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Chapter 1

Introduction

Currently there is a nitrogen crisis in the Netherlands and one of the consequences of this crisis
is a delay in the permit application process which causes a (potential) delay of industrial projects
related to the energy transition. To tackle this problem, solutions which reduces the emission of
NOx have to be found in a short time span.

One potential solution is an innovative combustion technology which is called Moderate or In-
tense Low-Oxygen Diluted (MILD) combustion, which is classified as a non-premixed combustion
technology. In approximately the last three decades, MILD combustion has been extensively re-
searched and developed to reduce the emission of greenhouse gasses in combustion applications.
This technology is already used in the steel industry, but MILD combustion for a liquid fuel is not
fully understood [51]. One of the characteristics of MILD combustion is a diluted oxidizer or fuel
stream. Diluting the fuel or oxidizer stream results in slower chemical reactions, which lead to a
larger reaction volume and this results in a more distributed energy release. The latter reduces
the peak temperature and one of the consequences is a lower NOx formation [30].

In the work of Klaessen [30], an attempt is made to perform a Large Eddy Simulation (LES)
of MILD combustion to gain better insight into MILD combustion process. For this purpose, a
filtered-based Large Eddy Simulation is used combined with several models to close unresolved
terms in the filtered equations. Two of these models are the Eddy Viscosity model and the
gradient assumption which respectively close the turbulent stress term and the turbulent scalar
flux term. The use of a filtered-based LES and an Eddy Viscosity model is common for non-
premixed combustion problems. A major drawback of these models is that they will always be
non-zero when the gradient of the filtered quantity is non-zero. When the flow is captured in the
resolved space, these subgrid terms should be zero. Also due to the application of a filter with
non-uniform filter width, commutation errors are introduced. The reason for this is that a filter
with non-uniform width does not commute with spatial derivatives.

In order to get better insight into MILD combustion, the methods used should be as efficient as
possible to permit wide investigations of different flow conditions. One method to solve these
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2 Introduction

problems is to implement a more sophisticated LES model, for example the Variational Multiscale
Method (VMM). This work will focus on the application of VMM to the modelling of non-premixed
combustion.

1.1 Challenges in turbulent non-premixed combustion

One of the challenges in turbulent combustion is the large number of species and reactions in-
volved in detailed kinetic mechanisms. For example, in the combustion process of methane and
heptane, there are respectively 50 and 1000 species involved [32]. This number increases for larger
hydrocarbons, such as diesel or kerosine. Methods have therefore been developed to reduce the
number of species and chemical reactions. One of these methods is skeletal reduction [35]. The
first level of reduction is the extraction of species and chemical reactions with little or no influence
to the computations of the relevant chemical features. The second level of reduction is to identify
fast chemical reactions or groups of fast reactions in partial equilibrium. This method identifies
species which are in quasi steady state [13]. With skeletal reduction it is possible to reduce the
number of species to the order of 15-40 species for simple hydrocarbons over a range of conditions
[13, 50].

Another challenge in turbulent combustion is the large range of length and time scales. As stated
above, many chemical reactions occur in combustion which lead to separated, discrete time scales
due to different reaction rates [38]. The smallest time scale is of the order 10−10 s. The length
scales can vary from those of the combustion apparatus down to the Kolmogorov length scales, and
even smaller scales in the reaction zones. The existence of the large range of other scales imposes
challenges into modelling turbulent combustion, because all the scales need to be computed and/or
modelled, depending on the choice of modelling technique.

A final challenge in turbulent combustion is the coupling between molecular diffusion and chemical
reaction. In turbulent combustion there exist two types of mixing: inert and reactive mixing. Inert
mixing is the molecular mixing of conserved quantities such as inert species or mixture fraction,
whereas reactive mixing is the molecular mixing of reactive species during chemical reactions. For
inert mixing, the turbulent cascade tends to steepen gradients [52]. At high Reynolds numbers,
the mean scalar dissipation scales with the inverse of the turbulent integral time scale [44] due
to the rate-delimiting process of scale reduction through the turbulent cascade. Scaling with
turbulent time scales shows that this process is independent of the molecular diffusivity. Therefore
modelling inert mixing is not a major obstacle in turbulent combustion.

During reactive mixing however, chemical reactions occur. These can also steepen scalar gradients.
The relative effectiveness of turbulent straining and chemical reaction in steepening scalar gradients
depends on the chemical timescale, as well as the turbulent time scale of the smallest scales (the
Kolmogorov time scale). The ratio of the Kolmogorov and chemical timescale is defined as the
Karlovitz number, Ka. For sufficient large Ka, chemical reactions influence scalar gradients,
therefore mixing is dominated by chemical reactions and diffusion. This corresponds to flamelet
combustion, which occurs in a very thin layer where locally one-dimensional flamelet structures
are present within the turbulent flow field.

L.A.Klaessen M.Sc. Thesis
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1.2 A brief description of a selection of sophisticated LES models

One sophisticated modelling approach is implicit LES (ILES). Typically ILES uses filters to separate
the scales, but no subgrid-scale model is added to the governing equations. Instead, the numerical
numerical truncation error derived by considering the modified equation acts as the subgrid-scale
model [1]. However, the ILES method should be applied with great caution. In real problems,
the prediction of the dissipative properties of the numerical method is exceptionally difficult [11].
For the application of ILES to combustion, relatively little research has been conducted. For
high-speed premixed flows, numerical simulations with acceptable results have been performed
[28, 29, 55]. This work has been extended to low-speed premixed turbulent combustion by Zhao
[54] and applied on a 1D laminar premixed flame.

A derived approach from ILES is the Variational Multiscale Method (VMM). Instead of filters,
variational projections are used to express the large scales in appropriate spaces. Another feature
of this method is a focus on modelling the fine-scales equations while maintaining the numerical
consistency of the coarse scales equations. This permits full rate-of-convergences of the imposed
numerical method, which is not necessarily the case with the traditional approach. Hughes [22]
started the development of the VMM method, which is in principle a stabilizing method. The first
versions of the VMM model for LES [24, 25] divided the scales into two separate scales: the coarse
scale and fine scale. Often these scales are also referred as the resolved scales and unresolved
scales respectively. Inspired by the traditional models, initially the artificial eddy-viscosity model
was used. Initially this was included on the fine scale equations and acted on the fine scales only. In
the work of Collis [10] and Gravemeier [15], this approach was clarified by dividing the scales into
large coarse scales, small coarse scales and fine-scales. In this case the fine-scales are dependent
on the small coarse scales only. With this technique Gravemeier [16] modeled the fine-scales with
the Smagorinsky model.

Another method to approximate the fine-scales is based on the residual of the governing equation.
When it’s assumed that the non-linear fine-scales are small compared to the coarse scales, the
leading term after linearization is explicitly dependent on the resolved scale residual [47]. Calo
[6] exploited this idea by presenting the fine-scales as a function of the residual and the local
Greens function. When applying the residual-based technique, VMM shuts off in a laminar flow
because the fine-scale velocity is in this case equal to zero, whereas an eddy-viscosity model in
traditional LES limits the rate of convergence because it is applied on all coarse scales. When
the local Greens function is approximated by an element-averaged Greens function, the formu-
lation resembles stabilization method [6, 21]. Stabilized methods add a weighted residual to
the Galerkin formulation multiplied by the parameter τ [18]. For numerous equations stabilized
methods have been developed, for example the (compressible)Euler and Navier-Stokes equation
[48], the convection-diffusion equation [23] and the convection-diffusion-reaction equation [19, 7].
Bazilevs et al. [2] applied the residual-based methodology with the use of a stabilization parameter
for incompressible homogeneous isotropic turbulence and turbulent channel flows. The presented
cases use the quasi-static subscales assumption, which means that the fine-scales are independent
of time. [9] presented a formulation which allows a time-dependent fine-scale approximation for
incompressible flow problems. One of the main conclusions is that for a transient incompressible
flow problem there are a lot of benefits to track the subscales in time including the application of
time-independent stabilized parameters, which are extensively researched.
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4 Introduction

In literature, references considering VMM in combination with combustion are limited. Gravemeier
and Wall [17] made an attempt to use VMM for the numerical case of a flame-vortex interaction,
an example of premixed combustion. In this work, the two-scale residual based VMM with a
stabilized method and with a Smagorinsky model for the fine-scales which is only dependent on
the small coarse scales are implemented and compared to each other.

1.3 Objective of the thesis

There is a need to examine the potential of alternative methods such as VMM for the ability
to improve the efficiency of combustion simulations. However the computational expense of a
LES run of a 3D turbulent non-premixed combustion problem is high due to the large variety of
length and time scales in turbulent non-premixed combustion. Secondly, VMM is a sophisticated
model and the models used to simulate turbulent non-premixed combustion are complex. This
means that the implementation of VMM in a turbulent non-premixed combustion increases the
complexity even more. And finally, the results of a full 3D turbulent non-premixed combustion
simulation are difficult to interpret due to their complexity.

Therefore the objectives of this thesis are as follows: Firstly to define a simplified model problem
which has the important aspects of turbulent non-premixed combustion for comparing numerical
methods. One goal of this objective is to reduce the complexity of the problem but include the
important characteristics in order to minimize the possibility of cancelling errors and to minimize
ambiguities in the results. Secondly, to propose and to investigate the potential of a framework
based on VMM formulation for non-premixed combustion computations. The results of the sim-
plified model problem in a VMM framework are compared to the results when using a standard
Smagorinsky model. The simplified model problem focuses on the determination of velocity and
mixing of scalars, a key concept of non-premixed combustion problems.

The objectives lead to the following research questions:

RQ1 What are the differences between the simplified model and a full 3D non-premixed combus-
tion model?

RQ2 Are the current formulations of VMM sufficient for the simplified model problem?

RQ3 How do the methods compare in their ability to reproduce the statistics of the relevant
variables?

RQ4 Which of the τ definitions for the flow field, reaction terms and for a passive scalar are most
effective?

RQ5 What is the performance of the different assumptions for the subscales on the results?

L.A.Klaessen M.Sc. Thesis
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1.4 Outline of the thesis

The thesis is organized as follows. Chapter 2 provides a description of the simplified model problem.
The choices of the simplifications are explained and the governing equations are presented in
this chapter. Chapter 3 provides the theoretical background information about the Variational
Multiscale Method (VMM) and the implementation of LES in a VMM environment. The relevant
coarse scales and fine-scales equations are derived, which is implemented in the LES code. In
chapter 4 the test cases of the Method of Manufactured Solutions are explained and the results
are presented. The SMP reference results and the results of the comparison of the different
models are respectively shown in chapter 5 and 6. Finally, chapter 7 contains the conclusions and
recommendations for future work.

MSc. Thesis L.A.Klaessen
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Chapter 2

Simplified model problem and governing
equations

The objective of this chapter is to introduce a simplified problem which models the important
characteristics of non-premixed combustion. In the first section, the requirements and construction
of the simplified model problem are presented. The second section shows the governing equations
of the simplified model problem are derived. Because the simplified model problem should replicate
the important characteristics of non-premixed combustion, one of the governing equation includes
a non-linear source term.

2.1 A brief description of modelling non-premixed combustion

Non-premixed combustion is characterized by the presence of a non-premixed (or diffusion) flame.
In such a flame, fuel and oxidizer are present in a separate stream. Fuel and oxidizer come together
due to molecular diffusion and mix in a thin layer such that a combustible mixture is created. If
ignition occurs, the combustible mixture ignites and heat is released. Far away from the thin layer,
or reaction layer, the mixture is either too lean or too rich so that ignition is not possible (see
Fig. 2.1). In the specific case that a flame front is very thin compared to other flow and wrinkling
scales, the gradients along the flame front can be neglected comparing to the gradient normal to
the flame front. This implies that the flame structure is locally 1D. When irreversible, infinitely
fast chemistry is assumed, the flame structure depends only on time and mixture fraction. Such
a small element of the flame front which shows 1D behavior is called a flamelet and therefore
this assumption is called the flamelet assumption. The mixture fraction tracks the mixing of fuel
and oxidizer in the flow. By definition, the mixture fraction is 1 in the fuel stream and 0 in the
oxidizer stream. In Figure 2.2, an example is shown for the mixture fraction distribution of a jet
flow. There are several methodologies available to solve a non-premixed combustion problem. In
the work of Klaessen [30], the following decomposition into two subproblems is used, namely:

MSc. Thesis L.A.Klaessen



8 Simplified model problem and governing equations

Figure 2.1: Structure of a non-premixed (or diffusion) flame. Superscript 0 denotes the mass
fraction originating from the stream.

Figure 2.2: Representation of the mixture fraction in a jet flow

1. A mixing problem. In this problem the flow properties (velocity) and predefined scalars are
calculated. These variables are input for the next subproblem;

2. A flame structure problem. In this problem the output of the mixing problem is processed
in order to retrieve the thermochemical variables, such as temperature or chemical source
term.

Some variables, such as viscosity, are dependent on temperature. Therefore solving the mixing
problem and flame structure problem is an iterative process.

Imposing the assumptions of irreversible, infinitely fast chemistry and steady flamelets the flame

L.A.Klaessen M.Sc. Thesis



2.2 Requirements and construction of the simplified model problem 9

structure problem leads to a description which is only dependent of the mixture fraction Z and
therefore contains no information about chemical reactions and cannot account for chemical
variations in directions perpendicular to its gradient [39]. As a result flame lift-off and other
ignition and extinction phenomena cannot be predicted accurately [40]. One solution for this
problem is to apply the flamelet/progress variable approach, developed by Pierce and Moin [39].
The idea of the approach is to introduce another tracking scalar which is independent of the
mixture fraction. This means that the new scalar must be a nonconserved scalar, in this case
the reaction progress variable ϕ. The progress variable measures the extent-of-reaction of the
flow. For example, the progress variable could be defined as a normalized summation of the mass
fractions of reaction products. By definition, the progress variable is equal to 0 in fresh gasses
and 1 in fully-burnt gasses. The application of the flamelet/progress variable approach results in
a flame structure problem in which thermochemical variables are dependent on Z and ϕ.

A detailed description of the theory of non-premixed combustion can be found in Appendix A.

2.2 Requirements and construction of the simplified model prob-
lem

In more detail, the approach used for the DJHC-simulations of Klaessen [30] can be summarized
in the following three steps:

1. Determine the 3D velocity field by solving the incompressible Navier-Stokes equations

2. Determine the mixture fraction Z and the progress variable ϕ in 3D

3. Determine the thermochemical variables, such as the chemical source term. These variables
are based on the mixture fraction and the progress variable.

Thus solving a turbulent non-premixed problem is expensive, primarily due to step 1, but also
step 2 and step 3. Testing a new model or discretisation technique for such a problem would
be a cumbersome process. The run time of one calculation is in the order of weeks and testing
a new model or new discretisation technique requires many runs. Therefore, a simplified model
problem which has the important characteristics of turbulent non-premixed combustion is needed
to facilitate rapid comparisons in order to determine its performance.

In Section 2.1, it is shown that a non-premixed combustion problem can be decomposed into a
mixing problem (step 1 and 2 of the solution algorithm) and a flame structure problem (step 3
of the solution algorithm). To reduce complexity, the simplified model problem should only focus
on one of these problems. The choice is based on the second objective of this thesis, which is
to introduce the simplified model problem in a VMM framework. Because the VMM framework
is an alternative to filtered Large Eddy Simulation, the most relevant differences will occur in
the mixing problem, affecting the velocity field, mixture fraction and progress variable. Thus the
flame structure determination is discarded from the simplified model problem and replaced by an
analytical function.

MSc. Thesis L.A.Klaessen



10 Simplified model problem and governing equations

A further simplification is to reduce the number of dimensions from three to one. This aids
interpretation and increases efficiency, but must be done in a way which retains the important
characteristics of the original problem. The approach used here is elaborated in the following
section.

2.3 Simplification of the mixing problem

The mixing problem in [30] uses the 3D incompressible Navier-Stokes equations to compute the
velocity field, the 3D convection-diffusion (CD) equation to compute the mixture fraction Z
and the convection-diffusion-reaction (CDR) equation to determine the progress variable ϕ. The
incompressible formulation is used because the relevant density variations are not caused by com-
pressibility effects, but due to temperature variations and due to mixing of species with a different
density.

