
Language Assistance in Reinforcement
Learning in Dynamic Environments

Master’s Thesis

Sander van Leeuwen

Language Assistance in Reinforcement
Learning in Dynamic Environments

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Sander van Leeuwen
born in Tilburg, The Netherlands

Algorithmics Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, The Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2023 Sander van Leeuwen.

Language Assistance in Reinforcement
Learning in Dynamic Environments

Author: Sander van Leeuwen
Student id: 4717988

Abstract

Language is an intuitive and effective way for humans to communicate. Large
Language Models (LLMs) can interpret and respond well to language. However, their
use in deep reinforcement learning is limited as they are sample inefficient. State-
of-the-art deep reinforcement learning algorithms are more sample efficient but cannot
understand language well. This research aims to study whether RL agents can improve
learning by utilizing language assistance and how LLMs can help them. A sentence
describing the agent’s environment is fed into an LLM to create a semantic embedding,
which is consumed by a recurrent Soft Actor-Critic (SAC) agent to create an agent that
can listen to natural language. This research shows that the best method for the agent
to consume the embedding is concatenating it to each observation. Also, LLM-based
embeddings lead to faster and more stable learning than non-LLM-based embeddings.
The agent is sensitive to noise in the embedding but not to the embedding’s dimension-
ality. The agent can generalize well across sentences that have a similar meaning to
sentences seen during training but are formulated differently, but it can not generalize
as well across sentences with unknown subjects and needs the subjects of the sentences
to be grounded in training. Lastly, this research shows that the proposed architecture
supports scaling language assistance to more complex environments.

Thesis Committee:

Chair: Dr. M. T. J. Spaan, Faculty EEMCS, TU Delft
University supervisor: Dr. J. W. Böhmer, Faculty EEMCS, TU Delft
Daily supervisor: J. A. de Vries, M.Sc., Faculty EEMCS, TU Delft
Committee Member: Dr. J. Yang, Faculty EEMCS, TU Delft

sander.van.leeuwen@outlook.com

Preface

Before you lies the thesis that concludes my studies in the field of computer science at
the Delft University of Technology. In the past months, I had the privilege and honor to
do research in its algorithmics research group, which invited me to its team meetings and
reading groups, engaging me with inspiring research and people.

As I have been interested in robotics since a young age, I enjoyed working on this thesis.
This work aims to lay a foundation for developing more advanced language-assisted rein-
forcement learning agents. Language assistance in reinforcement learning is not only impor-
tant for intuitive human-computer interaction, but it also opens up reinforcement learning
agents to utilize large language models for more informative decision-making, adding to the
evolving landscape of artificial intelligence.

I want to extend my sincere gratitude to Joery de Vries, who was always available for
in-depth discussions and from whom I learned a lot about doing reinforcement learning
research. Furthermore, I would like to thank dr. Matthijs Spaan and dr. Wendelin Böhmer,
for your constructive criticism and excellent guidance. I extend a special thanks to my dad,
Rik van Leeuwen, for providing invaluable feedback on the draft versions of this thesis.
Lastly, I want to thank my friends and family for their unwavering support throughout this
project.

Sander van Leeuwen
Delft, the Netherlands

December 11, 2023

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Goals . 2
1.3 Thesis Outline . 3

2 Background and Related Works 5
2.1 Reinforcement Learning . 5
2.2 Semantic Sentence Embeddings . 13
2.3 Related Works . 15

3 Study Design 21
3.1 Problem Formalization . 21
3.2 Environment . 22
3.3 Sentence Generation . 24
3.4 Agent Design . 24
3.5 Information Dilution & Compression . 27
3.6 Generalization . 29

4 Results 33
4.1 RQ1 : Embedding Consumption . 33
4.2 RQ2 : Embedding Model . 34
4.3 RQ3 : Information Dilution & Compression 35
4.4 RQ4,5 : Generalization . 36

v

CONTENTS

5 Discussion 39
5.1 Agent Architecture (RQ1,2) . 39
5.2 Embedding Characteristics (RQ3) . 40
5.3 Agent Performance (RQ4,5) . 41
5.4 Implications . 42
5.5 Limitations . 43
5.6 Future Work . 44

6 Conclusion 47

Bibliography 49

A Glossary 63

B Engineering Decisions 67
B.1 Initial Environment Design . 67
B.2 Deep Recurrent Q-Networks . 68
B.3 Exploration . 68
B.4 Hyperparameter Search . 70

C Hyperparameters 78

D Sentence Generation 79
D.1 Embedding Model Performance . 83

E Embedding Consumption 85
E.1 Agent Architecture . 85
E.2 Results . 87
E.3 Baseline Agent . 88

F Generalization Experiment 89
F.1 Derivation . 90

G Environments 93
G.1 Unidirectional Environment . 93
G.2 Left Multidirectional Environment . 93
G.3 Left & Right Multidirectional Environment 94
G.4 All Multidirectional Environment . 95

vi

List of Figures

1.1 Systematic Research Overview . 2
1.2 Research framework. 3

2.1 LSTM Architecture . 12

3.1 Environment . 23
3.2 Design of the Actor. 25
3.3 t-SNE Plot of Unidirectional Sentence Embeddings 30
3.4 Classification Architecture & Performance . 30

4.1 Embedding Consumption . 33
4.2 Embedding Model . 34
4.3 Information Dilution . 36
4.4 Information Compression . 36
4.5 Generalization . 37

5.1 Proposed Actor Architecture . 41

B.1 Initially Proposed Environment. 67
B.2 Agent Performance on Valid Actions Limitations. 69
B.3 Intrinsic Motivation . 71
B.4 Choice of Activation Function . 72
B.5 Classifier Architecture on Generalization Tasks 73
B.6 Classifier Regularization Experiment . 74
B.7 Number of Updates per Environment Step . 75
B.8 Number of Bends in Multidirectional Environment 75

D.1 Onedirectional Sentence Frequency Analysis 82
D.2 Multidirectional Sentence Frequency Analysis 82

E.1 Design of Actor with LSTM Initialization. 85
E.2 Actor Architectures . 86

vii

E.3 Embedding Consumption Full Results . 87
E.4 LSTM Training Time. 88
E.5 Baseline Performance . 88

F.1 Uncontrolled Experiment Probabilities . 89

G.1 Left Unidirectional Environment . 93
G.2 Left Multidirectional Environment . 94
G.3 Right Multidirectional Environment . 94
G.4 Upward Multidirectional Environment . 95
G.5 Downward Multidirectional Environment . 96

List of Tables

3.1 Structure of Object Types, Objects, and Sentences 28

C.1 Hyperparameters of the agent. 78

D.1 Object List . 80
D.2 Leakage in Unidirectional Sentences . 81
D.3 Relative Object Position Directions . 82
D.4 Embedding Model Cumulative Regret . 83

E.1 Embedding Consumption Cumulative Regret 87

viii

Chapter 1

Introduction

1.1 Problem Statement

Since the invention of computers and robots, people have sought to use them to make their
lives easier. To do so, interaction between these robots and people is necessary. People
often use language to communicate, abstract, and transfer knowledge of their environment
and decision-making [113]. Therefore, the ability to manipulate language could be an intu-
itive way for people to interact with robots and computers as it not only lowers the bar for
interfacing with them [19, 92] but also provides the possibility of improving user satisfac-
tion [142, 109].

The field that studies how to make computers understand language is called Natural
Language Processing (NLP). This field has made tremendous progress since the invention
of the Transformer [148], which has led to the creation of the Large Language Model (LLM)
that revolutionized language fields like translation [148], text generation [122], text under-
standing [34, 47, 125], and speech-to-text conversion [163]. More generally, LLMs gained
popularity because it allowed the creation of ChatGPT 1 which took the world by storm in
the spring of 2023. It provided a revolutionary way to interact with a computer as anyone
could ask any question, for which the system would create a human-like helpful answer.

However, this progress in intuitive interaction between people and computers has not
yet fully transferred to the field of Reinforcement Learning (RL), which is concerned with
learning how agents (for example, robots) should behave in an environment. As agents in
some circumstances need to interact with people, it would be helpful to understand language
to some degree. An example would be telling a robot that should bring food to customers:
’watch out, a glass fell and there is a puddle on the floor’. The robot should understand the
sentence and act accordingly.

LLMs cannot be directly used to learn an RL problem with language assistance, as
they are sample inefficient: they require a lot of data before they become powerful [25,
77], which is often not available in RL settings. RL algorithms are more sample efficient,
however, they cannot make sense of language as well as LLMs. They have been combined
in earlier research, mostly by using language to instruct the agent on reaching its goal.

1https://openai.com/blog/chatgpt

1

https://openai.com/blog/chatgpt

1. INTRODUCTION

1. Data Gathering
”Describe this
environment...”

GPT-4

”Anvil left of you”
”There’s a feather”
”Watch out for ...”
... (3600 sentences)

2. Pre-training
”Anvil left of you”
”There’s a feather”

Embedder

Classifier

”Heavy”
”Light”

3. Reinforcement Learning
Environment

Agent
”Go left”

Observation
Embedder

”There’s a
feather”

Embedding
Linear

Linear

Linear

LSTMPolicy

Figure 1.1: High-level systematic view data collection, and the training regime of the agent.
The pre-training step trains the classifier and is not used for every experiment.

However, little research has been done on using language to inform the agent about its
environment and let the agent figure out the optimal path itself.

This research investigates how an RL agent can best respond to assistance about its en-
vironment through natural language. This is done by using LLMs from the NLP domain to
interpret the language by summarizing the meaning of a sentence into a vector. This vector
is called a semantic embedding. This embedding is used as input to an existing state-of-the-
art RL model. An overview of this flow is given in fig. 1.1. This study determines how to
enter the embedding into the agent and which existing method can best create these embed-
dings. It assesses how the agent responds to different amounts of noise and information in
the embedding, and lastly, it evaluates to which degree the agent can generalize over unseen
objects and sentence formulations.

1.2 Research Goals

This research aims to study whether RL agents can improve learning by utilizing language
assistance and how LLMs can help them. Semantic embeddings are used to interface be-
tween LLMs and RL agents, which means these embeddings must be entered into (or have
to be consumed by) the RL agent. Firstly, the research aims to determine the best method for
an RL agent to consume an embedding. Next, this research aims to discover how seman-
tic embeddings can best be created and specifically evaluates if LLM-based embeddings
lead to better RL performance than state-of-the-art embeddings before LLMs. These two
experiments investigate how to architect a language-assisted RL agent.

This agent is assessed on how it responds to changes in the amount of noise and in-
formation in the embedding. This aims to provide insight into how embeddings could be
improved and how to scale up to more complex environments. It aims to determine how
much the embedding properties (such as vector dimensionality, noise, and amount of rele-
vant information) impact the agent’s learning ability.

Lastly, a well-performing agent should not only be able to react to sentences it has seen
before but also to sentences it was not trained on. The agent is evaluated for generalization

2

1.3. Thesis Outline

across unseen objects and linguistic formulations to find out if the agent just remembers how
to respond to specific sentences or whether it interprets sentences in a way that demonstrates
an understanding of underlying concepts and can apply that knowledge to novel situations.
In the case of generalization across unknown objects, this research is interested in whether
the agent can identify a property of the object that objects in the training set also have.

This leads to the following research questions.

RQ1 How can semantic sentence embeddings best be consumed by the RL
agent?

RQ2 Which existing approach can best generate semantic sentence embed-
dings?

RQ3 How do changes in the amount of information and noise in an embedding
affect the agent’s performance?

RQ4 How well can the agent generalize over unseen objects with similar prop-
erties?

RQ5 How well can the agent generalize over unseen linguistic formulations?

1.3 Thesis Outline

This thesis will follow the structure of fig. 1.2. Chapter 2 explains the theory behind RL
to prepare for the problem formalization and agent architecture, it will explain the state-of-
the-art in semantic embeddings, and give an overview of related research.

Next, chapter 3 will introduce the methodology, the problem formalization, data collec-
tion, hypotheses, the experiments to construct the agent, as well as experiments to evaluate
its performance. Chapter 4 will present the results of the experiments and attempt to confirm
or reject the hypotheses, after which chapter 5 discusses the results to answer the research
questions. It also gives the implications, limitations, and future directions of this research.
Lastly, chapter 6 will conclude the thesis by summarizing the work.

Figure 1.2: Research framework.

3

Chapter 2

Background and Related Works

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a field that aims to find ways to make agents in some
environment learn how to accomplish a goal without explicitly being programmed to do so.
Or, more precisely, RL is a field that proposes reasoning about sequential decision-making
as an optimization process [139]. In RL, an agent interacts with an environment that might
not be entirely familiar to the agent, where the results of its actions might not always have
the same outcome (stochasticity), and where the state of the environment might be dynamic
and change over time. The RL agent aims to find a policy: an action-selection strategy that
optimizes some performance metric [50].

A notable difference between RL and supervised machine learning is that with super-
vised learning, the dataset to train on is independent of the model, while in RL, the dataset
is generated by the model interacting with the environment. The RL agent learns from in-
teracting with its environment, so the set of interactions is the dataset it should learn from.
This means that with RL, the dataset is not independently and identically distributed (i.i.d.)
as is the case with supervised learning but is instead dependent on the RL agent’s policy
that is being trained.

When an RL agent executes an action in a state, ends up in a (possibly new) state, and
receives a reward, it executes a transition. RL agents in this research learn in episodes,
meaning that an agent starts somewhere and transitions until it has reached its goal or a
maximum time has passed. The environment is reset now, the agent saves the episode in its
memory, and the RL agent is moved to its starting position and can try again.

This section will elaborate on the RL theory, notation, and algorithms used in this re-
search.

2.1.1 Markov Decision Processes

The environment and goals of an RL agent can be modeled as a Markov Decision Process
(MDP), which consists of the tuple ⟨S ,A ,T,s0,R,γ⟩ [12, 120]. S is the set of all states s an
agent can be in, A is the set of available actions a to the agent, T (s,a,s′) : S ×A × S →
[0,1] is the transition or dynamics function: a probability density function indicating the

5

2. BACKGROUND AND RELATED WORKS

probability of ending up in state s′ when executing action a in state s. This research will use
the concepts of dynamics and transition function interchangeably.

Next, s0 ∼ P(S) indicates the state the agent will start in. R is the reward function
R(s,a) : S ×A → R, and provides the agent with feedback on how well it is doing: if it is
doing well it gets positive feedback in the form of a positive reward, and vice versa. Lastly,
γ ∈ [0,1) is the discount factor and impacts how much the agent favors rewards that are far
in the future.

The agent will then aim to find a behavior that executes the right actions to collect as
much reward as possible, also known as a policy π(a|s) = P(A = a|S = s) that maximizes
the expected cumulative discounted reward Jπ = Eπ[∑

∞
t=0 γtrt+1], or expected return. This

policy has the Markov property as it decides which action to pick only on the most recently
observed state. When the agent is in a state s, the expected return that is achieved by
following a policy is called the value function: V π(s) = Eπ[∑

∞
t=0 γkrk+1|s0 = s]. Lastly,

when the agent is in a state s, the expected return of following policy π after executing
action a is called the Q-function: Qπ(s,a) = Eπ[∑

∞
t=0 γkrk+1|s0 = s,a0 = a]. If the policy is

optimal, meaning there is no other policy that receives a higher return, it is called π∗, and
the functions are called J∗, V ∗(s), and Q∗(s,a), respectively.

When all parameters of the MDP are known, the problem of finding the optimal policy
that maximizes the cumulative future reward can be considered as planning [57, 120, 13,
50]. Conversely, when the MDP parameters are unknown, finding the optimal policy can be
done with RL [57, 120, 13].

The performance of an RL agent can be measured in different ways. For example, how
quickly it learns, how well it remembers (stable learning), or how well it approaches the
optimal policy. The latter is used in this research as it is mainly focused on investigating
how well an agent can respond to textual information about its environment, not how fast
it learns. How close a policy approaches the optimal policy is called regret [50, 84], and
can be defined as the difference between the expected value of the optimal policy versus the
expected value of the current policy as shown by eq. (2.1) [84]. In this equation, µ is the
MDP, π is the current policy, a∗ is the action resulting from the optimal policy, and a is the
action from the current policy. Lastly, U(µ,π) = Eπ

µ[∑
T
t=1 rt] is the expected utility, where

utility is the sum of the rewards in an episode.

Regret(T) =U∗(µ)−U(µ,π)

= Eπ∗
µ

[
T ∗

∑
t=1

r(st ,a∗,st+1)

]
−Eπ

µ

[
T

∑
t=1

r(st ,a,st+1)

]
a∗ = argmax

a′∈A
π
∗(a′|st)

a = argmax
a′∈A

π(a′|st)

(2.1)

As further explained in chapter 3, the research will focus on minimizing the expected
regret: E[Regret(T)], where the regret is defined as the difference in the number of steps
to reach the goal, between the policy and optimal policy. As eq. (2.1) shows, the policy
is evaluated with greedy action sampling, where the action with the highest probability is

6

2.1. Reinforcement Learning

sampled. This research also evaluates models based on the cumulative regret, defined as
Rc = ∑

N
n=0U∗

n (µ)−Un(µ,π), where N is the number of episodes.

Agent Algorithms

To solve an MDP and learn how to behave in an environment, there are two main branches
of algorithms: model-based and model-free [161, 50]. A model is a collection of acquired
knowledge about the behavior of the environment. Training this model means learning
where the agent ends up after taking an action, in other words, learning the MDP tran-
sition function T (s,a,s′). Model-free algorithms have no such model and instead try to
find the optimal policy directly [161, 72], and can be more memory efficient and agile to
changes [23]. This research used the Soft Actor-Critic (SAC) model-free algorithm [56].
More information supporting this choice will be given in section 3.4. This section provides
the background to SAC by explaining the two categories of model-free algorithms: value-
and policy-based1 [50, 161, 72].

Value-based Value-based methods try to find the value function, either V π(s) or Qπ(s,a).
These functions can then be used to choose the action that leads to the highest value. In
other words, whether it is a good idea to take action a in state, s is measured by the expected
return of taking action a in state s. A value function is learned by optimizing the Bellman
equation derived in eq. (2.2) [12].

