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a b s t r a c t

The structural motion and unsteady aerodynamic loads of a pitching airfoil model
that features an actuated trailing edge flap are determined experimentally using a
single measurement and data processing system. This integrated approach provides an
alternative to the coordinated use of multiple measurement systems for simultaneous
position and flow field measurements in large-scale fluid–structure interaction experi-
ments. The measurements in this study are performed with a robotic PIV system using
Lagrangian particle tracking. Flow field measurements are obtained by seeding the flow
with helium-filled soap bubbles, while the structural measurements are performed by
tracking fiducial markers on the model surface. The unsteady position and flap deflection
of the airfoil model are determined from the marker tracking data by fitting a rigid
body model, that accounts for the motion degrees of freedom of the airfoil model,
to the measurements. For the determination of the unsteady aerodynamic loads (lift
and pitching moment) from the flow field measurements, two different approaches are
evaluated, that are both based on unsteady potential flow and thin airfoil theory. These
methods facilitate an efficient non-intrusive load determination on unsteady airfoils and
produce results that are in good agreement with reference measurements from pressure
transducers.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The characterization of unsteady fluid–structure interactions (FSIs) is relevant for the design of deformable lifting
tructures in unsteady conditions, such as flexible flapping wings (Platzer et al., 2008; Heathcote and Gursul, 2007;
leischwitz et al., 2017), rotor blades with unsteady periodic inflow (Wei et al., 2019; Strangfeld et al., 2016), or fixed-
ing aircraft subjected to gusts (Perrotta and Jones, 2017; Tang et al., 2010). The ongoing development of sophisticated
omputational methods for simulating these FSI problems requires validation data from wind tunnel experiments. This
ata is challenging to obtain because it requires the simultaneous measurement of a variety of quantities of different
ature, which may explain why only a limited number of parameters has been typically used for validation purposes in
he past (Tang and Dowell, 2001). The complete experimental characterization of a fluid–structure interaction requires
he measurement of the structural response of the model as well as the unsteady flow around it. A particular focus is
laced on the determination of the instantaneous geometry and aerodynamic load, which serve as coupling interfaces
etween fluid and structure in numerical FSI solvers (Kamakoti and Shyy, 2004).
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Nomenclature

c Airfoil chord length, m
Cℓ Section lift coefficient,
Cm Section pitching moment coefficient,
Cp Pressure coefficient,
L′ Lift per unit span, N/m
M ′ Moment per unit span, N
p Fluid (static) pressure, N/m2

q Dynamic pressure, N/m2

T Pitching motion period, s
U∞ Freestream velocity, m/s
V Flow velocity magnitude, m/s
xcp Location of the center of pressure, m
xr Rotation axis of the pitching motion, m
X, Y , Z Translations in coordinate transformation, m
α Angle of attack, deg
δ Flap deflection angle, deg
ϵ Measurement error,
γb Bound vortex strength, m/s
Γb Partial bound circulation, m2/s
Γc Total bound circulation, m2/s
ρ Air mass density, kg/m3

τ Time lag, s
ϕ, Θ, Ψ Rotations in coordinate transformation, deg
()fa Flow acceleration term
()qs Quasi-steady term
()∞ Freestream value
CVV Coaxial volumetric velocimeter
DIC Digital image correlation
FSI Fluid–structure interaction
HFSB Helium-filled soap bubbles
PIV Particle image velocimetry
STB Shake-the-box algorithm

Optical measurement techniques have received considerable attention in recent experimental FSI research because they
do not require instrumentation of the model with installed sensors, which can be difficult or even impossible, for instance
when investigating micro air vehicles with thin, lightweight, and/or highly flexible wings. However, until now, the optical
measurement of the structural and the aerodynamic response in FSI experiments requires the simultaneous application of
either multiple diagnostic techniques (Marimon Giovannetti et al., 2017; Zhang et al., 2019), or multiple data processing
tools (Pereira Gomes and Lienhart, 2010; Liu et al., 2011). This complicates the experimental setup and increases the data
processing effort and therefore limits the amount of information that can be extracted from the experiment. The present
study aims to relieve this complication by using a single data acquisition and processing system to obtain non-intrusive
position measurements of an unsteady airfoil with actuated flap as well as measurements of the unsteady flow and the
aerodynamic response in terms of the lift, pitching moment and surface pressure distribution.

The state-of-the-art technique for unsteady flow field measurements is Particle Image Velocimetry (PIV, Raffel et al.,
2018). The measurements in this study are obtained with a robotic volumetric PIV system (Jux et al., 2018), a recent
development in PIV technology which facilitates large-scale volumetric flow measurements by effortlessly combining
several flow field measurements from a compact Coaxial Volumetric Velocimeter (CVV, Schneiders et al., 2018) mounted
on a robotic arm. The large-scale experiments are enabled by using helium-filled soap bubbles (HFSB, Scarano et al., 2015)
as high-intensity flow tracers and the efficient Lagrangian particle tracking algorithm Shake-The-Box (STB, Schanz et al.,
2016) for image processing. A limitation of this technique is the relatively low flow tracer density, which is typically on the
order of one particle per cubic centimeter (Caridi et al., 2016). To augment the information density of the measurement, a
phase-averaged approach can be adopted when conducting flow field measurements of (quasi-)periodic flow phenomena,
as demonstrated by Martínez Gallar et al. (2019).
2
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Of particular relevance in aeroelastic investigations of wings is the determination of the unsteady lift force. The classical
pproach to determine the force on an object from flow field (velocity) measurements, as introduced by Unal et al. (1997),
s to apply the momentum equation in its integral form to a control volume enclosing the object. This approach has been
pplied successfully in several studies of airfoils in steady and unsteady flow conditions (van Oudheusden et al., 2007;
avid et al., 2009; Villegas and Diez, 2014a; Gharali and Johnson, 2014), but it requires the explicit determination of the
ressure on the control volume boundary, which is not directly measurable with PIV. To avoid the source of error that
his additional data processing step implicates, a vorticity-based formulation of the momentum equation was derived by
oca et al. (1997, 1999), where the pressure does not appear explicitly. This method has been applied in unsteady airfoil
tudies as well (Ferreira et al., 2011; Sterenborg et al., 2014b), however, its application requires the evaluation of several
dditional terms and gradient operations, hence, it is not evident if this method is superior (Rival and van Oudheusden,
017).
An alternative method to determine the lift from the flow field is by application of the Kutta–Joukowski circulation

heorem (see e.g. Anderson Jr. (2011), chapter 3). As this method requires no spatial derivation of the PIV velocity
easurements, it is less prone to measurement errors than the control volume methods. The lift determination using
IV measurements based on the Kutta–Joukowski circulation theorem has been applied successfully in different studies
f static airfoils (Lee and Su, 2012; Lind et al., 2014). Although the circulation theorem was originally derived under
he conditions of steady, incompressible and irrotational flow, it was found to yield results that are in good agreement
ith validation data also for flows with separation and on unsteady airfoils (Sharma and Deshpande, 2012; Sterenborg
t al., 2014a). Yuan and Olinger (2005) showed that the lift determination for an unsteady airfoil based on experimental
irculation measurements can be improved compared to the quasi-steady formulation by adopting an unsteady approach,
hich accounts for the flow acceleration effects. The present study adopts a similar approach to determine the unsteady

ift from circulation measurements.
Another load-related parameter of relevance in the aeroelastic analysis is the pitching moment. A circulation-based

pproach for lift determination does not permit a direct measurement of the pitching moment. In this study, it is proposed
o determine the pitching moment by estimating the center of pressure of the lift force, which is derived from the
irculation distribution along the airfoil chord.
A more direct approach to measure the pitching moment and the lift is to determine the load distribution by calculating

he surface pressure from the PIV flow field data. The most popular method for the PIV-based pressure determination is
y solving the Poisson equation for the pressure, after the pressure gradient in the flow field has been calculated from
he velocity measurements using the momentum equation in its differential form (van Oudheusden, 2013). With this
pproach, it is possible to obtain the surface pressure distribution on objects immersed in the flow (Fujisawa et al., 2005)
y prescribing Dirichlet boundary conditions for the pressure at some distance from the object, where Bernoulli’s equation
s typically invoked in regions not affected by rotation effects (Kurtulus et al., 2006). It was shown by Villegas and Diez
2014b), however, that the use of the Bernoulli equation in a quasi-steady sense is unsuited to determine the loads on
n unsteady airfoil using this approach. Ragni et al. (2009) demonstrated (for a static airfoil) that a good estimation of
he surface pressure can also be obtained using only velocity measurements near the airfoil surface. A similar approach
s followed in this study, where relations from unsteady thin airfoil theory are applied to determine the surface pressure,
ncluding flow acceleration effects.