The resulting system of the Navier-Stokes equations Eq.(A.11), the CD equation Eq.(A.50) and
the CDR equation Eq.(A.57) can be written as:

ρ
Duj
Dt

= − ∂p

∂xj
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂ui
∂xi

))
(2.1a)

ρ
DZ

Dt
=

∂

∂xi

(
ρDZ

∂Z

∂xi

)
(2.1b)

ρ
Dϕ

Dt
=

∂

∂xi

(
ρDϕ

∂ϕ

∂xi

)
+ ρω̇ϕ (2.1c)

where ui is the velocity in direction i, p is the pressure, ν is the kinematic viscosity, DZ and Dϕ

are the diffusivity for the CD and CDR equation, respectively. The chemical reaction term in the
CDR equation is denoted as ω̇.

In order to simplify the mixing problem Eq.(2.1), all terms are expanded and rearranged such that
terms which are dependent on x and t are on the left-hand side and the remaining terms are on
the right-hand side. After expanding and rearranging Equation (2.1a) in x-direction and assuming
ρ and µ is constant, the result is:

∂u

∂t
+u

∂u

∂x
−ν ∂

2u

∂x2
= −1

ρ

∂p

∂x
−v∂u

∂y
−w∂u

∂z
+ν

(
∂2u

∂y2
+
∂2u

∂z2

)
−1

ρ

∂

∂x

(
µ
2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

))
(2.2)

where ν = µ
ρ .

After expanding and rearranging Eq.(2.1b) and Eq.(2.1c) and assuming ρ, DZ and Dϕ is constant,
the result is:

∂Z

∂t
+ u

∂Z

∂x
−DZ

∂2Z

∂x2
= −v∂Z

∂y
− w

∂Z

∂z
+DZ

(
∂2Z

∂y2
+
∂2Z

∂z2

)
+

1

ρ

(
∂ρDZ

∂x

)
(2.3)
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2.4 Characteristics of the simplified model problem 11

∂ϕ

∂t
+ u

∂ϕ

∂x
−Dϕ

∂2ϕ

∂x2
− ω̇ = −v∂ϕ

∂y
− w

∂ϕ

∂z
+Dϕ

(
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
(2.4)

It can be seen that the left-hand side is equal to the Burgers equation. The right-hand forcing
term can be extracted from a 3D Navier-Stokes simulation. Eq.(2.3) and Eq.(2.4) are rearranged
as such that the left-hand side is equal to respectively the 1D CD and the 1D CDR equation.
If the right-hand side is also treated as a forcing term, both equations are simplified to its 1D
counterpart including a forcing term. In summary, the forcing terms of the simplified version of
the mixing problem are in this case defined as :

fu = −1

ρ

∂p

∂x
− v

∂u

∂y
− w

∂u

∂z
+ ν

(
∂2u

∂y2
+
∂2u

∂z2

)
− 1

ρ

∂

∂x

(
µ
2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

))
(2.5a)

fZ = −v∂Z
∂y

− w
∂Z

∂z
+DZ

(
∂2Z

∂y2
+
∂2Z

∂z2

)
+

1

ρ

(
∂ρDZ

∂x

)
(2.5b)

fϕ = −v∂ϕ
∂y

− w
∂ϕ

∂z
+Dϕ

(
∂2ϕ

∂y2
+
∂2ϕ

∂z2

)
(2.5c)

From Eq.(2.5), it can be seen that the forcing terms in the CD and CDR equation are a function
of derivatives in the y and z direction. The forcing term in the 1D Burgers equation consists of a
pressure term and derivatives in the y and z direction. In the next section, a detailed description
is given of the behaviour of these simplified equations.

2.4 Characteristics of the simplified model problem

The following section briefly describes the governing equations of the simplified model problem.
Three types of equations are used in this thesis, namely the Burgers equation for solving the
velocity field, the convection-diffusion (CD) equation for solving the mixture fraction Z and the
convection-diffusion-reaction (CDR) equation for solving the progress variable ϕ. In the following
subsections, these equations are briefly explained.

2.4.1 Burgers equation

Eq. (2.2) is an example of the forced Burgers equation.

ut + uui = νuii + f(x, t) (2.6)

where u the velocity in x-direction, ν is the kinematic viscosity and the subscript t, i and ii denotes
the derivative of the velocity in time, space and the second derivative in space respectively. f(x, t)
denotes the forcing term which accounts for the 3D-turbulent effects.
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12 Simplified model problem and governing equations

The Burgers equation was introduced in 1948 by J.M Burgers [4] as a simplification of the Navier-
Stokes equation (in his paper referred as hydrodynamical equations) in an attempt to create a
simplified system of mathematical equations used for studying the behaviour of turbulent motion.
The strength of the Burgers equation is is that it can be solved analytically using Hopf-Cole
transformation [20].

Because of their similarity, the Burgers and Navier-Stokes equations share some properties. For
example, both equations show a forward energy cascade caused by the non-linear term and regions
where high gradients occur are considered to be as regions with dissipation [34]. However, it must
be understood that the Burgers equation lacks properties essential for modelling Navier-Stokes
turbulence, namely the sensitivity to small perturbations in the initial conditions and therefore
the spontaneous rise of instabilities resulting in turbulent eddies. Also the 3D vortex stretching
mechanism is absent [43], although its effect on u is represented in f .

2.4.2 Convection-diffusion equation

The convection-diffusion (CD) equation Eq. (2.3) describes the physical phenomena where a
physical quantity, such as particles or energy, are only transported in a domain due to convection
and diffusion. In the simplified model problem the CD-equation is used for the determination of
the fuel to oxidiser ratio or mixture fraction Z and it has a one-way coupling to the velocity field,
which means that velocity alters the transport of the mixture fraction but there is no coupling to
the flow field. This means that the mixture fraction has no influence on the flow fluid, thus no
effect on density, viscosity and other flow variables.

For the simplified model problem, the CD equation has the following form:

Zt + uZi = DzZii + g(x, t) (2.7)

where Z is the mixture fraction, u the velocity in x-direction, DZ is the diffusive coefficient or Z
t, i and ii denotes the derivative in time, space and the second derivative in space respectively
and g(x, t) is a forcing term which accounts for the 3D-turbulent effects.

2.4.3 Convection-diffusion-reaction equation

The incompressible convection-diffusion-reaction (CDR) equation Eq. (2.4) describes the physical
phenomena where a physical quantity, such as particles or energy, are transported in a domain due
to convection, diffusion and reaction. In the context of this thesis, the CDR equation describes
how the mass fraction of the reaction products or progress variable is distributed in a medium
under the influence of convection, diffusion and chemical reactions.

For the simplified model problem, the CDR equation has the following form:

ϕt + uϕi = Dϕϕii + ω̇ + h(x, t) (2.8)
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2.5 Chemical reaction term modelling 13

where ϕ is the progress variable, Dϕ is the diffusive coefficient of ϕ, ω̇ is the chemical reaction
term and h(x, t) is a forcing term. In this thesis the forcing term is chosen as such that it accounts
for the 3D-turbulent effects. A model for ω̇ must be applied to solve the CDR equation. As stated
in Section 2.3, for the simplified model problem an analytical function shall be used. In the next
section, the derivation of this analytical function is shown.

2.5 Chemical reaction term modelling

The evaluation of chemical reaction terms remains a challenge due to their highly non-linear
character. Usually they are based on a detailed or a reduced chemical mechanism, which requires
complicated models in order to produce accurate results.

In some studies, e.g. in the work of Hauke and Garcia-Olivares [19], this term is simplified by
using a linear function of ϕ to reduce the complexity and thus decreasing the run time. In this
section a more general simplification of the chemical reaction term is derived based on a third
order polynomial of ϕ.

Thermodynamic data from a chemical reaction scheme can be obtained from experiments, aca-
demic data sets or from specialized software. Here the chemical reaction term data of the work
from Klaessen [30] is used for the polynomial fit routine.

We assume chemical source term ω̇ of the following form:

ω̇ = A0(x, t) +A1(x, t)ϕ+A2(x, t)ϕ
2 +A3(x, t)ϕ

3 (2.9)

The global coefficients A0, A1, A2 and A3 are a function of space and time. A polynomial fit has
to be constructed for these global coefficients. Due to the limits of the polynomial fit routine, a
fifth order function for these global coefficients is constructed. Eq.(2.9) now becomes:

ω̇ = (a0 + b0t+ c0x)
5 + (b1 + c1t+ d1x)

5 ϕ

+ (b2 + c2t+ d2x)
5 ϕ2 + (b3 + c3t+ d3x)

5 ϕ3
(2.10)

in which the coefficients bn, cn and dn (n = 0...3) are the coefficients of the polynomial fit for the
chemical reaction term data which are determined by polynomial fit routine in Matlab. The R2

value was determined for the polynomial fit model for a first, second and third order polynomial
in ϕ. The results are shown in Table 2.1.

Table 2.1: Results of the polynomial order fit for the chemical reaction term model

Polynomial order Coefficients R2 Value

First order A0, A1 both non-zero, A2, A3 both zero 85%

Second order A0, A1, A2 all non-zero, A3 zero 92%

Third order A0, A1 A2, A3 all non-zero 93%

It can be seen that increasing from a first to a second order polynomial, the R2 value increases
with 7%. When increasing the order from two to three, the R2 value increases with only 1%. For
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14 Simplified model problem and governing equations

this reason, a third order polynomial in ϕ will be used in this thesis. Increasing the order is not
likely to improve the model accuracy dramatically and increases the computational costs.

L.A.Klaessen M.Sc. Thesis



Chapter 3

Large Eddy Simulation formulations

The basis of traditional filter-bases Large Eddy Simulation is the application of a filter in or-
der to obtain scale separation. However, the application of filters may impose problems due to
commutation errors of the spatial derivative when a non-uniform mesh is used [46]. Because
the Variational Multiscale Method (VMM) works with variational projections, this method avoids
this problem when applied to Large Eddy Simulation. Another advantage of this method is a
residual consistency In this chapter, VMM for LES will be further elaborated. The first section
of this chapter shows the theoretical basis of VMM in a LES environment for the resolved and
unresolved scales. In the second section, the implementation of the simplified model problem in a
VMM framework is elaborated. For the simplified model problem, the resolved scale equations are
presented and various models for the unresolved scales are explained. The last section presents
the implementation of the Smagorinsky model in a VMM framework.

3.1 Theoretical basis of the Variational Multiscale Method

Hughes [22] introduced the variational multiscale method as a theoretical framework and developed
it as a tool to solve general problems in computational mechanics [24]. VMM is used for problems
with a broad range of scales, especially when standard numerical methods are not suitable. One
important property of VMM is that the range of scales is divided into a predefined number of
groups. For each scale group a different numerical method is developed. For VMM the two and
three-scale groups have been used. However, only the two-scale group is used in this thesis as
further explained in this chapter.

In Hughes [22] a decomposition of existing scales into two scale groups is assumed, referred as
the resolved (or coarse) scales and unresolved (or fine) scales. In contrast to traditional LES,
the separation of scales in VMM is accomplished by a variational projection, instead of a filter.
The variational projection fixes the range of resolved scales, which are finite-dimensional. Once
the resolved scales are fixed, the unresolved scales are also known, which is in fact all remaining
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16 Large Eddy Simulation formulations

scales. In this work the influence of the unresolved scales is determined by an approximate Green’s
function.

A turbulent flow consists of eddies of various sizes. The energy cascade continues due to the break
up of larger eddies into smaller eddies. The break up of these eddies causes an average transfer
of energy from the larger eddies to the smaller eddies. This process continues until a stable eddy
motion has been reached and at this point dissipation of kinetic energy takes place. Most energy
exchange takes place at scales of similar size. At a given scale size, energy comes from the next
larger scale size level and it is transferred to the next smaller scale size, see Fig. 3.1. Therefore,
the largest and smallest scales have no direct influence on the energy transfer at intermediate
scales.

A model for the unresolved (or fine) scales more realistic must contain an interaction with the
resolved scales.

Figure 3.1: Kolmogorov energy spectrum for VMM two-scale decomposition and DNS [16]

In Hughes et al. [26] the model of the unresolved scales is driven by the residual of the resolved
scales to ensure consistency. In the following section the elaboration of VMM for the simplified
model problem is given, including the residual-based unresolved scale model.

3.2 VMM for the simplified model problem

The implementation of the simplified model problem in a VMM framework starts by transforming
the strong form to the weak form of the Burgers, convection-diffusion (CD) and convection-
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3.2 VMM for the simplified model problem 17

diffusion-reaction (CDR) equation. The weak form is the basis of the Variational Multiscale
Method. A multiscale decomposition of the solution and weighing space is applied and variational
projectors are used to describe the original weak form as two coupled non-linear problems, a
coarse-scale problem and a fine-scale problem. An attempt is made to solve the fine-scale problem
analytically, by assuming that the coarse scales are given by a chosen projection of the exact
solution and by substituting the explicit solution of the fine-scale equation into the coarse-scale
problem. In the following this is illustrated for the equations of the simplified model problem.

3.2.1 Strong form of the simplified model problem

Assume a 1D domain Ω with boundaries Γ = ∂Ω. The strong form of the forced Burgers equation
for this domain is defined as

Lu =
∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= fB(x, t) (3.1)

with prescribed boundary conditions on Γ and initial condition u(x, 0) = u0(x). In Eq. (3.1) u is
the velocity, ν is the kinematic viscosity and fB(x, t) is the source term. It can be seen that the

second term of Eq. (3.1) can be rewritten as 0.5∂u2

∂x , which leads to:

Lu =
∂u

∂t
+

1

2

∂u2

∂x
− ν

∂2u

∂x2
= fB(x, t) (3.2)

The strong form of the CD equation on the domain Ω is defined as:

LZ =
∂Z

∂t
+ u

∂Z

∂x
−DZ

∂2Z

∂x2
= fCD(x, t) (3.3)

with prescribed boundary conditions on Γ and initial condition Z(x, 0) = Z0(x). In Eq.(3.3), Z
is the mixture fraction, DZ is the diffusive coefficient of Z and fCD(x, t) is the source term of
the CD equation.

The strong form of the CDR equation is defined as follows:

Lϕ =
∂ϕ

∂t
+ u

∂ϕ

∂x
−Dϕ

∂2ϕ

∂x2
= ω̇ + fCDR(x, t) (3.4)

where ϕ is the progress variable, u is the velocity field, Dϕ is the diffusion coefficient of ϕ, ω is the
chemical reaction term and fCD(x, t) is the source term for the CDR equation. In the remainder
of this section the partial derivative ∂

∂x will be replaced by the subscript x to denote a derivative
in the x-direction.

The application of the CDR equation can be expanded using the model of the chemical source
term ω̇, derived in Section 2.5. The strong form of the CDR equation then becomes:

Lϕ =
∂ϕ

∂t
+ u

∂ϕ

∂x
−Dϕ

∂2ϕ

∂x2
−A0 −A1ϕ−A2ϕ

2 −A3ϕ
3 = fCDR(x, t) (3.5)
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18 Large Eddy Simulation formulations

3.2.2 Weak form of the simplified model problem

Before constructing the weak form of the simplified model problem, the trial solution space V, Z
and P and weighing function space W are chosen. Let these spaces be defined as:

u ∈ V ⊂ H1(Ω) (3.6a)

Z ∈ Z ⊂ H1(Ω) (3.6b)

ϕ ∈ P ⊂ H1(Ω) (3.6c)

w ∈ W ⊂ H1(Ω) (3.6d)

where H1(Ω) is the Sobolev space and it represents the space of square integrable functions
together with its derivative. Lp(Ω) represents the space of functions whose power n is integrable
over a domain, with n is equal or larger than 1.

The weak form of Eq. (3.1), (3.3) and (3.5) are obtained by applying the Galerkin formulation to
the strong form of the equations. The Galerkin formulation can be obtained by multiplying the
equations with a weighting function w and integrating over the domain Ω.

