with many of the parameter determining
experiments to create multiplexed variants.

1.2.2. Molecular properties based
process development strategies

Due to their relative lack of quantitative performance
prediction capability, as compared to approaches applying
mechanistic models, the focus of purely property based process
development strategies has been on guiding the engineer during early
process development decisions, such as choice and sequencing of
unit operations. Such guidance can be provided through expert
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systems, computerized implementations of design rules-of-thumb
that can generate a first draft of process flow sheet [28]. Besides
general design rules, such as first removing the contaminants present
in greatest concentration, these systems calculate heuristic
‘separation selection coefficients (SSC)’ from the physicochemical
properties governing the unit-operation under consideration. The
flow sheet is then generated by choosing the operation that yields the
highest SSC. A drawback of such heuristic approaches is that their
insufficient investigation of the design-space is expected to lead to
suboptimal process efficiency [3]. A second challenge during
heuristic flow sheeting arises from the need to predict changes in the
stream composition between unit operations. Univariate models
predicting retention factors from governing property parameters
alone lead to unsatisfactory results [26,28]. To overcome this, the
changes in composition can be predicted by mechanistic models such
as the general rate model (GRM) [24], this however requires a much
more complex dataset.

The lack of purely property based performance prediction
capability has recently been addressed through the introduction of a
three-dimensional multi-variate calibrations based on the proteins
molecular weight, pl and hydrophobicity [52]. Fairly accurate
predictions were possible and analysis of parameter correlation
allowed gaining some process understanding. Application of the
three-dimensional characterization principle coupled to a multi-
variate random forest calibration showed mixed results yielding
useful predictions only for proteins similar to the calibration set [39].

1.3 Process development based on
molecular interactions

Numerous mechanistic models describing the transport
phenomena in liquid chromatography in varying detail have been
proposed over the years and are extensively discussed elsewhere [53-
55]. One of the most comprehensive models that can be efficiently
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solved is the general rate model [56,57]. Less complex models such
as the Equilibrium Dispersive Model simplify the contribution of
non-equilibrium effects while still allowing for a reasonable
prediction of system performance [58]. The downside to such
simplifications is that the lumped parameters give no insight into the
causes of band broadening [21], yet the reduced computational effort
is beneficial when very large datasets need to be treated [59], or very
large numbers of simulations need to be performed.

1.3.1. Model parameter estimation

As previously discussed, for highly complex biologically
produced feedstocks it is often rather the lack of complete parameter
sets than models that limit the use of mechanistic modelling during
process development. Figure 1.1 illustrates the complexity of a
single parameter set required to model the chromatographic
behaviour of a single solute in a column packed with a specific resin.
The exact definition of each of these parameters may vary depending
on the applied model, e.g. when modelling the protein-resin binding
the steric mass action (SMA) considers a proteins effective surface
instead of the net charge and introduces a steric hindrance factor to
account for blocked resin charges [60]. Once a set of suitable models
has been chosen, different experimental or computational approaches
to gain the required mass-transfer and isotherm parameters can be
followed.

To describe the inner-column mass transfer, macroscopic
chromatography models require an effective diffusion coefficient,
whereas mesoscopic and microscopic models differentiate between
pore and surface diffusion. All of these parameters can be scaled to
the bulk-diffusion coefficient [21]. Experimental measurement of the
effective diffusion coefficient and the scaling factor for a single
solute in specific column can be achieved with the Peak Parking
method. Peak parking involves the injection of a small defined
sample volume and isocratic elution to the half the length of the
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column [34]. The external flow is then stopped for a certain parking
time, after which the original flow rate is resumed until the sample is
completely eluted. Precise analysis of the resulting peak shape
allows to regress the effective solute diffusivity in the packed bed.
Detailed analysis of intraparticle diffusion fronts through confocal
laser scanning microscopy showed that sharp diffusion fronts, as
assumed by commonly used uptake models such as the shrinking
core model [61], don’t hold for non-linear isotherm conditions and
surface diffusion becomes increasingly important. On a macroscopic
level however, Lenhoff et al. showed that predictions made by a
shrinking core model with an adjusted pore diffusivity, derived from
confocal laser scanning microscopy experiments, were virtually
indistinguishable from uptake predictions of more detailed models
and gave a detailed description of how to perform the
adjustment [62].

The basic approaches to experimentally determine isotherm
parameters have not significantly changed over the last 15
years [22]. In principle any number of existing chromatographic
band profiles can be used to gain the parameters necessary to model
it through the so called inverse method where the profile is
repeatedly simulated by the model with variation of the parameters
until an optimal fit between the simulated and experimental profile is
achieved [63]. This approach can lead to parameters offering good
predictions, but due to their physical significance experimental
determination of the parameters is often preferred. The most
common dynamic techniques to do this are isocratic pulse [64-66]
and breakthrough experiments [67] and linear gradient elutions
[68,69] as they can be easily performed on standard laboratory liquid
chromatography systems. Static batch experiments in principle do
not require specialized equipment [70,71] but have regained
popularity through the adoption of high-throughput systems [72,73].
In spite of their static nature batch adsorption experiments can be
used to gain insight into the dynamic protein adsorption behaviour
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[74,75]. Batch adsorption through resin aliquots in filter plates has
proven to be a robust and very versatile method [76] allowing to
determine the adsorption isotherms for ion-exchange [77],
hydrophobic interaction [78] and mixed-mode resins [79,80].
Although the basic approaches have not changed, the recent years
have seen many technological advances in the equipment to perform
these experiments. Besides the aforementioned use for static batch
experiments, high-throughput systems have been shown to perform
column breakthrough experiments [81] and step gradient [82] and
linear gradient elutions [83] in miniaturized columns. Even further
miniaturization has been demonstrated by packing columns in
microfluidic chips [84,85]. The further miniaturization is especially
interesting for the investigation of strongly overloaded conditions, as
the reduction of resin volume significantly cuts down the
consumption of valuable sample. The experimental techniques
discussed so far are usually applied to single solute systems. They
can be expanded for multi-component mixture characterization by
adding analytical techniques that can distinguish between different
components that aren’t sufficiently resolved by the screening
experiment itself. Techniques that have been successfully
demonstrated for this purpose include SELDI-TOF for the distinction
between mAbs and host cell proteins [86] and selective protein
quantification based on UV-spectra [87]. Combining the principles
of these basic screening experiments with the proteomic complex
sample analytical techniques has recently led to the development of a
first multi-dimensional experimental characterization scheme to
determine full parameter sets for both the product and many major
contaminants directly from complex feedstocks [88].

A powerful complementary technique to experimental
parameter determination lies in their calculation through predictive
models. Performance prediction through quantitative structure-
property relationships (QSPR) is achieved in three steps. First
property and structure descriptors are calculated for a large set of
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model proteins and resins for which the binding behaviour is known.
Then the model is trained through statistical analysis of the
relationship between descriptors and binding behaviour. Ultimately
the descriptors of proteins or resins not in the training set are
calculated and binding behaviour is predicted through extrapolation.
Cramer et al. have demonstrated the successful application of QSPR
models in the prediction of protein binding behaviour in ion-
exchange, hydrophobic interaction, and mixed mode
chromatography [89]. A very useful by-product of such an approach
is that the examination of the descriptors can give a more detailed
insight into poorly understood binding mechanisms, as often the case
in mixed mode chromatography, at a microscopic level than purely
macroscopic measurement of the binding performance. Better
understood interactions, such as in ion-exchange chromatography
where the binding is governed by electrostatic interactions could be
predicted without model-calibration experiments through an
colloidal sphere and plane approximation based on the Derjaguin-
Landau-Verwey-Overbeek theory describing the interaction of
charged surfaces in a liquid environment by accounting for van der
Waals attraction and electrostatic repulsion caused by the formation
of ion double layers [36,90]. An approach without the need for
geometric approximations employs molecular dynamics simulations
leading to very detailed predictions, but at significant computational
cost [91]. As illustrated in Figure 1.4, these interaction predictive
models lead to exceptional levels of process understanding, but their
requirement for the protein 3D structure limits their use for
developing separations of complex poorly characterized mixtures.
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Gained process understanding Prior knowledge required
A Protein 3D structures
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|-

Experimental eﬁor!'

Figure 1.4. Overview of possible combinations process design tools
and suitable input data sources, sorted by the level of process
understanding gained from them. Certain combinations (shown in
purple) can only be applied when the 3D structures of the proteins to
be considered are available. Others (shown in green) require at least
a prior understanding of the governing principles of separation
process, whereas others (shown in yellow) can be applied without
prior knowledge. However, also these approaches become more
efficient when only parameters of significant impact are included
within the optimization. the data sources are combined. It should be
noted that the trial and error and interactions based approach can
lead to multiple feasible process options. When multiple processes
that comply with CQA requirements are identified, economic
performance indicators should be included in the decision process.
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Box 2. Hybrid process development approaches

Process development methods that combine techniques such
as high-throughput experimentation and mathematical models have
been classified as Hybrid approaches. These combinations can be
advantageous to the efficiency of the approach when the
combinations are chosen such that each individual technique
compensates the disadvantage of the other. For the example of
combining HTE with mathematical models, the scalability issues
arising from the miniaturization associated with HTE approaches are
alleviated through the incorporation of scaling effects into the model,
whereas the large number of parameters required for model-based
process development can only be generated through very efficient
experimentation. In principle, multiple data sources could be
combined to generate the required parameter sets. For instance, the
production system related contaminants could be characterized
through experiments applying principles from proteomics and HTE,
whereas the product parameters could at the same time be generated
thorough predictive approaches such as QSPR or MD simulations. In
a similar manner, when a process is planned to include unit
operations for which no suitable model is available, this step may be
optimized and evaluated by tools requiring less prior knowledge. The
ideal is to always choose the techniques that lead to the highest level
of process understanding.

1.3.2. Mechanistic models in process
development

Once the mass-transfer and isotherm models for the
chromatographic unit operations to be considered have been chosen
and all necessary parameters have been estimated, the models need
to be subjected to rigorous validation. While high-throughput
systems are definitely suitable to produce a lot of data, the process
developer needs to investigate the uncertainties in the parameters he
is going to use [92]. In this context, it is important to note that a low
residual in the fit of the model to the experimental data does not
necessarily imply that accurate parameters are estimated as long as
there is uncertainty in the experimental conditions under which the
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data was generated [93]. To be able to judge what level of parameter
quality is acceptable requires a detailed analysis of the parameter
sensitivities of the model [94]. Finally, taking all parts together, the
models predictions must be compared to the performance actually
achieved under the simulated conditions [95].

Once the combination of models and parameters have been
found to give sufficiently accurate predictions, the ability to simulate
process performance can be useful during many stages of process
development. One of the first choices that has to be made is a
selection of resins to be used for the process. Model-based
approaches have been demonstrated to allow rational and fair
comparison of resin separation performance under ideal conditions
for each resin, while reducing the experimental load compared to
conventional column scouting [58].

The most common application of models is probably the
optimization of process conditions, once a resin has been chosen and
the position within the process cascade has been decided. Examples
for a variety of cases including various chromatographic modes have
been published [96-98]. An advantage of optimizing a
chromatographic step through mechanistic models instead of
response surface analysis is that the mechanistic model can usually
still make good predictions outside of its calibration [99]. This is an
important requirement when considering using models for the design
of adaptive design spaces to manage resin lot-to-lot variations, as it
would be impossible to calibrate the model for all possible variations
[100]. When validated models for multiple unit operations are
available, they can be combined to cascaded models to allow process
flow sheet optimization [101]. Finally, a validated model allows
analysing the process towards robustness against disturbances.
Demonstrated robustness then serves as the basis to register a larger
design space with the regulatory authorities [102].
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Table 1.2 The areas of application for state-of-the-art and novel
techniques during various stages of biopharmaceutical downstream
process development

Development
Stage

1) Initial stability o

screening

2) Resin
screening

3) Column
scouting

4) Process
cascade
development

5) Single unit
optimization

28

Identification of
conditions
causing product
aggregation
Define process
condition
limitations
Determine resin
selectivities
Quantify resin
capacities

Evaluate
column
performance
under dynamic
conditions

Determine a
cascade of unit
operations that
comply to the
process
productivity and
purity
requirements

Optimize the
single unit
operation and
to increase the
overall process
performance
Replace single
unit operations
if overall

State of the Art

High-throughput
screening with
multi-angle light
scattering and/or
SEC analysis

High-throughput
batch adsorption
experiments

Automated
scouting
programs on lab-
scale LC-
systems
RoboColumn
screenings

Adaption of
existing platform
designs

New approach
Heuristic design
rules
Trial-and-Error
tests

Laboratory scale
experiments
according to an
experimental
design (DoE)
followed by a
Response
surface analysis
(RSA)

Alternatives

Measurement of
self-interaction
coefficients

Techno-
economic driven
selection based
on (optimized)
productivity
estimates

Structure based
calculations or
simulations
(QSPR / MD)

Peak parking to
determine
dynamic effects
and simulation of
various process
conditions

Expert systems

Parallel
cascaded
evaluation model

Application of
optimization
algorithms to
mechanistic
models

Benefits

Lower material
requirements
May be used for
long-term
stability
prediction

Allows balancing
of technical and
economical
properties

Fewer
experiments
May provide
information on
binding site

Fewer
experiments
Faster

Simple guiding
rules
Applicable to
non-platform
problems

Highest
probability of
identifying an
optimal process
Applicable to
non-platform
problems

Allows a much
higher
throughput of
conditions to be
tested

Higher chance
of finding a
process
optimum



6) Lab-scale
trials

7) Scale up

8) Optimization

9) Validation

process
performance
targets cannot
be met

Identify critical
intermediate
performance
parameters and
inter-unit
operation
dependencies
Transfer the
process design
to production
scale and solve
issues arising
from scaling
effects

Further
optimize the
process
parameters to
increase the
process scale
performance

Deliver final
proof on
process
robustness
Deliver final
report on
process control
strategy and
risk-
management

Lab-scale
modules
provided by
manufacturers

Stepwise
increase of
equipment scale
Dimensionless
process analysis
(m-Theorem)

Process scale
experiments
according to an
experimental
design (DoE)
followed by a
Response
surface analysis
(RSA)

Risk assessment
Spiked recovery
studies

Report response
surfaces for CPP

Purifying biopharmaceuticals:
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Trial and error
optimizations
with genetic
algorithms

Performance
models based on
multivariate
calibrations

Incorporation of
scaling effects
into mechanistic
models

Integration of
scaling issues
within
mechanistic
models

Application of
optimization
algorithms to
mechanistic
models

Replace
response
surfaces with
validated
mechanistic
models

Faster
convergence to
process
optimum

Less likely to
optimize
towards local
performance
optimum

Applicable to
very complex
feedstocks

Fewer
experiments
necessary

Fewer large
scale trials
necessary

Less likely to
result in
suboptimal
process designs
due to
retroactive
adjustments due
to scaling
problems

Fewer large
scale trials
necessary

Demonstrates a
higher level of
process
understanding to
the regulatory
authorities
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1.4 Concluding Remarks

The introduction  of  high-throughput  technology
revolutionized how chromatographic process development is
approached by enabling thorough and systematic investigation of
which parameters influence the process and how they can be
optimized. Throughout the biotechnology industry there is a trend to
move towards the next level of process understanding, reflected in
the increasing adoption of mechanistic models. The inherent
complexity of biopharmaceuticals and the systems they are produced
in pose a unique set of challenges on this path. This has led to the
development of a wide variety of powerful new techniques, models
and analytical tools to aid process developers. An overview of how
to apply them during process development is given in Table 2. A
unique opportunity arises from the complementary character of these
exciting new tools. Downstream scientist and engineers will be able
make a selection from various process development modules to meet
their current project needs. Models can be connected to multiple data
sources ranging from experimentally determined parameters to
molecular dynamics based predictions, while poorly understood
operations can continue to be optimized empirically. Creating a
universal module interface and a common processing parameter
database will be the key challenges of the future.
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Fourier transform assisted deconvolution of
skewed peaks in complex multi-dimensional
chromatograms

Abstract

Lower order peak moments of individual peaks in heavily fused peak clusters can be
determined by fitting peak models to the experimental data. The success of such an
approach depends on two main aspects: the generation of meaningful initial estimates
on the number and position of the peaks, and the choice of a suitable peak model. For
the detection of meaningful peaks in multidimensional chromatograms, a fast data
scanning algorithm was combined with prior resolution enhancement through the
reduction of column and system broadening effects with the help of two-dimensional
fast Fourier transforms. To capture the shape of skewed peaks in multi-dimensional
chromatograms a formalism for the accurate calculation of exponentially modified
Gaussian peaks, one of the most popular models for skewed peaks, was extended for
direct fitting of two-dimensional data. The method is demonstrated to successfully
identify and deconvolute peaks hidden in strongly fused peak clusters. Incorporation
of automatic analysis and reporting of the statistics of the fitted peak parameters and
calculated properties allows to easily identify in which regions of the chromatograms
additional resolution is required for robust quantification.

Keywords: Comprehensive two-dimensional chromatography;

Deconvolution; Fourier transform;Exponentially modified
Gaussian; Peak model; Non-linear curve fitting;

Published as: A.T. Hanke, P.D.E.M. Verhaert, L.A.M. van der Wielen, M.H.M.
Eppink, E.J.LA.X. van de Sandt and M. Ottens, J Chrom A, 1394 (2015): 54-61
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2.1 Introduction

Chromatography is one of the most common techniques in
analytical laboratories, especially for the analysis of mixtures of
larger organic molecules. Its output is typically presented in the form
of chromatograms, the intensity of a detector signal over the time of
a separation in which each component is represented by a peak. The
amplitude of the peak reflects the concentration of the components in
relation to the detector sensitivity. The shape of the peak on the other
hand is determined by the complex interplay of mass-transfer and
adsorption phenomena occurring in the column and in the system
dead-volume [1]. In the ideal case, i.e. where the components of
interest are fully resolved, the interpretation of these chromatograms
is relatively straightforward as lower statistical peak moments, such
as the area (0™-moment) and average retention time (1% moment),
can be calculated accurately by simple integrators or even
graphically [2]. Where peaks are not fully resolved, straightforward
approaches such as perpendicular drop or tangent skim, may still
lead to reasonable results for symmetrical peaks with limited overlap
[3]. In practice peaks may often be skewed due to slow mass transfer
or extra-column effects, that can lead to large errors during
chromatogram analysis [3].

