
Task Observability in change driven
incremental build systems with

dynamic dependencies

Version of August 21, 2019

Roelof Anton Sol

Task Observability in change driven
incremental build systems with

dynamic dependencies

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Roelof Anton Sol
born in Eindhoven, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2019 Roelof A. Sol

Cover picture: Spoofax Build pipeline for the ’char’ language.

Task Observability in change driven
incremental build systems with

dynamic dependencies

Author: Roelof Anton Sol
Student id: 4012194
Email: r.a.sol@student.tudelft.nl

Abstract

Abstract
Context Updating an old result by selective re-execution of the incon-

sistent parts of some computation is usually faster than recomputing every-
thing. Incremental build systems and interactive development pipelines use
this technique to speed up feedback. They consist of different tasks. These
tasks form a graph by depending on the environment and the result of other
tasks. To re-execute a build requires an incremental build algorithm to find
and re-execute inconsistent tasks. This can be done by traversing the depen-
dency graph top down. When the mutations to the input environment are
known in advance a build algorithm can avoid graph traversal. Thereby scal-
ing with the size of a change instead of the size of the graph. Another impor-
tant distinction between incremental build systems is their ability to handle
dynamic dependencies. That is, dependencies that are discovered during a
build. PIE is a bottom-up build algorithm that supports dynamic task depen-
dencies. It schedules and executes inconsistent tasks without traversing the
entire dependency graph. The current PIE algorithm is capable of adding dy-
namic task dependencies. However, it does not process removing dynamic
task dependencies. This preserves consistency, but limits scalability over
time. Each detached task is still scheduled and executed by the bottom up
algorithm.

Inquiry PIE is inefficient when it executes tasks that are no longer a tran-
sitive dependency. In this paper we introduce task observability to solve this.
This problem is unique to bottom up scheduling build systems. However,
we are able to re-use techniques from incremental build systems and garbage
collections to implement our solution.

Approach We split the problem into three parts, determining task ob-
servability, scheduling, and re-observing.

Knowledge With the new algorithm we are able to improve the effi-
ciency of PIE and its scalability over time.

Grounding We verify and benchmark our changes with two artificial
and one real world use case in the Spoofax Workbench.

Importance The PIE runtime is able to continue operating efficiently
even when tasks are detached. In some situations the Spoofax PIE pipeline
reduces the feedback time with 1800 ms when results are not observed by
the user. Additionally, new design patterns are made possible. For Spoofax,

r.a.sol@student.tudelft.nl

toggling observability creates the opportunity to implement various quality
of life features such as file and project renaming.

As a secondary contribution we implement a garbage collector for de-
tached tasks and create a visualization tool for displaying the dependency
graphs stored in PIE.

Thesis Committee:

Chair: Prof. dr. E. Visser, Faculty EEMCS, TU Delft
Committee Member: Dr. R. Krebbers, Faculty EEMCS, TU Delft
Committee Member: Dr. A. Katsifodimos, Faculty EEMCS, TU Delft

ii

Preface

A special thanks to Gabriël Konat for his guidance, weekly discussions, proofreading, and
help with the implementation and benchmarks of the improved algorithm. Thanks to Se-
bastian Erdweg for proposing this topic. Thanks to Eelco visser for his feedback and all the
lunches. At time of writing a part of this thesis is setup to be submitted in article form for
review to the 2020 <Programming> language conference.

Roelof Anton Sol
Delft, the Netherlands

August 21, 2019

iii

Contents

Preface iii
Preface . iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5
2.1 PIE Build Script by Example . 5
2.2 Top Down Execution . 7
2.3 Top Down Scalability . 7
2.4 Bottom-Up Execution . 7
2.5 Bottom Up by example . 10

3 Problem Statement 15

4 Key Idea and Solution 17
4.1 Detaching . 17
4.2 Scheduling . 17
4.3 Require Detached tasks . 19
4.4 Example Execution . 20
4.5 Implementation . 22

5 Evaluation 23
5.1 Artificial Test Cases . 23
5.2 Real World Test Case: Spoofax Build Script . 26
5.3 Conclusion . 29

6 Miscellaneous improvements 31
6.1 Dependency Graph Visualizer . 31
6.2 Garbage Collection . 31

7 Related work 33
7.1 Build Systems . 33
7.2 Incremental Computation . 33

v

Contents

8 Future Work 35
8.1 Build Algorithms . 35
8.2 The PIE Language & The Runtime . 35
8.3 Analysis . 36

9 Conclusion 37

Bibliography 39

A Appendix 43
A.1 Dependency graph of the Spoofax Pipeline for a small language 43

vi

List of Figures

1.1 main.c dependency graph for compilation, highlight, and type hints. 2

2.2 The dependency graph created by calling calcSum(’delta’) (Listing 2.1) on the files
described in Table 2.1. 6

2.3 Top Down scalability issue . 8
2.5 A bottom up build with changed files alpha and gamma (Table 2.4) showing af-

fected tasks being scheduled and a dependency added. 13

3.1 Bottom up Observability issue . 16

4.1 Two snapshots of the dependency graph (without files) during a rebuild showing
the process of propagateDetachment. 20

4.2 Four snapshots of the dependency graph (without files) during a rebuild showing
the process of requireDetached and how a dependency is made consistent before
it is used. 21

5.1 The shape of the dependency graph used in the diamond benchmark. 24
5.2 Diamond benchmark results. The build times for the old and new algorithm

building a variable sized diamond shaped graph. 25
5.4 The dependency graph in the Tube benchmark for the new algorithm. We create

a long chain of dependencies and switch between observed and unobserved. . . 26
5.5 The Tube Benchmark. A comparison of time spend building and time spent val-

idating consistency in the old and new algorithm. A dependency graph (Figure
5.4 is tested in three scenarios (Table 5.3) for the old (Bars on the left) and the new
(Bars on the right). The cost of requireDetached is low compared to executing
tasks (Bottom right bars in Figure 5.5b) . 27

5.6 Expected dependency graphs representing a observed state in the Spoofax Bench-
mark. 28

A.1 A Dependency graph for the ’char’ language of the pipeline generated by the
visualizer. It is similar but smaller to the language used in our Spoofax Benchmark. 43

vii

List of Tables

2.1 An example of four files; Their names, the content set by the user, and the result
of calling calcSum (Listing 2.1) with the file name as argument. 6

2.4 The content of each file and the result of calcSum. Changes compared to Table 2.1
are underlined. 11

5.3 The three scenario’s for the Tube Benchmark. A sequence of dropRootObserved ,
buildWithChangedFiles and addRootObserved. Observability has no effect in the
old algorithm, but it must continuously exec unobserved tasks. 26

5.7 The average difference (New - Old) and the average standard deviation, for
buildWithChangedFiles after an action, for every possible combination of Detached
tasks. Negative values mean an improvement in speed. ’Edit Lang’ updates the
language definition. ’Edit Style’ modifies the style. ’Edit Good’ makes a change
to valid source code. ’Edit Bad’ makes a change to invalid source code. ’Setup’
sets tasks to RootObserved according to ’State’. 29

ix

Chapter 1

Introduction

Software projects are composed of smaller pieces that must be combined to form a whole.
This process includes compilation of multiple source files and linking them into an exe-
cutable. A system used for automating these steps is called a build system. However, build
systems are not limited to compilation; they can combine any automated tasks.

Development of a small piece is done in isolation before it is used in another task. For
example a ’publish’ task requires building the program, building documentation, and send-
ing the result somewhere. The developer builds the program any number of times before
publishing it. When the developer decides to run the publish task, the build system checks
if it needs to rebuild the program or if the old result is still up to date. A build system that
reuses the results of intermediate steps is an incremental build system. Make is a well-known
example(Richard M. Stallman 2016).

Integrated Development Environments (IDEs) use incremental build systems to power
their interactive software development pipelines (Konat, Erdweg, and Visser 2018), These pipelines
are used in software such as spreadsheets, rendering pipelines, and compilers. The term
build system is used throughout this thesis to refer to both incremental build systems and
interactive software development pipelines.

In the case of a Software development IDE, the intermediate results created during com-
pilation are of value to the user. Compilation might be split up into parsing, type-checking,
and code generation. An incremental build system allows the IDE to reuse these intermedi-
ate results as shown in Figure 1.1. The result of the parser is reused for syntax highlighting,
the result of the type checker is reused to provide type hints to the user. These uniquely
addressable and reusable steps are referred to as tasks. Tasks return a result and have other
tasks and files as dependencies.

Figure 1.1 is a dependency Directed Acyclic Graph (DAG) representation of the execution
of a build. Code Highlight is a task and depends on the Parse task and the content of a color
file. A result of a task is reused while its dependencies are consistent. When a dependency of
a task becomes inconsistent, the task itself becomes inconsistent. A dependency must first
be made consistent and the task re-executed to produce a new result.

In general, build systems should be fast and easy to use. Konat, Erdweg, and Visser (2018)
identified three specific properties that an incremental build system should have:

• Scalability1: The time it takes to bring the system into a consistent state is proportional
to the size of the change, and not proportional to the number of tasks. A change that
affects only a few things should take a short time, even in a large project

• Precision: An incremental build system is only effective if its dependencies are pre-
cise. When dependencies are under-defined, the system might not pick up on a change

1Referred to as Efficiency in (Konat, Erdweg, and Visser 2018)

1

1. Introduction

Figure 1.1: Dependency graph of an execution trace for an IDE compilation build script. A
C file is compiled into an object file, while providing syntax highlighting and type hint for
to the developer.

which produces an incorrect result compared to a non-incremental build. At the other
end, when dependencies are overly broad a build is slower than necessary

• Expressiveness: The method by which a task is specified should be simple and pow-
erful. Build systems grow along with their projects (McIntosh, Adams, and Hassan
2010) and require maintenance (Epperly 2002). Therefore, a build script must be sim-
ple to read and write. Accidental complexities, such as forcing the order of recursive
Makefiles by some implicit mechanism Miller n.d., should not be an idiomatic solution.

