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Abstract

Autonomous target search is crucial for deploying Micro Aerial Vehicles (MAVs)

in emergency response and rescue missions. Existing approaches either focus on 2D

semantic navigation in structured environments – which is less effective in complex

3D settings, or on robotic exploration in cluttered spaces – which often lacks the

semantic reasoning needed for efficient target search. This thesis overcomes these

limitations by proposing a novel framework that utilizes semantic reasoning to

minimize target search and exploration time in unstructured environments using

a MAV. Specifically, the open vocabulary inference capabilities of Large Language

Models are employed to embed semantic relationships in segmentation images. An

active perception pipeline is then developed to guide exploration toward semantically

relevant regions of 3D space by biasing frontiers and selecting informative viewpoints.

Finally, a combinatorial optimization problem is solved using these viewpoints to

create a plan that balances information gain with time costs, facilitating rapid

location of the target. Evaluations in complex simulation environments show that

the proposed method consistently outperforms baselines by quickly finding the target

while maintaining reasonable exploration times. Real-world experiments with a MAV

further demonstrate the method’s ability to handle practical constraints like limited

battery life, small sensor range, and semantic uncertainty.

Keywords: Search and Rescue, Drones, LLM, Semantic priority, TSP, Mapping,

Visual Attention, Informative path planning
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STEM: Semantic Target Search and Exploration using

MAVs in Cluttered Environments

Nikhil Sethi ∗

1 Introduction

Searching for targets is a crucial task in emergency 
response environments such as search and rescue, 
and human involvement in these environments can 
be a cause of concern. For instance, mine rescues 
under harsh conditions pose health risks, including 
a high potential for heat-related illnesses [1]. First 
responders in earthquakes and nuclear disasters face 
lifelong mental trauma from disturbing conditions like 
gore and unpleasant smells [2]. Organized crime and law 
enforcement can incur significant e conomic c osts, thus 
affecting victims, offenders, and society at large [3 ]. Such 
challenges raise ethical questions about labor practices 
and underscore the need to reevaluate our approach to 
these demanding tasks.

The integration of Micro Aerial Vehicles (MAVs) 
offers a promising approach for efficient, safe, and ethical 
solutions to search for targets in extreme environments. 
However, this integration is challenging due to the 
unique constraints of MAVs, such as limited flight time, 
computational budgets, and a small sensor range. In 
cluttered environments, these constraints are magnified, 
making it essential to develop a target search framework 
that can solve perception and planning as a unified task, 
commonly known as Active Perception [4].

Problem Domain: There are three common 
approaches to solving this problem under the 
active perception framework. First, coverage-driven 
exploration methods can be used to cover the full 
map and search every possible location [5], [6]. These 
approaches take a long time on average to find the 
target and result in large variances because they rely 
on chance. Second, explicit target search methods can 
be utilized that leverage semantic features within a 
known environment. These approaches reduce search 
times but rely on domain-specific p riors l earned from 
preexisting datasets of structured indoor environments 
[7], [8]. Third, a hybrid approach can be used 
where the drone needs to simultaneously explore an 
unknown environment and search promising regions 
of space to find t he t arget [ 9]. T his a pproach also 
uses semantic reasoning, but partial observability poses 
a unique challenge in emergency response situations, 
where exploration and target search must be balanced 
optimally to minimize search time. Some studies aim 
to find t he c orrect r oom f or a  t arget o bject using 
object-room relationships [10], while others focus on

∗MSc. Robotics, Delft University of Technology, Delft, The 
Netherlands 

refined local search within a cluttered room [11]. Our
work focuses on the latter and uses the hybrid approach
to search for targets.

Contribution statement In this work, we develop
STEM: a Semantic Target Search and Exploration
framework that uses MAVs to find targets without
assuming any structure or knowledge of the environment.
The primary contribution of this thesis is the
development of an active perception pipeline that can
embed semantic priorities in 3D, generating a rich set
of viewpoints with balanced coverage and semantic
information gains. This pipeline is supplemented
by extending a combinatorial target search planner
[12], to create efficient global plans through 3D
viewpoints. Additionally, we introduce a novel
semantic priority masking scheme that uses Large
Language Models to compress semantic segmentation
images into priority masks. Finally, we conduct
extensive experiments in both simulation and real-world
environments using a Micro Aerial Vehicle (MAV).
The results can be reproduced using publicly available
ROS-compatible software at https://github.com/

nikhil-sethi/thesis.
Summary The rest of the thesis is organized as

follows. Section 2 covers related work and highlights how
this study addresses the gaps in the literature. Section
3.1 and 3.2 establish technical preliminaries and a formal
problem formulation, respectively. Further, Section 4
presents a detailed methodology for the work, with
the experimental setup following in Section 5. Section
6 demonstrates qualitative and quantitative simulation
results along with ablation studies that analyze the
deeper aspects of the algorithm. Section 7 shows
real-world experiments with a MAV in various cluttered
configurations. Finally, Section 8 summarizes the thesis
and presents recommendations for future work.

2 Related Work

The literature survey is divided into coverage-based
exploration and target search methods in Sections
2.1 and 2.2 respectively. Target search is further
divided into structured (Section 2.2.1) and unstructured
environments (Section 2.2.2) because they require a
different set of assumptions.

1
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2.1 Coverage Exploration

Exploration is a fundamental component for deploying
robots in domains such as search and rescue [13]
and law enforcement [14]. Unlike traditional methods
where maps are pre-built offline, exploration focuses on
dynamically uncovering new regions of the environment
and planning efficiently under partial observation.
Coverage-based exploration methods focus on reducing
the unknown space in a bounded volume, thus fully
’covering’ the environment.

Earlier works use the Rapidly Exploring Random
Tree (RRT) planning algorithm for coverage exploration
[15]–[17]. Viewpoints (virtual camera poses in 3D) are
sampled in free space to incrementally build a tree
(graph), and each viewpoint is evaluated using a utility
function such as unmapped volume or information gain.
The first edge of the most informative branch of the tree
is then selected as the goal and the process is repeated
in a receding horizon manner. Such approaches struggle
in open spaces because the number of samples can be
large, and calculating information gain for each random
sample in 3D space can be computationally expensive.
This drawback thus limits the planning horizon, making
these approaches greedy in their decision-making [18].

Recent state-of-the-art works such as FUEL [5]
and TARE [18] systematically sample a minimum set
of viewpoints and solve a combinatorial optimization
problem to create a global plan. In TARE, the
researchers reduce the computational complexity of
large-scale 3D exploration by creating a refined local
plan close to the robot and maintaining a coarse global
plan using a Travelling Salesman Problem (TSP). The
work is relevant because it uses non-myopic strategies for
planning, but mainly addresses large-scale exploration
with long-range LIDAR sensing (≈ 100m) and a larger
aerial robot. In contrast, we address the challenge of
target search with range-constrained sensing (3m) using
a single front-facing depth camera and a 1Kg MAV.

FUEL employs a novel formulation for the TSP that
incorporates kinematic costs in the objective function.
When combined with a local trajectory planner, this
approach results in more efficient exploration because
the global plan penalizes large changes in motion. This
work is most relevant to ours because it relies on frontiers
for exploration (as opposed to surfaces for TARE)
and also uses a front-facing depth camera for sensing.
Since the framework focuses on volumetric coverage, we
leverage it for the exploration component in our work
and integrate our semantic target search capability with
it. Additionally, we use this method as a baseline for
comparisons.

The main drawback of FUEL and TARE is that
a standard TSP only solves for metric costs such as
time or distance between viewpoints. However, efficient
planning under partial observability requires balancing
a viewpoint’s utility and the time it takes to arrive
at it. This trade-off is explored in works such as [6]
and [19]. In [19], the cost between two viewpoints is
equal to the distance inversely weighted by a directed

information gain. This heuristic allows edges to be
connected such that viewpoints with higher information
gain come earlier in the tour. However, such heuristics
need to be tuned to the situation and are less robust to
uncertainty in the information gain. The work in [6],
called FAEL, solves this problem by using a variant of
the TSP called the Minimum Latency Problem (MLP)
that treats information gain and movement distance in
a joint objective. This concept is relevant to our work
because target search also involves balancing multiple
objectives like time, and semantic priority. However,
unlike FAEL which only focuses on 2D exploration with
ground robots, we perform semantic target search in 3D
using drones. We achieve this by creating a novel 3D
information gain calculation, and an MLP formulation
that balances metric and semantic costs.

2.2 Target Search

Humanitarian scenarios such as SAR often require
searching for specific, task-relevant objects, and
coverage-based exploration methods can be inefficient
as they search every possible location. Finding
targets in such situations requires a robot to reason
in the environment and narrow the search only toward
interesting regions. For example, in an earthquake,
the search for a victim might start by identifying the
living room, then progress to locating objects like tables,
and ultimately find humans who might be trapped
underneath. Locating the living room and then carrying
out a refined search within the room require different
assumptions, and thus, we distinguish between target
search in structured and unstructured environments in
sections 2.2.1 and 2.2.2 respectively.

2.2.1 Structured Environments

Structured environments refer to closed indoor spaces
with well defined boundaries like perpendicular walls
and consistent object placement (for example, searching
for a computer screen in an office space). The works
mentioned in this section use semantic reasoning to guide
the search for targets.