One of the most wide-spread approaches to solving the
problem of overlapping skewed peaks is multivariate curve
resolution (MCR) [4]. MCR utilizes the bilinear character of
spectroscopic  chromatograms [5], i.e. that the recorded
chromatogram is a linear combination of the concentration profiles
of the present species and their respective absorption properties.
MCR has been demonstrated to be both effective for mixtures where
the single components absorption spectra are known [6] and
unknown [7], though in the latter the statistical uncertainties of the
obtained results increase with the number of components present. In
contrast to MCR, hard-modeling techniques focus only on the
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concentration profiles and require only univariate data. The two
techniques are highly compatible and can compensate for the short-
comings of each other [8].

In this study we introduce a hard-modelling approach for
the deconvolution of complex two-dimensional chromatograms. A
special focus lies on the generation of good initial estimates with the
help of Fourier transforms. The results are subjected to rigorous
statistical analysis to identify the regions where the hard-modelling
approach by itself can lead to sufficiently robust results and where
the multivariate techniques might be necessary.

2.2 Theory

Over the years a huge library of peak models has been
developed, many of which can account for peak asymmetries [9].
Probably one of the most popular models for the description of
asymmetrical chromatographic peaks is the exponentially modified
Gaussian distribution (EMG). Its popularity is, at least, partly based
on the relative physical significance of its parameters: the variance
can be related to the peak broadening caused by axial dispersion,
whereas the exponential decay is a reasonable model to capture
dead-volume effects. An additional advantage of the EMG is that it
requires a relatively small number of parameters to be able to
describe a large variety of peak shapes, from almost perfectly
Gaussian to heavily tailing peaks with sharp fronts. The EMG can be
expressed in many mathematically equivalent ways that may lead to
large errors when calculated numerically for certain parameter
ranges. Kalambet et al. [10] introduced a simple decision parameter z
to guide in the selection of the form of the EMG to use for accurate
numerical calculation. For a single peak this decision factor can be
expressed as

z:%-(";x{) (1)
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where x is the input variable, for chromatography typically
the elution time or volume. The mode of the Gaussian constituent is
given as p, the Gaussian variance ¢ and the relaxation parameter of
the exponential decay as t. The equation best suited for numerical
calculation of the EMG is then for z <0

T O fg—% oa° 1 p-x o
F(x)=h E?exp< pn +2—T2>erfc<\/—5( pe +;)) (2)

and forz>0

o —(u—x)? 1 =
F(x):h-\/g-;-exp<%>-erfcx(\/—i-(u0x+%)> 3)

with h being the height of the unmodified Gaussian.

Once such a suitable peak model has been identified,
numerical optimizers have been shown to be able to fit them to
experimental data [11]. The EMG has been demonstrated to be
suitable for optimizer based fitting and deconvolution of most
chromatographic peaks providing the observed peak tailing is not too
pronounced. In these cases the polynomial modified Gaussian
(PMG) shows better fitting capability [12]. Besides the suitability of
the peak shape, knowledge of the number of peaks fused in the
chromatogram and their relative positons were identified as critical
parameters in the success of optimizer based deconvolution [13].
Depending on the complexity of the chromatograms, identifying the
number and positions of possible peaks is not a trivial task. To avoid
operator to operator variation, especially in quality control
environments, it is preferable to have this operation performed by
peak detection algorithms. Two popular peak detection approaches
are simple local maxima search algorithms that closely resemble a
human looking for visually distinguishable peaks, and analysis of
higher-order derivatives of the measurement signal. The latter has
been shown to be able to recognize more peaks; especially such
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hidden in shoulders of larger peaks, but is highly sensitive to noise in
the original signal [14,15].

A more robust approach to increase the probability to
observe well resolved peaks is to increase the system’s peak capacity
[16]. This can be achieved by increasing the efficiency of the used
columns and reduction of extra-column effects, but most effectively
by increasing the number of orthogonal separation dimensions [17].
The principles for the interpretation of these multi-dimensional
chromatograms remain the same. For practical reasons, the
dimensionality of comprehensive separations is often limited to two
orthogonal methods, even when performed in offline mode [18]. As
a peak model for two-dimensional chromatography the Kalambet et
al. [10] system of equations for the description of EMG shaped peaks
can be extended by a second dimension. The general equation to
describe a fused set of n two-dimensional EMG distributions (2D-
mEMG) is then given by

n

F(x,y) = Z {h L Oxi Oyt COxi Coy,i} (4)

it
= 2 T.l’,i 'Ty,i

where coy; and coy; are co-factors that change depending on
the peak and parameter range. Similar to the one-dimensional case
the equation for the accurate calculation of the cofactors can be
chosen by decision variables:

1 Hyji — X CTxi)
Zy=—— = 5
o \/E ( Ox,i Tx,i ( )
1 (Hyi—y cry,->
Zyi =—"— 4 — 6
= (2 2 ©)

Similar to the one-dimensional case the co-factors for the
first dimension are for z,; <0

. —_— Az
cous = (B2 4 ). rtfa) ™)
X,

Tx,i
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and for z,; > 0

2
COx; = €xp (%) ~erfex(zy,;) (8)
x,i

Analog to the first dimension, the cofactors for the second
dimension are for z,; <0

Hyi=Y | Oyi
By = exp< ylei + ZTyyl,-Z> - erfc(z,,;) 9)

and for z,; > 0

2
Coy; = exp (%) - erfex(z,,) (10)

When viewing the system of Eq. 4-10 it becomes apparent
that there is no built in correlation between the first and second
dimensions. As a result the peak model should preferably be used to
describe systems where the dimensions consist of orthogonal
methods. This restriction to the application of the peak model is
deemed acceptable, as orthogonality of the separation dimensions is
an important part of the design paradigm of multi-dimensional
chromatography systems [19]. It should also be noted that fitting
multiple peaks to a single chromatogram approach also assumes that
the chromatogram is the result of the linear addition of the single
component contributions to the final recorded chromatogram, a
condition only met when the used detector is strictly operated within
its linear response range. When it is no longer feasible to improve
the separation system on a technical level, there is the possibility to
virtually reduce the contribution of band-broadening and extra
column effects. This effect can be achieved with the help of Fourier
transformations [20]. Deconvolution by means of the Fourier
transforms has been shown to have a suitable sharpening effect on
chromatograms with EMG shaped peaks [21]. The characteristics of
applying the Fourier transformation in the form of fast Fourier
transform (FFT) algorithms to real experimental chromatograms has
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been studied thoroughly [22]. Due to the introduction of artefacts
such as small negative side-lobes, and slight shifts in peak retention
patterns, research on the wuse of Fourier transforms in
chromatography has since focused more on complete Fourier
Analysis of the chromatograms, rather than on resolution
enhancement [23-26].

For some applications of multi-dimensional separations,
such as the regression of thermodynamic parameters [27,28], it is
important to determine the peak properties of the unaltered
chromatograms. In this context, the proposed sample and data
processing scheme outlined in Figure 2.1 was developed. It
constructs two-dimensional chromatograms from independently
recorded single dimension chromatograms and utilizes Fourier
transforms to increase the efficiency of the subsequent peak
detection algorithm. The detected peak properties are passed on to an
optimizer that fits the data to the described two-dimensional EMG.
The resulting fits are used for calculation of the lower rank statistical
peak moments.
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Figure 2.1. Flowchart of the experimental and data processing steps
for the deconvolution and analysis of complex multidimensional

chromatograms.
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2.3 Experimental and computational
methods

2.3.1. Creation of model data

To analyze the impact of data quality on the deconvolution
procedure a series of model data sets were generated based on Eq.
(4-10). The parameters used for the creation of the model data are
given in Table 2.1. For each scenario, an initial data set was
calculated on a regular mesh of 100 by 100 data points before adding
artificial imperfections. Two types of noise were investigated: a
normally distributed pseudo-random background noise across the
entire chromatogram with an amplitude dependent on the maximum
signal amplitude, and a normally distributed pseudo-random
measurement error dependent on the local signal strength. A total of
nine linear combinations of noise and error were tested for each
scenario ranging from 0-2% of the respective amplitudes. Each test
was repeated at least three times. The variance and relaxation
parameters of the deconvoluting peak were chosen to be a factor of
0.9 smaller than of the simulated peaks to avoid the introduction of
artefacts.

Table 2.1 Peak parameters of the simulated data for the statistical
evaluation of the deconvolution procedure. Scenario 1 represents two
overlapping identical peaks with different retention in a single
dimension, and Scenario 2 with different retention in two
dimensions.

Scenario 1 Scenario 2
Peak 2

h
Mx
Hy
Oy
Oy
Tx
T
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2.3.2. Experimental apparatus and
procedures

Prior to the first chromatographic separation all samples
were transferred into the appropriate starting buffer through size-
exclusion chromatography with disposable PD-10, Sephadex G-25
columns (GE-Healthcare, Uppsala, Sweden) according to the
manufacturer protocol. A long-range cation exchange gradient
chromatofocusing step carried out on an Akta Explorer 10 system
equipped with a Mono S 4.6/100 column (GE-Healthcare, Uppsala,
Sweden) according to a protocol described elsewhere [29] served as
the first separation dimension. A total of 96 fractions of 200 pl were
collected at regular intervals over the course of the gradient. The
frequency of the fractionation was based on the anticipated peak
width to increase the chance of the relevant peaks to be sampled
multiple times.

All collected fractions were sealed and transferred to a
WPS-3000TXRS In-Line Split-Loop Autosampler (Thermo Fisher
Scientific, Breda, The Netherlands) cooled to 4°C. The second
chromatographic separation was size-exclusion chromatography
performed on an Acquity BEH 200 column (Waters, Etten-Leur, The
Netherlands) mounted in a TCC-3000RS Thermostat heated to 30°C.
The column dimensions were 4.6x150mm, preceded by a 4.6x50mm
guard column of the same resin and a 0.2um stainless steel in-line
filter (Waters, Etten-Leur, The Netherlands). The mobile phase was a
100 mM sodium phosphate buffer at pH 6.8, driven by a LPG-
3400RS Quaternary Gradient Pump. Samples of 10 pl were injected
sequentially in 12min intervals. The UV absorption at the column
outlet was monitored by a VWD-3400RS detector set to 280 nm and
a 100 Hz sampling rate.
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2.3.3. Data curation

To construct a two-dimensional chromatogram from the
individual second dimension datasets, a vector with a number of
elements equal to the number of fractions analysed in the second
dimension was created. Each element of this vector was assigned a
value equal to the centroid of the corresponding fractionation
interval.

The output signals of the second dimension were aligned to
share a common time base and stored in a matrix. This matrix was
then cut to only include measurements during the time of interest. In
the case of size-exclusion chromatography this meant to remove data
points collected during the lag-phase and after the elution of very
small molecules. To reduce the burden on the optimization
algorithms the sampling rate of the chromatograms was reduced by
averaging over constant intervals to achieve a resolution of 200 data
points. This value was chosen as a compromise between loss of
resolution and reduction of computational time. To compensate for
offsets between the second dimension measurements each row of the
second dimension is corrected for a linear baseline, so that the first
and last column of the measurement matrix equal zero. This step
needs to be closely controlled as inaccuracies in the baseline
correction introduces noise and can lead to the introduction of false
peaks.

A vector with the same length as the second dimension of
the measurement matrix is constructed and filled with the second
dimension time-base values corresponding to the measurement
intervals after resampling. Both first and second dimension time-
base vectors are repeated in the opposite dimensions to form two
time-base matrices of the same dimensions as the measurement
matrix.
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2.3.4. Fourier Transform assisted
sharpening of the peak profiles

The parameters of the transfer function were estimated by
fitting the mEMG function to a series of well resolved model protein
chromatograms generated under the conditions of the experiment
(data not shown). For each parameter the lowest found value was
chosen and multiplied with a safety margin of 0.9 to prevent the
introduction of false peaks and negative side lobes. The
deconvolution signal matrix was then calculated with the time-base
matrices as input and, the estimated variance and relaxation
parameters. The modes were chosen for the peak to be roughly
located in the middle of the respective dimension time interval. The
elements of the resulting response matrix were then shifted for the
maximum to be located at the position corresponding to the origin of
the chromatogram. Elements left empty after the shift were filled
with zeros.

The discrete Fourier transforms of the measurement matrix
and deconvolution matrix were computed by the two-dimensional
fast Fourier transforms algorithm implemented in the signal
processing toolbox of Matlab 2013b (Mathworks, Natick, USA). In
the frequency domain the transformed measurement matrix was
divided by the transformed deconvolution matrix. The resulting
matrix was transformed back into the time domain by the two-
dimensional inverse fast Fourier transform algorithm of the same
toolbox, yielding a version of the chromatogram with increased
resolution. To remove noise introduced by the transformations the
resulting matrix was smoothed by a digital Gaussian low-pass filter.
To compensate for changes in signal amplitude caused by the
procedure, the entire matrix is multiplied by a scalar factor
determined by the ratio of the signal maxima of the original and
deconvoluted measurement matrices.
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2.3.5. Peak fitting

After sharpening of the chromatogram the resulting matrix
was scanned for local maxima. To be identified as a local maximum
each data point was checked for the following criteria: its value
needed to be greater than 2% of the maximum signal intensity and no
data point within 2% of the matrix dimensions is larger than the
considered data point. The coordinates of points fulfilling both
criteria were used to extract the corresponding retention times from
the time-base matrices, to serve as initial estimates for the modes of
each peak. The variances and relaxation parameters of the
deconvolution peak were used as the initial estimates of the
corresponding parameters. The combination of all parameter sets
determined this way were rearranged into a vector that served as the
starting values for the optimization algorithm.

The optimization was carried out by the trust-region-
reflective algorithm of Matlab 2013b (Mathworks, Natick, USA),
with zero as the lower bound on all parameters. No upper bounds
were set. The optimizer was set to terminate when either the function
or the norm of the step was smaller than 10E-6 or when a maximum
of 500 iterations had been performed.

2.3.6. Statistical output analysis

Once the optimizer had reached one of the termination
criteria, the output vector was split into single peak parameter sets.
For each parameter set the lower rank moments were calculated
numerically. The standard error sp; for each parameter j was
estimated by Eq. (11), where n is the number of data points, p the
number of parameters and RSS the sum of squared residuals of the
fit.
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RSS
1= |omy (11)

The matrix ¢ of which the j"™-diagonal elements are
extracted is calculated by Eq. (12) from the Jacobian matrix J, as
returned by the optimizer algorithm.

c=(0"-N7? (12)
For the simulated data, the deviations from the expected
parameters were calculated as an additional measure for the quality
of the deconvolution. The errors sz, for the numerically calculated
peak moments M were estimated by Eq. (13), where P, is the i
parameter of the fit.

Sput = jz <<Z—Z)2 -st) (13)

The partial derivatives were evaluated numerically by
varying each parameter by +0.1% of its value and calculating the

inclination over the resulting interval.
2.4 Results and discussion

2.4.1. Importance of resolution

Two model scenarios were analyzed to evaluate the
robustness of the deconvolution procedure. The difference between
the scenarios lies in the resolution achieved by the multidimensional
separation. In Scenario 1 the two peaks only differ in their retention
in a single dimension, causing them to appear completely fused, as
depicted in Figure 2.2. Detection of two separate peaks by the local
maxima approach is only possible after sharpening of the
chromatogram with the help of Fourier Transforms. In the Scenario
2, the two peaks show an equal difference in retention in both
dimension, together sufficient for two local maxima to be detectable
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even prior to Fourier Transform sharpening. In both cases the
described approach leads to the identification of the correct number
of peaks and the determined parameters reproducibly deviate by less
than 1.5% of their value from the parameters used for the creation of
the model data.

Figure 2.2. Example data during various stages of the deconvolution
procedure: a) raw simulated data of two overlapping peaks with a
2% normal distributed measurement error and 2% of the maximum
signal as background noise. b) after smoothing with a Gaussian low-
pass filter. ¢) sharpening of the peak profile with Fourier Transforms
reveals two distinct local peak maxima above the rejection threshold.
d) Non-linear fitting of the 2D-mEMG function to the raw data
allows reconstruction of the single peaks.
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A noteworthy difference between the two scenarios only
becomes apparent when the statistical errors of the determined
parameters are considered, as in Fig. 2.3 and 2.4. While the error on
each parameter is less than 2% when the resolution is sufficient for
each peak to show a local maximum in the raw data, some
parameters show large statistical errors when that is not the case. The
peak heights and the relaxation parameters of the dimension in which
the peaks do not differ in their retention appear to be most strongly
affected, as can clearly be seen in Fig. 2.3 b-d. The reason for both
parameters being associated with a large statistical error for the case
of completely fused peaks lies in their correlated influence on the
observed peak amplitude. When the tailing part of one peak is
completely hidden within another peak, it becomes difficult to
determine whether the observed signal intensity is due to tailing of
the first, or height of the second peak. This ambiguity is then
reflected in comparatively large statistical errors on these
parameters. Although the difference is far more subtle for other
parameters, it can be seen in Fig. 2.3 that errors for parameters
associated with a dimension in which no separation occurs are
generally larger than their counterparts. For a symmetrical case such
as Scenario 2 there is no difference between the errors on any
dimension.
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Figure 2.3. Overview of the impact of artificial normal distributed
pseudo-random background noise and measurement errors on the
peak parameters determined by the proposed deconvolution
procedure. All reported values are averages from at least three
repetitions. The base case was calculated with the two-dimensional
mEMG function and the Scenario 1 parameters of Table 2.1.
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Figure 2.4. Impact of artificial background noise and measurement
errors on the peak parameters determined by the proposed
deconvolution procedure, applied to the model Scenario 2, given by
the parameters in Table 2.1.
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2.4.2. Influence of data quality

The influence of a constant background noise and a
measurement error dependent on the local signal intensity were
investigated separately. A constant background noise had on average
a stronger negative influence on the statistical error of the fitted
parameters than the artificial measurement errors. This is inherent to
how the statistical errors are calculated. The background noise is
present across the entire chromatogram, rather than only the area
covered by the fused peak. As a consequence the background noise
has a systematically larger contribution to the residuals of the fit than
the measurement error. For the same reason, no significant errors are
reported when fitting to perfect data, even when the determined
parameters do not perfectly match the expected values. Noise and
measurement error levels of 1% and larger than 2% were also tested,
as were their combinations. For 1% imperfection levels the trends
were the same as reported in Fig. 3 and Fig.4, but with lower errors
corresponding to a lower contribution of the imperfections to the
residuals of the fit. Higher levels of imperfections sometimes lead to
the detection of false peaks. This effect can be suppressed by
applying stricter filters, but as knowledge of the expected number of
peaks is unrealistic for real applications, the procedure is not
recommended for too noisy data.