The weak form of the Burgers equation is:

Find u ∈ V such that ∀w ∈ W

(w,Lu)Ω = (w, ut)Ω +
(
w, 0.5(u2)x

)
Ω
− (w, νuxx)Ω − (w, fB(x, t))Ω (3.7)

The weak form of the CD equation is:

Find Z ∈ Z such that ∀w ∈ W

(w,LZ)Ω = (w,Zt)Ω + (w, uZx)Ω − (w,DZZxx)Ω − (w, fCD(x, t))Ω (3.8)

and the weak form of the CDR equation:

Find ϕ ∈ P such that ∀w ∈ W

(w,Lϕ)Ω = (w, ϕt)Ω + (w, uϕx)Ω − (w,Dϕϕxx)Ω

−
(
w,A0 +A1ϕ+A2ϕ

2 +A3ϕ
3
)
− (w, fCDR(x, t))Ω = 0 (3.9)

with

(a, b)Ω =

∫
Ω
ab dΩ (3.10)

In general, the trial solution spaces and the weighting function space do not have to span the
same space. Only when the boundary conditions of u (or du/dx) are 0 and u0 = 0, V spans the
same space as W. The same holds for Z and w and for ϕ and w.

The weak form is also known as the variational form and it will be the basis of the variational
multiscale method. During this stage, no numerical approximation has been made on the weighing
function and trial solution functions. This means that their spaces are of infinite size. In the next
subsection, the variables are multiscale decomposed and also their solution spaces are presented.
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3.2 VMM for the simplified model problem 19

3.2.3 Multiscale decomposition of the simplified model problem

Lets consider a multiscale decomposition into two scale groups. In terms of the weighing and trial
solution spaces, the scale separation is:

V = V ⊕ V ′ (3.11a)

W = W ⊕W ′ (3.11b)

Z = Z ⊕ Z ′ (3.11c)

P = P ⊕ P ′ (3.11d)

And multiscale decomposition of the variables yields:

u =u+ u′ (3.12a)

w =w + w′ (3.12b)

Z =Z + Z ′ (3.12c)

ϕ =ϕ+ ϕ′ (3.12d)

where the coarse-scale contribution is denoted with a (..) and the fine-scale contribution is denoted
with a (..)′. In this case, the coarse-scale contribution of the weighing function space and trial
solution spaces are finite-dimensional, whereas the fine-scale contribution of all spaces are infinite
dimensional. The separation of scales is accomplished by choosing a projection of the exact
solution onto the V, W, Z and P spaces. If the H1

0 projector is chosen, then the coarse-scale
variables will be nodally exact in 1D and therefore the fine-scale contributions is equal to zero on
the nodes. As a result, the evaluation of the fine-scale contribution can be approximated as a
local problem.

Substitution of the multiscale decomposed variables into the weak form of the Burgers, CD and
CDR equation yields:

(w + w′,L(u+ u′))Ω = (w + w′, fB)Ω ∀w ∈ W, ∀w′ ∈ W ′, ∀u ∈ V, ∀u′ ∈ V ′

(3.13a)

(w + w′,L(Z + Z ′))Ω = (w + w′, fCD)Ω ∀w ∈ W, ∀w′ ∈ W ′, ∀Z ∈ Z,∀Z ′ ∈ Z ′

(3.13b)

(w + w′,L(ϕ+ ϕ′))Ω = (w + w′, fCDR)Ω ∀w ∈ W, ∀w′ ∈ W ′, ∀ϕ ∈ ϕ,∀ϕ′ ∈ P ′

(3.13c)

The weak form of the Burgers, CD and CDR equation (3.13a), (3.13b) and (3.13b) are linear with
respect to the weighing function. Therefore one can separate Eq. (3.13) as follows:

(w,Lu)Ω + (w,Lu′ − fB)Ω − (w, uu′)Ω = 0 ∀w ∈ W, ∀u ∈ V (3.14a)

(w′,Lu− fB)Ω + (w′,Lu′)Ω = 0 ∀w′ ∈ W ′, ∀u′ ∈ V ′ (3.14b)

(w,LZ)Ω + (w,LZ ′ − fCD)Ω = 0 ∀w ∈ W,∀u ∈ V (3.15a)

(w′,LZ − fCD)Ω + (w′,LZ ′)Ω = 0 ∀w′ ∈ W ′,∀u′ ∈ V ′ (3.15b)
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20 Large Eddy Simulation formulations

and

(w,Lϕ)Ω + (w,Lϕ′ − fCDR)Ω = 0 ∀w ∈ W, ∀u ∈ V (3.16a)

(w′,Lϕ− fCDR)Ω + (w′,Lϕ′)Ω = 0 ∀w′ ∈ W ′, ∀u′ ∈ V ′ (3.16b)

Multiscale decomposition leads to equations which are only a function of the coarse-scale con-
tribution of w and equations which are a function of the fine-scale contribution of the weighing
function w. Therefore Eq. (3.14a), (3.15a) and (3.16a) are referred as the coarse-scale equations
and Equation (3.14b), (3.15b) and (3.16b) are referred as the fine-scale equations. When closely
examining the results of the equation separation, it is noted that the coarse-scale equations are
driven by the fine-scale contribution of u, Z and ϕ and visa versa.

At first glance, the breakdown of the original equations into a fine-scale problem and a coarse-scale
problem increases the complexity of the original problem. However, if the fine-scale problem can
be approximated in an intelligent manner, only a coarse-scale equation remains.

3.2.4 Fine-scale simplified model problem

The investigation of approximating the fine-scale contribution starts by looking deeper into the
fine-scale equations. The fine-scale equations Eq. (3.14b), (3.15b) and (3.16b) can be expressed
as:

(w′,Lu′)Ω = −(w′,Lu− fB)Ω (3.17a)

(w′,LZ ′)Ω = −(w′,LZ − fCD)Ω (3.17b)

(w′,Lϕ′)Ω = −(w′,Lϕ− fCDR)Ω (3.17c)

Both fine-scale equations show that the fine-scale solution u′, Z ′ and ϕ are a function of the
large-scale residual Lu− fB, LZ − fCD and Lϕ− fCDR respectively.

Because the fine-scale equations Eq.(3.17) are non-linear an approximation has to be found to
solve the fine-scale variables. Scovazzi [47] provided a framework for the fine-scale approximation.
In this work the relation between the fine scale solution and its residual is exploited. Under
the assumption of a small fine-scale contribution compared to its coarse-scale contribution, the
following asymptotic expansion can be applied:

V ′ = ϵV ′
1 + ϵ2V ′

2 + ... =
∞∑
n=1

ϵnV ′
n (3.18)

where V ′ is the fine scale contribution of V , and V is the variable under consideration. ϵ is
equal to the dual norm of the residual of V , ∥Res(V )∥. In summary, the asymptotic expansion
of Scovazzi [47] provides a solution method to the non-linear fine-scale equations by means of a
cascade of linear systems, in which the leading term is dependent on the residual of V and the
other terms are dependent on the fine-scale terms V ′

n of the asymptotic expansion.
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3.2 VMM for the simplified model problem 21

Hughes [22] proposed a solution method for the fine-scale variable by solving the leading term of
the linear system using the fine-scale element Green’s function and the large-scale residual.

V ′(x) = −
∫
Ωe

G′
1(x, x

′)Res(V ) dΩx′ (3.19)

where G′
1(x, x

′) is a fine-scale element Green’s function.

For a limited number of cases, the fine-scale element Green’s function can be determined exactly.
However, for complex problems the derivation of the fine-scale Green’s function can be tedious
or practically impossible. Therefore it is practical to approximate Eq.(3.19). In this thesis several
models to approximate Eq.(3.19) are considered in order to obtain a model for the fine-scale
variables. These models are presented in the next two paragraphs.

Quasi-static subscales

First approximation assumes quasi-static subscales, which means that the fine-scales are indepen-
dent of time. This leads in an instantaneous response of the fine-scales to a change of the coarse
scale residual [9]. When implementing the quasi-static subscales assumption, the time derivative
of u′, Z ′ and ϕ′ in Eq.(3.46), Eq.(3.47) and Eq.(3.48) vanish. When using integration by parts
for the viscous term of all equations and on the convective term of the Burgers equation with a
boundary condition of 0, the result is:

−
(
wx, 0.5u

2
)
Ω
+ (wx, ux)Ω+(

wx,−0.5(u′)2 − uu′
)
Ω
+
(
wx, νu

′
x

)
Ω
= (w, fB)Ω

(3.20)

(
w, uZx

)
Ω
+
(
wx, DzZx

)
Ω
+(

w, u′Zx + uZ ′
x + u′Z ′

x

)
Ω
+
(
wx, DzZ

′
x

)
Ω
= (w, fCD)Ω

(3.21)

(
w, uϕx

)
Ω
+
(
wx, Dϕϕx

)
Ω
−
(
w,A0 +A1ϕ+A2ϕ

2
+A3ϕ

3
)
Ω
+(

w, u′ϕx + uϕ′x + u′ϕ′x
)
Ω
+
(
wx, Dϕϕ

′
x

)
Ω
−(

w,A0 +A1ϕ
′ +A2(ϕϕ

′ + ϕ′2) +A3(ϕ
2
ϕ′ + ϕϕ′2 + ϕ′3)

)
Ω

= (w, fCDR)Ω

(3.22)

When the H1
0 projector is chosen to separate the scales, the elements in the fine-scale problem

has a boundary condition of 0. The next step is to approximate the Greens function shown in Eq.
(3.19) by using an element-averaged fine-scale Green’s function. The result is [24]:

u′ =− τu(Lu− fB) (3.23a)

Z ′ =− τZ(LZ − fCD) (3.23b)

ϕ′ =− τϕ(Lϕ− fCDR) (3.23c)
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22 Large Eddy Simulation formulations

The algebraic operator τ can be seen as the element-averaged fine-scale Green’s function. It is
noted that the fine-scales u′, Z ′ and ϕ′ are driven by the residual of the coarse-scales u, Z and ϕ
which is independent of time. Also it must be noted that Eq. (3.23a)-(3.23c) is an approximation
of the fine-scale element Green’s function and therefore τ can be different for each element.

The introduction of the parameter τ in a Finite Element Method problem is not new. Stabilization
methods developed to assure convergence in FEM convection problems also utilizes the same
parameter τ . If only one equation is considered, τ is a scalar function of u and the problem
coefficients . However, if the problem consists of a system of N equations, the parameter τ is an
N x N matrix.

There are numerous methods to compute the parameter τ . For the simplified model problem, the
method of Hauke [18] is used, which states that the matrix τ is diagonal. This means that the
fine-scale u′, Z ′ and ϕ′ is only dependent on its residual Lu − fB, LZ − fCD and Lϕ − fCDR.
As a consequence, τ can be computed separately for the Burgers, CD and CDR equation.

The second model uses a different set of functions in the W ′ space. Codina [8] proposed to
choose a set of functions in the W ′ space which are orthogonal to the W space. When applying
orthogonal subscales in the W ′ space, the fine-scale equations become:

u′ =− τu[(1− Port)(Lu− fB)− (Lu− fB)] (3.24a)

Z ′ =− τZ [(1− Port)(LZ − fCD)] (3.24b)

ϕ′ =− τϕ[(1− Port)(Lϕ− fCDR)] (3.24c)

where Port is L
2 projection onto W.

Dynamic subscales

The last elaborated model for the fine-scale equations uses dynamic subscales, which means
that the fine-scale variables are dependent on time. This means that the coarse-scale equations
Eq.(3.46) Eq.(3.47) and Eq.(3.48) have to be solved when dynamic subscales are assumed. In
the work of Codina et al. [9], dynamic subscales are only used in combination with orthogonal
subscales and the fine-scale models are given as:

∂u′

∂t
=− (1− Port)(Lu− fB)−

u′

τu
(3.25a)

∂Z ′

∂t
=− (1− Port)(LZ − fCD)−

Z ′

τZ
(3.25b)

∂ϕ′

∂t
=− (1− Port)(Lϕ− fCDR)−

ϕ′

τϕ
(3.25c)

In order to determine the fine-scale variables u′, Z ′ and ϕ′, both explicit and implicit methods can
be used.
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3.2 VMM for the simplified model problem 23

When an explicit in time is used, the fine-scale variables are determined by:

(u′)n+1 =− (u′)n +∆t
∂(u′)

∂t

n

(3.26a)

(Z ′)n+1 =− (Z ′)n +∆t
∂(Z ′)

∂t

n

(3.26b)

(ϕ′)n+1 =− (ϕ′)n +∆t
∂(ϕ′)

∂t

n

(3.26c)

This is referred to as the lagging model.

When an implicit method in time is used, the fine-scale variables are determined by:

(u′)n+1 =− (u′)n +∆t
∂(u′)

∂t

n+1

(3.27a)

(Z ′)n+1 =− (Z ′)n +∆t
∂(Z ′)

∂t

n+1

(3.27b)

(ϕ′)n+1 =− (ϕ′)n +∆t
∂(ϕ′)

∂t

n+1

(3.27c)

This is referred to as the leading model.

τ definitions for the simplified model problem

In this paragraph several definitions of τ are presented in order to approximate the fine-scale
element Green’s function. The first presented τ definition is from Shakib et al. [48]. In this paper,
the following definition is proposed:

τ shst =
1√

9
(
4D
h2

)2
+
(
2u
h

)2 (3.28)

where D is the kinematic viscosity ν or diffusivity Dz when considering the Burgers equation or
the CD equation respectively. It is claimed that a local truncation error analysis reveals fourth-
order accuracy [48]. Navarro Hernandez [33] optimized the coefficients of Eq. (3.28) using the
Burgers equation to model a channel flow. These improvements are also used for the τ definition
corresponding to the CD equation. The improved variant reads:

τ shNH =
1√

4u2/h2 + 150D2/h4
(3.29)

where D is the kinematic viscosity ν or diffusivity Dz when considering the Burgers equation or
the CD equation respectively. Both variants can also be used for the CDR equation

τ shϕ =
1√

4u2/h2 + c1D2
ϕ/h

4 + |s|2
(3.30)

where c1 is a coefficient, which is 144 for Shakib’s definition or 150 for the Adjusted Shakib’s
definition by Navarro. s is a measure of the source term which is derived later.
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24 Large Eddy Simulation formulations

Hauke and Garcia-Olivares [19] performed a study relating to the definition of τ for the CD equa-
tion. The investigated τ originates from the standard design for τ which comes from advection-
diffusion theory and is defined as follows:

τad =
h

2|u⃗|
ξ̃(α) (3.31)

where ξ̃(α) is derived from imposing nodal exactness, which leads to:

ξ̃(α) = coth α− 1

α
≈ min

(
1

3
α, 1

)
(3.32)

where

α =
|u⃗|h
2D

(3.33)

In the work of Hauke and Garcia-Olivares [19], several versions of τ are for the CDR equation are
presented. The first τ is obtained by Codina [7], which originates from the maximum principle.
Originally this expression for τ is only valid for a negative source term, but the expression is
extended to include positive source terms. The definition is:

τCod
ϕ =

1
4Dϕ

h2 + 2u⃗
h + |s|

(3.34)

where Dϕ is the diffusivity corresponding to the CDR equation. This definition can also be used
for the CD equation when the source term s is set to 0.

From convergence and stability theory, Franca and Valentin [14] obtained another expression for
negative source terms. Also this equation is extended for all s by Hauke [18]:

τFv
ϕ =

1
2Dϕ

mkh2max(1, P e2) + |s|max(1, P e1)
(3.35)

where

Pe1 =
2Dϕ

mk|s|h2
(3.36)

and

Pe2 =
mk|u⃗|h
Dϕ

(3.37)

mk is 1/3 for linear elements and in practice also for bilinear elements.

The definition of τ proposed by Franca and Valentin [14] can also be used for the Burgers and
CD equation when the limit of parameter s is going to zero, yielding:

τFv =
1

2D
mkh2max(1, P e2) +

2D
mkh2

(3.38)
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3.2 VMM for the simplified model problem 25

where D is the kinematic viscosity ν or diffusivity Dz when considering the Burgers equation or
the CD equation respectively.