Earlier works such as [20], investigated object-level
semantic representations to predict the focus of human
visual attention. The researchers used an open
vocabulary Concept-Net to determine object-object
relationships via cosine similarities. They discovered
that objects that attracted more attention had higher
conceptual similarity to nearby objects and the overall
scene itself. This concept is the primary motivation for
developing a semantic priority mask in our work.

Recent works, such as VLFM [9] and SemUtil [21]
use foundation models to determine semantic object
relationships for robot navigation tasks. Both methods
use semantic knowledge to bias exploration frontiers
but differ in the source of knowledge. VLFM uses a
Vison-Language Model, while SemUtil uses an object
detector to first get class labels from images and then
infer the similarity scores with a Large Language Model
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(LLM). Both approaches achieve competent results, but
we use the latter method because of its simplicity and
greater control over the computer vision pipeline. An
even more recent work called SEEK [10], develops a
separate model called the Relational Semantic Network
which is trained using offline queries to an LLM and
directly estimates the probability of finding the target
object.

Notably, these methods have two main drawbacks.
First, VLFM and SemUtil are limited to simple
structured environments. The results are demonstrated
on datasets of indoor spaces [7] and risk overfitting on
domain-specific priors od indoor environments. SEEK
demonstrates results in challenging outdoor spaces
but uses prior map knowledge. Secondly, all the
methods use planning strategies that do not scale well
to cluttered environments. VLFM and SemUtil use
greedy frontier selection which can be problematic when
there is uncertainty in the output of the foundation
model. SEEK uses Markov Decision Processes (MDP)
for lower dimension problems like optimal room
selection. Moreover, MDPs suffer in multi-resolution
information-gathering tasks like exploration with a 3D
action space [22]. We overcome these limitations by
proposing a 3D target search framework that makes no
assumption on the structure of the environment and uses
combinatorial optimization to create non-greedy plans
that are robust even under semantic uncertainty.

2.2.2 Unstructured Environments

Unstructured environments are complex 3D spaces
with unpredictable geometric and semantic features.
These environments are often encountered during
disaster response or inspections in subterranean settings.
According to Guivant et. al. [23], one of the key
challenges of deploying robots in such environments is
to develop appropriate map representations.

In works such as [24] and [25], the targets in
the environment are represented on an object level.
In [24], the researchers address robotic exploration in
challenging subterranean environments, such as tunnels.
An online object detection pipeline is used to project
2D bounding boxes into the 3D world, updating location
and confidence estimates through a Bayesian log-odds
update. However, multi-class Bayesian updates in 3D
can be memory intensive, and works such as [24] or [26]
mitigate this problem by storing only a finite number of
most-likely classes (5 and 3 respectively). In contrast, our
approach compresses semantic labels to discrete priorities
directly at the 2D stage, and performs simple weighted
updates, thereby avoiding the high memory demands of
3D semantic maps.

In [25], viewpoints are sampled around frontiers and
as well as objects to reconstruct objects as point clouds.
Our work does not focus on reconstruction but we also
use object-centric viewpoint sampling to perform parallel
inspection and exploration. Additionally, the work in [25]
does not use semantics to reason within the environment,
and the authors have not yet provided the full code.

In [27], the concept of visual attention is used to
guide search towards objects of interest. The target
object’s visual features are used to create a probability
map in the 2D plane of the ground robot, and belief space
planning is used to navigate. Although the work is a good
resource for creating disaster response environments,
projecting 3D information to 2D probability maps can
result in loss of information, particularly in unstructured
environments [28]. In contrast, the work in [29] creates a
3D volumetric saliency map for drone-based exploration.
The authors use a 2D saliency mask to mark important
regions in 3D, and then prioritize high-utility viewpoints
that can guide exploration to salient regions. However,
they only use saliency as the source of importance
without incorporating any semantic reasoning. In
contrast, we use semantic relationships inferred from an
LLM and evaluate viewpoint utility directly using biased
exploration frontiers. Our work is conceptually related
to [29], which we use as a baseline for comparison.

3 Preliminaries

3.1 Background

3.1.1 Frontier Exploration and Mapping

The goal of 3D robotic exploration is to traverse a
defined volume V and incrementally reduce the unknown
space V \ M by creating an occupancy map M. This
map is a 3D volumetric grid of voxels, with each voxel
mk ∈M storing the probability of occupancy Pk. These
probabilities are updated using an inverse camera sensor
model and Bayesian Inference [30].

Among various methods for exploration,
frontier-based methods are most relevant to our
work [5], [9], [31]. These methods first detect a set
F of frontiers – which are boundaries between known
and unknown space, and then sample a set V of
viewpoints – which are poses in free space that can
’view’ the frontiers. Exploration frameworks then focus
on two main problems: (a) Computing the order in
which these frontiers are visited – which dictates the
efficiency of exploration, and (b) Creating a function
that quantifies the utility of a viewpoint – which dictates
the quality of exploration. This function can be based
on information gain [32], volumetric coverage [5], or
semantic importance [9]. Unknown space in V can then
be reduced by finding the most efficient path through
high-quality viewpoints.

To maintain efficiency, frontiers are typically
clustered into groups of voxels with each group having
a minimum size Fmin, as demonstrated in works such as
[5]. Additionally, the utility of a viewpoint is required to
be at least νmin.

3.1.2 Visual Attention

Visual attention refers to the process of selectively
focusing on specific visual information within our
perceptions [33]. In literature, visual attention is

3



typically classified into two types: Bottom-Up and
Top-Down [27], [34], [35]. Bottom-up attention is an
object’s intrinsic drive to attract attention, often called
saliency. This includes features like brightness, color,
texture, etc. Top-down attention refers to an actor’s
deliberate decision to focus on specific objects guided by
prior knowledge and experience. For instance, a human
searches for keys in a room even though they are not
salient. Humans use both contexts when navigating
in unknown environments and it is essential to impart
robots with such capabilities. In the context of this
research, a region of high visual attention can be seen
as 3D space that has a higher likelihood of containing
targets and should prioritized for further investigation
and refinement of the search.

3.1.3 Semantic Relationships

Semantics are labels or categories that humans use to
classify objects. Humans use accumulated semantic
knowledge to derive relationships between objects of
interest when looking for targets. For instance, when
searching for a laptop, we first look for a table

as opposed to a toilet, because the former is more
correlated with the target object. More formally, these
relationships can be defined using a semantic relationship
function F : S × S → R+ that maps a set S
of natural language classes to scalar-valued similarity
scores. State-of-the-art large language models like CLIP
[36] or BERT [37] use open vocabulary concept databases
and contextual understanding to infer such relationships.
These models use a neural network to first transform
the labels to vector embeddings which are real-valued
representations of the text labels in a high-dimensional
feature space. Then, the cosine similarity score Sc
between two labels is obtained by calculating the dot
product of their vector embeddings A and B:

Sc(A,B) =
A.B

∥A∥∥B∥
(1)

3.1.4 Combinatorial Planning

Recent successes in robotic exploration use combinatorial
optimization methods to formulate a non-myopic global
path through the viewpoints in V [5], [6], [18], [38].

A traveling salesman problem (TSP) is often used
to create this global path. The TSP is a combinatorial
optimization problem that decides the order to visit a set
of nodes V connected with edges E on a graph G : (V, E).
In its simplest form, nodes in V are positions in SE(3),
which means that the cost c(e) to travel along edge
e ∈ E is symmetric and equal to the travel distance. To
make calculations efficient, the costs between nodes are
represented using a cost matrixC. The cost of a complete
tour σ is defined as C(σ).

In [5], the authors expand c(e) to include the
time cost for switching between two viewpoints. This
makes the resulting plan more consistent and decreases
oscillation because large changes in motion are penalized.
We refer to this as the kinematic TSP. Recent works

in literature use variants of the TSP, incorporating
additional objectives like information gain [6][12]. We
expand on the work in [5] and [12] to create efficient
plans that incorporate both metric and semantic costs in
the optimization objective C(σ).

3.2 Problem Formulation

The goal of this work is to use sensor data from a
MAV to simultaneously explore a previously unseen 3D
environment and create a global plan that leads to a
possible target in minimum time.

3.2.1 Environment Features

The environment is modeled using metric and semantic
features. The metric features are modeled using a
3D global occupancy map M bounded by a volume
V ⊂ R3. This map can be used for object localization
and local obstacle avoidance. The semantic features
are available as a set S of possible Objects Of Interest
(OOIs) understood by natural language semantic labels.
Further, it is expected that the objects in S have
semantic relationships defined by a function F which can
be exploited to guide the robot towards a target object
o∗ ∈ S. A target is considered found when its relative
semantic segmentation area in the robot’s field of view
crosses a threshold λmin.

3.2.2 MAV Model

An autonomous aerial robot equipped with an RGB-D
front camera is used to perform the search task. xt is
defined as the robot’s pose in SO(3) at time instant t
and the action space of the robot is (x, y, z, ψ) assuming
differentiable flat control [39]. The MAV has a maximum
linear velocity vmax, maximum acceleration amax, and
maximum yaw rate ωmax. At each time instance t the
robot receives a measurement tuple zt = (xt, Ic, Id),
where Ic and Id are the RGB and depth images,
respectively.

Problem statement : Given a target object o∗, a
bounded volume V , and the robot’s initial configuration
x0, use zt to find a collision free global plan σ through V
such that o∗ is discovered in minimum time.

4 Methodology

4.1 Overview

The goal of the method is to take RGB-D images along
with the robot’s pose and output a global plan that leads
the robot toward the target.