2.4.3. Characterization of complex
mixtures

Application of the described approach to experimental data
collected during multi-dimensional chromatography of an IgG-1
producing Chinese hamster ovary (CHO) cell-culture supernatant of
unknown composition gave results consistent with the behavior of
the simulated cases. Sharpening of the chromatogram showed an
increase in local maxima detected for broad and highly fused peak
clusters, such as peaks 4, 5 an 7in Fig. 5. Peaks that were relatively
well resolved on the other hand simply appear to slightly change in
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shape without revealing any hidden peaks. An overall trend in the
data is that position related peak parameters such as their Gaussian
modes and calculated first moments, are mostly statistically better
defined than parameters related to quantification, such as peak
heights, variances and volumes (zeroth moments), except for small
peaks surrounded by larger peaks from multiple sides, or peaks that
appear to not fit the EMG shape. An example for this case is given
by peak 2 in Fig. 5, where a secondary local maxima is present, but
below the peak acceptance threshold. Should this occur unacceptably
often the peak rejection criteria should be revised and use of another
peak model more suitable for the particular case should be
considered. The uncertainty of parameters may also increase when
small peaks are in the tailing zone of larger ones, such as peak 8.
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b)

tapy [Min]

Figure 2.5. Example data during various stages of the deconvolution
procedure: a) raw simulated data of two overlapping peaks with a
2% normal distributed measurement error and 2% of the maximum
signal as background noise. b) after smoothing with a Gaussian low-
pass filter. ¢) sharpening of the peak profile with Fourier Transforms
reveals two distinct local peak maxima above the rejection threshold.
d) Non-linear fitting of the 2D-mEMG function to the raw data
allows reconstruction of the single peaks.
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Table 2.2 Fitted EMG parameters and numerically calculated peak
moments of the peaks detected during the two-dimensional
chromatographic analysis of the IgG-1 containing CHO cell culture
supernatant.

9.0 +1.3 142 +0.0 4.2 0.0 02 #0.0 0.1 0.0 0.8 +0.1 0.1 +0.0 1.0 0.2 15.0 +0.1 4.3 +0.0

3.6 +1.9 150 01 57 0.0 02 +0.1 0.1 *0.0 12 02 0.1 201 0.4 +0.3 16.1 0.2 5.8 0.1
39 +1.2 147 +01 7.0 0.0 03 #01 0.1 +00 1.8 +0.3 0.1 t0.1 1.0 0.5 16.5 +0.3 7.1 0.1
144 35 152 +0.0 65100 02 00 0.2 0.0 08 02 0.1 0.1 25 0.7 159 +0.2 6.6 +0.1
26.7 +2.3 155 0.0 63 0.0 03 +0.0 0.1 +0.0 0.7 0.0 0.1 0.0 2.4 03 16.3 +0.0 6.4 0.0
26 £1.0 159 0.1 52 0.0 02 0.0 0.1 0.0 0.2 +0.1 0.1 +0.0 0.2 0.1 16.1 +0.1 53 0.0
46 +1.0 159 0.0 66 00 0.3 +0.0 0.3 0.0 0.7 +0.1 0.0 0.0 2.7 0.7 16.6 +0.1 6.6 +0.0
41 +1.4 186 :0.1 6.3 0.0 02 01 0.1 +00 1.8 02 01 0.1 0.7 +0.4 20.3 +0.2 6.4 0.1

94.0 +0.8 20.0 £0.0 5.2 +0.0 03 *0.0 0.1 +0.0 0.1 +0.0 0.1 0.0 10.9 +0.1 20.2 +0.0 5.3 0.0

2.5 Conclusions

The comparison of the two simulated scenarios makes a
strong case for the use of multi-dimensional techniques for the
analysis of complex mixtures. The increased system peak capacity
strongly enhances the chance for the components to be sufficiently
resolved for showing local maxima, leading to significantly better
statistics on the parameters determined by fitting peak models to the
experimental data with the help of algorithmic optimizers. Good
initial estimates of the number and positions of the peaks are crucial
to the success of such fitting approaches. Local peak maxima
detection in combination with enhancing the resolution of the
chromatogram through removal of system broadening effects by
Fourier transforms, was shown to be a robust and computationally
efficient means to generate these starting estimates. As the fit is
performed to the original data, signal distortion, noise amplification
and generation of artefacts such as negative side lobes usually
associated with Fourier transform chromatogram sharpening are not
of major concern here.
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The comparatively small errors on the peak locations and
first moments make the technique well suitable for applications such
as component identification or for the regression of thermodynamic
parameters [30]. Robust quantitative results are achieved when
resolution is sufficient for local maxima to be detected prior to
resolution enhancement. When quantitative analysis of all
components is the main objective, the detection of a highly fused
peak cluster should lead to optimization of the experimental protocol
to increase the resolution in that zone of the chromatogram. When
further chromatographic separation is not feasible, the introduction
of multichannel detectors [31] and expansion of the approach to a
hybrid MCR should be considered.
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3D-liquid chromatography as a complex mixture
characterization tool for knowledge-based
downstream process development

Abstract

Knowledge-based development of chromatographic separation processes requires
efficient techniques to determine the physicochemical properties of the product and
the impurities to be removed. These characterization techniques are usually divided
into approaches that determine molecular properties, such as charge, hydrophobicity
and size, or molecular interactions with auxiliary materials, commonly in the form of
adsorption isotherms. In this study we demonstrate the application of a three-
dimensional liquid chromatography approach to a clarified cell homogenate
containing a therapeutic enzyme. Each separation dimension determines a molecular
property relevant to the chromatographic behaviour of each component. Matching of
the peaks across the different separation dimensions and against a high-resolution
reference chromatogram allows to assign the determined parameters to pseudo-
components, allowing to determine the most promising technique for the removal of
each impurity. More detailed process design using mechanistic models requires
isotherm parameters. For this purpose, the second dimension consists of multiple
linear gradient separations on columns in a high-throughput screening compatible
format, that allow regression of isotherm parameters with an average standard error
of 8%.

Keywords: Multi-dimensional chromatography, host cell proteins, process
development, feedstock characterization
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3.1 Introduction

The  technical and  regulatory  challenges  of
biopharmaceutical downstream processing lead to the widespread
adoption of high-throughput screening (HTS) techniques [1]. In this
context, process performance and the screening results are typically
correlated through the use of statistical tools [2,3]. To gain a higher
level of process understanding, there is an ongoing trend to utilize
both the knowledge of the molecular properties of the components to
be separated and the specific interaction of each of these molecules
with auxiliary materials such as chromatography resins [4]. The
molecular properties are used to rationally identify promising
separation strategies through the use of heuristic design rules [5],
whereas the interaction parameters are mostly used for detailed
process designs and unit operation optimizations using mechanistic
models [6-8].

A key challenge in applying these approaches to real
purification problems is finding experimental techniques that are
able to determine the necessary property and interaction parameters
in a time and material efficient manner. The proteins in the mixture
should be characterized towards their charge, hydrophobicity and
size properties, as these are the fundamental properties utilized
during most chromatographic purifications [9], other than specific
biological affinities [10,11]. Combinations of 2D-gels with other
techniques have been demonstrated to be effective tools at
determining these parameters for multiple components of complex
mixtures [12]. To be able to predict process performance from these
parameters alone is possible, but requires extensive model
calibration [13].

Recent years have seen the development of multi-
dimensional techniques to allow the application of proven parameter
estimation strategies such as regression from the retention times in
multiple linear salt gradients directly to complex samples [14,15].
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The downside to these techniques is that they still require extensive
manual labour in terms of experimentation and data processing. In
this study we demonstrate a three-dimensional experimental
approach that characterizes the major components of a complex
protein mixture towards their charge, hydrophobicity and size. The
approach is designed to allow for a high degree of automation in
both experimentation and data analysis. The second dimension is
designed to be a HTS compatible format that also allows the
regression of adsorption isotherm parameters.

3.2 Materials and methods

3.2.1. Approach overview

The complex sample used for this study is an extract of an
intracellularly  produced therapeutic enzyme clarified after
homogenization, provided by industrial partners (DSM, The
Netherlands). An overview of the experimental approach taken to
characterize the chromatographic behaviour of the product and major
protein impurities in the sample is shown in Figure 1. Gradient
chromatofocusing (gCF), or linear pH-gradient chromatography, on
a strong anion exchange column was used as a universal first
separation dimension. Linear gradient experiments with gradient
lengths varying from 12 to 36 column volumes (CV) were performed
on each of the collected fractions, to allow regression of isotherm
parameters. To assess if this step can be performed in a HTS
compatible format, these experiments were carried out on 200 pl
RoboColumns (Atoll, Germany) packed with a resin for
Hydrophobic interaction chromatography (HIC). To compensate for
the inherently low resolution of such small columns, the collected
fractions of these gradient experiments were subjected to high-
resolution size-exclusion chromatography. As gradient experiments
in HIC require adjusting the fractions to relatively high salt
concentrations which may induce precipitation, a reference data set
skipping the salt-gradient separation is performed. The two data sets
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are compared to see if any major contamination peaks are lost due to
precipitation or if any new detectable aggregates are formed.

Clarified sample
SEC rebuffering

Y L7
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[ fractionation (96) J [ fractionation (12) J AEX-gCF
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Figure 3.1 Schematic overview of the procedure for producing the
three-dimensional data for isotherm parameter regression together
with the two-dimensional reference chromatogram.
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3.2.2. pH-gradient anion-exchange
prefractionation

Prior to gCF, the cell free clarified extract was transferred
into the appropriate starting buffer through SEC on disposable PD-
10, Sephadex G-25 columns (GE-Healthcare, Uppsala, Sweden)
according to the manufacturer recommendations. The gCF was
performed on a Mono Q 4.6/100 column (GE-Healthcare, Sweden)
with a gradient length of 15 column volumes (CV) on an Akta
Explorer 10 liquid chromatography system (GE-Healthcare,
Sweden). The buffers for the pH-gradient were made according to
Kroner et al. for a pH-range of 10.5 to 3.5 for AEX-gCF [16]. For
creation of the reference data set a total of 96 fractions were
collected during the gradient, whereas 12 fractions were collected for
three-dimensional analysis.

3.2.3. Size exclusion chromatography

All SEC experiments were performed on a UHPLC’
(Thermo Fisher Scientific, MA, USA) equipped with a WPS-
3000TXRS in-line split-loop autosampler, TCC-3000RS column
thermostat set to 30 °C, LPG-3400RS Quaternary Gradient Pump.
The UV absorption at the column outlet was monitored by a VWD-
3400RS detector ay 230nm. The stationary phase was a 4.6 x 150mm
Acquity BEH 200 column, preceded by a 4.6 x 50mm guard column
of the same resin and a 0.2 um stainless steel in-line filter Waters,
MA, USA). The used mobile phase was a 100mM sodium phosphate
buffer at pH 6.8 applied at a flowrate of 0.3 ml/min. The injection
volume per measurement was 10 pl. The SEC system was calibrated
with gel filtration chromatography standard mixture for a molecular
weight range of 1.3 — 670 kDa (Bio-Rad, CA, USA). Instead of
calibrating towards the molecular weight of each protein (M,), the
system was calibrated towards their hydrodynamic radius (Ryuydro)
which was estimated through Eq. (1) [17]:
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1
RHydv'o,i,Prot = 0.081- (Mr)§ (1)

3.2.4. Mini-column characterization

The mini columns used for this study were 200 pl
RoboColumns packed with Cellufine Phenyl resin. To allow
recording of continuous signal chromatograms the columns were
mounted on an Akta Explorer 10 with a custom made adapter. The
column packing and porosity were evaluated through inverse size
exclusion chromatography (ISEC) with a range of different
molecular weight Dextran standards (American Polymer Standards,
OH, USA). A full list of the used Dextran standards is given in Table
1. The peak molecular weight (M,)) of each Dextran was related to its
hydrodynamic radius (Ryuygro) according to the empirical correlation
in Eq. (2), as reported by To et al. [18].

Ruyaroipex = 00271+ (M,)"** 2)

Dextran standard solutions were prepared at a concentration
of 2 g/l. The injection volume of all ISEC experiments was 10 pl and
the flowrate was set to 0.156 ml/min. To correct for system
contributions, all standards were measured once with a column
attached and once with a bridge capillary with the same dead volume
as the RoboColumn adapter. The refractive index was measured at
the column outlet by a 1100 series RID (Agilent, CA, USA) From
the corrected retention values the smallest and largest Dextrans were
used to calculate the column bed (e,), total () and particle (€,)
porosities. The pore accessibility coefficients (Kp) for the
intermediate Dextrans were calculated in relation to those values. For
interpolation a logistic function was fitted through the calculated Kp
in relationship to the probe hydrodynamic radii follow Eq. (3), where
p and ry, are empirical fitting coefficients.

1
1+ (M)p 3)

Tm

Kpi =
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Table 3.1 Peak molecular weights and empirically calculated
hydrodynamic radii of Dextran standards used for ISEC experiments.

Mp [Da] Rh [nm]

180 0.36
18500 351
29200 454
85000 772

410000 16.91
970000 24.97
2825000 44.92
2900000 44.80
6300000 65.92

3.2.5. Multi-linear gradient experiments
on small columns

Linear salt gradient HIC experiments from 1000 mM to
0 mM Ammonium Sulphate (AS) over 12, 24 and 36 CV were
performed on the same liquid chromatography setup and column as
the ISEC experiments. The pH was kept constant at 7.5 during all
HIC experiments. To facilitate detection in the third dimension the
injection volume was increased to 50 ul per experiments. Prior to
sample injection the samples were rebuffered into 25 mM Tris buffer
containing 1000 mM AS with Amicon spin filters with a nominal
molecular weight cut-off of 3 kDa (Millipore, MA, USA). The
rebuffering was controlled to achieve a concentration factor of at
least 2.5 to allow tracing low concentration contaminants. Fractions
were collected at regular intervals of 275 ul throughout the HIC
gradient experiments.
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3.2.6. Multi-dimensional peak analysis

Composite  multidimensional ~ chromatograms  were
constructed for the two-dimensional AEX-gCF-SEC reference data,
as well as for each HIC gradient for each fraction with a significant
UV-detectable protein content. The peaks in each complex
composite chromatogram were detected, deconvoluted and fitted
with a Fourier-transform assisted technique reported elsewhere [19].
To increase the methods sensitivity the absorption signal at 230 nm
was used instead of 280 nm. The peak acceptance threshold for the
reference chromatogram was set to 3 mAU and 0.5 mAU for the HIC
gradient data.

3.2.7. Parameter regression

Peaks with the same hydrodynamic radius and a similar
volume across the different salt-gradient chromatograms of the same
pH-gradient fraction were paired together and assigned an identity
based on the largest similarity to a peak from the reference
chromatogram. To regress isotherm parameters from changes in
elution volume according to changes in gradient length, a derivation
of the formalism of Parente and Wetlaufer was used [20]. The
regression model is based on Mollerup’s description of the initial
slope (A;) of a hydrophobic interaction isotherm of a component
‘i [21].

A= Ri (ﬂ)" Vi (4)

c

Here Ei is the equilibrium constant grouped together with
the symmetric activity coefficient of the component in an infinite
dilution of water, A is the ligand density, ¢ the molarity of the
solution, n the average number of binding sites and ¥; the assymetric
activity coefficent. When performing experiments only within the
linear part of the isotherm, some parameters require lumping to
avoid correlation errors during the regression. As A, ¢ and n are
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constants within the area of interest they can be lumped with the
equilibrium constant:

z(2) )

Kg; =
i c

—

The asymmetric activity coefficient is given by:

Vi = exp(Ksc5 + Ky, ici) (6)

with Kg; and K,; being parameters dependent on the salt,
the protein and the pH. The salt concentration is ¢ and c¢,; is the
protein concentration. For low protein concentrations this is very
close to the standard state activity coefficient:

10 = exp(Ks,cs) (7

This further reduces the complexity of the isotherm model
to:

ln(Ai) = ln(KB,,-) + KS,L'CS (8)

This is mathematically identical to the model for which
Chen et al. demonstrated very good correlation between isocratic and
gradient retention in HIC, except that Ai takes the place of the
retention coefficient k’; [22] . As discussed by Mollerup, the two are
similar but not interchangeable and are related to each other by [21]:

(1 - &)epKp

!
k[—
)

1+A4) 9

While more accurate, this definition does not allow for an
analytical solution of the Parente and Wetlaufer relation. Assuming
that the differences in retention caused only by the size-exclusion
effect of the resin are minimal and retention is dominated by
hydrophobic effects (Ai >> 1) leads to an approximation of the
retention coefficient by:
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N (1 — ED)EPI(D,i

ki A; (10)

€p

The analytical solution for the dependence of the gradient
retention volume (Vgg;), corrected for instrumental dwell and
gradient delay volumes, under these assumptions is:

VR,g,i = _Va—ln (1
_Ks,i(cs,f - Cs,i) (1 1)

_Ksi(csf - Csi)
’ . ’ 1( iCoi
—'KB,ie S,iCsi

< Vcolumn(1 - ‘Sb)ngD,i V.
G

with cgrand cg; being the final and initial salt concentrations
of the gradient, V yum being the nominal volume of the column and
Vi being the length of the salt gradient. Eq. (11) was used for
weighted regression of the parameters Kg; and K for each peak that
could be matched across the different gradients by Matlab
(Mathworks, MA, USA).

