
MSc thesis in Geomatics

Localising objects with drones:
A case study on the localisation of fisher
boats in restricted areas

Lisa Yvette Geers

2023

Boat

MSc thesis in Geomatics

Localising objects with drones: A case
study on the localisation of fisher boats in

restricted areas

Lisa Yvette Geers

January 2023

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Lisa Yvette Geers: Localising objects with drones: A case study on the localisation of fisher boats in
restricted areas (2023)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in cooperation with:

Geo-Database Management Centre
Delft University of Technology

Innovation and Portfolio Development
Esri Nederland

Supervisors: Dr.ir Martijn Meijers
Dr. Azarakhsh Rafiee-Voermans
Drs. Niels van der Vaart

Co-reader: Ir Edward Verbree

http://creativecommons.org/licenses/by/4.0/

Abstract

Due to safety or preservation reasons, certain objects or areas need to be inspected regularly.
Currently, the inspection of objects is mostly done in-person, which is labour-intensive and
not very effective. With the use of drones, areas and objects can be inspected from new
angles at a much faster rate. To effectively monitor these objects with drones, the position
and location needs to be extracted from drone data in real time.

In this thesis, a case study is done on the localisation of fisher boats in restricted areas.
Several components are integrated to create a prototype. The pretrained YOLOv3 detection
model is trained on acquired nadir boat images, which makes it able to predict the bounding
boxes of boats on images captured with drones. A positioning algorithm is constructed,
which calculates the geographical coordinates from the pixel coordinates for images taken
both in a nadir and an oblique angle. A real time connection is constructed between the
drone and the prototype. This is done by creating a connection with Google Drive with the
drone controller and the prototype. The positioned polygon bounding boxes are localised
using a real time dashboard, which visualises the bounding boxes in a map with other
relevant layers.

The results indicate that the performance of the components and prototype as a whole are
satisfactory for this use case. To deploy this prototype in other object localisation use cases,
it is recommended to train the pretrained model further, use a drone with more accurate
equipment and run the prototype on the drone controller.

v

Acknowledgements

In this chapter I would like to thank multiple people who contributed to this thesis. Firstly, I
want to express my gratitude to my two mentors Martijn Meijers and Azarakhsh Rafiee for
regularly meeting with me, always providing useful feedback and pointing me in the right
direction when needed. I also want to thank Edward Verbree for taking the time to be my
co-reader.

I want to thank Niels van der Vaart for being an excellent mentor at Esri Nederland and
giving me multiple opportunities to develop myself in the professional field. Additionally,
I would like to thank my colleagues at Esri Nederland for always being open for questions
and making me feel very welcome.

Furthermore, I would like to express my gratitude to the individuals from the NVWA in-
volved in my thesis. I would especially like to thank Rob Broekman for providing me with
the necessary contacts and equipment to carry out my thesis. I would also like to express
large gratitude to Mike van Dooijeweert for flying the drone to gather data for my thesis
and letting me borrow his equipment for my research.

vii

Contents

1. Introduction 1
1.1. Research questions . 2
1.2. Scope and challenges . 2
1.3. Thesis overview . 3

2. Theoretical background and related work 5
2.1. Data acquisition with drones . 5
2.2. Deep learning . 7

2.2.1. Convolutional Neural Networks . 7
2.2.2. Architectures . 8
2.2.3. Research on the detection of objects . 9

2.3. Object Positioning . 10
2.3.1. Terminology . 10
2.3.2. Positioning . 10
2.3.3. Positioning methods . 12
2.3.4. Research on the positioning of objects . 14

2.4. Summary . 14

3. Methodology 15
3.1. Focus area and data acquisition . 16
3.2. Object detection model . 18
3.3. Construction of the positioning algorithm . 19
3.4. Real time connection . 22
3.5. Localisation with a dashboard . 22
3.6. Prototype improvement . 23

3.6.1. Oblique positioning . 23
3.6.2. Training the deep learning model . 25

3.7. Validation . 26
3.7.1. Object detection accuracy . 26
3.7.2. Positioning accuracy . 28
3.7.3. Speed real time connection . 28

4. Implementation 29
4.1. Tools . 29

4.1.1. Software tools . 29
4.1.2. Hardware tools . 31

4.2. Used data . 31
4.3. Code structure . 34
4.4. Train Deep learning model . 36
4.5. Experiments . 38

4.5.1. Object detection . 38
4.5.2. Object positioning . 40

ix

Contents

4.5.3. Speed real time connection . 41

5. Results 43
5.1. Boat detection accuracy . 43

5.1.1. Results pretrained model . 43
5.1.2. Results pretrained model with all classes 45
5.1.3. Results trained model . 46

5.2. Object positioning . 48
5.2.1. Results nadir positioning . 49
5.2.2. Results oblique positioning . 50

5.3. Real time connection . 51
5.3.1. Connection drone controller with Google Drive 51
5.3.2. Speed of the real time connection . 52

6. Conclusion and future work 53
6.1. Discussion & Limitations . 53

6.1.1. Discussion of the results . 53
6.1.2. Use of drones . 56
6.1.3. Use case discussion . 56

6.2. Conclusion . 57
6.2.1. Research Questions . 57
6.2.2. Contributions . 59

6.3. Future work . 59

A. Positioning errors 61

x

List of Figures

2.1. Sun glint lateral view . 6
2.2. Simple artificial neural network . 7
2.3. Simple convolutional neural network . 8
2.4. Example one-stage and two-stage architectures 9
2.5. Camera lens model . 10
2.6. Coordinate systems positioning . 11
2.7. Schematic view geographical and Cartesian coordinate system 12
2.8. Triangulation problem with two images . 13
2.9. The monoplotting principle . 13

3.1. Overview method of prototype construction . 15
3.2. Natura 2000 areas in the Netherlands . 16
3.3. DJI Mavic 2 Enterprise Advanced drone . 16
3.4. Example drone image from dataset 1 . 17
3.5. Example drone image from dataset 2 . 17
3.6. Visualised detection model output . 19
3.7. Schematic view Meters Per Pixel (MPP) calculation 20
3.8. Schematic view rotation with camera yaw . 21
3.9. Overview real time connection . 22
3.10. Screenshot of created dashboard . 23
3.11. Principal axes drone and camera . 24
3.12. Schematic view oblique positioning . 25
3.13. Model training steps . 26
3.14. Model training input . 26
3.15. Overview Intersection over Union . 27

4.1. Data acquisition area Den Oever dataset 1 . 32
4.2. Data acquisition area Ameide dataset 2 . 33
4.3. Ground truth data collection positioning . 40

5.1. Precision-recall curves pretrained model . 44
5.2. Images with boat parts . 44
5.3. Precision-recall curves pretrained model, all classes 45
5.4. Predictions with incorrect classes . 46
5.5. Precision-recall curves trained model Intersection over Union (IoU) 0.5 47
5.6. Little overlap between predicted and ground truth bounding boxes 47
5.7. Precision-recall curves trained model IoU 0.1 . 48
5.8. Nadir positioning error in meters . 49
5.9. Oblique positioning error in meters . 50

6.1. Influence terrain on positioning approach . 54

xi

List of Figures

6.2. Screenshot Full Motion Video (FMV) functionality in ArcGIS Pro 60

xii

List of Tables

4.1. Software tools . 29
4.2. Experiment parameters dataset 2 . 32
4.3. Prototype speed experiment . 42

5.1. Detection results pretrained model . 44
5.2. Detection results pretrained model all classes . 45
5.3. Detection results trained model . 46
5.4. Average absolute errors in meters . 49
5.5. Speed real time connection . 52

A.1. Positioning accuracy with nadir camera and motionless boat 61
A.2. Positioning accuracy with nadir camera and moving boat 62
A.3. Positioning accuracy with oblique camera and motionless boat 62
A.4. Positioning accuracy with oblique camera and moving boat 63

xiii

List of Algorithms

1. Main loop . 35
2. Positioning algorithm nadir . 35
3. Positioning algorithm oblique . 36
4. Process results ground truth . 39
5. Process results detection . 39
6. Process positioning accuracy . 41

xv

Acronyms

AI Artificial Intelligence . 1
ANN Artificial Neural Network . 7
AP Average Precision . 43
API Application Programming Interface . 18
BVLOS Beyond Visual Line Of Sight . 6
CNN Convolutional Neural Network . 7
CRS Coordinate Reference System . 12
DEM Digital Elevation Model . 13
FMV Full Motion Video . xii
FOV Field of View . 6
GIS Geographical Information System . 10
GNSS Global Navigation Satelite System . 31
GPS Global Positioning System . 1
IoU Intersection over Union . xi
KPI Key Performance Indicator . 22
LiDAR Light Detection And Ranging . 5
MPP Meters Per Pixel . xi
NVWA Nederlandse Voedsel en Waren Autoriteit . 1
RTK Real Time Kinematic . 53
SAR Synthetic Aperture Radar . 9
SfM Structure from Motion . 12
SLAM Simultaneous Localization and Mapping . 14
UAV Unmanned Aerial Vehicle . 5
VOC Visual Object Classes . 36
WFS Web Feature Service . 31
WGS 84 World Geodetic System 1984 . 19
XML Extensible Markup Language . 30

xvii

1. Introduction

Fishing is an important part of the Dutch economy and culture [Salz et al., 2008]. However,
fishing can be harmful for several reasons, so it is not permitted to fish in all Dutch waters.
The Dutch inland waters know a number of restricted areas where no fish is allowed to
be caught because of the high dioxin degree in the water, which could have harmful effects
when this fish is consumed [Leeuwen et al., 2002]. Moreover, both in the Dutch inland waters
and in the sea, there are a number of areas where fishing is restricted due to the laws of the
Natura 2000 agreements [van Oostenbrugge et al., 2010]. In these areas, fishing is restricted
to conserve habitats and species named in the EU Birds and Habitat directives [Pedersen
et al., 2008]. The monitoring of fishers and fisher boats in restricted areas is done by the
Netherlands Food and Consumer Product Safety Authority, in Dutch Nederlandse Voedsel
en Waren Autoriteit (NVWA). Inspections on boat equipment and fish catch are currently
done by boat. Naturally, this is very labour-intensive, as this requires at least two inspectors
per boat. Additionally, using this method, the checking speed is not very high. Also, on a
boat, not every corner of the area may be visible. This results in most of the areas being left
unchecked, large parts of the time. Nevertheless, in 2016, 80 cases of illegal fishing in inland
waters were reported on eel fishing alone by the NVWA [Bos, 2018].