To motivate our method, consider how humans search
for important objects. We infer target-object relations
from the environment based on context and create a
mental map of interesting objects in 3D space. Then,
we conduct a refined local search near OOIs and rely
on active perception maneuvers to find the target. For
instance:
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• Opening a wardrobe (OOI) to find clothes (target)
in the bedroom (context), OR

• Looking underneath a table (OOI) to find a human
(target) in an earthquake (context) (see Fig. 1).

Thus, the method is motivated by a simple
realization: To quickly find a target, it is essential to
minimize unknown space near objects of interest that are
conceptually and spatially related to the target object.
This could be seen as prioritizing search to specific
regions, unlike coverage-based exploration, which tries
to minimize all unknown space. Additionally, if we can
balance both tasks optimally, we can ensure that the
method works even under semantic uncertainty and does
not incur significant costs in exploration time.

The pipeline consists of three components. The
Semantics module (Section 4.2) processes the RGB
image to segment objects and ranks them using a Large
Language Model. This ranking, called priorities, is
then used to compress the segmentation image into
a 2D priority mask. The Active Perception module
(Section 4.3) uses the priority mask, the depth image,
and the drone’s state to give (a) A set of 3D viewpoints
in free space, and (b) A set of information gains
corresponding to each viewpoint. This module is also
responsible for fusing new measurements to maintain a
consistent global map. The Planning module (Section
4.4) solves a combinatorial optimization problem over
the 3D viewpoints to create a global plan that balances
metric and semantic gains.

4.2 Semantic Priority Masking

The goal of this module is to use the RGB image Ic to
generate a priority mask image Ip that has pixel-wise
discrete priority values for each object of interest.

A semantic segmentation image Is and a set St ∈ S
of natural language classes is generated using Ic at time
t. The set S is a diverse but limited superset containing
possible objects that can be encountered in a wide variety
of scenarios. The image Is contains unique pixel wise
labels {1, 2, .., ∥St∥} for each class in St. In this work,
we assume the existence of a learning-based method like
Mask-RCNN [40] or Fast-SAM [41] that can generate Is
and St.

The segmentation image often contains noise and
spurious detections that are not relevant to downstream
tasks like planning [42]. Motivated by this, instead of
using Is directly, we compress the semantic segmentation
image into a priority mask Ip. This image contains
pixel-wise discrete integers for each class, indicating their
relative importance to the target class. The process to
generate this mask is demonstrated in Fig. 1, and is also
explained as follows:

1. Sequence preparation: First, situational context
about the scenario is added to the target object
in the set S. This is done by appending
a context label to the target class using the
formulation: [label] [preposition] [context]. For

instance, in an earthquake scenario, where the
target is a human, the sequence becomes human in

earthquake. This helps to form more appropriate
relationships between the target object and other
environment objects.

2. Vector embedding: Next, each class in S
is tokenized using the model’s appropriate
tokenization algorithm and passed through the
model (LLM) to give an output tensor of size
∥S∥ × ns × ne. Here, ns is the size of the sequence
(3 for the target; 1 for other objects), and ne is the
size of the embedding vector for a particular model
(bert-large-uncased [37]). Since each vector along
the sequence dimension (ns) contains contextual
information gathered from the entire sequence, the
tensor is averaged along this dimension, which gives
a tensor τ of size ∥S∥×ne. Intuitively, each row of
τ is the real-valued representation of the semantic
class label in a high-dimensional feature space. The
target embedding vector is τ∗.

3. Cosine similarity: Since the embeddings are vectors
in the feature space, comparing their directions can
provide insights into their similarity. Each vector
in τ is compared to τ∗, yielding similarity scores
for each class. These scores are real values ranging
from 0 to 1. This process is similar to the semantic
relationship function F mentioned in Section 3.1.3.

4. Priority masking: The similarity scores are
thresholded to retain objects of interest and
subsequently scaled to integer values within the
range [1, pmax]. Here pmax is a maximum
priority value and the rationale behind this range is
elaborated in subsequent sections on mapping and
planning. The scaling process creates a mapping
from the set of classes (S) to integer-valued
priorities, which we refer to as the priority function
r : S → N+. The labels for each class in the
segmentation image are then pixel-wise replaced
with their corresponding priority to create the
priority mask image Ip.
In practice, the priorities are stored in an offline
vector at the beginning of the episode for a given
context, target, and set S. At runtime, the
classes in set St are queried for their corresponding
priorities from the offline priority vector.

The parameter pmax controls the sensitivity of the
search. When there is a large dataset of objects with
distinct semantic meanings, the cosine similarities have
a high variance. Even a small pmax value can distinguish
between relevant and irrelevant priorities, thus guiding
the search correctly. However, if the dataset is limited to
a set of correlated objects, then pmax can be increased
to refine the search and detect stronger correlations to
the target object. However, a higher pmax also tends to
make the search more greedy, and it can be tuned based
on the expectation of finding semantically related objects
close to the target. A pmax = 1 value implies complete
compression where all objects are equally important.

5



Figure 1: Semantic priority masking pipeline. Red arrows
and blue arrows represent online and offline operations,
respectively. At runtime, the priority of each class in St is
queried from a pre-computed priority vector to create the
priority mask Ip.

4.3 Active Perception

The goal of the active perception module is to use the
priority mask Ip, depth image Id, and robot pose xt to
create (a) a set of viewpoints V in free space, and (b) a set
of information gains I corresponding to each viewpoint
in V.

Section 4.3.1 provides a way to represent semantic
priorities in 3D. Section 4.3.3 describes a method to
diffuse semantic priorities to neighboring frontiers and
Section 4.3.2 helps maintain a consistent global map for
objects of interest. Section 4.3.4 describes the process
of generating viewpoints in free space and Section 4.3.5
describes a novel procedure to calculate information gain
for each sampled viewpoint. Figure 2 shows an overview
of the complete active perception pipeline.

4.3.1 Priority Map

The priority values in Ip need to be represented on the
3D map where the drone will subsequently navigate and
collect new observations. The priority mask Ip, the depth
image Id, and robot pose xt are used to create a 4D
depth-intensity point cloud observation Ω. Each point
Ωk in this point cloud carries the 3D position in the
world frame (xw, yw, zw) and the priority value pw as
the intensity channel. Let di = (ui, vi, zi) be a point
in the depth image Id and pw be the corresponding
priority value from Ip at (ui, vi). The point cloud Ω is
generated using projective transformation and a camera
sensor model as follows:

Ωk =

[
Tw

c K−1di
pw

]
(2)

Here K is the camera’s intrinsic transformation matrix,
and Tw

c is the transformation matrix that transforms a
point in the camera frame to the world frame. The point
cloud is also post-processed using voxel-grid filtering and
statistical outlier removal. The priority value pw at
each 3D point k in Ω is then used to update a discrete
volumetric grid P at the corresponding voxel pk ∈ P
using a simple weighted update (Eq. 3).

pk ← (1− α)pk + αpw ∀k : 1→ ∥Ω∥ (3)

Here α is a learning rate that updates the map
progressively and prevents noise from being integrated.
Note that a Bayesian multi-class update, as utilized in
[26], could also be used to store the priority values in
the map, but this would increase memory complexity,
scaling linearly with O(pmax). In our work, this approach
does not offer a significant advantage because accurate
map reconstruction is not the goal, and the priority map
serves only as an intermediate representation for biasing
frontiers (see Section 4.3.3).

Next, a local section Pl ⊂ P centered around the
drone is retrieved to keep the computational efficiency
bounded. Points in this local section are clustered based
on priority values using a region-growing algorithm to
generate a distinct set of clusters in 3D space. Each
cluster is referred to as an Object and is stored as a data
structure containing detailed information such as the
bounding box, centroid, and mean priority of the cluster.
Thus, this process produces a local set of distinct 3D
objects (Ol) that are clustered based on priority values.

4.3.2 Object Fusion

As the robot moves around and takes new observations, a
new set of local objects is created at each iteration. This
local set of objects Ol needs to be fused with already
existing objects in the map, i.e., a global set Og.

To achieve this, a custom bounding box fusion
algorithm was developed based on geometric and
semantic features. For each object ol ∈ Ol, Og is searched
for a potential merging candidate og. Two objects can be
merged into each other if (a) the ratio of the overlapping
volume to each object’s volume exceeds a threshold µl,
for either object and (b) the objects have similar mean
priorities. Note that some works, such as [25], use 3D
Intersection Over Union (IOU) for merging, but we do
not use that here because it only permits the merging
of similar boxes. Even if ol appears different from og, it
might belong to the same object and thus needs to be
merged (see Fig. 4). When a merging candidate og is
found, it is expanded in place to incorporate ol, and ol
is removed from the local set Ol. If a potential merge
candidate is not found, the local object is simply added
to the global set Og.

This process is efficient because only a small set,
Ol, is traversed once to identify potential merges, and
merging happens in place. However, this approach may
overlook candidates for merging within the global set
itself. Therefore, the same fusion procedure is applied to
each object in the global set Og with a separate threshold

6



Figure 2: Active Perception pipeline. In (b), the priority map voxels
are cubes, and frontier voxels are spheres. (c) shows sampling for object
viewpoints, see Fig. A.1 for frontier viewpoints.
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µg. Since this is done after merging the local objects,
Og remains bounded in size, and this second iteration of
fusion is also efficient in practice.

The object fusion module results in a global set of
distinct objects Og that remains consistent over time and
is updated with the most recent point cloud measurement
Ω.