For the investigation of the structural dynamics of moving and deforming wings, Digital Image Correlation (DIC, Pan,
018) and photogrammetric point tracking (Baqersad et al., 2017) are common non-intrusive approaches to replace the use
f installed strain gauges and accelerometers (Black et al., 2010). The DIC technique provides a high measurement density
f the structural displacement and deformation but requires the application of a dense speckle pattern on the investigated
urface. Point tracking techniques, in contrast, provide discrete displacement information at locations where camera
argets are placed. Because of the reduced model preparation effort, this approach can be viewed as more practical for
nvestigating the large-scale structural motion of aircraft wings, where the observed deformations are relatively gradual
o that a high spatial resolution of the measurement is not required (Liu et al., 2012).
Recently, Mitrotta et al. (2019) suggested that the STB algorithm is suitable for tracking circular structural markers in

IV images, and can therefore be used as a photogrammetric point tracking technique. In their study, marker tracking
ith STB was performed on the same PIV images that were used for the flow field analysis, showing a good agreement of
TB marker position measurements and reference data obtained using a laser Doppler vibrometer. In the present study,
he same approach is followed to obtain simultaneous measurements of the unsteady flow field and structural marker
ositions on a pitching airfoil with actuated flap, with a single optical data acquisition system. Subsequently, the airfoil
osition and flap deflection are determined from the measured STB marker positions using a regression approach based
n the two degrees of freedom of the rigid-body airfoil/flap motion.

. Experimental procedures

.1. Wind tunnel setup

The experiments were conducted in the Open Jet Facility (OJF) at Delft University of Technology. The OJF is an open test
ection, closed return wind tunnel with an octagonal outlet (2.85 × 2.85m2), a maximum freestream velocity of 35m/s
3
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Fig. 1. Photo of the experimental setup, looking upstream.

Table 1
Experimental parameters.
Parameter Symbol Value

Freestream velocity U∞ 5.6m/s
Model chord c 0.4m
Model span s 1.45m
Reynolds number Rec 150 000
Motion period T 2.55 s
Reduced frequency k 0.088
Mean angle αm 0.25◦

Pitch amplitude αa 4◦

and a nominal freestream turbulence intensity of 0.5%. The wind tunnel setup is shown in Fig. 1, with an indication of all
relevant components.

For the experiment, the investigated airfoil model is equipped with two circular end plates, where the top plate is
ttached to a support frame and the bottom plate is mounted on a steel frame that also holds the pitching mechanism. The
atter controls the angle of attack oscillations α(t) of the model around the pitch axis, which is located at xr/c = 0.3125.
The pitching motion is defined as: α(t) = αm + αa sin(2π t/T ), where αm is the mean angle, αa is the amplitude and T is
the period of the pitching motion. The setup is mounted on a rotation table that allows to set the mean angle. The main
parameters of the experimental setup are summarized in Table 1.

2.2. Airfoil model

The experimental model is a rigid rectangular wing with a NACA 0018 airfoil featuring a movable trailing edge flap
that is hinged at x/c = 0.75. The airfoil model geometry is illustrated in Fig. 2.

The model is equipped with 24 Honeywell HSCS-RRN-1.6MD-SA5 differential pressure transducers (measurement
range ±160Pa, nominal accuracy ±4Pa) installed inside the model, that are connected to 48 surface pressure taps. The
taps are located along a diagonal line oriented at 15◦ with respect to the inflow direction to reduce the effect of the
upstream sensors on the downstream measurements. The sensors are used to directly measure the pressure difference
between the model top and bottom surface at specific chordwise positions. To prevent laminar boundary layer separation
near the airfoil leading edge, a zig-zag turbulator strip (thickness 2mm, width 12mm, pitch 60◦) is installed on both sides
of the model at x/c = 0.1. The airfoil model is identical to that used in a study by Raiola et al. (2018), to which the reader
is referred for a more detailed discussion of the model design and instrumentation.

For this study, the airfoil model is painted black with a rectangular grid of 56 white markers (diameter 1.5mm, spacing
35mm) located between 0.35 < x/c < 1 and below the line of pressure sensors at mid-span, as shown in Fig. 2. The
location of the pitch axis and the flap hinge are indicated in Fig. 2 as well, along with the positive direction of rotation
for the angle of attack α and the flap deflection angle δ.
4
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Fig. 2. Illustration of the airfoil model with pressure tap locations (indicated in red) and fiducial marker grid. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

The design of the present test model has been motivated in relation to the general framework of the ‘‘Smart Rotor’’
oncept (Barlas and van Kuik, 2010), which aims at reducing construction, maintenance, and operation costs of wind
nergy systems by reducing the peak loads in wind turbine operation via active shape modification of the rotor blades. The
ctive load reduction capabilities of the setup in this study are provided by a controller that acts based on the aerodynamic
oad measured using only 8 of the 24 differential pressure sensors to improve the response time, as discussed in detail in
ernández Barrio et al. (2020). The sensor signals measured are integrated over the chord using a trapezoidal integration
cheme to provide an estimate of the instantaneous lift force. Based on the measured lift, the controller sends a signal to
JR DS8711HV servomotor, that is mounted on the bottom end plate and attached to the movable trailing edge flap, to
ounteract the unsteady loads induced by the pitching of the model, so as to maintain a constant value of the lift.
Results from two different experimental test cases are analyzed in this study, one where the flap is fixed with respect to

he airfoil and one with actuated trailing edge flap. The lift coefficient over the period, calculated from the phase-averaged
ifferential pressure transducer signals over 45 periods, is shown in Fig. 3 for the pitching airfoil model with fixed flap
nd with the flap actuated by the controller. Error bars indicate the standard deviation over the 45 periods, as obtained
uring the phase-averaging procedure. With the controller settings employed in this study, a reduction in the magnitude
f the unsteady loads of about 80% is achieved, while the standard deviation at each phase is increased by about 40% due
o the period-to-period variation in the flap motion, that is introduced by the controller as a result of the measurement
oise in the pressure sensors signals.
Flow field measurements with PIV are conducted for both test cases. For the test case with actuated flap, a separate test

as performed on the pitching airfoil model in absence of PIV measurements, where the controller output, which is the
ervomotor input signal, is stored. The recorded controller output is then phase-averaged and imposed on the servomotor
uring the PIV experiments, which means that when the PIV measurements are acquired for the test case with actuated
lap, the controller itself is not active. This procedure improves the periodicity of the flap motion and prevents spurious
lap deflection behavior when the pressure taps would become contaminated by the PIV seeding.

The pressure transducer measurements from both test cases are used as a reference for the PIV-based load deter-
ination. The procedure to generate this reference data from the pressure transducer measurements is described in
ppendix A.

.3. PIV measurements

The PIV system used for image recording is a LaVision Minishaker CVV probe mounted on a Universal Robots UR5
obotic arm, as described by Jux et al. (2018). The flow is seeded with HFSB that are generated by a 500mm × 1000mm
eeding rake with 200 bubble-producing nozzles, which nominally produce 30 000 bubbles per second each, as described
y Faleiros et al. (2019). The seeding rake was placed upstream in the wind tunnel settling chamber and the effective
ross-section of the seeded flow region was ca. 200mm × 200mm. The illumination of the HFSB flow tracers was achieved
5
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Fig. 3. Effect of the flap actuation on the phase-averaged lift coefficient.