In the definition of τ corresponding to the CDR equation assumes that the source term ω̇ can be
written as ω̇ = sϕ, resulting in the following operator:

Lϕ = ϕtuϕx −Dϕϕxx − sϕ→ L = (..)t + u(..)x −Dϕ(..)xx − s (3.39)

In this thesis, the source term is approximated by a third order polynomial. To use the previous
mentioned τϕ in this paragraph, a suitable expression for s has to be found. Expanding Eq. (3.23c)
and rearranging this equation and neglecting the time derivative of ϕ′t results in:

−
[(
w′, (u+ u′)ϕx

)
Ω
−
(
w′, Dϕϕxx

)
Ω
−
(
w′, A3ϕ

3
+A2ϕ

2
+A1ϕ+A0

)
Ω

]
=(

w′, (u+ u′)ϕ′x
)
Ω
−
(
w′, Dϕϕ

′
xx

)
Ω
−
(
w′, 3A3ϕ

2
ϕ′ + 2A2ϕϕ

′ +A1ϕ
′
)
Ω

(3.40)

The first term of (3.23c) shows that the L2 product is taken from w′ and the linear operator
L which acts only on ϕ′. When this is compared to the second line of (3.40), and substituting
(u+ u′) = u, the result is:(

w′, uϕ′x
)
Ω
−
(
w′, Dϕϕ

′
xx

)
Ω
−
(
w′, (3A3ϕ

2
+ 2A2ϕ+A1)ϕ

′
)
Ω
=
(
w′,Lϕ′

)
Ω

(3.41)

Taking the linear operator defined in (3.39) and compare with the expression above, s is:

s = 3A3ϕ
2
+ 2A2ϕ+A1 (3.42)

The expression above for s is implemented if τ needs to be determined for the CDR equation.

3.2.5 Coarse-scale simplified model problem

The coarse-scale equations are obtained by substituting the approximation of the fine-scale equa-
tions (3.23) into the coarse-scale equations of the Burgers, CD and CDR Eq.(3.14a), (3.15a)
and (3.16a). To continue further in the elaboration of the coarse-scale equations, a remark has
to be made about the implication of substituting the fine-scale equations into the coarse-scale
equations.

In Subsection 3.2.4, it is stated that the fine-scale equation contains an approximation of the ele-
ment fine-scale Green’s function and therefore this approximation is assumed to be only valid in the
element interior. As a consequence, all inner products with fine-scale approximation contributions
are integrated by parts. This results that potential derivatives of the fine-scale approximation are
transferred to the weighing functions. Because the fine-scale approximations are smooth in the
element interior, the derivative of the weighting function is well-defined in the element interior.
This interpretation of the multiscale method follows from the methodology presented in the work
of Calo [6] and Hughes [22], only the approximation of the fine-scale solution differs.
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26 Large Eddy Simulation formulations

When implementing the presented methodology, the implemented coarse-scale contribution of the
simplified model problem can be obtained. The first step of the process is to merge the first term
and the second term of Eq. (3.14a), (3.15a) and (3.16a) and substituting the strong form of the
representative Eq. (3.1, 3.3 and 3.4) into the weak form. For the Burgers equation, this results
in: (

w,L(u+ u′)
)
Ω
=(

w, (u+ u′)t
)
Ω
−
(
wx, 0.5(u+ u′

)2
)Ω −

(
w, ν(u+ u′)xx

)
Ω
= (w, fB)Ω

(3.43)

For the CD equation, this results in:(
w,L(Z + Z ′)

)
Ω
=(

w, (Z + Z ′)t
)
Ω
+
(
w, (u+ u′)(Z + Z ′)

x
)Ω −

(
w,DZ(Z + Z ′)xx

)
Ω
= (w, fCD)Ω

(3.44)

And for the CDR equation, the result is:(
w,L(ϕ+ ϕ′)

)
Ω
=(

w, (ϕ+ ϕ′)t
)
Ω
+
(
w, (u+ u′)(ϕ+ ϕ′

)
x
)Ω −

(
w,Dϕ(ϕ+ ϕ′)xx

)
Ω
=(

w,A0 +A1(ϕ+ ϕ′) +A2(ϕ+ ϕ′)2 +A3(ϕ+ ϕ′)3
)
Ω
+ (w, fCDR)Ω

(3.45)

Applying integration by parts on the third term and rearranging the Burgers Eq.(3.43) gives the
implemented coarse-scale contribution of the Burgers equation:

Find u ∈ V, such that ∀w ∈ W:

(w, ut)Ω −
(
w, 0.5u2

)
Ω
+ (wx, νux)Ω+(

w, u′t − 0.5(u′)2 − uu′
)
Ω
+
(
wx, νu

′
x

)
Ω
= (w, fB)Ω ∀w ∈ W, ∀u ∈ V

(3.46)

First line of Eq.(3.46) shows the L2 products of the coarse-scale weighing function w and the
coarse-scale velocity u and/or its derivatives. When it is compared with Eq.(3.7), it can be seen
that they are almost identical. The only difference is that the weak form acts on the coarse and
fine scale variables and weighing function, whereas the first line of (3.46) involves the coarse-
scale variables and the coarse-scale weighing function. The second line of Eq.(3.46) shows the
interaction between the fine scales and the coarse scales.

To obtain the coarse-scale contribution of the CD equation the same procedure as for the
Burgers equation is applied. Again neglecting the time derivative of the fine-scale contribution,
integration of parts of the third term of Eq.(3.44) and rearranging gives:

Find Z ∈ Z, such that ∀w ∈ W:

(
w,Zt

)
Ω
+
(
w, uZx

)
Ω
+
(
wx, DzZx

)
Ω
+(

w,Z ′
t + u′Zx + uZ ′

x + u′Z ′
x

)
Ω
+
(
wx, DzZ

′
x

)
Ω
= (w, fCD)Ω ∀w ∈ W, ∀Z ∈ Z
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(3.47)

When the first line of Eq.(3.47) is compared with Eq.(3.8), it can be clearly seen that both are
nearly identical. The only difference is that the weak form acts on the coarse and fine scale variables
and weighing function, but the first line of Eq.(3.47) acts on the coarse-scale counterparts. The
second line of Eq.(3.47) shows the behaviour of the fine-scales on the coarse-scales.

To obtain the coarse-scale contribution of the CDR equation the same procedure as for the
Burgers equation is applied. Again neglecting the time derivative of the fine-scale contribution,
integration of parts of the third term of Eq.(3.45) and rearranging gives:

Find ϕ ∈ P, such that ∀w ∈ W:

(
w, ϕt

)
Ω
+
(
w, uϕx

)
Ω
+
(
wx, Dϕϕx

)
Ω
−
(
w,A0 +A1ϕ+A2ϕ

2
+A3ϕ

3
)
Ω
+(

w, ϕ′t + u′ϕx + uϕ′x + u′ϕ′x
)
Ω
+
(
wx, Dϕϕ

′
x

)
Ω
−(

w,A0 +A1ϕ
′ +A2(ϕϕ

′ + ϕ′2) +A3(ϕ
2
ϕ′ + ϕϕ′2 + ϕ′3)

)
Ω

= (w, fCDR)Ω ∀w ∈ W, ∀ϕ ∈ P

(3.48)

When the first line of Eq.(3.48) is compared with the weak form Eq.(3.9), it can be clearly seen
that both are nearly identical. The only difference is that the weak form acts on the coarse and
fine scale variables and weighing function, but the first line of Eq.(3.48) acts on the coarse-scale
counterparts. The second and third line of Eq.(3.48) shows the effect of the fine scales on the
coarse scales.

3.3 Smagorinsky for the simplified model problem

A popular method to model the fine scales in a LES problem is to use an eddy-viscosity model.
With such a model the turbulent stress term is related to the gradient of the coarse scale flow to
close the system of equations.

τ turij = νT

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2

3
kδij (3.49)

where νT is the turbulent eddy viscosity, τ turij is the turbulent stress term, k is the turbulent kinetic
energy and δij is the Kronecker delta.

When Eq. (3.49) is implemented in Eq. (3.46) and omitting the fine-scale contributions, the
result is: Find u ∈ V, such that ∀w ∈ W:

(w, ut)Ω −
(
w, 0.5u2

)
Ω
+ (wx, (ν + νt)ux)Ω = (w, fB)Ω ∀w ∈ W, ∀u ∈ V (3.50)
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The eddy viscosity approach can also be applied for the CD and CDR equation. The eddy
diffusivity K of the mixture fraction and progress variable are related to the eddy viscosity νT via
the turbulent Schmidt number Sct = vT/K. When Eq. (3.49) and the turbulent Schmidt number
are implemented in Eq. (3.47) and in Eq. (3.48) and omitting the fine-scale contributions, the
result is:

(
w,Zt

)
Ω
+
(
w, uZx

)
Ω
+

(
wx,

(
Dz +

νT
Sct

)
Zx

)
Ω

= (w, fCD)Ω ∀w ∈ W, ∀Z ∈ Z

(3.51)

(
w, ϕt

)
Ω
+
(
w, uϕx

)
Ω
+

(
wx,

(
Dϕ +

νT
Sct

)
ϕx

)
Ω

−
(
w,A0 +A1ϕ+A2ϕ

2
+A3ϕ

3
)
Ω

= (w, fCDR)Ω ∀w ∈ W, ∀ϕ ∈ P
(3.52)

When the Smagorinsky model is used for a 1D flow, the eddy viscosity can be expressed as:

νt = C2
sh

2

(
du

dx

du

dx

)1/2

(3.53)

where Cs is the Smagorinsky constant and h is the element size.

The Smagorinsky model was introduced in the unresolved scale equations to account for the
dissipation of the missing small scales. However, the Smagorinsky model does not replace any
unclosed terms, but it increases dissipation on the small scales.
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Chapter 4

Method of Manufactured Solutions results

The method of manufactured solutions (MMS) provides a procedure for code verification. The
idea of this method is to select exact solutions (or manufactured solutions) for the chosen variables
a priori without being disturbed about the physical context of the governing equations. With the
selected exact solution the corresponding analytical source terms are generated by substituting
the solution into the governing equations. The equations are solved on multiple computational
grids with a different number of elements using the derived source terms. With the results, the
performance of several features are evaluated, namely to check if the coding is done correctly,
identify the behaviour of potential errors when the wave number is altered, determining the global
discretisation error in the numerical solutions and to identify the performance of several fine-scale
models.

The manufactured solution must meet the following conditions [45]:

� The solutions must be continuous

� Each manufactured solution must be continuously differentiable up to the order of corre-
sponding terms in the governing equations and the result of differentiation must be non-zero

� The manufactured solutions should avoid negative values for quantities which are physically
always positive, for example time, temperature and pressure.

In this thesis, also the influence of the wave number to the global discretisation error is evaluated.
Therefore the following manufactured solution ψ(x, t) is chosen:

ψ(x, t) = ψ(0) + sin

(
2πcx

L

)
sin2(t) (4.1)

where ψ is the considered variable (velocity u, mixture fraction Z or progress variable ϕ) c is the
wave number, L is the length of the domain and p0 is the initial condition. When implementing
Eq.(4.1) into Eq.(3.5), the source term of the manufactured solutions are obtained.

MSc. Thesis L.A.Klaessen



30 Method of Manufactured Solutions results

4.1 Setup method of manufactured solution test-case

The goals of the MMS test case is to identify the performance of several fine-scale models and
to identify potential errors. To achieve these goals, various fine-scale models are tested of the
velocity u and the velocity profile and error plot are analysed. The following fine-scale models are
considered in the MMS test case:

� No model

� Smagorinsky

� VMM with quasi-static subscales

For each of the VMM models, all the presented τ explained in paragraph 3.2.4 are implemented
on a one dimensional mesh with a length of 0.15m and a run time of 0.15 s.

Table 4.1 shows the other parameters corresponding to the MMS test case. The test cases are

Table 4.1: MMS test case parameters

Symbol Parameter Value

u0 Initial velocity 1m/s, 6m/s
Cs Smagorinsky coefficient 0.18
ν Kinematic viscosity 1.56× 10−5m2/s

performed on the HPC12 server using the in-house program Mex , which uses a number of existing
C++ class libraries.

4.2 MMS test case results

This section shows the results of the MMS test case. This consist of an instantaneous plot for
the lowest possible number of elements and an error plot for all elements for a selected number of
wave numbers. Because the H1 projection is chosen and linear trial and weighing functions are
used, the error of u is computed at the nodes as:

ϵ = upredicted − uexact (4.2)

The error plot u for wave number is 1 and for u0 = 1 is shown in Figure 4.1.
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Figure 4.1: Error plot u for wave number = 1 and u0 = 1

When analysing Figure 4.1, it is observed that the slope of the three methods is equal to 2,
which indicates that the order of accuracy of the three considered fine-scale models is 2. This
is consistent the chosen basis function (piecewise-linear) and the chosen time march scheme
(Generalized Alpha).

The next step is to investigate the instantaneous velocity profile. For this analysis the instantaneous
velocity profiles for an initial velocity of 1m/s and for N = 5 and N = 7 are generated, where N
is the number of elements. The results are presented in Figure 4.2.
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Figure 4.2: Instantaneous u results for u0 = 1, N = 5 (left) and N = 7 (right)
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In Figure 4.2, only the τU formulation of Shakib (Eq. (3.28)) is shown. Changing τU has a
negligible effect on the results. When analysing the results, it is observed that the instantaneous
velocity profile is asymmetric when using VMM for N=5 and N=7, whereas the no-model and
Smagorinsky results are symmetric. The asymmetry is significantly at x = 0.075.

The level of asymmetry decreases when increasing the number of elements. To analyse the
observed asymmetry in detail, similar instantaneous velocity plots are generated for an initial
velocity of 6m/s. These plots are presented in Figure 4.3.
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Figure 4.3: Instantaneous u results for u0 = 6, N = 5 (left) and N = 7 (right)

When analysing Figure 4.3, it is observed that the instantaneous velocity profile is still asymmetric
when using VMM for N=5 and N=7, and that the level of asymmetry is higher when u0 =6m/s
comparing to the level of asymmetry when u0 =1m/s. This behaviour is not expected. The
Burgers equation is Galilean invariant, which means in this test case a shift in the initial condition
will lead to an equal shift in the results. The latter can be seen for the Smagorinsky and the no
model results.

A potential source of the VMM discrepancy could be the definition of u′. When investigating
the fine-scale Eq. (3.23), it is observed that the fine-scale contribution of u is dependent on the
residual of the Burgers equation and on τU . As the Burgers equation is Galilean invariant, its
residual must be Galilean invariant as well. The other potential error source is the definition of τU .
When analysing Paragraph 3.2.4, it is observed that τ for the velocity and for the CD and CDR
equation are dependent on a reference velocity u. In the source code, u in the τ equations is set
as the velocity on the integration point. When a shift is introduced in the MMS initial condition,
the velocity which is input for τ increases as well. This is an undesirable mechanism, as this leads
to a u′ (and also Z ′ and ϕ′) which is not Galilean invariant.

Therefore the definition of τ should be adjusted as such that it’s Galilean invariant. This is further
elaborated in the next section.
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4.3 MMS test case results with a Galilean invariant τ

In order to adjust the τ such that it’s Galilean invariant, u will be replaced by ũ, which is defined
as:

ũ = u− uref (4.3)

In the MMS test case, uref is taken as u0. For the analysis of the instantaneous velocity profile
u0 is taken as 6m/s and the profiles are generated for N = 5 and N = 7. The results are shown
in Figure 4.4.
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Figure 4.4: Instantaneous u results which adjusted τ for u0 = 6, N = 5 (left) and N = 7 (right)

When comparing Figure 4.4 and Figure 4.3, it is observed that the asymmetry around x = 0.075
has vanished when a Galilean invariant τ is applied. With a Galilean invariant τ , u′ is also Galilean
invariant.
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Chapter 5

Simplified model problem reference results

The simplified model problem (SMP) contains the important aspects of turbulent non-premixed
combustion. To analyse the simplified model problem, a suitable test case must be chosen, which
is in this case a turbulent non-premixed combustion jet flame. The setup of the test case is further
discussed in the first section. Before presenting the results, first an estimation of the error in space
and time reference case has to be determined, which is shown in the second section. The third
section contains the results of the SMP test case. The last section describes the performance of
the SMP test case compared with a full 3D turbulent non-premixed combustion jet flame.

5.1 Setup of the SMP reference test case

One of the important aspects of the simplified model problem are the forcing functions. These
functions are be generated from LES results of a 3D turbulent non-premixed combustion jet flame
problem. For this thesis, the OpenFOAM LES code of Klaessen [30] is used. This code is used
to model the Delft-Jet in Hot-Coflow (DJHC), which describes a round turbulent non-premixed
combustion jet flame accompanied by a pilot flame. For the purpose of the SMP test case,
results are generated of a non-premixed jet flame without a pilot flame for the construction of the
appropriate forcing term and other relevant data.