To increase efficiency and accuracy, a new method needs to be developed that can automat-
ically find fishing boats in restricted areas. By using drones with imaging and Global Posi-
tioning System (GPS) equipment, fishing boats can be automatically detected with Artificial
Intelligence (AI) and the boat position can be calculated using the drone GPS, followed by the
localisation using a map and relevant layers. In this way, more fishing boats in illegal areas
are expected to be found. This method needs to be carried out in real time, because visual
inspection by inspectors is still needed to fine or prosecute offending fishers. Moreover, the
real time aspect is also important to extend this method to other use cases, for example
for the search and rescue of drowning victims. By developing a general, adaptable method
for the real time localisation of objects with drones, this method can be directly used for a
variety of other use cases. For example, keeping track of animals and plant types in forests
or the localisation of drug waste. These are all inspection tasks carried out by the NVWA that
could possibly be automated with such a method.

The automatic detection of objects with AI remains a challenging task, but has been re-
searched by many. Recently, deep learning has been making major advances in the AI
community, making it more efficient and accurate than most other techniques [LeCun et
al., 2015]. Detection of ships on imagery with deep learning has been done mostly using
2-dimensional satellite images (i.e. Apoorva et al. [2020], Ciocarlan & Stoian [2021] and
Voinov [2020]). Zhang et al. [2019] developed a method to track and localise objects in 3D
with drones and Prayudi et al. [2020] researched a method to detect and localise fisher boats
and derive hull plates from drone images. No research has been done to integrate detection,
positioning and localisation in real time, which is a crucial aspect to catch offending fishers
in the act.

1

1. Introduction

The aim of this research is to develop a prototype for an integrated method that can detect,
position and localise objects, in this case fishing boats, in real time with the use of drones.
The focus areas of this research are the Dutch inland waters, as data acquisition and testing
is more accessible there compared to on sea. Drone image data has been acquired from
several inland water areas in the Netherlands. Using this data, a prototype is developed in
Python using a variety of libraries that can detect, position and localise fisher boats in real
time. To evaluate the developed method and prototype, several tests will be conducted in
the field to gather necessary drone image data.

1.1. Research questions

The objective of this research is to develop a prototype for an integrated method to localise
objects with drones. For the use case of this research, the prototype will be constructed with
the goal of catching fishing boats in restricted waters with the use of drones. Boats need to
be detected on images retrieved from a real time drone image stream, and the exact position
of these boats needs to be derived to be able to determine if they are in restricted waters
or not. The areas of interest are the Dutch internal waters, because there are a variety of
restricted areas and data can be collected there more easily than on the sea.

To fulfil this objective, the following research question is defined:

To what extent can drones be used to localise objects in real time?

To answer the main question, the following sub-questions are defined:

• How can deep learning be used to detect objects on drone images?

• How can detected objects be automatically positioned in a geographical coordinate
system?

• What hardware and software is needed for this method to be carried out in real time?

1.2. Scope and challenges

The challenges of this research lie in the positioning and localisation of the detected objects,
as well as the real time aspect of this method. For this reason, besides training the model,
no time will be spent on the extensive improvement of the detection accuracy. Additionally,
determining if detected boats are fishing boats will be out of the scope of this research. Also,
it will not be determined if people on the boat are fishing or not. Because a visual inspection
of the images by an inspector is still necessary, detection of the boat type or the act of fishing
is not crucial to implement and is thus left out of the scope.

A challenging aspect of the real time component is that a careful consideration has to be
made between accuracy and speed of the prototype. These decisions are mainly made in
the choice of the detection model architecture and type of positioning algorithm. Because
the real time functionality is a big aspect of the project and visual inspection is still needed,
speed will be favoured over accuracy in most cases.

2

1.3. Thesis overview

1.3. Thesis overview

This graduation project document has the following outline:

• In Chapter 1, an introduction to the research project and its aim are given. Addition-
ally, a description of the research questions, scope and challenges of this project are
given

• Chapter 2 gives an overview of the theoretical background of several steps of this
research. Also, a description of the related work is given.

• Chapter 3 explains the used methodology. An overview of this methodology is given.
Moreover, the different steps in the research are outlined in separate sections.

• Chapter 4 provides the implementation details, which describes the pseudocode, used
data, used tools and the ran experiments.

• Chapter 5 presents the results of the research. The results from the experiments and
evaluation are visualised here.

• Chapter 6 describes the conclusion of this research as well as the future work recom-
mendations. Also, the research outcomes are thoroughly discussed and the limitations
are illustrated.

3

2. Theoretical background and related
work

In this chapter, the relevant literature for this research project is presented. The related
research that this project builds on, will also be addressed. In section 2.1, investigations
and relevant findings on the use of drones in research are described. Section 2.2 outlines
the theory behind deep learning and object detection. Additionally, related research on
object detection is specified. Following, in section 2.3 relevant theory on the positioning of
objects is detailed and relating research is reported on. Finally, a summary of the theoretical
background and related work is given, where the research gap and the components that this
research will build on are addressed.

2.1. Data acquisition with drones

Recently, drone technology for remote sensing has developed swiftly and has been increas-
ingly used in military defence, monitoring, surveying, mapping, and disaster and emergency
response [Yang et al., 2022]. Drones are Unmanned Aerial Vehicle (UAV)s, which are robots
that fly remotely or autonomously and do not carry a human operator. Progress in fabrica-
tion, navigation, remote control and power storage increased the creation of a wide variety
of drones fit for numerous situations [Hassanalian & Abdelkefi, 2017].

Most drones carry a camera, which contains both imaging and video capture capabilities. A
GPS receiver to connect to GPS satellites is also common equipment present on a drone. Some
drones even have Light Detection And Ranging (LiDAR) scanning capabilities. Over the years,
the quality of drone cameras have increased. This results in very high resolution images, in
which details can be seen that cannot be found in satellite imagery [Voinov, 2020], which
has a lower resolution. Additionally, drones are more agile in data collection than satellites
or aeroplanes. Compared to aeroplanes, gathering local data of a small area with drones is
less expensive, which could lead to more data in smaller areas being able to be collected.

When using drones for data collection, one can set a predefined path, or fly on the go with a
controller. Using a predefined path, a video, or images are taken every few seconds. The re-
sult is a collection of images or a video covering the whole area. When images are collected,
these images can highly overlap. Several methods exist to remove this overlap, for example
the method by [Dhanda et al., 2018] where they use the metadata to determine redundant
overlap. When removing overlap, the amount of redundancy needs to be carefully chosen.
To carry out 3-dimensional reconstruction, overlap is necessary. For other use cases, when
only one image of the scene is required, all overlap can be removed. Another advantage of
drones is that drones can collect data under circumstances when satellites are not useful,
for example when the area is very cloudy. Although the GPS metadata is expected to be less
accurate in this case, due to the fact that a connection with the GPS satellites is more difficult
to make. The data collection times are very flexible for drones, a surveyor can for example

5

2. Theoretical background and related work

decide to not sent out a drone under bad weather conditions [Joyce et al., 2019]. In the
Netherlands, there are no restrictions to fly under any weather conditions. However, there
exist some no-fly zones and the drone has to be kept in the visual line of sight at all times
when flying. This also means that flying in the dark is not allowed. However, the NVWA is
exempt from several no-fly zones to perform drone monitoring in these areas. Additionally,
an exemption from the line of sight rule is also expected in the future. Currently, flying
Beyond Visual Line Of Sight (BVLOS) is still in the testing phase in the Netherlands1.

Collection of drone data over water bodies knows some additional difficulties compared to
flying over land. Two factors that affect the image quality when investigating submerged
features are sun glint and subsurface illumination [Mount, 2005]. However, these factors
can also have an influence when investigating non-submerged features, because illumina-
tion and refraction differences between the water and objects on water can also influence
detection accuracy. Sun glint can be avoided with calculated flight planning. The used pa-
rameters to calculate this are solar position, flight direction and camera angle [Joyce et al.,
2019]. Figure 2.1 shows that sun glint will be significant when the solar position is at a
high enough angle that it reflects into the drone camera Field of View (FOV). This means
that when the sun is at a low angle, sun glint will be minimal. However, this would mean
that data acquisition during the middle of the day would lead to a much lower detection
accuracy. A solution for this would be to plan the flight plan as such that the drone is flying
directly towards or away from the sun azimuth [Joyce et al., 2019].