Fig. 4. Sketch of the orientation of the three CVV positions with respect to the airfoil model and the illuminated volume (not drawn to scale).

sing two LaVision LED-Flashlight 300 illumination units mounted side by side to illuminate a chordwise region of 800mm
ength, corresponding to −0.5 < x/c < 1.5 of the airfoil chord. This results in a total measurement volume size of about
32 liters. The spanwise region for the flow measurements is identical to the spanwise region with surface markers, as
shown in Fig. 2. It is expected that at this position, the spanwise component of the flow velocity is negligible compared
to the other two flow components which allows the flow field to be analyzed in a spanwise-averaged manner.

Three different stations of the CVV probe with respect to the airfoil model were used, as illustrated in a two-
dimensional view from the top in Fig. 4. The CVV position near the trailing edge is located about 50% further away
from the airfoil than the other two CVV positions, to capture all surface markers over the full pitching motion and flap
deflection range. The distances d1 and d2 indicated in Fig. 4 are approximately 0.4m, whereas d3 is approximately 0.6m.
These distances are sufficient to limit the effect of the presence of the CVV probe on the flow velocity around the model
to less than 1% within a radius of 0.5 chord lengths around the airfoil (Jux et al., 2018). The larger distance d3 partially
impaired the quality of the flow field measurements from that CVV position, which exhibits larger values of random noise
due to the low tomographic aperture angle of the CVV, as discussed in detail by Schneiders et al. (2018). The flow field
measurements in this study cover only one side of the airfoil, in view of the symmetry of the pitching geometry.

PIV images are acquired at 700Hz and processed with the LaVision DaVis 10 software. The procedure for obtaining the
flow field measurements from the PIV images consists of applying a temporal high-pass filter to the images to remove
light reflections (Sciacchitano and Scarano, 2014), performing a volume self-calibration (Wieneke, 2008, 2018), generating
a non-uniform optical transfer function (Schanz et al., 2013) and then applying the STB algorithm. The Lagrangian particle
tracks that result from this procedure for the PIV image data from 45 recorded pitching motion cycles per CVV position
are allocated to 100 temporal bins, each spanning 1% of the pitching motion period. Subsequently, the particle track
data is ensemble-averaged spatially to a two-dimensional Cartesian grid with 5mm grid spacing (i.e. 1.25% of the chord),
based on a bin size of 20mm × 20mm with 75% overlap, hence producing phase-resolved flow field measurements in a
spanwise-averaged sense. The ensemble averaging is performed using a top-hat filtering approach, as described by Agüera
et al. (2016). Afterwards, a temporal sliding-average filter with a window size of 5% of the period is applied to each grid
point to further reduce random errors in the unsteady flow field data. The measurement uncertainty of the flow fields is
estimated from comparing the data in the overlapping regions of the adjacent measurement volumes, analogous to the
6



C. Mertens, A. Sciacchitano, B.W. van Oudheusden et al. Journal of Fluids and Structures 103 (2021) 103293

f
f
p
s

procedure in Jux et al. (2018). The root-mean-square (RMS) of the discrepancies in the measured velocity magnitude are
around 3% of the local velocity magnitude for the CVV positions 1 and 2, and around 7% for the CVV positions 2 and 3.

The PIV image data processing for the model position determination begins with removing the flow tracer information
rom the images by applying a temporal low pass filter to the acquired images. In the current study, a sliding minimum
ilter in time over a kernel of three images is used, as suggested by Mitrotta et al. (2019). In view of the relatively low
itching frequency and to reduce the processing time, only every seventh image from the PIV acquisition is used in the
ubsequent position determination procedure. The reduced sampling frequency of fs = 100Hz results in a number of
fs × T = 255 images per pitching cycle. After the image filtering, the STB algorithm is used to perform Lagrangian particle
tracking of the fiducial markers on the airfoil surface.

3. Determination of the model position and flap deflection

The measurements of the marker positions are processed to determine the pitch and flap angles of the moving airfoil
model. The processing method is illustrated in the following: first, measurements of the static airfoil are analyzed to
determine the model position in laboratory coordinates and to illustrate the outlier filtering approach. In the second step,
measurements of the pitching airfoil with fixed flap are used to illustrate the processing method for the moving airfoil.
Results are discussed in detail for the pitching airfoil with actuated flap. This case is more challenging as the number of
available marker position measurements per motion degree of freedom is smaller, compared to the other configurations
(i.e., static airfoil and fixed flap).

3.1. Method

For the determination of the airfoil model position and flap deflection, the measured marker positions obtained in
the coordinate system of the UR5 robot are fitted to the reference marker grid that was applied on the model. For the
airfoil with fixed flap, this procedure involves finding the six degrees of freedom (DOFs) for the coordinate transformation
from the laboratory reference frame to the airfoil reference frame. This is achieved by minimizing the overall distance of
the marker measurements to the nearest reference marker position. The fitting procedure is described by the objective
function f :

arg min
ϕ,Θ,Ψ ,X,Y ,Z

f :=

N∑
i=1

⏐⏐⏐⏐⏐R⃗(ϕ, Θ, Ψ )

(
p⃗i +

[X
Y
Z

])
− r⃗

⏐⏐⏐⏐⏐ , (1)

where N is the number of tracked markers, p⃗i is the position vector of the ith marker track in laboratory coordinates, X , Y ,
and Z are the translations of the coordinate transformation, and r⃗ is the position vector of the nearest reference marker
in airfoil coordinates. ϕ, Θ and Ψ are the rotation angles of the coordinate transformation around the x, y, and z axes
respectively, with rotation matrix R⃗ = R⃗z(Ψ )R⃗y(Θ)R⃗x(ϕ):

R⃗ =

[cosΨ − sinΨ 0
sinΨ cosΨ 0
0 0 1

][ cosΘ 0 sinΘ

0 1 0
− sinΘ 0 cosΘ

][1 0 0
0 cosϕ − sinϕ

0 sinϕ cosϕ

]
. (2)

The rotation Ψ around the vertical z-axis is directly related to the angle of incidence by α = −Ψ +αlab. Note that α is
defined as nose-up (clockwise) positive. The angle of the laboratory coordinate system with respect to the inflow αlab is
determined by analyzing position measurements of the static airfoil model at α = 0◦, as described in the following. The
position corresponding to α = 0◦ for the symmetric airfoil is determined by placing the airfoil model so that Cℓ(α) = 0,
which, in this case, is verified by the measurements from the differential pressure transducers.

The result of the six DOFs fitting procedure is illustrated in Fig. 5 for marker tracking data from 100 images of the
static airfoil model at α = 0◦. The fitting procedure is effective despite the presence of outliers which mainly occur due
to reflections at the trailing edge and the wing-flap junction. The average number of marker tracks per time step including
the outliers is 54.9, which is about 98% of the number of reference markers on the model. The low tomographic aperture
angle of the CVV results in a relatively large measurement noise along the direction of the CVV viewing axis (Schneiders
et al., 2018). The marker position measurements plotted as dots in Fig. 5 therefore appear as short line segments crossing
the reference grid marker positions. The value for αlab that is found from this analysis is Ψα=0◦ = αlab = 0.04◦.

After an initial application of the fitting procedure, outliers are removed from the marker tracking data by setting a
threshold for the distance to the nearest reference marker. When the optimization is performed for the second time for
the static airfoil model after removing the outliers, the average number of marker tracks per time step is 48.2, which is
about 86% of the reference markers. The remaining average distance from the track to the nearest marker is given by
fmin/N , which is 3.01mm before and 1.21mm after the outlier filtering.