3.3 Results and discussion

3.3.1. Prefractionation reference data

Creating a high-resolution comprehensive two-dimensional
chromatogram, by skipping the second screening dimension and
instead directly analysing each fraction in the designated third
dimension serves three purposes. The main purpose is to create a
reference size to signal profile of the mixture, to allow the detection
of changes in that profile that might be caused by the experimental
conditions applied in the second dimension. This includes the
complete disappearance or reduction in relative signal of certain
peaks due to precipitation of that contaminant or the emergence of
unexpected peaks due to aggregation effects. As skipping the second
dimension avoids the dilution that can be caused by those
experiments, it also allows detecting some of the trace contaminants
of which the peak would otherwise drop below the detection limit.
Both of these goals could be met by only skipping the second
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dimension, but fractionating at the same resolution as when
producing fractions for three-dimensional analysis. The higher
fractionation resolution applied while creating the reference
chromatogram serves to be able to determine the first moment of
each peak in the first separation dimension, which corresponds to its
elution-pH more accurately. In the three-dimensional experiments,
each fraction roughly corresponds to a half pH unit step in the pH
gradient, which would in most cases not allow to determine the
elution-pH of each peak more accurately than within 0.5 pH units.
The elution-pH of a product and its major impurities is a valuable
asset for designing ion-exchange based separation of that mixture
[23]. In some cases this information alone may already be enough to
design a separation process achieving sufficient purity for some
applications [24].

Abs,,.  [mAU]
200

Rhydm.SEC [n m]

pHeiullon [-]

Figure 3.2 Two-dimensional reference chromatogram of the sample
used in this study. The first separation dimension is a linear
downwards gradient pH on a strong anion exchanger. The
hydrodynamic radii (Ryyarosec) are calculated from the retention
times in SEC by Eq. (1). Peak labels are positioned at the Gaussian
modes of the fitted peaks. The collection intervals of the fractions
tested in the HIC dimension are also shown(dashed white)..
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The high-resolution composite reference AEX-gCF-SEC
chromatogram for the sample used in this study is shown in Figure 2.
Each individual peak that could be detected and deconvoluted by the
applied algorithm is labelled. These labels serve as the identities of
the components associated with those peaks. Despite the high-
resolution of the technique and deconvolution algorithm, each of
these peaks might still in fact be the result of several overlapping
peaks, but as they must be highly similar in two fundamental
properties to elute so closely together, they will be treated as one
pseudo-component in this study. The properties of each peak as
calculated by the deconvolution algorithm are given in Table 2. The
largest peak, both in height and volume, is peak 3 and is associated
with the target product. The second largest peak, peak 5, appears to
be of very similar size, but elutes 0.4 pH units later than the product.
Components 2, 4, 6 and 7 also elute close enough to the product to
be considered critical contaminants, whereas components 1 and 9-14
should be easily removed by an appropriate ion-exchange step. Some
unlabelled peaks below the 3 mAU cut-off are also visible, but won’t
be considered further in this study, as they will fall below the
detection limit in the three-dimensional analysis.

Table 3.2 Peak characteristics determined by Fourier transform assisted
peak deconvolution of the two-dimensional AEX-gCF SEC reference
chromatogram. The chromatogram is shown in Figure 2 and the peak
IDs correspond to the labels assigned there. The pH of peak elution
(pPHE1uon) and the hydrodynamic radii (Ryyarosec) relate to the first
moment of the peak in the corresponding separation dimension.

ID PHEiution Ruydro,sec Peak volume
[ [nm] [mAU*min?]

1 9.4 0.1 2.23 +0.06 42 +14

2 75+0.0 2.74 £0.01 92+0.8

3 72+0.0 3.55 +0.01 25917

4 6.9 0.0 3.77 £ 0.34 6.6 +4.9

5 6.8 0.0 3.57 £+0.06 17.4 +6.0
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6 6.5+0.9 2.88 £0.14 3077
7 6.4 +£0.6 2.88 £0.27 1.9+59
8 59+0.7 3.44 £ 148 27 +£9.0
9 59+0.5 2.47 £0.23 1.1+24
10 57 %05 2.82 +0.82 09+£35
11 55+1.0 3.52 £2.33 1.0+7.7
12 53+04 3.37 +1.00 05+1.8
13 5402 2.38 £0.17 1.0+1.8

3.3.2. Column properties

For the characterization of the packing and particle
properties, the retention measurements of the smallest and largest
dextran are clearly the most important, as both the porosity and pore
volume accessibility calculations depend on them. When working
with very small column volumes, it becomes necessary to accurately
account for system effects that otherwise may be neglected. This can
clearly be seen in Figure 2a), where the difference in retention
volume between smallest and largest Dextran lies at 130 pl without a
column. With a column attached, the uncorrected difference in
retention volume between these two markers is 260 pl, which would
lead to physically impossible negative bed porosity values.
Calculation of the column bed porosity (g,) assumes that the used
marker is fully excluded from the pore volume. As the two largest
Dextrans used in this study show the same retention volume despite
a significant difference in their hydrodynamic radii this criterion is
clearly satisfied. Additional corrections are made for the flow
distributors and capillary connections, which amount to an additional
16 pl of hold-up volume in the frits and 14 pl in the connections.
With these corrections in place, the bed porosity was calculated to be
0.30 and the particle porosity (g,) to be 0.93, both values similar to
those of other HIC columns despite the smaller column size [18].
The dependence of the accessible pore volume for different probe
sizes is shown in Figure 2b). Despite there being a clear impact on

81



Chapter 3

the retention of larger probes, it appears that in the range up to
10 nm, in which most proteins are expected to lie, the size of the
solute does not influence the pore accessibility to more than 10% and
could be neglected in this particular case.
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Figure 3.3 a) Uncorrected retention volumes of Dextran standards
with column() and without column (A). b) Calculated Ky values of
the Dextran standards (O) together the fitted Kp curve (solid black),
its 95% confidence interval (dashed purple) and prediction interval
(dotted teal).

3.3.3. Linear salt-gradient experiments

All collected fractions were subjected to linear-salt
gradients of different gradient lengths. A HIC resin was chosen for
this study, to serve as an orthogonal separation dimension to the
charge-based prefractionation and size based third dimension, but in
principle, any chromatography resin for which the interaction
parameters should be determined could be used, if the gradient
conditions are adapted accordingly. An exemplary chromatogram of
a salt gradient of the different fractions is shown in Figure 4. There is
no detectable peak in the fractions above pH 8, indicating that
component 1 might have precipitated during the rebuffering step.
Fractions collected between pH 7.6 and 5.5 show significant
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absorbance peaks at 230 nm, which is in accordance with the results
of the reference experiments. Unlike the reference data, each fraction
appears to only contain a single albeit broad peak. The low apparent
resolution of the separation is not unexpected, considering the
columns have a bed height of only 5 mm.

2 [MAU]

Abs,

0,0 05 10 1.5 20 25 3,0
Ve, (Ml

Figure 3.4 Linear gradient chromatograms of pH-gradient fractions
on 200pl Cellufine Phenyl RoboColumns. The reported pH values
correspond to the measured pH at the beginning of fraction
collection. The gradient retention volumes in HIC (HIC-Vg,) are
corrected for instrument dwell, column dead volume and gradient
delay. The first fraction to show a significant response in UV
absorption (solid orange) is expected to contain most of the product.
The following to fractions also show significant peaks (black
dashed) and were also analysed in the third dimension. The
chromatograms of the remaining fractions (grey dotted) were not
analysed by SEC.

3.3.4. Multidimensional peak tracking

The criteria for matching peaks between different
chromatograms was the hydrodynamic radius derived from the peaks
first moment in the analytical SEC dimension. This choice was based
on the property being almost concentration independent and the data
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quality being very high, as the chromatograms are continuously
recorded at a high sampling rate. The results of the peak matching
are shown in Table 3. The standard deviation of the hydrodynamic
radius between peaks that were matched to each other never exceeds
2% indicating a high degree of matching certainty. Based on this
hydrodynamic radius and similarities in the relative peak volume the
peaks were assigned identities corresponding to the peak labels in the
reference chromatogram. In two cases this could not be done without
some ambiguity, as indicated by the attribution of the peaks to two
identities. Analysis of the fractionation range in the reference data
reveals that in both cases both components are expected to be
present, so the observed peaks are indeed most likely an unresolved
combination of both components peaks. Matching peaks between
different gradient lengths was possible without ambiguity, as even
for the peaks of component 7 and 10 in the fraction collected
between pH 6.5 and 6.0, that appear very similar both in radius and
peak volume, the radius is still determined within a significant
difference. Component 10 forms an exception, in that its peak was
not detected in the 36 CV chromatogram. As the peak volume in the
detected chromatograms is very small, it is most likely that it was
diluted to below the detection limit in the longest gradient. While
mass-transfer limitations apply, a longer gradient is generally
expected to lead to a higher resolution. A higher resolution allows
the peak fitting algorithm to determine peak properties with a higher
certainty [19]. This is clearly seen for the standard errors of the
calculated peak volumes, that drop from an average error of 81% for
the 12 CV gradient, to 40% for the 24 CV gradient, and down to
26% for the 36 CV gradient. This trend would suggest that
increasingly longer gradients should be used for parameter
determination. On the downside this would decrease the methods
throughput. This is especially true for multi-dimensional techniques,
as longer gradients require collection of more fractions to achieve the
same sampling resolution which would exponentially increase the
time required in the subsequent analysis of those fractions.
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Table 3.3 Peak tracking results across multiple linear gradients. The fraction range
refers to the span of pH units during the linear pH-gradient. The hydrodynamic radii
(Ryyarosec) is the weighted average of the peak at different gradient lengths reported
with the standard deviation of the measurements. The peaks are matched to peak
identities (ID*) in the reference chromatogram by similarity in Ryydro sec and elution
pH. The gradient retention volumes in HIC (HIC-Vy,) are corrected for instrument
dwell, column dead volume and gradient delay. The peak volumes were determined
by a nonlinear least-squares fit to a two-dimensional EMG peak model. Peak
volumes and retentions are reported with their standard error.

Fraction  Ruydro,sec ID* HIC-Vg 4 Peak volume

[pH] [nm] [mi] [mAU*min?]

24CV 36 CV 12 CV 24CV

254 £0.03 4.01 £0.04 529 +042 9.1 £0.6 94 +1.5 7.1 +£0.7

76-71 3.47 £0.01 3 291 £0.03 466 +0.05 6.28 £+0.09 155 +1.0 156 £0.7 13.5 £ 0.8
76-71 3.90 £0.08 4 265 +£0.70 445032 6.22 £0.37 0.8 +1.21 0.6 £0.7 14 £0.5
7.1-6.5 3.78 £0.01 4 278 £0.05 445 +0.11 5.93 £0.14 4.8 +47 52 £1.2 57 £28

71-865 3.51 £0.01 5 281 £0.06 458 £0.06 6.05+0.08 203 +4.4 171 £2.0 16.8 £2.4

7.1-6.5 264 £0.03 2 257 £0.36 4.13 £3.23 534 +3.70 23 £1.1 16 £1.9 20+16
71-65 294 £0.01 6+7 3.26 £+0.37 528 £+026 7.12 £0.12 2.2+ 14 21 £09 22+04
6.5- 6.0 2.97 £0.01 7 337 £012 523 £0.05 6.91 £0.26 1.2+04 1.3 £0.1 1.0 £0.2
6.5- 6.0 3.52 +0.02 5+8 282 £0.03 472 +£0.05 6.33 £0.10 27 +25 1.8 £0.3 0.8 £0.1
6.5- 6.0 3.00 £+0.00 10 270 £0.72 431 £0.64 - - 0.8 +1.0 0503 - -

6.5- 6.0 3.81 £0.03 4 281 £0.06 469 £009 6.14 £0.56 1.3 £3.2 1.5 +04 1.9 £03
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Figure 3.5 Deconvolution and tracking of peaks across multiple
linear gradient experiments for the example of the fraction collected
between pH 7.6-7.1. a) raw gradient composite chromatogram. b-d)
deconvoluted peaks of the different gradient length experiments of
the same fraction. Peaks with matching properties were assigned the
same colour an matched to a peak in the reference data. Contour
lines are drawn at steps of 1 mAU of 230nm UV absorption.
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3.3.5. Isotherm parameter regression

The parameters regressed for the matched retention volumes
of the peaks in Table 3 are shown in Table 4. The standard errors of
the regressed parameters are on average 8% of the parameters
nominal value for both the Kg and Kg parameters, with maximum
errors of 16% for Kg and 13% for K. No standard error could be
calculated for the matched component 10, as only two data points
were available for fitting. These low errors indicate that the
additional separation dimension allows regression of reliable
isotherm parameters for individual components, despite the initial
low resolution of the small column. Even though the components in
the reference chromatogram were defined only by similarity in size
and charge, introduction of hydrophobic interaction as a third
orthogonal separation dimension did not reveal any additional peaks,
allowing easy matching of detected peaks to the reference data.
Under these conditions, such a reference chromatogram appears to
be a useful tool that could allow easy comparison of different resins
used in the second dimension. Should the second separation
dimension offer significantly higher resolution, mass spectrometric
techniques might be necessary to allow peak matching with high
certainty [15,24]. As the Kp coefficients are close to unity for all
compounds of interest and the retention volumes in the second
dimension clearly being mostly dependent on the strength of the
hydrophobic interactions, the assumptions made to allow parameter
regression from the analytical solution of the Parente and Wetlaufer
formalism appear to have been reasonable. An alternative route to
gain these parameters when these simplifications should not apply
would be derive them through inverse-modelling [15,25,26]. In such
a scenario the parameters determined from the analytical solution
could serve as a starting point for further fitting, to reduce the
computational effort.
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Table 3.4 HIC linear isotherm parameters regressed for the
components tracked across multiple linear gradients.

6.13 +£0.36 3.31+0.14
9.36 £ 1.41 3.43+044
723 £1.13 3.90 £ 045
8.57 +0.29 3.42 £ 0.09
15.45 £1.28 3.18 £0.32
17.32 £1.72 2.53+£0.33
8.31 £0.07 3.89 +0.03
7.93 - 3.06 -

3.3.6. Implications for process
development

The ultimate goal of such profiling techniques as
demonstrated in this study is to build a large enough database of
isotherm parameters to allow full in-silico development of a
multistep separation process [6,27]. Successful optimization of
chromatographic separations based on data determined on such small
columns has been demonstrated for model mixtures [28]. The
proposed multidimensional technique appears to be a promising step
to making this type of HTS compatible format also useful for
parameter determination directly from complex mixtures.

As the proposed technique simultaneously characterizes the
components of the mixture towards charge, hydrophobicity and size,
the data is also useful for identifying potentially feasible purification
routes through the use of expert systems or heuristic design rules
[5,29,30]. As mentioned before, the large differences in elution-pH
indicate that components 1 and 8-14 can all easily be removed by
most charge based separations, leaving components 2 and 5-7 as
critical contaminants. Component 2, 6 and 7 show significant
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differences in hydrophobicity to the product, 2 being less
hydrophobic and 6 and 7 significantly more hydrophobic, suggesting
that under the right conditions a separation between these
components and the products could be achieved. Hydrophobic
interaction does not appear to be a suitable mechanism for the
separation of components 4 or 5 from the product, as in both cases
the isotherm parameters of these components lie within the error
margin of the product’s parameters. Size is rarely a feasible mode of
separation, but component5 is so similar that removal of this
component by SEC does not appear to be possible at all.

The differences in elution-pH between components 4 and 5
from the product are 0.3 and 0.4 respectively. For development of
ion-exchange operations the elution-pH serves as a more reliable
replacement parameter for the pI [31]. Such small differences are
regarded as challenging separation problems [32], but systematic
model-based optimization of the process conditions has been shown
to be capable of identifying conditions leading to sufficient process
performance for a similar separation challenge [33].

3.4 Concluding remarks

The proposed multi-dimensional profiling approach is
demonstrated to allow direct characterization of a complex mixture
of proteins towards their behaviour in ion-exchange, hydrophobic
and size-exclusion chromatography. In a first instance, knowledge of
these properties allows determining which contaminants will be most
challenging to remove, and gives an indication of what separation
mechanism is most promising for the removal of each major
contaminant. Through increasing the dimensionality of the
separation, it was demonstrated that isotherm interaction parameters
can be determined within reasonable certainty directly from the
complex mixtures while using a HTS compatible column format.
These parameters may be useful for the in-silico optimization of the
more challenging separation tasks. The creation of a two-
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dimensional high-resolution reference chromatogram allowed
assigning the peaks of different experiments to pseudo-components,
avoiding the need for time-intensive mass-spectrometry based
techniques. This is of particular importance when aiming to operate
the second dimension in a true HTS environment working with large
numbers of resins and operation conditions.
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Multi-dimensional fractionation and
characterization of crude protein mixtures:
high-throughput parameter determination

Abstract

The vast experimental space that needs to be explored during the development of a
biopharmaceutical purification process has led to the widespread adaption of high-
throughput technologies. For chromatographic separations, one of the most popular
formats besides batch adsorption studies in micro titre plates, are miniaturized packed
chromatography columns that are operated on robotic liquid handling systems. The
practical limitations resulting from the use of liquid handling systems instead of
conventional liquid chromatography setups influence both the design of experiments
and how their data needs to be processed. To minimize the shortcomings of the
fractionation system, we introduce a new technique for the meniscus sensitive
estimation of single well liquid volumes in micro titre plates with less than 5%
deviation. With this improvement in place, we explore how such a high-throughput
system can be utilized in the context of a multi-dimensional fractionation scheme for
the regression of isotherm parameters directly from crude mixtures, using an I1gG-1
containing CHO cell-culture supernatant as a case study. Applying a two-dimensional
strategy already allowed to regress the equilibrium constants of nine pseudo-
components with an average standard error of 21%, with the potential introduction of
further dimensions expected to further improve these results.