Qπ(s,a) = Eπ

[
T

∑
t=0

γ
trt | s0 = s

]
= Eπ

[
r0 +

T

∑
t=1

γ
trt |s0=s

a0=a

]

= r(s,a)+ γEπ

[
T−1

∑
t=0

γ
trt | s0 ∼ P(·|s,a)

]
= r(s,a)+ γ

∫
S

T (s,a,s′)
∫

A
π(a′|s′)Qπ(s′,a′)da′ ds′

(2.2)

Equation (2.2) shows that the Q-value of one state depends on the states the agents visit
after it. This means that a value function can be learned by computing the difference with
the Q-values of successive states and actions. In deep RL, a value function is created using
a neural network with the parameters θ. An optimal θ can be found by minimizing the loss
function of eq. (2.3). Mnih et al. [105] created Deep Q-Networks (DQN), an algorithm that
uses a neural network to find Q(s,a), trained by sampling from a replay buffer. Extensions to
this are Double DQN [146], Dueling DQN [151], Distributed DQN [10], Noisy DQN [44],
and Rainbow DQN [63].

L(θ) = ED

[
(rt + γ max

at+1∈A
Q(st+1,at+1)−Q(s,a)

]
(2.3)

1Credit is due for most of the equations to the Deep RL course at the TUDelft by dr. Wendelin Böhmer

7

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61584

2. BACKGROUND AND RELATED WORKS

Policy-based Policy-based algorithms directly learn the policy π(a|s). The goal is to
increase the probability of taking good actions in a state and decrease the probability of
taking bad ones. With θ being the parameters of π, optimal values for θ can be found by
solving eq. (2.4) [141]. In this case, Rt = ∑

T
k=0 γkrt+k is the discounted return starting from

time t.

max
θ

J[πθ] = max
θ

E
[

R0

∣∣∣∣s0 ∼ P(·), st+1 ∼ P(·|st ,at)

at ∼ πθ(·|st), rt = r(st ,at)

]
∇θJ[πθ] = E

[
T

∑
t=0

γ
tRt∇θ lnπθ(at |st)

∣∣∣∣∣s0 ∼ P(·), st+1 ∼ P(·|st ,at)

at ∼ πθ(·|st), rt = r(st ,at)

] (2.4)

The REINFORCE algorithm approaches the optimization of eq. (2.4) by optimizing for
eq. (2.5) by gathering m episodes of length n under policy πθ [155].

∇θLπ(θ)≈ ∇θ −
1
m

m

∑
i=1

n−1

∑
t=0

γ
tRi

t lnπθ(ai
t |si

t) (2.5)

Policy-based algorithms become more powerful when the difference between the policy
before the update (called µ) and after the update (called πθ) is kept within a bound. TRPO
does so by adding a hard constraint using the Kullback-Leibler divergence:
E
[
∑

n−1
t=0 DKL [µ(·|st)∥πθ(·|st)]

]
≤ δ [131], while PPO achieves this by clipping the gradients

∇θ [132].

Actor-Critic A merger between value-based and policy-based algorithms can be found in
actor-critic algorithms [161]. They originate from the issue in policy-gradient algorithms
where Ri

t of eq. (2.5) can have high variance, which is bad for training. This variance can
be lowered by subtracting a value function: Ri

t − vφ(si
t).

Actor-critic algorithms consist of two parts: the actor, which is policy-based, and the
critic, which is value-based. The actor takes the actual actions, while the critic models
a value function for the actor to optimize its policy by. Notable examples are AC [140],
A3C [106], DDPG [89], TD3 [46], and Soft Actor-Critic (SAC) [56]. The latter algorithms
employ the improvements from the policy-based and value-based algorithms for their actor-
and critic architecture and loss functions, respectively.

Soft Actor-Critic This research uses SAC, an off-policy algorithm that optimizes for the
expected reward and for taking random actions. In other words, it aims to succeed at its task
while acting as randomly as possible [56]. It does so by training to increase the entropy of
its policy using a loss regularization component, as shown in eq. (2.6) [55].

L̄SAC(θ) = L [θ]−αH [πθ]

H [πθ] =−1
n

n−1

∑
t=1

∫
A

πθ(a|st) lnπθ(a|st)da
(2.6)

SAC extends upon DDPG, which is sensitive to hyperparameter tuning [38, 61, 56].
SAC solves this by making it possible to tune parameter α automatically during training. It

8

2.1. Reinforcement Learning

employs both value functions Qφ(s,a) and Vψ(v), and uses two Q-functions as proposed by
Double-DQN [146] but in a pessimistic way: Q̄(s,a) = mini∈{1,2} Qφi(s,a), which is also
done by TD3 [46]. Furthermore, a stochastic policy is created using the reparameteriza-
tion trick, and for continuous action spaces, actions can be squashed using the hyperbolic
tangent. As this research has discrete actions, one action logit is generated for each action
(without hyperbolic tangent). In stochastic action sampling, an action is sampled from the
Boltzmann distribution [116] of eq. (2.7) based on the action logits [111]. In eq. (2.7), la is
the logit value of selecting action a. The action with the highest action logit is executed in
deterministic action sampling.

π(ai
t |st) =

ela

∑la′ ela′
(2.7)

2.1.2 Partially Observable MDP

Initially, the agent of this research should not be able to see the object described by the
language assistance. This is because this study is interested in whether the agent can learn
about the object based on language assistance. As the agent cannot see the object initially,
the agent should be limited to seeing only some parts of the state. Agents not viewing
their full environment is more common, for example, in a robot’s camera only filming its
front [137], an advertising company not being aware of a user’s location, or in predictive
maintenance where the exact state of the object under maintenance is unknown [137, 41,
134].

Such environments can be modeled with a Partially Observable Markov Decision Pro-
cess (POMDP), an extension of an MDP where the agent receives observations with partial
information about the current state of the environment [3, 134, 79, 50]. A POMDP consists
of the tuple ⟨S ,A ,Ω,T,O,s0,R,γ⟩ [137]. In this case Ω is the set of observations available
to the agent, O(st ,at ,ot+1) : S ×A ×Ω → [0,1] is a probability density function indicating
the probability of receiving observation ot+1 ∈ Ω when executing action at in state st . The
other variables in the POMDP tuple equal the MDP definitions introduced in section 2.1.1.

In such a setting, the Markov property does not necessarily hold anymore, which states
that all information required to select an action can be found in the current observation.
As the agent does not directly observe the state, the agent must interpret the history of
observations and actions and infer which states it might be in. This is called a belief. A
belief MDP is a representation of a POMDP, where the belief is treated as part of the state
space. It is a simplification over the POMDP, as now actions are selected based on a belief
of where the agent is instead of a distribution of states the agent might be in. While this
requires methods to approximate a belief state based on observations and actions, it also
allows the use of standard MDP tools to solve the MDP resulting from inserting the belief
in the state space [50, 22].

9

2. BACKGROUND AND RELATED WORKS

Bayes Adaptive MDP

In this research, the hidden state2 is held constant throughout an episode. This allows
the environment to be formulated as a Bayes Adaptive Markov Decision Process (BA-
MDP) [164, 39, 79]. In BA-MDPs, the hidden state is usually the transition or reward
function that is active in the episode. Multiple transition functions or reward functions may
exist, but which one is active is not observed. Examples of BA-MDPs are navigation in a
static world (e.g., a maze), the game of patience, and medical diagnosis 3.

A BA-MDP is an extension of the MDP introduced in section 2.1.1, and modeled as the
tuple ⟨S ′,A ,T ′,s′0,R

′,γ⟩ [50]. In this case, S ′ = S ×Φ is a new variable indicating the set
of hyper-states. Each hyper-state consists of the earlier introduced state s ∈ S and a new
value φ ∈ Φ called the posterior of the transition function: the likelihood that some specific
transition function is active in this episode. The MDP transition function T ′(s′t ,a,s

′
t+1) :

S ×Φ×A × S ×Φ → [0,1] is a probability density function indicating the probability of
resulting in hyper-state s′t+1 when executing action at in hyper-state s′t with posterior φ ∈ s′t .
Next, s′0 is the starting hyper-state, and R′(s′,a) : S ×Φ×A → R represents the reward
obtained when taking an action in a hyper-state.

Within reinforcement learning, a vital issue of any agent is the tradeoff between explo-
ration and exploitation [139, 164]. Exploration involves discovering new ways to reach the
goal, whereas exploitation aims to collect as much reward as possible. In BA-MDPs, the
agent must explore to find out what the current transition and reward functions are. When it
has done so, it can start exploitation to optimize its policy for receiving rewards. In Bayesian
RL, policies balance selecting their actions to reduce the uncertainty of the expected reward
from executing an action in a state. They choose their actions based on the state-action
combination’s expected reward (value). A Bayes-optimal policy balances exploration and
exploitation optimally [50, 164, 11], and optimizes the value function shown in eq. (2.8).
Any Bayesian-optimal policy is, therefore, mathematically lower than the optimal policy as
defined in section 2.1.1, as the Bayesian-optimal policy needs to explore, which the optimal
policy does not.

V ∗
t (s

′
t) = max

a∈A

[
R(s,a)+ γ

∫
S×Φ

T (s′t ,a,s
′
t+1)V

∗
t−1(s

′,φ′)ds′t+1

]
(2.8)

This new definition of an optimal policy introduces a new kind of regret: the Bayesian-
optimal regret. This type of regret measures the difference between the return of a Bayesian-
optimal policy and the current policy. It still uses the definition of eq. (2.1), but now a∗ is
the action that optimizes eq. (2.8). Bayes Optimal Regret tells us how much performance
is lost when the agent starts with partial information about its environment [84] instead of
complete information.

2part of the state that is not observed
3Given that the patient’s wellness does not change during diagnosis.

10

2.1. Reinforcement Learning

Contextual MDP

This research does allow the agent to make decisions based on a sentence describing the
dynamics in its environment. This means the environment can be specified using a Con-
textual Markov Decision Process (CMDP), which differs from a BA-MDP in that a context
indicates which transition and reward functions are active. For this research, the assisting
sentence contains only partial information, which means it serves as a partial proxy for the
context.

A CMDP consists of a tuple ⟨C,S,A,M (c)⟩, where C is the set of possible contexts, S
and A are the sets of possible states and actions as in section 2.1.1. Lastly, M is a func-
tion mapping a context c ∈ C to an MDP M (c) = ⟨S,A,T c,Rc,γ⟩ [57]. With the context
providing information about the hidden state, there is less need for a well-trained policy to
explore. This means that the performance of a policy in a CMDP can be higher than the
Bayesian-optimal policy in a BA-MDP, and it can even approach the performance of the
optimal policy.

Agent Algorithms

It is hard to solve a POMDP with an MDP algorithm such as DQN, PPO, or SAC di-
rectly, as the history cannot directly be fed into the algorithms because of the curse of
dimensionality[115, 90]: possibly exponentially more data is needed when the input di-
mensionality is increased [12, 4]. When approaching solving POMDPs with FFNs, the
input dimensionality increases linearly with the horizon length [111] 4, which means that to
act on a longer horizon, exponentially more data is needed.

A solution is to use memory-based policies, which keep a belief in their memory and
update it based on new observations. Memory-based policies are often implemented with
Recurrent Neural Networks (RNN) [130, 8, 153, 111], where Recurrent implicates the mem-
ory. The output of this RNN is then fed into an MDP algorithm as if the output of the
RNN represents a state. This change is both simple, as only a few lines of code have to
be changed [111], and general, as RNNs are universal function approximators [129] and
Turing-complete [133, 111].

Notable algorithms are DRQN [60], Recurrent A2C [102], DVRL [75], R2D2 [81], and
LSTM-TD3 [99], and Agent57 [5]. [111] argue that recurrent methods achieve state-of-the
art results on POMDP environments.

Long Short-Term Memory

A Long-Short-Term Memory (LSTM) network is a type of RNN used for efficiently re-
membering long- and short-term dependencies in sequential input [68]. RNNs are neural
networks that work similarly to feed-forward networks, except that they save some internal
state (also, hidden state, called memory in the previous section) to be used by the network’s
subsequent invocation. This means an RNN has two outputs: y and the hidden state ht , and
two inputs, x and the hidden state ht−1 of the previous invocation.

4In episodic RL, the horizon length is min(1
1−γ

,T) where T is the maximum episode length.

11

2. BACKGROUND AND RELATED WORKS

ct−1

ht−1

xt

⊕

σ

⊙

pt

ft
σ tanh

⊙

+

it gt

σ ⊙

tanh

ot

ct

ht

yt

LSTM

Figure 2.1: LSTM architecture used in this research. The square nodes include matrix
multiplications and subsequent activation layers. The other nodes indicate element-wise
operations. Note: ⊕ indicates vector concatenation, + denotes vector addition, and diverg-
ing lines indicate a vector copy.

The LSTM was created to solve the vanishing-gradients problem, which poses the chal-
lenge that if backpropagation is applied to an RNN through time, the gradients approach
zero or explode to infinity. The LSTM is one of the most commonly used RNNs [87]. It
is used in this research because Ni et al. [111] evaluated it to work best for a recurrent RL
agent in a POMDP meta-learning setting.

A visual representation is made in fig. 2.1, and the equations are shown in eq. (2.9).
Equation (2.9) is adapted from the documentation of the PyTorch LSTM implementation
used in this research [45]. In the equation, xt ∈ Rm is the input of timestep t, ht−1 ∈ Rn is
the output from the LSTM at timestep t−1, W ∈Rn×(m+n) are matrices of trainable weights,
b ∈ Rn are bias vectors with trainable weights, ⊙ is the Hadamard product [45, 128], and
⊕ denotes vector concatenation. As there are four matrices W and four bias vectors b, the
total number of parameters in the LSTM used in this research is 4(mn+n2 +n).

pt = xt ⊕ht−1

it = σ(Wi pt +bi)

ft = σ(Wf pt +b f)

gt = tanh(Wg pt +bg)

ot = σ(Wo pt +bo)

ct = ft ⊙ ct−1 + it ⊙gt

ht = yt = ot ⊙ tanh(ct)

(2.9)

The intuition behind the LSTM is that the cell state ct contains information that can
be retained over a long period of time. Every iteration of the LSTM, ft provides a value
between 0 and 1 for every dimension, indicating how much of the information from ct−1
should be retained. Next, gt determines which information from the input xt and the previ-

12

2.2. Semantic Sentence Embeddings

ous output ht−1 should be remembered in ct for the next cycle, and it indicates how much
of that information. Lastly, ot specifies what information from the input and the new cell
state is relevant for the output. In deep RL, the initial vectors c0 and h0 are often set to
zero [60, 111, 99, 5], also known as a blank vector or blank initialization.

2.2 Semantic Sentence Embeddings

To make the agent capable of responding to text, the text needs to be transformed into a
form the agent can understand well. The neural networks of an RL agent have a fixed input
length, so the text should be translated into a semantic embedding: a vector that represents
the meaning of the text. For an embedding to be valid, it should have the properties listed
below.

1. Embeddings should have equal dimensionality.

2. Texts with similar semantics should get similar embeddings. Even texts that differ
substantially in the selection of words and characters but mean the same thing (e.g.,
’a friend is close by’, and ’your buddy is near’).

3. Texts with dissimilar semantics should get distinguishable embeddings. This is espe-
cially important for lexically similar texts (e.g., ’she left a note on the stationery’ and
’she left a vote on the stationary’5).

4. Word order of sentences must be taken into account. For example, Alice is to the right
of Bob should not generate the same embedding as Bob is to the right of Alice.

5. Idiomatic phrases such as call it a day, break a leg and through thick and thin should
be interpreted in the right context.

2.2.1 Sentence Embedding Architectures

Incitti et al. [76] categorize existing sentence embedding architectures into six groups, of
which five are relevant. It also categorizes a sixth group of multi-modal text embeddings
that also takes non-text inputs, which is outside this research’s scope. This research is
mainly interested in how LLMs can improve how agents respond to language assistance, so
the current state-of-the-art embeddings will be compared to the state-of-the-art techniques
before the invention of LLMs.

Transformers The architecture of LLMs is derived from Transformers, which are encoder-
decoder models that use self-attention to find both short- and long-range connections be-
tween input dimensions [148]. The encoder compresses the sentence into a latent vector,
and the decoder generates text from this vector. The Transformer can take context into
account as it sees all words at the same time and uses self-attention to pay attention to
specific words and the relationships between them [6, 157]. A notable decoder model is

5Stationery refers to paper or envelopes, stationary refers to something that is not moving or in place.

13

2. BACKGROUND AND RELATED WORKS

GPT [122, 121, 18, 112], and an encoder model is BERT [34]. BERT can generate state-
of-the-art word embeddings [58], and is trained unsupervisedly through Masked Language
Modeling (MLM): predicting words based on the words around it, and Next Sentence Pre-
diction (NSP): predicting whether two sentences are ensuing in a text. Often, transformer
encoders are pre-trained in a self-supervised manner using MLM and NSP and finetuned us-
ing a smaller supervised dataset to become more domain-specific. The embedding is created
from the values of the last layer of the neural network when provided with a sentence.

A derivative of BERT for sentence embeddings is Sentence-BERT (SBERT) [125],
which is trained in a supervised way to predict sentiment. Another is SimCSE, which
uses BERT with contrastive learning in an unsupervised way to create sentence embed-
dings [47]. Both SBERT and SimCSE have been trained on RoBERTa, a version of BERT
trained with more data and compute resources [93]. Transformer-based embeddings adhere
to all five properties mentioned above and are considered state-of-the-art [47]. Although the
authors of SimCSE claim their model outperforms SBERT by 4.4% in semantic similarity
detection [47], this research evaluates both models.

Supervised Supervised methods for creating semantic embeddings employ neural net-
works to predict a label linked to the text. The primary type of neural network used in su-
pervised methods is the RNN [76, 31], also sometimes combined with attention [159, 142],
and encoder-decoder structures [27]. Furthermore, Convolutional Neural Networks (CNNs)
have been used to capture both short and long-range relations [80], as well as Feed Forward
Networks (FFNs) [71]. Usually, one of the last layers before the prediction layer is taken
as the embedding [76]. RNN-based approaches adhere to all six properties. This research
evaluates InferSent [31], which employs bidirectional LSTMs and was trained on the su-
pervised task of checking whether sentences contradict. InferSent was chosen as it was
state-of-the-art before LLM-based embeddings and source code was provided.

Compositional These methods use rules to combine word embeddings to create sentence
embeddings [76, 104]. Semantic word embeddings can be made by looking at the context
around them. This follows Firth’s distributional hypothesis: ”You shall know a word by
the company it keeps” [43]. Methods like Word2Vec [100], fastText [14], GloVe [117],
and ELMo [118] try to predict a masked word given the surrounding words, similar to
MLM in BERT, but with a smaller context window and with an FFN. The embedding is
created by compressing the weights of the neural network. This research uses Word2Vec to
generate word embeddings as it is open-source and was a state-of-the-art word embedding
method before LLMs. Mitchell and Lapata [104] propose that taking the mean of the word
embeddings in a sentence is an effective way, and while often used, this method does not
adhere to property 4. Word2Vec is used in this research as it is one of the most popular
word embeddings available. Sentence embeddings are created using the formula shown in
eq. (2.10), where S is a sentence denoted as an array of words w. The function Word2Vec(w)
maps a word to its embedding.