Figure 2.1.: “The angle Ssp at the focal point between the image centre O and the solar
specular point SP is equal to the solar zenith angle θz. θz is complementary to sun angle
(that is, 90 - z) and FOVsaz is the image FOV in the direction of the solar azimuth. Distance
in image units d can be calculated with the focal length f and θz.” From Mount [2005]

1https://unmannedvalley.nl/en/news/press-release-first-bvlos-corridor-in-the-netherlands/

6

https://unmannedvalley.nl/en/news/press-release-first-bvlos-corridor-in-the-netherlands/

2.2. Deep learning

2.2. Deep learning

The interest and innovations in machine learning have exploded over the last decade [Pat-
terson & Gibson, 2017]. Machine learning is a type of artificial intelligence where machines
are able to learn automatically and improve from experience without being explicitly pro-
grammed to do so [Nan, 2022a]. One very effective and accurate machine learning type is the
Artificial Neural Network (ANN), which is based on neurons of the biological nerve system.
ANN algorithms consist of a collection of connected nodes. The basic structure can be seen in
Figure 2.2. It consists of an input, hidden and output layer. The input is a multidimensional
vector, for example one containing image pixel values. The hidden layers make decisions
based on the previous layer. In the process of learning, the effects of these decisions on the
output are evaluated and the decisions are improved consequently. An architecture with
multiple stacked hidden layers is called deep learning [O’Shea & Nash, 2015].

Figure 2.2.: Simple artificial neural network. From O’Shea & Nash [2015]

An advantage of deep learning over other machine learning methods is automatic feature
extraction. Traditionally, features were created manually, which is very labour-intensive. A
feature in this context is any value identifies certain attributes of the input data [Patterson &
Gibson, 2017]. Features in images processing may for example be points, edges or objects in
the image.

2.2.1. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an artificial neural network with an architecture
created for image processing. CNNs contain a variable set of modules that transform the
input at one level into a representation of a higher and more abstract level. With enough
of these transformations, complex functions can be learned. The key aspect is that these
transformations are not designed by humans, but are learned by the computer from training
data [LeCun et al., 2015]. The structure can be seen in Figure 2.3. CNNs consist of three types
of hidden layers [O’Shea & Nash, 2015]:

7

2. Theoretical background and related work

• Convolutional layer: Use filters to create feature maps, which indicate the presence of
detected features in the input data.

• Pooling layer: Downsamples the spatial dimensionality of the input of the previous
layer, thereby reducing the number of parameters.

• Fully connected layer: Produces class scores from the activations of the previous layer.

Figure 2.3.: Simple convolutional neural network. From O’Shea & Nash [2015]

2.2.2. Architectures

There are a variety of different deep learning architectures developed over the years. These
can be divided into single stage and two stage algorithms. In single stage, there is only one
pass through the network at inference, which makes detecting objects with this algorithm
faster. Examples are YOLOv3 [Redmon & Farhadi, 2018], SSD [Liu et al., 2016] and Reti-
naNET [Lin et al., 2017]. In two stage algorithms, the classifications and bounding boxes
are firstly proposed using a region proposal network and these are refined at a second pass.
Examples include Faster R-CNN [Ren et al., 2017] and Mask-RCNN [He et al., 2017]. This
makes these types of algorithms slower but more accurate at inference. Users thus have
to consider what architecture to use for what type of problem. In this research, run time
is most important, hence why a one stage architecture is used. One stage algorithms treat
classification as a regression problem. It uses a single pass through a CNN to predict both
the bounding boxes and the classes of object in the input image, similar to image classifica-
tion. Figure 2.4 shows the most significant differences in architecture between the one-stage
model RetinaNet and two-stage model Faster-RCNN. As can be seen, the inference process
is divided in region proposal stage and a classification stage for the two-stage architecture.
In the one-stage architecture, objects are directly detected [Carranza-Garcı́a et al., 2020].

Between the two type of stages, there exist a variety of different architectures, which have
quite a large difference in speed and accuracy amongst them. The Faster-RCNN architecture
consists of a multitask learning procedure, which combines bounding box regression and
classification for inference. It extracts high-level features from input images using a convolu-
tional backbone. The architecture is two-staged, which consists of a region proposal network
and a header network. The RetinaNet object detector is based on the SDD architecture. This
architecture performs inference using a single feed-forward convolutional network. Because
this architecture does not use per-proposal computations, it has a higher inference speed. To
increase inference accuracy, it consists of feature maps of different resolutions.

8

2.2. Deep learning

Figure 2.4.: Example one-stage and two-stage architectures. From Carranza-Garcı́a et al.
[2020]

The YOLO architecture has been extensively used for real time inference. This architecture
divides the input image into cells with the use of a grid. If the centre of an object falls into a
certain grid cell, this cell is responsible for the detection of that object. Using this structure,
the YOLO architecture achieves faster inference rates than other architectures [Carranza-
Garcı́a et al., 2020].

2.2.3. Research on the detection of objects

Because CNNs are structured to process image data, they can be used well to detect objects
from drone data. The classification of objects on drone images has been researched before
to find palm trees by Aburasain et al. [2021] and Htet & Sein [2021]. Aburasain et al. [2021]
used the YOLOv3 object detector to detect palm trees of different resolution, sizes, spread
and degree of overlap. They stated that the benefit of using drone images instead of satellite
images is the increased image resolution, which leads to a more accurate classification.

Detecting ships with the use of deep learning has been researched several times, for exam-
ple by Apoorva et al. [2020], Chang et al. [2019] and Voinov [2020]. Input images in these
researches are imagery data collected by satellites. Apoorva et al. [2020] uses the TensorFlow
deep learning library to detect ships on satellite images. Voinov [2020] proposes a method
to detect vessels from optical satellite images using images from three different satellites. It
is mentioned that the image resolution has a large impact on the detection accuracy. Chang
et al. [2019] proposes a method to detect ships on Synthetic Aperture Radar (SAR) imagery.
By using the YOLOv2-reduced deep learning architecture, a significant decrease of the com-
putation time and a detection accuracy of 90% was achieved. Nonetheless, none of these
methods used drone data and none implemented a real time or localisation functionality.

Prayudi et al. [2020] designed a surveillance system framework that can detect and localise
ships and derive their hull plates. They used 2450 images for training and stated that ship
detection can be challenging due to the difficulty of collecting training images. Nonetheless,
the found average matching precision was 96%. The ship coordinates were found by taking
the x and y image coordinates from the object bounding box and converting them to lati-
tude and longitude coordinates. It is not clear what algorithm or library was used for this
conversion.

9

2. Theoretical background and related work

2.3. Object Positioning

2.3.1. Terminology

It is important to note the difference between the terms localisation and positioning. Nom-
inally, the terms are interchangeable [Groves, 2013]. However, they are commonly used to
indicate two particular concepts. The term positioning is commonly used quantitively, for
example to find numerical coordinates. Localisation is expressed qualitatively as the context
of the position. A Geographical Information System (GIS) can match locations to positions
[Groves, 2013]. In this research, positioning is used to denote the determination of the object
coordinates. The term localisation is used to put the object in its geographical context.

2.3.2. Positioning

To position objects, position data is needed. In this research, the drone GPS and drone image
metadata is used to position objects from images. The use of images to derive information
from objects in these images is described by the science of photogrammetry [Schenk, 2005].
Images are created with a camera, which can be modelled in several levels of abstraction.
One way is the camera lens model (Figure 2.5). Here f is the focal length. The light rays that
originate from the world system are refracted by the lens so that they converge at a single
point, the focal point.

Figure 2.5.: Camera lens model. From Nan [2021a]

To find the geographical coordinates of an object in an image, one has to consider three
coordinate systems. The one of the image plane and the the camera system and the world
coordinate system [Schenk, 2005]. To calculate how a point M in the world coordinate system
maps to a point m′ on the image plane, the camera intrinsic and extrinsic parameters can
be used. There exist five intrinsic parameters: two for focal length (αx, αy), one parameter
for the skew coefficient between the x and the y-axis (γ) and two principal point offset
parameters (u0, v0). Together, they form the intrinsic matrix K, as can be seen in equation
2.1. The extrinsic parameters consist of a rotation matrix R and a translation vector t, as can
be seen at equations 2.2 and 2.3. The extrinsic parameters form the pose of the camera in
relation to the world coordinate system. As can be seen at 2.4, the intrinsic and extrinsic
parameters together form the camera matrix C. Equation 2.5 displays how a point M in the
3D world coordinate system maps to a point m′ in 2D on the image plane [Nan, 2021a].

10

2.3. Object Positioning

K =

αx γ u0 0
0 αy v0 0
0 0 1 0

 (2.1)

R =

r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

 (2.2)

t =

t1
t2
t3

 (2.3)

C = K[Rt] (2.4)

m′ = CM (2.5)

Figure 2.6 shows the coordinate systems involved in the positioning problem. The extrinsic
parameters t and R are used to map the camera’s coordinate system C to the world coor-
dinate system O. Coordinate system c is the image coordinate system. Using the camera
specifications and the extrinsic parameters, we can calculate how a point M in the world
coordinate system maps to a point m on the image plane [Heikkila & Silven, 1997].

Figure 2.6.: Coordinate systems positioning From Xu & Zhang [1996]

11

2. Theoretical background and related work

There exist different world coordinate systems to map the camera coordinate system from.
A Coordinate Reference System (CRS) uses numbers or coordinates to uniquely determine
the position of a point in a Euclidean space [Tiberius et al., 2021]. CRSs can be divided into
Cartesian coordinate systems and geographical coordinate systems. These are visualised in
Figure 2.7. The geographical coordinates are represented by λ, ψ and r and the Cartesian
coordinates are represented by X, Y and Z. In a Cartesian coordinate system, the coordinates
are defined as the distance from an origin in X, Y and Z. To represent points on the surface
of the earth, a 3-dimensional Cartesian coordinate system with the origin at the centre of
mass of the earth using three coordinates would need to contain seven digits before the
decimal point. A geographical coordinate system is more convenient to use to represent
points on the surface of the earth [Tiberius et al., 2021]. In this system, coordinates are
curvilinear in a unit of degrees and are defined on a sphere or ellipsoid approximating the
earth’s surface.