4.3.3 Frontier Diffusion

The goal of this module is to get a set F of prioritized
frontiers. This motivation for this section directly draws
from the goal of minimizing unknown space near objects
of interest (Section 4.1). In exploration terminology
(Section 3.1.1), if frontiers can be biased to have higher
weights near objects of interest, we can refine search to
interesting regions of the space and find the target faster.

To implement this mathematically, the priority
values from the local map section Pl are diffused
into neighboring frontier voxels using a 3D partial
convolution. A partial convolution was chosen for this
diffusion process because frontiers are sparse structures
in the voxel grid and a partial convolution allows
normalization for only valid voxels [43]. A Gaussian
kernel with spread σ, and size W is used, thus making
it a 3D Gaussian filter. Figure 3 shows an example
calculation in 2D, and Fig. 2b shows a simulation
from RViz, where the diffusion process is applied to 3D
frontiers.

The diffusion process is applied to each frontier voxel
in a local region surrounding the drone to maintain
computational efficiency. Note that coverage-based

exploration frameworks such as [5] keep a minimum size
for frontier clusters. We avoid this thresholding because,
in semantic target search, even small regions of space can
hold significance.

The frontier diffusion module thus results in a set
of F of exploration frontiers embedded with semantic
priorities which can further be used for downstream tasks
like informative path planning.

4.3.4 Viewpoint Sampling

This module generates a set of viewpoints V which are
candidate poses sampled in free space to ’view’ the set of
frontiers F .

We use frontiers F and objects Og to generate two
distinct viewpoint sets called Frontier Viewpoints (Vf )
and Object Viewpoints (Vo). Frontier viewpoints are
generated by uniformly sampling poses around frontier
clusters, the same as the process in [5]. Object
Viewpoints are generated around each object in the
global set of objects Og.

When planning a path through viewpoints, V
contains either Vo or Vf . Vo is used first as a priority
and Vf is used if Vo = ϕ. This approach works
well in practice because sampling around objects helps
reduce uncertainty in semantically important regions and
provides high-quality observations of the objects [25].

The uniform sampling process is defined as follows.
Let rc be the origin of the cylindrical coordinate system
used for sampling. A viewpoint νr,θ,z is then generated
at angle θ, radius r, and height z using Eq, 4.
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νr,θ,z = rc + r ∗ (cos(θ), sin(θ), z) (4)

where,

r = rmin + i(rmax − rmin)/nr ∀i = 1→ nr (5)

θ = θmin + j(θmax − θmin)/nθ ∀j = 1→ nθ (6)

z = rcz (7)

For viewpoints in set Vf , rc is equal to the centroid of
the points in a frontier cluster, and for set Vo, rc is the
centroid of an object’s axis-aligned bounding box (see
Fig. A.1 and 2b). The variables rmin and rmax define
the range for sampling the radius, and nr is the number
of samples taken. Similar notation is used for θ. The
sampling height is just the z component of rc.

Additionally, for object viewpoints, we propose
a perception-aware filtering process that discards
viewpoints unable to fully see the object o in its field of
view. The camera’s sensor model is used to achieve this.
First, the eight corner positions of an object’s bounding
box are projected to the camera image plane using the
inverse of the procedure from Section 4.3.1 to create a
set Ro. An object is considered ’in view’ when all 2D
points in set Ro are inside the image bounds. Equation
(8) describes this condition.

|u| >= µs.w AND |v| >= µs.h ∀(u, v) ∈ Ro (8)

Viewpoints that do not satisfy the condition in Eq. (8)
are discarded. The tolerance parameter µs is a small
value that keeps the detected object safely within the
bounds and thus accounts for imperfect sensing. The
perception-aware filtering allows the drone to maintain
consistent object detections across time and enables
simultaneous inspection of objects, which is often an
auxiliary goal when looking for targets.

4.3.5 Information Gain

This section describes a novel formulation for computing
a balanced coverage and semantic information gain for a
viewpoint ν ∈ V, using the prioritized frontier set F .

Consider Fig. 2d, where the frontier voxels are
colored based on their priorities. Rays are cast from
a candidate viewpoint ν toward the voxels in F to
determine the priority value at the ends of valid rays.
A ray is considered valid when it is unobstructed by
occupied or unknown space. Voxels at the end of valid
rays create a new visible frontier set Fν ⊂ F . Each
priority value in Fν is then passed through a transfer
function Φ and summed up to give the total information
gain Iν of the viewpoint ν (see Eq. (10)).

Φ(f) = max(eγ(f−1), 1) (9)

Iν =
∑
f∈Fν

Φ(f) (10)

Figure 5: Global plan created for frontier viewpoints Vf

(left) or object viewpoints Vo (right)

Here, γ is a parameter that decides the rate at
which priority values are weighted on an exponential
curve. The function Φ works with the range of priority
values [1, pmax] to balance coverage exploration and
semantic target search. To demonstrate this, consider
an exploration frontier that is far from a semantically
interesting object and thus consists of voxels that have
the least priority, i.e. 1. When Eq. (9) is used
to calculate the gain for such a frontier, it will equal
volumetric coverage because Φ(1) = 1. This situation is
equivalent to coverage-based exploration methods.

Contrarily, when a frontier is close to a semantic
object (Fig. 2d), the raycasting procedure will weigh
high-priority voxels exponentially, thereby prioritizing
viewpoints that are facing semantically meaningful
regions of 3D space. The parameter γ determines the
greediness of the viewpoint evaluation. A higher γ
selects viewpoints oriented more towards semantically
interesting regions, while a lower gamma makes the
search more coverage-based. Note that a γ value of 0
equals coverage-based exploration.

Thus, our method of calculating information gain
from frontier voxels unifies coverage and semantic
exploration in a single calculation at the viewpoint level
and provides a parameter to bias search towards the
target.

The Active Perception module thus results in a set V
of viewpoints sampled around either Frontiers or Objects
and a set I of information gains with balanced volumetric
and semantic utility.

4.4 Combinatorial Target Search
Planner

The goal of the global planner is to use a set of viewpoints
V, their respective information gains I, and the drone’s
state xt to plan a global path that minimizes time.

Owing to recent successes in combinatorial planning
for exploration, we solve a combinatorial optimization
problem to create a global plan. Contrary to a classical
TSP which minimizes tour distance, semantic target
search focuses on prioritizing viewpoints with high
semantic gains. To achieve this, the works in [12] and
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[6] modify the tour cost C(σ) to minimize the sum of
waiting times (or latency) for all nodes, weighted by
the information gain. This can be seen as a Weighted
Minimum Latency Problem. The planner in [12] is most
relevant to our work and we extend it to create efficient
time-optimal tours through 3D viewpoints.

Let σ be a potential tour represented as a
permutation of the viewpoints in set V. The information
gains in set I are used as weights for each corresponding
viewpoint’s waiting time in the MLP formulation [12].
The cost function used in the weighted MLP for a tour
σ is then defined as:

C(σ) =

∥σ∥∑
i=1

I(σ(i))

i∑
j=1

Cσ(i)σ(j) (11)

Intuitively, solving the objective from Eq. (11)
means that viewpoints with higher information gain get
scheduled earlier in the tour. Since the information
gain was calculated by balancing coverage and semantic
priorities in section 4.3.5, this makes the plan more
robust under semantic uncertainty, ensuring that
exploration is not significantly compromised in pursuit
of the target. This is better than the greedy Next Best
Viewpoint planner [15] because it minimizes the average
waiting time across all relevant viewpoints.

The work in [12] uses the distances between two
viewpoints as elements of the cost matrix C. However,
when using robots with complex dynamics such as MAVs,
the time to switch between two viewpoints is a more
appropriate cost function. Thus, we use the kinematic
cost function from [5] to create the elements of the cost
matrix.

Let V∗ = V ∪ xt be the modified set of viewpoints
containing the agent’s pose at time t. Cij is then defined
as the maximum time required to switch between two
viewpoints νi, νj ∈ V∗.

Cij = max

(
length(νpi , ν

p
j )

vmax
,
|νψi − ν

ψ
j |

ωmax

)
(12)

Here, νpi is the 3D position, and νψi is the yaw angle of
the ith viewpoint from set V∗. The cost function in Eq.
(11) using the cost matrix from Eq. (12) is minimized
using the Large Neighbourhood Search and 2-Opt meta
heuristics to obtain a near-optimal tour σ. Figure 5
shows the resulting tour for both Frontier Viewpoints
Vf and Object Viewpoints Vo.

In summary, the tour σ minimizes the time to arrive
at semantically important regions of the environment,
thus providing situational awareness in time-critical
emergency response scenarios.

Figure 6: Earthquake environment(Gazebo). Top view in
Fig. B.2

Figure 7: Cave environment(Gazebo). Top view in Fig. B.3

5 Experimental Setup

5.1 Simulation Environments

Two realistic simulation environments were used to
evaluate the algorithm in the PX4-Gazebo SITL
simulator1. The Earthquake is a custom environment
(Fig. 6) and the Cave (Fig. 7) is a section of the ’Cave
Circuit 02’ world from the DARPA SubT Challenge2.

A common set of objects was used as semantic clues
for both environments. These objects are a combination
of object classes from the DARPA SubT challenge,
ChatGPT prompts, and common sense objects that
are expected near a human target in search and rescue
situations (see Table B.1). However, it was observed that
including only expected objects could introduce bias,
making it hard to conclude if using semantic relationships
was beneficial. To reduce bias, unexpected objects like
toy and plant were also included to create sufficient
diversity in objects and ensure fairness of the priority
inference model. Both environments contain a trapped
human as the target, which was sufficiently occluded to
make the problem challenging.