The collection of the relevant data started with running a 3D LES calculation using a non-uniform
mesh with 201 nodes in x-direction, 48 nodes in radial direction and 36 nodes in azimuthal
direction. The spacing between the nodes on the centerline in x-direction was at its lowest next
to the inlet and increases when moving downstream. The relevant data was extracted using 201
probe points which were located on the nodes on the centerline. The purpose of the probe points
was to retrieve the forcing terms fu, fZ and fϕ, velocity u, mixture fraction Z and progress variable
ϕ at every time step and to store the acquired data in a database. For the LES calculations a
time step of 5× 10−6 s was used.
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Next step is to post-process the generated data into a suitable form. The following properties
have to be taken into account when post-processing the data:

� The SMP test case uses a uniform grid

� Due to the Nyquist theorem, the extracted variables shall not contain more than Nmin/2
points in x-direction and Nt/2 points in time. Nmin is the smallest number of elements
considered in the SMP test case and Nt is the number of time steps in the SMP test case

This can be achieved by applying a Fourier transform and extract the lowest Nmin/4 frequencies
in x-direction and the lowest Nt/2 frequencies in the time domain.

The post-processed data is also to impose the boundary conditions and initial conditions for u,
Z and ϕ. The boundary conditions can be extracted from the results of u, Z and ϕ for x = 0.
At the other boundary, a non reflecting boundary condition is imposed. The initial conditions
are extracted when t is 0.15 s. From this time u is always greater than 0. When u is positive,
information only enters the domain allowing to specify the three variables at x = 0.

Other relevant properties of the SMP reference test case are presented in Table 5.1. For a round

Table 5.1: Relevant parameters SMP reference test case

Description Value
Length of domain in x-direction 0.15m
Starting time 0.15 s
Start averaging time 0.3 s
End time 0.45 s
Time step 5× 10−6 s
Kinematic viscosity 1.56× 10−5m2/s
Diffusivity of Z 1.4× 10−5m2/s
Diffusivity of ϕ 1.4× 10−5m2/s
Smagorinsky coefficient 0.17
Turbulent Schmidt number 0.9

jet a Smagorinsky coefficient of 0.17 is recommended by Pope [43] and verified by Ilyushin and
Krasinsky [27]. The turbulent Schmidt number is defined as the ratio of the eddy viscosity and
the eddy diffusivity of Z and ϕ. The value of 0.9 is also used in the work of Klaessen [30].

As shown in Chapter 4, using a Galilean invariant τ improves the results significantly. Therefore
a Galilean invariant formulation for τu, τZ and τϕ is used, which means that the transformation
described in Eq. (4.3) has to be applied. For the SMP test case uref is set as 7m/s, which is the
average velocity at x = 0.

The SMP reference test cases uses no fine-scale model, but different meshes. The chosen reference
case is compared to the OpenFOAM reference case. The SMP reference test cases are performed
on the HPC12 server using the in-house program MEX, which uses a number of existing C++
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class libraries for FEM applications. Linear basis functions are used and for the time march scheme
the Generalized alpha scheme is chosen.

5.2 Error estimation study of the reference case

The error estimation in space and time is executed using Richardson extrapolation. This method
provides an estimation of the error which is independent of the chosen discretisation method. The
error estimate starts with obtaining the observed order of accuracy p0.

Let f1 be a value of a simple function of the discrete solution with step size h1, where h1 can be
∆t or ∆x. Consider a solution f2 of a coarser mesh with step size h2, which is related to h1 as:

r =
h2
h1

(5.1)

For the determination of the observed order of accuracy the solution f3 of another coarser mesh
with step size h3 is needed. The step size h3 is related to the step size h2 as described in Eq.
(5.1). The values f1, f2 and f3 can be expressed in terms of the exact value fe as:

f1 =fe + ahp0 +O(hp0+1) (5.2a)

f2 =fe + a(rh)p0 +O((rh)p0+1) (5.2b)

f3 =fe + a(r2h)p0 +O((r2h)p0+1) (5.2c)

where a is a function of the gradient of the continuous solution.

When neglecting the higher order terms, the observed order of accuracy can be determined by:

p0 =
ln
(
f3−f2
f2−f1

)
ln(r)

(5.3)

With the observed order of accuracy, the error can be estimated, which is a function of the step
size. It is noted that Eq. (5.3) is only valid in the asymptotic region. In this region the higher
order terms of the truncation error is small compared to the leading error term. Another approach
to demonstrate the validity of Eq. (5.3) is to show that the expected order of accuracy p is
equal to the observed order of accuracy p0. With the observed order of accuracy the error can be
estimated using ϵ ≈ hp0 .

In order to estimate the error in space and time for the SMP test case, the presented methodology
is executed. First step is to define 3 grids for the estimation of the error in space and 3 grids for
the estimation of the error in time. The following grids presented in Table 5.2 are used for the
error estimation. The error estimation in space and time is based on the calculated mean value
of Z. Figure 5.1 shows the observed order of accuracy of x when Eq. (5.3) is applied on the Z
results of grid G1, G2 and G3.
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Table 5.2: Used grids for the error estimation in space and time

Grid Number of elements Number of time steps Application

G1 800 6× 104 Error estimation in space
G2 1000 6× 104 Error estimation in space
G3 1250 6× 104 Error estimation in space
GT1 400 6× 104 Error estimation in time
GT2 400 1.2× 105 Error estimation in time
GT3 400 2.46× 105 Error estimation in time
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Figure 5.1: Observed order of accuracy of x for the mixture fraction

Because linear basis functions are used, the expected order of accuracy is 2. When analysing
Figure 5.1, it is observed that the observed order of accuracy is equal to 2 between x=0.075m and
x=0.15m. From x=0.025m to x=0.075m, the observed order of accuracy is slowly progressing
from 1 to 2. From x=0m to 0.025m the observed order of accuracy is oscillating. A possible
reason for this behaviour is due to the file data truncation error of the results files. The results of
the simulations are stored to 5 decimal places. When the difference between the results approaches
0, their ratio cannot be determined accurately. This is observed in Figure 5.2, as the differences
between the results approaches 0. The file data truncation errors are introduced in Eq. (5.3)
which leads to unrealistic values of the order of accuracy near x is 0m and slowly progressing to
its true order of accuracy value.
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Figure 5.2: Differences of the Z results for grid G1, G2 and G3

Figure 5.3 shows the observed order of accuracy of t when Eq. (5.3) is applied on the Z results
of grid GT1, GT2 and GT3.
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Figure 5.3: Observed order of accuracy of x for the mixture fraction

Figure 5.3 shows that the observed order of accuracy is around to 2 between x=0.05m and
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x=0.15m. The Generalized Alpha time-scheme is a second order scheme, therefore the expected
order of accuracy is 2, which is in line with the results. From x=0m to 0.04m the observed order
of accuracy is not a number. A possible reason for this behaviour is due to the finite file data
precision as explained previously. This is observed in Figure 5.4, as the differences between the
results approaches 0.
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Figure 5.4: Differences of the Z results for grid GT1, GT2 and GT3

In summary, the observed order of accuracy for space and time are both equal to 2. Then the
error can be estimated by taking the square of the step size in time or in space. Thus, when the
reference case is taken as 800 elements and 6 × 104 time steps, the estimation of the error in x
is 3.5156× 10−8 and the estimation of the error in t is 2.5000× 10−11.

5.3 Performance of the simplified model in relation to the Open-
FOAM model

The simplified model problem attempts to replicate the important characteristics of the mixing
problem of a turbulent non-premixed combustion problem. The identified important variables are
the mean and the RMS of u, Z and ϕ. Section 5.1. In this section the performance of the SMP
model is investigated and compared to the OpenFOAM results as described in Section 5.1. In
Figure 5.5 and Figure 5.6 the comparison can be found of respectively the mean and the RMS
results of the OpenFOAM calculations and the reference case of the SMP test case.
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Figure 5.5: Comparison of the OpenFOAM mean results to the SMP test case mean results
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Figure 5.6: Comparison of the OpenFOAM RMS results to the SMP test case RMS results

Figure 5.5 shows that the mean results are comparable to each other. In Figure 5.6 there is a
difference between the RMS results, especially for ϕRMS and ZRMS .

In the list below the run time of the OpenFOAM simulations and Mex simulations are presented:

� OpenFOAM calculation (201 nodes in x-direction, 48 nodes in radial direction and 36 nodes
in azimuthal direction): 2 days on 48 nodes

� VMM with implicit dynamic subscales: 1 hour for 100 elements, 1.5 hour for 200 elements
and 2 hours for 300 elements all on 20 nodes

� Reference case (800 elements, no model): 2 hours on 20 nodes

All the simulations are run in parallel using 20 nodes. The OpenFOAM code is optimised to
increase efficiency, whereas the Mex-code is optimised, but the SMP-code could be optimised in
more detail.

When comparing the computational costs, it can be concluded that the computational costs for
the SMP problem are lower compared to the OpenFOAM run. From the run time data and the
comparison of the OpenFOAM results and the SMP results it is noted that the run time decreases
dramatically when using the SMP model, but this decrease is at the expense of predicting a realistic
RMS. Therefore the SMP model is not suitable to compare different models with experimental or
DNS results.
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Chapter 6

Coarse mesh SMP results

In order to investigate the potential of VMM for a turbulent non-premixed combustion problem,
the SMP test case is used to compare several fine-scale models to a reference case. The following
fine-scale models are considered in the SMP test case:

� No model

� Smagorinsky

� VMM with quasi-static subscales

� VMM with dynamic subscales (with implicit and explicit timescale)

The coarse-scale SMP test cases uses the mentioned fine-scale models and are run with different
meshes and different definitions of τ and the obtained results are compared to the reference case.
The setup of these simulations is described in Subsection 5.1.

6.1 Average results for different fine-scale models and τu

The average of the velocity u, mixture fraction Z and progress variable ϕ was computed using
meshes of 100, 200 and 300 elements. The results are shown in Figure 6.1.
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Figure 6.1: ⟨u⟩ results for N=100, N=200 and N=300

The calculated average of u for N=100, 200 and 300 elements are similar to the reference case
when using Smagorinsky or VMM with implicit dynamic subscales as fine-scale model. When not
using a fine-scale model the results are similar to the reference situation when N=200 and N=300
elements. The VMM models with dynamic subscales outperforms the Smagorinsky model.

VMM with explicit dynamic subscales are only shows stable results for 100 elements. VMM with
quasi-static subscales is unstable for the selected number of elements.

The different definitions of τu are not presented in Figure 6.1, because the influence of τu on ⟨u⟩
are negligible on a plot. In Subsection 6.3 the influence of τu on the average results is analysed
in detail.

The average of Z and ϕ for the selected number of elements are respectively presented in Figure
6.2 and Figure 6.3.
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Figure 6.2: ⟨Z⟩ results for N=100, N=200 and N=300
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Figure 6.3: ⟨ϕ⟩ results for N=100, N=200 and N=300

It is observed that the results for ⟨Z⟩ and ⟨ϕ⟩ using VMM with implicit dynamic subscales are
similar to the reference case for all the selected number of elements. For these variables, the results
when using the Smagorinsky model differs with the reference case, but this difference decreases
when the number of elements increases. When comparing the Smagorinsky model to the other
VMM models, it is observed that the VMM model outperforms the Smagorinsky model. A possible
reason could be that the Smagorinsky model always dissipates energy, whereas the VMM model
does not show this effect.

VMM with explicit dynamic subscales are only stable when N=100 for ⟨Z⟩, for the other selected
number of elements and for ⟨ϕ⟩ the results are unstable. VMM with quasi-static subscales are
unstable for all selected number of elements for ⟨ϕ⟩ and ⟨Z⟩.

6.2 RMS results for different fine-scale models and τu

The RMS of u for the selected number of elements are presented in Figure 6.4.
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Figure 6.4: uRMS results for N=100, N=200 and N=300

It is observed that for all selected elements the calculated RMS of u computed using VMM with
implicit dynamic subscales matches the reference case well downstream of x = 0.06. In contrast
the Smagorinsky model requires N=300 to produce similar results in this region. When looking at
the region upstream from x = 0.06, it can be seen that the Smagorinsky model shows better results
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compared to the different VMM models. A possible explanation for this effect is an oscillating
forcing function of the Burgers equation in the first region. The RMS of u is shown in Figure
6.2. There is a sudden drop in the forcing function after the first element. This might explain
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Figure 6.5: RMS of the forcing functions between t =0.3 s and t =0.45 s

the unexpected drop of urms after the first element for the VMM model results. This effect is
not visible at the Smagorinsky results. As the Smagorinsky model always add dissipation to the
system, this might lead to damp the effect of the oscillating forcing function.

The influence of using different τu definitions on uRMS is negligible and hardly visible on a plot.
The adjusted Shakib’s definition shows slightly better results comparing to the original Shakib’s
definition.

The VMM model with explicit dynamic subscales assumption is only stable for 100 elements,
whereas the quasi-static subscales assumption is unstable for all selected elements.

The RMS of Z and ϕ for the selected number of elements are presented in Figure 6.6 and Figure
6.7.
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Figure 6.6: ZRMS results for N=100, N=200 and N=300
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Figure 6.7: ϕRMS results for N=100, N=200 and N=300

The influence of τZ and τϕ definitions on the RMS results is negligible compared to the influence
of the fine-scale model. In Subsection 6.3 the influence of these parameters on the RMS results
is analysed in more detail.

The results of ZRMS and ϕRMS using VMM with implicit dynamic subscales match with the
reference case for N=200 and N=300 elements. For these variables, the results when using the
Smagorinsky model differs with the reference case, but the error decreases when the number of
elements increases.

VMM with explicit dynamic subscales are stable when N=100 for ZRMS and for ϕRMS . VMM
with quasi-static subscales are unstable for all selected number of elements for ZRMS and for
ϕRMS .

In summary, the VMM model with dynamic subscales generally outperforms the Smagorinsky
model.

6.3 Comparing τ results

The influence of the τu, τZ and τϕ definitions could not be identified by presenting the results in
several plots. The error between the SMP test case results and the reference case is thus presented
in tables for 100, 200 and 300 elements. The quasi-static model is not included in the comparison,
because for the selected number of elements, the model is unstable.

The results for ⟨u⟩ are shown in Table 6.1.

Only for 100 elements the explicit subscales model performs better than the VMM model with
the implicit subscales assumption. For 300 elements Shakib’s model performs slightly better than
the adjusted Shakib’s model [33]. The difference in error is maximal 1.4%. For 100 elements the
performance is vise versa with a difference in error of 3.9%.

The τ definitions do not influence the stability of ⟨u⟩. The implicit subscale model is stable for all
selected elements, whereas the explicit subscales model is only stable for 100 elements, regardless
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Table 6.1: Error of ⟨u⟩ with respect to the reference case for several fine-scale models and selected
τu

Fine-scale model τu Number of elements

300 200 100

VMM explicit subscales Adj. Sh. - - 4.855× 10−3

VMM explicit subscales Sh. - - 5.052× 10−3

VMM implicit subscales Adj. Sh. 7.015× 10−4 1.526× 10−3 7.703× 10−3

VMM implicit subscales Sh. 6.915× 10−4 1.526× 10−3 7.987× 10−3

of the selected τ definition.

The results for uRMS are shown in Table 6.2.

Table 6.2: Error of uRMS with respect to the reference case for several fine-scale models and
selected τu

Fine-scale model τu Number of elements

300 200 100

VMM explicit subscales Adj. Sh. - - 3.882× 10−2

VMM explicit subscales Sh. - - 3.871× 10−2

VMM implicit subscales Adj. Sh. 8.751× 10−3 1.524× 10−2 4.171× 10−2

VMM implicit subscales Sh. 8.776× 10−3 1.516× 10−2 4.165× 10−2

The results using Shakib’s model and the adjusted Shakib’s model are similar for uRMS .

The τ definitions do not influence the stability of uRMS . The implicit subscale model is stable
for all selected elements, whereas the explicit subscales model is only stable for 100 elements,
regardless of the selected τ definition.

For the investigation of the error of Z and ϕ, only the error of the mean values are presented as
the error of the mean value and RMS value are similar to each other.

The results for ⟨ϕ⟩ are shown in Table 6.3.

The application of adjusted Shakib’s model for τu yields better results for 200 and 300 elements.
The maximum difference in error is 8.6% when comparing the different τu results for 300 elements.
When comparing the different τϕ models, it is observed that Franca and Valentina’s model performs
worst and Codina’s model performs best. The difference in error is maximum 3.6%, which is
achieved for 300 elements and using the adjusted Shakib’s model forτu. In Appendix B.1, the
results of all τϕ runs are presented.