For the analysis of the pitching airfoil, the fitting procedure is performed in two steps. In the first step, the fitting is
performed for 500 images of the time series using the six DOFs optimization procedure using Eqs. (1) and (2) as described
above for the static test case. The origin of the airfoil coordinate system is placed at the rotation point xr . The result of this
first step of the analysis is shown in Fig. 6. It can be observed that all degrees of freedom in the optimization, except for the
7
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Fig. 5. Fitting of marker position measurements of the static airfoil to the reference grid.

Fig. 6. Results of the six DOFs optimization procedure for the test case with fixed flap, (a) variation in the translational DOFs, (b) variation in the
rotational DOFs.

rotation Ψ around vertical axis, are practically constant, with standard deviations of less than 1mm for the translational
DOFs and less than 0.1◦ for the rotational DOFs. Therefore, the results obtained for the five remaining DOFs X , Y , Z , ϕ,
nd Θ are averaged and then prescribed in the second step of the fitting procedure, such that in this step only Ψ is

determined. The second step is performed with two iterations per time step, with the outlier filtering applied after the
first iteration.

For the analysis of the pitching airfoil model with actuated flap, the procedure is adjusted to allow for the additional
degree of freedom corresponding to the flap deflection δ. This is achieved by deforming the reference marker grid in the
optimization allowing for the variable flap deflection. Similar to the analysis of the pitching airfoil with fixed flap, the
analysis is performed in two steps; after the determination of the five constant DOFs in the first step, the remaining two
DOFs of the airfoil model motion Ψ and δ are determined in the second step.

3.2. Results

The results of the marker-based model position measurement for the pitching airfoil with actuated flap in terms of α

and δ are shown in Fig. 7 in comparison with the corresponding reference data. The pitching motion that is imposed
by the pitching mechanism is used as a reference for α, which is calculated from the measured rotation Ψ and the
alue that was found for αlab. The measured flap deflection δ is compared to the reference flap deflection angle which
orresponds to the value of the control signal that is received by the servomotor which actuates the trailing edge flap.
he reference flap deflection is calculated based on the kinematics of the flap hinge. The results from the marker-based
osition determination are sorted in phase for the comparison with the reference. Each data point in Fig. 7 corresponds
o the α and δ obtained from the position measurement of the markers for a single time step.

The agreement between the determined angle of attack and the reference based on the motion kinematics imposed by
he pitching mechanism is excellent, the RMS of the difference is 0.03◦. The RMS of the difference between the determined
flap deflection angle and the reference based on the servomotor input signal is 0.44◦. Systematic differences to the
reference and a higher level of random noise are expected in this case, because the servomotor that actuates the flap
was operated closer to its power limit than the AC motor that drives the pitching mechanism. Furthermore, the actual
rotation imparted by the servomotor was not measured but instead inferred from the actuator input signal. The largest
systematic difference occurs at the beginning of the pitching cycle because the signal sent to the servomotor to generate
the flap motion was updated for every pitching cycle at t/T = 0, causing a small delay in the servomotor motion here.
Apart from that, relatively large differences occur when the servomotor is moving slowly near the motion turning points,
8
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Fig. 7. Comparison of the position determination results with reference signals, (a) angle of attack of the airfoil, (b) deflection angle of the trailing
edge flap.

Fig. 8. Flow field with streamlines and airfoil position measurement for the pitching airfoil with fixed flap at four different phase instants.

here the flap motion was affected by friction between the airfoil model and the end plates, and when the servomotor
s actuated at its maximum angular velocity, around t/T = 0.4 and t/T = 0.8. For the rest of the pitching cycle with
0.5 < t/T < 0.65 and 0.85 < t/T < 1, the agreement between the determined flap motion and the reference is similar
to the agreement between the angle of attack α and its reference.

The obtained results for the airfoil model position and flap deflection over time are phase-averaged with a phase bin
spanning 1% of the period, corresponding to the parameters used during the flow field processing. This correspondence
facilitates the synchronous analysis of the phase-averaged model position and flow fields. The results thus obtained are
shown for both test cases with fixed and actuated flap at four phase instants in Figs. 8 and 9, respectively.

4. Determination of the unsteady aerodynamic loads

Two methods are considered to determine the unsteady aerodynamic loads from the flow field measurements. The
first method is based on a determination of the surface pressure distribution, while the second method is based on
measurements of the circulation around the airfoil. The results are compared to the reference data from the differential
pressure transducers installed in the airfoil model (see Appendix A).

4.1. Methods

4.1.1. Pressure-based load determination
For the determination of the lift and pitching moment on slender objects like airfoils, the primary interest is placed on

the distribution of the aerodynamic load normal to the surface, as tangential forces are known to have little contribution
9
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Fig. 9. Flow field with streamlines and airfoil position measurement for the pitching airfoil with actuated flap at four different phase instants.

in FSIs. The force normal to the airfoil surface is exerted by the fluid pressure around the airfoil. If the flow is inviscid
and irrotational, the relation between the pressure and the flow velocity in steady flow conditions is given by Bernoulli’s
equation.

To calculate aerodynamic loads on an airfoil, the airfoil can be represented by a planar sheet of bound vortices along
he chord line, following classical thin airfoil theory (see e.g. Anderson Jr. (2011), chapter 4). The unsteady surface pressure
ifference along the chord ∆p = plower − pupper is related to the bound vortex strength distribution γb(x, t) (see Katz and
lotkin (2001), chapter 13):

∆p(x, t) = ρU∞γb(x, t) + ρ
∂

∂t

∫ x

0
γb(x̃, t)dx̃. (3)

The first term in Eq. (3) directly relates the instantaneous value of the bound vortex strength distribution γb(x, t) to the
ressure difference and is therefore denoted as the quasi-steady pressure difference ∆pqs(x, t) = ρU∞γb(x, t). The second
erm in Eq. (3) constitutes the unsteady contribution.

The aerodynamic load determination procedure begins with the calculation of the quasi-steady surface pressure using
ernoulli’s equation:

Cp,qs = 1 −
V 2

U2
∞

, (4)

where V is the local velocity magnitude. The quasi-steady surface pressure cannot be determined directly from the
velocity measurements due to the measurement errors and viscous effects that affect the near-wall region, and is instead
determined using a linear extrapolation of the flow pressure obtained from applying Eq. (4) in the vicinity of the airfoil,
similar to the approach of Ragni et al. (2009). The details of the implementation of the quasi-steady surface pressure
determination are described in Appendix B.

Once the quasi-steady surface pressure Cp,qssurf is determined for one side of the airfoil over the entire pitching motion
period, the quasi-steady pressure difference on the airfoil ∆Cp,qs is determined by subtracting measurements of Cp,qssurf
with a phase difference of ∆t/T = 0.5. This step is required as PIV measurements were conducted only on one side of
the airfoil (see Section 2.3). The implications and underlying assumptions of this approach are discussed in Appendix A.

When the quasi-steady pressure difference is known, the unsteady surface pressure difference can be calculated
with Eq. (3). First, the vortex-sheet strength distribution along the chord is determined from the measurement of the
quasi-steady pressure difference:

γb(x, t) =
∆pqs
ρU∞

=
∆Cp,qsU∞

2
(5)

With this result for γb(x, t), the unsteady surface pressure difference follows from Eq. (3). From the pressure difference,
the aerodynamic loads are determined by spatial integration. If the considered angles of attack α are small, so that
cos(α) ≈ 1 and the influence of the tangential force on the lift is negligible, the unsteady lift per unit span L′(t) and
the lift coefficient Cℓ(t) are obtained by chordwise integration of the pressure difference:

Cℓ(t) =
L′(t)

=

∫ c
0 ∆p(x, t)dx

, (6)

q∞c q∞c

10
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where q∞ =
1
2ρU

2
∞

is the dynamic pressure of the freestream.
The nose-up pitching moment per unit span M ′(t) and the moment coefficient Cm(t) are similarly obtained by spatial

ntegration of the pressure difference:

Cm(t) =
M ′(t)
q∞c2

=

∫ c
0 (xref − x)∆p(x, t)dx

q∞c2
. (7)

In this study, the reference axis for the moment xref is taken to correspond to the rotation axis of the pitching airfoil.