Keywords: Process development parameters; Crude protein mixtures;

High-throughput chromatography; Mechanistic models;
Parameter database;
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4.1 Introduction

The ambition of the biopharmaceutical field to move
towards knowledge-based process development principles has
created the need for efficient experimental means to determine the
parameters required for mechanistic modelling of the separation
steps [1]. For complex samples, multi-dimensional separation
techniques have been demonstrated to allow the simultaneous
regression for a whole set of practically defined pseudo-
components [2].

In Chapter 3, we have demonstrated that comprehensive
multi-dimensional separations can be performed around miniaturized
chromatography columns packed with industrial grade resins,
allowing to determine isotherm interaction parameters from complex
mixtures, in spite of the low-resolution of the screening step itself. In
that study the columns were operated on a conventional liquid
chromatography system, with synchronized double dual-piston
pumps for gradient generation and in-line detectors. Such a system is
too complex to economically increase its throughput by
parallelisation.

More economic parallelization can be achieved by operating
the columns within a robotic liquid handling system [3]. These
systems are neither equipped with dual-piston pumps, nor with inline
detectors. Instead single piston pumps apply a liquid flow, fractions
are collected at the column outlet by a 96 well plate placed on a
motorized shuttle, and analysis takes place offline. These mechanical
simplifications require some adaptions to the experimental approach,
to allow generation of data that is straightforward comparable to
experiments performed on traditional systems.

One of the main technical challenges in the operation of
RoboColumns on a conventional liquid handling system, is that the
fractionation intervals, the moments at which the collection plate
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shuttle moves from one column of wells to the next, are defined in
relation to the syringe motor position that applies flow to the
columns. As there is no reliable mechanism to synchronize the
falling of drops from the column outlet, and the size of the drops
themselves may vary with changes in buffer composition and protein
content, the volume that actually ends up in each well may vary
significantly, especially when the target fraction volume is small. It
is therefore necessary to measure the volume of each well in order to
reduce the experimental noise that would be caused by assuming a
constant fraction volume [3]. So far this was either performed by
detection of the liquid level by probing with the pipetting
needles [3], or by correlation of the transmission path with the near-
infrared-red (NIR) adsorption of the buffer [4,5]. Both approaches
have been demonstrated to be suitable for the normalization of
absorption measurements towards the transmission path, but both
lack the ability to detect and quantify the shape of the meniscus in
each well, limiting their ability to accurately measure the total
volume of liquid in a well. To overcome this limitation an extension
of the NIR absorption based volume detection technique is
introduced in Section 4.3.3.

The lack of two pumps per column prevents inline
generation of salt or pH gradients. Offline generation of pre-mixed
small steps to simulate a gradient has been demonstrated to be a
viable option [6], but unless as time-consuming and difficult to
realize conductivity measurement of each well is built into the
offline fraction analysis, the exact resulting gradient shape and
elution volume are unknown. This may cause additional
uncertainties during data interpretation. To avoid these issues,
isocratic elution conditions were investigated.

4.2 Theory and Models

(34

The retention coefficient (k’;) of a species ‘i’ in
chromatography is defined as [7]:
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(1)

where V’g; is the adjusted retention volume, i.e. the
observed retention volume corrected for the systems hold-up volume
(Vm). Both values can easily be determined by simple pulse injection
experiments; the retention volume by injection of the species itself
and the hold-up volume by an inert tracer molecule that is fully
excluded from the resin pore volume. The first moment of each peak
is used as the value for calculation of the retention factor. For single
component systems the retention factor can directly be related to the
columns properties and the species thermodynamic and mass-
transfer properties [8]:

= o gzz‘s”'{”"' (1+4) @)

where g, is the column’s bed porosity, €, the particle
porosity, Kp; the fraction of the total pore volume accessible to the
species and A; the slope of the species adsorption isotherm. In this
form the relation is particularly useful as a basis for parameter
regression, as it can be used for all types of liquid chromatography.
For size-exclusion chromatography, only the pore accessibility
coefficient needs to be experimentally determined. This can either be
achieved by measuring the retention of the species under non-
binding conditions [9], or can be interpolated from a resin-specific
calibration line, provided the hydrodynamic radius (Ryyar,i) of the
species is known [10]. A simple pore accessibility model that can be
calibrated with a set of inert tracer of known hydrodynamic radius is
given by:

1
1+ (&L)p 3)

1711

Kp; =

where 1, and p are resin specific parameters. The
thermodynamic interactions of the solute with the resin can be
described by a suitable isotherm model. One of the most commonly
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used isotherm models for ion-exhange chromatography is the Steric
Mass-Action model [11]. Here the initial slope of the isotherm is
given by [9]:

Vi

A= Ky () )

ZsCs

with the two component specific parameters being the
equilibrium constant (K¢q;) and charge (v;), the ionic capacity of the
resin (A) and the concentration (c;) and charge (z,) of the counter-
ions in the elution buffer. Similar isotherms following the same
formalism have also been proposed for hydrophobic interaction [12]
and mixed mode chromatography [13].

4.3 Materials and methods

4.3.1. Gradient chromatofocusing
prefractionation

The complex sample used for this study is a clarified CHO
cell culture supernatant containing a monoclonal IgG-1. Prior to use,
the samples were rebuffered using disposable PD-10 columns,
following the manufacturers protocol (GE-Healthcare, Sweden). As
a first separation dimension, the samples were fractionated by linear
pH-gradient chromatography on a Mono Q 4.6/100 strong anion
exchange column (GE Healthcare, Sweden) following the same
protocol as described in Section 3.2.2. To facilitate the interpretation
of the high-throughput chromatograms, a two-dimensional reference
such described in Section 3.3.1 was created following the same
protocols.

4.3.2. High-throughput isocratic
chromatography

The high-throughput liquid chromatography experiments
were performed on a Freedom Evo 200 liquid handling workstation
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equipped with an 8-channel liquid handling arm fitted with 1 ml
syringes and Te-Chrom station (Tecan Switzerland). The columns
were 200 pl RoboColumns (Atoll Bio, Germany), packed with
POROS 50 HS strong cation exchange resin (Thermo Fisher
Scientific, The Netherlands). The porosity and pore accessibility of
these columns was analysed on an Akta Explorer 10 (GE Healthcare,
Sweden) equipped with a 1100 series refractive index detector
(Agilent, CA, USA) following the protocol described in
Section 3.2.4. Prior to each chromatographic experiment, a sufficient
volume of buffer for both column equilibration and elution was
mixed from stock solutions by the liquid handling system. The two
stock solutions prepared for this step were 25 mM Acetic acid in
Milli Q (low salt) titrated to pH 4.5 (low salt) and the same buffer
containing 1 M sodium chloride added prior to titration (high salt).
The mixing ratios were chosen to result in eight different final
sodium chloride concentrations ranging from 0 to 0.5 M. Samples
collected from the prefractionation gradient were transferred into low
salt buffer through at least 3 buffer exchange cycles in Amicon spin
filters with a nominal molecular weight cut-off of 3 kDa (Millipore,
USA) following the manufacturer recommend protocol. After
rebuffering, each sample was split into eight aliquots and appropriate
volumes of low and high salt buffer were added to result in eight
samples of equal protein content and pH, but with salt concentrations
corresponding to the eight prepared elution buffers.

Prior to injection each column was equilibrated with 5
column volumes (CV) of elution buffer. The volume of salt
concentration adjusted sample injected to each column was 20 pl.
The samples were eluted with a total of 15 CV of elution buffer at a
flowrate of 0.15 ml/min per column. During the isocratic elution a
total of 22 samples were collected from each column. The first
twelve fractions had a target volume of 75 ul and were collected in a
half area UV-star plate (Greiner-Bio One, The Netherlands).
Afterwards six additional fractions with a target volume of 150 ul
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were collected in a full area UV-Star plate (Greiner Bio-One, The
Netherlands), followed by four more with a target volume of 300 ul.
This staggered fractionation strategy was chosen as a compromise, to
provide high resolution at the beginning of the experiment where
sharp and narrow peaks were expected while simultaneously keeping
the total number low. The columns were subsequently cleaned with
5 CV of washing buffer of which the first 600 pul were collected in
two fractions with a target volume of 300 ul each. Once this step had
been completed both fractionation plates were passed on to the plate
reader for analysis. Prior to the next experiment each column was
sanitized with 5 CV of sanitation buffer.

4.3.3. Fraction volume estimation

All optical measurements in 96 well plates were performed
in an infinite M200 plate reader (Tecan, Switzerland). The
absorption values at 600 nm, 900 nm and 997 nm wavelengths were
measured at the geometric well centre. The adsorption at 600 nm is
measured at an additional 20 points, evenly distributed along a circle
around the geometric well centre using the built-in multiple reads per
well function of the plate reader. The minimum distance of these
measurement points from the well walls was set to 330 um. These
measurements are used in combination with knowledge of the well
geometry as provided by the plate manufacture to estimate the
volume of each well. An overview of the geometric parameters of
the well that are used for these calculations is given in Figure 4.1 b).
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Figure 4.1 Impact of liquid distribution in a well on the transmission
path in the geometric well centre. a) two wells with equal liquid
volume of buffer with no protein present (left) and 0.1 g/l of
lysozyme (right). b) schematic illustration of the geometry of a well
showing the height and radius parameters used for the estimation of
the liquid volume.

In accordance with the Lambert-Beer law a linear
correlation between the transmission path (hy,,s) and the corrected
NIR absorption (ANIR) of the buffer is assumed, with a specific
transmission coefficient (Tyrpumer) related to the density of the
buffer.

htrans = TNIR,buffer *ANIR (7)

The ANIR is the difference between the absorption at
997 nm and 900 nm. The walls of the used 96 well plates are slightly
slanted. The radius of the wells cross section at the height of the
bottom of the meniscus (ry) is calculated from hy,,s and the wells
upper (rr) and lower radius (1) by:

hy,.
= (rp —1p) hmms +1p (8)

max

with h,.c being the total height of the well. For a perfectly
flat meniscus, such as in the left well shown in Figure 4.1 a) the
volume can now be estimated by the formula for the volume of a
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circular truncated cone. For wells with a more pronounced meniscus,
such as the right one in Figure 4.2 a), an extra term needs to be
added. The 600 nm measurements are corrected for the value at the
centre of the well and summed up (Zy,,). For a flat meniscus this
value is close to zero. For more pronounced menisci the value
exponentially increases, so a correction factor (Cy,) based on its
natural logarithm is introduced, leading to the following equation for
the estimation of liquid volume (V) in a well:

1
Vest = 5”(7.‘92 + g1y + rMZ)htrans +Cym ln(zhalo) (9)

The method is calibrated with both a half and full area plate
containing known volumes ranging from 0 pl to the maximum well
capacity, of both protein free buffer and buffer with addition of a
small concentration (~0.1 g/l) of model proteins, such as bovine
serum albumin or lysozyme. The buffer NIR extinction coefficient
enrpuffer 1S assumed to be identical for half and full area plates,
whereas the meniscus coefficient (Cyshaio) is determined separately
for each plate geometry. The coefficients are determined by a least-
square regression of Eq. (7-9) in Matlab 2013b (Mathworks, USA).
Afterwards the coefficients are validated against a second set of
plates with a different distribution of sample volumes. The accuracy
of each measurement was calculated by:

Ves - Vnomina
Acc(Vogp) = (1 - f—‘) - 100[%] (10)

Vnonu‘nal
4.3.4. Reconstruction of high-throughput
chromatograms
As high-throughput chromatography systems, such as the
Te-Chrom used in this study, do not possess in-line detection
systems chromatograms need to be reconstructed from the

measurements performed on the collected fractions. The
transmission path and total well volume of each collected fraction
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were calculated as according to the approach outlined in
Section 4.3.3. To reduce the noise in the absorption signals each
value is corrected for the absorption at 330 nm and normalized
against the estimated transmission path. To determine the positon of
each normalized absorption in the reconstructed chromatogram, the
volume of all preceding fractions is summed up and added to half the
volume of the corresponding fraction.

4.3.5. Deconvolution and peak moment
calculations

To estimate the number of peaks in each chromatogram,
each data set was scanned for data points fulfilling the following
criteria: they had to have a normalized 230 nm absorption of at least
0.1 mAU/cm and this value needed to be larger than both the
neighbouring fractions. For practical purposes related to the small
number of available data points per chromatogram only the largest
four points fulfilling this criteria were considered for further
analysis. The heights and positions of the local maxima identified by
this algorithm were used as initial guesses for a least-squares based
fitting of peak model to the reconstructed chromatogram.

The function chosen for fitting was based on a one-
dimensional adaption of the model for multiple superimposed
exponentially modified Gaussian peaks described in Section 2.2.
Instead of minimizing the squares between the measured data point
and the curve described by the peak model, the average of the model
curve was calculated over each fraction interval, and the squares
between this value and the measurement were minimized. The fitting
was carried out in Matlab 2013b (Mathworks, MA, USA), using the
built in Isqcurvefit function. The areas and first moments of the fitted
peaks were calculated together with their standard errors of
regression following the same principles as described in
Section 2.3.6.
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4.4 Results and discussion

4.4 1. Prefractionation reference data

The resulting two-dimensional map of the high-resolution
reference experiments is shown in Figure 4.2 and the corresponding
peak properties are presented in Table 4.1. Peak 2 corresponds to the
IgG-1, the protein of interest. The most abundant contaminants,
Peaks 1,3,4,6 and 7, appear to have very similar charge properties, as
does at least one high molecular weight (HMW) contaminant,
marked as Peak 5. The large difference in elution-pH of peaks 8-17
in relation to protein of interest, indicates that these contaminants
could easily be removed by an appropriate anion-exchange step [14].
The similarity in size of the contaminant constituting peak 7 makes
size-based separation unfeasible. Therefore an additional orthogonal
purification step on will be necessary to remove these critical
contaminants.
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Figure 4.2 Two-dimensional reference chromatogram of the CHO-
IgG supernatant used in this study. The hydrodynamic radii
(Ruydro,sec) are estimated from the SEC retention times. Fitted peaks
are marked by white dots, whereas peaks that could be detected, but
were below the fitting threshold ware marked by white squares.
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Table 4.1 Peak characteristics determined by Fourier transform assisted
peak deconvolution of the two-dimensional AEX-gCF SEC reference
chromatogram. The chromatogram is shown in Figure 4.2 and the peak
IDs correspond to the labels assigned there. The pH of peak elution
(pPHEwtion) and the hydrodynamic radii (Ryyaro sec) are estimated from the
peaks first moments in the corresponding dimensions for fitted peaks,
and the peak maxima positons for peaks that were not fitted.

PHEiution Ruydro,sec Peak volume
[ [nm] [mMAU*min?]
1 9.8 +0.0 2.33 £0.01 20.1+2.3
2 9.3+0.0 3.76 £ 0.00 2977 +1.8
3 9.3+0.0 2.31£0.74 48 +6.7
4 9.3+0.0 2.03 +0.07 29+44
5 9.1* 5.43 * .
6 8.8+0.0 2.12 +0.06 41+1.9
7 8.6 +0.1 3.78 £ 0.04 114 2.7
8 8.5* 2.36 * .
9 82" 2.36* =
10 79* 2.36 * -
11 75" 3.82 %, -
12 72 3.82* -
13 6.7 * 3.05* -
14 6.7 * 2.36 * -
15 6.3 * 575* -
16 6.1* 3.76 * .
17 56* 3.87 * .
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4.4.2. Well volume measurement

The regressed transmission coefficients for the used buffer
system (Tnir puffer) Was determined to be 0.640 + 0.001 mm/AU. As
the absorption in this wavelength is dominated by the water content
of the buffer, it is practically the same for all aqueous buffer systems,
provided that their density is still close to pure water. The meniscus
correction coefficients (Cy,,) were determined to be 1.76 £ 0.30
ul/In(Zhao) for the half area plates and 12.72 +0.35 pl/In(Zyq0) for
the full area plates. The choice of model protein used to induce the
formation of the meniscus was not found to have a significant effect
on these parameters. Figure 4.2 a) shows the relation between the
volume that is not accounted for by the truncated cone volume and
therefor attributed to the meniscus, and the logarithm of the sum of
the measurement around the well. The highly linear relationship for
both well geometries supports the choice for a simple linear model.
While the meniscus volume in the half area plates is in the range of
0-5 pl, it can account for up to 35 pul in the full area plates, at least
10% of the total well volume. With the meniscus correction in place
the accuracy of the volume detection is improved to better than 3%
for the full area plates and 5% for the half area plates. Figure 4.2 b)
shows the techniques accuracy over a range of different volumes in
both plate geometries. While the accuracy appears to be largely
volume independent in the half area plates, it there is clearly a
negative effect caused by low volumes in full area plates. This is
caused by the tendency of small volumes to not evenly distribute
across the well in full area plates. As a result, it is recommended to
use half area plates for collection of fraction volumes in the range of
50 to 125 pl and full area plates for volumes exceeding 125 ul.
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Figure 4.2 Calibration of the meniscus-sensitive volume detection
method. a) Linear correlation between the volume hidden by the
meniscus and the natural logarithm of the sum of the absorption
values on the measurement halo together with the 95% prediction
bands for both full area plates (dashed purple line and circles) and
half area plates (dotted teal line and triangles). b) and ¢) Average
volume estimation accuracy of method in full area plates (b) and half
area plates (c). The error bars correspond to twice the standard
deviation across at least 8 measurements.