The results for ⟨Z⟩ are shown in Table 6.4.
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Table 6.3: Error of ⟨ϕ⟩ with respect to the reference case for several fine-scale models and for a
selection of τϕ

Fine-scale model τu τϕ Number of elements

300 200 100

VMM implicit subscales Adj. Sh. Cod. 1.489× 10−3 3.778× 10−3 7.482× 10−3

VMM implicit subscales Adj. Sh. F&V 1.544× 10−3 3.820× 10−3 7.504× 10−3

VMM implicit subscales Sh. Cod. 1.627× 10−3 3.879× 10−3 7.420× 10−3

VMM implicit subscales Sh. F&V 1.684× 10−3 3.934× 10−3 7.450× 10−3

Table 6.4: Error of ⟨Z⟩ with respect to the reference case for several fine-scale models and for a
selection of τZ

Fine-scale model τu τZ Number of elements

300 200 100

VMM implicit subscales Adj. Sh. F&V 2.324× 10−3 6.142× 10−3 9.468× 10−3

VMM implicit subscales Adj. Sh. st. des. 2.188× 10−3 5.983× 10−3 9.284× 10−3

VMM implicit subscales Sh. F&V 2.526× 10−3 6.273× 10−3 9.417× 10−3

VMM implicit subscales Sh. st. des. 2.394× 10−3 6.104× 10−3 9.222× 10−3

The application of adjusted Shakib’s model for τu yields better results for 200 and 300 elements.
The maximum difference in error is 8.6%. When comparing the different τZ models, it is observed
that Franca and Valentina’s model performs worst and the standard design model performs best.
The difference in error is maximum 5.9%, which is achieved for 300 elements and using the
adjusted Shakib’s model for τu. A possible reason for this behaviour is that the coefficients of the
adjusted Shakib’s model are optimized for a channel flow simulation using the Burgers equation.In
Appendix B.1, the results of all τZ runs are presented.

As indicated previously the VMM quasi-static subscale model is unstable for u, Z and ϕ. This
could be solved by decreasing the time-step of the SMP test case. In the next subsection the
influence of the timestep on the various VMM models is investigated.

6.4 Sensitive analysis time step

In this section the influence of the time step related to the performance of the VMM quasi static
and dynamic subscale model is investigated.

For the VMM quasi-static subscale model test cases, the following time steps are considered:
2.5× 10−6 s, 1.25× 10−6 s, 6.25× 10−7 s, 3.125× 10−7 s and 1.5625× 10−7 s. For all time steps
the model is unstable. A possible reason for this behaviour is that the SMP test case is based on
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a non-premixed combustion problem, which is a transient problem. Also combustion occur at the
smallest timescales. As indicated by Codina et al. [9], implementing a quasi-static assumption for
a transient problem might lead to errors, which is a possible source of error for the considered
behaviour.

For the analysis on the performance of the dynamic VMM models on the time step, a time step
of 2.5× 10−6 s is considered.

The results of the error compared to the reference case for the mean values are presented in Table
6.5. The VMM model with the explicit subscales assumption is still unstable or shows unrealistic
values for 200 and 300 elements. Therefore only the results of 100 elements are presented in the
tables.

Table 6.5: Error of the mean results for different time steps

VMM model Mean results

u ϕ Z

2.5× 10−6 s 5× 10−6 s 2.5× 10−6 s 5× 10−6 s 2.5× 10−6 s 5× 10−6 s

explicit subsc 5.470× 10−3 4.86× 10−3 7.527× 10−3 - 9.406× 10−3 -
implicit subsc 4.060× 10−3 7.70× 10−3 7.597× 10−3 7.341× 10−3 1.064× 10−2 9.222× 10−3

The results of the error compared to the reference case for the RMS values are presented in Table
6.6.

Table 6.6: Error of the RMS results for different time steps

VMM model Mean results

u ϕ Z

2.5× 10−6 s 5× 10−6 s 2.5× 10−6 s 5× 10−6 s 2.5× 10−6 s 5× 10−6 s

explicit subsc. 4.202× 10−2 3.88× 10−2 1.478× 10−2 - 1.339× 10−2 -
implicit subsc 3.290× 10−2 4.17× 10−2 1.431× 10−2 1.438× 10−2 1.517× 10−2 1.320× 10−2

As the influence of τ is not taken into account, only the best performing τ are analysed, which is
the adjusted Shakib’s model for τu, the standard design for τZ and Shakib’s for τϕ.

The time step is not further decreased, because the duration of 1 run with a time step of 2.5×10−6 s
takes approximately 1.75 hrs on 20 cores using the optimised code. But the presented results
gives some insight into the performance of the various VMM models in relation to the time step
in relation to. From Table 6.5 and Table 6.6, it is observed that decreasing the time step leads to
a stable VMM model with the explicit subscales assumption for u, Z and ϕ. For a time step of
2.5×10−6 s, the VMM model with the implicit subscales assumption outperforms the VMM model
with the explicit subscales assumption for u. The difference is 25.8% and 21.7% for respectively
⟨u⟩ and uRMS . For ⟨ϕ⟩, ϕRMS and ⟨Z⟩ the results are comparable to each other. However, the
VMM model with the explicit subscales assumption for ZRMS outperforms the VMM model with
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the implicit subscales assumption, the difference between the different dynamic models is 11.7%.

A possible reason for the overall better accuracy of the VMM model with the implicit subscales
assumption is the choice of the time march scheme. For this SMP test case the Generalized alpha
time march scheme is chosen. In summary, due to the chosen coefficients the Generalized alpha
time scheme in the SMP model calculates the variables at a different time. For example, if tn−1−tn
is 5× 10−6 s, the Generalized alpha time march scheme determines the velocity, mixture fraction
and progress variable at 0.333 × 10−6 s. As this value is closer to 5 × 10−6 s compared to 0 s,
the computed time derivatives at time 0.333× 10−6 s show more resemblance with the estimated
time derivatives used in the VMM model with the implicit subscales assumption compared to the
estimated time derivatives in the VMM model with the explicit subscales assumption. This is a
possible reason for a better accuracy of the VMM model with the implicit subscales assumption
model compared to the other VMM fine-scale models.

When analysing the influence of the time step itself on the results, it is observed that the error of the
mean and RMS results of u improves when decreasing the time step. The largest improvement can
be seen for ⟨u⟩, where the difference of the error is 47.7%. The performance of the determination
of ϕ does not improve significantly when decreasing the time step. And the determination of Z
becomes worse when decreasing the time step.

When looking at the stability of the results, it can be seen that the simulations which use the
explicit subscale assumption return stable solutions, whereas the simulations with the explicit
subscale assumption is only stable when decreasing the time step. A possible reason for this
effect is that the explicit subscale assumption can be compared to an explicit method, whereas
the implicit subscale assumption to an implicit method. The backward Euler scheme (an implicit
method) is generally unconditionally stable, whereas the forward Euler scheme (an explicit method)
is usually conditionally stable [5].
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Chapter 7

Conclusions and recommendations

A simplified model problem has been developed which has the important aspects of turbulent
non-premixed combustion for comparing numerical methods. An important reason to construct
the simplified model problem is that fully 3D results are expensive to run and more importantly
the results are difficult to interpret due to their complexity. Because non-premixed combustion is
a complex process, the proposed simplified model problem reduces the complexity of the problem
yet includes many of its important characteristics.

Using the simplified model problem, a framework based on the VMM formulation is proposed for
non-premixed combustion computations and its potential is investigated by comparing the results
using several definitions of τ , which describes the fine-scale variables. These results are compared
with the results using a Smagorinsky model to a reference case.

7.1 Conclusions

The answers to the research questions presented in Section 1.3 are shown below.

RQ 1: What are the differences between the simplified model and a full 3D non-premixed
combustion model? The mean results of the relevant variables are comparable to the results
of the considered full 3D turbulent non-premixed combustion problem. However the RMS results
of the relevant variables deviates from each other, especially for ϕRMS and ZRMS . As the SMP
model has a forcing term which includes the 12 lowest wave numbers, it can be concluded that
the RMS is highly dependent on the higher wave numbers.

The computational costs for the SMP problem are much lower than that of the OpenFOAM runs.
However this decrease is at the expense of predicting a realistic RMS. Therefore the SMP model
is in this sense not suitable for comparison with experimental or DNS results.
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RQ 2: Is the current definition of τ sufficient for the simplified model problem? When
investigating the original τ definitions, it was demonstrated that these discretisation are not
Galilean invariant. To fix this discrepancy, all τ definitions were adjusted to be Galilean invariant
by introducing a shift with a reference velocity.

RQ 3: How do the methods compare in their ability to reproduce the statistics of the
relevant variables? For the mean value of the relevant variables the VMM model with the
implicit dynamic subscale assumption outperforms the other VMM models and the Smagorinsky
model for all variables. Even for a coarse mesh the mean results of the VMM model with the
implicit dynamic subscale assumption matches the reference case.

For the RMS values the VMM model with the implicit dynamic subscale assumption outperforms
the other VMM models and the Smagorinsky model for the mixture fraction and the progress
variable. When the mesh is refined, the RMS results of the VMM model with the implicit dynamic
subscale assumption matches with the results of the reference case faster than the Smagorinsky
model. When determining the RMS results of u, the VMM model shows better results compared
the the Smagorinsky model only in the second part of the domain. The effect of a heavy oscillating
forcing function of the Burgers equation in the first part of the domain may be a factor in this
discrepancy.

RQ 4: Which of the τ definitions for the flow field, reaction terms and for a passive scalar
are most effective? The adjusted Shakib’s model [33] for τu yields better results compared
to Shakib’s model, especially for a fine mesh. A possible reason for this behaviour is that the
coefficients of the adjusted Shakib’s model are optimized for a channel flow simulation using the
Burgers equation.

The difference in effectiveness of the considered τZ and τϕ definitions are minimal. When com-
paring the different τϕ models, it can be seen that Franca and Valentina’s [19] model performs
worst while Codina’s [7] model performs best. The difference in error is maximum 3.6%. When
comparing the different τZ models, it can be seen that Franca and Valentina’s model performs
worst and the standard design model performs best. The difference in error is maximum 5.9%.

RQ 5: What is the performance of the different assumptions for the subscales on the
results? The SMP test cases using the VMMmodel with quasi-static subscale assumption remain
unstable for the lowest considered time step of 1.5625×10−7 s. A possible reason for this behaviour
is that the SMP test case is based on a non-premixed combustion problem, in which combustion
occurs at the smallest timescales. As indicated by Codina et al. [9], implementing a quasi-static
assumption for a strongly transient problem might lead to errors, which is a possible source of the
unstable behaviour of the quasi-static subscales assumption.

In contrast the VMM model with dynamic subscales performed well. The dynamic subscale model
with the implicit dynamic subscales assumption generally perform better than that with the explicit
dynamic subscale assumption, especially for stability.
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7.2 Recommendation

The research revealed that the dynamic VMM formulation with the implicit dynamic subscales
assumption outperforms the Smagorinsky model using the simplified model problem. Therefore
potentially the VMM formulation of a 3D turbulent non-premixed combustion problem could
outperform the standard sub-grid models. On this basis, the following recommendations are
made:

Conduct 3D turbulent non-premixed simulation runs Future research should implement
VMM for a full 3D turbulent non-premixed combustion problem to investigate the potential of
VMM related to the performance of predicting the relevant variables. First it is advised to focus on
the mixing problem, because VMM has the potential to improve the prediction of the outcome of
this problem. Next is to incorporate the flame structure models into the problem and to compare
full 3D LES simulations and to experimental or DNS results .

Use a non-diagonal τ In this work a diagonal τ is used, which means that the fine-scale u′,
Z ′ and ϕ′ is only dependent on its residual, either Lu − fB, LZ − fCD or Lϕ − fCDR. As a
consequence, τ can be set separately for the Burgers, CD and CDR equation. Because combustion
occurs at the smallest scales, interaction between the flow variables could take place at the fine-
scales. By incorporating a non-diagonal τ , an attempt could be made to model interactions at
the fine-scale levels.

The choice of the reference velocity in the adjust τ definition Another interesting feature
which can be incorporated is the choice of uref in order to transform τ to a Galilean invariant
term. In this work, a simplified method is chosen. It can be useful to explore the potential of a
varying uref , which might improve the prediction of the RMS.
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Appendix A

Theory and modelling of non-premixed
combustion

Non-premixed combustion occurs when fuel and oxidizer are in a separated stream and are mixed
together as such that a combustible mixture is formed. When the combustible mixture is ignited,
rapid chemical reaction at the interface of the fuel and oxidizer stream occurs in a thin region.
Reactants and the most important product, heat are formed which can be used to generate power.
Combustion in a fluid flow is a complex process, because combustion affects fluid flow and visa
versa. Due to the added heat physical properties, such as viscosity, changes, which affects fluid
flow. For non-premixed combustion, mixing is an important physical phenomenon, and mixing is
caused by the fluid flow. In comparison with premixed combustion, where fuel and oxidizer are
already mixed at a molecular level, mixing is not relevant in this process.

In order to improve power generation and to decrease pollutants, the characteristics and the physi-
cal processes of non-premixed combustion must be understood. This chapter shows the theoretical
background of non-premixed turbulent combustion to gain insight in the physical mechanisms and
the imposed assumptions when modelling combustion. With this knowledge, the most important
characteristics of non-premixed combustion can be extracted, which is the origin of the simplified
combustion model problem. The chapter exists of two section. First section shows the theoretical
background of laminar non-premixed combustion and shows the current methodology of model-
ing laminar non-premixed combustion. The second section shows the influence of turbulence on
non-premixed combustion. Because turbulence alters the fluid flow and therefore alters mixing, an
additional process is introduced in non-premixed combustion. In this section also several methods
to model turbulent non-premixed combustion are presented.
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A.1 Laminar non-premixed combustion

In order to focus on the important aspects of non-premixed combustion, this section provides the
theoretical background and methodology of modelling laminar non-premixed combustion. First
subsection provides the starting point of combustion, namely the governing equations of compress-
ible reacting flow. Second section explains the chemistry kinetics involved in combustion, and to
be more precise, in the chemical reactions of hydrocarbons. In the third section, the general
aspects of laminar non-premixed flames are presented, including several assumptions which are
needed to split a laminar non-premixed problem into a laminar mixing problem and a laminar flame
structure problem. The latter determines the chemical properties. Both problems are explained
in the fourth and fifth subsection respectively.

A.1.1 Governing equations of compressible reacting flow

Non-premixed combustion involves numerous different species reacting through multiple chemical
reactions. This means that the flow properties are dependent of the mixture composition and
therefore the continuity equation, Navier-Stokes equations and the energy equation require some
adjustments to characterize the flow.

Consider a mixture which exists of N different species, the mass fractions Yk of species k are
defined as:

Yk =
mk

m
(A.1)

where mk is the mass of species k in a fixed volume V and m is the total mass in this volume.
The mole fraction Xk of species k in the considered mixture is defined as:

Xk =
Ck

C
(A.2)

where Ck is the number of moles of species k in a fixed volume V and m is the total mass in this
volume and C is the number of moles for all species in the same volume. Both non-dimensional
quantities are equal to 1 if it’s summed over all species. In a mixture, the mass fraction or mole
fraction relates the behaviour of the quantity of the individual species and the quantity of the
mixture. For example, the density of the mixture is related to the density of each individual
species by the mass fraction:

ρk =
N∑
k=1

Ykρ (A.3)

where ρk is the density of species k and ρ is the density of the mixture. Another example is
the relation of the velocity of the mixture and the velocity of the individual components of the
mixture:

uk,i = Ykui (A.4)
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where uk,i is the velocity of species k in the mixture and ui is the velocity of the mixture. A final
example shows the relation of the total pressure and partial pressure of the individual components
of the mixture:

pk = Xkp (A.5)

where pk is the partial pressure of species k in the mixture and p is the pressure of the mix-
ture. When summing the individual components of a quantity, the result is the total quantity
corresponding to the mixture.