.1.2. Circulation-based load determination
To circumvent the explicit determination of the surface pressure, the aerodynamic loads can be expressed in terms of

he circulation Γ instead. The circulation is defined as the contour integral of velocity around the object:

Γ = −

∮
C
u⃗ · ds⃗, (8)

nd is related to the integral of the enclosed vorticity according to Stokes’ theorem (see e.g. Anderson Jr. (2011), chapter 2).
n the considered case, the circulation is due to the bound vortex strength on the airfoil γb(x, t), as well as the vorticity
hed in the wake, which is modeled by a vortex sheet of strength γw(x, t). The bound vortex strength relates to the
irculation bound to the airfoil as Γb(x, t) =

∫ x
0 γb(x̃, t)dx̃, where Γb(x, t) is the partial circulation on the airfoil between

the leading edge and the chordwise position x, so that the total circulation bound to the airfoil is Γc(t) = Γb(c, t). The
wake vorticity is produced as a result of the changes in bound circulation following Kelvin’s theorem for the conservation
of circulation. In the unsteady thin-airfoil theory it is assumed that vorticity is shed into the planar wake at the trailing
edge and convected downstream at freestream velocity, so that U∞γw(c, t) = −

dΓc (t)
dt (see Leishman (2006), chapter 8).

It follows that the lift can be expressed in terms of the circulation when a chordwise integral is applied to the pressure
ifference according to Eq. (3):

L′(t) =

∫ c

0
∆p(x, t)dx = ρU∞Γc(t) + ρ

∫ c

0

∂

∂t
Γb(x, t)dx. (9)

The first term in Eq. (9) is equivalent to the lift according to the Kutta–Joukowski theorem, which applies for steady
flows, where as in the unsteady case, the bound circulation is time-dependent. The first term in Eq. (9) can therefore
be considered as the quasi-steady lift contribution L′

qs(t) = ρU∞Γc(t). The second term in Eq. (9) relates to the flow
acceleration effect, and may therefore be labeled as L′

fa(t) = ρ
∫ c
0

∂
∂t Γb(x, t)dx. The unsteady lift L′(t) can hence be

calculated from the bound circulation distribution, which is obtained from line integrals of the measured flow velocity.
Similar as for the pressure-based approach, flow fields separated half a period are combined to form a complete flow
field around the wing. The implementation of the circulation determination from the measured flow fields is described
in Appendix C, where also the influence of the integration path on the obtained result for the circulation is discussed in
detail.

The pitching moment can be calculated from the lift when the center of pressure xcp is known:

M ′(t) = (xref − xcp(t))L′(t), (10)

with the center of pressure defined as

xcp(t) =

∫ c
0 x∆p(x, t)dx∫ c
0 ∆p(x, t)dx

=

∫ c
0 x∆p(x, t)dx

L′(t)
. (11)

Because Eq. (11) would require prior knowledge of the pressure distribution, it is convenient to express the pitching
moment by introducing a separate center of pressure for each of the two lift terms in Eq. (9), where it was observed that
L′(t) = L′

qs(t) + L′

fa(t). Eq. (10) is then replaced by

M ′(t) = (xref − xcp,qs(t))L′

qs(t) + (xref − xcp,fa(t))L′

fa(t), (12)

where the center of pressure of the quasi-steady lift contribution is

xcp,qs(t) =

∫ c
0 x∆pqs(x, t)dx∫ c
0 ∆pqs(x, t)dx

=
ρU∞

∫ c
0 xγb(x, t)dx

ρU∞

∫ c
0 γb(x, t)dx

=

∫ c
0 xγb(x, t)dx

Γc(t)
(13)

nd the center of pressure of the lift due to flow acceleration effects is

xcp,fa(t) =

∫ c
0 x∆pfa(x, t)dx∫ c
0 ∆pfa(x, t)dx

=
ρ
∫ c
0 x ∂

∂t Γb(x, t)dx

ρ
∫ c
0

∂
∂t Γb(x, t)dx

=

∫ c
0 x ∂

∂t Γb(x, t)dx∫ c
0

∂
∂t Γb(x, t)dx

. (14)

To calculate xcp,fa(t) with Eq. (14), knowledge of the temporal behavior of the circulation Γb(x, t) is required. The
computation of x (t) with Eq. (13) would additionally require a further processing step to obtain the bound vortex
cp,qs

11
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Fig. 10. Comparison of the PIV-based surface pressure difference with the reference data from the pressure transducers (see Appendix A) at four
hase instants for the pitching airfoil with fixed flap.

trength distribution as the gradient of the bound circulation γb(x, t) =
∂
∂xΓb(x, t). Therefore, Eq. (13) is further modified

with an integration by parts:

xcp,qs(t) =

∫ c
0 xγb(x, t)dx

Γc(t)
=

Γc(t)c −
∫ c
0 Γb(x, t)dx

Γc(t)
= c −

∫ c
0 Γb(x, t)dx

Γc(t)
. (15)

The pitching moment is hence determined from the circulation with Eqs. (12), (14) and (15).

4.2. Results

4.2.1. Pressure-based load determination
Pitching airfoil with fixed flap. In Fig. 10, the surface pressure difference along the chord is shown for four phase instants.
The largest differences between the PIV-based pressure and the reference data appear in the airfoil nose region x/c < 0.1.
It is assumed that these larger differences are the result of insufficient spatial resolution of the flow field measurement
to accurately capture the flow around the nose, which is characterized by relatively large spatial velocity gradients.
Downstream of x/c = 0.1, the PIV-based results are in good qualitative agreement with the reference data. The somewhat
larger differences that appear around x/c = 0.2 and around x/c = 0.7 are considered as measurement artifacts due to
the merging of the flow field data from the three different measurement volumes. The agreement of the PIV-based results
with the reference data is improved compared to the quasi-steady formulation when the unsteady pressure formulation
is adopted. The unsteady effects are the largest when the magnitude of the pitch rate is maximal, thus around t/T = 0
and t/T = 0.5. For example, at t/T = 0.05, the RMS of the difference to the reference data downstream of x/c = 0.1 is
reduced by about 65% when the unsteady term is included.

The aerodynamic loads as determined by a chordwise integration of the pressure difference are shown in Fig. 11. The
qualitative behavior of the quasi-steady and unsteady loads over the period is similar, but the inclusion of the unsteady
term introduces a phase shift of the signal.
12
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Fig. 11. Comparison of the pressure-based aerodynamic load coefficients with the reference data from the pressure transducers (see Appendix A)
for the pitching airfoil with fixed flap, (a) lift, (b) moment around the pitch axis.

The phase shift is negative for the lift and positive for the moment, which can be explained by the fact that the
nsteady term affects the load distribution mostly in the region downstream of the reference axis for the pitching moment
omputation that is located at xr/c = 0.3125, as it is observed in Fig. 10. This means that an increase in lift due to the
inclusion of the unsteady term corresponds to a negative nose-up pitching moment and vice-versa, hence the opposing
phase shift. For the lift and the moment, including the unsteady term produces a significant improvement in the agreement
with the reference data in comparison to the quasi-steady loads. For the lift coefficient Cℓ, including the unsteady term
results in a phase shift of ∆t/T = −2.2%, and the RMS error ϵRMS , calculated from the difference to the reference, is
reduced by 33%. For the moment around the pitch axis Cm,r , the phase difference between the quasi-steady result and the
unsteady result is ∆t/T = 5.2%, and ϵRMS of the unsteady result is 54% lower than ϵRMS of the quasi-steady result.

Pitching airfoil with actuated flap. The results for the chordwise distribution of the pressure difference at four phase
instants for the pitching airfoil with actuated flap are shown in Fig. 12. The effect of the actuated flap is evident, as the
pressure difference becomes negative downstream of the mid-chord, with a local extremum at approximately x/c = 0.75,
which is the flap hinge point. Furthermore, the magnitude of the suction peak near the leading edge is reduced as a result
of the change in the effective camber of the airfoil due to the flap deflection.