4.4.3. Column properties

The POROS 50 HS RoboColumns were characterized
towards by pulse injections of Dextran standards. The measured
retention volumes of these standards are shown in Figure 4.3 a).
From the differences in retention of the smallest and largest Dextran
the bed porosity (g,) was calculated to be 0.4. As the retention of the
three largest tracers were all the same, the assumption that this
corresponds to a full exclusion from the particle pore volume can be
considered as correct. Knowledge of the columns void volume
allowed calculation of the particle porosity (g,), resulting in a value
of 0.51. Based on this the pore accessibility was calculated for the
remaining tracers, the in Figure 4.3 b). The
coefficients of the curve were regressed to be 11.85+ 0.96 r,, and

results shown
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2.76 +0.43 for p. The reference data revealed that most components
in the sample have a hydrodynamic radius of less than 6 nm. From
the pore accessibility calibration curve it can be seen that the Kp
coefficients for the protein of interest and most critical contaminants
are expected to be in the range of 1.0 to 0.9, but may range down to
0.7 in the case of HMW contaminants.

Knowledge of the ligand density allows regression of
thermodynamically more meaningful parameters [8] according to the
equations outlined in Section 4.2. For POROS 50 HS this data is
available in literature [15]. The charge molar equivalent charge
density per dry weight of resin is reported to be 0.41 moley/gury.
Given a swollen and packed resin density of 0.32 g4,/ml the total
charge capacity of the RoboColumns can be calculated to
26.2 mmol,.
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Figure 4.3 a) Uncorrected retention volumes of Dextran standards
with column([d) and without column (A). b) Calculated Ky, values of
the Dextran standards (O) together the fitted K curve (solid black),
its 95% confidence interval (dashed purple) and prediction interval
(dotted teal).
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4.4.4. High-throughput pulse injection
experiments

Following the procedure described in Section 4.3.4 results
in data sets that closely resemble traditional online recorded
chromatograms. Figure 4.5 shows examples of such reconstructed
chromatograms for the isocratic elution at different salt
concentrations of the fraction containing the main protein of interest.
These chromatograms can be interpreted in two ways: the ratio
between absorbance during the elution step and cleaning step can be
compared, which allows to determine at which salt concentrations a
selective separation takes place, or the position of individual peaks
can be attributed to pseudo-components for which sets of isotherm
parameters are regressed.

Taking the fraction collected between pH 9.8 and 9.0 as
example, based on the prefractionation reference chromatogram we
expect it to contain the protein of interest, a HMW contaminant and
a variety of LMW contaminants. As can be seen in Figure 4.5 a), no
detectable peaks elute within the elution phase of the experiment
with an elution buffer salt concentration of 100 mM NaCl, whereas a
large absorbance signal is present for the first fraction of the washing
step. The rapid decline of that signal in the second wash fraction
indicates that the ionic strength of the washing step is strong enough
to generate non-binding conditions for all the bound components.
Increasing the elution buffer salt concentration to 200 mM NacCl,
shows an increase in the absorption signal during the elution phase,
while the signal of the wash phase appears the same. Without an
additional orthogonal detection method it remains ambiguous, but
the size of the peak and the resemblance of a Gaussian peak shape
suggest that this is the result of a the elution of single weakly bound
contaminant. The ratio of material eluting during the elution phase
versus the washing phase significantly changes when reaching a salt
concentration of 300 mM NaCl, shown in Figure 4.5 c), reducing the
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signal in the wash to almost zero. The chromatogram shows a broad
distribution of significant absorbance signal across many fractions.
As opposed to the chromatogram of 200 mM, the signal does not
follow the shape of a single model peak as smoothly, indicating that
it is the result of multiple components being retained to different
degrees. Reaching a salt concentration of 400 mM NaCl, narrows the
distribution of absorption signal to first 0,5 mL of the chromatogram.
The lack of absorption signal in all subsequent fractions including
the washing step shows that neither the protein of interest, nor any of
the contaminants experience strong retention under these conditions.
Further increases of salt concentration would therefore only lead to a
further loss in selectivity, eventually causing all components to elute
at their specific void volumes.

The overall trend observed in this data follows the
expectation, that increasing counter-ion shift the equilibrium for the
proteins to remain in the mobile phase, thereby lowering their
retention factors. Following this principle, combined with the
knowledge of sample composition gained from the prefractionation
reference chromatogram, and that the peaks under isocratic condition
will closely resemble an exponentially modified Gaussian peak,
allows deconvolution of the high-throughput chromatogram into
some pseudo-components. Detected peaks were assigned to one
pseudo-component if their areas are within the standard error of each
other, and their retention factor decreases within the tolerance of its
standard error with increasing salt concentration. Following these
rules allowed distinguishing between a total of nine pseudo-
components for the three prefractionation fractions containing the
protein of interest and the major contaminants. For five components
the peak could be detected in at least 3 instances, allowing for the
calculations of standard errors on the regressed parameters. The
results of these regressions are listed in Table 4.2.
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Figure 4.5 Examples of reconstructed high-throughput
chromatograms and fitted peaks of the fraction collected between pH
9.8 and 9.0 in the anion exchange pH gradient for different salt
concentrations: a) 100 mM b) 200 mM NaCl, c¢) 300 mM and
d) 400 mM NaCl. The transmission path normalized absorption at
230 nm (O) is plotted at the average retention volume of each
fraction. The normalized absorptions of the last two collected
fractions which correspond to the column cleaning steps are shown
as grey bars. Fitted peaks are shown by solid lines and are coloured
according to assumed identities.
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Table 4.2 Regressed ion-exchange isotherm parameters for
the peaks found in the high-throughput chromatograms of the
three main fractions. Standard errors are provided where more
than two occurrences of the corresponding peak could be
detected. The areas correspond to the average area of the
peaks associated to the pseudo-component and are reportet
together with their standard deviation.

Fraction

[pH]

9.8-9.0 181.8 +16.4 +1.0
9.8 -9.0 136 +£538 . : +05
9.8-9.0 435 +18.9 155 +06 51 %02
9.0-8.5 254 56 3.0 x05 09 =£02
9.0-8.5 24 12 6.2 - 1.6 -
8.5-8.0 295 08 13.3 - 6.1 -
85-8.0 378 £25 8.2 - 3.1 =
8.5-8.0 1498 +16.3 28 £0.1 0.9 0.1

AP 481 1277 33.0 - 12.0 )

The equilibrium constants were regressed with an average
standard error of 21%, with a maximum of 48%. The effective
protein charge was determined with slightly less certainty, resulting
in an average standard error 38% for this parameter, with a
maximum of 100%. The largest error for the effective protein charge
coincides with the instance for which the lowest value was
determined. Based on these regressed parameters, the retention
coefficients can be inter and extrapolated to the salt concentrations
that were not measured, or where the peak was not detected. The
predicted retention curves are shown in Figure 4.6.

In some cases the predicted retention curve is less steep
than expected, as they predict retentions of lower than 3 ml, yet no
peaks are detected eluting at salt concentrations below 100 mM. This
under prediction is partly the result of the weighted regression. The
errors on the first moment tend to increase with increasing retention,
as peaks with a larger residence time get broader. To avoid this
tendency would require testing at more low salt concentration
conditions in which the peaks first moment of the peak can still be
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accurately determined. Practically this is difficult to realize, given
the exponential character of the salt dependence. In this context a
gradient regime as described in Chapter 3 can has the benefit that
less prior knowledge is necessary to perform the experiments under
conditions were the components elute before a the washing step. The
advantage of an isocratic regime as used here on the other hand, is
that the relationship used for parameter regression relies on less
assumptions and simplifications than the gradient based formalism.

Vi p [Ml]

Figure 4.6 Experimental (symbols) and model predicted (lines)
second dimension retention volumes of the of CHO IgG-1
supernatant component peaks listed in Table 4.2 for POROS 50 HS
at pH 4.5 in dependence of the molar concentration of sodium
chloride (cy).

Introduction of an orthogonal third separation dimension to
increase the data density might also suffice to reduce the error on the
first moments of the later eluting peaks to a sufficient degree to
supress this under prediction. The major technical challenge to
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overcome in this context is the large sample number associated with
performing these experiments in a true high-throughput fashion. The
system described in this study is capable of screening 16 sample and
condition combinations in the course of 2 hours. With the current
fractionation scheme that is already optimized towards collecting as
few fractions as necessary, this already results in a total of 384
fractions that would need to be analysed by a third dimension. In
order to not introduce an analytical bottleneck, the throughput of the
third dimension would need to be less than 20 seconds per sample.
The only analytical techniques able to differentiate a large number of
proteins at the same time to offer this kind of throughput currently
available are MALDI-TOF mass-spectrometry and capillary gel
electrophoresis (CGE). Despite their quick measurement time per
sample, both techniques require extensive sample preparation,
including a desalting step, and addition of some reagents. These
steps are straight-forward in terms of automation and can be realized
with liquid handling systems equipped with disposable solid phase
extraction modules, but introducing such a large number of
additional sample processing steps may increase the risk of technical
faults occurring during the screening.

4.5 Conclusions

In this study we demonstrate that the principles of feedstock
profiling using multi-dimensional chromatographic separations
introduced in Chapter 3 can also be applied in a true high-throughput
fashion, using robotic liquid handling systems. Introduction of a
novel absorption based meniscus volume correction allowed to
significantly reduce the largest source of experimental noise
associated with the use of such high-throughput systems and reduce
the maximum error of volume estimation to about 3%.

Conducting the screening operations in isocratic mode,
allowed regression of ion-exchange isotherm parameters without
relying on as many assumptions as an analytical solution of a
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gradient based relationship would require. A further advantage of the
isocratic regime is that it can be most closely mimicked by the liquid
handling systems, as these systems tend to lack dual pumps that are
necessary to create true linear gradients.

The lack of an analytical third dimension capable of
robustly handling the large amount of samples generated with such
an high-throughput approach was identified as the greatest drawback
of the approach, increasing the first moment errors of overlapping
and preventing pseudo-component matching with the same degree of
certainty. Nevertheless the approach is shown to be able to produce
results following the expected trends and can quickly screen for
conditions that show the highest selectivity. For samples of relative
low complexity it can yield ion-exchange isotherm parameters with
reasonable degrees of uncertainty.
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Prediction of protein retention times in
hydrophobic interaction chromatography by
robust statistical characterization of their
atomic-level surface properties

Abstract

The correlation between the dimensionless retention times (DRT) of
proteins in hydrophobic interaction chromatography (HIC) and their surface properties
were investigated. A ternary atomic-level hydrophobicity scale was used to calculate
the distribution of local average hydrophobicity across the proteins surfaces. These
distributions were characterized by robust descriptive statistics to reduce their
sensitivity to small changes in the three-dimensional structure. The applicability of
these statistics for the prediction of protein retention behaviour was looked into. A
linear combination of robust statistics describing the central tendency, heterogeneity
and frequency of highly hydrophobic clusters was found to have a good predictive
capability (R2 = 0.78), when combined a factor to account for protein size differences.
The achieved error of prediction was 35% lower than for a similar model based on a
description of the protein surface on an amino acid level. This indicates that a robust
and mathematically simple model based on an atomic description of the protein
surface can be used for the prediction of the retention behaviour of globular proteins
with a well determined 3D structure in HIC.

Keywords: Hydrophobic interaction chromatography; Protein surface
properties; Retention time prediction; Atomic-level surface
description; Robust statistics;
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5.1 Introduction

Hydrophobic interaction chromatography (HIC) is one of
the fundamental chromatographic techniques applied for the
separation of complex biological mixtures but defining the design
space for a HIC step is not a straightforward task [1]. With
computational power getting cheaper and high-throughput
technology becoming increasingly wide-spread, science and industry
are moving towards knowledge-based approaches for downstream
process design [2]. To reduce the experimental burden even further,
there is a growing interest in either relating the chromatographic
behaviour of proteins in HIC to simpler experiments [3-5] or to
predict them directly from information on either the protein’s amino
acid composition [6] or 3D structure [7,8]. The tools used to make
predictions range from relatively simple correlations to more
complex quantitative structure property relationship (QSPR) models
using support vector machines [9] or binding site identification
through molecular docking experiments [10].To achieve good
results, these approaches implicitly require the used 3D structure to
closely resemble the structure of the protein under the conditions for
which the behaviour is being predicted. This makes them inherently
unsuited for predicting the behaviour of inherently disorder proteins
(IDPs) [11]. While molecular dynamics simulation have great
potential to increase our understanding of the hydrophobic
interactions on an atomic level and, due to their dynamic nature,
have a greater have a greater potential to be able to deal with flexible
molecules and IDPs , they are still too computationally expensive to
be applied to large proteins [12]. Although this limitation might be
overcome in within the next years, until this is achieved,
computationally inexpensive models based on descriptors of the
whole molecule, or just its surface, remain the more viable option.

There are many descriptors that can be calculated to
describe complex molecules [10]. However, the interactions in HIC
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are thought to be mainly driven by protein surface
hydrophobicity [13] and therefore descriptors of the protein surface
are of particular interest for the prediction of HIC retention
behaviour. Surface property attributes that have been considered to
be correlated with retention times in hydrophobic interaction
chromatography are the overall hydrophobicity, the heterogeneity of
the protein surface and the hydrophobicity of the most extreme
patches [13]. These properties can be described by a wide variety of
statistical measures. Commonly used statistical measures are the
average to capture the overall hydrophobicity, the standard deviation
to describe the heterogeneity and the maximum value to quantify the
strength of the patch with the highest affinity. Salgado et al.
demonstrated that predictive models with good performance could be
formulated on the basis of these statistics, provided that the values
are calculated on basis of a suitable hydrophobicity scale [13]. As the
interpretation of these statistics is unambiguous, they are a good
starting point for the investigation of which kind of surface
properties influence the retention times of proteins.

A potential downside to using these statistics as a basis for a
predictive model is that they are very sensitive to small changes in
the data set and outlying data points. While such sensitivities might
be considered advantageous when the goal is to predict the
differences in the behaviour of proteins with point mutations, there
are some practical considerations to be made concerning their
general use. Protein surface descriptors are typically calculated from
three-dimensional structures determined in solution by NMR
spectroscopy [14] or more commonly by crystal X-Ray
diffraction [15]. As noted by Petsko and Ringe, despite the
impression given by the structures gained form crystallography,
proteins in solution are far from rigid molecules. Not only can small
conformational changes affect which parts of the protein are more or
less exposed, the numerical calculation of their solvent accessible
surface areas itself is merely an approximation [16] and the choice of
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algorithm and settings for the calculation can easily change the
obtained values by 10% [17]. The reliability of a predictive model
might therefore increase when surfaces descriptors with a certain
robustness towards small changes in the protein structure are chosen.

The robustness of a statistical measure can be described by
its breakdown point; the fraction of data that can be given an
arbitrary value before the measure itself assumes an arbitrary value.
The value of the average for example, can in principle change to any
value based on the inclusion of a single outlying data point. The
average therefore has a breakdown point of 0. When using single
data point surface descriptors such as the maximum and minimum of
the surface property distribution similar sensitivity problems arise.
For comparison: to cause a significant change in the median of a data
set 50% of the data needs to change. Due to this property the median
has a break-down point of 0.5 and is considered a robust statistic.

The discussion on the robustness of descriptive statistics is
not new and has been extensively covered in literature [18]. The aim
of this study is to investigate if a computationally inexpensive model
based on robust descriptive statistics of the atomic protein surface
property distributions can achieve a reasonable quality of retention
time prediction.

5.2 Methodology

5.2.1. 3D structure curation

The three-dimensional structures of the proteins in Table 1
were retrieved from the protein database PDB [19]. The missing
hydrogen atoms were added and all present water molecules deleted.
After this step the resulting structures were compared to the
proposed biological assemblies and any excess copies of the
molecule present in the asymmetric cell were removed, as were any
molecules considered not to be part of the protein.
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Table 1. An overview of the proteins used in this study together,
with information on used structures. The experimental dimensionless
retention were reported by Mahn, Lienqueo and Salgado [6,33].
Structures for which a resolution range is reported were refined from
multiple datasets collected at different resolutions.