E(S) =
1
|S| ∑

w∈S
Word2Vec(w) (2.10)

14

2.3. Related Works

To create compositional embeddings that adhere to property 4, a second embedding
is created by multiplying each word embedding with a positional encoding, as shown in
eq. (2.11). The positional encoding is inspired by the Transformer [148] and multiplication
by the Roformer [138]. In eq. (2.11) S[pos] retrieves the word in the sentence at position
pos, ⊙ the Hadamard product, dmodel is the embedding dimensionality (300 for Word2Vec),
and i ∈ {1, . . . ,dmodel}. The sentence embedding created with eq. (2.11) is referred to as
Word2Vec + Pos in this research.

E(S) =
1
|S| ∑

pos∈{1,...,|S|}
Word2Vec(S[pos]) ⊙ PE(pos)

PE2i(pos) = sin(pos/10002i/dmodel)

PE2i+1(pos) = cos(pos/100002i/dmodel)

(2.11)

Others Another method is count-based, in which case the frequency of each word in a
sentence is counted, and the array of frequencies is the embedding. The most notable exam-
ple is Bag of Words (BoW)[59]. However, this method does not adhere to properties 1 and 4
as the vector dimensionality grows with the text size, and the embedding is independent of
word order.

Lastly, unsupervised methods refer to the machine learning field where models are
trained on unlabeled datasets. One approach is Paragraph Vector Based such as doc2vec [86]
that tries to predict the next word using a neural network, the last layer of which is inter-
preted as the embedding. Another unsupervised approach consists of Encoder-Decoder
models such as Skip-Thought [83] and the Denoising Autoencoder [64] where a sentence
is mapped to an embedding space by the encoder and mapped back to the original sentence
by the decoder. It should then learn to create similar embeddings for similar sentences.
The standard encoder-decoder model does not allow for arbitrary-length sentences, which
means they have been combined with RNNs. In that case, both these fields adhere to all six
properties.

2.3 Related Works

This research aims to study whether RL agents can improve learning by utilizing language
assistance and how LLMs can help them. It investigates the use of language to help the
agent with its decisions by providing information about its environment. This means the
agent uses language as an additional input, not as an output. Specifically, in this research,
the agent uses language as an aid to reach its goal instead of the language specifying what
the agent should do and how. The former is called language-assisted RL, and the latter
language-conditional RL [95, 98].

In language-assisted RL, interaction with language is used to facilitate learning and
handle the environment, for example when an agent should solve a maze, and the language
informs the agent of the shape of the maze. The agent does not need to listen to the lan-
guage, but it may do so to reach its goal faster. In language-conditional RL, interaction
with language is necessary to reach a goal. An example of this is giving an agent a box of

15

2. BACKGROUND AND RELATED WORKS

LEGOs. If you don’t tell it what to build, the agent has no idea how to reach its goal. This
research focuses on language-assisted RL, as it is a more challenging situation of show-
ing language understanding: can we make an agent listen to the language assistance, even
though it does not need to, to reach its goal?

Earlier research in understanding language in RL has focused chiefly on language-
conditional RL because of its use of embodied agents [156, 135, 149, 78, 42, 108] in the
form of hierarchical RL. In hierarchical RL, a high-level controller breaks a complex task
down into simpler sub-tasks, which a low-level controller executes. As LLMs are trained to
replicate or understand language [34, 121, 122], and language reflects the structure of the
world [2, 52], some say LLMs do not only understand the language but may also contain
a view of the world [54, 2, 73]. This worldview can help to create a high-level controller
that breaks a complex task down into descriptions of subtasks for the low-level RL agent to
execute. Using language in this latent subtask space helps the generalization of low-level
controllers [162, 2, 65, 150].

This section will go into the related works of both language-assisted and -conditional
RL, as they both deal with grounding language in an RL setting [53, 7, 26], which means the
low-level controller of embodied agents have similar challenges to the agent in this research.

2.3.1 Language-Conditional RL

Liu et al. [91] propose InstructRL, where the low-level controller consists of a multi-modal
M3AE [49] encoder that encodes an image state and a textual goal into an embedding, which
is passed to a Transformer-based [148] policy network to choose an action. Lynch et al. [97]
train a robotic arm that achieves a 93.5% success rate on 87,000 unique instructions. They
use imitation learning and a complex architecture with a transformer for state-language fu-
sion, another for history representation, and finally, a residual neural network for action
selection. Jin et al. [78] introduce CogLoop to also train a robotic arm and use a complex
high-level controller of Vision Transformers (ViT) [35] and GPT-4 [112] but do not elabo-
rate on their low-level controller. Mu et al. [108] introduce EmbodiedGPT with an extensive
low-level controller: an embedding from the observation from the ViT is concatenated with
the textual subgoal before being input into their Embodied-Former. This creates a state-goal
embedding that is given to a feed-forward policy network. This means that every subtask
embedding is concatenated with every observation. While all these approaches are power-
ful, these Transformer-based low-level controllers need a lot of data to train, which is not
always available.

Wang et al. [150] use two LLMs in their high-level controller to explain and plan sub-
tasks and evaluate the MC-Controller [21] and Steve-1 [88] low-level controllers but do not
indicate any preference towards either. The MC-Controller embeds the subtask description
using MineCLIP [42] and concatenates the subtask embedding to every observation before
they enter the RNN. This approach exhibits zero-shot generalization across tasks and lan-
guage [21]. MineCLIP is a contrastive video-language model that computes a correlation
between a language string and a video snippet through text and video embeddings, similar
to CLIP [123], and is especially useful if a comparison between text and images or videos
should be made. Steve-1 also embeds the subtask goals using MineCLIP, but then uses a

16

2.3. Related Works

Conditional Variational AutoEncoder (CVAE) [136] to create a representation of the goal
state described by the subtask. This goal state is concatenated with each observation before
they are entered into a transformer-based policy. This approach is also interesting for this
research but has not been further explored due to limited computational resources.

Driess et al. [37] present PaLM-E, a multi-modal high-level controller based on a PaLM [28]
LLM and a large ViT [33]. As low-level controllers, they use the work of Lynch and Ser-
manet [96] and Brohan et al. [17]. Lynch and Sermanet [96] propse a similar agent to this
work and create subtask embeddings using the Multilingual Universal Sentence Encoder
(MUSE) [158] LLM before concatenating them to each observation. They claim that pre-
trained LLM-based embedders make policies robust to out-of-distribution synonyms but
do not support this statement with experiments. They do show that using the LLM-based
MUSE embeddings outperforms using RNN-based sentence embeddings trained on random
word embeddings. Brohan et al. [17] present RT-1 created for task and language general-
ization with a 97% success rate over 700 training instructions. They use the LLM-based
Universal Sentence Encoder [24] to create sentence embeddings, which are used to condi-
tion their state encoder. This means the embedding is concatenated to each intermediate
step in the EfficientNet [143] image encoder. This approach is, in a way, comparable to
enabling configurations 1 and 4 of section 3.4.1.

Prakash et al. [119] use hierarchical RL in a multi-task 2D grid world. Their high-
level controller does not create human-like sentences but chooses sentences from a list.
The low-level controller creates a sentence embedding by mapping the words of the sub-
task description to word embeddings and passing them through a self-trained LSTM. These
embeddings are concatenated to each state before entering the policy network. Chen et al.
[26] take a similar approach but let their high-level controller create simple sentences as
subtasks, creating more natural descriptions. Their agent displays generalization over tasks,
and as tasks are executed based on language descriptions, it also generalizes over language.

Andreas et al. [2] recognize that language reflects the structure of the world and can
help generalization by using it as a latent parameter space [73], similar to the hierarchical
RL settings. They specifically evaluate its use for few-shot learning for policy search, clas-
sification, and transduction. In the policy search, they use language to describe a subtask
in a multi-task, fully observable setting and use a self-trained RNN to embed the sentence
before it is concatenated to the observation. Zhang and Lu [162] take a similar approach in
their search for an adapter between LLM and the RL agent but embed their sentences with
an SBERT model [125] without stating why.

Ahn et al. [1] and Hu and Sadigh [70] also recognize that language provides a structure
of the world. They define specific policies for specific sentences in their search for a low-
level controller that can work with humans and computer-based high-level controllers. Ahn
et al. [1] extend the work of Prakash et al. [119] and introduce SayCan. Instead of choosing
subtasks from a list, they rank the available subtasks by the probability that the subtask
completes the complex task. The latter is calculated by multiplying the likelihood given by
the LLM6 of the available subtask to complete the complex task, by the probability that the

6Computed using the softmax of the final layer of the LLM decoder, which indicates Πi≤ j≤k P(w j|w< j)
for complex task description w<i and subtask description {w j|i ≤ j < k}.

17

2. BACKGROUND AND RELATED WORKS

subtask can be completed. Hu and Sadigh [70] take another approach to find policies for
specific sentences and regularize the training of each policy’s loss by a prior taken from the
LLM-based high-level controller when it generates a sentence for a subtask. They assume
the high-level controller contains a human-like worldview, which means that the low-level
controller’s policy can be steered towards human-preferred action strategies by regularizing
its loss by the high-level controller’s embedding from its last neural network layer. The
sentence-policy mapping of Hu and Sadigh [70] and Ahn et al. [1] greatly lowers the number
of possible sentences to pass to the low-level controller.

Wang et al. [149] extend upon the approach of Ahn et al. [1] and introduce Voyager,
which enables the agent to improve the skills of the low-level controller (and thereby in-
creasing the probability of completing a subtask), and to learn new skills. However, it does
not contain an RL-based low-level controller, as the LLM generates code for each subtask.

Yu et al. [160] notice that grounding language during training is important [15, 110, 1,
62, 37]. They define the grounding of a word as a process where an agent can link a word to
the word’s representation in a state by passing the word to the agent in a sentence, together
with the word’s representation in a past, current, or future observation. Yu et al. [160]
train the low-level controller to navigate to objects indicated by a sentence and to answer
questions about the state. However, they use random meaningless word embeddings and
define their own RNN embedder to create a sentence embedding. This limits the possibility
of generalization beyond their environment.

Co-Reyes et al. [30] worked on meta-learning of low-level controllers that can be given
corrections by humans when it is not doing what they are supposed to do. Because of
these corrections, new tasks can be learned quickly. Sentences are embedded by passing
word embeddings through a self-learned 1D CNN. As the agent acts in a fully observable
environment, each embedding is concatenated to each observation.

Williams et al. [154] and Tambwekar et al. [142] take a different approach and de-
compose sentences into formal grammar before executing a policy based on this grammar.
Williams et al. [154] use sentences that describe a desired state, transforms them into lambda
calculus, and uses a planner to create a path from the current state to the desired state de-
scribed by the lambda calculus. This only works for tabular domains. Tambwekar et al.
[142] decompose the sentences in lexical decision trees, which are further mapped to dif-
ferential decision trees that constitute the policy of the low-level controller. This has the
advantage that the low-level policy is interpretable by humans, but it cannot leverage the
knowledge of an LLM.

2.3.2 Language-Assisted RL

In language-assisted RL, research has gathered information about the environment from
books, manuals, wikis, or the web. The challenge in doing this is 1) finding helpful in-
formation for a given context and 2) knowing which information to assist the agent with,
in which state [95]. Branavan et al. [16] tackled this by learning sentence relevance for
observations using Q-Learning. They used this approach to improve a Monte-Carlo tree
search planning in Civilization II. Eisenstein et al. [40] used texts from manuals to extract

18

2.3. Related Works

logical predicates that inform the agent about how the environment behaves. It then uses
these predicates in its decision-making to generate the optimal policy.

Narasimhan et al. [110] approach language assistance very similar to this work. In
their environment, they annotate entities in a game. Descriptive annotations such as ’enemy
chasing you’ and ’randomly moving enemy’ helped the agent learn a mapping between the
annotations and the dynamics. These sentences are embedded using a mean BoW approach
(what this research calls Word2Vec embeddings) and a self-trained LSTM approach. Every
embedding is concatenated with the observations. They see that using an LSTM provides
significantly better embeddings.

2.3.3 Research Gap

This research differs from earlier noted research in five different ways. Firstly, this research
focuses on approaches to create language-assisted RL agents in partially observable and
possibly continuous environments, whereas previous work often focuses on fully observable
environments. Secondly, previous work only appends the embedding to the observation
before they enter the RNN in the low-level controller. In contrast, this work investigates
whether that is the best method to enter an embedding into an RL agent. Thirdly, this
research uses generic LLM-based embeddings, whereas most approaches use self-trained
RNNs on word embeddings that limit generalization or use text-image embeddings such
as CLIP [123] or MineCLIP [42]. This research also aims to study whether LLM-based
embeddings support scaling to more complex environments. Lastly, it investigates if the
choice of formulation or words in a sentence impacts the agent’s ability to generalize to
unseen sentences, which has not been seen in previous research.

19

Chapter 3

Study Design

This chapter proposes a formalization of the problem and introduces an environment that
allows the RL agent to show its understanding of the language. The environment is used to
determine how to assist the agent and how well the agent performs. The experiments will
be evaluated on regret and cumulative regret to capture both the learning speed and stability,
where regret is defined as the difference in the number of steps taken in an episode between
the optimal policy and the effective policy. Regret is not defined as a difference in return,
as the penalty of −1 for bumping into a wall disproportionally impacts the return. Every
experiment evaluates the agent after every 200 environment steps and is run until most of
the experiment’s configurations are converged to a stable policy.

Furthermore, this chapter explains the data collection and the experimental setup. The
hypotheses of this research will be stated along with their substantiation throughout this
chapter.

3.1 Problem Formalization

This research aims to study whether RL agents can improve learning by utilizing language
assistance and how LLMs can help them. Natural language assistance indicates the behav-
ior of the transition function. Therefore, this research will use a merger between the CMDP,
BA-MDP, and POMDP frameworks as defined in section 2.1. It is crucial that the agent can-
not see in its observation space which transition function is active, which means the MDP
should only be partially observable and thus be an instance of a POMDP. Furthermore, the
sentence introduced to the agent gives possibly incomplete information about the transition
function, so it cannot be regarded as the context from the CMDP, which means the agent
acts somewhere between a BA-MDP and a CMDP.

This research introduces a form of the CPOMDP, which is closely related to the BA-
POMDP [50, 126] and the CMDP [57]. This CPOMDP is defined as a tuple of ⟨C ,S ,A ,M (c)⟩.
This tuple uses the context value c ∈ C , where c is the value of the context of the current
episode. Similar to a CMDP, M (c) is a POMDP generating function
M (c) = ⟨S ,A ,Ωc,T c,Oc,s0,Rc,γ⟩. In this case, Ωc = Ω×W c where W c is the set of sen-
tences in the English language describing the environment under context c. T c(st+1|st ,at) :

21

3. STUDY DESIGN

S ×A ×S → [0,1] indicates the transition function in context c of moving from state st to
state st+1 when action at has been performed. Next, Oc(ωc

t+1|st ,at) : S ×A ×Ωc → [0,1] is
a probability density function indicating the probability of receiving observation ωc

t+1 ∈ Ωc

when executing action at in state st . Lastly, Rc(st ,at) : S ×A → R indicates the reward
received in context c when resulting in state st+1 due to performing action at in state st . The
agent aims to find a policy π(a|τt) that maximizes the same expected cumulative discounted
return as in section 2.1.1. In this case τt = {ωc

0,a0, . . . ,ω
c
t } is the history of observations

and actions.
The observations ωc contain the POMDP observation ω and an English sentence w

describing the environment. This sentence serves as an imperfect proxy for the context c.
This research is interested in open-vocabulary language policies where the set of sentences
W c has no predefined grammar or template. As this set of sentences is possibly infinite,
it is impossible to learn a different model for each sentence or even for each change in
dynamics. Therefore, one model should be able to interpret all sentences and use them for
decision-making. The language sentence will be generated in the form of text. This textual
information will be highly task- and environment-specific.

3.2 Environment

To show that an agent can understand sentences and properties of objects, it should operate
in an environment that requires it to exhibit different behaviors for different sentences. This
means the dynamics of the environment (what actions the agent can take and where it ends
up) must be changeable so that sentences can describe what has changed. Also, multiple
solutions should exist to reach the goal of the environment. One of those must be optimal so
that the agent can find another option to reach its goal if presented with anything blocking
its optimal path to the goal.

Figure 3.1 shows the design of the environment. The agent (blue) should reach a goal
(green) as fast as possible but is possibly obstructed by an object (yellow). The object’s
property determines whether the agent can walk over the item and reach the goal on the left.
The property chosen is weight. The agent can walk across light objects without passing or
moving heavy objects. This means that in the case of heavy objects, the agent needs to go
to the goal on the right. The complete list of 120 objects can be found in table D.1.

To ensure the environment does not reduce the agent to a classifier but lets it retain RL
features, the agent only sees a 3x3 window of the squares around it. This means the agent
cannot immediately know where the goals and the object are and what type of object there
is unless the agent is positioned right next to it. The agent must learn to count its steps to
find the optimal policy. The agent can only partially observe its environment and operates
in a POMDP. The goal on the right is placed behind a corner to discourage the agent from
only taking actions to the left or right.

The distances in the environment are chosen such that the Bayes-optimal policy always
goes left immediately to check if the agent can pass the object. If it can pass the object,
it goes to the goal on the left. If not, it goes to the goal on the right. The expected value

22

3.2. Environment

Figure 3.1: Environment used for training and evaluation. The blue square is the agent’s
start position, the yellow square is the object, and the green positions are the goals.

of immediately going to the right is Q(s0,R) = γ10 = 0.4841, while going to the left is
Q(s0,L) = 100 · 1

2(γ
4 + γ3+10)− 1

2 γ2 = 56.4. This means an agent without assistance should
go left first, as it is a 16.6% better choice on average. Additionally, the environment of
fig. 3.1 is created such that for most positions, the observation window does not inform the
agent of its exact location, and the far-away goal on the right is placed behind a corner to
discourage only taking actions left or right.

3.2.1 Multidirectional Variations

The environment of fig. 3.1 only allows for sentences informing the agent that the object is
to its left, and as the far-away goal is always on the right, meaning the sentence always has a
1-1 relation to the action sequence to take. To make the environment more challenging, two
alterations are made. Both alterations make for a more dynamic environment, meaning the
environment is not necessarily equal between two episodes. However, all alterations keep
the property that going to the close-by goal first is a better choice for an uninformed agent.
The variations of this multidirectional environment are visualized in appendix G.