1docs.px4.io/main/en/simulation/ros_interface.html
2https://www.darpa.mil/program/

darpa-subterranean-challenge
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Note that Gazebo is not a photo-realistic simulator
and existing detection pipelines performed poorly (see
Fig. B.4). Since training a full semantic segmentation
pipeline is beyond the scope of this work, ArUco markers
were used as a proxy for 2D image segmentation. These
markers were placed near their respective semantic
objects, and the 2D segmentation image then contains
a pixel-wise label for each marker o ∈ S.

Both environments were made sufficiently large to
ensure realistic exploration and the drone was started at
the same pose for all simulation episodes (see Table 2).
The start pose was chosen to be as far as possible from the
target to observe the effect of semantic exploration. In
the earthquake environment, this starting pose is at the
door entry to the room, and in the cave environment, it
is the default staging area used in the DARPA challenge.
It was observed that there was sufficient variance in
the SITL simulation because of drone dynamics, virtual
sensors, or non-deterministic behavior in parts of the
FUEL pipeline. Therefore, multiple start poses were not
recorded.

5.2 Software Architecture

One of the primary goals of the thesis was to extensively
validate simulation results with hardware experiments.
This decision significantly influenced the choice of
algorithms, software packages, and the general mindset
of software development. It was important to invalidate
potential software packages as early as the literature
study phase. For instance, we rapidly tested mapping
frameworks like HYDRA [44], RACER [45], and FUEL
[5] and found FUEL to be most relevant to the active
perception task. The choice of the appropriate simulation
pipeline was made after invalidating gym-pybullet-drones
[46] and choosing the PX4-SITL framework because of
easier sim2real transfer.

Our universal software stack is based on the Robotics
Operating System (ROS) and integrates target search
capability into a modified exploration pipeline from [5].
The architecture is demonstrated in Fig. 8. A key
capability of the software is that we use the same pipeline
for both hardware and software experiments, with the
only difference being the source of the measurement
tuple zt. For simulation, this measurement comes from
the Gazebo simulator, whereas for hardware experiments
this measurement comes from the onboard camera and
positioning system. This setup establishes a general
pipeline that can be expanded to other photorealistic
simulators or more complex real-world environments
with onboard position systems like Visual Inertial
Odometry (VIO).

5.3 Hardware Setup

Hardware experiments were performed with a custom
Micro Aerial Vehicle (MAV) built at the Mobile Robotics
Laboratory at Delft University of Technology [47]. The
MAV is equipped with an Intel Realsense D455 camera
and an Nvidia Jetson Xavier NX onboard computer. A
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Figure 8: Software architecture. *A modified version of
FUEL [5] is used for mapping and local planning.

Parameter Value Parameter Value

α 0.9 µs 0.1
vmax 0.5 m/s amax 0.5 m/s2

ωmax 0.7 rad/s h 480
w 848 σ 2
W 5 pmax 8
γ 4 νomin 25
νmin(e.q.) 20 νmin(cave) 10
∥S∥ 22 λmin 0.01
µl 0.5 µg 0.5

Table 1: Parameter values for experiments. Note: (e.q. =
earthquake). νmin and νomin are minimum information gain
values for frontier and object viewpoints, respectively.

HolyBro Kakute F7 V2 flight controller was used with
PX4 autopilot software. The MAV was localized in
the environment via a Vicon motion capture system.
ArUco markers were placed in the environment as
semantic objects of interest and the experiments were
conducted in sufficiently cluttered configurations with
screens and boxes as obstacles. Figure 9 shows a
potential environment for the experiment.

Hardware experiments with MAVs come with a
unique set of challenges and some of them are briefly
mentioned as follows:

• Our method strongly relies on color images for

Environment Bounds (x, y, z) x0 (x, y, z, ψ)

Earthquake (12, 12, 1.5) (−4.5,−4.5, 0, 1.57)
Cave (30, 30, 2.5) (0, 0, 0, 0)
Real-world (6, 6, 2) -

Table 2: Maximum volume bounds and start poses (x0) for
the environments. Positions (x, y, z) are in meters, and yaw
angle (ψ) is in radians. For hardware experiments, start pose
was kept random.
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Figure 9: Lab environment for hardware experiments

creating the priority mask. PNG compression
was used since the images were exchanged over
a bandwidth-limited Wi-Fi Network. Level 5
PNG compression gave a sufficient frequency of
15 Hz, and a bandwidth of ≈ 1.5 MB/s without
compromising on resolution. We used similar
compression for the depth stream.

• When working with drones, dynamics strongly
influence all parts of the pipeline. Even though
the mapping framework reported good results for
yaw rates up to 1 rad/s, they had to be reduced
because motion blur caused inconsistent detections
and poor obstacle avoidance.

• Since AruCo markers were used for detection,
false detections resulted in oscillating semantic
priorities (see Fig. B.6). However, progressive
map updates and the diffusion process made the
algorithm robust to semantic uncertainty.

6 Simulation Results

In this section, we present and discuss the results of
the proposed method on the simulation environments
from Section 5.1. Evaluation metrics are proposed in
Section 6.1, and three baselines are chosen for comparison
in Section 6.2. We provide the primary performance
comparisons with baselines in Section 6.3 which are
further supported using qualitative results in Section
6.4. Finally, we also analyze our method in depth using
auxiliary analysis and ablation studies in Sections 6.5 and
6.6 respectively.

6.1 Evaluation Metrics

6.1.1 Performance Metrics

Success %: This metric calculates the percentage of
episodes when the target was successfully found in a
total of n trials. An object o (or target) is considered

found when the fraction of object pixels λo crosses a
threshold λmin in the segmentation image (see Eq. 14).
For example, a value of λo = 0.02 means that the marker
occupies 2% of the field of view in the image plane (see
Fig. B.5).

λo =
β

wh
(13)

Success(o) =

{
1 λo ≥ λmin
0 λo < λmin

(14)

Here, o is an object, β is the number of pixels belonging
to the object’s ArUco marker, and w and h are the
segmentation image width and height respectively. The
parameter λmin depends on the environment complexity
and camera intrinsic matrix K.

Time to target: A commonly used metric for
ObjectNav tasks is Success weighted by Path Length
(SPL) [48]. A notable drawback of this metric is that
it only considers travel distance in SE(3) and for robots
with complex dynamics (like MAVs), the completion time
is recommended [49]. Thus, we record the first time
instant when a target o∗ was successfully detected (i.e.,
λo∗ ≥ λmin) and call this metric as the Time to target
t∗.

Exploration time: Since balancing exploration and
target search is a key goal for our method, we also
measure the exploration time (tf ) in seconds. An
environment is considered explored when no visible
frontier can be found for 10 consecutive iterations. For a
frontier to be considered visible, it must have (1) at least
Fmin number of clustered voxels, and (2) at least one
viewpoint with minimum information gain νmin. These
conditions are directly based on the work in [5].

6.1.2 Auxiliary Metrics

Singular data points like completion time and success %
are easy to record and compare, but they can have high
variance and do not quantify the quality of search [48].
We propose two additional metrics in this section which
are used for auxiliary analysis and ablation studies in
further sections.

Time in view: We quantify the quality of object
observations using a new metric called Time in View
(TIV). This metric measures the time in seconds that
an object was successfully detected (i.e., λo > λmin)
throughout the episode. We record the TIV for all
objects in the environment, and a higher TIV indicates
better performance. Intuitively, this metric acts as a
proxy for temporal consistency of object detection scores
[50]. The rationale for using this metric is further
explained in appendix C.1.

Cumulative Information Gain: Semantic target
search methods bias exploration toward objects of
interest in the environment because searching all
unknown space is inefficient when looking for targets.
To quantify the search quality of such methods, we
propose a new metric called the Cumulative Information
Gain (CIG), Iwt . CIG is defined as the cumulative

11



weighted information gain recorded at time instant t,
calculated using the weighted entropy of a ground truth
importance mapA. Intuitively, this metric measures how
well the uncertainty reduces when certain regions of the
map carry more semantic importance than others. The
process to calculate Iwt and create the importance map
is delineated in appendix C.2.

A graph for Iwt can also be plotted against time
to show how uncertainty reduces. Additionally, the
completeness of the search can be measured by the gain
at the end of the episode i.e. Iwtf . The rationale for using
this metric is further explained in appendix C.2.

6.2 Baselines

The proposed method is compared to two coverage-based
exploration methods and a saliency-aware exploration
method. The experiment conditions for the three
baselines are as follows:

1. FUEL: This refers to the pure coverage-based
exploration algorithm used in [5]. The sensor range
Rmax for FUEL was kept the same as our work (3
meters) to make comparisons fair. The minimum
frontier size (Fmin = 100) and minimum viewpoint
coverage gain (νmin = 20) parameters were left
unchanged from the original work. The episode
ends when there are no new frontiers detected.

2. FUEL-complete: It was noticed that finding the
target in small regions depended strongly on the
Fmin and νmin parameters. Therefore, in the
FUEL-complete method, these parameters were
tuned optimally to balance target search and
exploration. For the Earthquake scenario, Fmin =
0 and νmin = 10 were used. For the Cave scenario,
Fmin = 0 and νmin = 0 were used. Additionally,
frontier down-sampling (see [5]) also had to be
turned off due to the narrow passages and small
frontier sizes in the Cave environment.