Only eight reference data points from the installed pressure transducers are available for comparison with the PIV-
based results due to the particular setup of the flap actuation controller (see Section 2.2). Similar to the test case with
fixed flap, the largest differences are observed for the largest magnitudes of ∆Cp. The effect of the unsteady term, which is
calculated as the temporal gradient of the chordwise integral of bound circulation (see Eq. (3)), is smaller than for the test
case with fixed flap. That is because the controller is designed to keep the lift constant, therefore the flap motion tends
to suppress the circulation variation and, hence, compensates an increase in the suction peak near the leading edge with
a corresponding negative peak in the pressure difference further downstream, which means that the unsteady effects are
only observed in the center region of the airfoil around x/c = 0.5. In this region, the agreement with the reference data
is marginally improved when the unsteady pressure formulation is used, compared to the quasi-steady formulation.

The aerodynamic loads from the pressure-based approach for the pitching airfoil with actuated flap are shown in
Fig. 13. No large differences are observed between the results when using the quasi-steady or the unsteady pressure
formulation, which is in line with the observations for the pressure distributions themselves.

4.2.2. Circulation-based load determination
Pitching airfoil with fixed flap. The results for the circulation-based aerodynamic loads on the pitching airfoil with fixed
flap are shown in Fig. 14. The quasi-steady result for the lift is in good agreement with the reference data, which is further
improved when the unsteady formulation is used in which the result is shifted in phase by ∆t/T = −2.2%. For the pitching
moment, the amplitude is underestimated by the circulation-based approach, so that only 75% of the amplitude of the
reference data is reached, whereas for the lift 101% of the load amplitude is observed. This means that the center of
pressure that was calculated with Eq. (13) is located too far downstream, closer to the pitch axis, that was used as the
reference axis for the calculation of the moment. The phase shift in the moment signal of ∆t/T = 5.7%, that is produced
by the unsteady formulation with respect to the quasi-steady result, is not large enough to reduce the remaining lag error

with respect to the reference data below ϵτ = −3.1% of the period.

13
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Fig. 12. Comparison of the PIV-based surface pressure difference with the reference data from the pressure transducers (see Appendix A) at four
hase instants for the pitching airfoil with actuated flap.

Fig. 13. Comparison of the pressure-based aerodynamic load coefficients with the reference data from the pressure transducers (see Appendix A)
for the pitching airfoil with actuated flap, (a) lift, (b) moment around the pitch axis.

Pitching airfoil with actuated flap. The aerodynamic loads for the pitching airfoil with actuated flap are shown in Fig. 15.

The quasi-steady and the unsteady formulation for the lift both provide results that are in very good agreement with

the reference. While including the flow acceleration effects has an evident effect on the results, the agreement with the
14
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Fig. 14. Comparison of the circulation-based aerodynamic load coefficients with the reference data from the pressure transducers (see Appendix A)
or the pitching airfoil with fixed flap, (a) lift, (b) moment around the pitch axis.

Fig. 15. Comparison of the circulation-based aerodynamic load coefficients with the reference data from the pressure transducers (see Appendix A)
or the pitching airfoil with actuated flap, (a) lift, (b) moment around the pitch axis.

eference is not significantly improved with this method. As discussed previously, the unsteady effects in this case are
xpected to be negligible, as the controller aims to maintain the circulation constant.
For the pitching moment, the amplitude of the circulation-based results is smaller than the amplitude of the reference,

imilar to the pitching airfoil with fixed flap, but less pronounced. In this case, the amplitude reaches 91% of the reference.
n contrast to the observations for the pitching airfoil with fixed flap, no significant lag error is observed in the pitching
oment results. The unsteady formulation is shifted in phase by ∆t/T = 0.4% with respect to the quasi-steady result,
hich reduces the RMS of the difference to the reference by 15%.

.3. Comparison of the methods

The agreement of the results for the aerodynamic loads that were presented in the previous section with the respective
eference obtained from the surface pressure transducer measurements is summarized in Table 2. The RMS error ϵRMS
s computed from the difference between measurement and reference. It is additionally given as a percentage of the
aximum absolute value of the corresponding reference signal. The lag error ϵτ is determined by cross-correlation with

he reference signal and given both in seconds and as a percentage of the period T . The amplitude measurement error
amp is determined by calculating the RMS error from the difference between the measurement and the reference after
he measured signal has been shifted in phase according to ϵτ .

The examination of the presented results yields the following observations:
15
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Table 2
Summary of the comparison of the aerodynamic loads with the reference data from the pressure transducers (see Appendix A).

Fixed flap Actuated flap

ϵRMS ϵτ ϵamp ϵRMS ϵτ ϵamp

Pressure-based
quasi-steady lift Cℓ

0.028
10.4%

0.047 s
1.9%

0.018
6.8%

0.007
33.2%

0.010 s
0.4%

0.007
33.0%

Pressure-based
unsteady lift Cℓ

0.018
6.8%

−0.009 s
−0.4%

0.018
6.6%

0.008
39.7%

−0.038 s
−1.5%

0.008
39.1%

Circulation-based
quasi-steady lift Cℓ

0.017
6.4%

0.036 s
1.4%

0.004
1.3%

0.009
43.4%

0.045 s
1.8%

0.008
39.7%

Circulation-based
unsteady lift Cℓ

0.010
3.7%

−0.020 s
−0.8%

0.004
1.4%

0.009
42.8%

0.003 s
0.1%

0.009
42.8%

Pressure-based
quasi-steady moment Cm,r

0.009
25.3%

−0.144 s
−5.7%

0.004
11.4%

0.007
10.0%

−0.010 s
−0.4%

0.007
9.8%

Pressure-based
unsteady moment Cm,r

0.004
12.6%

−0.008 s
−0.3%

0.004
12.5%

0.007
9.5%

−0.003 s
−0.1%

0.007
9.5%

Circulation-based
quasi-steady moment Cm,r

0.013
36.6%

−0.224 s
−8.8%

0.004
12.5%

0.005
7.1%

−0.017 s
−0.7%

0.005
6.5%

Circulation-based
unsteady moment Cm,r

0.007
20.1%

−0.078 s
−3.1%

0.006
16.3%

0.004
6.1%

−0.007 s
−0.3%

0.004
6.0%

• The consideration of the flow acceleration effects in an unsteady formulation for the loads is highly effective for
increasing the agreement with the reference data for the pitching airfoil with fixed flap, compared to the results
from using a quasi-steady formulation. Similar improvements are observed for both load determination methods
and originate primarily from a shift of the quasi-steady result in phase.

• For the pitching airfoil with actuated flap, the improvements due to the consideration of the flow acceleration effects
are negligible. In this case, the flap actuation is designed to alleviate the loads, which also diminishes the unsteady
effects on the load variation. Therefore, both quasi-steady and unsteady approaches yield accurate and comparable
results, with RMS errors of less than 0.01 in lift and moment coefficients.

• For the pitching airfoil with fixed flap, the circulation-based approach yields more accurate results for the lift,
when compared with the results from the pressure-based approach. In contrast to the pressure-based approach,
the circulation-based approach does not use measurements near the airfoil surface, where measurement resolution
problems are expected due to the presence of large velocity gradients and a turbulent boundary layer. The low
measurement resolution was found to be most problematic for the pressure-based approach in the airfoil nose region,
which is in accordance with the observations reported in the studies of Yuan and Olinger (2005) and Tagliabue
et al. (2016), where a similar approach was used. Furthermore, the sensitivity of the circulation-based approach to
individual flow velocity measurements is reduced by varying the integration path and averaging the result, so that
the level of random error is decreased.