Name Organism PDBID Source DRT Mass r, Structure curation
() (kDa) (A)
Cytochrome C equus 1HRC 1.94A 0.002 123 126 e Associated
caballus XRD Haem group still
present
Ribonuclease A bos taurus 1AFU 1.7A 0.352 13.6 14.3 « Removed
XRD molecule copy B
from cell
Ribonuclease T1 aspergillus 1RGC 10-2A 0371 111 124  Removed of all
oryzae XRD 3gp
e Removed

molecule copy B
from structure
file

Associated Ca++
ion still present

Metmyoglobin equus 1YMB 6.0-19A 0373 175 151 e Removed SO4--
caballus XRD ion
e Haem group
included
Ribonuclease T1  aspergillus 1TRP 23-24A 0482 111 124 . Removed all 2gp
oryzae XRD » Removed
molecule copy
from cell

Associated Ca++
ion still present
Kept Fe++ ions

Ovotransferrin gallus gallus  10VT 24A 0.504 75.6 29.5

XRD o Kept both Co++
ions
Ovalbumin gallus gallus  10VA 6.0-19A 0570 845 27.7 e« Removed all Nag
XRD from the cell
e Removed
molecule copies
C and D from
cell
e Delete one Ca++
ion
Hen egg-white gallus gallus  2LYM 2A 0603 143 14.0
Lysozyme XRD
Thaumatin thaumatococ 1THV 26-1.7A 0663 221 16.3
Isoform A cus daniellii XRD
a-chymotrypsin A bos taurus 2CHA 2A 0.694 482 219 . Delete peptide
XRD fragment from
molecule copy A
and E
o Left Tsu
molecules in
place
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B-lactoglobulin A bos taurus 1CJ5 NMR 0.734 183 145 e Deleted copies
B-J
a-amylase bacillus 1BLI XRD 0.753 551 24.0 e Kept three Ca++
licheniformis ions in place
e Kept one Na+
ion in place
a-chymotrypsin A bos taurus 4CHA 1.68 A 0.774 479 219 e Removed
XRD peptides A and D
from cell
Ribonuclease S bos taurus 1RBC XRD 0.829 116 14.8 « Removed
molecule S from
cell
o Kept S04- ions
in place
a-lactalbumin homo 1A4V 1.8A 0936 141 143 o Kept both Ca++
sapiens XRD ions in place

5.2.2. A simple atomic hydrophobicity
scale

There is an abundance of residue-level scales available to
rank amino acids by their relative hydrophobicity. Most of them are
either derived from experimental measurement of their
physicochemical behaviour, such as their partition coefficients
between water and various organic solvents, chromatographic
retention or influence on surface tension, or related to their
probability to be located within the non-solvent accessible core of
proteins in their folded state. An extensive comparison of such scales
found that while the positions of several amino acids may vary
greatly depending on the scale, some agreement for the relative
hydrophobicity of many amino acids could be found [20]. While
experimentally determined hydrophobicity scales, especially those
based on the measurement of their chromatographic behaviour,
appear to be attractive options to be used in a model to predict
chromatographic  retention times, choosing such a scale
fundamentally limits the resolution with which the protein surface
can be described as it is based on a residue-level. Even though the
contribution of each amino acid can be normalized according to its
contribution to the solvent accessible surface area, this level does not
take into account which part of the residue is exposed. To overcome
this limitation Kapcha et al. proposed a simple binary atomic-level
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hydrophobicity scale [21]. Classification of atoms as either
hydrophilic or hydrophobic was based on their calculated partial
charges, where a partial charge magnitude of greater than 0.25 is to
be treated as hydrophilic and less or equal than 0.25 as hydrophobic.
Despite its simplicity, a good agreement with the ranking of residues
based on this scale and other hydrophobicity scales was found. Even
better agreement could be achieved by adopting a ternary scale
further classifying atoms as charged. Atoms are classified as charged
when they belong to a terminal group where the magnitude of the
sum of the partial charges is greater than 0.5. The proposed ternary
scale assigned a value of -0.5 to hydrophobic atoms, 1 to hydrophilic
atoms and 2 to charged atoms. As the values themselves are by
definition arbitrary, any scaling with the same weighting would lead
to the same ranking of residues. In this study we adopted a ternary
scale with the same classification criteria but with values scaled to 0
for charged atoms, 0.4 for hydrophilic atoms and 1 for hydrophobic
atoms.

5.2.3. Calculation of average surface
atom neighbourhood properties

The hydrophobicity of a protein surface can be described by
its average surface property (ASP). The ASP can be calculated for
either the entire protein surface at once or for a set of
neighbourhoods around defined reference points, as described by
Lienqueo et al. [22]. In this study the ASPs of the proteins listed in
Table 1 were calculated for all atoms (i) contributing to the solvent
accessible surface area (SASA) within neighbourhoods (N)
containing the atoms (neN) around them:

_ ZneN(i) SASA(n) - p(n)

ASP(i) B ZnEN(i) SASA(TL) (1)

where ¢(n) is the hydrophobicity value of the atom n,
assigned to it according to the atomic ternary scale described in
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Section 5.2.2. Neighbourhood radii from of 5-15 A were considered.
This range was selected so each neighbourhood would always
contain multiple atoms but not greatly exceed the radius of gyration
of the protein. The SASAs of the single atoms and their
neighbourhoods were determined with YASARA 14.6.23 (YASARA
Biosciences GmBH, Vienna, Austria). The SASAs were calculated
based on probe molecules with a radius of 1.4 A with a Gaussian
smoothing of the surface, as illustrated by Figure 2. This probe size
was chosen to reflect the surface accessibility of a water molecule,
which has an approximate diameter 2.8 A. Water was chosen as
probe molecule as HIC always takes place in aqueous solution. The
distance between the geometric centres of the atoms was calculated
to decide whether an atom was within a neighbourhood. For an
accurate calculation of the SASA it is important that positions of the
atoms in the used 3D structures are determined to a sufficient degree
of certainty. Structures determined by X-Ray Diffraction with a
resolution of approximately 2 A are usually deemed sufficient [10].
Working with structures determined at lower resolutions are
anticipated to have a negative impact on the quality of predictions
based on the derived SASA values, as they might not accurately
reflect reality. The SASA and neighbourhood atom lists generated by
YASARA were imported into Matlab2013b (Mathworks, Natick,
MA, USA) for calculation of the ASP values. This results in an ASP
value for each neighbourhood radius for each surface atom of each
protein. As these results typically consist of a large numbers of
unique values, they needed to be binned before their distribution
could be described by descriptive statistics. Two methods of data
binning were tested. The first binning method was to control the size
of the bins, regardless of the data. Bin sizes between 0.001 and 0.1
were tested. For the second method, the number of bins was
controlled. In this case the range of the values in divided into an
equal number of bins, resulting in a different bin size for each
protein surface property distribution.
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van der Waals surface

solvent accessible surface

Figure 5.1. The first step in the approximation of the solvent
accessible surface area (SASA) of a full protein, or neighbourhood
patch, is the construction of the van der Waals surface of the
molecule by creating spheres around each atom’s geometric centre,
corresponding to their van der Waals volumes. A probe molecule of
defined radius (fprobe) is then rolled across the molecule’s outer van
der Waals surface. The points that are traced by the centre of this
probe molecule are then interpolated, which results in an estimated
SASA.

9.2.4. Calculation of surface property
distribution statistics

To reduce the complexity of the data, descriptive statistics
were calculated for each of the surface property distributions. The
three main attributes of the surfaces to be captured by the descriptive
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statistics were the central tendency, the heterogeneity and the relative
frequency of high hydrophobicity clusters. The workflow for the
calculation and evaluation of these molecular descriptors is shown in
Figure 1.

Four statistics were calculated to represent the central
tendency. The median (M) of each distribution was chosen as it has
an asymptotic break-down point of 0.5, the maximum possible value
and is therefore a very robust statistic [23]. The second investigated
central tendency statistic chosen was the trimean (TM). The trimean
is the weighted mean of the three quartiles of the distribution
calculated by:

— Ql + ZQZ + Q3 (2)

™
4

The three quartiles are the values that split the data into four
populations of equal size. The value of Q, is equal to that of the
median. In contrast to the median, the TM better reflects the central
tendency of asymmetric distributions. However, by including this
information its sensitivity increases and lowers its breakdown point
to 0.25[24]. The third central tendency measure tested was the
mode. The mode represents the most frequently occurring value of
the distribution. Although the mode does not always satisfy all
requirements to be considered an accurate measure of location [25],
it has been noted for its intuitive appeal as it represents the value
with the highest probability and its insensitivity to outliers [26]. The
ASP distributions in this study were not assumed to be unimodal. For
distributions containing multiple modes of the same relative
frequency the mean of these modes was used instead. A fourth
central tendency descriptive statistic included in this study is the
mode weighted by its relative frequency (MOFM).

The second attribute set out to be captured by descriptive
statistics was the heterogeneity of the protein surface. In terms of the
surface property distributions, more heterogeneous surfaces should
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lead to a higher dispersion in ASP values and therefore a broader
distribution. The broadness of a distribution can either be described
by a range statistic (i.e. a statistic that reflects the span of possible
values a property can take) or the average deviation of a property
value from the central tendency of the distribution. A robust range
statistic chosen for the quantification of the range is the inter-quartile
range (IQR), which is the distance, between the first and third
quartiles (Q; and Qs). As it is purely defined by the quartile locations
the IQR has a break-down point of 0.25, similar to the TM.
Trimming of extreme values is an important tool for increasing the
robustness of dispersion descriptive statistics [27]. Quartiles are an
efficient tool for trimming distributions but they trim a large fraction
of the data. A common measure to distinguish outliers is the
introduction of a lower fence (LF) and upper fence (UF):

LF = Q, — (1.5-IQR) (3)
UF = Q; + (1.5 IQR) (4)

This leads to three dispersion statistics per central tendency
statistic (CT). The average dispersion that does not exclude extreme
data points (AD) was calculated by:

N
1
CTAD = ﬁZ(xn —CT)? %)

n=1
It was calculated for the median, mode and trimean
resulting in the median absolute dispersion (MAD), mode absolute
dispersion (MOAD) and trimean absolute dispersion (TMAD).

Bounded average dispersion statistics were also calculated
for the mode and trimean by:

N(LB<x<UB)
1 2
CTBAD = —— Z (xn,(LB<x<UB) - CT) (6)
(LB<x<UB) =
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Use of the first and second quartile as lower boundary (L.B)
and upper boundary (UB) lead to the mode and trimean interquartile
average dispersions (MOIAD and TMIAD), whereas use of the LF
and UF as boundaries lead to the mode and trimean fenced average
dispersions (MFAD and TMFAD).

To quantify the presence of high-hydrophobicity regions
(H-regions) the relative frequencies of neighbourhoods with ASP
values 0.5-0.75, the third quarter of the hydrophobicity scale
reflecting a mild hydrophobicity was calculated (F3), as well as the
relative frequency of values in the range of 0.75-1.00 (F4). The total
relative frequencies of overall hydrophobic neighbourhoods were
also taken into consideration (F3+F4).

5.2.5. Size factors

In their landmark study of underlying mechanism of
hydrophobic interaction chromatography To and Lenhoff noted that
differences in protein retention in HIC could not be attributed to
protein surfaces alone but that protein rigidity also had a large
influence [28-31]. As protein rigidity is not a simple property to
predict from 3D structures, the size of proteins was considered as an
easy to calculate proxy measure. A simple measure for the size of a
protein is its radius of gyration (r,) that can be calculated by:

(7

C is the geometric centre of mass of the protein. A problem
with using the radius of gyration as parameter for a predictive model
is that it cannot be scaled to values between 0 and 1 easily, as
normalizing the values towards the maximum or inverse of the
minimum would introduce an unwanted dependence of scaling on
the used training set. A common measure to scale the influence of
protein size on their chromatographic behaviour is the calculation of
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the pore accessibility solute distribution coefficient (Kp) calculated
from the extended Ogston model [32]:

Ky (D) = exp (-zn<l —1¢,,> - (1 ; 3%)2) )

The resin specific pore radius (r,) and pore volume fraction
(®@,) were taken from literature [31].

5.2.6. Selection of neighbourhood radii
and binning approach

While the descriptive statistics outlined in Section 5.2.4
were calculated for all considered neighbourhood radii and binning
procedures, it is not feasible to include all possible combinations for
integration into a multi-parameter model. As objective selection
criteria, the linear correlation between the descriptive statistics and
the experimental dimensionless retention times of the proteins
(DRT,yp) was considered. The DRT of a protein (i) is:

t

tri —
DRT(i) = H 9)

g

where tr; is its measured retention time, t, the time of the
beginning of the salt gradient and tg the end of the salt gradient. The
DRT values used in this study are listed in Table 1. They were
reported by Lienqueo and Mahn for ammonium sulphate (AS)
gradient elution experiments on 1ml Sephadex Phenyl FF columns
with  2M AS starting concentration [22,33]. Despite being
dimensionless, DRTs are influenced by the system specific gradient
delay and may therefore vary depending on the liquid
chromatographic system they were determined on [34]. The degree
of linear correlation between the descriptive statistics (S) and the
experimental DRTs was quantified by their Pearson correlation
coefficients (PCC) calculated by:
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_ cov(S, DRTeyp)

Os * OpRTexp

PCC

(10)

where os and Gprrey, are the standard deviations of the
descriptive statistics and the experimentally determined DRTs. For
each statistic the neighbourhood radius and binning method leading
to the highest positive correlation were identified and selected to
calculate candidate predictors for multivariate models.

Curated
structure files

Calculate radius of
gyration and Kp

Select
neighbourhood
radius

Generate
ASP of each
surface atom

Select binning
procedure

Predictors for
model
construction

Calculate stalistics
to describe ASP
distribution

Evaluate single

predictor
performance

Figure 5.2. A schematic representation of the workflow for the
calculation of surface property distribution statistics from 3D protein
structure files. The curation of the structures files is a manual step
that involves editing the scene to represent the proposed biological
assembly according to the comments in Table 1.
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5.2.7. Multivariate model construction
and performance evaluation

Linear combinations of the descriptive statistics with the
strongest positive correlation to the observed DRT were considered
as predicative multivariate models. All possible linear combinations
were tested, with a few restrictions: each model was only allowed to
contain a single descriptive statistic for each fundamental surface
distribution attribute and statistics calculated from bin size controlled
distributions could not be combined with statistics calculated from
bin number controlled distributions. For each model and each
training set the coefficients were optimized by the Isqcurvefit
algorithm of Matlab 2013b [35,36]. The performance of the models
was evaluated both by the mean square error (MSE):

=|

N
1 _
MSE= —- » (¥, - Y,)? (11)
and the coefficient of determination:

I = Yo)?
25\1’:1()7;1 - Yn)
of the predictions. The reported performance indicators and
predicted DRTs are the results of Jack Knife cross validation [35,36].
The key concept is to only consider the predictions made for
proteins, when the protein is not part of the training set for the
model. A schematic overview of the workflow is presented in
Figure 4.

R =

(12)
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Figure 5.3. A schematic representation of the workflow applied for
the creation and training of the multivariate models. The predictors
considered for the model where the same as in Table 2. To predict
the retention time of a protein, each model is trained with the data of
the other proteins. This is repeated until each protein was predicted
once, without being part of the training set. Only the fully predicted
DRTs are used for evaluation of the model performance (Jack Knife
cross-validation).
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5.3 Results and Discussion

5.3.1. The influence of the
neighbourhood radius and binning
on the ASP distributions

The observed ASP distribution is a strong function of both
the selected neighbourhood radius and method of binning. Figure 3
shows the ASP distributions of Cytochrome C from equine heart for
two neighbourhood radii and two binning approaches. Comparison
of Figures 3a) and b) show that an increase in neighbourhood radius
decreases the dispersion of the distribution. This behaviour is
universal, as a larger neighbourhood represents a larger fraction of
the total protein area. The central tendency of the distribution must
therefore converge towards to average total surface property for
large neighbourhood radii, whereas the dispersion of the distribution
must converge to zero. Table 2 shows the radii and binning settings
for which each statistic had the highest positive correlation with the
experimental data. The majority of statistics performs best for small
radii in the range between 6-9A, the only outliers to this trend being
the frequency of the weighted mode (MOFM) and H-region
frequencies that include mildly hydrophobic values (F3).
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Table 5.2 A summary of the highest Pearson correlation
coefficients (PCC) found between the calculated individual surface
property statistics described in Section 2.4 and the experimental
data presented in Table 5.1. The binning column yields
information on the binning method used during the calculation of
the underlying statistic, where ‘s’ stands for a controlled bin size
and ‘n’ for a controlled bin number. The neighbourhood radius that
lead to the statistic with the highest correlation coefficient is noted

as I'n_opt.

Statistic Binning I'N opt PCC

M . 6A 0,40

) ™ - 8 A 0,37
8 MO 5: 0,01 6A 0,63
§ n: 10 7A 0,74
£ MOFM 5: 0,01 13 A 0,29
3 n: 27 13 A 0,62
IQR ; 9A 0,34

MAD ; 8 A 0,36

MOAD s: 0,001 9A 0,48

n: 30 8A 0,52

MOIAD 5:0,1 8 A 0,59

n: 10 8 A 0,63

MOFAD s: 0,001 9A 0,54

2 n: 30 8 A 0,57
o) TMAD 5 8 A 0,18
E, TMIAD ; 8 A 0,41
T TMFAD . 8 A 0.29
F3 - 13 A 0,07

F4 . 7A 0,49

F3+F4 : 12 A 0,37
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Figure 5.4. An example of the influence of the selected
neighbourhood radius and binning method on the observed surface
property distributions for the example of Cytochrome C from equine
heart (IHRC). a) The surface neighbourhood of atom 56 with a
neighbourhood cut-off radius of 7 A around the geometric atom
centre together with the ASP distribution for the entire surface
controlled for a bin size of 0.01 and a bin number of 25. b) The same
as a) but with a 14 A neighbourhood cut-off radius. Comparison of
a) an b) shows how the distribution converges towards its central
tendency for an increasing neighbourhood radius.
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Statistics that are defined in relation to the mode are further
influenced by the binning method. A representative example for the
influence of the choice of neighbourhood radius and binning method
on the performance of dispersion statistic related to the mode is
shown in Figure 4. Comparison of Figure 4 a) and b) shows that
neighbourhood radii of 6-8 A have the best positive correlation with
the experimental DRT for all tested binning approaches. The
influence of the binning method shows less clear trends as often very
similar values appear at irregular intervals, especially when
controlling the number of bins. This is why the MOIAD and
MOFAD, two statistics with very similar definitions, appear to be
best correlated at opposing ends of the tested binning approaches.
The bin sizes and bin numbers controlled binning methods show
similar trends across neighbourhood radii for small bin sizes and
large bin numbers, but diverge for large bin sizes and small bin
numbers. This is related to dispersion of the distribution converging
towards the central tendency for large neighbourhood radii. For large
bin sizes a reduction of the range of the values leads to an inability to
distinguish small differences in dispersion. This does not occur when
controlling the number of bins, as the bin size is then scaled to the
dispersion of the values. A downside to controlling the bin number
however is that it does not allow comparing frequencies of similar
values across proteins.
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PCC ()

Figure 5.5. The influence of the neighbourhood cut-off radius and
binning method on the Pearson correlation coefficient (PCC) of the
mode average dispersion (MOAD) of the average surface property
distribution and the experimentally determined dimensionless
retention times from Table 5.1 a) shows the data when the
distribution of each protein is controlled for a constant bin size
whereas b) shows the effect when the distributions are controlled to
each use the same number of bins and the size of the bins is
calculated based on the range of the distribution data for each
protein.