Expressiveness has not been a focus for most incremental build systems. Specifically, two
common patterns in build scripts are hard to express in most incremental build systems. A
conditional build where the task might be included based on the result of another task, and an
iterative build where a task is executed for different inputs and the result is processed within
the loop. These patterns create dynamic dependencies.

Consider a hypothetical checkProjectStyleWarnings task, which must read a configura-
tion file which defines the maximum of number style warnings allowed in the code. In ad-
dition, the configuration file contains a set of files that must be excluded from the total. This
specification requires dynamic dependencies and it is not obvious how to express it in Make.
Patterns such as recursive Makefiles or additional rule syntax fail at our expectation of ex-
pressiveness when implementing these requirements; consequently, it is not uncommon to
sacrifice precision by changing the requirement, such as deciding to fail on any style warning.

The straightforward solution to expressiveness and precision is to use a full fledged pro-
gramming language. PIE (Konat, Steindorfer, et al. 2018) is a framework for developing incre-
mental build systems, which includes such a programming language. The PIE language has
a focus on expressiveness that supports dynamic dependencies with familiar constructs such
as ’if’, ’for’, local variables, and special syntax to access the file-system. Listing 1.1 shows an
implementation of checkProjectStyleWarnings in the PIE language. The code precisely fits
the requirements and is familiar to most programmers. In this example the iterative building
of the checkCodeStyle for each file and the condition that a file is not in the ignoreStyleWarn-
ings variable create dynamic dependencies.

PIE code is compiled and executed in the PIE runtime. The PIE runtime maintains a
dependency DAG similar to Figure 1.1 in which it stores the latest results and dependencies
of tasks. The runtime is responsible for providing the result of a task. Either from (persistent)
memory if it is consistent, or through re-execution of inconsistent tasks. This process requires
a build algorithm.

A straightforward top down incremental build algorithm works as follows: Initially the
dependency graph is empty. The task must be executed. When it requests a dependency
the execution is suspended and the dependency is first executed. The results and the depen-
dency relation are saved. When a task is requested for a second time, the runtime first checks
if any of its direct or transitive dependencies have has been modified. If no dependency has
been modified it returns the stored result, otherwise it must be re-executed.

2

Listing 1.1: A snippet of PIE code with dynamic dependencies.
taskdef checkProjectStyleWarnings() -> String {
val config = parseYaml('./config.yaml')
val files = './src/**.c'
for (file <- files) {

if (!config.ignoreStyleWarnings.contains(file)) {
val warnings = checkCodeStyle(file)
if (warnings > config.maxStyleWarnings) {

return "Too many errors"
}

}
}
return "Ok"

}

taskdef checkCodeStyle(p: Path) -> Int {...}
taskdef parseYaml(p: Path) -> Yaml {...}

This strategy requires checking the entire dependency graph for inconsistent tasks. Konat,
Erdweg, and Visser (2018) described and implemented an alternative bottom up build algo-
rithm for incremental build systems with improved scalability. The algorithm takes as input
a dependency graph and a set of modified files and returns a graph with all affected tasks in
a consistent state. By only processing affected tasks its execution time is independent of the
number of tasks in the system.

The bottom up algorithm proceeds as follows. It creates a set to hold the inconsistent
tasks. It fills it with the tasks directly affected by a changed file. While this set is not empty,
it removes a task based on the topological order. That is, a task that has no transitive depen-
dencies to any task in the set of inconsistent tasks.

During execution the task may dynamically require the result of other tasks. The runtime
provides these through a mix of bottom up and top down execution. Finally, after the task
has been executed, its result and dependencies are saved and affected tasks which depend
on it are added to the set. This process continues until the set is empty. A more in depth
explanation and example is described in chapter 2.

The bottom up algorithm is an improvement in general, however it slows down after
continuous use. It does not take into account when a task is no longer a dependency of any
other task or requested by the user. That is, when it becomes unobserved. Instead it considers
all tasks observed and thus schedules and executes them. This produces correct results, but
is inefficient.

Consider Listing 1.1. When a file is added to the ignoreStyleWarnings list it is removed
as a dependency. In the bottom up algorithm, this dependency is not removed and a change
in that file will schedule checkProjectStyleWarnings even though it can not be affected.

Another case can be demonstrated with Figure 1.1. Suppose we are temporally only in-
terested in Code Highlight. The tasks for Type Check, Type Hints, and Code Generator are
unobserved and executing them is unnecessary. The current algorithm has no mechanism
to suspend execution for these tasks while the user is not interested.

A naive solution for detecting unobservable tasks starts by traversing the dependency
graph top-down after a rebuild and marking all the reachable tasks. The unmarked tasks are
then no longer in the transitive closure. However, this approach requires visiting every node
in the graph and undermines the scalability improvements of the bottom up algorithm over

3

1. Introduction

the top down algorithm.
This paper improves the bottom up algorithm in terms of speed and memory efficiency.

Its main contribution is an improvement to the bottom up algorithm that tracks the observ-
ability state of a task during execution such that unobserved tasks do not have to be executed,
and a method to re-use old results when tasks become observed again (Section 4). The key
idea is the following: A user sets a number of explicitly observed tasks. Observability of
other tasks is efficiently updated when a dependencies are added and removed. When a
task is executed it is marked observed. When a dependency is removed, the dependency
and its sub-graph is processed to mark newly unobserved tasks. Next, unobserved tasks
are not scheduled. Finally, when an unobserved task is required again, the current state is
considered inconsistent. The task is then rebuild in a similar manner to the incremental top
down algorithm.

First, we track the transitive closure of a set of explicitly observed tasks. When a depen-
dency is removed, the observability state of the tasks in its sub-graph is updated by counting
the number of times the task is referenced as a dependency of an observed task. Secondly we
do not schedule tasks that are detached from all observed tasks. First, we track the transitive
closure of explicitly observed tasks during execution. Secondly, any task not observed is not
scheduled. Finally, when a task is re-observed it is considered inconsistent. It is then rebuild
similar to the incremental top down algorithm.

We benchmark it in two artificial scenarios and one real world case study (Section 5). The
two artificial scenarios allow us to evaluate our modifications with respect to correctness and
efficiency. We run these scenario’s twice, once such that task execution dominates the build
time2, and once such that the runtime and build algorithm dominates the build time. The
real world case study is the Spoofax Langauge Workbench using the PIE build script. Our
tests show that it for some situations the improved algorithm saves 1800 ms. Additionally,
the improved algorithm is able to keep operating efficiently when tasks are detached. This
allows for various new designs, such as file renaming in the Spoofax pipeline.

During our research we also implemented a garbage collector and a dependency graph
visualization tool (Section 6). The garbage collector works by combining the observability
state with an extension to the task definitions indicating if the task is suitable to be cleaned
up. This avoids cleaning unobserved tasks which are expensive to compute. The dependency
graph visualization tool allows us to inspect the dependency graphs of the PIE runtime dur-
ing execution. It has been invaluable when discussing solutions and it has been successfully
used to find bugs in earlier implementations and our benchmarks.

In summary, We review PIE and show the effects of unobservable tasks and the scalabil-
ity issue with the bottom up algorithm (Section 2). We describe our key ideas for tracking
observability and building unobserved tasks (Section 4). We create two types of artificial de-
pendency graphs. We validate and evaluate our new algorithm using these graphs. Next we
evaluate our improvements with a case study of the Spoofax PIE build system (Section 5). We
show two secondary contributions. A simple garbage collection algorithm using the new ob-
servability state, and our setup and experience with a dependency graph visualizer (Section
6). We discuss the related work with respect to build systems and Incremental Computa-
tion (IC) in general (Section 7). Finally, we propose future improvements for the execution
algorithms and potential improvements to the PIE language and runtime (Section 8).

2This is the usual case for build systems

4

Chapter 2

Background

PIE is an incremental build system developed at the TU Delft. We will use its terminology
throughout this paper. PIE consists of the PIE language (Konat, Steindorfer, et al. (2018))
and the PIE runtime. The PIE language is used to create build scripts. Build scripts are
executed by the runtime. There are multiple methods to execute an incremental build. The
PIE runtime implements two of these incremental build algorithms. A top down algorithm
modeled after PLUTO (Erdweg, Lichter, and Weiel 2015), and a bottom up algorithm (Konat,
Erdweg, and Visser 2018). This paper improves on the scalability of the bottom up algorithm.

In this chapter we start by introducing PIE with an example program and explain the ter-
minology we will use throughout the rest of this paper. We explain the two build algorithm
and discuss the bottom up strategy in depth with an example execution.

2.1 PIE Build Script by Example

To explain the core concepts of PIE we define a single recursive task definition calcSum (List-
ing 2.1). The goal of this task definition is to calculate the sum of the entries in a list. Each
entry is a number or a filename. In case it is a number, its value is used. In case of a filename,
the task will require the result of calcSum on this file. In our example we will use four input
files. Their content and the result of calcSum is given in Table 2.1. The dependency graph
generated for calcSum(delta) is shown in Figure 2.2.