Firstly, the object is not only placed to the agent’s left but also to its right, above the
agent, and below it. This means that when looking at fig. 3.1, the object is always between
the agent’s start position and close-by goal. However, the object’s position and close-by goal
relative to the agent’s start position can change. This alteration means that the description of
the object’s position becomes relevant in the sentence, which has the effect that the decision
boundary stops being linear as with each added direction, two action sequences (light or
heavy) are introduced that need to be identified.

Secondly, to remove the 1-on-1 relation to the action sequence to take, the far-away goal
can also rotate. For example, if the close-by goal is to the agent’s left, the far-away goal is
to the agent’s right, above it, or below it, with equal probability. This decouples the 1-on-1
relation between the sentence and the action sequence to take because if the object is heavy,
the agent has to figure out where to go instead.

The environment with variations will be called the multidirectional environment. It will
only be used for H4, while the other hypotheses will use the unidirectional environment of
fig. 3.1.

1Appendix B.4.1 explains a value of γ = 0.93 was selected.

23

3. STUDY DESIGN

3.3 Sentence Generation

GPT-42 was used to generate sentences describing the environment. GPT-4 is a Large Lan-
guage Model (LLM) trained to replicate text that people created. Research agrees distin-
guishing GPT generated sentences from human sentences is hard [36, 103, 101], or impos-
sible [29, 74, 48, 127]. The agent’s performance on human-generated sentences was not
verified due to resource constraints.

3.3.1 Unidirectional Sentences

Unidirectional sentences correspond to the unidirectional environment where the close-by
goal and the object are always on the left, and the far-away goal is always on the right. These
sentences were collected on September 15th 2023, using the gpt-4 model of OpenAI3, with
a top-p and temperature value of 1. The prompt was: ”Create 30 sentences that tell someone
else there is a <object> to his/her left”. The part of <object> would be replaced with the
supposed object. The code used is shown in appendix D. This approach enables the research
to directly connect sentences to objects and their MDP.

Thirty sentences were generated for 120 objects, totaling 3600 sentences. Of these sen-
tences, there was only one duplicate, as discovered by a similarity check that compared
sentences after removing the object from the sentence. This duplicate was revised in such
a way that all sentences are unique. However, it was detected that leakage occurred: Sen-
tences that contain words that belong to other objects or even object types. The complete
list is shown in appendix D. It was chosen not to change the dataset because of this leakage,
as the sentences were human-like, and the agent should be robust against leakage sentences.

3.3.2 Multidirectional Sentences

Multidirectional sentences are created for the multidirectional environment where the close-
by goal may be to the agent’s east, west, north, or south. They may contain four possible
indications where the object is relative to the agent’s start position per direction, as per
table D.3 (e.g., left, portside, west, 9 o’clock). The same 120 objects are used for the
unidirectional environment, and negation is added: if the object to the left is not light, it’s
heavy. Five formulations for each case were made, leading to 4 · 4 · 120 · 2 · 5 = 19,200
sentences.

The setup was equal to the setup of the unidirectional sentences, except that the sen-
tences were collected on November 3rd 20. The prompt was: ”Give me 5 sentences that tell
someone: there is <not?> a <object> placed <direction>”. No duplicates were found.

3.4 Agent Design

The Soft Actor-Critic (SAC) algorithm was chosen because Ni et al. [111] provided working
source code for it, it could be connected to the environments of section 3.2, and it performed

2https://openai.com/research/gpt-4
3https://platform.openai.com/docs/models/gpt-4

24

https://openai.com/research/gpt-4
https://platform.openai.com/docs/models/gpt-4

3.4. Agent Design

Linear Linear

Observation

Linear

Action

Linear

Embedding

?⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

32

40

128

160

4

Figure 3.2: Design of the actor. The numbers indicate the dimensionality of the vector, and
⊕ indicates the concatenation of vectors. The policy is a feedforward network. The linear
layers also contain a ReLU activation layer. Red arrows indicate where the embedding can
enter the actor. See appendix E for the implementations.

well enough. The algorithm is used with a separate RNN for the actor and critic as advised
by Ni et al. [111]; it is trained using a stochastic policy with Boltzmann exploration and
evaluated using a deterministic policy as Ni et al. [111] and Haarnoja et al. [56] have eval-
uated to work best. The source code was edited to input the embedding of the language
assistance into the agent, and regret metrics were created. It executed 64 episodes of ran-
dom exploration before learning and exploring by itself. The list of hyperparameters of the
agent can be found in table C.1.

3.4.1 Embedding Consumption

The architecture of a recurrent SAC agent shown in fig. 3.2 allows the embedding to be
entered at multiple positions. This experiment will research using which position(s) the
agent can best consume the embedding to answer RQ1. The critic has a similar architecture
as the actor shown in fig. 3.2 except for the policy network and accepts the embedding in
the same places.

Sixteen experiments will be executed on embeddings with perfect information. This
perfect embedding is of a single dimension and contains a 0 if the object is light and a 1 if
the object is heavy. The sixteen experiments will consist of the following options.

1. Concatenate the embedding with the observation and action.

2. Initialize the LSTM hidden state with the embedding.

3. Initialize the LSTM cell state with the embedding.

4. Concatenate the embedding with the output of the LSTM.

25

3. STUDY DESIGN

A fifth option exists where the embedding is passed as action a0, usually a blank vec-
tor [111, 60]. However, this research uses embeddings with a dimensionality of up to 4096
and an action dimensionality of 1; this dimensionality reduction is expected to be a source
of information loss. It is not considered a suitable option for more complex environments.

The hypothesis is that agents with at least option 4 enabled will work best, as this means
only the policy weights need to be trained on the embedding, meaning a smaller search space
and faster convergence. As the embedding does not change over time within one episode,
it should not need to be passed in the history to the LSTM. Options 1, 2, or 3 mean that
the LSTM and the policy should learn to make decisions based on the embedding, meaning
more parameters must be trained.

Every option above can be turned on and off, creating 24 = 16 experiments. The exper-
iment with all options turned off has an agent that receives no embedding information and
can be seen as the baseline the other agents should outperform. The experiment runs for
50,000 environment steps in the unidirectional environment to determine when the learning
stabilizes and is trained and evaluated in both situations: the object is heavy or light.

Hypothesis

H1: Concatenating the embedding to the output of the LSTM leads to the lowest
cumulative regret compared to other proposed methods. (RQ1)

3.4.2 Embedding Model

RQ2 researches which existing semantic sentence embedder leads to the best performance.
In this ablation study, the non-LLM-based embedders of Word2Vec, Word2Vec with posi-
tional encodings, and InferSent are compared with the LLM-based embedders of SBERT
and SimCSE to find out which embedder leads to the fastest convergence to the optimal
policy.

H2 states that as LLM-based methods can attend over the complete sentence simul-
taneously, they can create more informative embeddings and account for word order and
context. The non-LLM-based techniques either cannot do this in the case of the Word2Vec
models as it cannot attend over the complete sentence at all, or are expected to do so less
performantly in the case of the InferSent model as it cannot attend over the complete sen-
tence simultaneously. An agent assisted by LLM-based embeddings is expected to learn
faster and more stably than non-LLM-based embeddings.

Two experiments will be executed: firstly, all five embedders are compared on unidirec-
tional sentences, and secondly, Word2Vec is compared with SimCSE on the embeddings of
only objects to gauge how the sentence complexity impacts the embedder performance and
if attention has a significant impact. The agent is trained and evaluated on the complete set
of objects/sentences for 50,000 steps.

Hypothesis

H2: Agents assisted by LLM-based embeddings learn faster and more stably than
non-LLM-based embeddings. (RQ2)

26

3.5. Information Dilution & Compression

3.5 Information Dilution & Compression

This part aims to answer RQ3 and determine how information and noise in an embedding
affect the agent’s performance. Inserting the same information in a higher-dimensional
embedding and introducing noise is introduced as dilution, while including more relevant
information in an embedding is called compression.

3.5.1 Dilution

Sentences in natural language contain words that are not always necessary to bring the
meaning across. For example, the sentences The robot is turned on and The robot is turned
off are more complex and contain more noise than a binary 1 or 0 to indicate if the robot is
turned on or off. This means the agent must learn what part of the sentence to focus on and
what it can ignore. With perfect information (binary 1-0), there is less of a learning curve
because of the absence of noise and the concentration of the information in one dimension.

To evaluate the type of information dilution the agent is sensitive to, it will be evalu-
ated on the following four types of embeddings. Table 3.1 shows how pre-trained, perfect,
object type, object, and sentence embeddings are related. A linear decision boundary ex-
ists to distinguish between light and heavy for all embedding datasets in the unidirectional
environment.

• Pre-trained: This contains a network that can classify each embedding into a 0 or 1.
Contrary to the case of the perfect embedding, no trainable linear layer is involved.
More information about pre-training is given in section 3.6.2.

• Perfect: These embeddings contain a 1 for a blocking object and a 0 for non-blocking
objects.

• Object Type: These are the embeddings of the words light and heavy. The resulting
embeddings have a dimensionality of 1024, so this will test the impact of diluting the
information over multiple dimensions.

• Object: These are the embeddings of the words for the objects, such as cotton and
feather for light objects, and anvil and boulder for heavy objects. The embeddings
also have 1024 dimensions. This tests how the performance changes when noise from
redundant object properties is introduced.

• Sentence: These embeddings are created from sentences, introducing redundant words
and formulations an object is near. These embeddings also have 1024 dimensions.
This tests the impact of adding the noise of redundant words and sentence formula-
tions to the embedding.

These experiments investigate to what extent the amount of information dilution im-
pacts the learning performance of the agent. H3 expects that the performance correlates
negatively with the level of information dilution. The expected performance in decreasing
order is providing perfect and pre-trained embeddings, type embeddings, object embed-
dings, sentence embeddings, and no embeddings. These experiments will use the unidirec-
tional environment for 50,000 steps, using the embedding consumption method from RQ1

27

3. STUDY DESIGN

Object Type Object Sentence

Light (0)
Cotton

Peek to your left and you’ll spot cotton
Don’t forget to look to your left where you’ll find cotton

Feather
To your left-hand side, you’ll notice there’s a feather
There appears to be a feather to the left of you

Heavy (1)
Anvil

Excuse me, but there is an anvil to your left
By your left, there is an anvil you may not have noticed

Boulder
Heads up, there’s a boulder to your left
Mind your left, there’s a big boulder you might stumble upon

Table 3.1: Example of the structure of object types, objects, and sentences used for the
experiments. Perfect embeddings are based on the number after the object type.

and the embedding model from RQ2. This means it can use the results of the previous two
experiments for the perfect, object, and sentence embeddings but needs to do an experiment
for the type embeddings. The results are evaluated on cumulative reward.

Hypothesis

H3: The level of information dilution and noise in the embedding correlates nega-
tively with the agent’s learning speed. (RQ3)

3.5.2 Compression

More complex environments may require the agent to extract information from more infor-
mative sentences describing these environments. Therefore, the agent should be evaluated
on if it can extract this information and how well it can do so. The experiment uses the mul-
tidirectional environment to make the direction of the object also relevant in the sentence.
The following four levels of information are experimented on.

1. Left: The object and the close-by goal are always to the agent’s left.

2. Left & Right: The object and the close-by goal may be to the agent’s left or right.
This makes the decision boundary non-linear.

3. All: The object and the close-by goal may be above or below the agent or to its left
or right. This means the agent has to recognize more values for the directions.

4. All & Negation: The same as All, however, negation is also introduced. That means
that if there is no light object, there is a heavy object, and vice versa.

The experiments are run for 200,000 environment steps. They are evaluated on the cu-
mulative regret gap: the gap in cumulative regret between an agent with perfect embeddings
and an agent with sentence embeddings. As an environment with four directions is more
challenging than an environment with two directions, this metric accounts for the difference
in difficulty. The resulting graphs show how well the agent learns to interpret the sentences.

28

3.6. Generalization

Hypothesis

H4: The amount of actionable information in an embedding correlates negatively
with the agent’s learning speed. (RQ3)

3.6 Generalization

A sentence can have many forms, and similar words can be used to point something out
in an agent’s environment. Therefore, it is essential to assess to what extent the agent can
understand objects or sentence structures it has not seen before.

3.6.1 Train-Test Splits

In this experiment, a train-test split is made: the agent is trained on the training set and
evaluated on the test set not seen during training to answer RQ4 and RQ5. Two train-test
splits will be made: 80%-20% and 30%-70%. This way, an indication can be made on
how much language the agent needs to be trained to generalize and for this research to
have practical implications. The performance will be compared with an agent trained on
all sentences and the baseline agent with no information. The experiment will be run for
100,000 environment steps. The train-test split is made in the following two ways.

Firstly, to assess whether the agent understands object properties, the agent must be
evaluated on sentences about objects it has never seen before. This controlled experiment
will assess whether the agent learns to pay attention to the right parts of an embedding that
indicate whether an object in the sentence is light or heavy. This experiment will be called
the unknown objects experiment.

Secondly, sentences can be formed in many ways while still having similar meanings.
The agent should understand this. This controlled experiment with unknown formulations
creates a train-test split within the sentences of each object. This way, the agent has seen
each object before but not each sentence structure.

Also, to indicate how the agent would perform in a real setting, an uncontrolled exper-
iment could be done where the agent is trained on a random set of sentences and evaluated
on the rest, disregarding to which object a sentence belongs. This experiment was not in-
cluded, as it was deemed too similar to the unknown formulations experiment. Refer to
appendix F for a more thorough explanation.

3.6.2 Generalization Hypotheses

H5 states that distinguishing between unknown objects will be more challenging than be-
tween unknown formulations. This is because the embedder should extract the semantics
independent of the formulation. With unknown objects, the agent may learn to focus on
multiple properties of an object, whereas its weight is the main property it should focus on.

29

3. STUDY DESIGN

(a) Objects on t-SNE decision boundary. (b) Most often misclassified.

Figure 3.3: t-SNE plot of unidirectional sentence embeddings. The opacity of a dot indi-
cates the object it belongs to. For fig. 3.3b, an 80%-20% train-test split was used (n=48).
Distances used in the t-SNE analysis are based on cosine similarity.

Linear Linear

Observation

Linear

Action

Classifier

Embedding

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

2

42

128

160

4

(a) Agent Architecture (b) Classifier Performance

Figure 3.4: Agent architecture with classifier, and classification performance of an FFN on
sentences with unknown objects. The percentages are the sizes of the training sets relative
to all data. n = 38, the shaded area indicates the 95% confidence interval.

Hypothesis

H5: It is harder to distinguish between sentences containing unknown objects than
sentences containing unknown formulations. (RQ4 & RQ5)

H5 is supported by the t-SNE plot of fig. 3.3. The figure shows a projection of the
1024-dimensional embeddings to a 2-dimensional space using the t-SNE method, which
focuses on retaining cluster information in the projection [66]. Figure 3.3 indicates that the
embeddings form clusters of sentences with similar meanings. It shows that while some
clusters overlap, all embeddings within a cluster generally belong to the same object. It
must be said that the decision boundary as presented by the t-SNE plot is not necessarily
the one found by the classifier, as the plot is just one possible simplification of the 1024-
dimensional vectors to a 2-dimensional space.

30

3.6. Generalization

To improve the performance on unknown objects, transfer learning is attempted. In
transfer learning, a model is pre-trained in one domain and executed in another. In the case
of this research, before the agent starts learning, a neural network is trained to classify the
embeddings into light or heavy. After 40 epochs, the classifier is frozen and plugged into the
RL agent. H6 states that this can lower the regret of the agent, as the classifier is not hindered
by noise from interacting with the environment and may find a better decision boundary.
Figure 3.4 shows the agent architecture and that a classifier that has seen 80% of objects
can approach 96% accuracy. Architecture considerations of this pre-trained classification
network are discussed in appendix B.4.3.

Hypothesis

H6: Pre-training on the classification of embeddings can lower the regret of an RL
agent on sentences with unknown objects. (RQ4)

31

Chapter 4

Results

This chapter reports the results to indicate how an agent can use language embeddings to re-
spond to language assistance and how well it can do so and accepts or rejects the hypotheses
stated in chapter 3. All plots contain a 95% confidence interval over 48 experiments.

4.1 RQ1 : Embedding Consumption

Figure 4.1 shows the cumulative regret of five agents learning how to solve the environment.
Of the sixteen experiments fig. 4.1 shows five interesting cases, as the performance of the
other cases follows from these: in all cases where multiple options are combined, the results
are more or less similar to the best option in use. The full results are in appendix E.2.

Hypothesis H1 of section 3.4.1 cannot be confirmed nor denied. The confidence in-
tervals of the agents with observation concatenation and state proxy concatenation overlap
significantly. However, the method of observation concatenation learns the optimal policy
on average the quickest and stablest. Coincidentally, this agent requires learning the most

‘

(a) Cumulative Regret

Linear Linear

Observation

Linear

Action

Linear

Embedding

?⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

32

48

128

160

4

(b) Agent Architecture

Figure 4.1: Regret of different ways of entering the embedding into the agent. Lower is
better. The LSTM Hidden configuration enters the architecture at the position of the green
arrow as well.

33

4. RESULTS

(a) Sentences (b) Objects

Figure 4.2: Cumulative regret on embeddings of sentences and objects.

parameters to distinguish between embeddings. The other agents perform slightly worse as
they take longer to find the optimal policy and seem to unlearn it in some experiments.

The experiments hereafter are executed using the agent that has the embedding con-
catenated with the observation and action, as this configuration outperformed the others in
terms of learning speed and learning stability measured by the agent’s cumulative regret.

4.2 RQ2 : Embedding Model

Figure 4.2a shows that LLM-based embeddings outperform non-LLM-based embeddings
for sentences, as agents using the former embeddings learn the optimal policy faster. This
confirms hypothesis H2 that agents using LLM-based embeddings learn quicker and more
stably than non-LLM-based embeddings. This shows that large language models generate
more interpretable sentence embeddings than their counterparts. This experiment shows
that LLM-based embedders have learned to pay attention to specific parts of the sentence
and their relations, which Word2Vec, Word2Vec+Pos cannot do, and InferSent cannot do as
well. This indicates that LLM-based embeddings outperform non-LLM-based embeddings
for decision-making and classification in this setting.