3. VSEP: This refers to the exploration framework
from [29] which guides the robot to important
regions using a visual saliency mask. The original
work uses color filtering operations to create this
mask. However, this is not relevant to our work,
and to keep the comparison fair, we use the priority
mask generated from our method (Section 4.2) as
the 2D saliency mask. It was also observed that
VSEP was highly inefficient with the small sensor
ranges in our study (Fig. C.9) and some relaxations
were essential for the comparison. We use Rmax =
7m, as opposed to 3 meters. This made the sensing
less difficult and helped the RRT planner to create
better plans. Note that the authors also use 7
meters to report results in their original paper.
vmax was left unchanged (0.5m/s) but ψmax was
increased to 0.7rad/s.

6.3 Performance Results

This section presents the performance results of our
method compared to the three baselines from Section
6.2 based on the performance metrics from Section 6.1.1.
Table 3 summarises results for both Earthquake and Cave
simulation environments. Data was gathered from 10
simulation runs for the Earthquake environment and 5
simulation runs for the Cave environment. The results
are discussed in the following paragraphs.

FUEL rarely finds the target but consistently
completes exploration faster due to two reasons:

• It relies on volumetric coverage gains from frontiers,
which do not vary significantly in size. This
consistency in information gains across frontiers
leads to global plans that are more stable over
time, allowing the MAV to maintain high speeds
throughout the episode.

• It solves a metric TSP using the LKH heuristic,
which is widely recognized for its robustness and
efficiency. This allows FUEL to converge to better
solutions with fewer iterations, resulting in an
overall improved global plan.

FUEL-complete has good target success rates but
it takes longer to find the target as compared to STEM.
This is because FUEL-complete does not use semantic
information to guide search. Moreover, exploration times
for FUEL-complete are higher compared to FUEL. This
is expected because lowering Fmin and νmin significantly
affects the exploration efficiency. A lower Fmin allows
clustering frontiers even in tight spaces, and a lower
νmin retains viewpoints for these small clusters. While
this helps the MAV in finding the target, it also means
the drone tries to cover small, unimportant areas, thus
reducing speed and increasing time. This behavior
underscores the necessity of prioritizing exploration only
towards regions of high semantic importance, which is
the primary motivation of our work.

In complex environments like the Cave which
has significant occlusions, the success rate for
FUEL-complete drops because the drone is unable
to reach in tight spaces without the explicit object
viewpoints that our method uses. This phenomenon is
also observed when λmin is increased (see Table C.2)
because FUEL-complete only relies on discovering the
target opportunistically without getting close to it.

VSEP performs poorly in both exploration and
target search due to two reasons:

• First, VSEP gets stuck around irrelevant (low
priority) semantics because it compresses the 3D
saliency map into 3 discrete saliency modes i.e.
Salient, Not Salient, or Inhibited. Thus, it
cannot ascertain fine-grained priorities and takes a
long time to find the target.

• Second, VSEP relies on a finite horizon
sampling-based planner [15]. Under computation
and time constraints, such planners often get
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Target search Exploration

Env Method Success % Time, t∗(s) Time, tf (s)

Earthquake
n = 10

FUEL 10% 101.1± 0.0 106.0± 9.8
FUEL-complete 90% 66.2± 21.8 121.7± 6.9
VSEP 20% 165.5± 0.0 212.7± 25.4
STEM (Ours) 100% 47.4± 6.5 143.4± 8.7

Cave
n = 5

FUEL 0% - 108.8± 4.8
FUEL-complete 60% 89.3± 24.6 169.6± 24.6
VSEP 0% - 272.3± 84.1
STEM (Ours) 100% 77.9± 10.1 153.9± 11.5

Table 3: Comparison study with baselines in the Earthquake and Cave environments. n is the number of statistical trials.
Three baselines from section 6.2 were compared to our method on Success percentage, Time to target (t∗), and exploration
time (tf ).

stuck in local optima, resulting in greedy
decision-making. Moreover, VSEP uses waypoint
planning that causes the MAV to stop and
recalculate a new solution at every iteration.
This stop-and-go behavior is a known limitation
of the receding horizon RRT planner [16].
Even with relaxed parameters, this behavior
significantly reduced the speed, and resulted in
larger exploration times. In contrast, FUEL uses a
hierarchical planner which refines the global plan
using a local kinodynamic BSpline, and maintains
higher speeds.

STEM consistently finds the target more successfully
and faster than all methods while keeping the exploration
times under reasonable bounds. This is because of three
reasons:

• The diffusion of priority values into frontier voxels
helps in orienting viewpoints toward objects that
are semantically related to the target.

• The object viewpoint sampling allows the drone
to capture multiple viewpoints in semantically
interesting regions, and often brings related objects
(including the target) into view. For instance, in
Fig. 11, inspecting the blood semantic allows the
human to come into view. In contrast, VSEP uses
the Inhibition Of Return mechanism [29] for salient
objects, which only views a semantic from a single
viewpoint and misses out on crucial information
around it. Section 6.6.1 analyzes the viewpoint
sampling method further via an ablation study.

• The combinatorial target search planner minimizes
the priority-weighted latencies of viewpoints in
the tour. This allows high semantic priority
viewpoints to be scheduled earlier, enabling the
MAV to reach semantically important regions
more quickly. Since the priorities are inferred
from target-object relationships, following these
semantically important regions eventually leads the
MAV toward the target. Section 6.6.2 analyzes the
planning strategy further via an ablation study.

6.4 Qualitative Results

In this section, the drone’s behavior is visualized to
support the quantitative results from Section 6.3.

Figure 10 shows a qualitative comparison of the
methods in the Earthquake environment. The episodes
show the drone’s trajectory and reconstructed point
cloud from RViz. The episode completes when the target
is detected or exploration is completed, whichever comes
first. The RGB view of the front camera is also displayed
whenever the target is discovered.

VSEP produces the worst trajectories because
waypoint-based planning results in stop-and-go behavior.
This produces inconsistent plans, path intersections, and
reduces speed. It was also observed that VSEP often
got confused by the semantic information rather than
utilizing it effectively. In Fig. 10c, this behavior can be
observed where the MAV spends a significant amount of
time in the center, where there is a dense concentration
of ArUco markers.

For FUEL (Fig. 10a) the episode terminates before
completing the full map or finding the target. This is
because the semantics are often located in tight spaces,
where frontier sizes can get very small, and Fmin = 100 is
not small enough to reach these small spaces. In contrast,
FUEL-complete (Fig. 10b) finds the target because
setting Fmin to 0 means it searches every possible place
before the episode ends. However, FUEL-complete takes
unnecessary detours because it only uses coverage gains
and ignores semantic information.

STEM arrives at the target most efficiently because
it utilizes frontier diffusion to move the drone to regions
of high priority. Additionally, balancing semantic target
search with exploration gives trajectories that not only
inspect the OOIs sufficiently but also arrive at the target
quickly.

Figure 11 further shows keyframes of our algorithm
performing target search in the earthquake environment.
The MAV starts at a disadvantaged position and explores
the environment first to gather information. When it
comes across semantically relevant objects such as blood,
it samples informative viewpoints near these objects.
Planning a path through these viewpoints using the
target search planner allows the target to come into view,
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(a) FUEL (b) FUEL-complete

(c) VSEP (d) STEM (ours)

Figure 10: Qualitiative comparison with baselines for the Earthquake environment. Episodes were recorded until t∗ or tf ,
whichever comes first. The reconstructed point cloud from RViz is shown along with the drone’s trajectory in blue. The
camera FOV is shown in red and the RGB image is displayed when the target is found

even in tight spaces (behind the brown wall).
Figure 12 shows the results from the Cave

environment. Even under the presence of complex 3D
geometry and occluded semantic objects, our method
performs competently. Figure 12a shows a section of
the Cave and the drone’s trajectory as a motion trail.
After exploring initially, the MAV comes across the rope
and radio and dog semantics, which guides it to the
target quickly. The top view of the complete trajectory
in Fig. 12b shows that the semantics guide the drone into
the right arm of the Cave where the target is located.
Figure 12c further demonstrates that the drone does
not compromise significantly on the overall exploration
trajectory in pursuit of the target.

6.5 Auxiliary Analysis

The performance results from Section 6.3 are further
analyzed in this section using the auxiliary metrics from
Section 6.1.2.

Figure 13 shows the Time in View (TIV) for each
semantic class in the Earthquake environment. STEM
spends a higher time viewing each semantic on average
as compared to other methods. Although VSEP may

seem to outperform STEM on some classes like rubble

and table, this is due to VSEP’s tendency to get stuck
near a particular object. The large episode completion
time tf and qualitative results in Section 6.4 confirm this
behavior for VSEP.

Figure 14 shows the Cumulative Information Gain vs.
time curve and shows how the exploration progresses. It
can be noticed that for the early parts of the episode (t <
50s), STEM has a higher slope on the curve, signifying
that it comes across important semantic regions faster
than FUEL-complete. Although FUEL has a similar
slope in this region, it is because it covers unimportant
regions at a higher rate, and not because it utilizes
semantic information. VSEP takes a significantly longer
time to complete the episode and comes across objects
of interest much later. This shows that an efficient
exploration pipeline is crucial for competent target search
performance.