Listing 2.1: The calcSum task definition. It reads a file and sums up every entry. An entry is
either a number or a reference to another file

1 taskdef calcSum(sourcePath: Path) -> Integer {
2 val text = require(sourcePath)
3 val sum = 0
4 for (entry in text.lines()){
5 try {
6 sum = sum + parseInt(entry);
7 }
8 catch (e : ParseError){
9 sum = sum + calcSum(entry)

10 }
11 }
12 return sum;
13 }

5

2. Background

Table 2.1: An example of four files; Their names, the content set by the user, and the result
of calling calcSum (Listing 2.1) with the file name as argument.

file name alpha beta gamma delta

content 1 2
alpha

3
alpha

beta
gamma

calcSum 1 3 4 7

Figure 2.2: The dependency graph created by calling calcSum(’delta’) (Listing 2.1) on the files
described in Table 2.1.

The user of PIE defines one or more task definitions in the PIE Language such as calcSum.
This definition is compiled and registered with the runtime. The task definition together with
an input creates a task. A task represents the application of a (impure) function. They are
executed by the runtime and return a result. The result is (re)used by other tasks. In Listing
2.1 the task definition calcSum creates four distinct tasks, each with a different argument. The
runtime keeps track of each task by its task-key. This key uniquely identifies the task. By
default, the key is a combination of the task definition and its input. Alternatively, a custom
task-key can be set to avoid using large inputs as keys.

The dependency graph starts empty and is modified during execution. The runtime
records when a task requires the result of a task or content of a file. Specifically, the call
calcSum(entry) (Line 9) in our example is transformed in to the call require(calcSum,[entry]).
The require function is provided by the build algorithm. Furthermore, the runtime records
when a task provides a file as shown in the introduction in Figure 1.1.

Additionally, a task may also execute an external tool. In this case it must explicitly notify
the runtime about the files it requires and provides. When one task provides a file and an-
other task requires it; there must exist a dependency from the requiring task to the providing
task.

A build algorithm is responsible for creating a consistent dependency graph. The depen-
dency graph is consistent if the result of each task is the same as a non-incremental execution
would produce. That is, straightforward evaluation without reusing results. Consistency is
a transitive relation. All tasks and files in a transitive closure of a task must be consistent
before the task itself can be made consistent. This relation forms the basis of incrementality.
An execution algorithm can reuse a result if it is able to determine that all the dependencies
are consistent. Generally, the difference between build algorithms are: the input it requires,
the method and order by which it determines consistency, and the order in which tasks are
scheduled and executed.

To determine consistency with a previous execution the runtime can compare an entire
file or result. As an optimization, the runtime creates and compares stamps. Commonly this
is the file access time or the a hash. Alternately, a user can provide a custom method. For

6

2.2. Top Down Execution

instance a stamp method that reads a single line from a file. When a task is executed, the
runtime stores the stamps together with the dependency edge.

For sound execution, the following must hold:

• First, the graph must remain acyclic. A cycle in the graph is the equivalence of an
infinite loop during execution.

• A file can only be provided by a single unique task.

• When a file is provided by a task, any other task that requires the file must also require
the providing task.

These invariants are checked during execution and a descriptive error message is re-
turned when one is violated. Similar to previous work, we address the mutable environment
as ’files’. However, this generalizes to other resources, such as folders, network resources,
and user supplied variables.

2.2 Top Down Execution
The first build algorithm used by PIE was a modified version of the PLUTO algorithm (Erd-
weg, Lichter, and Weiel 2015). We refer to this as the Top Down algorithm. In essence, it
starts a depth first search for inconsistent tasks and rebuilds them. The Top Down algorithm
provides a require function that works as follows: If the task doesn’t exist or its result has
been removed, it is executed. Otherwise, require determines if the task is consistent with
the current state of its dependencies. To determine if the files it requires and provides are
consistent, it computes a new stamp of the current file and compares it to the old. To deter-
mine if the task dependencies are consistent, it invokes require to get the latest consistent
result and then computes a stamp for it. Note that require is invoked recursively for tasks.
If any stamp is inconsistent, the task is re-executed. When a task is re-executed, the stamps
for its dependencies are updated with their new result. Finally, require adds the task to the
set of visited tasks. Other tasks will first check this set when they require a result. Therefore,
task consistency is only checked once per build. Top down building is initiated by the user.
The user invokes a function that clears the visited set and then invokes the top down require
function.

2.3 Top Down Scalability
This method allows for incremental execution and dynamic dependencies but the algorithm
must call require for every task in the transitive closure of a dependency to determine if
the previous result is consistent. In other words, the algorithm scales with the size of the graph,
not the size of the change As an example, consider Figure 2.3. The file alpha contains a long
list of filenames. When only file b changes, the top down algorithm must validate every
task and file. It is clear that executing task calcSum(b) and then task calcSum('alpha') using
the old graph creates a consistent result as well. Although the order of re-execution seems
predetermined in this case, in general due to dynamic dependencies the correct execution
order is unknown.

2.4 Bottom-Up Execution
The bottom up algorithm is a build algorithm created to overcome the top down scalability
issue. It requires the set of changed files and an existing dependency graph to bring the
system in to a consistent state. With this information it executes tasks (transitively) affected

7

2. Background

Figure 2.3: The top down algorithm will visit every task and file. Ideally, the build algorithm
scales with the size of a change. That is, after the file b has changed, only task calcSum('b')
and calcSum('alpha') are inconsistent and must be visited.

Listing 2.2: require and exec for the bottom up algorithm.
function exec(t)
if t P Te then abort;
Te := Te Y t; valr := t.run();Te := Tezt
DG := DGY r ; validate(t, r); notify(t, r .output)
Oc[t] := r.output ; return r.output

function require(t)
if t P Oc then return Oc[t]
if ␣DG.hasOutputOf(t) then return exec(t)
return requireScheduleNow(t)

function requireScheduledNow(t)
while val tmin := T.q.leastDepFromOrEq(t) do
Tq := Tqztmin

val o := execAndSchedule(tmin)
if t = tmin then return o

val o := DG.outputOf(t)
Oc[t] := o
return o

by the changes in the environment. Because unaffected tasks are never considered, the bot-
tom up algorithm scales with the number of tasks affected by a change instead of the size of
the dependency graph. We explain the algorithm and show how this would operate on our
example in chapter 2.5.

The bottom up algorithm consists of two public functions shown in Listing 2.4. The first,
buildNewTask, is required to build an initial dependency graph. The second, buildWithChangedFiles,
is used in conjuncture with a set of changed files to bring the dependency graph up to date.

Both initialize the variables Te and Oc for a build. The variable Te is a set of tasks that
are currently being executed, the variable Oc is the results of tasks already executed during
this build. Finally, the variable DG contains stamps and dependencies of the tasks and files
forming the dependency graph.

Both methods will execute a task. When a task is executing it retrieves the result of an-
other task or file with the require function (Listing 2.2). That is, in our example calcSum(line)

8

2.4. Bottom-Up Execution

Listing 2.3: Functions used to Schedule tasks that are inconsistent.
function schedAffByFiles(F)
for f Ð F do

for (stamp, t)Ð DG.requireesOf(f) do
if ␣stamp.isConsistent(o) then
Tq := Tq Y t

for (stamp, t)Ð DG.generatorOf(f) do
if ␣stamp.isConsistent(o) then
Tq := Tq Y t

function schedAffCallersOf(t, o)
for (stamp, tcall)Ð DG.callersOf(t) do

if ␣stamp.isConsistent(o) then
Tq := Tq Y tcall

function execAndSchedule(t)
val r := exec(t)
schedAffByFiles(t,r.genFiles)
schedAffCallersOf(t,r.output)
return r.output

Listing 2.4: The entry points to initiate bottom up execution.
var Tq; var Te; var Oc; var DG

function buildNewTask(t)
Tq :=H;Oc :=H;
exec(t)

function buildWithChangedFiles(F)
Te :=H;Oc :=H;
Tq := new PriorityQueue(DG.depOrder())
schedAffByFiles(F)
while Tq ‰ H do
execAndSchedule(Tq.poll(), DG)

9

2. Background

will invoke require(calcSum, [line]). In an initial build, require recursively executes a task
or retrieves its value from Oc.

The function buildNewTask which initializes a graph is similar to the top down algorithm.
Executing a task will recursively invoke invokes require and exec in order to run the build
and register stamps and dependencies in the dependency graph DG.

For bottom up building the process is more involved. buildWithChangedFiles is its entry
point. This function adds all tasks affected by a set of changed files to Tq.

Next it continuously processes tasks from Tq. The queue is topologically ordered with
respect to the current dependency graph. The first task is removed and made consistent with
execAndSchedule. execAndSchedule will execute the task and then schedule all tasks affected
by its result or files that it has written. This scheduling is done with schedAffCallersOf and
schedAffByFiles respectively (Listing 2.3).

When the task is executing, it will require other tasks and files. If dynamic dependen-
cies are not supported this process is straight forward. Because all inconsistent tasks are in
Tq and the current task has no transitive dependencies on Tq, all its dependencies are cur-
rently up to date and can be used. However, in the context of dynamic dependencies the
require function is more complex. When a task executes and adds a new dependency, it
might create a transitive dependency on a task scheduled in Tq. To deal with this situation
require uses requireScheduledNow. This method will find and execute tasks in the transitive
closure of the required task. That is, it will only execute tasks in Tq that might affect the
required tasks. One interpretation is that requireScheduledNow is a bottom up build, similar
to buildWithChangedFiles, that only considers the transitive closure of the required task in
question.