The decreasing order in performance is SBERT, SimCSE, InferSent, Word2Vec, and
Word2Vec + positional encodings. Exact metrics are shown in table D.4. The positional
encodings added to the Word2Vec embeddings degrade performance in this case. It must
be said this may be due to word position not being too important in this experiment, as the
deciding factor in every sentence is the weight of the object in the sentence. Also, as one
could expect, the LSTM-based InferSent model outperforms the Word2Vec embeddings as
it can relate words to each other, but not as well as the LLM-based methods which can do
so in O(1) instead of O(n).

LLM-based methods do not outperform non-LLM-based methods for embedding ob-
jects as fig. 4.2b shows. The mean performance is close, and the confidence intervals over-
lap significantly. This lack of comparative performance of the LLM-based embeddings may
be due to SimCSE being trained on sentences and paragraphs instead of single words. The
results from the word-based embeddings support the hypothesis that the LLM has learned
to attend to specific parts of the sentence. This is because if one creates a composite LLM-

34

4.3. RQ3 : Information Dilution & Compression

based sentence embedding by taking the average of the embeddings of the words of the
sentence, it will perform similarly to the Word2Vec sentence embeddings. This indicates
that the addition of the capability of LLMs to attend to specific words and their relations is
significant for this setting.

Because LLM-based embeddings outperform non-LLM-based embeddings for sentences,
the experiments hereafter are executed with LLM-based embeddings. Specifically, SimCSE
embeddings are used, as the literature agrees they are state-of-the-art [47, 76] and are not
significantly outperformed by SBERT.

4.3 RQ3 : Information Dilution & Compression

The following section aims to accept or reject hypotheses H3 and H4 to prepare for answer-
ing RQ3 and indicate how the information and noise in an embedding impact the perfor-
mance of an agent.

4.3.1 Dilution

Figure 4.3 cannot reject nor confirm H3 that the performance correlates positively with the
amount of information dilution, as the results visibly overlap. The figure does show that
the level of information dilution seems to correlate negatively with the RL performance.
The performance in decreasing order seems to be: perfect embeddings, embeddings from
object types (light versus heavy), embeddings from objects (anvil, boulder, cotton, feather),
embeddings from sentences about those objects, and the baseline agent. All experiments
find the optimal policy except for the baseline, and experiments with lower information
dilution find it faster on average.

The added noise from redundant words in a sentence seems to have the largest effect
on the agent’s performance, whereas the pre-trained network provides the fastest learning.
This is because of the lack of a trainable linear layer between the classifier and the LSTM,
which the agent with perfect embeddings does have. It has been tested that it is not due to
the one-hot encoding of the embedding output by the pre-trained classifier.

4.3.2 Compression

Figure 4.4 confirms H4 and shows that there is a negative correlation between the amount of
relevant information in an embedding and the agent’s learning speed. When more directions
or negations are added to the sentences, the agent takes longer to learn. See appendix G for
designs of the Left, Left & Right, and All multidirectional environment instances.

The results for the left and left & right environments are interesting: the difference
between the performance of an agent with sentence embeddings and one with perfect em-
beddings with only one direction is much smaller than the difference between the perfor-
mance of those agents with two directions. This shows that the agent finds it more difficult
to find the decision boundary when it should not only pay attention to the embedding of
weight but also to direction. Close inspection shows that the cumulative regret gap of the
left environment remains about 100 and does not go below 0.

35

4. RESULTS

(a) Cumulative Regret (b) Episodic Regret

Figure 4.3: Regret for different levels of information dilution. The confidence intervals of
the cumulative regret significantly overlap, so a boxplot is shown for the cumulative regret
at 50,000 environment steps.

(a) Cumulative Regret Gap (b) Episodic Regret Gap

Figure 4.4: Regret for different levels of information compression. Note that the vertical
axis is the regret gap, which means the difference in regret with an agent trained on perfect
embeddings in the same environment to correct for environment complexity.

4.4 RQ4,5 : Generalization

Figure 4.5 shows that the agent can generalize well across formulations, only somewhat
across objects, and that the pre-trained agent does not improve performance. This confirms
H5 of section 3.6 that the unknown formulations experiment would outperform the unknown
objects experiment and rejects H6 that a pre-trained embedding classifier can lower the
regret on sentences with unknown objects.

The unknown objects experiments perform worse than the unknown formulations exper-
iment. In the case of 20% unknown objects, the success rate stabilizes around 91%, which
means it fails to perform on 65 of the 720 sentences it is evaluated on. This is likely because
the agent does not learn to focus on the weight property of the objects but on some other
(combination of) properties that can distinguish the embeddings in the training set. The
agent does not show signs of overfitting as indicated by a stable regret. The agents with and
without the pre-trained classifier converge to a similar regret and possibly a similar decision
boundary.

36

4.4. RQ4,5 : Generalization

(a) Cumulative regret of 20% unseen sentences. (b) Episodic regret of 20% unseen sentences.

(c) Cumulative regret of 70% unseen sentences. (d) Episodic regret of 70% unseen sentences.

Figure 4.5: Regret for agents generalizing to 20% and 70% unknown objects and sentence
formulations.

The unknown formulations experiment performs almost as well as the experiment where
100% of the sentences were seen during training. This indicates that the embedder gener-
ates similar embeddings for different formulations of the same meaning and that the agent
recognizes them as such. This is supported by the t-SNE visualization of fig. 3.3 and by the
results in fig. B.5, where the classifier is trained in a supervised manner to distinguish the
embeddings. It also performs better on the unknown formulations than the unknown objects
split.

37

Chapter 5

Discussion

5.1 Agent Architecture (RQ1,2)

Contrary to H1, concatenating the embedding to the observation and the action works best.
Such an agent has the fastest learning curve regarding environment steps, the most stable
performance, and the lowest cumulative regret. This research hypothesizes the reason for
this to be the power of the LSTM. The more the LSTM sees of the embedding, the lower
the cumulative regret. Appendix B.4.2 supports this, as it evaluates a more extreme case of
concatenating the embedding directly to the observation instead of doing so via a mapping
to a lower dimensional space. This direct concatenation leads to the lowest cumulative
regret found in this research.

If the embedding is input directly into the LSTM, the LSTM becomes larger. Sec-
tion 2.1.2 derives that the number of parameters of the LSTM scales linearly with its input
dimensionality. The drawback of an LSTM with a lot of parameters is computation time.
Figure E.4 shows the computation time for different sizes of the LSTM and shows that
smaller LSTMs lead to faster training times. This research prefers consuming the embed-
ding via observation concatenation via a linear layer because it compromises performance
and computation time and is easier to implement than state proxy concatenation or LSTM
initialization.

If there is a dataset available of sentences and corresponding informative labels, fig. 4.3
shows it works well to split the training into two stages: first, a supervised phase where a
classifier is trained in a supervised way on the embeddings and labels, and next an RL phase
where the output of the classifier for each embedding is concatenated with the observation
and action.

39

5. DISCUSSION

Answer to RQ1

How can semantic sentence embeddings best be consumed by the RL agent?
A recurrent RL agent can best consume the semantic embedding by mapping it to a
lower dimensional space and subsequently concatenating it with every observation
and action before they enter the LSTM. If a dataset exists of sentences and an infor-
mative label for the task, a classifier should be pre-trained in a supervised manner,
and its output should be concatenated to every observation and action.

Both literature and the experiments agree that LLM-based embeddings outperform non-
LLM-based embeddings. Specifically for sequential decision making, section 4.2 shows
that agents based on LLM-based sentence embeddings lead to a faster and more stable
learning curve than their counterparts. Specifically, adding attention to large language em-
bedders compared with LSTM or FFN-based approaches seems to impact the embedding
quality. In the case of word embeddings, no embedder appears to have a significant edge
over another.

Answer to RQ2

Which existing approach can best generate semantic sentence embeddings?
LLM-based embeddings outperform non-LLM-based embeddings, and specifically,
SimCSE should be used. Non-LLM-based embeddings are not as easily interpretable
as their counterparts, indicated by a slower ability of the RL agent to distinguish be-
tween them. Although the experiments did not show a significant difference between
performance on SBERT or SimCSE, the literature agrees that SimCSE is the state-
of-the-art sentence embedding method [47].

The answers to RQ1 and RQ2 lead to the architecture shown in fig. 5.1. An embedding
should be created from the sentence using SimCSE, which should be concatenated to every
observation and action.

5.2 Embedding Characteristics (RQ3)

The results of the information dilution experiment could not fully confirm nor reject hy-
pothesis H3 that the amounts of information dilution and noise correlate negatively with the
agent’s learning speed. However, the results show that the dilution of the same information
over more dimensions does not pose a challenge to the agent, while noise introduced from
redundant words in a sentence negatively affects the learning speed.

Although this research shows that an RL agent can perform well with embeddings from
embedders that were not specifically created for the RL domain, an effort to create better
semantic sentence embeddings for the RL domain should focus on reducing noise and not
reducing embedding dimensionality. Better embeddings for sequential decision-making
can be made by pre-training embedders with domain-specific knowledge or by fine-tuning
existing embedders.

40

5.3. Agent Performance (RQ4,5)

Linear Linear

Observation

Linear

Action

Linear

SimCSE

Sentence

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

32

72

128

160

4

Figure 5.1: Proposed actor architecture for language-assisted RL agents.

In the case of information compression, H4 was accepted as a higher level of information
compression leads to a slower learning curve. Especially the introduction of a non-linear
decision boundary seemed to have a big impact. However, the optimal policy was closely
approached in all cases, which gives a first indication that scaling up to more complex
environments is possible using the approach suggested in this research. An example could
be environments with image inputs and using image embedders like CLIP [123].

Answer to RQ3

How do changes in the amount of information and noise in an embedding affect
the agent’s performance?
The language-assisted RL agent’s performance is mainly impacted by the level of
noise and information and the linearity of the decision boundary in the embeddings,
not by their dimensionality. The agent performs well on general embeddings from
the NP domain. However, improvements could be made by creating embedders that
use domain knowledge to lower the noise in embeddings. Furthermore, the agent has
a slower learning curve when the embedding contains more relevant information.
Still, it does find the correct decision boundaries, indicating this result can be scaled
to more complex environments and sentences.

5.3 Agent Performance (RQ4,5)

The agent can recognize sentences with unknown formulations very well but has trouble
recognizing sentences with unknown objects in line with H5. The performance on unknown

41

5. DISCUSSION

formulations is nearly similar to the performance without any unknown sentences, which
fig. 3.3 shows is primarily due to the embedder creating similar embeddings for sentences
that should have a similar meaning. The figure also shows the embeddings for the sentences
in this research differ a lot based on the sentence subject.

An effort was made to improve the performance on unknown objects using a pre-trained
embedding classifier. While this pre-trained agent had a quicker learning curve, the re-
gret for both methods converged to a similar value, indicating they found comparable de-
cision boundaries and focused on different (combinations of) object properties instead of
just weight. This rejects H6. Although most sentences are still correctly interpreted (92%
for 70% unknown objects, and 96% for 20% unknown objects, a similar success rate as
Lynch et al. [97]), this research suggests including sentences with as many different subject
synonyms as possible and not focusing on including different formulations of sentences.
Words in the sentence need to be grounded during training; formulations do not.

Answer to RQ4

How well can the agent generalize over unseen objects with similar properties?
The agent is prone to finding decision boundaries based on different (combinations
of) object properties and misinterprets 4-8% of the sentences. Words in a sentence
need to be grounded during training. This research advises creating a training set
with a vocabulary as large as possible for creating language-assisted RL agents.

Answer to RQ5

How well can the agent generalize over unseen linguistic formulations?
The agent can very well generalize over sentences with similar meanings but dif-
ferent linguistic formulations. All sentences with unknown formulations but known
objects are interpreted correctly. This is mainly due to the embedder creating simi-
lar embeddings for semantically similar sentences. In training language-assisted RL
agents through embeddings, the training set of sentences should not focus on includ-
ing sentences in different formulations of a similar meaning.

5.4 Implications

This section discusses the implications of the findings of this research for RL- and semantic
embedding research.

Implications for Human-Robot Interaction Humans can inform robots of their environ-
ment using a multitude of sentence formulations and usage of words. This research shows
that the proposed architecture can recognize differently formulated sentences with similar
meanings perfectly (RQ5) in this setting and recognizes 92%-96% of sentences with words
for unseen objects with similar properties to objects seen in the training set (RQ4). This
indicates that agents can more readily be applied in the real world if the agent’s training
phase contains a language-assistance dataset with a large enough vocabulary for the task at
hand.

42

5.5. Limitations

Implications for Embodied Agents Sample efficient and stable RL agents are essential
for the upcoming field of Embodied Agents, which enable LLMs to interact with an en-
vironment through RL-based low-level controllers [37, 150, 1]. This research indicates
how low-level controllers for partially observable environments can best be architected and
how well they can generalize across similar language descriptions. Suppose language is
not used as the latent embedding space between the LLM and the controller. In that case,
this research also proposes reducing the noise and paying attention to linearity in decision
boundaries in the embedding.

Ethical and Social Implications Efforts to create an agent that can react to human lan-
guage better may lead to robots that can better understand and collaborate with people. It
can help the agents learn faster, generalize better, and generalize to new tasks and environ-
ments more efficiently.

On the other hand, empowering a robot to harness human language to improve its
decision-making can also introduce various forms of bias, manipulation, or misuse, which
can lead to unfair or harmful outcomes. For example, a dataset can be biased, which causes
the agent to react to stereotypes or reinforce power imbalances. As this research may be
an indirect aid towards this, practitioners are advised to carefully design and evaluate the
use of language assistance in RL, taking into account its potential benefits and risks and its
ethical and social implications.

5.5 Limitations

Transfer to Human Sentences While text generated by GPT-4 can generally not be dis-
tinguished from human-generated text, this depends heavily on the prompt used to create
the sentences. While humans could have uttered the sentences used in this research, peo-
ple’s emotional state might impact their sentence formulation and choice of words, possibly
leading to an out-of-distribution embedding. This research did not have the time to test the
agent’s performance on human-generated sentences and proposes it as a direction for future
research.

LSTM Dependence This research proposes concatenating the sentence embedding to ev-
ery observation before they enter the LSTM in a recurrent agent for a partially observable
environment. The LSTM was chosen because Ni et al. [111] evaluated it to work best
for meta-RL settings. If, in the future, more performant agents are architected that do
not depend on the LSTM (e.g., using Fast and Forgetful Memory [107], a GRU [27], or
transformer-based methods) that are at least equally sample efficient, the most performant
method of consuming the embedding should again be executed.

If the language assistance or subtask description stays constant throughout an episode,
future researchers can also opt to concatenate the subtask to the input to the state proxy
just before it is passed through the policy network. Figure 4.1 shows this has a similar
performance.

43

5. DISCUSSION

Environment Simplicity The available computational resources limited this research to
an environment as small as possible while enabling a language-assisted agent to exhibit lan-
guage understanding. This made the agent very specific to this environment and unsuitable
to test for task generalization. The one-directional environment of fig. 3.1 contains only 40
states1, which is small compared to for example, the 1027 possible states of XWORLD [160].
The information compression experiment of RQ3 with a total of 480 states indicates that
this research’s approach supports scaling up to more complex environments. Evaluating
the architecture proposed by this research in more complex environments is left to future
research.

5.5.1 Threats to Reproducibility

The sentences used in this research were generated using GPT-4. As GPT-4 is a commer-
cially available system, its maintainer OpenAI might decide to change its internal weights,
parameters, or other parts out of the control of this research that impact the sentences be-
ing generated. Additionally, GPT-4 is stochastic, meaning that two invocations of the same
prompt do not need to yield the same output. This may impede the reproducibility of this
research. To mitigate this, this study’s agent code, sentences, and visualization scripts are
packaged [147].

The training and evaluation stages are tested to be reproducible when executed on the
abovementioned dataset, and the parameters and seeds of appendix C.

5.6 Future Work

Scale of Environment As explained in section 5.5, the environment used in this research
is small and mostly fully deterministic. Scaling this to a stochastic environment with a
continuous state space may introduce noise in the observation signal, possibly making it
harder to receive language assistance-related rewards. This can have the effect that the agent
stops listening to the language assistance because it cannot relate it anymore to obtaining a
higher reward.

A first setup already has been made towards this by creating a MuJoCo [145] variant of
fig. 3.1 based on the HalfCheetah environment [152], and is included in the reproducibility
package [147].

Practicality For this research to become practical, it needs to be scaled up and evaluated
on sentences humans would say. Future research should also include the emotional state of
humans, as this can impact the phrasing of their message.

Also, any robot that is used alongside humans should not respond to every sentence that
is uttered. For example, you would not want Alexa or Google Home to respond to every-
thing you say at home. Therefore, the agent should also be trained on irrelevant sentences
and learn that it should not try to relate the sentence’s meaning to the environment state.
This research can be done with the current setup, provided a set of sentences that do not

1Sentence providing language assistance is not counted.

44

5.6. Future Work

give any information about the direction or weight of a nearby object. The agent is ex-
pected to learn slower, as it needs to learn a third policy2 of having to find out the object’s
weight on its own. That is, it should execute the Bayes-optimal policy.

Multi-Modal Assistance This research focuses on textual assistance, but assistance could
also come in the form of visual, auditory, or gestural content. Future research could use
embedders such as CLIP [123] for images, Whisper [124] for audio, or MediaPipe [51]
for gestures, and create more versatile and well-informed agents that can take advantage of
more than text.

Actor/Critic Embedding Consumption A bug in implementing the state-proxy concate-
nation embedding method led to the insight that providing the language assistance only to
the actor yields performance comparable to the baseline agent. This provides a first indi-
cation that the critic’s value function must see the language assistance. Future research can
investigate whether it holds true. Providing language assistance to only the actor could op-
timize the training runtime. This research considers providing language assistance to only
the critic as an unviable option, as the actor cannot take actions based on it.

Domain-Specific Embedders This research shows that general NLP sentence embedders
can inform an RL agent about its environment. However, the performance on unseen objects
was not yet perfect. This research proposes two ways to solve this. Firstly, embedders could
be fine-tuned during the training phase of the RL agent, possibly creating more generaliz-
able language embeddings within a domain. This was not tried in this research as SimCSE
is based on RoBERTa, which contains 335 million parameters [93, 47], leading to a slow
training time.

Secondly, domain-specific embedders could be created bottom-up, for example, using
formal grammar or self-traint RNNs. In specific domains, this could help map sentences to
their effect. However, future researchers must note that this approach would lose the LLM
knowledge and possibly increase synonym and sentence formulation sensitivity.

Few-Shot Generalization The generalization tests in this research were all zero-shot:
the agent had never seen the sentences before. Future research could go into few-shot
generalization, where after training the agent, it is trained on new sentences just a few
times. This may stipulate how expensive retraining the agent is in case of a language corpus
distribution shift.