An important point on this curve is the information
gained at episode completion i.e. Iwtf . This point
indicates the completeness of the search. FUEL achieves
a Iwtf of 0.95, while STEM and FUEL-complete achieve
0.99. While these values seem close, the actual difference
is substantial due to the large normalization factor
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Figure 11: Target search in Earthquake environment. The drone starts at a disadvantaged position and first explores the
volume to find semantic clues. The diffusion of priority values combined with a combinatorial planner help the drone find the
target (human) very quickly. After locating the target, the full volume is also explored until no new viewpoints are found.

(a) The MAV’s trajectory (yellow) inside the Cave

(b) Target search (top view)

(c) Exploration (top view)

Figure 12: Target search in the Cave environment. Figure 12a shows that our algorithm is also able to locate the target
(human) in complex 3D environments like Subterranean caves. The camera’s sensor FOV is also displayed which demonstrates
that the drone performs simultaneous inspection of semantic objects. The section in Fig. 12a is highlighted white in the top
view (Fig. 12b). Figures 12b and 12c show the top view of the Cave and the reconstructed point cloud after completing target
search and exploration respectively. The red color is part of the simulation lighting and carries no weight.
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Figure 13: Auxiliary comparison: Class vs. Time in View
(Earthquake)

Figure 14: Auxiliary comparison: Cumulative Information
gain vs. Time (s) (Earthquake)

Hw
0 (equal to 115703.375 for the Earthquake scenario).

Understanding this difference qualitatively is also helpful.
Since Iwtf is calculated using the weights from the ground

truth importance map (Fig. C.7), leaving an important
region unexplored (such as the location of the human),
reduces this value. This is precisely why both FUEL
and VSEP have a lower Iwtf , as they rarely find the
target. In contrast, both FUEL-complete and STEM
search important regions, but STEM takes the least time
to arrive at the target.

6.6 Ablation Studies

Two ablation studies in Sections 6.6.1 and 6.6.2 are
performed for the viewpoint sampling and planning
methods, respectively. These studies demonstrate how
each component of our pipeline contributes to its overall
success or failure.

6.6.1 Viewpoint Ablation

Table 4 presents an ablation study for the viewpoint
evaluation method. In this study, the combinatorial
planner from Section 4.4 remains fixed, but viewpoints
are sampled and evaluated differently.

1. FVP: This method only uses the frontier
viewpoints set Vf without object viewpoints (Vo =
ϕ). This study helps understand the effect of
diffusing priority values into frontier voxels.

2. FVP+OVP: In this case, both sets Vf and Vo are
used with the switching behaviour mentioned in
Section 4.3.4.

FVP+OVP and FVP both successfully locate the
target, but FVP+OVP requires more exploration time.
This is because object viewpoints slow down the MAV
to inspect objects. Interestingly, FVP is better than
FUEL-complete from Table 3 in target search and similar
in exploration time. This demonstrates that frontier
diffusion contributes significantly to the algorithm’s
success.

In the Cave environment, FVP outperforms
FVP+OVP by a significant margin in target search
time because objects are often located in geometrically
challenging spaces, and sampling viewpoints here reduces
speed for FVP+OVP. However, FVP+OVP has a higher
success rate because FVP can merely guide the drone to
important regions, and not guarantee target detection.
FVP+OVP creates a more focused tour around objects
of interest, which allows the MAV to capture multiple
viewpoints in semantically important regions, thereby
increasing the likelihood of detecting the target.

Figure 15 captures these results graphically using the
Cumulative Information Gain curve for a single episode
in the Earthquake scenario. Both FVP and FVP+OVP
have similar Iwtf , but FVP completes the exploration
faster and comes across semantically important regions
earlier in the episode. FVP+OVP runs slower but has
more instances of target detection (red circles). Figure
16 also supports this notion and shows the viewing
times for each semantic. As expected, FVP+OVP is
more consistent and simultaneously inspects the objects,
followed by FVP.

In summary, the results from this ablation show that
the object viewpoints do not consistently improve target
search time and result in worse exploration. However,
they do improve object detection consistency, adding to
the overall robustness of the target search framework.

6.6.2 Planner Ablation

Table 5 presents an ablation study for the planning
algorithm. In this study, all methods use both Frontier
Viewpoints Vf and Object Viewpoints Vo but different
methods are used to create a global path.

1. Greedy: In the simplest case, the viewpoint with
the highest information gain Iν is chosen as the
next goal.
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Target search Exploration

Env Method Success % Time, t∗(s) Time, tf (s)

Earthquake
FVP 100% 52.8± 6.2 122.7± 12.0
FVP+OVP 100% 49.6± 8.1 143.4± 8.7

Cave
FVP 40% 70.8± 0.5 138.9± 25.0
FVP+OVP 60% 94.0± 14.4 153.9± 11.5

Table 4: Viewpoint ablation study

0 20 40 60 80 100 120 140
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
fo

rm
at

io
n 

ga
in

1e5

FVP
FVP+OVP
Target detections

Figure 15: Viewpoint ablation: Cumulative Information
Gain vs. Time(s). A single episode from the Earthquake
scenario is shown here, to demonstrate the tradeoff between
FVP+OVP and FVP.

2. Traveling Salesman Problem (TSP): In this case,
the kinematic TSP from [5] is used to create
the global path between viewpoints. The Lin
Kernighan Heuristic (LKH) is used to solve the
optimization problem. Note that even though a
metric TSP is solved, the chosen viewpoints are still
evaluated using the information gain from section
4.3.5, unlike FUEL which only considers coverage.

3. Weighted Minimum Latency Problem (WMLP): In
this case, the problem formulation from Section 4.4
is used to create the plan, and the solver from [12]
is used. This situation is the same as FVP+OVP
from Table 4 but named differently to emphasize
the planner.

WMLP performs marginally better as compared to
TSP in locating the target and exploring the entire
volume. This indicates that the frontier diffusion
and object viewpoints sampling are critical elements of
the target search algorithm, rather than the planning
strategy. The success of TSP is attributed to its use of
the robust LKH heuristic. However, only performance
metrics do not provide the complete picture, and
auxiliary metrics are also discussed in further paragraphs.

The Greedy planner performed considerably worse
than WMLP or TSP for both target search and
exploration. This is expected because, when exploring
a previously unseen environment, new regions are

Figure 16: Viewpoint Ablation: Class vs. Time in view
(Earthquake)

incrementally uncovered which may not be as interesting
as regions already observed. Consequently, the current
information gain could suddenly reduce and the next
highest gain viewpoint might be very far, leading to
oscillatory behavior (see Fig. C.8). The greedy
planner’s poor decision-making is further put to the
test in the Cave environment, which features narrow
passages and occlusions. Here, oscillations induced
by the greedy planner have a large time cost, and
advanced optimization techniques such as the TSP are
crucial to reduce search times. Both WMLP and TSP
perform competently in the Cave environment, with little
differences in exploration time.

Figure 17 supports the above discussion using the
CIG curve for the Cave environment. It can be
observed that WMLP has a steeper slope than TSP
which indicates that it consistently observes high-priority
viewpoints early on in the episode. As expected,
greedy search has a steep slope at the beginning
because it always seeks out the most informative
viewpoint. However, this greedy behavior causes
oscillation, flattening the curve later in the episode, and
significantly impacting the completion time. All planners
have a similar information gain at the end of the episode
(Iwtf ) because they all use the same strategy for viewpoint
planning.

In summary, this ablation study shows that
combinatorial optimization is essential for efficient
exploration in complex environments. Additionally,
priority-weighted combinatorial planners quickly drive
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Target search Exploration

Env Method Success % Time, t∗(s) Time, tf (s)

Earthquake
Greedy 90% 65.4± 14.1 187.3± 15.6
TSP 100% 53.2± 9.8 142.0± 15.2
WMLP 100% 49.6± 8.12 143.4± 8.7

Cave
Greedy 40% 145.5± 14.9 233.4± 20.0
TSP 60% 98.5± 10.3 157.6± 15.7
WMLP 60% 94.0± 14.4 153.9± 11.5

Table 5: Planning ablation study
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Figure 17: Planner Ablation: Cumulative information gain
vs. Time (s) (Cave)

the drone toward semantically important regions of the
volume, where a potential target might be located.

7 Real-world experiments

This section showcases the results of real-world
experiments using the software architecture from Section
5.2 and the hardware setup from Section 5.3.

Figure 18 shows our algorithm performing
simultaneous target search and exploration in a
real-world laboratory setting. The MAV takes off
from a disadvantaged position and starts exploring the
environment, actively searching for semantic objects of
interest. When it encounters a semantic object (Fig.
18a), it plans viewpoints around it and uses the diffusion
process to prioritize frontiers near the object. This
approach balances coverage and semantic information
gain. Despite the empty space behind the screen offering
greater coverage, the drone is still drawn to the inner
space between the two screens, where it eventually finds
the target (Fig. 18b). The object-centric viewpoint
sampling further allows the drone to inspect the target
object and reduce uncertainty in areas of interest.
The last segment of the trajectory (Fig. 18c) shows
that our algorithm can search in 3D (see Fig. C.10
also). Figure 19 illustrates that our algorithm can

generalize across different scenarios with varied object
placement and occlusions. In Figures 19b and 19c no
target object was present, yet our method continued
to explore the environment and observed semantics in
search for the target. In Figure 19d, a target is located
behind the screen. Despite the complex geometry of
the environment occluding the semantic object, the
drone successfully located the target by only relying
on coverage gains. Finally, Fig. 19a demonstrates the
method’s ability to search in 3D, with semantic objects
placed above a table. The diffusion process diffuses
semantic priorities to frontiers below the table, enabling
the drone to move along the z-axis and detect hidden
targets underneath. Such maneuvers could be crucial in
cluttered search and rescue scenarios.