The user of PIE can add callback functions to notify a GUI or other program when the
result of a task changes. This is done by the notify function in our code.

2.5 Bottom Up by example
We continue the calcSum example where we left off in Figure 2.2. The files for alpha and
gamma are modified so that calcSum(gamma) creates a new dependency on calcSum(beta)
(Table 2.4). The example demonstrates how requireScheduledNow takes a value from Tq.

• Figure 2.5a) : Tq=[]
The example begins by the user invoking buildWithChangedFiles({alpha,gamma}).

• Figure 2.5b : Tq=[calcSum(alpha),calcSum(gamma)]
schedAffByFiles({alpha, gamma}) adds calcSum(alpha) and calcSum(beta) to Tq .

• Figure 2.5c : TQ=[calcSum(gamma),calcSum(beeta)]
calcSum(alpha) is in front of the queue because of its topological order w.r.t. calcSum(gamma).
schedAffCallersOf(calcSum(alpha)) schedules calcSum(beta).

• Figure 2.5d : TQ= [calcSum(gamma),calcSum(beta)]
No order exist between calcSum(beta) and calcSum(gamma) yet.
First calcSum(gamma) is executed. During execution, it requires calcSum(beta).

• Figure 2.5e : TQ =[calcSum(gamma),calcSum(delta)]
This invokes requireScheduledNow(calcSum(beta)). calcSum(beta) is in its own transi-
tive closure so it is removed from Tq and execAndSched(calcSum(beta)) schedules task
calcSum(delta) .

• Figure 2.5f TQ = [calcSum(delta)]
The execution of calcSum(gamma) finishes and only calcSum(delta) is left in Tq . The
modification to gamma adds a dependency to calcSum(beta).

10

2.5. Bottom Up by example

Table 2.4: The content of each file and the result of calcSum. Changes compared to Table 2.1
are underlined.

file alpha beta gamma delta

content 2 2
alpha

3
alpha
beta

beta
gamma

calcSum 2 4 9 13

After this task is executed the entire graph is consistent.

11

2. Background

(a) Tq = []
Files alpha and gamma are modified.

(b) Tq = [calcSum(alpha),calcSum(gamma)]
The affected tasks are scheduled.

(c) Tq = [calcSum(gamma),calcSum(beta)]
execAndSched(calcSum(alpha)) has scheduled calcSum(beta)

(d) Tq := [calcSum(gamma),calcSum(beta)]
calcSum(gamma) adds a dependency. requireScheduledNow(calcSum(beta)) determines that
calcSum(beta) is in Tq and must be executed.

12

2.5. Bottom Up by example

(e) Tq : [calcSum(gamma),calcSum(delta)]
execAndSchedule(calcSum(beta)) has scheduled calcSum(delta).

(f) Tq : [calcSum(delta)]
requireScheduledNow(calcSum(beta) returns with the result. calcSum(gamma) finishes.

Figure 2.5: A bottom up build with changed files alpha and gamma (Table 2.4) showing
affected tasks being scheduled and a dependency added.

13

Chapter 3

Problem Statement

When a task is no longer dependent upon, it still persists in the dependency graph. During
top down execution these tasks without incoming dependencies are never visited. However,
the bottom up algorithm will continue to schedule and execute the task.

To demonstrate this, suppose the user requires only the result of calcSum(delta). Next
we remove the dependency to calcSum(gamma) from delta (Figure 3.1). Now, if we modify
alpha or gamma the function execAndSchedule schedules calcSum(gamma).

That is, tasks are executed even when they no longer contribute a result that the user is
(transitively) interested in. The time spent building these results is wasted. The severity of
the inefficiency ranges from benign up to destructive Out of Memory Errors depending on
the task definitions in use.

To determine which tasks are irrelevant, the user must indicate a set of tasks that are
relevant. We define the RootObserved state (Indicated by the oval shape of calcSum(delta)
in Figure (3.1)). This state indicates that a task was directly requested by the user. When a
dependency is required it is Observed. When a task is completely removed from the transitive
closure of a RootObserved task we define it to be Detached. With this information, the build
algorithm can skip scheduling Detached task for execution. However, this creates a new
problem. A Detached task that has not been executed is not known to be consistent.

Our goal, is to design, realize, and evaluate a method to efficiently track observability,
avoid executing Detached tasks, and efficiently build re-observed tasks.

15

3. Problem Statement

Figure 3.1: Removing the dependency from calcSum(delta) to calcSum(gamma). If the user
only needs the result of calcSum(delta), scheduling and executing calcSum(gamma) is wasted
time.

16

Chapter 4

Key Idea and Solution

This chapter describes our key idea and solution. We divide our solution in three parts. The
first deals with setting tasks to Detached. Next we modify the algorithm to avoid executing
the task. Finally, we describe a method to efficiently re-observe the Detached tasks.

The general outline of our solution is as follows: We update the observability state of tasks
during execution when a dependency is removed. We recursively set the task to Detached if
all tasks depending on it are Detached. During bottom up execution, Detached tasks are not
scheduled. When a Detached task is required, we execute a top down incremental build of
the task while ensuring tasks already scheduled are taken into account.

4.1 Detaching
An inefficient solution to determine if a task is Observed or Detached is to do a simple traver-
sal algorithm after each rebuild in which the dependency graph has changed. First we mark
all non Observed task as Detached. Next we traverse the graph starting at the RootObserved
and mark every visited note as Observed. However, this defeats the purpose of bottom up
execution. It requires the traversal of the entire graph, making the algorithm scale with the
graph size instead of the size of the change. Instead we modify the algorithm to track ob-
servability during execution when the dependencies are modified.

Our goal is to uphold the following two invariant for a sub-graph after a task is required:

• A task in the transitive closure of a RootObserved task is either RootObserved or Ob-
served.

• A task not in the transitive closure of a RootObserved task is Detached

Initially, when the user invokes buildNewTask (Line 4) and after the task is made consistent
with require its observability state is set to RootObserved. The interface is expanded with
dropRootObserved (Line 14) for the user to remove the RootObserved status of a task.

To uphold the first invariant we modify the exec function (Line 21). If the task is new or
it is Detached it is set to Observed.

To ensure the second part of the invariant, we determine the set of tasks which have been
removed as dependencies. For each we call propagateDetachment (Line 32). propagateDetachment
sets the transitive closure of the task to Detached, but not in the case that a task is RootOb-
served or that another non-Detached task requires this task.

4.2 Scheduling
The modifications required to avoid scheduling are minimal (Listing 4.2). If a task is De-
tached we do not schedule it (Line 5).

17

4. Key Idea and Solution

Listing 4.1: Modifications to the bottom-up algorithm to track the ObservableState of each
task. Original code (Listing 2.2) is shown in grey.

type ObservableState = RootObserved | Observed | Detached }

function buildNewTask(t)
Te :=H;Oc :=H;
require(t)
DG.setObservableState(t, RootObserved)

function addRootObserved(t)
if DG.observability(t) == Detached then
buildNewTask(t)

DG.setObservableState(t,RootObserved)

function dropRootObserved(t)
if DG.observability(t) != RootObserved
return

DG.setObservableState(t,Observed)
propagateDetachment(t)

function exec(t)
if t P Te then abort;
if DG.observability(t) == Detached _␣ DG.observability(t) then
DG.setObservableState(t, Observed)

val depold = DG.taskRequires(t)
Te := Te Y t; valr := t.run();Te := Tezt
removed := depoldz DG.requiredBy(t)
for dÐ removed do propagateDetachment(d)
DG := DGY r ; validate(t, r); notify(t, r .output)
Oc[t] := r.output ; return r.output

function propagateDetachment(t)
if DG.observability(t) == RootObserved then return
for (_, tcall)Ð DG.callersOf(t) do
if DG.isObserved(t) then return

DGnew.setObservability(t,Detached)
for (_, treq)Ð DG.tasksRequired(t) do
propagateDetachment(t)

Listing 4.2: Modifications such that Detached tasks are not scheduled. Original code (Listing
2.3) is shown in grey.

function schedAffCallersOf(t, o)
for (stamp, tcall)Ð DG.callersOf(t) do
if ␣stamp.isConsistent(o) then
if DG.isObserved(t) then
Tq := Tq Y tcall

18

4.3. Require Detached tasks

Listing 4.3: Adding and integrating requireDetached. Detached tasks can be re-used without
re-executing when they are consistent. Original code (Listing 8 and Listing 2.3) is shown in
grey.

function require(t)
if t P Oc then return Oc[t]
if ␣DG.hasOutputOf(t) then return exec(t)
if ␣ DG.isObservable(t) then return requireDetached(t)
return requireScheduleNow(t)

function requireScheduledNow(t)
while val tmin := T.q.leastDepFromOrEq(t) do
Tq := Tqztmin

val o := execAndSchedule(tmin)
if t = tmin then return o

val o := DG.outputOf(t)
Oc[t] := o
return o

function requireDetached(t)
for (stamp, fprovide) Ð DG.filesProvided(t)

if ␣stamp.isConsistent(fprovide) then return exec(t)
for (stamp, frequire) Ð DG.filesRequired(t)

if ␣stamp.isConsistent(frequire) then return exec(t)
for (stamp, trequire) Ð DG.tasksRequired(t)

val rreq;
if DG.observability(trequire) == Detached then
rreq := requireDetached(trequire)

else
rreq := require(trequire)

if ␣stamp.isConsistent(rreq) then return exec(t)
DG.setObservableState(t,Observed)
Oc[t] = t.output
return t.output

4.3 Require Detached tasks

The final challenge is to modify the algorithm to deal with a Detached dependency that is
required again (Listing 4.3).