In a fluid flow problem with chemical reactions, mechanical and thermal variables are involved. In
addition, also information about each species needs to be determined. For the derivation of the
conservation equations for laminar non-premixed combustion, several variables needs to be solved.
In this thesis, these variables which are related to the fluid flow are:

� Density ρ

� Three dimensional velocity ui in i-direction, in which i = 1, 2, 3

� Energy, enthalpy or temperature. The choice depends on the problem which needs to be
solved

� Mass fractions Yk of the N species involved in the mixture

When looking at the listed variables, it can be seen that N +5 variables needs to be solved when
dealing with a compressible reacting flow. Therefore N + 5 equations are needed to solve the
important variables of a laminar reaction fluid flow problem. The starting point of the derivation
of the relevant conservation equations for laminar non-premixed combustion is compressible flow.
This means that the momentum equation and energy equation is a coupled system. All presented
equations are written in the index notation, which implies summation over the repeated indices,
except for the index which indicate the different species.

Continuity and momentum equation

The continuity equation for compressible flow is given by:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (A.6)

The momentum equations (or Navier-Stokes equations) for a compressible mixture is:

∂ρuj
∂t

+
∂

∂xi
(ρuiuj) =

∂σij
∂xi

+ ρ
N∑
k=1

Ykfk,j (A.7)

where fk,j is the body force exerted on species k in the fluid and σij is the stress tensor. Combining
Eq.(A.6) and Eq.(A.7) gives:

ρ
∂uj
∂t

+ ρui
∂uj
∂xi

= ρ
Duj
Dt

=
∂σij
∂xi

+ ρ

N∑
k=1

Ykfk,j (A.8)
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where D
Dt =

∂
∂t + ui

∂
∂xi

is the material derivative. For a Newtonian fluid, the stress tensor can be
written as:

σij = −pδij +
(
λ+

2

3
µ

)
∂ui
∂xi

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂ui
∂xi

)
(A.9)

where µ is the dynamic viscosity coefficient, λ is the coefficient of bulk viscosity and δij is the
Kronecker delta, which is defined as:

δij =

{
1 if i = j

0 if i ̸= j
(A.10)

The term λ + 2
3µ is also known as the second viscosity ζ. This term is important when dealing

with processes such as sound absorption. When neglecting this term., combining Eq (A.9) with
Eq.(A.8) gives:

ρ
Duj
Dt

= − ∂p

∂xj
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂ui
∂xi

))
+ ρ

N∑
k=1

Ykfk,j (A.11)

For the momentum equation, the pressure is needed. The pressure can be obtained by using the
equation of state, which relates the pressure, temperature and the density. It reads:

p =
ρRuT

W
(A.12)

where Ru is the universal gas constant andW is the mean molecular weight of the mixture, which
is defined as:

1

W
=

N∑
k=1

Yk
Wk

(A.13)

Conservation of species

A reacting flow fluid consist of many different species. During the non-premixed combustion
process, numerous molecules are created and destroyed due to chemical reactions and mixing of
the different species in the fluid occurs. The behaviour of each species in such a fluid flow can be
described by its own conservation equation, which reads:

∂ρYk
∂t

+
∂

∂xi
(ρuk,iYk) = ρω̇k (A.14)

where uk,i is the velocity of species k in direction i and ω̇k is the source term for species k.
Because of conservation of particles, the summation of the source terms equal zero:

N∑
k=1

ω̇k = 0 (A.15)
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When looking at Eq.(A.14), it can be seen that the viscous term depends on the velocity of species
k. This needs to be rewritten in terms of the velocity of the fluid ui. To reach this goal, the
velocity of species k is rewritten as follows:

uk,i = ui + Vk,i (A.16)

where Vk,i is the diffusion velocity and denotes the difference between the velocity of species k
and the velocity of the fluid. By definition, the following statement holds for the diffusion velocity:

N∑
k=1

YkVk,i = 0 (A.17)

Combining Eq.(A.14) with the definition of the diffusion velocity Eq.(A.16) and the continuity
equation Eq.(A.6), the result is:

ρ
∂Yk
∂t

+ ρui
∂Yk
∂xi

= ρ
DYk
Dt

= − ∂

∂xi
(ρVk,iYk) + ρω̇k (A.18)

Next step is to find the diffusion velocities Vk,i for N species which are present in the fluid flow.
In the work of Williams [53], it is stated that the diffusion velocity can be obtained by solving the
following system:

∂Xm

∂xi
=

N∑
k=1

XmXk

Dmk
(Vk,i − Vm,i) + (Ym −Xm)

(
1

p

∂p

∂xi

)

+
ρ

p

N∑
k=1

YmYk (fm,i − fk,i) +
N∑
k=1

(
XkXm

ρDmk

)(
αk

Yk
− αm

Ym

)(
1

T

∂T

∂xi

) (A.19)

whereDmk is the binary mass diffusion coefficient of speciesm into species k and αk is the thermal
diffusivity of species k. The last term is also known as the Soret effect and indicates the diffusion
of mass due to temperature gradients. The presented system is linear and the size is N2 and has
to be solved in each direction, for every time step and grid point. Due to the complexity of the
considered system, solving this is a complicated and computational costly exercise[12]. Therefore
in most codes, simplifications are used and the Soret effect is neglected. The first simplification
is to consider binary diffusion.

In binary diffusion, the mixture consists of only two species, species A and species B. If pressure
gradients are small and body forces are neglected, Eq.(A.19) reduces to its simplified form, which
is given by:

∂X

∂xi
=
XAXB

DAB
(VB,i − VA,i) (A.20)

When considering that the summation over all mass fractions equals one and Eq.(A.17), Eq (A.20)
can be rewritten as:

−VAYA,i = DAB
∂YA
∂xi

(A.21)
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where DAB is the binary diffusion coefficient. The expression above is known as Fick’s law
and is exact for diffusion of two species. However, when a multi species mixture is considered,
Eq.(A.21) does not hold and a more complex expression must be used or simplifications have to
be implemented.

Let’s consider a fluid with N species, which means that multicomponent diffusion of the N
components has to be considered. One species is selected as carrier gas. This gas is abundant
in the mixture. For example, nitrogen is considered as carrier gas when a mixture with air is
considered. In the presentation of the simplifications for multicomponent diffusion, the carrier gas
has index k = N . When considering Fick’s law, the multicomponent version reads:

−(Vk,iYk)Fick = DkN
∂Yk
∂xi

for k = 1...N − 1 (A.22)

DkN is the binary diffusion coefficient of species k and the carrier gas with index N . This means
that the mass diffusion species k depends on the properties of species k and species N .

Another method to model multicomponent diffusion is Wilke’s law, where also one fluid is selected
as carrier gas. However, the mass diffusion of species k is related to the properties of species k
and properties of the mixture itself. Wilke’s law reads:

−(Vk,iYk)Wilke = Dkm
∂Yk
∂xi

for k = 1...N − 1 (A.23)

where Dkm is the composition dependent diffusion coefficient of species k in the mixture.

The approximation introduced by Fick’s law is a good approximation for turbulent diffusion flames
necessary for turbulent non-premixed combustion. In such a flame, turbulent transport has a
significant contribution compared to molecular transport [36].

Conservation of energy

The conservation of energy equations requires special care because of the existence of multiple
forms. For example, the energy or enthalpy formulation can be considered. In the list below,
several options are presented including the reason to use this specific form:

� Specific energy: suitable for liquids

� Specific total energy: suitable in studies where compressibility effects are important (acous-
tics)

� Specific enthalpy: suitable in studies of combustion at almost constant pressure

� Temperature: to see the reasons for temperature change

In this thesis, acoustics are not considered. Therefore the enthalpy formulation is used and pre-
sented in this subsection. Enthalpy exists of sensible enthalpy, which is dependent on temperature,
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and chemical enthalpy:

hk =

∫ T

T0

Cp,k(T )dT +∆h0f,k = hs,k +∆h0f,k (A.24)

where hk is the enthalpy of species k per unit mass, or specific enthalpy. Cp,k is the specific heat
at constant pressure for species k, ∆h0f,k is the enthalpy of formation for species k and hs,k is
the specific sensible enthalpy for species k. The specific enthalpy of the mixture is defined as the
mass-weighted sum over the specific enthalpies hk:

h =
N∑
k=1

hkYk =
N∑
k=1

Yk

(∫ T

T0

Cp,k(T )dT +∆h0f,k

)

=

∫ T

T0

Cp(T )dT +∆h0f = hs +∆h0f

(A.25)

The conservation equation of specific enthalpy is written as:

∂ρh

∂t
+

∂

∂xi
(ρuih) = − ∂qi

∂xi
+ τij

∂ui
∂xj

+ Q̇+
Dp

Dt
+ ρ

N∑
k=1

Ykfk,jVk,j (A.26)

where Q̇ is the heat source term (e.g. radiation, sparks, lasers), ρ
∑N

k=1 Ykfk,jVk,j is the power
produced by volume force fk on species k, q is the diffusive energy flux and Φvisc = τij

∂ui
∂xj

is the

viscous dissipation function. When combining Eq.(A.26) with Eq.(A.6), the result is:

ρ
∂h

∂t
+ ρui

∂h

∂xi
= ρ

Dh

Dt
= − ∂qi

∂xi
+Φvisc + Q̇+

Dp

Dt
+ ρ

N∑
k=1

Ykfk,jVk,j (A.27)

The diffusive energy flux consists of conduction, the energy flux related to the diffusion of species
with different enthalpy (inter-diffusion) and the energy flux due to mass concentration gradients.
This is also known as the Dufour Effect and it’s the reciprocal phenomenon to the of Soret effect.
Thus, the diffusive energy flux becomes:

qi = qi,conduction + qi,inter-diffusion + qi,Dufour

= −κ ∂T
∂xi

+ ρ

N∑
k=1

hkYkVk,i +RuT

N∑
k=1

N∑
m=1

(
Xmαm

WkDkm

)
(Vk,i − Vm,i)

(A.28)

where κ is the thermal conductivity of the mixture and T is the temperature of the mixture.

With the presented continuity equation,conservation of momentum, species and energy equations,
N + 5 equations are presented needed to solve the system of equations related to compressible,
laminar reacting flow. However when considering non-premixed combustion, in most cases it is
useful to use simplifications in order to reduce computational costs and to reduce the complexity
of the problem. In Subsection A.1.3, these simplifications are further elaborated.

Relevant dimensionless numbers

Dimensionless numbers in a engineering or scientific problem are a set of dimensionless quantities
which describe the system and can give an order-of-magnitude estimate about the behaviour of
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the system. Often such a dimensionless number is defined by the ration of two physical quantities.
In this subsection the relevant dimensionless numbers are found for reacting flow.

The Reynolds number is defined as the ratio of inertial forces to viscous forces and therefore
quantifies the relative importance of these two types of forces for given flow conditions. It’s given
by:

Re =
ρuL

µ
=
uL

ν
(A.29)

where ν is the kinematic viscosity coefficient. In general, it can be stated that a low Reynolds
number corresponds to laminar flow and a high Reynolds number (in the order of 10.000) is related
to turbulent flow.

The Lewis number characterizes fluid flows where mass diffusion and heat transfer are present in
the flow and it is defined as the ratio of thermal diffusion to mass diffusion of species k:

Lek =
κ

ρCpDk
=
Dth

Dk
(A.30)

The Prandtl number is defined as the ratio of momentum diffusivity to the thermal diffusivity and
it’s given by:

Pr =
ν

κ/(ρCp)
=
µCp

κ
(A.31)

The Schmidt number characterizes fluid flows with momentum diffusivity and mass diffusivity of
species k, for example a fluid flow of a mixture. The Schmidt number is defined as:

Sc =
ν

Dk
= Lek · Pr (A.32)

The definition of the Damköhler number depends on the combustion mechanism, usually it’s
defined as the ratio of a flow time scale and a chemical time scale. The Damköhler number
characterizes the combustion regime of a particular type of combustion mechanism. For non-
premixed combustion, the Damköhler number is defined as the ratio of time scale for mixing and
time scale for chemical reactions:

Da =
τmix

τc
(A.33)

where τc is the chemical time scale and τmix is the time scale for mixing.

A.1.2 Chemical kinetics

Chemistry plays an important role in combustion. Exothermic chemical reactions produces heat
when one species is converted into another species. The released heat can be used for other
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purposes, such as generating power. The creation or destruction of species is described by its
instantaneous source term ω̇k. It is possible to compute this term by using the properties of the
elementary chemical reactions.

Chemical reaction describes the conversion of species before and after a reaction. When describing
the chemical reaction of a simple combustible gas, a large number of elementary chemical reactions
takes place which also describe the creation and destruction of intermediate species. For example,
the detailed reaction scheme for combustion of natural gas contains 325 reactions and 53 species,
which is known as the GRI-MECH 3.0 mechanism [49]. This optimized mechanism describes basic
combustion properties and basic chemical kinetics.

A chemical reaction can be described as:

Ns∑
k=1

ν ′kjMk →
Ns∑
k=1

ν ′′kMk for j = 1..Nr (A.34)

where Mk is a symbol for species k, ν ′kj and ν ′′kj are the stoichiometric coefficients for species k
in reaction j of the reactants and products respectively and Ns is the number of species. The
stoichiometric coefficients describe the number of species needed to have an optimal chemical
reaction.

Due to mass conservation in a chemical reaction, the following holds:

Nr∑
k=1

νkjWk = 0 (A.35)

where ν = ν ′′kj − ν ′kj . Now the reaction rate ω̇k of species k can be determined by using:

ω̇k =

Nr∑
j=1

ωkj =Wk

Nr∑
j=1

νkjQj (A.36)

where Qj is the rate of progress of reaction j. Qj is also written as:

Qj = kfj

Ns∏
k=1

[Xk]
ν′kj − krj

Ns∏
k=1

[Xk]
ν′′kj (A.37)

where krj and kfj are the reversed and forward rates of reaction j respectively, [Xk] is the
concentration of species k where the superscript denotes the concentration of species of reactants
(ν ′kj) or products (ν ′′kj). The non-linearity of source terms is due to the rate constants kfj and
krj , where kfj is modelled using the empirical Arrhenius law:

kfj = BfjT
αjexp

(
− Eaj

RuT

)
= BfjT

αjexp

(
−
Taj
T

)
(A.38)

where Bfj is the pre-exponential constant, αj is the temperature exponent in reaction j , Taj is
the activation temperature and Eaj = RuTaj is the activation energy.
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When looking at the non-linear behaviour of the reaction rate and the number of elementary chem-
ical reactions in a detailed chemical reaction mechanism, it is shown that chemistry in combustion
is a major issue. The computational costs of describing combustion with such a detailed scheme
as GRI-MECH 3.0 are enormous. Especially in turbulent combustion, where temperature and
species mass fraction are fluctuating, the computational time increases dramatically. Therefore
in most numerical approaches, the important combustion properties are selected and the corre-
sponding species are identified and others are discarded in order to limit the number of species
and the number of elementary chemical reactions. Such reduction of a chemical scheme can be
done by hand or automatically. For example, the global schemes can be calculated by hand. It
relies on two assumptions [41], namely quasi-steady state approximation and partial equilibrium.
But identifying limiting steps, quasi-steady state species and equilibrium reaction in a complex
detailed chemical system is a very difficult task. Also, due to the reduction, the reaction rates are
described by complicated , stiff expressions. Because of these difficulties, the description of chem-
istry in combustion nowadays can be categorized into two groups: automatic chemistry reduction
or tabulated chemistry [42].

A.1.3 General aspects of laminar non-premixed flames

Non-premixed combustion is characterized by the presence of a non-premixed (or diffusion) flame.
In such a flame, fuel and oxidizer are present in a separate stream. Fuel and oxidizer come together
and mixes due to molecular diffusion in a thin layer such that a combustible mixture is created. If
ignition occurs, the combustible mixture ignites and heat is released. Far away from the reaction
layer, the mixture is either too lean or too rich (see Fig. 2.1).

The common methodology of solving non-premixed combustion problem is to decompose this
problem in two sub-problems, namely:

1. A mixing problem, in which the output are flow and mixture variables;

2. A flame structure problem, in which the output of the mixing problems are used to determine
the chemistry information

The derivation of the mixing problem starts with the governing equations presented in Section A.1.
The starting point was a compressible fluid flow which consists of multiple species. However for
most practical cases in which non-premixed combustion occurs, the low-Mach number assumption
is imposed [53, 36]. This is a reasonable assumption if acoustic waves are not taken into account
and the flame propagation speed of the flame front in the fluid flow is low compared to the speed
of sound. The former is also known as the deflagration regime and this is typical for non-premixed
combustion. When the low-Mach number assumption is imposed, compressibility effects, viscous
heating and the Dp

Dt in Eq.(A.27) can be neglected and density is independent of the pressure, but
may change due to temperature difference and mixing of species with different density [41]. Also it
is common to use a transport equation for temperature when the low-Mach number approximation
is used. This equation can be obtained by taking the derivative of Eq.(A.25) and omitting the
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∆h0f,k term, the following expression can be obtained [41].