2The first and second policies are executed when the agent is informed of a light or heavy object

45

Chapter 6

Conclusion

This research explored whether RL agents can improve learning by utilizing language as-
sistance and how Large Language Models (LLMs) can help them. The primary goal was to
design, implement, and evaluate an agent architecture for efficient and stable learning and
generalization capabilities.

The research proposed using LLMs to create semantic embeddings of natural language
sentences and feed them into a recurrent soft actor-critic agent. The results showed that
the agent benefited from language assistance and achieved faster and more stable learning
than an uninformed baseline agent. It finds it best to concatenate a mapping of the embed-
ding to every observation before they enter the LSTM. Also, RL agents using LLM-based
embeddings outperform those based on non-LLM-based embeddings.

When evaluating the agent on embedding characteristics like its dimensionality, the
agent is sensitive to noise in the embedding but not its dimensionality. Also, this research
indicates the proposed architecture supports scaling up to more complex environments.

Lastly, this research shows that the agent could generalize well across sentences with
similar meanings but different formulations and could recognize 92%-96% of sentences
with unknown objects with common properties to the objects in the training set. An im-
provement based on transfer learning was suggested to improve the generalization among
sentences with unknown objects by pre-training a network to classify embeddings. How-
ever, this did not lead to a notable improvement. This research advises practitioners to focus
on training an agent on a language corpus with an extensive vocabulary, not on unique sen-
tence formulations.

47

Bibliography

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al.
Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

[2] Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. arXiv
preprint arXiv:1711.00482, 2017.

[3] Karl Johan Åström. Optimal control of markov processes with incomplete state in-
formation. Journal of mathematical analysis and applications, 10(1):174–205, 1965.

[4] Francis Bach. Breaking the curse of dimensionality with convex neural networks.
The Journal of Machine Learning Research, 18(1):629–681, 2017.

[5] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperform-
ing the atari human benchmark. In International conference on machine learning,
pages 507–517. PMLR, 2020.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Push-
meet Kohli, and Edward Grefenstette. Learning to understand goal specifications by
modelling reward. arXiv preprint arXiv:1806.01946, 2018.

[8] Bram Bakker. Reinforcement learning with long short-term memory. Advances in
neural information processing systems, 14, 2001.

[9] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,
and Remi Munos. Unifying count-based exploration and intrinsic motivation. Ad-
vances in neural information processing systems, 29, 2016.

49

BIBLIOGRAPHY

[10] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. In International conference on machine learning, pages
449–458. PMLR, 2017.

[11] Richard Bellman. A problem in the sequential design of experiments. Sankhyā: The
Indian Journal of Statistics (1933-1960), 16(3/4):221–229, 1956.

[12] Richard Ernest Bellman. Dynamic Programming. Princeton University Press, 1957.

[13] Dimitri Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Sci-
entific, 1996.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the association for compu-
tational linguistics, 5:135–146, 2017.

[15] Satchuthananthavale RK Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzi-
lay. Reinforcement learning for mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, pages 82–90, 2009.

[16] SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading man-
uals in a monte-carlo framework. Journal of Artificial Intelligence Research, 43:
661–704, 2012.

[17] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint
arXiv:2212.06817, 2022.

[18] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, and Amanda
Askell. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

[19] Nina G Buchina, Paula Sterkenburg, Tino Lourens, and Emilia I Barakova. Natu-
ral language interface for programming sensory-enabled scenarios for human-robot
interaction. In 2019 28th IEEE International Conference on Robot and Human In-
teractive Communication (RO-MAN), pages 1–8. IEEE, 2019.

[20] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. arXiv preprint arXiv:1810.12894, 2018.

[21] Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world
multi-task control through goal-aware representation learning and adaptive horizon
prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13734–13744, 2023.

50

Bibliography

[22] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting opti-
mally in partially observable stochastic domains. In Aaai, volume 94, pages 1023–
1028, 1994.

[23] Shicong Cen and Yuejie Chi. Global convergence of policy gradient methods in
reinforcement learning, games and control. arXiv preprint arXiv:2310.05230, 2023.

[24] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Uni-
versal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[25] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. Advances in neural information process-
ing systems, 34:15084–15097, 2021.

[26] Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask your humans: Using hu-
man instructions to improve generalization in reinforcement learning. arXiv preprint
arXiv:2011.00517, 2020.

[27] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[28] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. Palm: Scaling language modeling with pathways. Journal of
Machine Learning Research, 24(240):1–113, 2023.

[29] Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan,
and Noah A Smith. All that’s’ human’is not gold: Evaluating human evaluation of
generated text. arXiv preprint arXiv:2107.00061, 2021.

[30] John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas,
John DeNero, Pieter Abbeel, and Sergey Levine. Guiding policies with language via
meta-learning. arXiv preprint arXiv:1811.07882, 2018.

[31] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bor-
des. Supervised learning of universal sentence representations from natural language
inference data. arXiv preprint arXiv:1705.02364, 2017.

[32] Brett Daley and Christopher Amato. Human-level control without server-grade hard-
ware. arXiv preprint arXiv:2111.01264, 2021.

[33] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek,
Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Al-
abdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In Interna-
tional Conference on Machine Learning, pages 7480–7512. PMLR, 2023.

51

BIBLIOGRAPHY

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[35] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale, 2021.

[36] Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski, Noah A Smith, and Yejin Choi.
Is gpt-3 text indistinguishable from human text? scarecrow: A framework for scruti-
nizing machine text. arXiv preprint arXiv:2107.01294, 2021.

[37] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery,
Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong
Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vin-
cent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor
Mordatch, and Pete Florence. Palm-e: An embodied multimodal language model,
2023.

[38] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. In International con-
ference on machine learning, pages 1329–1338. PMLR, 2016.

[39] Michael O’Gordon Duff and Andrew Barto. Optimal Learning: Computational pro-
cedures for Bayes-adaptive Markov decision processes. University of Massachusetts
Amherst, 2002.

[40] Jacob Eisenstein, James Clarke, Dan Goldwasser, and Dan Roth. Reading to learn:
Constructing features from semantic abstracts. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing, pages 958–967, 2009.

[41] Hugh Ellis, Mingxiang Jiang, and Ross B Corotis. Inspection, maintenance, and
repair with partial observability. Journal of Infrastructure Systems, 1(2):92–99, 1995.

[42] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi
Zhu, Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo:
Building open-ended embodied agents with internet-scale knowledge. Advances in
Neural Information Processing Systems, 35:18343–18362, 2022.

[43] John Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,
pages 10–32, 1957.

[44] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Os-
band, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

52

Bibliography

[45] The PyTorch Foundation. Lstm. PyTorch 2.1 Documentation, 2023.
URL https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html.
URL:https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html (version: 2023-
11-29).

[46] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In International conference on machine learning, pages
1587–1596. PMLR, 2018.

[47] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning
of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021.

[48] Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical
detection and visualization of generated text. arXiv preprint arXiv:1906.04043, 2019.

[49] Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurmans, Sergey Levine, and Pieter
Abbeel. Multimodal masked autoencoders learn transferable representations. arXiv
preprint arXiv:2205.14204, 2022.

[50] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian
reinforcement learning: A survey. Foundations and Trends® in Machine Learning,
8(5-6):359–483, 2015.

[51] Google. Gesture recognition task guide, 2023. https://developers.googl
e.com/mediapipe/solutions/vision/gesture_recognizer [Accessed: 10-12-
2023].

[52] Alison Gopnik and Andrew Meltzoff. The development of categorization in the sec-
ond year and its relation to other cognitive and linguistic developments. Child devel-
opment, pages 1523–1531, 1987.

[53] Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for
reward shaping in reinforcement learning. arXiv preprint arXiv:1903.02020, 2019.

[54] Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv
preprint arXiv:2310.02207, 2023.

[55] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement
learning with deep energy-based policies. In International conference on machine
learning, pages 1352–1361. PMLR, 2017.

[56] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[57] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision pro-
cesses. arXiv preprint arXiv:1502.02259, 2015.

53

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://developers.google.com/mediapipe/solutions/vision/gesture_recognizer
https://developers.google.com/mediapipe/solutions/vision/gesture_recognizer

BIBLIOGRAPHY

[58] Mengting Han, Xuan Zhang, Xin Yuan, Jiahao Jiang, Wei Yun, and Chen Gao. A
survey on the techniques, applications, and performance of short text semantic simi-
larity. Concurrency and Computation: Practice and Experience, 33(5):e5971, 2021.

[59] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[60] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially ob-
servable mdps. In 2015 aaai fall symposium series, 2015.

[61] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[62] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hu-
bert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis
Teplyashin, et al. Grounded language learning in a simulated 3d world. arXiv
preprint arXiv:1706.06551, 2017.

[63] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

[64] Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representa-
tions of sentences from unlabelled data. arXiv preprint arXiv:1602.03483, 2016.

[65] Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human instruction-
following with deep reinforcement learning via transfer-learning from text. arXiv
preprint arXiv:2005.09382, 2020.

[66] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in
neural information processing systems, 15, 2002.

[67] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[68] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[69] Gabriel Romon (https://math.stackexchange.com/users/66096/gabriel romon). Prob-
ability that an item from a group is not in a random sample (sampling without re-
placement). Mathematics Stack Exchange, 2023. URL https://math.stackexch
ange.com/q/4812287. URL:https://math.stackexchange.com/q/4812287 (version:
2023-11-22).

[70] Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for
human-ai coordination. arXiv preprint arXiv:2304.07297, 2023.

54

https://math.stackexchange.com/q/4812287
https://math.stackexchange.com/q/4812287

Bibliography

[71] Chaochao Huang, Xipeng Qiu, and Xuanjing Huang. Text classification with doc-
ument embeddings. In Chinese Computational Linguistics and Natural Language
Processing Based on Naturally Annotated Big Data: 13th China National Confer-
ence, CCL 2014, and Second International Symposium, NLP-NABD 2014, Wuhan,
China, October 18-19, 2014. Proceedings, pages 131–140. Springer, 2014.

[72] Qingyan Huang. Model-based or model-free, a review of approaches in reinforce-
ment learning. In 2020 International Conference on Computing and Data Science
(CDS), pages 219–221. IEEE, 2020.

[73] Evan Hubinger, Adam Jermyn, Johannes Treutlein, Rubi Hudson, and Kate Woolver-
ton. Conditioning predictive models: Risks and strategies. arXiv preprint
arXiv:2302.00805, 2023.

[74] Matthew Hutson. Robo-writers: the rise and risks of language-generating ai. Nature,
591(7848):22–25, 2021.

[75] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson.
Deep variational reinforcement learning for pomdps. In International Conference on
Machine Learning, pages 2117–2126. PMLR, 2018.

[76] Francesca Incitti, Federico Urli, and Lauro Snidaro. Beyond word embeddings: A
survey. Information Fusion, 89:418–436, 2023.

[77] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one
big sequence modeling problem. Advances in neural information processing systems,
34:1273–1286, 2021.

[78] Chuhao Jin, Wenhui Tan, Jiange Yang, Bei Liu, Ruihua Song, Limin Wang, and
Jianlong Fu. Alphablock: Embodied finetuning for vision-language reasoning in
robot manipulation. arXiv preprint arXiv:2305.18898, 2023.

[79] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1-2):
99–134, 1998.

[80] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[81] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.
Recurrent experience replay in distributed reinforcement learning. In International
conference on learning representations, 2018.

[82] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[83] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Skip-thought vectors. Advances in neural infor-
mation processing systems, 28, 2015.

55

BIBLIOGRAPHY

[84] Thomas Kleine Buening, Christos Dimitrakakis, Hannes Eriksson, Divya Grover,
and Emilio Jorge. Minimax-bayes reinforcement learning. arXiv e-prints, pages
arXiv–2302, 2023.

[85] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep
reinforcement learning: A survey. Information Fusion, 85:1–22, 2022.

[86] Quoc Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. In International conference on machine learning, pages 1188–1196. PMLR,
2014.

[87] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

[88] Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith.
Steve-1: A generative model for text-to-behavior in minecraft. arXiv preprint
arXiv:2306.00937, 2023.

[89] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[90] Michael Lederman Littman. Algorithms for sequential decision-making. Brown
University, 1996.

[91] Hao Liu, Lisa Lee, Kimin Lee, and Pieter Abbeel. Instruction-following agents with
multimodal transformer. arXiv preprint arXiv:2210.13431, 2022.

[92] Rui Liu and Xiaoli Zhang. A review of methodologies for natural-language-
facilitated human–robot cooperation. International Journal of Advanced Robotic
Systems, 16(3):1729881419851402, 2019.

[93] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[94] Owen Lockwood and Mei Si. A review of uncertainty for deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 18, pages 155–162, 2022.

[95] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas,
Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of rein-
forcement learning informed by natural language. arXiv preprint arXiv:1906.03926,
2019.

[96] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over
unstructured data. arXiv preprint arXiv:2005.07648, 2020.

56

Bibliography

[97] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert
Baruch, Travis Armstrong, and Pete Florence. Interactive language: Talking to robots
in real time. IEEE Robotics and Automation Letters, 2023.

[98] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Con-
necting language, knowledge, and action in route instructions. Def, 2(6):4, 2006.

[99] Lingheng Meng, Rob Gorbet, and Dana Kulić. Memory-based deep reinforcement
learning for pomdps. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5619–5626. IEEE, 2021.

[100] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[101] Fatemehsadat Mireshghallah, Justus Mattern, Sicun Gao, Reza Shokri, and Taylor
Berg-Kirkpatrick. Smaller language models are better black-box machine-generated
text detectors. arXiv preprint arXiv:2305.09859, 2023.

[102] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, An-
drea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al.
Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673,
2016.

[103] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and
Chelsea Finn. Detectgpt: Zero-shot machine-generated text detection using prob-
ability curvature. arXiv preprint arXiv:2301.11305, 2023.

[104] Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition. In
proceedings of ACL-08: HLT, pages 236–244, 2008.

[105] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[106] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[107] Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforce-
ment learning with fast and forgetful memory. arXiv preprint arXiv:2310.04128,
2023.

[108] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin,
Bin Wang, Jifeng Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-
training via embodied chain of thought, 2023.

57

BIBLIOGRAPHY

[109] H Albert Napier, Richard R Batsell, Norman S Guadango, and David M Lane. Im-
pact of a restricted natural language interface on ease of learning and productivity.
Communications of the ACM, 32(10):1190–1198, 1989.

[110] Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for
transfer in deep reinforcement learning. Journal of Artificial Intelligence Research,
63:849–874, 2018.

[111] Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free
rl can be a strong baseline for many pomdps. arXiv preprint arXiv:2110.05038, 2021.

[112] OpenAI. Gpt-4 technical report, 2023.

[113] Philip Osborne, Heido Nõmm, and André Freitas. A survey of text games for rein-
forcement learning informed by natural language. Transactions of the Association
for Computational Linguistics, 10:873–887, 2022.

[114] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based
exploration with neural density models. In International conference on machine
learning, pages 2721–2730. PMLR, 2017.

[115] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987.

[116] Raj Kumar Pathria. Statistical mechanics. Elsevier, 2016.

[117] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[118] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations, 2018.

[119] Bharat Prakash, Nicholas Waytowich, Tim Oates, and Tinoosh Mohsenin. Interactive
hierarchical guidance using language. arXiv preprint arXiv:2110.04649, 2021.

[120] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 1994.

[121] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. No journal found., 2018.

[122] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1
(8):9, 2019.

[123] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language supervision. In Inter-
national conference on machine learning, pages 8748–8763. PMLR, 2021.

58

Bibliography

[124] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In In-
ternational Conference on Machine Learning, pages 28492–28518. PMLR, 2023.

[125] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[126] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-
adaptivemacmahon2006walk pomdps. Advances in neural information processing
systems, 20, 2007.

[127] Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang,
and Soheil Feizi. Can ai-generated text be reliably detected? arXiv preprint
arXiv:2303.11156, 2023.

[128] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition. arXiv
preprint arXiv:1402.1128, 2014.

[129] Anton Maximilian Schäfer and Hans Georg Zimmermann. Recurrent neural net-
works are universal approximators. In Artificial Neural Networks–ICANN 2006: 16th
International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part
I 16, pages 632–640. Springer, 2006.

[130] Jürgen Schmidhuber. Reinforcement learning in markovian and non-markovian en-
vironments. Advances in neural information processing systems, 3, 1990.

[131] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[132] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[133] Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural
nets. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 440–449, 1992.

[134] Richard D Smallwood and Edward J Sondik. The optimal control of partially observ-
able markov processes over a finite horizon. Operations research, 21(5):1071–1088,
1973.

[135] Linda Smith and Michael Gasser. The development of embodied cognition: Six
lessons from babies. Artificial life, 11(1-2):13–29, 2005.

[136] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output repre-
sentation using deep conditional generative models. Advances in neural information
processing systems, 28, 2015.

59

BIBLIOGRAPHY

[137] Matthijs TJ Spaan. Partially observable markov decision processes. Reinforcement
learning: State-of-the-art, pages 387–414, 2012.

[138] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu.
Roformer: Enhanced transformer with rotary position embedding. Neurocomputing,
page 127063, 2023.

[139] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, vol-
ume 135. MIT press Cambridge, 1998.

[140] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[141] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in neural information processing systems, 12, 1999.

[142] Pradyumna Tambwekar, Andrew Silva, Nakul Gopalan, and Matthew Gombolay.
Natural language specification of reinforcement learning policies through differen-
tiable decision trees. IEEE Robotics and Automation Letters, 2023.

[143] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105–6114.
PMLR, 2019.

[144] Yingjie Tian and Yuqi Zhang. A comprehensive survey on regularization strategies
in machine learning. Information Fusion, 80:146–166, 2022.

[145] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ international conference on intelligent robots and
systems, pages 5026–5033. IEEE, 2012.

[146] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

[147] Sander van Leeuwen. Language Assistance in Reinforcement Learning in Dynamic
Environments - Reproducibility Package, December 2023. URL https://doi.or
g/10.5281/zenodo.10322510.

[148] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[149] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with
large language models. arXiv preprint arXiv:2305.16291, 2023.

60

https://doi.org/10.5281/zenodo.10322510
https://doi.org/10.5281/zenodo.10322510

Bibliography

[150] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain,
plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

[151] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. Dueling network architectures for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1995–2003. PMLR, 2016.