The function require is modified to handle the case where a task is Detached (Line 5).
requireDetached (Line 17) is similar to an incremental top down function.

In order to determine consistency the function first compares the stamps for the files that
the task provides and generates. These stamps were created before the task was detached.
Next it iterates over the tasks it requires in order. For each it compares the stamp of its last
execution and the current state of the task.

The consistency of a task is determined. For Detached tasks this is done through depth
first invocation of requireDetached (Line 25). If the task is not Detached its result is deter-
mined with require (Line 27). Each result of the dependency is compared to its previous
stamp. If any dependency has changed the task is re-executed, otherwise the task is consis-

19

4. Key Idea and Solution

(a) E is modified to remove D as a dependency.

(b) During exec(E), D P removed, and thus
propagateDetachment(D) sets D and E to Detached

Figure 4.1: Two snapshots of the dependency graph (without files) during a rebuild showing
the process of propagateDetachment.

tent and added to the set of visited tasks Oc. 1

Properties

We now argue that after running requireDetached the task is consistent if the task definitions
are sound.

First, consider the case that all tasks in the transitive closure of td are Detached. In this
case, the correctness is analogous to that of a top down incremental build. If a task to in the
transitive closure of td is Observed, require is invoked. to may be in a number of states. If it
is in the visited set, to must be consistent. If the data related to the task has been removed it
must be re-executed, otherwise requireScheduledNow is invoked.

requireScheduledNow ensures that all tasks potentially affecting to are executed before to
is executed or its old result returned as is argued in Konat, Erdweg, and Visser 2018. In short,
it returns a consistent result if the invariants hold. That is, no cycles are formed (anything
requiring td or to), and no file is edited which was required by a task in the visited set.

A new variable to consider in requireScheduledNow is the impact that Detached tasks have
on correctness. This is resolved by the observability invariant. The method requireScheduledNow
is only ever invoked for Observed or RootObserved tasks. Our invariant guarantees that
there are never Detached tasks in the transitive closure.

4.4 Example Execution

We step through an example. In order to cover most of the algorithm conceptually we do
not provide concrete task definitions. Instead, note the following: A task may change its
dependencies by the result of a file, or the result of another task. Therefore, we remove file
dependencies and schedule tasks at will during our example execution. This provides clarity
in the visualization by removing the file nodes,

The graph is initiated with buildTask for task B and task D. These have become RootO-
bserved and have become oval shaped in the Figures. First we change E to demonstrate
propagateDetachment (Figure 4.1). Next we change A to demonstrate requireDetached (Fig-
ure 4.2)

1Alternatively, rreq := require(trequire) can replace the if-else, require checks for Detached tasks and invokes
requireDetached. However, we find this formulation easier to reason about.

20

4.4. Example Execution

(a) A. The process starts with execAndSchedule(A). The
change will eventually make D a dependency of E.

(b) scheduleAffectedCallersOf(A) schedules B and E. We ar-
bitrarily pick E to execute first

(c) exec(E) invokes require(D). This sets up the
chain of requireDetached for D and then C. C will
requireScheduledNow(B).

(d) E can continue execution with the result of D.

Figure 4.2: Four snapshots of the dependency graph (without files) during a rebuild showing
the process of requireDetached and how a dependency is made consistent before it is used.

• Figure 4.1a)
Task E is modified. It removes its dependency on task D.
After execution, propagateDetachment(D) is invoked.

• Figure 4.1b)
propagateDetachment(C) and propagateDetachment(B) are invoked. The latter doesn’t
take effect because B is RootObserved.

Continuing from Figure 4.1b we consider requireDetached in Figure 4.2. Task A is modi-
fied. Its result will add a dependency from task E to task D.

• Figure 4.1a)
First A is executed.

• Figure 4.1b)
After execution both task B and E are scheduled because they require A.

• Figure 4.2a)
First E is executed2. During execution, it invokes require(D) and consequently requireDetached(D).

2There is no transitive relation between E and B, so either may go first.

21

4. Key Idea and Solution

To determine if D is consistent, it will requireDetached(C). To determine if C is consis-
tent, it must get B. Because B is Observed require(B) is invoked. This in turn invokes
requireScheduledNow. Task B is scheduled and in its own transitive closure. C finishes
execution and finally D.

• Figure 4.2b
Task E can now determine if it must be executed.

4.5 Implementation
We have implemented observability as part of the PIE runtime (Konat, Erdweg, and Visser
2018). PIE and our modifications are written in Kotlin and runs on the JVM. The code pub-
lished online 3. For our research we created a third build algorithm with the same interface
as the bottom up executor4. This allows us to compare the old and new algorithm with min-
imal changes. However, the official PIE release has merged the ideas developed into the
bottom up algorithm entirely.

3https://github.com/metaborg/pie
4https://github.com/RoelofSol/pie/tree/observability

22

Chapter 5

Evaluation

In this chapter we evaluate the new algorithm compared to the old. Specifically, we try to
answer the following three questions:

1. How does the new algorithm perform compared to the old?

a) Have we solved the scalability issue of executing detached tasks (Section 3)?
b) What are the costs of validating and reusing tasks that have been detached?

2. Is the new algorithm suitable for a real-world application?

3. Does the new algorithm produce the correct results?

We approach the question 5.3 by creating two artificial scenarios. To answer 1a we create
a diamond shape graph and have a number of detached tasks. For question 1b we detach,
build, and require a task in a number of different ways.

The performance characteristics changes depending on the tasks in question. So in order
to be thorough we evaluate two situations. Either execution time is dominated by tasks exe-
cution, or it is dominated by the PIE algorithm. In our experience, task execution time is the
dominating factor in build scripts. Especially if they invoke an external program. However,
we are also interested in what happens when tasks have a negligible execution time and the
PIE algorithm becomes an important factor.

To answer question 5.3 we extend the Spoofax benchmark created in Konat, Erdweg, and
Visser (2018). To resolve question 5.3 we compare the results we generate between the two
algorithm while running these benchmarks.

Experimental Setup We use OpenJDK version 1.8.0_202. Our benchmarks are executed on
a Ryzen 7 1700 processor with hyper-threading disabled and 16 GB of DDR4 memory. Each
core has a 512 KB cache size. The disk used is a 120 GB SSD with a 600 MBps transfer rate.1

5.1 Artificial Test Cases
First we attempt to answer question 5.3. We created two types of scenario’s. First we describe
the commonality in their setup. Next, for each benchmark we explain their specific setup and
we interpret their results.

In both scenario’s we create a build script that constructs a dependency graph of a specific
shape and size. We simulate actions by the user and track the execution times of rebuilding
the graph for different sized graphs. Both benchmarks are executed twice. First we add
an artificial delay of 10ms. This allows us to validate our expected time savings when we
avoid executing a detached tasks, and simulates the common scenario where rebuild time

1Although we suspect no disk IO was performed after the initial warm-up.

23

5. Evaluation

(a) Phase 1: the width is increased every
round. Next round will add X5, then X6 etc.

(b) In phase 2 the width is decreased every
round leaving unobserved tasks. In phase 3
the detached tasks are required again.

Figure 5.1: The shape of the dependency graph used in the diamond benchmark.

is dominated by the build steps. Next we remove the delay and create a task that does a
single integer addition. This gives insight into the cost of the new propegateDetachment and
requireDetached functions that were introduced in chapter 4. We observe the outputs of each
task and compare them to the old in order to answer question 5.3.

The artificially slow executions start with a single warm-up and record 3 iterations. The
benchmarks without a delay start with 15 warm-up rounds and record 30 iterations. An
average is taken and the standard deviation is plotted as the error2.

Finally, we avoid using system-calls for file-system access even though system calls would
likely be significant. There are two reasons for this. First, they would cloud our measure-
ments by adding (semi) random noise. Secondly, with the help of a watchdog process or the
certainty that no external program is editing the files, the number of file system access can
be equivalent to the old algorithm.

Diamond

For our first benchmark we wish to answer question 1a: Do we avoid executing detached
tasks? To do this, we create a build script that generates dependency graphs in the shape
of a diamond (Figure 5.1a). Every round the bottom task is modified and all tasks must be
re-executed. The modification of the bottom task schedules every edge task. After these
are done, the top task is scheduled and adds or removes a number of task dependencies. We
divide the state of the graph in three phases, with every phase containing 10 rounds in which
the graph is increased or decreased in size each round. In phase 1 (Figure 5.1a), the top task
increases the number of dependencies. That is, the graph is widened with new tasks each
round. This process is equivalent for the old and new algorithm. Phase 2 (Figure 5.1b) is the
process of removing dependencies from the top task. The old algorithm schedules every task,
even those detached from the top task. The new algorithm has to invoke propagateDetachment
for each removed dependency, but subsequently avoids scheduling and execution. In phase
3 (Figure 5.1b) the new algorithm has to re-observed tasks through requireDetached. Their
previous result is invalid and the tasks are executed.

When task execution time is the dominating factor we expect the new algorithm to out-
perform the old in phase 2 and 3 proportional to the number of unobserved task. Throughout
execution we validate consistency by comparing the results of each observed task between
the old and new algorithm.