Figure 2.7.: Schematic view geographical and Cartesian coordinate system. From [Tiberius
et al., 2021]

2.3.3. Positioning methods

One of the most fundamental problems in multiple view geometry is triangulation, which is
the process of retrieving a 3-dimensional coordinates in the world coordinate system from
its two local coordinates in two 2-dimensional images [Hartley & Zisserman, 2003].

The triangulation problem can be seen in Figure 2.8. Here, R and T are the camera extrinsic
parameters and K and K′ are the intrinsic parameter matrices of the two images. P is the
3-dimensional point that should be found and p and p′ are the corresponding 2D points on
the image planes. O1 and O2 are the camera origins. In theory, P could be calculated through
the intersection of l and l′, the two lines of sight. However, because observations are noisy
and the camera parameters are not precise, finding this intersection point is problematic
Nan [2021b].

A solution for this problem could be using more than two images. The Structure from
Motion (SfM) method uses multiple views to determine the geometry of the scene and the
camera parameters simultaneously. It consists of determining corresponding features in
images and subsequently determining the motion of a feature in each image Nan [2021b].
Mlambo et al. [2017] used SfM on drone image data to monitor greenhouse gas emissions in
forests.

12

2.3. Object Positioning

Figure 2.8.: Triangulation problem with two images. From Nan [2021b]

However, determining if two objects in two different images depict the same object, adds
computational complexity, which is undesirable due to the real time aspect of this research.
This arises the question whether positioning can be carried out by using only one image.
Schenk [2005] states that the applications of single photographs in photogrammetry is lim-
ited, they cannot be used to reconstruct the object space. The reason for this is that even
though the exterior parameters may be known, one cannot determine ground points without
knowing the scale factor of each bundle ray. However, the goal in this research is to find
the geographical coordinates of the bounding box of the object, not to reconstruct the whole
image scene.

Bozzini et al. [2012] developed a tool to georeference oblique image data and extract vector
features from these images. The needed inputs for this tool are images, a Digital Elevation
Model (DEM) of the area and ground control points. Ground control points are points where
the position is known for both the image coordinate and the 3-dimensional world coordinate
on the DEM. Using this method, a ray is shot from the camera through each ground control
point pair. The camera matrix is then defined and calibrated. The world coordinates can
then be calculated for each pixel [Steiner, 2011]. The principle can be seen in figure 2.9. The
ground control points are shown in green.

Figure 2.9.: “The monoplotting principle”. From Bozzini et al. [2012]

13

2. Theoretical background and related work

2.3.4. Research on the positioning of objects

Bodensteiner et al. [2015] proposes a method to accurately georeference community drone
photo and video data to register to 3-dimensional LiDAR data. This method relies on the SfM
and Simultaneous Localization and Mapping (SLAM) techniques, which are combined with
appearance and structure matching based on LiDAR data. The method can produce drift free
drone image overlays at a speed of 30 frames per second with an average error of 0.4 meters.
This method uses existing open drone data for processing and testing. However, it is not
runtime optimised and real time execution has not been implemented.

Zhao et al. [2019] developed a framework for detecting, tracking and geolocating moving
vehicles with drones. The detection of vehicles is carried out by the YOLOv3 detection
model. Processing is done on a microcomputer mounted on the drone. The drone data used
in this research is a video stream. This research performs real time detection and positioning,
but does not localise the objects.

2.4. Summary

In this chapter, the relevant theory and research is described. It is found, that using drones
for monitoring and data collection is advantageous due to the high flexibility and resolution.
However, drone data acquisition can be inhibited due to weather conditions and flight re-
strictions. Object detection with deep learning is a topic that has been widely researched the
past few years. There exist multiple different architectures. As found by other researches,
the YOLOv3 architecture is the best fit for real time inference. Because it has been researched
many times before, the use of deep learning for object detection is not the research goal. In-
stead, the aim is to research how this component can be integrated into the prototype most
efficiently and accurately. For the positioning of objects, several methods have been speci-
fied. Because the method needs to be fit for real time use, little computational complexity
is required. Reconstruction methods like SfM are thus not optimal. The method used in this
research can be seen as a variation on monoplotting where one ray is shot through the mid-
dle of the image. Many of the researches that implement object detection and positioning,
either do not perform this in real time or do not localise the results in real time. The differ-
ent components of this research, the detection of objects, positioning, real time connection
and localisation have each been researched before. This research aims to be innovative by
integrating these components into one prototype.

14

3. Methodology

In this chapter, the methodology of this research is illustrated. Figure 3.1 shows an overview
of the used methodology to construct the prototype. In section 3.1 de focus area and the
data acquisition method is described. Thereafter, in section 3.2, the investigation to find and
implement the deep learning model to detect fisher boats is illustrated. In section 3.3, the
construction of the positioning algorithm for cameras with a nadir angle is presented. Fol-
lowing, in section 3.4 the construction of the real time connection with the drone is specified.
In section 3.5, the developed dashboard that is constructed to localise the found objects is
illustrated. After, in section 3.6, the prototype construction and improvement is described.
The prototype improvement consists of the development of a positioning algorithm for ob-
jects on oblique images and the training of a deep learning detection model, respectively
described in subsections 3.6.1 and 3.6.2. Finally, the validation method of the prototype is
reported in section 3.7. In this section, a description is made how the three main components
of the prototype are validated, which are the detection models, positioning algorithms and
real time connection with the drone. The validation of each component is described in a
separate subsection.

Real time dashboard

Prototype improvement

Prototype expansion

Evaluate results

Data acquisition

Development
detection model

Development localisation
algorithm

Real time detection,
localisation and

intersection

Prototype construction

Figure 3.1.: Overview method of prototype construction

15

3. Methodology

3.1. Focus area and data acquisition

As mentioned before, the focus area of this research area will be the Dutch inland waters.
The Netherlands consist of a variety of rivers and freshwater lakes. Numerous areas are
protected by the Natura 2000 directive. Figure 3.2 shows a map of these areas in the Nether-
lands. The different colours indicate the directives of the areas. HR is the habitat directive
and VR is the bird protection directive. Additionally, in many areas, fishing is forbidden due
to the high Dioxin degree in the water. Because drones have a limited flight time (usually
under an hour) and the law enforces pilots to keep the drone in sight while flying, the choice
was made to choose the inland water as the study area.

Figure 3.2.: Natura 2000 areas in the Netherlands

Data acquired for this research is done by drone. Data was collected at two instances with
the DJI Mavic 2 Enterprise Advanced. Figure 3.3 shows an image of this drone. Because
it contains a GPS receiver, the captured images indicate the drone position in the metadata.
Data collection was done by inspectors of the NVWA, because a drone pilot licence is needed
to fly drones heaver than 250 grams in the Netherlands 1. For each of the two data acqui-
sition instances, a flight plan was created to communicate the research area, research goal,
necessary equipment and licences with all persons involved.

Figure 3.3.: DJI Mavic 2 Enterprise Advanced drone

1https://www.government.nl/topics/drone/applying-for-a-drone-pilot-licence

16

https://www.government.nl/topics/drone/applying-for-a-drone-pilot-licence

3.1. Focus area and data acquisition

The first data acquisition instance took place at the Den Oever harbour in North-Holland,
the Netherlands. Drone images were collected between 13.23 and 14.19 at July 15, 2022.
A total of 290 images were collected at a nadir angle at a fixed pattern with a predefined
flight path. The weather conditions were lightly cloudy, which lead to minimal sun glint.
Figure 3.4 shows an example from this dataset. Only drone images were recorded and no
GPS position of the photographed boats was measured.

Figure 3.4.: Example drone image from dataset 1

The images from dataset 2 were recorded on November 9, 2022 between 10.29 and 10.41 AM
in Ameide, the Netherlands. 2 video’s and 61 images were captures of an inspection boat of
the NVWA. More details can be found at section 4.2. In Figure 3.5 an example image of this
dataset can be found.

Figure 3.5.: Example drone image from dataset 2

The images from dataset 1 were used to test and develop the prototype. However, they could
not be used to validate the positioning algorithm, as the real world GPS position of the boats
was not recorded. The images of dataset 2 were used to evaluate the detection, positioning
and real time functionalities.

17

3. Methodology

3.2. Object detection model

The next step in this research is the development of a deep learning detection model. The
criteria these networks have to comply with are to be able to handle drone images, to be
able to detect boats from these images and fast inferencing because of real time use. One
can build a deep learning architecture from scratch, but data collection, labelling and model
training takes a tremendous amount of time and effort. A more commonly used method is
using a predefined architecture and training this model for the classes you want. But even
then, creating training data requires a large amount of time, for both data acquisition and
labelling. Because the development of the deep learning model is not the main focus of this
research, the choice was made to investigate the feasibility of the use of a fully pretrained
model, with a class that can represent fishing boats already present.

The next step is deciding on the architecture to be used. Section 2.2.2 describes a few of the
most common ones. Research points out that the YOLO Architecture has the most optimal
tradeoff between accuracy and speed [Carranza-Garcı́a et al., 2020]. There exist multiple
sources for pretrained deep learning algorithms. For example, the Keras Application Pro-
gramming Interface (API) from the Python Tensorflow library. Keras contains many Appli-
cations2, which are freely available deep learning models with pretrained weights. Among
other things, these models can be used for prediction, feature extraction and fine-tuning. The
Applications are trained on the ImageNet dataset, which does not contain a boat dataset.
It does contain the fireboat and lifeboat classes, however these are not functional to use as
class to detect fisher boats.