• For the pitching airfoil with fixed flap, the pressure-based approach yields more accurate results than the circulation-
based approach for the evaluation of the pitching moment. The circulation-based approach underpredicts the
pitching moment magnitude and exhibits a relatively large phase error in this case. It is noted that this lag is not a
result of the selected approach to include the unsteady term, because the phase shift due to the consideration of flow
acceleration effects is very similar in the pressure-based approach. Instead, a larger lag error is already observed in
the quasi-steady circulation-based result for the pitching moment. The determination of the pitching moment with
the circulation approach requires the integration of measurements near the surface so that the low measurement
resolution can cause an accumulation of error here.

• For the pitching airfoil with actuated flap, the absolute measurement error is smaller for both methods, compared
to the pitching airfoil with fixed flap. This can be explained with the reduced magnitude of the suction peak, which
is the main cause of measurement resolution issues due to the large local velocity gradients near the leading edge
of the airfoil. Compared to the test case with fixed flap, the presence of a negative peak in the pressure distribution
and the associated measurement resolution problems cause a reduction of the error for the lift and an increase of
the error for the moment, when considering the pressure-based approach. In comparison with the circulation-based
approach, the pressure-based approach is slightly more accurate for the lift and the circulation-based approach is
slightly more accurate for the pitching moment. However, the differences and overall errors are small enough so
that both methods can be considered equivalent in this case.

Overall, it is established that both unsteady aerodynamic load determination approaches produce accurate results, in
he two considered test cases with large and small lift variations, respectively. Neither of the two approaches appears as
learly superior to the other. Instead, it appears that the accuracy of the results for both approaches is compromised in
ifferent ways by deficiencies in the flow field measurement resolution. The pressure-based approach strongly depends

n individual flow measurements near the airfoil surface, where the measurement resolution of this study is insufficient
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to accurately capture the flow behavior. Furthermore, the presence of the boundary layer on the airfoil increases the
complexity of the implementation of the pressure-based method. In the circulation-based approach, flow measurements
near the surface are not used in the determination of loads. Moreover, it is possible to reduce the sensitivity of the obtained
loads to individual flow measurements by averaging the circulation result obtained with several integration paths. On the
other hand, it is noted that the direct insights into the distribution of the loads from the pressure-based approach provide
information on possible measurement issues that are not directly made available with the circulation-based approach.

5. Conclusions

An experimental approach was introduced to obtain the structural motion and aerodynamic loads on an unsteady
irfoil using an integrated non-intrusive measurement approach. The integrated approach consists of simultaneously
onducted optical measurements of flow and structure with a volumetric flow measurement device and the application
f a Lagrangian particle tracking algorithm for the image data processing of both flow and structure.
The position of the unsteady airfoil was measured with the optical system by using structural markers on the

xperimental model. The image processing and marker tracking analysis was performed with the same particle tracking
lgorithm that is used for the analysis of the flow tracer particles. Next, the airfoil position in space was found by fitting
he measurements of the marker positions to the structural marker grid that was painted on the model. Based on the
xperimental test case of a pitching airfoil with actuated flap, it can be concluded that the position determination method
s suitable for reliably measuring the position and shape of deforming objects, as long as the deformation can be described
n terms of a few degrees of freedom, as it is the case for rigid body motion with the two degrees of freedom in this study.

The unsteady aerodynamic loads in terms of the lift and the pitching moment are determined from the flow field
easurement in this study using two novel implementations of an aerodynamic loads determination method that
akes use of existing unsteady aerodynamics theory. The pressure-based and the circulation-based load determination
pproaches were both adapted with formulations from unsteady potential flow and thin airfoil theory to extract the
nsteady aerodynamic loads. It was shown that adopting the unsteady formulations reduces the difference between the
IV-based load measurements and reference pressure data by more than 50% for the pitching airfoil without flap actuation,
ompared to results using quasi-steady formulations for the aerodynamic loads. It was also shown that both methods
orrectly predict the reduction of unsteady effects when the flap is actuated. While it was observed that the two different
ethods are affected differently by measurement resolution issues, no method was identified as providing superior results
ompared to the other. However, it is noted that the agreement of the results from both methods with the reference is
ery good, with typical errors of less than 0.01 in lift and moment coefficient.
The integrated approach for the determination of the unsteady fluid dynamic loads and the structural motion that

as introduced in this study is useful for large-scale fluid–structure interaction experiments because the use of only a
ingle measurement and data processing system in combination with the minimal model instrumentation requirements
epresent a significant reduction of the setup complexity, data processing effort and costs for these experiments.
urthermore, the two novel approaches for the aerodynamic loads determination that were introduced are connected
o less data processing effort and pose lower measurement requirements on the flow field measurements than existing
lternative methods that are based on the momentum equation in integral form, which require the evaluation of several
ore terms with multiple temporal derivatives and gradient operations (Rival and van Oudheusden, 2017). It should be
oted that these methods can also be applied when the flow field data is obtained with a different measurement approach,
uch as a classical two-dimensional PIV setup, when the structural motion is known or measured with a separate system.
Although the analysis of the pitching airfoil with actuated flap was performed in a two-dimensional sense in this study,

he measurement data was obtained in three-dimensional space. Therefore, the measurement approach is not inherently
estricted to two-dimensional problems and a wide range of potential applications exists. However, it should be noted that
ith the sequential measurement procedure of the robotic PIV system used in the present implementation, applications
re limited to periodic or repeatable phenomena. This limitation can be overcome by using an optical setup with multiple
ameras instead, allowing to capture the entire flow field simultaneously. Furthermore, considering that the aerodynamic
oads determination methods in this study were derived based on the assumption of unsteady potential flow, further
esearch is necessary to assess the performance and possible necessary adaptations for the application of these methods
n flow situations where the viscous effects are more dominant than in this study, such as in the case of separated flow
ver the airfoil.
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ppendix A. Reference data from installed pressure transducer measurements

The pressure transducer measurements are acquired over 45 complete pitching cycles at a sampling rate of fs = 32Hz.
However, because the PIV measurements were conducted only on one side of the airfoil model, a comparison between
the loads derived from the flow field measurements and the differential pressure transducer data cannot be done directly.
Therefore, PIV measurements with a phase difference of ∆t/T = 0.5 have been combined, so as to reconstruct a flow field
measurement that covers both sides of the airfoil in the optical load determination procedures. To produce consistent
reference data for the PIV-based loads, the pressure transducer measurements from two phase instants separated by
∆t/T = 0.5, which correspond to one PIV-based load result, are combined to generate one reference data point. Based
on the assumption that the aerodynamic load scales linearly with the angle of attack α for small values of α, it can be
assumed that the PIV-based load, that is obtained from the two separate flow field measurements, will be equivalent to
the mean value of the aerodynamic load at the two phase instants where the flow field was measured.

The procedure to generate the reference data for the lift coefficient Cℓ from the differential pressure transducer
measurements is illustrated in Fig. A.16 for the time instant t/T = 0.25 for both experimental test cases, i.e. with
fixed flap and with actuated flap. In Fig. A.16, results for Cℓ as calculated from the pressure transducer measure-
ments with Eq. (6) at (t/T )1 = 0.25, where α = αm + αa, are shown in blue together with Cℓ measurements at
(t/T )2 = (t/T )1 + ∆t/T = 0.25 + 0.5 = 0.75, where α = αm − αa, with the sign switched (shown in orange). Although
the set of samples for each individual time instant is distributed relatively smoothly, the distribution of the combined
ensemble of samples is bi-modal because of the non-zero mean angle αm. The sample mean µ and a range of one standard
deviation σ are indicated in Fig. A.16 as well.

The same procedure that is illustrated for t/T = 0.25 in Fig. A.16 is applied at 25 time instants over the first half of
the period 0 < t/T < 0.5. The resulting lift coefficient Cℓ over time is shown in Fig. A.17, together with the lift coefficient
of the two individual semi-periods. The reference data points are the sample mean µ for the respective time instant and
the error bars indicate the standard deviation ±σ , which is on average ±0.021 with fixed flap and ±0.023 with actuated
flap.

The reference data is used for the comparison with the results of the PIV-based lift determination methods. Following
a similar procedure as for the lift, sets of reference data are also determined for the pitching moment and surface pressure
difference.