[152] Paweł Wawrzyński. A cat-like robot real-time learning to run. In Adaptive and Natu-
ral Computing Algorithms: 9th International Conference, ICANNGA 2009, Kuopio,
Finland, April 23-25, 2009, Revised Selected Papers 9, pages 380–390. Springer,
2009.

[153] Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. Solv-
ing deep memory pomdps with recurrent policy gradients. In Artificial Neural
Networks–ICANN 2007: 17th International Conference, Porto, Portugal, September
9-13, 2007, Proceedings, Part I 17, pages 697–706. Springer, 2007.

[154] Edward C Williams, Nakul Gopalan, Mine Rhee, and Stefanie Tellex. Learning to
parse natural language to grounded reward functions with weak supervision. In 2018
ieee international conference on robotics and automation (icra), pages 4430–4436.
IEEE, 2018.

[155] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

[156] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming
Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large
language model based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

[157] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. In International conference on machine
learning, pages 2048–2057. PMLR, 2015.

[158] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant, Gus-
tavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, et al. Multilingual
universal sentence encoder for semantic retrieval. arXiv preprint arXiv:1907.04307,
2019.

[159] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the
2016 conference of the North American chapter of the association for computational
linguistics: human language technologies, pages 1480–1489, 2016.

[160] Haonan Yu, Haichao Zhang, and Wei Xu. Interactive grounded language acquisition
and generalization in a 2d world. arXiv preprint arXiv:1802.01433, 2018.

61

BIBLIOGRAPHY

[161] Hongming Zhang and Tianyang Yu. Taxonomy of reinforcement learning algorithms.
Deep Reinforcement Learning: Fundamentals, Research and Applications, pages
125–133, 2020.

[162] Wanpeng Zhang and Zongqing Lu. Rladapter: Bridging large language models to
reinforcement learning in open worlds. arXiv preprint arXiv:2309.17176, 2023.

[163] Ziqiang Zhang, Long Zhou, Junyi Ao, Shujie Liu, Lirong Dai, Jinyu Li, and Furu
Wei. Speechut: Bridging speech and text with hidden-unit for encoder-decoder based
speech-text pre-training. arXiv preprint arXiv:2210.03730, 2022.

[164] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal,
Katja Hofmann, and Shimon Whiteson. Varibad: A very good method for bayes-
adaptive deep rl via meta-learning. arXiv preprint arXiv:1910.08348, 2019.

62

Appendix A

Glossary

• Activation Layer: Non-linear function. Used to enable neural networks to find non-
linear decision boundaries.

• BA-MDP: Bayes-Adaptive Markov Decision Process. A version of a POMDP where
the hidden state remains constant throughout an episode. Further explained in sec-
tion 2.1.2.

• BERT: Bidirectional Encoder Representations from Transformers [34]. An encoder-
only Transformer model used for text understanding.

• CMDP: Contextual Markov Decision Process. A version of a BA-MDP where the
context informs the agent about the hidden state. Further explained in section 2.1.2.

• CPOMDP: Contextual Partially Observable Markov Decision Process. Merger of the
a CMDP and a POMDP where the context only informs the agent about a part of the
hidden state. Further explained in section 3.1.

• Cumulative Regret: Sum of regret obtained since starting training. Can be inter-
preted as the sum of the number of wrong actions taken since starting training.

• DRQN: Deep Recurrent Q-Networks [60]. A reinforcement learning algorithm for
solving POMDP environments. DRQN extends on DQN by making decisions based
on histories instead of single states. The histories are encoded using an RNN. Further
explained in section 2.1.2 and appendix B.2.

• DQN: Deep Q-Networks [105]. An off-policy reinforcement learning algorithm for
solving MDP environments utilizing a neural network to learn the Q(s,a) value func-
tion.

• FFN: Feed-Forward Network. A network mapping an input to an output by alternat-
ing linear layers and activation functions without residual or recurrent connections.

• GPT: Generative Pretrained Transformer [121, 122]. A decoder-only Transformer
model created for text generation.

• H: Hypothesis

• InferSent: Sentence Embedder based on bidirectional LSTM networks [31]. Further
explained in section 2.2.

63

A. GLOSSARY

• Linear Layer: Trainable mapping of y = σ(Wx+ b) from input space xt ∈ Ri to
output space yt ∈ Ro using a matrix W ∈ Ro×i and bias b ∈ Ro containing trainable
weights, and non-linear activation function σ.

• LLM: Large Language Model. A stack of encoder-, decoder-, or encoder-decoder
models of the Transformer architecture capable of understanding and/or generating
text, trained on a very large language corpus.

• LSTM: Long Short-Term Memory [68]. An RNN architecture that solves the van-
ishing gradients problem. Further explained in section 2.1.2.

• MDP: Markov Decision Process. A way of modeling a sequential decision-making
process using states, actions, and rewards. Further explained in section 2.1.1.

• MLM: Masked Language Modeling. One of the ways to train a BERT model, by
making the model predict a word in a sentence using the words around it.

• NSP: Next Sentence Prediction. One of the ways to train a BERT model, by making
it predict if two sentences are subsequent.

• NLP: Natural Language Processing. The field of researching how computers can
understand and generate text.

• Policy Network: Neural network to select an action. In this research a FFN was used
with an architecture of (I × 128 × 128 ×|A |).

• POMDP: Partially Observable Markov Decision Process. An extension to the MDP
where the agent does not receive the environment’s full state in its observations. Fur-
ther explained in section 2.1.2.

• Regret: Difference in number of steps taken and number of steps required by the
optimal policy.

• RL: Reinforcement Learning. The field that aims to make agents learn how to ac-
complish a goal without being explicitly programmed to do so. Further explained in
section 2.1.

• RNN: Recurrent Neural Network. A neural network that outputs an output and a
hidden state. The hidden state is taken as input by the next invocation. This hidden
state makes for a recurrence.

• RQ: Research Question.

• SAC: Soft Actor-Critic [56]. A recurrent version of this algorithm was used in this
research. Its goal is achieving the goal as optimally as possible, while taking actions
as randomly as possible. Further explained in section 2.1.2.

• SBERT: Sentence-BERT [125]. An approach of creating models that can create sen-
tence embeddings using siamese BERT networks. Further explained in section 2.2.

• SimCSE: Simple Contrastive Learning of Sentence Embeddings [47]. A model that
can create sentence embeddings using contrastive BERT networks.

• t-SNE: Machine learning method to visualize in a high-dimensional clusters in a
lower-dimensional plot. Used for fig. 3.3.

64

• Word2Vec: Model that maps words to semantic embeddings [100]. In an experimen-
tal context, it refers to a sentence embedding created by averaging over the Word2Vec
embedding of each word in a sentence. Further explained in section 2.2.

• Word2Vec + Pos: Sentence embedding created by averaging over the positional
Word2Vec embedding of each word. The positional embedding is created by mul-
tiplying each embedding with a sinusoid dependent on the word’s position in the
sentence. Further explained in section 2.2.

65

Appendix B

Engineering Decisions

The following chapter gives a background on choices made to make the research in the main
chapters possible.

B.1 Initial Environment Design

The first design of an environment to train and test a language-assisted RL agent is shown in
fig. B.1. It was built such that multiple objects could be introduced: walls blocking a path,
traps catching the agent, boxes that could be moved, or speedups that made the agent walk
faster. The items and goals were placed such that each introduction of an object resulted in a
unique optimal path, encouraging the agent to make decisions based on the sentence it was
provided with. However, this environment was rejected because it supports a low number
of objects, and a lot of exploration is necessary to find the goal.

Often, people do not say what happens exactly but instead, communicate the essence of
their message and may use synonyms or words that are similar to the subject. For example,
if there is water on the floor where someone might slip over, people may warn each other
about a puddle, a pool of water, a splash, or a spill, with the intended meaning that it might
be slippery. Therefore, the real challenge for the agent is to identify the property of an object

Figure B.1: Initially proposed environment.

67

B. ENGINEERING DECISIONS

and respond to it. The environment of fig. B.1 is not made with this in mind, but rather
to find the differences between objects themselves. Also, the goals of the environment
in fig. B.1 are far away: 27 steps and 56 steps need to be taken to reach them, without
obstruction from any item. This means that if the agent would explore randomly for 1000
environment steps, the probability of finding the goal closest by is approximately 12.6%,
while finding the solution that is furthest away in the case of an obstruction on position 1 is
only 0.6%. Restricting the action space to only valid actions would improve this to 24.2%
and 3.3%, respectively. Solving this environment would require a lot of computation power
and effort in explorative strategies. Section 3.4 explains the efforts that have been made in
this regard. However as exploration is not the primary focus of this research, the decision
was made to create a smaller environment.

B.2 Deep Recurrent Q-Networks

Deep Q-Networks (DQN) is an algorithm that uses neural networks to approximate the Q-
function of an MDP [105] (see section 2.1.1). The algorithm Deep Recurrent Q-Networks
(DRQN) extends DQN to the POMDP domain by making decisions on a history of observa-
tions and actions [60]. This history is encoded into a vector with a recurrent neural network
such as an LSTM or a GRU, and this vector is passed to the DQN neural network.

DRQN was already not state-of-the-art at the time this thesis started, as DQN had al-
ready been improved upon numerous times [63, 146, 151, 10, 44] and deep policy gradients
as well as deep actor-critic methods were outperforming DQN too [106, 132, 89, 56, 46].
However, DRQN’s learning capacity was considered good enough to learn the environment
introduced in appendix B.1 while being relatively straightforward to implement.

A custom DRQN implementation was made, built upon the DQN implementation of dr.
Wendelin Böhmer1, adhering to the software architecture proposed by Daley and Amato
[32]. However, the implementation of the algorithm required a few weeks of debugging
efforts, as the source of unwanted behavior could be attributed to the agent, the new en-
vironment, as well as the replay buffer, which all had changed. A lot was learned about
the implementation of DRQN and satisfactory results were achieved on the CartPole-v12

environment. However, remaining uncertainty as to whether the implementation of DRQN
was correct led to the search for proven implementations of POMDP-solving agents.

B.3 Exploration

Exploration refers to how much an agent scouts its environment before it starts to optimize
for collecting reward. An agent nearly always needs to explore to reduce its epistemic
uncertainty and find its goal. However, as the agent does not know when it has reached the
optimal way to its goal, it might stop exploring too soon and never find its goal. To make
the agent explore, three methods have been tried in this research: random exploration, and
exploration due to adding an intrinsic reward signal. This part gives an overview of the

1Committee member of this thesis. Code was for the course CS4400 Deep Reinforcement Learning
2https://www.gymlibrary.dev/environments/classic_control/cart_pole/

68

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61584
https://www.gymlibrary.dev/environments/classic_control/cart_pole/

B.3. Exploration

‘

(a) Cumulative regret (b) Episodic regret

Figure B.2: Limiting the actor to only valid actions. The lines with Valid limit the actions to
choose only valid actions. The others allow all actions, but incur a -1 penalty for choosing
an invalid action.

approaches used in this research and is by no means a complete overview of RL exploration
methods.

B.3.1 Random Exploration

A way to explore an environment is to take random actions in every state with a uniform
probability. This is called random exploration [85]. Random exploration is a way to gather
data about the environment when the neural network of the agent’s policy is still close
to its random initialization, however, it can not cover a lot of space as its reach decays
exponentially. That is because it is just as likely that the agent goes back to where it has
been as to go anywhere new. For example: Let’s say there is an agent that is in a hall and
has the actions to go left, right, up or down. Except up or down make it stay in the same
place. Then, after 100 random steps, the probability of reaching further than 12 steps is only
3.8%. An improvement could be to limit the action set to only left or right, which improves
the probability to 9.6%.

B.3.2 Limiting to Valid Actions

The environment can also help with exploration by limiting the action space to only the
actions available in the state the agent is in. In limiting the valid actions, the SAC action
logits for invalid actions were set to −∞, so the probability of sampling these actions became
zero. This led to the environment rewards becoming sparse, as the reward would always be
0, except for reaching the goal. This did not improve the agent’s behavior: in environments
where the goal was further away than 6 blocks, the agent would not learn to reach the goal
and would start oscillating between a state where it could only go back and a state with
four choices. I assume it presented this behavior because in the environment of fig. 3.1
the Up and Down was only available 50% of the time and thus did not get much feedback
compared to going Left or Right. Figure B.2b shows that agents in an environment where
invalid actions cannot be executed, the agents converge to oscillation.

69

B. ENGINEERING DECISIONS

B.3.3 Intrinsic Reward

Whereas extrinsic reward r(s,a) is given by the MDP, intrinsic reward comes from the agent
itself. It can incentivize the agent to explore more by giving the agent a reward for ending
up in a state it has not often been in. The simplest solution is count uncertainty [94]. Count
uncertainty keeps count of how often a state was visited, and upon a state gives an intrinsic
reward inversely proportional to the count, often using the inverse square of the count [94].
This can work well in environments where states can be mapped well [114, 9]. Figure B.3
shows the impact of different scales of intrinsic reward when tested on the environment of
fig. B.3e. It was chosen not to include intrinsic reward, as it did not have a positive impact
in the small environment of fig. 3.1.

If states cannot be mapped to a discrete count, Random Network Distillation (RND)
can be a solution [20]. It proposes to find the novelty of a state by comparing the output
of two neural networks, fs and fd . fs is a static network and does not change. fd is a
dynamic network and is being trained to mimic the output of fs on the states the agent
visits. The weights of both networks are initialized randomly. If the agent has not visited
a state often, there will be a bigger difference between the outputs of fs and fd compared
to an often visited state. The agent receives an intrinsic reward proportional to the L1 norm
of the difference between the output vectors. RND was not used in this research because
it is a more challenging intrinsic reward source than count uncertainty. Given that count
uncertainty did not work for my environment where discrete counts are possible, RND
would also not work.

B.4 Hyperparameter Search

The following section explains the search for suitable hyperparameters for the agent and
environment.

B.4.1 Discount Factor

The discount factor γ ∈ [0,1] is part of the MDP as explained in section 2.1.1 and influences
the horizon length. It is used to discount future rewards, and as such can be used to set
how much the agent prioritizes short-term over long-term rewards. As the expected future
rewards are discounted with γ for step t + 1, γ2 for step t + 2, etc, the impact of future
rewards decays exponentially with regards to γ. As this is a geometric series, it means that
the horizon length of an agent is specified by 1

1−γ
.

A value of γ= 0.93 was found experimentally for this research. Values in γ∈{0.9,0.91, . . . ,0.99}
were evaluated. The graphs did not exhibit any significant results and the value of γ = 0.93
performed only marginally better than the others. Theoretically, a value of 0.93 makes sense
as its horizon length is 1

1−0.93 = 14.3 which means that it includes the longest optimal path
for an uninformed agent of 13 steps.

70

B.4. Hyperparameter Search

‘

(a) Cumulative regret with high intrinsic reward (b) Episodic regret with high intrinsic reward
‘

(c) Cumulative regret with low intrinsic reward (d) Episodic regret with low intrinsic reward

(e) Environment.
The object is dark
blue.

Figure B.3: The agent’s performance over various scales for intrinsic reward, based on count
uncertainty. A value of 0 was chosen. The environment of fig. B.3e was used.

71

B. ENGINEERING DECISIONS

‘

(a) Cumulative Regret at 50k environment steps. (b) Episodic Regret

Figure B.4: The agent’s performance after 50.000 environment steps over different activa-
tion functions used after the embedding linear layer. Directly means no linear layer and no
activation function. Identity means no activation function. ReLU was chosen.

B.4.2 Embedding Activation Functions

Neural networks consist of alternating matrix multiplications and non-linear functions. These
non-linear functions are called activation functions and allow the neural networks to learn
non-linear relations. The architectures of fig. E.3 contain a linear layer that maps the sen-
tence embedding to a lower dimensional space and applies an activation function. This
experiment researches for only the embedding linear layer which activation function works
best.

Figure B.4 visualizes various agents’ regret on the unidirectional environment with Sim-
CSE sentence embeddings, and shows that not including a linear layer or activation function
at all and instead inserting the embedding Directly into the LSTM outperforms all other
methods. However, fig. E.4 shows that this approach has a large impact on the runtime of
the algorithm because the LSTM contains about six times as much parameters, leading to a
similar increased factor in computation time.

Because the cumulative regret from the activation functions overlaps significantly, ReLU
was chosen as it is commonly used and simple to implement.

B.4.3 Classification Network Architecture

The classifier network is created in an attempt to get better generalization on the unknown
objects experiment, as explained in section 3.6.2. Following the idea of transfer learning, it
is pre-trained on classifying embeddings into whether their sentences indicate the object to
be light or heavy. After pre-training, the network is frozen and plugged into the agent.

During this research, a mistake was made in the implementation of the state-proxy con-
catenation embedding consumption method. This caused this method to perform compara-
bly to the baseline, which led to the hypothesis that the policy neural network would not be
powerful enough to find the right decision boundary. Because of this, the policy network
of (1024×128×128×2) was trained on classifying the embeddings, as shown in fig. B.5c

72

B.4. Hyperparameter Search

‘

(a) Small Classifier on Unknown Formulations (b) Small Classifier on Unknown Objects
‘

(c) Policy Classifier on Unknown Formulations (d) Policy Classifier on Unknown Objects
‘

(e) Large Classifier on Unknown Formulations (f) Large Classifier on Unknown Objects

Figure B.5: Impact of classifier architecture on generalization tasks.

and fig. B.5d. It showed the policy network does contain enough weights to find a good
decision boundary, indicating a bug in the implementation of the state proxy concatenation.

Later, this classifier network was re-used for generalization purposes. A small architec-
ture search was executed to determine if having a shallower network (fig. B.5a and fig. B.5b)
or a deeper network (fig. B.5e and fig. B.5f) would perform better. The original policy net-
work was chosen in the end instead, as it provided a balance between the underfitting of the
small network and the overfitting of the large network. No regularization was applied in the
experiments. The Adam optimizer was used with a learning rate of 0.001 [82].

A neural network can also improve generalization beyond the training set by using reg-
ularization. Regularization lowers the probability a neural network overfits on its training

73

B. ENGINEERING DECISIONS

(a) 20% Unknown Objects (b) 70% Unknown Objects

Figure B.6: Results of applying dropout with p = 0.5 after every layer and using L2 regu-
larization with a weight of 10−4.

set. L2 regularization does so by introducing a loss component that penalizes the neural net-
work for large weights and pushes those weights to zero [144]. Dropout does so by resetting
individual neurons with a probability p [67]. Figure B.6 shows the impact of dropout and
l2 regularization on the accuracy on a withheld test set is not significant, therefore it was
chosen not to regularize the classifier.