5.3.2. Performance of the multivariate
models

The linear combination model built from the statistics in
Table 5.2 and the calculated r, and K, values that gave the best
predictive performance was:

DRT(i) = 17.0(+4.2) - MOFM 53, + 14.3(+2.4) - MOADg; ;
+2.7(+1.0) - (F3 + F4), 55, — 10.8(£2.8) - Kp; (13)
It should be noted, that even though coefficients were not
restricted to positive values, each statistic that had a positive
correlation retained its positive contribution in the multivariate
model. Its R% is 0.78 and the Jack Knife cross-validation mean
square error (MSEj ) is 12.4%¥107. The 95% confidence intervals for

139



Chapter 5

the determined coefficients never exceed 40% of their value,
meaning that they are quite well determined considering the size of
the data set. The fully predicted retention times and distribution of
error are shown in Figure 6. As can be seen in Figure 6 b), the errors
are fairly evenly distributed across the range of investigated proteins.
While this would be just a systematic consequence of using least-
square optimizers when looking at the fitted responses of the training
sets, in terms of the fully predicted retention times, it is a good
indicator that the model is not biased towards strongly or weakly
binding species.

a) 10 b)
1 vl 02 —
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= . '
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Experimental DRT (-)

Figure 5.6. The performance of the best multivariate model. a) The
predicted dimensionless retention time (DRT) against the
experimentally determined values. b) The absolute error in
prediction between the DRT predicted by the best multivariate model
and the experimental value for each protein species. The PDB codes
correspond to the proteins in Table 1.

In agreement with the concepts discussed in Section 5.2.5, a
negative coefficient was found for the size-dependent factor Kp,
Smaller proteins have a larger Kp, so of two proteins with equal
surface properties but different size, the smaller protein would
exhibit less retention in HIC. Whether this is due to increased
flexibility of larger proteins, or due to an increased possibility of
multiple binding sites to interact with the resin at the same time,
cannot be determined at this point. Even though the K, values are
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derived from the r,, models containing the Ky, performed universally

performed better than their r, counterparts. This indicates that it is

the property of the Kp to not pass through the origin, rather than the
scaling of the values that increases its performance.

Of the five best performing models, all used the MOFM as
their central tendency statistics and all were built from statistics
controlled by bin size rather than number. This is remarkable, as the
bin number controlled statistics tended to show slightly higher
correlations with the experimental data when considered
individually. Similarly, the bin size controlled MOFM was the
central tendency statistic with the overall worst correlation, yet
present in each best performing model. The follow up models all
substituted either the dispersion statistics for one of its bounded
counter parts, or the H-region statistics for F4, but overall showed
the same trends in coefficients.

To investigate the importance of each parameter in the final
model, the impact on the predictive performance of the model after
removal of each of the selected variables was performed. An
overview of the results is presented in Figure 7. The F3+F4 statistic
describing the relative frequency of neighbourhoods that are
considered hydrophobic is least important variable, yet its removal
still increases the error of prediction by a factor of 2.2 compared to
the base case. Removal of any of the other variables increases the
error of prediction at least 3.7 fold, with the dispersion statistic
MOAD being the most important with a 5 fold increase. While
model simplicity is an important quality, a more than twofold
decrease of prediction quality indicates that none of the proposed
parameters should be removed from the proposed model.
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Figure 5.7. Change in the predictive performance of the multivariate
model when selected variables are removed. The reported mean
square error (MSE;x) is the result of jack-knife cross validation over
the full reported protein set.

In comparison to a similar model by Salgado et al. that
calculated the local ASP distributions on an amino acid level and
used classical statistics descriptors a reduction of the MSE;x by 35%
could be achieved, although it should be considered that this model
uses one parameter less [13]. However the parameters in the model
proposed here are overall better defined, indicating that the model is
not over parameterized. Compared to a model based on only the
amino acid sequence, rather than defined 3D structures, no increase
in predictive performance was achieved [6]. That approach however
requires a very large training data set to be able to estimate the
degree of surface exposition of each amino acid in the sequence. A
previously reported linear multivariate model that only used global
ASPs had a 40% larger MSEj [36]. The trend towards increased
predictive performance by increasing the level of surface description
detail reported by Salgado et al. seems to hold true for the transition
to an atomic description of the protein surface [13].
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5.4 Conclusions

A computationally inexpensive and mathematically simple
model with well-defined parameters and reasonable predictive
performance was found to be able to predict the dimensionless
retention times of globular proteins with well-determined 3D
structures in HIC. The use of simple descriptive statistics combined
with a size factor as predictors allow for a straightforward
interpretation of the results. Performing surface property calculations
at an atomic level increased the resolution with which the protein
surface could be characterized and allowed for an easy definition a
neighbourhood. The use of this scale, as opposed to a more
complicated hydrophobicity scale, did not restrict the usefulness of
the model. Atomic hydrophobicity scales are still an active research
area[37]. Further refinement of the used hydrophobicity scale might
lead to further improvement of the model. As all used descriptive
statistics are derived from large fractions of the distribution data, the
model promises increased robustness towards small deviations in
ternary structure. In accordance with the findings of To et al., the
surface properties alone were not sufficient to fully explain the
experimental behaviour of the investigated proteins. Inclusion of a
penalizing factor for small proteins showed an improvement of
model performance. Further research into more complex size and
flexibility descriptors are obvious areas for future improvement. The
same holds true for the choice of statistics for the description of the
protein surface. The proposed statistical procedures are robust but
work best for close to normally distributed data. Further research
will be necessary to determine suitable statistics for this type of data.
Nevertheless, while there is no limitation on how many molecular
descriptors can be calculated from any static structure, one should
consider their robustness towards naturally occurring small changes
when striving to predict the behaviour of proteins.
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Outlook

The previous chapters of this thesis introduced a series of
ideas and technologies that aim towards improving our ability to
develop effective processes for the purification of biotechnologically
produced drugs. The idea behind all of them is quite simple: the
more we know about how the composition and behaviour of the
components in our mixture behave, the better we can exploit their
differences to achieve a separation. To gain this knowledge, we have
developed both experimental techniques to measure what we need to
know, and correlative techniques, that allow us to make predictions
of how molecules of known structure will behave, based on past
experience with similar components.

One of the main lessons of the experimental sections of this
thesis, is that when working with mixtures of unknown composition,
adding additional degrees of distinction, be it through addition of
detectors or separation dimensions, ultimately improves the analyst’s
ability to interpret the data as a whole. While the addition of
separation dimensions may dramatically increases the experimental
time required per sample, the addition of detectors may allow
distinguishing similar components, without increasing the overall
analytical burden. Diode array detectors, multi-angle light scattering
cells and refractive index detectors are all examples of additional
data streams that could recorded during a single chromatographic
separation and fed into a chromatogram deconvolution algorithm to
reduce its errors, by reducing ambiguities. In the long term, the
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ongoing miniaturization and parallelization driven by research in
microfluidics, will also make it feasible to include many chemical
and biological assays into the characterization platform.

While expanding the complexity and throughput of such
experimental platforms, data management and processing become
increasingly important. Already at the small scale of an academic
research laboratory, such a setup requires setting up databases, that
can pool and organize the raw data output. While designing such a
system, flexibility and scalability need to carefully considered. Once
such a database has gained a critical size, it will open new
possibilities for data mining and machine learning. As mentioned
earlier, the predictive techniques discussed in this thesis, need to be
trained with data from known scenarios. As such, they will be among
the first techniques to benefit from the availability of large data sets,
such as the ones generated by experimental characterization
platforms. It is unlikely that these kinds of predictions will fully
replace experiments in the near future. A more likely application of
these techniques will be to a priori determine the most interesting
parameter combinations for experimental testing. Given the ever
increasing number of potential resin and condition combinations that
can be considered, such a reduction would be a highly beneficial
step.

A similar effect could be achieved by establishing
correlations for adsorption behaviour of molecules across different
resins. Ideally, these correlations would be based on a mechanistic
understanding of the adsorption process of very large molecules. At
this point in time, molecular dynamic simulations appear to be the
most promising route to gain this understanding, but they still need
to make the transition towards the simulation of actual adsorptions,
rather than short time energy calculations.

In summary we can say that it will take a lot more work for
us to figure out how to properly work less.
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Summary

Biopharmaceuticals, and among them therapeutic proteins,
are becoming an increasingly important class of drugs. The
complexity of the biological systems these compounds are produced
in, together with conformational and other stability issues not present
for typical small molecule drugs, make developing an efficient
purification process for these molecules a challenging task. Liquid
chromatography is one of the most versatile and commonly applied
separation techniques in this field. It is a relatively well understood
unit operation, and the phenomena occurring during its operation can
be well described by mechanistic models. Increasing economic and
regulatory constraints are driving the ambition to utilize this
knowledge during process development (Chapter 1).

One of the greatest challenges in introducing the use of
mechanistic models into a process development workflow under real
conditions is the lack of efficient technologies that allow determining
all the necessary parameters that need to be provided to these
models. Practical limitations dictate that these measurements cannot
be carried out separately for every molecule present in the complex
streams from which the product is to be isolated. An efficient way to
determine the parameters in a multiplexed fashion is to regress them
from observations made on the behaviour of the complex mixture.
This step requires isolating the signal related to a single component
from the complex observation. For chromatograms this can be
achieved by least-squares fitting of a peak model to the observed
chromatogram. When multiple components show similar behaviour
in one separation dimension, the errors of such a regression become
too large for the parameters to still be useful for process
development. Too overcome the resolution limitations of a single
chromatographic separation, multidimensional separations can be
carried out. To facilitate the deconvolution of these multi-
dimensional chromatograms an algorithm was developed that uses a
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Fourier-transform of the chromatogram to generate the initial guess
for the fitting procedure (Chapter 2). This technique is shown to
reduce the errors of the fit by up to two orders of magnitude when
compared to the single-dimensional analysis.

To go beyond optimization of a single unit operation,
towards model-based development of a multi-stage downstream
process requires building parameter database for all the impurities
present in the original stream. A three-dimensional fractionation and
characterization approach is introduced, that allows regressing
isotherm parameters with small standard errors (Chapter 3).
Keeping the first and last separation dimensions constant provides an
easy and practical mean to compare results from different resins and
match parameters to pseudo-identities to allow building an
interaction database without the necessity of sophisticated mass-
spectrometry based identification of each impurity.

The number of potential chromatography resins that could
be used for purification purposes has become so large, that testing
even just a significant portion of them is no longer feasible without
the use of  high-throughput technology.  Miniaturized
chromatography columns that can be operated in a an automated
high-throughput environment have been available for some years
already, but technical differences between the used liquid handling
systems and conventional liquid chromatography systems require
adaptions to the experimental protocols to ensure generation of data
with a comparable quality. Implementation of a novel meniscus
sensitive single well volume detection method is shown to reduce the
experimental noise of the system, while adoption of a an isocratic
operation mode is shown to allow the regression of isotherm
parameters while working around the technical limitations
introduced by the simplified pump systems of the commonly
available liquid handling robots (Chapter 4).
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Summary

Even with high-throughput technologies available, it is
desirable to reduce the experimental burden on process development
departments. During drug development, the structure of the product
is usually known. As the behaviour of a molecule is related to its
structure, correlative models can be trained to predict their behaviour
based on descriptors related to their structure, such as their surface
property distributions. As proteins aren’t rigid molecules these
descriptors need to be robust to a certain degree of fluctuations. For
this purpose a set of robust surface property distribution descriptors
are introduced and demonstrated to allow the prediction of the
retention time of model proteins in hydrophobic interaction
chromatography (Chapter 5).
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Samenvatting

Biofarmaceutica, en met name therapeutische eiwitten,
worden een steeds belangrijker klasse van geneesmiddelen. De
complexiteit van de biologische systemen waarin deze verbindingen
worden  geproduceerd, tezamen met conformationele en
stabiliteitsproblemen welke niet voor kleine moleculen gelden,
maakt de ontwikkeling van een efficiént zuiveringsproces voor deze
grote moleculen een uitdagende taak. Vloeistofchromatografie is één
van de meest veelzijdige en meest toegepaste scheidingstechnieken
op dit gebied. Het is een betrekkelijk goed begrepen
scheidingsproces en de verschijnselen die optreden tijdens de
uitvoering kunnen goed worden beschreven door mechanistische
modellen. Toenemende economische en regelgevende beperkingen
sturen de ambitie om deze kennis tijdens de procesontwikkeling te
gebruiken (Hoofdstuk 1).

Eén van de grootste uitdagingen bij het gebruik van
mechanistische modellen in een procesontwikkeling “workflow”
onder re€le omstandigheden, is het gebrek aan efficiénte technieken
om alle noodzakelijke parameters voor deze modellen te verkrijgen.
Praktische beperkingen maken het onmogelijk om deze metingen
apart voor elk molecuul aanwezig in de complexe, multi-component
stromen van waaruit het product geisoleerd wordt, uit te voeren. Een
efficiénte manier om deze parameters te bepalen is via regressie uit
multidimensionale experimenten aan deze complexe mengsels. Deze
stap vereist het isoleren van een signaal van één component vanuit
een complexe waarneming. Voor chromatogrammen kan dit bereikt
worden door het fitten m.b.v. de kleinste kwadraten methode van een
geschikt piekmodel uit het waargenomen chromatogram. Wanneer
meerdere bijdragen in een scheidingdimensie een soortgelijk gedrag
vertonen, worden de fouten van een dergelijke fitmethode te groot
om de verkregen parameterinformatic nog steeds voor
procesontwikkeling te gebruiken. Om de resolutie van een
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chromatografische scheiding te vergroten, kan de scheiding in
meerdere dimensies worden uitgevoerd. Om de deconvolutic van
individuele overlappende pieken in deze meerdimensionale
chromatogrammen te vergemakkelijken, is een algoritme ontwikkeld
gebaseerd op Fourier-transformatie van het chromatogram voor de
initiéle schatting van de parameters in het nu multidimensionale
pickmodel (Hoofdstuk 2). Deze techniek reduceert de
fitonnauwkeurigheid met tot twee orden van grootte in vergelijking
met een eendimensionale analyse.

Modelgebaseerde  ontwikkeling van een meerstaps
zuiveringsproces vereist de constructie van een parameter databank
voor alle in het originele materiaal aanwezige onzuiverheden.
Hiervoor ~ wordt een driedimensionale fractionering en
karakterisering aanpak geintroduceerd, die het mogelijk maakt
isothermparameters met slechts kleine standaard fouten te bepalen
(Hoofdstuk 3). Het gebruiken van steeds dezelfde eerste en laatste
scheidingsstap biedt een eenvoudige praktische aanpak om de
resultaten van verschillende beschikbare chromatografische harsen te
vergelijken en om parameters aan pseudo-componenten toe te wijzen
voor de opbouw van deze parameter databank. Dit alles zonder de
noodzaak voor gecompliceerde massaspectrometrische identificatie
van elke onzuiverheid.

Het aantal beschikbare chromatografieharsen dat gebruikt
kan worden voor zuiveringsdoeleinden is zo groot, dat het testen van
zelfs maar een klein deel daarvan niet langer mogelijk is zonder het
gebruik van “high-throughput” technologie. Geminiaturiseerde
chromatografiekolommen, welke in een geautomatiseerde “high-
throughput”-omgeving kunnen worden gebruikt, zijn reeds enkele
jaren beschikbaar. De technische verschillen echter, tussen de
gebruikte robot vloeistothandelingssystemen en conventionele
vloeistofchromatografie systemen vereisen aanpassingen aan de
experimentele protocollen om de generatie van parametergegevens
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Samenvatting

met een vergelijkbare kwaliteit te waarborgen. De implementatie van
een nieuwe meniscusgevoelige volumedetectiemethode voor
afzonderlijke “wells” vermindert de experimentele fout van het robot
vloeistofhandelingssysteem aanzienlijk. Dit maakt het uiteindelijk
mogelijk om isocratische chromatogrammen te genereren, nodig
voor  eerder  genoemde  parameterbepaling, op  robot
vloeistothandelingssystemen, welke normaal door technische
beperkingen van vereenvoudigde pompsystemen van algemeen
beschikbare “liquid handling” robots onmogelijk is. (Hoofdstuk 4).

Zelfs met “high-throughput” technologieén is het wenselijk om de
experimentele  belasting voor biofarmaceutische industriéle
procesontwikkeling afdelingen te verminderen. Een mogelijkheid
daartoe is het gebruik van modellen. Bij het ontwikkeling van een
productieproces voor geneesmiddelen is de structuur van het product
meestal bekend. Daar de structuur van een molecuul betrekking heeft
op zijn gedrag, zouden correlatieve modellen ontwikkeld kunnen
worden om het gedrag op basis van zgn. structuurdescriptoren te
voorspellen. Een voorbeeld zijn oppervlakte-
eigenschapsverdelingen. Eiwitten zijn geen starre moleculen, en dus
moeten deze descriptoren robuust zijn tegen kleine fluctuaties.
Hiertoe worden een reeks robuuste oppervlakte-eigenschap
descriptoren geintroduceerd en wordt aangetoond dat deze de
retentietijden van modeleiwitten in hydrofobe
interactiechromatografie kunnen voorspellen (Hoofdstuk 5).
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