8 Conclusion

In this work, a framework was developed for semantic
target search and exploration using MAVs in unknown,
cluttered environments. The central part of the
framework was the use of appropriate 3D environment
representations embedded with semantic priorities,
which enabled informative path planning. Specifically, a
masking technique was created to compress segmentation
images into a priority mask using a Large Language
Model. Following this, a comprehensive active perception
pipeline was developed to guide the drone toward
semantically interesting regions of 3D space. This was
achieved by diffusing semantic priorities into exploration
frontiers and generating informative viewpoints around
objects of interest. Finally, an efficient global plan was
formulated over the viewpoints with a combinatorial
planner that balanced metric and semantic costs,
allowing for the rapid location of the target.

We performed several simulation experiments to show
the capability of our method in cluttered environments
like the Earthquake and the Cave. A comparison study
was performed on quantitative metrics such as time to
target, success rate, and exploration time. Our method
outperformed baselines by increasing the target success
rate and reducing the completion time for target search
while incurring acceptable costs in exploration time. In
complex environments like the cave, which are dominated
by occlusions, our method was still competent and
simultaneously balanced exploration and target search
very well, which are often competing objectives.
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Figure 18: Real-world experiment of a MAV performing semantic target search and exploration inside a cluttered lab
environment. Red color (a,b,c) shows important parts of the flight along with the front camera view. See also Fig. C.10.

To analyze the method in depth, we introduced
two new auxiliary metrics called Time-in-View(TIV)
and Cumulative Information Gain (CIG) that gave
insights into how target search progresses. Two ablation
studies for the viewpoint sampling and planning strategy
were also performed. The findings from both studies
underscored the importance of the diffusion process in
directing the MAV towards high-priority frontiers in 3D
space. Further, it was concluded that viewpoints sampled
around objects were crucial for bringing novel objects
(including the target) into view, thus facilitating target
search and inspection.

Our algorithm was validated on a real drone in
a lab environment with various random cluttered
configurations. We showed that the method can quickly
find the target and explore the space, even under
practical constraints like sensor noise, and semantic
uncertainty.

Future Work: Although we achieve competent
performance and provide in-depth analysis, the field of
target search for emergency response is still nascent and
there is scope for improvement:

• Firstly, the source of semantic priorities is
crucial. In our study, we explored a potential
solution that infers cosine similarities using an
LLM. However, it was observed that these models

sometimes gave illogical cosine similarities because
they lack deeper contextual understanding. Since
these models are trained on open vocabulary data,
future work could involve fine-tuning the model on
a custom dataset specific to emergency response
environments or integrating human feedback to
refine priority assignments.

• Evaluating semantic exploration methods on
realistic simulation environments free from
biases is important. In fields such as disaster
response, this task is particularly challenging due
to the stochastic nature of disasters. Competitions
like the DARPA SubT Challenge3 and RoboCup
Rescue4 address some of these challenges. In this
work, we attempt to create an unbiased simulation
environment with semantic object placement
using prompts from LLMs like ChatGPT5,
objects from the DARPA challenge, and common
sense. However, such approaches have inherent
limitations, the most notable one being the lack
of ground truth data. Perhaps, the field of target
search in unstructured environments could draw
inspiration from the field of indoor ObjectNav

3https://www.darpa.mil/program/darpa-subterranean-challenge
4https://www.robocup.org/domains/2
5https://chatgpt.com/
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Figure 19: Real-world experiments in various cluttered configurations. Trajectory is colored based on drone height

that uses datasets like Habitat-MatterPort3D [7]
or simulation environments like Gibson-env [51].

• We strongly believe that appropriate
environment representations which are
general enough to integrate high-level semantic
reasoning while being conducive to informative
planning are the key to solving problems in
this domain. A potential solution was explored
by compressing labels to priorities and biasing
exploration frontiers. In practice, however, the
diffusion process requires maintaining an additional
voxel grid map. Since semantics occupy very little
space in the map, it might be useful to explore
sparse environment representations like Gaussian
Mixture Model maps [52] to represent semantic
priorities. Not only does this approach save
memory, it also gives a probabilistic generative
model that can be inferred at any time instant to
reconstruct objects of interest.
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Appendices

A Methodology

Figure A.1:
Frontier viewpoint
sampling. Figure
taken from [5]

B Experimental Setup

Figure B.2: Earthquake top view Figure B.3: Cave Top View

Figure B.4: Poor object detection scores in Gazebo using
DETR

Figure B.5: Marker view at different detection
thresholds

C Results

C.1 Time In View

Prior works that focus on object-centric exploration quantify the quality of object observations using metrics like
observed object surface [38], or the error from ground truth object meshes [25]. Since our work focuses on object
search, we quantify this using the time in seconds throughout the episode when an object was successfully detected.
This metric is called Time In View (TIV) because an object o can only be successfully detected when it is fully in
view (i.e. λo > λmin).

It is also known that the object detection score varies significantly when the viewpoint changes [50][53]. In [50],
the authors reward robot trajectories with inconsistent object detection scores, allowing them to explore an object
from multiple ’bad’ viewpoints. They also found that the temporal entropy of object detection score decreases when
objects are attended more. Therefore, a higher time in view for semantic objects indicates better performance.
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Object Source Object Source

human Darpa Challenge toy Common sense (Negative data)
blood Common sense ball Common sense (Negative data)
rescue dog ChatGPT prompt plant Negative data
flashlight ChatGPT prompt carpet Negative data
radio ChatGPT prompt rope Darpa Challenge
chair ChatGPT prompt drill Darpa Challenge
table ChatGPT prompt rescue worker ChatGPT prompt
helmet Darpa Challenge knife Negative data
rubble ChatGPT prompt headphones common sense (Negative data)
sofa Common sense (Negative data) gun Common sense (Negative data)
wall ChatGPT prompt ground ChatGPT prompt

Table B.1: Object set for both simulation environments. Negative data is added to the data to make the simulation free of
biases.

Figure B.6: False detections and oscillating priorities

C.2 Cumulative Information Gain

Figure C.7: Ground truth
importance map (earthquake).
Red areas indicate higher importance

The weighted entropy is defined as the degree of uncertainty in a system defined
by probabilistic events, where events are weighted based on importance [54].
For a discrete occupancy mapM, the event uncertainty is quantified using the
probability of occupancy Pk at each voxel k. The weights wk are calculated
by creating a ground truth 3D attention map using the known locations of
semantic objects in the environment. The standard entropy formula is then
weighted at each voxel using these weights as follows:

Hw
t = −

N∑
k=0

wkPklog2(Pk) ∀ k ∈M (C.1)

To create the ground truth importance map, a priority voxel map is
first generated for all ground truth objects Og in V . The priority for each
object is inferred using the priority function r from section 4.2. Then, the
diffusion process from section 4.3.3 is applied over the full volume to create
the importance map (Fig. C.7). The value at each voxel in this map acts as
the weight wk and quantifies the importance of regions in the volume V .

The Cumulative Information Gain Iwt is then calculated as the change in
weighted entropy from the start of the episode, i.e., Hw

0 . The value is also normalized to yield a fraction (see Eq.
C.2). Intuitively, Iwt expresses the fraction of the ground truth importance map covered at time t.

Iwt = (Hw
t −Hw

0 )/Hw
0 (C.2)

Since A is non-zero everywhere, this metric can also evaluate coverage-based exploration planners on a target
search task, unlike binary success metrics like SPL. A sharper slope on the CIG vs. Time curve indicates higher
information gain and means that the robot comes across many relevant semantics before arriving at the target.
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Target search Exploration

Env Method Success % Time, t∗(s) Time, tf (s)

Earthquake
n = 10

FUEL 0% - 106.0± 9.8
FUEL-mod 50% 57.2± 9.9 121.7± 6.9
VSep 10% 205.9± 0.0 212.7± 25.4
STEM (Ours) 100% 49.6± 8.1 143.4± 8.7

Cave
n = 5

FUEL 0% - 108.8± 4.8
FUEL-mod 0% - 169.6± 24.6
Vsep 0% - 272.3± 84.1
STEM (Ours) 40% 85.4± 9.51 153.9± 11.5

Table C.2: Comparison study with baselines in the Earthquake and Cave environments with a λmin = 0.02. Success rates
for most methods drop significantly, but our method outperforms other methods on both Success % and Time to Target even
under strict parameters. This is because object viewpoints inspect the target from a closer distance and keep object detection
consistent.

Figure C.8: Greedy Search in earthquake environment.
The greedy planner has a lot of path intersections,
and sharp points in the spline because of oscillating
information gain. This increases completion times for
both target search and exploration.

Figure C.9: VSep showing poor performance because
the RRT planner finds it hard to escape cluttered spaces
when the sensor range is limited (Rmax = 3m). The
drone starts at the upper left corner and takes a long
time to move. Even when it finds a path, it is suboptimal
and demonstrates stop-and-go behavior.

Figure C.10: Isometric view
(left) and side view (right) of the
reconstructed map in RViz for
real-world experiments. The letters
correspond to stages from Fig. 18.
The side view shows the (c) stage,
where the drone explores areas of
interest near the target in 3D.
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