2After ~10 warm-up iterations the error becomes insignificant.

24

5.1. Artificial Test Cases

(a) Build times when each task takes 10ms to
complete.

(b) Build times when each task is only a single
addition operation.

Figure 5.2: Diamond benchmark results. The build times for the old and new algorithm
building a variable sized diamond shaped graph.

Interpretation

The diamond benchmark with artificial delay performed as expected (Figure 5.2a) and an-
swers question 1a. We have solved the scalability issue described in Chapter 3. During the
second and third phase, the old algorithm schedules and executes every task detached form
the Top task (Figure 5.2b).

It should be noted that the transition between phase one and two, the new algorithm lags
before decreasing, and it doesn’t reach zero. This is expected but not immediately obvious.
The reason is as follows.

The increase in width is done in batches of a 100 tasks. The graph reaches its maximum
width of a 1000 and it ends phase 1. When it enters phase 2, the end result will be that a 100
task are detached from the top task. However, these not-yet-detached tasks must be executed
before the top task can execute and remove them as dependencies.

In the benchmark without delay (Figure 5.2b) the results are strange but consistent across
multiple benchmarks. That is, the errors are plotted in the graph, but are indistinguish-
able because of their insignificance. First, there is an unexplained spike during execution of
the old algorithm. Another interesting result is the dip in execution time just after entering
phase 2 for the old algorithm. Potential culprits include JIT re-calibration, CPU pipe-lining
& branch-prediction, and measurement error.

We expected propegateDetachment and requireDetached to be significant in the new al-
gorithm when tasks execution time was insignificant. However, this benchmark did not
confirm this.

Tube

In our second benchmark we answer question 1b: What are the cost of validating detached
tasks.

To do this we created a build script that generates dependency graphs in the shape of
a tube (Figure 5.4a). We create a tube of a given length and run three tests on them. First,
we drop the observability (Figure 5.4b) and then re-observe. Next, we drop the observabil-
ity, and invoke a rebuild once with a modification, then we re-observe. Finally, we drop
the observability, and invoke a rebuild twice with a modification, then we re-observing. In
this sequence we expect the old algorithm to be infinitely faster in the first case. Dropping

25

5. Evaluation

Table 5.3: The three scenario’s for the Tube Benchmark. A sequence of dropRootObserved ,
buildWithChangedFiles and addRootObserved. Observability has no effect in the old algorithm,
but it must continuously exec unobserved tasks.

Scenario [drop,add] [drop,change,add] [drop,change,change,add]
Old - exec exec X2

New requireDetached exec exec

(a) The tube is Observed. (b) The tube is Detached.

Figure 5.4: The dependency graph in the Tube benchmark for the new algorithm. We create
a long chain of dependencies and switch between observed and unobserved.

and re-observing is a no-op for the old algorithm. For the second case we expect the algo-
rithms to be comparable. With the new algorithm at a slight disadvantage because it must
propegateDetachment and requireDetached. And finally, we expect the new algorithm to out-
perform the old when a Detached task must be rebuild (Table 5.3). We do this for 10 different
length tubes. Again, similarly to the previous benchmark, we compare the result of each task
execution between the old and the new in order to validate the correctness of our solution.

Interpretation

The benchmark performed better then expected and answered question 1b. The cost of vali-
dating a large sequence of detached tasks is insignificant in practice. Even when tasks them-
selves are trivial, the cost of validating a very long graph is low. Suggesting that requireDetached
for a 1000 tasks with a single dependency is approximately as fast as running 200 trivial tasks.
However, it should be noted, that by the nature of our artificially shaped graphs, the JVM
and CPU will likely perform optimizations that would not be applicable in the real world
use cases.

5.2 Real World Test Case: Spoofax Build Script

In this chapter we attempt to answer question 5.3: Is our algorithm suitable for real-world
application?. To test this we take a real world PIE build script. We set observability and
measure the build times after modifying a file. The build script implements a pipeline for the
Spoofax Language Workbench 3. Spoofax (Kats and Visser 2010) is a Language Workbench
(Erdweg, Storm, et al. 2013) for the development of Domain Specific Languages (DSLs). This
is a class of IDE used for developing programming languages and their tools such as syntax
highlighters, type checkers, and compilers. The code for our benchmark can be found online
at 4.

3https://github.com/metaborg/spoofax-pie
4https://github.com/RoelofSol/spoofax-pie/tree/observability

26

5.2. Real World Test Case: Spoofax Build Script

(a) Execution time in ms after adding a 10ms
delay to each task

(b) Execution times without delay

Figure 5.5: The Tube Benchmark. A comparison of time spend building and time spent vali-
dating consistency in the old and new algorithm. A dependency graph (Figure 5.4 is tested
in three scenarios (Table 5.3) for the old (Bars on the left) and the new (Bars on the right).
The cost of requireDetached is low compared to executing tasks (Bottom right bars in Figure
5.5b)

For our purpose we consider a simple tutorial language ’Calc’ and simulate a user that is
editing the language, a syntax highlighter and two example files. We measure every change
in every state for this project and extrapolate cost of using this in production.

Experimental Setup

Spoofax requires a large and intricate pipeline of different tasks with overlapping dependen-
cies. For the purposes of our benchmark we only consider a single language definition and
limit our tasks to parsing and styling.

The PIE pipeline for Spoofax defines a function processDocument. This function generates
feedback for the user. Our modified pipeline consist of a language editor that is processing
four files.

• The language file contains the definition of the parse table.

• The style contains information on what color highlights to apply to specific keywords.

• good-example contains 500 lines of valid source code in the target language.

• bad-example contains invalid source code.

The Spoofax IDE might detach processDocument for a number of reasons. Similarly, files
can be modified for a number of reasons. Scenario’s include: Renaming a file, closing a file,
temporarily disable highlighting, opening a new language project, git checkout, and others.

We do not define scenario’s explicitly, instead we measure every build time after changing
a file in every possible state of observed processDocuments.

The four processDocument tasks represent a total of 24 = 16 observable states. That is, 16
unique combinations of observed and detached tasks. We edit the content of each file for

27

5. Evaluation

(a) State: 1111 - Every task is observed.

(b) State: 1100 - Both example programs are unobserved, nothing is parsed
or styled.

Figure 5.6: Expected dependency graphs representing a observed state in the Spoofax Bench-
mark.

every combination of observed tasks. In addition we benchmark the Setup Observably time,
when we modify the observability state. This creates 16 ˚ 5 = 70 measurements.

We execute the entire benchmark 10 times.
Table 5.7 shows the difference between the new and old algorithm for each state. A neg-

ative value means an improvement to the modified algorithm. The column ’Observed’ rep-
resents the RootObserved tasks in the build. A 1 means the task is Observed and a 0 means
the processDocument task is Detached.

Results and Interpretation

The results show improvements when documents are not processed. This follows our expec-
tation that not observing any example program would detach the Parser (Figure 5.6b).

The initial setup for state 1111 sets all processDocument as RootObserved. This took ap-
proximately 30,000 ms and executes 42 tasks and requires 196 files. Our table shows an
increase in build time for the old algorithm of 133 ms on average with a standard deviation
of 486 ms. This is to much noise to draw any conclusions.

State 1110 represents the invalid source code file not being processed. There are no sig-
nificant changes in build time. Parsing fails so it has no other dependencies.

State 1101 shows the build times when the good example file is modified. It shows a
significant improvement when editing the language. A similar pattern exists in state 1001,
0101, and 0001. The logs indicate the new algorithm is is able to skip building the task
sdf3.toStrategoSignatures.

The state 1100, 1000, 0100, and 0000 all show the same improvement of a reduced build
time of approximately 1800 ms when editing the language. The logs indicate that the new
algorithm is able to skip the task sdf3.ToJSGLRParseTable

The increase in setup for states 1011, 0111, and 0011 is due to the fact that in the previous
state, the language was not observed and thus not build.

28

5.3. Conclusion

Observed Setup Edit lang Edit style Edit Good Edit Bad

1111 133 ˘ 486 0 ˘ 0 0 ˘ 1 0 ˘ 0 0 ˘ 0

1110 7 ˘ 25 1 ˘ 50 -2 ˘ 3 -1 ˘ 4 -1 ˘ 0

1101 40 ˘ 10 -567 ˘ 44 -20 ˘ 2 -13 ˘ 1 0 ˘ 0

1100 6 ˘ 5 -1852 ˘ 31 -17 ˘ 1 -15 ˘ 3 0 ˘ 0

1011 1417 ˘ 19 -2 ˘ 54 22 ˘ 4 0 ˘ 1 0 ˘ 0

1010 3 ˘ 2 -10 ˘ 56 18 ˘ 4 0 ˘ 1 0 ˘ 0

1001 15 ˘ 2 -599 ˘ 44 -16 ˘ 1 -12 ˘ 1 0 ˘ 0

1000 5 ˘ 3 -1787 ˘ 29 -16 ˘ 4 -11 ˘ 0 0 ˘ 0

0111 1377 ˘ 18 -29 ˘ 55 23 ˘ 0 0 ˘ 2 0 ˘ 0

0110 1 ˘ 1 -5 ˘ 49 16 ˘ 3 -3 ˘ 5 0 ˘ 0

0101 10 ˘ 1 -588 ˘ 45 -15 ˘ 2 -11 ˘ 0 0 ˘ 0

0100 0 ˘ 1 -1774 ˘ 30 -14 ˘ 0 -13 ˘ 3 0 ˘ 0

0011 1345 ˘ 13 -23 ˘ 52 23 ˘ 3 1 ˘ 1 0 ˘ 0

0010 0 ˘ 0 -3 ˘ 55 17 ˘ 2 1 ˘ 1 0 ˘ 0

0001 10 ˘ 0 -596 ˘ 46 -14 ˘ 0 -11 ˘ 0 0 ˘ 0

0000 0 ˘ 0 -1763 ˘ 32 -14 ˘ 0 -11 ˘ 0 0 ˘ 0

Table 5.7: The average difference (New - Old) and the average standard deviation, for
buildWithChangedFiles after an action, for every possible combination of Detached tasks.
Negative values mean an improvement in speed. ’Edit Lang’ updates the language defi-
nition. ’Edit Style’ modifies the style. ’Edit Good’ makes a change to valid source code. ’Edit
Bad’ makes a change to invalid source code. ’Setup’ sets tasks to RootObserved according to
’State’.