ρCp
DT

Dt
= ω̇T +

∂

∂xi

(
κ
∂T

∂xi

)
− ρ

∂T

∂xi

(
N∑
k=1

Cp,kYkVk,i

)
+ Q̇+ ρ

N∑
k=1

Ykfk,iVk,i (A.39)

where ω̇T is the heat released due to combustion and it is defined as:

ω̇T = −
N∑
k=1

hkΩ̇k = −
N∑
k=1

hs,kω̇k −
N∑
k=1

∆h0f,kω̇k (A.40)

When assuming low-Mach number flow, therefore neglecting viscous heating, and simplifying the
temperature equation by assuming equal specific heat capacities Cp,k for all species and assuming
a constant pressure flame, the result is:

ρCp
DT

Dt
= ω̇T +

∂

∂xi

(
κ
∂T

∂xi

)
+ Q̇+ ρ

N∑
k=1

Ykfk,iVk,i (A.41)

The assumption on equal specific heat capacities for all species is not often true, but it is often used
in non-premixed combustion calculations [41]. In summary, the transport equation for temperature
is a simplified version of the energy transport equation and it is mainly used for the study of non-
premixed combustion and its modelling.

In many non-premixed combustion studies an idealized situation is assumed in which the chemical
reaction is irreversible and infinitely fast, which means that reaction is finished and found an
equilibrium before the flow changed locally the composition of the mixture. When this idealized
situation is treated, the mass fractions of all species and the temperature is a function of a passive
scalar, which is known as the mixture fraction. The derivation of the transport equation of the
mixture fraction starts with the transport equation of species for the fuel and oxidizer and by
modelling diffusion with Fick’s law with equal diffusion coefficient DkN = D for all species and
neglecting the body forces. Eq.(A.14) then becomes:

∂ρYF
∂t

+
∂

∂xi
(ρuiYF ) =

∂

∂xi

(
ρDF

∂YF
∂xi

)
+ ρω̇F (A.42)

∂ρYO
∂t

+
∂

∂xi
(ρuiYO) =

∂

∂xi

(
ρDO

∂YO
∂xi

)
+ ρsω̇F (A.43)

where the following relation for the reaction term of the oxidizer is used:

ω̇O = sω̇F (A.44)

where s is the mass stoichiometric ratio, defined as s = νOWO
νFWF

.

The derivation of the relation between temperature and mixture fraction starts with Eq.(A.41),
neglecting Q̇ and body forces and by using the following relation between the reaction term of
the fuel and the heat release due to combustion:

ω̇T = −Qω̇F (A.45)
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where Q is heat of reaction per unit mass. Now Eq.(A.41) becomes:

ρ
∂T

∂t
+ ρui

∂T

∂xi
= − Q

Cp
ω̇F +

∂

∂xi

(
κ

Cp

∂T

∂xi

)
(A.46)

Combining Eq.(A.42), (A.43) (A.46) and assuming a Lewis number of 1 for all species, it can be
shown the the following three quantities:

z1 = sYF − YO (A.47a)

z2 =
CpT

Q
+ YF (A.47b)

z3 =
sCpT

Q
+ YO (A.47c)

have the transport equation, namely:

∂ρz

∂t
+

∂

∂xi
(ρuiz) =

∂

∂xi

(
ρDz

∂z

∂xi

)
(A.48)

The three quantities follow the presented transport equation Eq.(A.48), but have different bound-
ary conditions on the fuel side and the oxidizer side. When the quantities are normalized by the
following definition:

Z =
zj − zjO

zFj − zOj
(A.49)

The result is that all normalized variables follow the same transport equation and have the same
boundary conditions. The transport equation becomes:

∂ρZ

∂t
+

∂

∂xi
(ρuiZ) =

∂

∂xi

(
ρDZ

∂Z

∂xi

)
(A.50)

where Z is the mixture fraction with boundary condition Z = 1 in the fuel stream and Z = 0 in
the oxidizer stream(see Fig. 2.2). With the introduction of the mixture fraction Z the number of
variables is reduced with N − 1. It is also noted that the mixture fraction is a passive scalar, due
to the absence of a reaction term in the transport equation. The latter is a direct result of the
infinitely fast chemistry assumption.

For some application, enthalpy is used as a passive scalar which also follows transport Eq.(A.50).
This can be shown by imposing the same assumptions as with the derivation of the transport
equation of temperature as mixture fraction. When these assumptions are imposed and combining
Eq.(A.27) and Eq.(A.28) the result is the following expression:

∂ρh

∂t
+

∂

∂xi
(ρuih) = − ∂

∂xi

(
−κ ∂T

∂xj
+ ρ

N∑
k=1

hkYkVk,j

)
(A.51)

When assuming a Lewis number of 1, using Eq.(A.22) for the diffusion velocity and using ∂hk
∂xi

=

Cp,k
∂T
∂xi

, the result after some manipulations is:

∂ρh

∂t
+

∂

∂xi
(ρuih) =

∂

∂xi

(
Dth

∂h

∂xi

)
(A.52)
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Figure A.1: Representation of the mixture fraction in a jet flow

With the determination of the mixture fraction, all aspects of the mixing problem has been solved.

Next step in a non-premixed combustion problem is solving the flame structure problem. In the
flame structure problem the chemical characteristics are solved. The determination of the flame
structure problem starts with a variable change transformation. The coordinate transformation is
applied on the mass fraction equations for all species and temperature equation and the transfor-
mation from (x1, x2, x3, t) to (z, y2, y3, t) where y2 and y3 are spatial variables in planes which
are parallel to iso-Z surfaces. See Fig. A.2 for a 2D representation of the proposed coordinate
transformation.

Figure A.2: 2D representation of the coordinate transformation for diffusion flames. The y3
direction is normal to the ∂Z

∂xk
-y2 plane

When the presented coordinate transformation has been performed , the resulting equations con-
tain terms which corresponds to the gradients along the flame front (thus, along y2 and y3) and to
gradients normal to the flame front. In the specific case that a flame front is very thin compared
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to other flow and wrinkling scales, the gradients along the flame front can be neglected comparing
to the gradient normal to the flame front. This implies that the flame structure is locally 1D and
depends on time and mixture fraction. Such a small element of the flame front which shows 1D
behaviour is called a flamelet and therefore this assumption is called the flamelet assumption.

When this assumption is applied, the species mass equation can be written as:

ρ
∂Yk
∂t

+
∂Yk
∂Z

[
ρ
∂Z

∂t
+ ρui

∂Z

∂xi
− ∂

∂xi

(
ρD

∂Z

∂xi

)]
− ρD

(
∂Z

∂xi

∂Z

∂xi

)
∂2Yk
∂Z2

= ρω̇k (A.53)

The term within the brackets of Eq.(A.53) disappears because of Eq.(A.50). The result becomes:

ρ
∂Yk
∂t

= ρω̇k +−ρD
(
∂Z

∂xi

∂Z

∂xi

)
∂2Yk
∂Z2

= ρω̇k +
1

2
ρχ
∂2Yk
∂Z2

(A.54)

where the term in the parenthesis is called the scalar dissipation rate χ and is a measure of mixing
in the fluid flow:

χ = 2Dk

(
∂Z

∂xi

∂Z

∂xi

)
(A.55)

The temperature equation can also be rewritten in such a form:

ρ
∂T

∂t
= ω̇T +

1

2
ρχ
∂2T

∂Z2
(A.56)

It can be concluded that temperature T and mass fraction Yk can be written as function of time
and mixture fraction. Eq.(A.54) and (A.56) are the flamelet equation which describes the flame
structure. This approach is widely used in non-premixed combustion calculations. When looking
at these equations, it can be seen that only the scalar dissipation rate χ is dependent on spatial
variables xi. This means that once χ is specified, the flamelet equations can be solved in Z-space
and therefore the necessary thermochemical variables can be determined.The application of the
flamelet equations based on the mixture fraction has its origin in the papers of Peters [37] and
Kuznetsov [31].

In summary, to rewrite the governing equations for compressible, reacting flow to the presented
flamelet equations, the following assumptions have been applied:

1. Acoustic interaction and viscous dissipation neglected

2. Almost constant pressure flame

3. Low Mach number approximation

4. Radiative heat loss neglected
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5. External forces neglected

6. Ideal gas mixture

7. All molecules have the same molecular diffusion coefficient DkN = D

8. Heat and species diffuse in the same way, therefore the Lewis number is equal to unity
Lek = Le = λ

ρcpD
= 1

9. Soret (molecular diffusion due to temperature gradients) and Dufour (heat flux due to
species mass fraction gradients) effects neglected.

10. Same diffusion coefficient for all species

11. Infinitely, fast chemistry

12. Flamelet assumption

Flamelet/progress variable approach

Imposing the assumption of irreversible, infinitely fast chemistry to solve the flame structure
problem leads to a description of the problem which is only dependent of the mixture fraction Z
and therefore contains no information about chemical reactions and cannot account for chemical
variations in directions perpendicular to its gradient [39]. The results of imposing the mentioned
assumption is that flame lift-off and other ignition and extinction phenomena cannot be predicted
accurately [40]. One solution for this problem is to apply the flamelet/progress variable approach,
developed by Pierce and Moin [39]. The idea of the approach is to introduce another tracking
scalar which is independent of the mixture fraction. This means that the new scalar must be a non-
conserved scalar, in this case the reaction progress variable ϕ. The concept of a progress variable
is borrowed from the description of chemistry for premixed and partially-premixed combustion and
it measures the extent-of-reaction of the flow. For example, the progress variable could be defined
as a normalized summation of the mass fractions of reaction products. By definition, the progress
variable is equal to 0 in fresh gasses and 1 in fully-burnt gasses. The corresponding transport
equation is:

∂ρϕ

∂t
+

∂

∂xi
(ρuiϕ) =

∂

∂xi

(
ρDϕ

∂ϕ

∂xi

)
+ ρω̇ϕ (A.57)

The application of the flamelet/progress variable approach results in a flame structure problem in
which thermochemical variables are dependent on Z and ϕ, such as:

Yk = Yk(Z, ϕ) (A.58a)

T = T (Z, ϕ) (A.58b)

ω̇ϕ = ω̇ϕ(Z, ϕ) (A.58c)

The methodology to solve the presented flame structure problem is given in Paragraph ??.
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A.2 Turbulent non-premixed combustion

Turbulent flow is characterized by the presence of eddies and the vortices which are stretched
and twisted by the velocity field under the influence of the vorticity distribution. Therefore the
induced velocity field interacts with the vortices and also influences the evolution of the vortices.
A turbulent velocity field shows a broad spectrum of eddy sizes, however dissipation of the flow
only occurs at the smallest eddies. This behaviour is also known as the energy cascade, and it
describes the transfer of energy from the largest eddies to the smallest structures until it is finally
dissipated on molecular scales. The idea behind this concept is that the largest eddies, which are
created by instabilities in the mean flow, are exposed to inertial instabilities. This results in a
break-up into smaller eddies. Also the smaller eddies are subjected to instabilities, which leads to
break-up of the smaller eddies. This mechanism repeats itself, until the smallest structures are
reached and then finally the smallest eddies will dissipate its energy.

Therefore, the presence of turbulence in a reacting flow causes that chemical reactions and mixing
could be altered due to the properties of turbulence. The effect of turbulence on combustion
and vise versa is presented in next the subsection. The third and fourth subsection deals with
the turbulent version of respectively the mixing problem and the flame structure problem. Last
subsection shows an implementation of the presented turbulent non-premixed models in an attempt
to mimic the behaviour of the Delft-Jet-in-Hot-Coflow flame.

A.2.1 Effect of turbulence on combustion and combustion on turbulence

As presented in Section 1.1, there is a two-way coupling between chemistry and turbulence.
In summary, the heat of the flame causes strong flow accelerations in the turbulent flow and
causes a change in kinematic viscosity due to the temperature change. Vise versa, turbulence
improves mixing, which enhances chemical reactions. An elaboration of the presented interaction
is illustrated in Figure A.3. Because combustion requires that fuel and oxidizer be mixed at the
molecular level, the turbulent mixing process is important in non-premixed combustion in turbulent
flow. Such a flow exists of a spectrum of different eddy-scales.The large eddies are responsible
for entrainment of the reactants. This effect is also known as large-scale macro mixing. The
widely accepted view is that once a range of different size eddies has developed, strain and shear
at the interface between eddies improves the mixing of the flow. During the break-up of larger
eddies into smaller eddies, strain and shear increases and this will steepen the concentration
gradients at the interface between reactants. This causes an enhancement of their molecular
inter-diffusion [36]. When chemical reaction occur in the thin reaction layer, heat and reactants
are released. The formed causes volume expansion and therefore an increase in shear and pressure,
which also alters the turbulent flow. Also some chemical properties, such as viscosity and specific
heat at constant pressure are dependent on temperature. These temperature-dependent chemical
properties changes due to the release of heat and this will alter the turbulent flow as well.

But turbulent flow can also affect combustion in a negative way. As stated previously, chemistry
occurs in a very thin layer, the flame front. If the flame front is thin compared to the Kolmogorov
length scale, which is the smallest scale in a turbulent flow, the flamelet assumption can be
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Figure A.3: Interaction between turbulent flow and chemistry [3]

applied. However, when turbulence is so intense that the Kolmogorov length scale is smaller than
the flame front,the smallest eddies can penetrate the flame front and destroy its structure. This
could result in an extinguished flame [36].
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Appendix B

Detailed coarse mesh SMP results

B.1 Detailed τ results

Table B.1: Error of ⟨ϕ⟩ with respect to the reference case for several fine-scale models and
selected τϕ

Fine-scale model τu τϕ Number of elements

300 200 100

VMM leading subscales Adj. Sh. Cod. 1.489× 10−3 3.778× 10−3 7.482× 10−3

VMM leading subscales Adj. Sh. F&V 1.544× 10−3 3.820× 10−3 7.504× 10−3

VMM leading subscales Adj. Sh. Sh. 1.506× 10−3 3.770× 10−3 7.402× 10−3

VMM leading subscales Adj. Sh. Adj. Sh. 1.509× 10−3 3.773× 10−3 7.403× 10−3

VMM leading subscales Sh. Cod. 1.627× 10−3 3.879× 10−3 7.420× 10−3

VMM leading subscales Sh. F&V 1.684× 10−3 3.934× 10−3 7.450× 10−3

VMM leading subscales Sh. Sh. 1.649× 10−3 3.881× 10−3 7.341× 10−3

VMM leading subscales Sh. Adj. Sh. 1.652× 10−3 3.884× 10−3 7.342× 10−3
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80 Detailed coarse mesh SMP results

Table B.2: Error of ⟨Z⟩ with respect to the reference case for several fine-scale models and
selected τZ

Fine-scale model τu τZ Number of elements

300 200 100

VMM leading subscales Adj. Sh. Cod. 2.211× 10−3 6.058× 10−3 9.421× 10−3

VMM leading subscales Adj. Sh. F&V 2.324× 10−3 6.142× 10−3 9.468× 10−3

VMM leading subscales Adj. Sh. Sh. 2.274× 10−3 6.057× 10−3 9.313× 10−3

VMM leading subscales Adj. Sh. Adj. Sh. 2.280× 10−3 6.062× 10−3 9.314× 10−3

VMM leading subscales Adj. Sh. st. des. 2.188× 10−3 5.983× 10−3 9.284× 10−3

VMM leading subscales Sh. Cod. 2.410× 10−3 6.173× 10−3 9.357× 10−3

VMM leading subscales Sh. F&V 2.526× 10−3 6.273× 10−3 9.417× 10−3

VMM leading subscales Sh. Sh. 2.477× 10−3 6.186× 10−3 9.254× 10−3

VMM leading subscales Sh. Adj. Sh. 2.483× 10−3 6.191× 10−3 9.256× 10−3

VMM leading subscales Sh. st. des. 2.394× 10−3 6.104× 10−3 9.222× 10−3
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