B.4.4 Gradient Update Frequency

The frequency of gradient updates refers to how often an agent learns from its experiences.
For each gradient update, the agent samples a number of trajectories equal to the batch
size from its replay buffer and calculates its critic and actor using the SAC losses. The
derivative over these losses indicates the direction in which to update the gradients of the
neural networks used.

During the first evaluations, the frequency was set to one update every five rollouts.
This works fine when an agent has not approximated the optimal policy but starts being a
computational challenge once the agent does learn because its rollouts become 10-25 times
shorter. This means that the agent starts learning much more often once it has learned a
good policy, which leads to a slow progression in the number of environment steps.

A choice was made to set the gradient update frequency relative to the number of en-
vironment steps as all results in chapter 4 are also visualized relative to the number of
environment steps. Figure B.7 indicates the impact of the gradient update frequency per
environment step on the agent’s learning speed, tested in the unidirectional environment
with perfect embeddings. A value of 0.05 was chosen as it meant the agent would not learn
too quickly that differences between other hyperparameters (e.g., embedding consumption,
embedding model, generalization) could not be distinguished.

B.4.5 Bends in Multidirectional Environment

Like section 3.2.1 describes, one of the goals of the multidirectional environment is decou-
pling the 1-on-1 relation between a sentence and the actions it should take. To decouple this
as much as possible, this experiment tried to gauge the learning speed of the agent when 0,

74

B.4. Hyperparameter Search

‘

(a) Cumulative Regret (b) Episodic Regret

Figure B.7: The performance of the agent over a range of different numbers of updates per
environment step. Perfect embeddings were used. A value of 0.05 was chosen.

1, and 2 bends were introduced to the environment. Every bend that is introduced creates
three times as many possible mazes, as each bend can have a hook in three ways.

At the time of executing this experiment, the algorithm was not yet fully optimized.
Because of the 24-hour time limit set by the cluster on which this experiment was executed3,
not more than 150.000 environment steps could be executed. Figure B.8 shows that not all
experiments with two bends were able to converge to the optimal policy, so it was chosen
to only bend the environment at the agent’s starting position.

‘

(a) Cumulative Regret (b) Episodic Regret

Figure B.8: The impact of the number of bends in a multidirectional environment on the
agent’s performance. One bend was chosen.

3DelftBlue

75

https://www.tudelft.nl/dhpc/system

Appendix C

77

C. HYPERPARAMETERS

Hyperparameters

Parameter Value

Limit to only valid actions No

Number of iterations (after random exploration) 2500 (1000 for generalization tests)

Random exploration rollouts 64

Rollouts per iteration 1

Updates per iteration 0.05 (one update per 20 environment
steps)

Buffer size 106

Batch size 256

Separate RNN for actor & critic Yes

RNN model LSTM

RNN hidden size 128

RL Algorithm SAC Discrete

Action mapping dimensionality 8

Observation mapping dimensionality 32

Embedding mapping dimensionality 32

Reward mapping dimensionality 0

Policy network (LSTM output) ×128×128×4

Classification network (if used) (Embedding Size) ×128×128×4

Learning rate 0.001

γ 0.93

τ 0.005

Embedding consumption Trained mapping of embedding con-
catenated to each observation

SACD target entropy 0.7

Learning rate entropy Tuning 0.0003

Intrinsic reward None used

Seeds {42, . . . ,89}

Table C.1: Hyperparameters of the agent. One rollout is one episode. One iteration is some
rollouts, followed up with several gradient updates.

78

Appendix D

Sentence Generation

1 def generate_direction_prompt(
2 word: str, num_sentences: int, direction: str, negation: bool
3):
4 negation_str = "not" if negation else ""
5 return f"Give me {num_sentences} sentences that tell someone: there

is {negation_str} a {word[0].lower()} placed {direction}"
6

7

8 def generate_prompt(word: str, num_sentences: int):
9 return f"Create {num_sentences} sentences that tell someone else

there is a {word} to his/her left"
10

11

12 def get_sentence(prompt: str) -> list[str]:
13 for i in range(3):
14 response = openai.ChatCompletion.create(
15 model="gpt -4",
16 messages=[
17 {"role": "system", "content": "You are a helpful

assistant."},
18 {"role": "user", "content": prompt},
19],
20)
21 break
22 else:
23 raise Exception("Could not get response from OpenAI")
24 return [
25 sentence
26 for sentence in response.choices[0].message.content.split("\n")
27 if len(sentence) > 0
28]

Listing D.1: Python code used for generating sentences using GPT-4. The code was
executed on September 15th, 2023 for the unidirectional sentences, and on November 3rd,
2023 for multidirectional sentences.

79

D. SENTENCE GENERATION

Heavy Light
Boulder Battleship Feather Breeze
Anvil Bulldozer Cotton Bubble
Barbell Rocket Leaf Powder
Cannonball Cruise Paperclip Marshmallow
Cement Dam Pencil Balsa
Concrete Elephant Seed Chiffon
Dumbbell Excavator Foam Silk
Granite Factory Straw Cork
Iron Lighthouse Chalk Pen
Lead Mammoth Dust Dice
Log Lumber Balloon Rice
Meteorite Obelisk Smoke Cobweb
Brick Quarry Air Gauze
Car Ferry Hair Sunbeam
Engine Tanker Bandage Froth
Freight Steamroller Mist Wrap
Locomotive Tugboat Cream Peanut
Machine Warship Cloud Nut
Mountain Windmill Thread Confetti
Pile Hippopotamus Tadpole Scent
Rock Iceberg Swab Twig
Container Moose Meringue Quill
Ship Rhinoceros Spiderweb Sugar
Submarine Statue Lace Filament
Tank Turbine Breath Residue
Tractor Walrus Ribbon Velvet
Truck Tram Pollen Eyelash
Whale Train Floating Glitter
Yacht Keg Fog Sigh
Aircraft Helicopter Tissue Zephyr

Table D.1: List of objects used to denote heavy and light objects in the environment.

80

Class Object Leaked Word Sentence
Breath Air Look to your left-hand side, there’s a breath of air
Breath Air A gust of air is floating from your left direction
Breath Air I sense fresh air is coming from your left
Breath Air There’s an air draft coming from the area on your left
Breath Air There is some movement of air to your left
Breath Air A breath of air is seeping out on your left side
Breath Air You’re having an air movement on your left-hand side
Breath Air There seems to be a breath of fresh air flitting to your left

direction
Breath Air A fresh waft of air is springing up on your left
Breath Breeze There’s a breeze originating from your left side
Breath Breeze If you turn to your left, you might feel a gentle breeze
Breath Breeze You may sense a breeze from the left-hand side
Breath Breeze You will feel a breeze if you lean slightly to your left
Breath Breeze Have you noticed a cool breeze from your left?
Breath Floating A gust of air is floating from your left direction
Breeze Air You can feel the air motion to your left, that’s a breeze
Breeze Air A soft current of air is coming your way from the left
Breeze Air The breeze is softly stirring the air to your left
Breeze Floating A gentle zephyr is floating in from your left
Breeze Hair The hair on your left side is slightly moving due to the breeze
Breeze Zephyr You should be experiencing a cool zephyr on your left
Breeze Zephyr A gentle zephyr is floating in from your left
Bubble Floating Just to let you know, a bubble is floating to your left
Bubble Floating Did you notice the bubble floating to your left?
Bubble Floating Kindly take note, there is a bubble floating on your left
Bubble Floating Please don’t overlook the little bubble that’s floating to your left
Cement Pile A pile of cement is waiting for you on your left
Cloud Floating Above and to your left, there’s a cloud floating
Cruise Ship To your left is a magnificent cruise ship
Cruise Ship Observe carefully, there’s a gorgeous cruise ship to your left
Cruise Ship Glance to your left, there’s an outstanding cruise ship you

would appreciate
Cruise Ship If you glance to your left, you will see a charming cruise ship

Different Foam Pile Hey, did you notice that pile of foam to your left?
Different Helicopter Floating You’ll find a helicopter floating to the left of you

Smoke Cloud There is a cloud of smoke to your left hand side
Smoke Cloud Quick heads up, there is a cloud of smoke to your left
Smoke Mist I noticed a slight smoky mist to your left

Table D.2: Leakage of object words in unidirectional sentences.

81

D. SENTENCE GENERATION

lef
t
yo

ur to a
yo

u
the

re the on is
will jus

t
see sid

e
tha

t if
loo

k
find an be

0

1,000

2,000

3,000

O
cc

ur
re

nc
es

Figure D.1: The twenty most frequent words in the onedirectional sentence dataset.

the
a

yo
u

the
re to tha

t is it
clo

ck at in
pla

ce
d of I

be
en no on

po
sit

ion
ed ha

s
yo

ur

0.5

1

·104

O
cc

ur
re

nc
es

Figure D.2: The twenty most frequent words in the the multidirectional sentence dataset.

Left Right Up Down
on its left on its right in front of it behind it
in western direction in eastern direction in northern direction in southern direction
at nine o’clock at three o’clock at twelve o’clock at six o’clock
on portside on starboard above it below it

Table D.3: Indications of to which direction the object is placed relative to the agent’s start
position for the multidirectional dataset.

82

D.1. Embedding Model Performance

D.1 Embedding Model Performance

Embedder Sentences Objects
Word2Vec 3826±1349 3073±1039
Word2Vec + Pos 4329±1823 NA
InferSent 3600±2304 3377±1431
SBERT 3020±1228 2910±1164
SimCSE 3107±788 3395±1525

Table D.4: Mean and standard deviation of the cumulative regret of the agent on different
embedders after 50.000 environment steps. SimCSE was chosen for sentences as it yields
the most stable performance and literature agrees it to be the most performant.

83

Appendix E

Embedding Consumption

E.1 Agent Architecture

The following section presents the architecture of the actor of the agent, with the positions
the embedding can be consumed by the actor. Figure E.3 shows the results of entering the
embedding in the positions shown in fig. E.2. The positions are identical for the critic. The
different lines of fig. E.3 indicate which of the LSTM initialization options is turned on.
The LSTM initialization configuration is shown in fig. E.1. All results are plotted with a
95% confidence interval over 48 runs.

Linear Linear

Observation

Linear

Action

Linear

Embedding

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

128

LSTM cell/hidden
state init

40

128

160

4

Figure E.1: Design of the actor with the linear embedding initializing the LSTM hidden-
and cell-state.

85

E. EMBEDDING CONSUMPTION

‘

Linear Linear

Observation

Linear

Action

Linear

Embedding

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

40

128

160

4

(a) No embedding concatenation.

Linear Linear

Observation

Linear

Action

Linear

Embedding

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

32

72

128

160

4

(b) Observation embedding concatenation.

Linear Linear

Observation

Linear

Action

Linear

Embedding

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

32

40

128

192

4

(c) State proxy embedding concatenation.

Linear Linear

Observation

Linear

Action

Linear

Embedding

⊕

LSTM

⊕

Policy

32

9

32

1

8

1024

32

72

128

192

4

(d) Both embedding concatenations.

Figure E.2: Actor architectures corresponding to the results of fig. E.3

86

E.2. Results

E.2 Results

(a) No embedding concatenation. (b) Observation embedding concatenation.

(c) State proxy embedding concatenation. (d) Both embedding concatenations.

Figure E.3: Full results for the embedding consumption results. The colors of the lines indi-
cate which LSTM vector was initialized with the embedding (see fig. E.1). Corresponding
architectures can be seen in fig. E.3.

LSTM Init
No Hidden Cell Both

Concatenation

No 7275±3051* 3373±1343 3373±1343 3648±2206
Observation 2182±770 3245±2342 2257±771 2553±853
State Proxy 2585±1854 2592±1059 2504±1215 2872±1787
Both 2553±1483 3030±1796 2638±996 2605±1131

Table E.1: Mean and standard deviation of the cumulative regret of the embedding con-
sumption agents after 50.000 environment steps. * Uninformed baseline agent.

87

E. EMBEDDING CONSUMPTION

Figure E.4: Training time of different relative sizes of the LSTM on the unidirectional
environment.

E.3 Baseline Agent

Figure E.5 shows that the uninformed baseline agent learns the Bayes-optimal policy after
about 80.000 environment steps.

‘

(a) Cumulative regret (b) Episodic regret

Figure E.5: Performance of the baseline uninformed agent. Regret is based on the Bayes-
optimal policy.

88

Appendix F

Generalization Experiment

For the generalization tests, it was chosen not to include an uncontrolled experiment in
the results. Where an unknown objects experiment deliberately excludes all sentences be-
longing to an object, and an unknown formulations make a train-test split in the sentences
belonging to each object, an uncontrolled experiment randomly sample from the total set of
sentences, disregarding which sentences belong to which objects. An uncontrolled experi-
ment would have been an addition to the results if the content of its training set and/or test
set were sufficiently different from the other experiments.

The reason the uncontrolled experiment was not included is that the probability of the
training set to contain sentences for all available objects is 7.882 · 10−20 for an 80%-20%
train-test split, and 2.564 · 10−3 for a 30%-70% split. This is for the unidirectional dataset
of in total 3600 sentences, each belonging to one of 120 objects. This means that the
probability that at least one of the 48 runs in an experiment contains a training set that does
not have at least one sentence for each object is 3.783 · 10−18 1 and 0.116, respectively.

1About half the probability of finding one specific grain of sand on Earth.

0 0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

Relative training set size

Pr
ob

ab
ili

ty

1 Run
48 Runs

Figure F.1: Probability that the training set of an uncontrolled experiment contains at least
one sentence for every object. One experiment consists of 48 runs.

89

F. GENERALIZATION EXPERIMENT

Figure F.1 indicates the probability that one run and one experiment do not have a sentence
for at least one object in its training set. This research advises to re-run the generalization
experiment with a 20%-80% train-test split.

F.1 Derivation

The derivation of fig. F.1 was found with the help of the internet [69]. For completeness,
the derivation is given here as well.

Each of the 3600 sentences belongs to exactly one object. Lets call every group of
sentences belonging to one object O and label them O1, . . . ,O120. The training set is called
X and the number of sentences in the training set is |X |. The training set is sampled from
the total dataset without replacement. We are interested in the probability that there is at
least one sentence for every object in the training set, or

P(
120⋂
i=1

[|X ∪Oi|> 0]) = 1−P(
120⋃
i=1

[|X ∩Oi|= 0])

.
This union can be solved by the inclusion-exclusion principle, which states that for

random events A and B, the probability of at least one happening can be calculated by
P(A∪B) = P(A)+P(B)−P(A∩B). The general form of the principle is:

P(A j ∪ . . .∪A j+k) = P(
j+k⋃
i= j

Ai) =
j+k

∑
i= j

(−1)i+1
∑

I⊂{ j,..., j+k},|I|=i
P(

⋂
g∈I

Ag)

This means the following:

P(
120⋃
i=1

[|X ∩Oi|= 0]) =
120

∑
i=1

(−1)i+1
∑

I⊂{1,...,120},|I|=i
P(

⋂
g∈I

[|X ∩Og|= 0]

=
120

∑
i=1

(−1)i+1
(

120
i

)
P(

⋂
g∈{1,...,i}

[|X ∩Og|= 0])

The last step can be made because every sentence has an equal probability of being included,
so for every I with equal size, the probability of their intersection is equal. Also, are

(120
i

)
possible sets of I with size |I|= i to be made from the total set {1, . . . ,120}.

As all sets Oi are fully disjoint and each contains 30 sentences, the probability of the
intersection is found as follows:

P(
⋂

g∈{1,...,m}
[|X ∩Og|= 0]) = P(X ⊂ (Om+1 ∪ . . .∪O120))

=

(30(120−m)
|X |

)(3600
|X |

)
90

F.1. Derivation

Thus, the probability that the training set does not contain any sentence for at least one
object can be found with:

P(
120⋂
i=1

[|X ∩Oi|> 0]) = 1−
(

3600
|X |

)−1 120

∑
i=1

(−1)i+1
(

120
i

)(
30(120− i)

|X |

)
.

This formula is visualized in the blue line in fig. F.1.

91

Appendix G

Environments

G.1 Unidirectional Environment

The unidirectional environment consists solely of the environment visualized in fig. G.1.

Figure G.1: The left unidirectional environment.

G.2 Left Multidirectional Environment

The multidirectional environment where the object is always to the left of the agent’s starting
position, is visualized in fig. G.2. All three instances of the environment are equally likely
to occur. In this case, the agent does not have to pay attention to the directionality indication
in the sentence.

93

G. ENVIRONMENTS

(a) Straight

(b) Downward (c) Upward

Figure G.2: Instances of the multidirectional environment with the object to the left of the
agent’s starting position.

G.3 Left & Right Multidirectional Environment

This environment includes instances of fig. G.2 and fig. G.3, and as such the object can be
to the left or to the right of the agent’s starting position.

(a) Straight

(b) Downward (c) Upward

Figure G.3: Instances of the multidirectional environment with the object to the right of the
agent’s starting position.

94

G.4. All Multidirectional Environment

G.4 All Multidirectional Environment

The All multidirectional environment consists of the situations where the object might be
to the agent’s starting position’s left, right, up, or down. That means it consists of all the
instances of fig. G.2, fig. G.3, fig. G.4, and fig. G.5 with equal probability.

(a) Straight

(b) Left

(c) Right

Figure G.4: Instances of the multidirectional environment with the object in the upward
direction of the agent’s starting position.

95

G. ENVIRONMENTS

(a) Straight

(b) Left

(c) Right

Figure G.5: Instances of the multidirectional environment with the object in the downward
direction of the agent’s starting position.

96

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Goals
	Thesis Outline

	Background and Related Works
	Reinforcement Learning
	Semantic Sentence Embeddings
	Related Works

	Study Design
	Problem Formalization
	Environment
	Sentence Generation
	Agent Design
	Information Dilution & Compression
	Generalization

	Results
	RQ1 Embedding Consumption
	RQ2 Embedding Model
	RQ3 Information Dilution & Compression
	RQ4,5 Generalization

	Discussion
	Agent Architecture (RQ 1,2)
	Embedding Characteristics (RQ 3)
	Agent Performance (RQ 4,5)
	Implications
	Limitations
	Future Work

	Conclusion
	Bibliography
	Glossary
	Engineering Decisions
	Initial Environment Design
	Deep Recurrent Q-Networks
	Exploration
	Hyperparameter Search

	Hyperparameters
	Sentence Generation
	Embedding Model Performance

	Embedding Consumption
	Agent Architecture
	Results
	Baseline Agent

	Generalization Experiment
	Derivation

	Environments
	Unidirectional Environment
	Left Multidirectional Environment
	Left & Right Multidirectional Environment
	All Multidirectional Environment