State 0000 shows the effects over all. Editing a language file is vastly faster when no
documents require it. Editing a style and editing the good file is faster because they do not
get processed. However, only parsing and highlighting is applied. When advanced type
checking is added, this is likely to increase significantly.

Overall, observability can realize significant efficiency improvements when tasks are de-
tached. This means faster feedback time, and also the ability to add features such as renaming
a file.

5.3 Conclusion

We set out to evaluate our new algorithm by attempting to answer three questions.
How does the new algorithm perform compared to the old?

We demonstrated that our new algorithm is an improvement of the old. The algorithm
is scalable over time when tasks become detached. Furthermore, the execution time of our
new functions is insignificant compared to executing a task.
Is the new algorithm suitable for a real-world application?

The new algorithm improves the feedback time of the Spoofax pipeline in some situations.
The Spoofax pipeline no longer processes files after closing them. However, the design of
the build script is the determining factor in the benefits gained from the new algorithm. It

29

5. Evaluation

is possible to write a script that performs poorly. Another important consequence of our
improved algorithm is the new design patterns enabled by observability. Such as renaming
files in the Spoofax IDE.
Does the new algorithm produce the correct results?

In all our tests we compared the results of the new algorithm with the old. All observed
tasks produced the same results. This however does not prove the absence of bugs. In chapter
8 we mention further work that can be done with respect to correctness.

30

Chapter 6

Miscellaneous improvements

During development we developed a useful tool to visualize our problem and PIE scripts in
general. Additionally we experimented with subsequent improvements that observability
enables. In this chapter we briefly document our experience.

6.1 Dependency Graph Visualizer
We have implemented a tool to visualize the state of a DAG. The DAG at its core is a key-value
mapping containing the nodes, their state, and in and outgoing edges. Our tool transforms
this representation into valid dotEllson et al. 2001 syntax with appropriate shapes and colors
similar to the ones used in this paper. This is then passed to the dot program to be processed
into an image. We have included an example of a graph created with our Spoofax pipeline
in the appendix (Figure A.1).

The use of this tool has been invaluable in analyzing and debugging PIE itself and build
scripts written in PIE. However it has limitations. First, its layout is inconsistent. Graphviz
optimizes the layout with respect to the dependency edges. Consequently, nodes in a graph
jump around when dependencies are removed or added. Secondly, we hit the limit of graphviz
when we attempted to visualize the graph from our Spoofax benchmark. Most states simply
crashed dot. For those that were small enough the result is a ~26MB png file at about ~230,000
by 1,000 pixels.

6.2 Garbage Collection
With our modified algorithm we are able to implement a simple form of garbage collection.
Unobserved tasks waste time and space if they are never required again.

We have implemented a simple garbage collection algorithm (Listing 6.1). In our solu-
tion each class of task definitions implements an optional removeIfUnobserved function. This
function returns a bool indicating if it is acceptable to remove the task from the dependency
graph. If a task is both Detached and removeIfDetached returns true, the task is removed
from the graph. If the function is not present the system defaults to false in order to make
this a backwards compatible change.

31

6. Miscellaneous improvements

Listing 6.1: A garbage collection algorithm for unobserved and user-defined-collectible tasks
function gc(DG) {
U = DG.unreferenced()
while (U ‰ H)
t = U.pop()
if (␣DG.isObserved(t)^ t.removeIfUnobserved())

DG.dropTask(t)
U Ð DG.requiredBy(t)

}

32

Chapter 7

Related work

In this chapter we discuss related work with respect to PIE as a build system, PIE’s relation
to other methods for incremental computation, and our method of observability.

In so far as we know, there exists no other bottom up execution method for general incre-
mental computation similar to PIE’s. As a consequence, observability has no direct relation
to other systems in general. Most other incremental systems start execution at the top or
do not allow dynamic dependencies. When executing top down, an algorithm doesn’t risk
scheduling unrelated tasks in the way PIE did.

7.1 Build Systems
Make (Richard M. Stallman 2016) operates by building and traversing a dependency graph
in a depth first search; executing any inconsistent rules. It has no first class support for
dynamic file dependencies or dynamic task dependencies. It does not have a proper pro-
gramming model. That is, its model is a global namespace of mutable string variables. In
addition, it doesn’t support custom file stamps or detection of hidden dependencies. As a
result, Makefiles are commonly generated and dependencies have to be over approximated
or the user risks creating inconsistent results. Many other build systems follow a similar
approach to Make. Because Make always builds the entire dependency graph from scratch,
there is never an issue with observability.

Shake (Mokhov, Mitchell, Jones, and Marlow 2016) is an incremental build system written
in Haskell. It offers solutions to many of Make’s problems such as proper namespaces and
variable types, use of higher order functions, the use of libraries written in Haskell, build
rules with multiple outputs and a form of dynamic dependencies. However, compared to
PIE it has limited support for dynamic file dependencies and generated files are statically
determined. In addition, the dynamic dependencies are referred by ’keys’. These are not
parameterized and return no value. Unreferenced tasks are garbage collected after execution.

A categorization for build systems is given in (Mokhov, Mitchell, and Jones 2018). It
does not contain a Scheduling abstraction that incorporates the set of changed files in a re-
build. However, simply adding such an abstraction is insufficient. Specifically, when the
set of changed files is known, new and optimized top down methods become available. We
discuss such a method in chapter 8.1.

7.2 Incremental Computation

PIE is a form of incremental computation (IC). IC refers to any attempt to save time on com-
putation by reusing an old result. This definition is applicable to many systems. Starting
with dynamic programming Bellman 1954, IC has been studied continuously Ramalingam
and Reps 1993, including more recent work such as Nominal AdaptonHammer, Dunfield, et

33

7. Related work

al. 2015. These systems usually develop domain specific techniques that exploit some invari-
ant reducing the need to store traces or graphs and reducing the overhead in determining
what must be done. For example the View Maintenance problem in databases Jain and Go-
sain 2012, or Make’s assumption that all builds only require a static dependency graph to
traverse. As such, they do not implement general purpose IC.

A relatively recent general purpose IC language is Adapton Hammer, Khoo, et al. 2014
Hammer, Dunfield, et al. 2015. Adapton is a formal operational semantics and general pur-
pose programming language. PIE and Adapton both implement incrementality through par-
tial re-execution of a dependency graph. On the surface they differ in that Adapton does not
have custom task-keys or stamps, and PIE has a focus on files instead of mutable variables.

With respect to their change driven build algorithm, the difference is as follows: Adapton
achieves incrementality by flagging the tasks transitively dependent on a change as dirty.
When a dirty expression is demanded, it recursively checks, to either compute or reuse a
result. On the other hand, PIE starts scheduling and execution at the point of change.

The PIE approach has down sides. First, there is the additional complexity introduced in
this work to avoid executing detached tasks. Secondly, in order to determine if required result
has a transitive dependency on tasks that are scheduled, the function is requireScheduledNow
must traverse the dependency sub-graph. Third, Tasks that are Detached during a build
might be executed before being detached (See the evaluation for the diamond benchmark
chapter 5.1). The upside for PIE is its early cut-off if a result has not changed. This avoids
traversing upwards in the dependency graph and is optimal if a change has no effect.

Additionally, Adapton does not have a mechanism for granular garbage collection and
does not persist on disk.

34

Chapter 8

Future Work

8.1 Build Algorithms

The top down algorithm can be improved. A relatively simple addition would be top down
execution with changed files in order to avoid checking stamps on every file. On top of this,
we believe it is possible to add a Bloom filter to each task to indicate a set of files required
by its transitive closure. This would allow top down execution to skip graph traversal with
some probability. Furthermore, the Adapton algorithm would make an interesting addition
to the set of build algorithms in the PIE runtime.

When invoking propagateDetachment the algorithm has to determine if its transitive clo-
sure is consistent. This process scales by the size of the sub-graph. This is analogous to the
top down scalability issue. Additionally, on first inspection it appears that checking stamps
during requireScheduledNow is expensive. In order to avoid checking stamps, a set of changed
files could be tracked for the duration that the task is Detached. propagateDetachment might
then use any strategy able to handle a set of changed files.

Finally, the re-appearance of the mentioned top down scalability issue suggest a further
abstraction can be created to incrementally Observe a detached tasks by an executor.

8.2 The PIE Language & The Runtime

We have used ’file’ to describe variables in our mutable environment. Work is under way to
expand this into the generalized notion of ’resource’. In general, any combination of getter
and setter should be adoptable.