Another API source for deep learning packages is the ArcGIS API for Python library3. This API
offers a variety of deep learning models and architectures, mainly focused on geographic use
cases. The YOLOv3 architecture can be found in the API, pretrained on the COCO dataset.
This dataset does contain a boat class that can represent the fisher boats.

Comparing the two options by how they fit to the research problem, the choice was made
to use the YOLOv3 model of the ArcGIS API for Python library. The model was loaded
in directly from the API in Python. A drone image can then be directly inputted into the
predict function of the model. As stated before, no time will be spent on the improving of
the detection, so no further research was done on the effect of downsizing the image on the
accuracy. The outputs of the predict function are the image pixel coordinates of the bounding
box, the prediction certainty and the class name. These are visualised in figure 3.6 for a nadir
and oblique image. The cars and bus in image 3.6a are also detected by the model, because
it consists of 80 classes. Because only the boat class is relevant to this research, predictions
from other classes are filtered out and will not be used in further processing.

2https://keras.io/api/applications/
3https://developers.arcgis.com/python/

18

https://keras.io/api/applications/
https://developers.arcgis.com/python/

3.3. Construction of the positioning algorithm

(a) Detection nadir image (b) Detection oblique image

Figure 3.6.: Visualised detection model output

3.3. Construction of the positioning algorithm

The next step is to calculate the coordinates in the world coordinate system from the pixel
coordinates of the bounding box. The world coordinate system in this research is consid-
ered to be the World Geodetic System 1984 (WGS 84) geographical coordinate system. As
mentioned in 2.3.3, there are multiple techniques to calculate the world coordinates latitude
and longitude from the pixel coordinates. In this research, we want to use a quick and simple
algorithm, because the calculation needs to be done in real time. For this reason, stereo or
multiple photogrammetry will not be used. Moreover, one image will be used because it is
challenging and time-consuming to determine the same boat in multiple images. Formally,
monoplotting is not used, because feature points have to be determined manually and the
goal is to create an automated method. This algorithm can be seen as a variation on this,
where a ray is cast from the drone through the image centre. The final algorithm is based
on one image and uses the camera position and specification as input parameters. It will be
explained below

Firstly, all images that contain detected objects are filtered to be further processed. From
these images, the bounding box in pixel coordinates is known from the prediction output.
The first step of the algorithm is to calculate the MPP of the image. Figure 3.7 gives an
overview of this principle.

To simplify the algorithm for predefined flight paths, the assumption is made that the cam-
era is facing in the nadir direction, so the camera is pointing towards the ground. In prede-
fined drone flights, the drone camera is automatically pointed in the nadir direction at all
times. The needed parameters for this problem are: camera resolution, camera lens height
and camera field of view. Splitting these parameters for x and y will lead to the following
parameters used in the algorithm:

19

3. Methodology

Sensor

Lens

Al
tit

ud
e

h

αx

Distance x

Focal
length

Sensor

Lens

Al
tit

ud
e

h

αy

Distance y

Focal
length

Figure 3.7.: Schematic view MPP calculation

• Ground distance GD : [x, y]

• Camera resolution r : [rx, ry]

• Camera lens altitude h

• Camera field of view angle α : [αx, αy]

So, the aim is to calculate the ground distance in the x and y direction and divide it by the
number of pixels to get the MPP. The h and r parameters can be derived from the camera
metadata. The α can be calculated from the focal length f and the camera dimension d. The
focal length can be derived from the metadata. The camera dimension can be found in the
camera specification. Using trigonometry principles, we know that the tangent of half the
view angle is equal to half of the ratio of the ground distance and height. This gives us the
following functions:

α = 2 arctan(
d

2 f
) (3.1)

tan(
α

2
) =

GD
2h

(3.2)

GD = 2h tan(
α

2
) (3.3)

µ =
GD

r
=

2h tan(α
2)

r
(3.4)

Where µ : [µx, µy] is the MPP for both directions.

20

3.3. Construction of the positioning algorithm

After the µ is found, a calculation needs to be made how many meters in the x and y
direction the detected object is from the middle. This is done by calculating the number of
pixels from the middle. The middle of the image represents the GPS coordinate that was
measured by the drone and that is present in the metadata of the image. We know how
many meters to shift the GPS in the x and y directions. However, the top of the image is not
pointed north, so these x and y do not directly correspond to the latitude and longitude of
the GPS. To fix this, the x and y are rotated using the camera yaw θ, as shown in the equation
3.5. As can be seen 3.8, the camera yaw represents the heading of the drone camera and thus
the angle of the image from the north. When doing this for all the corners of the bounding
box, a polygon of the object in the world coordinate system can be created.

[
x′

y′

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
(3.5)

Rotation 45°

Figure 3.8.: Schematic view rotation with camera yaw

The final step is to convert the translation in meters m to a translation in degrees latitude
and longitude [Slon, Slat]. The radius of the semi-major axis of the Earth at the equator is
6,378,137 metres. This axis is divided into 360 degrees of longitude, so each degree at the
equator is 111,319.5 metres [Tiberius et al., 2021]. To convert meters to latitude, the number
of meters needs to be divided by 1 degree latitude, as seen in equation 3.6. As one moves
from the equator towards the poles, the longitude radius decreases. To find the radius for
the longitude for conversion, the degree in meters needs to be multiplied by the cosine of
the latitude Snyder [1987], as can be seen in equation 3.8. Ylat and Xlon are the final outputs
of the positioning algorithm.

Slat =
my

111, 319.5
(3.6)

Ylat = latitude + Slat (3.7)

Slon =
mx

111, 319.5 ∗ cos(Ylat)
(3.8)

Xlon = longitude + Slon (3.9)

21

3. Methodology

3.4. Real time connection

As explained before, the boats need to be found while the drone is in the air. There thus
needs to be a real time connection between the drone and the running prototype. To achieve
this, a connection through the cloud service Google Drive was used. Figure 3.9 displays
an overview of this construction. The FolderSync app is installed on the drone controller,
which automatically uploads the images of a certain folder on the controller to Google Drive.
With the Google Drive API for Python, these images are then collected and processed by the
prototype. The pseudocode can be found at Algorithm 1.

Figure 3.9.: Overview real time connection

3.5. Localisation with a dashboard

When all data is collected and processed, it needs to be visualised insightfully. Localising
the positioned objects makes analysis and decision-making possible for inspectors. This is
implemented using a dashboard, which is a graphical user interface which provides views
of Key Performance Indicator (KPI)s. Dashboards provide the ability to identify and correct
trends, measure accuracy and efficiency, and gain insight in multiple systems at once. Dash-
board quality is related to the type of dashboard. For this use case, the dashboard is used
to visualise the locations of the drones, forbidden areas and found boats. The goal is thus
to visualise and not to analyse. Given the fact that the most of the fishery inspectors of the
NVWA are no software experts, the dashboard needs to be simple and to the point for it to be
effective.

The software used to create this dashboard is ArcGIS Dashboards. This software focusses
on the spatial dashboards. It can be directly linked to a web map from ArcGIS Online and
has several spatial functionalities.

Figure 3.10 shows a screenshot of the created dashboard. The main feature is the web map
in the middle of the screen. This map shows the restricted areas, as well as the points where
the drone images are taken and the polygons of the detected boats. The drone image points
are shown to make insightful which areas have been covered by the drone. The boats are
visualised as polygon to show the approximate size and heading of the boats. The colour
red was chosen to make this most important layer stand out. With this dashboard, it is also
possible to visualise the footprints of the captured images to see the inspected area.

22

3.6. Prototype improvement

Figure 3.10.: Screenshot of created dashboard

To make the dashboard look more organised, the drone image and ship data are filtered to
show only the data collected in the previous 24 hours. Additionally, to automatically show
the collected data in the dashboard, an automatic refresh is added so that the layers are
updated every 30 seconds.

3.6. Prototype improvement

3.6.1. Oblique positioning

To improve the prototype and to make it more useful for other use cases, a method was
constructed to perform positioning for images of an oblique camera angle. In this situation,
the drone camera can also be rotated around the pitch axis. Figure 3.11 shows the yaw and
pitch axes of a DJI drone camera.

Because the algorithm is adapted from the nadir positioning at 3.3, similar parameters are
used:

• Ground distance GD : [x, y]

• Camera resolution r : [rx, ry]

• Camera lens altitude h

• Camera field of view angle α : [αx, αy]

• Camera principal axes pitch and yaw

• Pixel coordinates predicted bounding box centre P : [Px, Py]

23

3. Methodology

Figure 3.11.: Principal axes camera and drone. From [Keller & Ben-Moshe, 2022]

In the y direction, similar logic can be used as in Figure 3.7. Instead of the meters per pixel,
the total meters from the drone over ground is calculated: GD. This is done because in this
situation, the meter per pixel is not static, like in the nadir situation. Because the camera
pointed in an oblique direction, a pixel close to the camera has a lower MPP than a pixel
that depicts a scene far away from the camera. Figure 3.12 depicts the schematic view of the
oblique positioning algorithm. As can be seen on the left side, pixels close to the boat have a
lower MPP than pixels further away from the boat and drone. With the calculations below is
shown how the parameters are used to calculate the ground distance from the drone to the
predicted object in the y-direction. We define a new angle β using the field of view and the
camera pitch, as seen in equation 3.11. This angle is then used in a trigonometric calculation
with the height to calculate the y, as can be seen in 3.12.