Appendix B. Determination of the quasi-steady surface pressure

The method to determine the quasi-steady surface pressure on the airfoil from flow velocity measurements in the
vicinity of the airfoil is described in the following. In view of the presence of the boundary layer on the model, Bernoulli’s
principle (Eq. (4)) is unsuited to determine the pressure close to the surface. Therefore, the surface pressure is determined
in this study from extrapolation of pressure data obtained at some distance from the surface, as illustrated in Fig. B.18.

For the chordwise positions with x/c ≤ 0.1, it is assumed that the boundary layer region is thin, compared to the
spatial bin size that is used during the ensemble averaging, so that the flow measurements are not significantly affected
by the presence of the boundary layer and Eq. (4) can be applied even close to the airfoil. Therefore, the surface pressure
is determined in three steps that are applied for each vertical line of the Cartesian grid of the flow field measurement
where x/c < 0.1:

1. Application of Eq. (4) to the flow measurement at the first grid point outside of the airfoil y1, to determine Cp,qs1
at a distance of ∆y1 from the airfoil surface.

2. Application of Eq. (4) to the next following grid point away from the surface in y-direction, y2 with Cp,qs2 , to

approximate the pressure gradient
∂Cp,qs1

∂y
with a backward finite difference as

∂Cp,qs1

∂y
≈

Cp,qs1 − Cp,qs2

y1 − y2
.

3. Extrapolation of the pressure on the surface of the airfoil Cp,qssurf from the nearest grid point with

Cp,qssurf = Cp,qs1 −
∂Cp,qs1

· ∆y1.

∂y
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c

Fig. A.16. Visualization of the process for generating the reference data from the differential pressure transducer measurements for the example
phase instant t/T = 0.25 for the pitching airfoil with (a) fixed flap, (b) actuated flap.

Fig. A.17. Reference lift signal generated from the pressure transducer measurements for the pitching airfoil with (a) fixed flap, (b) actuated flap.

Fig. B.18. Extrapolation method for the quasi-steady surface pressure. Data from the pitching airfoil with fixed flap at t/T = 0 for five different
hordwise positions.
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Fig. C.19. Effect of the integration path on the pseudo-circulation, (a) Geometry of three different integration paths, (b) Results from the line
integration of the measured flow velocity.

For the determination of Cp,qssurf downstream of x/c = 0.1, it is assumed that the application of Eq. (4) close to the
airfoil surface yields erroneous results due to the presence of a thickened boundary layer. It is therefore necessary to
exclude these data points from the analysis. The development of the boundary layer thickness on the airfoil can be roughly
estimated using an empirical expression for the turbulent boundary layer on a flat plate with zero pressure gradient δBL(x)
(see White (2006), chapter 6):

δBL(x) ≈ 0.16
x

Re1/7x
. (B.1)

Eq. (B.1) is used to exclude the grid points that are likely affected by the presence of the turbulent boundary layer
rom the surface pressure determination analysis. After that, the determination of the surface pressure follows the same
rocedure as for x/c ≤ 0.1. This procedure is illustrated in Fig. B.18 for the chordwise positions where x/c is 0.1, 0.3 and
.5.
For the flow field measurements from the most downstream position of the CVV, where x/c > 0.65, more measurement

noise is observed. To reduce the sensitivity of the surface pressure result to individual data points, the pressure gradient is
not determined from a finite difference in this region, but with a linear regression of multiple data points instead, in this
case over 10 data points. This approach also diminishes the modeling errors associated with the application of Eq. (B.1)
to a region of non-zero pressure gradient, which would affect the measurements at y1 and y2. The result of the linear
egression is used to extrapolate the surface pressure in the chordwise region with x/c > 0.65, as illustrated in Fig. B.18.

Appendix C. Determination of the bound circulation

The distribution of the bound circulation on the airfoil is determined in this study by performing line integrals of the
measured flow velocity, as described in the following. The procedure begins with a systematic analysis of the effect of
the position of the integration path for determining the circulation.

Three rectangular integration paths are shown in Fig. C.19a, and the corresponding result from the line integration
over the period is shown in Fig. C.19b. Note that the shown integration paths do not form a closed integration path,
as flow field data is only available for one side, and therefore the obtained result from the corresponding partial line
integral is labeled as pseudo-circulation Γ ′. As a result of the open integration paths, it is necessary to subtract the mean
value, Γ̄ ′, from the result of the line integration, in order to facilitate a direct comparison of the results obtained from the
different integration paths. Path I is placed at a distance of 0.05 chord lengths from the airfoil surface, which means that
the upstream segment of the integration path is located at x/c = −0.05, the downstream segment at x/c = 1.05 and the
treamwise segment is located at y/c = −0.14, to additionally account for the thickness of the airfoil. Integration paths
I and III are placed at a distance of 0.15 and 0.25 chord lengths from the airfoil, respectively.

Overall, the sensitivity of the pseudo-circulation to the position of the integration path observed in Fig. C.19 is small. A
hase lag is observed with increasing distance to the airfoil, such that the result obtained with path III is shifted in phase
20
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Fig. C.20. Sensitivity of the circulation measurement to the position of the (a) upstream, (b) streamwise and (c) downstream segment of the
integration path.

by about 1% of the period with respect to the result obtained with path I. Furthermore, it appears that the amplitude of the
pseudo-circulation Γ̂ ′ is reduced with increasing distance of the integration path to the airfoil so that Γ̂ ′ is approximately
.5% smaller for path III when compared to the result obtained with path I.
In the next step, the effect of varying the position of the three individual line segments of the integration path is

nvestigated. In the following analysis, the distance to the airfoil for one of the three line segments is varied, while the
ther two distances remain constant at 0.15 chord lengths to the airfoil. The results of the line integrals with the varying
ntegration paths are expressed in terms of the amplitude Γ̂ ′ and the phase lag τ , which is determined by cross-correlation
ith a reference signal, for which the result obtained with integration path II is used. The effect of varying the position
f the three individual line segments are shown in Fig. C.20.
No systematic effect of the line segment positions on the pseudo-circulation can be observed Fig. C.20, apart from

he lag τ as a result of varying the position of the downstream line segment. The wake of the unsteady airfoil contains
he history of the shed vorticity, such that a phase shift of the circulation is observed when a larger fraction of the
ake is included within the surface that is defined by the integration path. In Fig. C.20c, the dashed line describes a lag
roportional to the freestream velocity τ = (x− xref )/U∞, which is in very good agreement with the experimental results
nd therefore supports the assumption of the wake vortex sheet being shed at the trailing edge and convected downstream
t U . In unsteady potential flow, the circulation is independent of the positions of the upstream and streamwise segments
∞
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of the integration path. This is in accordance with the measurement results shown in Fig. C.20a and C.20b, where the
largest effects are observed for the upstream and streamwise line segments when the integration path is very close to
the airfoil, with a distance of less than 0.1 chord lengths. Additionally, small effects are observed when the integration
path is close to the edge of the measurement volume, with distances larger than 0.2 chord lengths.

Based on these observations, the total circulation bound to the airfoil Γc(t) is determined in this study in four steps:

1. Eight line integrals of velocity are calculated, for the entire period, using eight different integration paths with a
distance to the airfoil between 0.1 and 0.2 chord lengths.

2. The obtained results are shifted backwards in phase by τ = ∆x/U∞, according to the respective distance to the
airfoil ∆x.

3. The eight shifted results are averaged to one result over the period to reduce the level of random error.
4. Results with a phase difference of ∆t/T = 0.5 are subtracted to determine the bound circulation.

To determine the partial bound circulation Γb(x, t), a similar approach is followed, only that in step 1 the position of
the downstream boundary is fixed at the particular chordwise position x on the airfoil, while the positions of the upstream
and the streamwise boundaries are varied. A phase shift is therefore not applied for the determination of the circulation
distribution, so that step 2 is omitted. Steps 3 and 4 are applied in the same way as described above.
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