We have shown a simple manually configured garbage collector that the user can invoke.
However, there are automatic policies such as Least Recently Used that might be easier for
the user. It is also possible for garbage collection to be triggered immediately after execution
for all Detached task. Both of these methods of freeing memory are aided by expanding the
PIE language to include additional keywords. First we propose to introduce the function
keyword to indicate a task can be removed if Detached. Next we propose to make garbage
collection opt-out per task definition instead of the current opt-in system. Opt out of garbage
collection can be indicated by persistent taskdef .

The next major milestone for PIE should be to support concurrent execution. Inspecting
the dependency graph allows some analysis of which tasks can be executed concurrently.
However, the ’internal’ dependency graph of each task would provide additional informa-
tion. PIE could analyze the task definition and statically group tasks which are required
together unconditionally 1.

1similarly to dependency analysis used in compilers

35

8. Future Work

As noted in (Konat, Steindorfer, et al. 2018), PIE currently doesn’t support dynamic task
definitions. As an alternative, PIE could inline the runtime into the generated objects creating
a self-contained algorithm without dependencies (similar to the technique used in SvelteJS2)

8.3 Analysis
Future work may focus on a formal semantics or correctness proof in a tool such as Coq. A
challenge would be to model a ’dependency flip’. That is, a dependency from A to B changing
into a dependency from B to A. 3

In our evaluation we created two types of graphs to use in our benchmark, a ’diamond and
’tube. There are however an infinite number of graphs and graph transformations. In order
to further compare build algorithms, similar synthetic scalable graphs should be collected.
An interesting addition would be hash algorithms. They are the antithesis of incremental
computation. This collection is valuable to other incremental systems as well. In addition,
this might prove to be an efficient method to categorize incremental systems with respect to
their capabilities and runtime.

In an ideal world these build algorithms are compatible and reusable inside one another.
A ’meta’ build algorithm could then focus on applying the best one for the build at hand.
Especially task definitions without dynamic dependencies can be aggressively optimized.

2https://svelte.dev/
3In fact, this might be impossible for the general case.

36

Chapter 9

Conclusion

We have demonstrated the need for PIE’s bottom up build algorithm to avoid executing tasks
which are no longer required. We have designed an improved algorithm such that, a de-
tached task is correctly labeled, the detached tasks are not executed, and re-observing tasks
is done efficiently in order to improve scalability over time. To demonstrate the effectiveness
and correctness of our improvements we have compared the old and new algorithm with
two types of artificial dependency graphs. These benchmarks have shown that the new algo-
rithm avoids scheduling detached tasks. Furthermore, we have shown that the overhead for
our improvements is insignificant compared to task execution. Our improvements effective
in the Spoofax PIE build script. In test the feedback time was reduced by 1800 ms in certain
situations when compared to the old algorithm. The new algorithm avoids processing tasks
that the user has detached. This allows the PIE runtime to keep operating efficiently over
time. In the context of the Spoofax IDE, toggling observability creates the opportunity to
implement various quality of life features such as renaming file and projects.

Further more, we have expanded PIE with a dependency graph visualizer and a proto-
type for garbage collection. We have related our work to Adapton and Incremental computa-
tion in general. Finally, we have suggested future work with respect to execution algorithms,
the PIE language, and in approaching the analysis of incremental build algorithms.

37

Bibliography

Bellman, Richard (1954). “Some Applications of the Theory of Dynamic Programming - A
Review”. In: ior 2.3, pp. 275–288. doi: http://dx.doi.org/10.1287/opre.2.3.275.

Ellson, John et al. (2001). “Graphviz - Open Source Graph Drawing Tools”. In: gd, pp. 483–
484. doi: http://link.springer.de/link/service/series/0558/bibs/2265/22650483.htm.

Epperly, G. K. Kumfert T. G. W. (2002). Software in the DOE: The Hidden Overhead of ”TheBuild”.
Tech. rep. Lawrence Livermore National Laboratory.

Erdweg, Sebastian, Moritz Lichter, and Manuel Weiel (2015). “A sound and optimal incre-
mental build system with dynamic dependencies”. In: OOPSLA, pp. 89–106. doi: http:
//doi.acm.org/10.1145/2814270.2814316.

Erdweg, Sebastian, Tijs van der Storm, et al. (2013). “The State of the Art in Language Work-
benches - Conclusions from the Language Workbench Challenge”. In: SLE, pp. 197–217.
doi: http://dx.doi.org/10.1007/978-3-319-02654-1_11.

Hammer, Matthew A., Joshua Dunfield, et al. (2015). “Incremental computation with names”.
In: OOPSLA, pp. 748–766. doi: http://doi.acm.org/10.1145/2814270.2814305.

Hammer, Matthew A., Yit Phang Khoo, et al. (2014). “Adapton: composable, demand-driven
incremental computation”. In: PLDI, p. 18. doi: http://doi.acm.org/10.1145/2594291.
2594324.

Jain, Hemant K. and Anjana Gosain (2012). “A comprehensive study of view maintenance
approaches in data warehousing evolution”. In: sigsoft 37.5, pp. 1–8. doi: http://doi.acm.
org/10.1145/2347696.2347705.

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench: rules for
declarative specification of languages and IDEs”. In: OOPSLA, pp. 444–463. doi: 10.1145/
1869459.1869497.

Konat, Gabriël, Sebastian Erdweg, and Eelco Visser (2018). “Scalable incremental building
with dynamic task dependencies”. In: kbse, pp. 76–86. doi: https://doi.org/10.1145/
3238147.3238196.

Konat, Gabriël, Michael J. Steindorfer, et al. (2018). “PIE: A Domain-Specific Language for
Interactive Software Development Pipelines”. In: programming 2.3, p. 9. doi: 10.22152/
programming-journal.org/2018/2/9.

McIntosh, Shane, Bram Adams, and Ahmed E. Hassan (2010). “The evolution of ANT build
systems”. In: msr, pp. 42–51. doi: http://dx.doi.org/10.1109/MSR.2010.5463341.

Miller, Peter (n.d.). Recursive Make Considered Harmful.
Mokhov, Andrey, Neil Mitchell, and Simon L. Peyton Jones (2018). “Build systems à la carte”.

In: PACMPL 2.ICFP. doi: https://doi.org/10.1145/3236774.
Mokhov, Andrey, Neil Mitchell, Simon L. Peyton Jones, and Simon Marlow (2016). “Non-

recursive make considered harmful: build systems at scale”. In: haskell, pp. 170–181. doi:
http://doi.acm.org/10.1145/2976002.2976011.

39

https://doi.org/http://dx.doi.org/10.1287/opre.2.3.275
https://doi.org/http://link.springer.de/link/service/series/0558/bibs/2265/22650483.htm
https://doi.org/http://doi.acm.org/10.1145/2814270.2814316
https://doi.org/http://doi.acm.org/10.1145/2814270.2814316
https://doi.org/http://dx.doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/http://doi.acm.org/10.1145/2814270.2814305
https://doi.org/http://doi.acm.org/10.1145/2594291.2594324
https://doi.org/http://doi.acm.org/10.1145/2594291.2594324
https://doi.org/http://doi.acm.org/10.1145/2347696.2347705
https://doi.org/http://doi.acm.org/10.1145/2347696.2347705
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/https://doi.org/10.1145/3238147.3238196
https://doi.org/https://doi.org/10.1145/3238147.3238196
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/http://dx.doi.org/10.1109/MSR.2010.5463341
https://doi.org/https://doi.org/10.1145/3236774
https://doi.org/http://doi.acm.org/10.1145/2976002.2976011

Bibliography

Ramalingam, Ganesan and Thomas W. Reps (1993). “A Categorized Bibliography on Incre-
mental Computation”. In: POPL, pp. 502–510.

Richard M. Stallman Roland McGrath, Paul D. Smith (2016). GNU Make. A Program for Direct-
ing Recompilation. url: https://www.gnu.org/software/make/manual/make.pdf.

40

https://www.gnu.org/software/make/manual/make.pdf

Bibliography

AST abstract syntax tree

DSL Domain Specific Language

IDE Integrated Development Environment

IC Incremental Computation

DAG Directed Acyclic Graph

PIE Pipeline for Interactive Environments

JVM Java Virtual Machine

JMH Java Microbenchmark Harness

JIT Just-In-Time

41

Appendix A

Appendix

A.1 Dependency graph of the Spoofax Pipeline for a small
language

Figure A.1 is a dependency graph created during the execution of our spoofax pipeline at
state 0110. This is a smaller language then the one used for our benchmark. The language
used in our benchmark generates graphs to big to generate.

Figure A.1: A Dependency graph for the ’char’ language of the pipeline generated by the
visualizer. It is similar but smaller to the language used in our Spoofax Benchmark.

43

	Preface
	Preface

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	PIE Build Script by Example
	Top Down Execution
	Top Down Scalability
	Bottom-Up Execution
	Bottom Up by example

	Problem Statement
	Key Idea and Solution
	Detaching
	Scheduling
	Require Detached tasks
	Example Execution
	Implementation

	Evaluation
	Artificial Test Cases
	Real World Test Case: Spoofax Build Script
	Conclusion

	Miscellaneous improvements
	Dependency Graph Visualizer
	Garbage Collection

	Related work
	Build Systems
	Incremental Computation

	Future Work
	Build Algorithms
	The PIE Language & The Runtime
	Analysis

	Conclusion
	Bibliography
	Appendix
	 Dependency graph of the Spoofax Pipeline for a small language