α = 2 arctan(
d

2 f
) (3.10)

β = pitch + (
αy

ry
∗ Py) (3.11)

y = h tan(β) (3.12)

In the x direction, the same logic cannot be used, as the angle β is only valid in the y-
direction. The right-hand size of figure 3.12 shows a top view of the calculation used for x.
The MPP in the x-direction stays the same moving over the x-axis, but does increase as the y
moves further away from the camera. The MPP thus needs to be calculated in the x-direction,
while taking into account also the y value of the object. Firstly, the length of Hy is calculated,
depicted by the dashed line on both sides of the figure, as seen in equation 3.13. The ground
distance of half the triangle of the field of view can then be calculated using Hy and αx.
Finally, rx and Px are used to find to calculate the MPP and find x, as can be seen in equation
3.14.

24

3.6. Prototype improvement

Pitch

Distance x

Sensor

Lens

Al
tit

ud
e

h

αy

Distance y

Focal
length

Lens

αx

β

D
is

ta
nc

e
y

Figure 3.12.: Schematic view oblique positioning

Hy =
h

cos(β)
(3.13)

x =
Hy tan(αy

2)

0.5rxPx
(3.14)

After the x and y are found, these need to be rotated using the camera yaw. After this, the
translation in meters needs to be converted to degrees latitude and longitude. These values
are then used to translate the latitude and longitude coordinates of the drone, found in the
metadata of the image. This is all done identically as described in 3.3.

3.6.2. Training the deep learning model

To improve the detection accuracy of the pretrained model described in section 5.1.1, this
model was trained further using the acquired data from this research. To investigate if train-
ing the model further increases the accuracy, the same pretrained model needs to be used.
This is the YOLOv3 model from the ArcGIS Python API, pretrained on the COCO dataset.
ArcGIS Pro contains the functionality to train a deep learning model from a pretrained
model from the ArcGIS Python API. Figure 3.13 displays the carried out steps to train the
model.

Firstly, a raster needs to be generated from the collected images. This is done for the Den
Oever dataset. Three images from the Ameide dataset are also included in the raster. Figure
3.14a shows the generated raster. Consecutively, polygon labels are drawn in over each boat
on the raster, visualised at 3.14b.

25

3. Methodology

Generate raster Label objects Generate image
chips

Train deep learning
model

Figure 3.13.: Model training steps

Map data © OpenStreetMap contributors, Microsoft, Facebook, Inc. and its
affiliates, Esri Community Maps contributors, Map layer by Esri

¯0.08 0 0.08 0.17 0.25 0.340.04

Kilometers

(a) Generated training raster (b) Raster with ground truth labels

Figure 3.14.: Model training input

The labels and the raster are used to generate image chips and respective labels, which are
smaller cutouts from the raster. These image chips and formatted labels are inputted into the
tool that trains the deep learning model. The output will be a trained deep learning model
in the Esri format. Several parameters were used in this method, which will be specified at
section 4.4.

3.7. Validation

The created prototype will be evaluated quantitively based on three main criteria. These
are related to the three subquestions of the research and will be explained in the following
subsections.

3.7.1. Object detection accuracy

The first validation method relates to the first subquestion. Here, the detection accuracy is
assessed. When evaluating the accuracy of a detection model, two concepts are essential: the
real result y and the predicted result ŷ of the model Nan [2022b]. The aim of the detection
model is to generate an output ŷ that corresponds to the true output y. The more the model
output resembles the true output, the more accurate the model is. The model prediction can
be classified into four categories regarding its performance:

26

3.7. Validation

• True Positive (TP): The model predicts that there is an object and there is an object.
The model output is correct

• False Positive (FP): The model predicts that there is an object, while there is not. The
model output is incorrect.

• False Negative (FN): The model does not predict that there is an object while there is.
The model output is incorrect.

• True Negative (TN): The model does not predict that there is an object and there is
not. The model output is correct

In the context of object detection, a true negative is not relevant, because there are an infinite
number of bounding boxes in an image that should not be detected Padilla et al. [2020].

The true outputs y are found by manually labelling the validation dataset. These labels and
the labels generated by the detection model are compared. Only the boat class is used to
qualify the performance.

The following statistics are used: recall and precision. The recall calculation can be seen in
equation 3.15. In words, this statistic clarifies if the model makes a prediction every time
that the model should have made a prediction. The equation for precision can be seen at
3.16. This statistic defines how often the model makes a correct output, to how reliable the
predictions are. In the context of this use case, a high recall is thus more important, as we
do not want to miss any existing boats. When taking into account the confidence values of
the detection when calculating the precision and recall, one can create a curve that displays
a trade-off between these statistics [Padilla et al., 2020].

Recall = TP/(TP + FN) (3.15)

Precision = TP/(TP + FP) (3.16)

These statistics require a method that defines correct and incorrect detection. The IoU method
calculates a ratio that is used as a threshold to determine whether a predicted outcome of
the model is a true positive or a false positive. It measures the amount of overlap between
the bounding boxes of the predicted (Bp) and true (Bgt) objects [Padilla et al., 2020].

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(3.17)

Figure 3.15.: Intersection over Union. From Padilla et al. [2020]

By weighing the IoU ratio against a threshold t, a detection output can be classified as being
correct or incorrect. With IoU ≥ t being correct and IoU < t being incorrect.

27

3. Methodology

3.7.2. Positioning accuracy

This subsection describes the assessment of the positioning accuracy. During data acqui-
sition, a GPS-tracker will be placed in the middle of the boat. These coordinates will be
compared to the calculated coordinates of the positioning algorithm. The distance between
the predicted coordinates ˆlon and ˆlat and the coordinates measured by the GPS-tracker lon-
gitude (lon) and latitude (lat) will be evaluated separately. After calculating the distance
between the predicted and ground truth coordinates in degrees, this distance is converted
to meters. This is done opposite of equations 3.6 and 3.8, so instead of a division, multipli-
cation is carried out. Additionally, the total Euclidean distance in meters between the two
points will be calculated and evaluated with equation 3.18. The average error will also be
calculated, as seen in equation 3.19. Additionally, the average absolute error of both coordi-
nates will be calculated. This is done by turning each distance into an absolute value and
calculating the average of these values with equation 3.19.

d =
√
(lon− ˆlon)2 + (lat− ˆlat)2 (3.18)

Average =
1
n

n

∑
i=1

di (3.19)

3.7.3. Speed real time connection

The third method assesses the real time speed of the prototype. The processing time of the
different components of this prototype are measured separately. Uploading and extracting
an image from Google Drive is measured, as well as the time to run the detection and
positioning algorithm and the time from writing the data to file to it showing up on the
dashboard. This is done for multiple images so that the average time per component can be
calculated. The time is measured with a stopwatch for the drone controller component, and
the remaining timers are implemented in the Python code.

To gather data for the evaluation, an experiment was conducted, as described in section
4.5.

28

4. Implementation

4.1. Tools

4.1.1. Software tools

In this section, the software tools used for this research are described. Table 4.1 gives an
overview of the used software. The majority of the software used is from ArcGIS. This gives
the advantage of interoperability, as all ArcGIS tools work closely together.

Table 4.1.: Software tools

Tool Version Description

ArcGIS Pro 3.0 Desktop Geographic Information Software used to visu-
alise, analyse and process geographic information.

ArcGIS Online 10.3 Cloud-based mapping and analysis software.

ArcGIS Dashboards 10.9.1 Tool to create real time dashboards that can present
location-based analytics using intuitive and interactive
data visualisations.

ArcGIS Python API 2.0.0 Python library that is used for mapping, spatial analysis,
data science, geospatial AI and automation.

Arcpy 3.0 Python site package that provides ArcGIS Pro tools in
Python.

Drone2Map 2.3.0 ArcGIS desktop application that can be used to process
and analyse drone data.

Google Drive 67.0 Shared cloud storage platform.

Google Drive API V3 REST API that can interact programmatically with Google
Drive.

Pillow 9.3.0 Python Imaging Library that contains a variety of image
processing capabilities.

Foldersync 3.2.9 Android app that allows automatic syncing from local
folders to cloud servers.

Open GPX Tracker 1.8.0 iPhone app that creates GPS traces with waypoints in the
open GPX format.

CVAT 2.2.0 The Computer Vision Annotation Tool is a free and open
source web-based image and video annotation tool.

29

4. Implementation

The ArcGIS Pro desktop application is used during this research to visualise a variety of test-
ing layers. To test different algorithms, different point and polygon layers were produced
by the prototype. When creating this information as ArcGIS Pro layers, datasets could be
tested locally, independent of the cloud. ArcGIS Pro is also used to train the deep learning
model.
After testing the detection and positioning algorithms, the data created by the prototype are
sent to ArcGIS Online. In ArcGIS Online, layers can be easily shared among others across
the same organisation. When layers are hosted on ArcGIS Online, they can be made avail-
able in a web map, which is a map containing multiple layers. Functionalities like automatic
updating and filtering are available here.
This web map can then be used to create a dashboard in ArcGIS Dashboards. The ArcGIS
Dashboard software was chosen to be used to create the localisation dashboard for the in-
spectors. The reason for this was the advantage of the high interoperability with the other
ArcGIS Software like ArcGIS Online. Additionally, the goal of this software is to create
dashboards for location-based data, which fits well with the objective of this research.
To create the prototype, the ArcGIS python libraries Arcpy and the ArcGIS Python API were
used. Arcpy was mainly used to create and write layers or data to ArcGIS Pro. The ArcGIS
Python API was used to download and inference with the deep learning model. Addition-
ally, it was used to send data to ArcGIS Online.
The ArcGIS desktop application Drone2Map was used to convert acquired drone images to
an orthomosaic for use in model training, described at 4.4.

When images are downloaded to the drone controller, they are automatically synced with
Google Drive. This connection is created using the FolderSync app. This is an android
application that can be downloaded on the smart controller.
The cloud storage platform Google Drive is used to store the drone images on. A separate
Google account was created for this research.
Using the Python Google Drive API, the images can be downloaded locally to the prototype.
Firstly, the Drive is searched for images with the name DJI of type .jpg. This function
retrieves all id’s of the images correspond to this condition. Next, these id’s are used to
download the images in a byte format.
To get the metadata from the images in this format, they are converted to Image objects
using the Pillow library. Using the getxmd and getexif functions, all necessary metadata can
be easily extracted from the image.
To determine the accuracy of the positioning algorithm, the calculated coordinates need to
be compared to the ground truth. To collect these ground truth coordinates, the Open GPX
Tracker application was used, downloaded on an iPhone 8. Using this app, when pressing
start, the latitude and longitude are determined and stored every 0-3 seconds. A timestamp
is also recorded with the coordinates. The coordinates are stored in a .gpx format, which
follows the Extensible Markup Language (XML) standard.
The web-based annotation tool CVAT was used to label all the images of acquired datasets.
Only the boat objects are labelled.

30

4.2. Used data

4.1.2. Hardware tools

All data used in this research is collected by drones, as will be described in the next subsec-
tion. The DJI Mavic 2 Enterprise Advanced drone1 was used to collect data. This drone has
a 1/2” CMOS camera lens, which produces images with an 8000 by 6000 pixel size. Addi-
tionally, a Dell laptop with a 4 GB memory GPU is used to create the prototype and tests
on. The smart controller of the drone is used to create a real time streaming connection on.
This controller has an android environment. To acquire the ground truth coordinate data
for dataset 2 to evaluate the algorithm in the results, a Geo 7x Trimble is acquired and taken
to the testing area. This handheld Global Navigation Satelite System (GNSS) tracker would
be able to collect the latitude and longitude with at least sub-meter accuracy. However, due
to a defective receiver, the device could not achieve a first fix in the area. For this reason, the
backup solution of using the iPhone application Open GPX Tracker was used.

4.2. Used data

To compare the found boat polygons against restricted areas, a polygon dataset of the Natura
2000 areas was used2. The dataset consist of 163 different areas both over land and over
water. Firstly, the Web Feature Service (WFS) layer was used, which could be directly loaded
into ArcGIS Online and ArcGIS Pro using the WFS link. However, it was found that the
features retrieved from this link could not be used in further processing that was needed
to show statistics on the ArcGIS Dashboard. For this reason, The Natura 2000 feature layer
was downloaded from the Pdok website as a shapefile and subsequently hosted on ArcGIS
Online as a feature layer.

Test data used in this research was collected with drones, as mentioned in 3.1. For the data
collection in Den Oever, a DJI Mavic 2 Enterprise Advanced drone was used. In Den Oever,
190 images in the harbour were collected by this drone of several fish cutters. Figure 4.1
displays the data acquisition area of this dataset.

1https://www.dji.com/nl/mavic-2-enterprise-advanced
2https://www.pdok.nl/introductie/-/article/natura-2000

31

https://www.dji.com/nl/mavic-2-enterprise-advanced
https://www.pdok.nl/introductie/-/article/natura-2000

4. Implementation

Figure 4.1.: Data acquisition area Den Oever dataset 1

At November 9, 2022 a test was conducted to gather data for the results. In Table 4.2,
the different collected subdatasets of dataset 2 are shown. As can be seen, datasets were
recorded with a varying boat movement and camera angle. The images recorded during
this test were used to process the results. The videos were used to investigate the operability
of using drone video for this method instead of images. This will be discussed in section
6.3.

Table 4.2.: Experiment parameters dataset 2

Test Boat Camera angle Data type

1 Lying still Nadir Images
2 Lying still Non-Nadir Images
3 Lying still Non-Nadir Video
4 Moving Nadir Images
5 Moving Non-Nadir Images
6 Moving Non-Nadir Video

The test was conducted in the Dutch city Ameide, which is situated along the Lek river.
Figure 4.2 shows the data acquisition area of dataset 2.

32

4.2. Used data

Figure 4.2.: Data acquisition area Ameide dataset 2

Drone images were collected for both datasets. Besides the pixel data, each image contains
metadata that is needed to calculate the exact object position. The following metadata was
used from the collected drone images:

XMP:

• GpsLatitude

• GpsLongitude

• RelativeAltitude

• GimbalYawDegree

• GimbalPitchDegree

Exif:

• FocalLength

• ImageWidth

• ImageLength

• DateTime

For the 2D positioning algorithm, the parameters GpsLatitude, GpsLongitude, RelativeAlti-
tude, GimbalYawDegree, FocalLength, ImageWidth and ImageLength were used. To con-
vert the algorithm to handle oblique images, the GimbalPitchDegree parameter was added
as input. The DateTime parameter was added to process the validation of the results. The

33

4. Implementation

metadata also contains the FlightYawDegree and FlightPitchDegree, however these param-
eters correspond to the position of the drone while the Gimbal parameter corresponds to
the position of the drone camera. The RelativeAltitude parameter calculates the height of
the drone relative to its take-off height. The metadata also contains the AbsoluteAltitude
parameter, however after investigation on its values, it was found that this parameter is
highly inaccurate (10-100 m errors), so it cannot be used in this research. Because the rela-
tive altitude is used, it is recommended that the take-off point is as close to the ground as
possible.

4.3. Code structure

In this section, the important parts of the created prototype code will be explained and
shown in pseudocode. The created code can be found at GitHub3.

Before the main loop is started, all used feature layers of ArcGIS Pro are completely cleared.
These cleared layers are used for testing, which makes it clear that the content of the layer is
the output of only the previous run. The layers in ArcGIS Online are for functional use and
not for testing. Because only the features of the last 24 hours are filtered out, this layer does
not need to be cleared. The purpose for this is that inspectors still have insight into previous
flights, should the need arise for this.

After the test layers are cleared, the main loop function is started. The pseudocode can be
seen at Algorithm 1. Before the while-loop, the Google Drive API connection is initialised,
the stack is filled with the image IDs of the unprocessed images and the detection model
is retrieved from the ArcGIS API. The while-loop runs until all images in the stack are
processed. Each iteration, the first image ID is taken from the stack to be processed. Firstly,
using the ID, the image is downloaded in byte-format using the Google Drive API. Secondly,
the necessary metadata is extracted from the image. The objects in the images are then
predicted using the prediction function from the detection model. Only the boat predictions
are relevant to this use case, so these predictions are kept. Then, for each of the predicted
boat features, the geographical coordinates of the bounding box are calculated and written
to an ArcGIS Online layer as a polygon feature. Processing for this image is then finished, so
it is removed from the stack. Because operation is done in real time, new images are added
to Google Drive while processing. At the end of the loop, newly added images from Google
Drive will be added to the stack. After this, a new image will be processed. When more
images are retrieved than can be processed, the stack continuously grows. Because drones
do not stay in the air forever and ultimately stop capturing new images, this is not expected
to be an issue.

3https://github.com/Lisageers/OpsporingVissersboten

34

https://github.com/Lisageers/OpsporingVissersboten

4.3. Code structure

Algorithm 1 Main loop

Input: link to Google Drive
Output:

M← deep learning model
Fill stack with image IDs
while IDs in stack do

Get ID from stack
Download image bytes img with ID
p← inference using M and img
filter boat features b from p
for each b do

c← positioning b
write c into online layer

end for
remove current ID from stack
add new image IDs from drive to stack

end while

In Algorithm 2, the positioning algorithm for the camera in the nadir direction is shown. The
input data of this algorithm are the image metadata and the bounding box pixel coordinates
of the prediction for the boat class. The first step is to calculate the field of view. This is done
separately for both the X and Y directions. Subsequently, the meters per pixel is calculated
for both directions. In the next step, the distances of the bounding box pixels to the image
centre are calculated, because the image centre is where the geographical position from the
metadata is located in the image. The pixels distances are then rotated using the camera
yaw in radians. After the pixel coordinates are rotated, the distance in pixels of each corner
of the bounding box to the image centre is known. Multiplying this distance to the meters
per pixel, the total translation in meters is known for both directions. This number of meters
is then converted to degrees latitude and longitude and added to the latitude and longitude
of the image centre from the metadata. This leaves us with the geographical coordinates of
the bounding box for the prediction.

Algorithm 2 Positioning algorithm nadir

Input: M: Metadata
P: predicted bounding box pixel coordinates

Output: latitude la & longitude lo of bounding box
A← angle field of view
mpp← calculate meter per pixel using M and A
D ← pixel distance of P from image center
Dr ← rotate pixel distance D using yaw from M
u← convert (mpp ∗ Dr) to la & lo degrees
la, lo ← lam, lom from M + u

35

4. Implementation

Algorithm 3 describes the algorithm for the positioning of objects on images taken with
oblique camera angles. The algorithm is adapted from algorithm 2 and is thus similar. It
uses the same input, the image metadata and the predicted bounding box. Because deter-
mining the object footprint is complex for oblique imagery, the geographical coordinates of
the centre of the predicted bounding box are calculated. In the first step, the FOV angle is
calculated. This angle is divided by the image width and height to get the FOV angle per
pixel. Thereafter, the middle of the predicted bounding box and the distance of the middle
from the image centre are calculated. Using the trigonometry functions described in 3.6.1,
the ground distance in meters from the recorded latitude and longitude in the metadata are
calculated. These distance values are then rotated using the camera yaw. Finally, the dis-
tances are converted to degrees latitude ang longitude and used to update the geographical
coordinates. The output of this algorithm are the geographical coordinates of the centre of
the object bounding box.

Algorithm 3 Positioning algorithm oblique

Input: M: Metadata
P: predicted bounding box pixel coordinates

Output: latitude la & longitude lo of bounding box centre
A← angle field of view
app← A/ image width w, height from M
D ← pixel distance of middle P from image center
GD ← calculate ground distance y of D from lam, lom using pitch, height, w from M, app
GDr ← rotate GD using yaw from M
u← convert GDr to la & lo degrees
la, lo ← lam, lom from M + u

4.4. Train Deep learning model

Before the deep learning model could be trained in ArcGIS Pro, considerable investigation
and preprocessing was necessary. Firstly, it was investigated if it was possible to train the
model using the labels from CVAT that were made for the validation of the detection model
on the collected images. It was found that it is not possible to directly train the model using
the labels from this program. Although the tool description states that it accepts labels in
the PASCAL Visual Object Classes (VOC) format, which the labels on CVAT can be exported
to4, the tool did not accept these labels. After investigating the output of the ArcGIS Pro
tool ’Export training data for deep learning’, it was found that besides the .xmd label files in
the Pascal VOC format, several other files and folders were created that are necessary to train
the model on ArcGIS Pro. It was concluded that the generated files were too complex to
generate without the tool, because a proprietary format was used for multiple files, like the
’esri accululated stats.json’ and ’esri model definition.emd’. The option to train the model
with a different application than ArcGIS Pro was briefly considered. However, the pretrained
model used in this research is only available in an ArcGIS format, which makes it unusable
for other applications. Using another pretrained model was considered, but this makes
comparing the results of the ArcGIS pretrained model with the trained model not valid.

4https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/train-deep-learning-model.htm

36

4.4. Train Deep learning model

The input for the export training data tool is an imagery layer5. The collected images thus
need to be converted to this format. The images of the Den Oever dataset can be converted
to an orthomosaic raster layer with ArcGIS Drone2Map, because the images were collected
in a predefined flight path at a regular interval. For the images collected in Ameide, this
was not done, because the same boat was captured in each image, one image can be used as
raster. Three random images were chosen from the Ameide dataset to be used for training,
two nadir images and one oblique image, because the nadir accuracy needs to be increased.
The images were georeferenced using the image metadata to the right position and scale.
A translation was then carried out on the images to position them closer to the Den Oever
raster. Figure 3.14a shows the raster. Positioning the rasters close together is more conve-
nient when creating the image chips and the position is not important here. The next step
is to combine the rasters into one dataset, this was done with the Append tool in ArcGIS
Pro. Because the drone image rasters are of very high quality and model training is compu-
tationally heavy, the spatial resolution of the rasters needed to be decreased. This was done
by increasing the cell size from 0.00559 to 0.0559 with the Resample tool in ArcGIS Pro. By
decreasing the resolution by this number, the objects are still clearly visible and the used
laptop is able to handle the model training.

The raster is now ready for the generation of the image chips. Previous to this, the objects
need to be labelled. The labelling was done manually by drawing polygons over the boat
objects using the ’Label Objects for Deep Learning’ tool. The resulting polygons are saved
in a feature layer. The next step is to generate the image chips and corresponding labels in
the Esri format using the ’Export Training Data For Deep Learning’ tool. This tool converts
the raster sub-images, called image chips. Corresponding .xml files containing the feature
labels are also created for each sub-image, as well as additional files in Esri format, like the
model definition file. The raster and labelled polygons are the input for this tool. The chosen
image format for the image chips is .JPEG, because this is the format of the collected drone
images used in the research. The pixel size of each image chip was chosen to be 512, double
the standard size of 256, to make sure an image chip can contain the entire feature. A stride
of 128 was decided, which is the standard value, to make sure the dataset is covered well
and there are enough samples to train the model. The metadata format of the output was
selected to be PASCAL VOC, because this is the standard option and this format is fit for
training the YOLOv3 model. After running this tool, 644 images with 1207 features were
created out of the initial raster with 35 labels.

The final step is to train the pretrained YOLOv3 model with the ’Train Deep Learning Model’
tool in ArcGIS Pro. The input of this tool is the folder with the image chips and labels
created in the previous step. The model type was chosen to be YOLOv3, as this is the
same pretrained model used in this research. The parameter chip size was set to 512, as
this is the size of the image chips. The number of epochs was increased from the standard
20 to 50. This is done to make sure the trained model is fitted to the input more closely.
The processing batch size is decreased to 1. It was found that the laptop used to train the
model could not handle batch sizes larger than this when training the model due to memory
constraints. The training time with these parameters on the used laptop was 7 hours and
45 minutes. The output is the newly trained deep learning model in the Esri format. This
model can be directly used in a Python script with the ArcGIS Python API and the path to
the created Esri model definition file. The resulting accuracy of the trained model can be
found in section 5.1.3.

5https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/export-training-data-for-deep-
learning.htm

37

4. Implementation

4.5. Experiments

To come to the results, several experiments were created to process the acquired data and
gather statistics. The experiments were subdivided between detection (4.5.1), positioning
(4.5.2) and real time 4.5.3. Test were run separately to determine the statistics of the main
components without them influencing each other.

4.5.1. Object detection

To determine the accuracy of the detection model for the specific use case of the fisher boats,
the detected boat polygons ŷ need to be compared with the real polygons y. Firstly, these
real polygons need to be created by hand. This was done with the CVAT web tool. The
following datasets were labelled:

• Dataset 1: All images from Den Oever

• Dataset 2: All images from test 1 and 4 in Ameide (all nadir images)

• Dataset 3: All images from test 2 and 5 in Ameide (all non-nadir images)

The images from these three datasets were uploaded separately to the CVAT web tool. One
to be used ’boat’ class was added to the three projects. Each image from all datasets was
then investigated separately. A rectangle bounding box was drawn manually for each boat
that was visibly present in the image. After all images were investigated, the labels could
be downloaded locally in a variety of formats. After some experimenting, the format ’CVAT
for images 1.1’, which is a XML type format, was chosen to be the most optimal export
format. In other formats like ’COCO 1.0’ or ’YOLO 1.1’ the bounding boxes and image
names were in separate files or calculations had to be carried to get to the bounding box
pixel numbers. Both of these would lead to more unnecessary programming complexity
when processing these labels. The ground truth labels were then converted using a Python
script, shown at Algorithm 4. For each image, a .txt file is created with the name of the
image corresponding to the name of the file, so “imagename.txt”. In this file, the labels are
written in the following way: “classname xmin ymin xmax ymax” with a new line for each
label. Converting the ground truth labels to this format allows them to be directly processed
into the mAP program6, created by [Cartucho et al., 2018]. This algorithm evaluates the
detection accuracy and produces several statistics like the precision-recall curve and the
average precision. Besides the ground truth labels, the program also requires the original
images with the relating names and the bounding boxes predicted by the detection model.
These predicted bounding boxes ŷ should be should also be put into separate .txt files with
corresponding filenames in the format “classname confidence xmin ymin xmax ymax”. The
pseudocode of the python script used to create this format for all the test images is shown
at algorithm 5. This script was run three times for each dataset, resulting in nine different
outputs. Firstly, it was run using the pretrained deep learning model. Secondly, it was run
with the pretrained model and turning of the filter for the boat class, which is shown as the
if-statment at Algorithm 5. Lastly, it was run using the model trained in this research.

6https://github.com/Cartucho/mAP

38

4.5. Experiments

Algorithm 4 Process results ground truth

Input: P: path to annotation file
Output: .txt files with ground truth

GT ← read P
for each img in GT do

create .txt
if image.bbs != exist then

continue
end if
bbs← get bounding boxes from img
for bb in bbs do

write bb to .txt file
end for

end for

Algorithm 5 Process results detection

Input: P: path to images
Output: .txt files with predictions

M← deep learning model
for each img in P do

create .txt
O← inference with M on img
for each Pred in O do

if Pred == boat then
write Pred to .txt file

end if
end for

end for

The ground truth .txt files should be put into a folder with the name ground-truth. Addi-
tionally, the images should be in a folder named images-optional and the predicted label .txt
files should be put into a folder named detection-results, all in the mAP program folder. The
mAP program is then ready to be run. This was done four times for each dataset, resulting
in 12 accuracy outputs of the mAP program. Firstly, it was run using the detection files with
the pretrained model. Secondly, using the pretrained model without filtering out the boat
class. Finally, it was run two times for each dataset using the trained model and changing
between IoU ratio of 0.5 and 0.1.

39

4. Implementation

4.5.2. Object positioning

To determine the accuracy of the positioning algorithm, the ground truth needs to be com-
pared to the predicted outcome. For this experiment, the ground truth data was collected
with the Open GPX Tracker iPhone application. This was done for all tests of dataset 2 from
Ameide. One of the boat passengers held the iPhone with the Open GPX Tracker application
as still as possible. In figure 4.3 this can be seen. The red square in both images indicates
where the phone was situated on the boat. As can be seen, the phone is not exactly in the
middle of the boat, but approximately one meter towards the end of the boat. Because the
positioning result aims to find the coordinates of the middle of the boat, this could explain
errors up to 1 meter in the results.

(a) Boat with GPS tracker (b) Zoomed-in boat GPS tracker

Figure 4.3.: Ground truth data collection positioning

After the GPS was tracked, these tracks were automatically saved to a .GPX file by the appli-
cation. In these files, the recorded GPS points and the corresponding timestamp are stored.
The files, which have an XML format, can be easily parsed in a Python script. The pseudocode
can be seen at Algorithm 6 In the Python script, all images in each test are processed. For
each image, the necessary metadata is retrieved. After, the recorded coordinate that is the
closest in time to the image capture, is chosen to be the ground truth coordinate to compare
the positioning output to. When the image time does not directly correspond to a recorded
ground truth timestamp, a ratio is calculated for the interval the image falls in. This is done
so that the ground truth coordinate is as close to reality as possible. After the ground truth
coordinates are found, the ground truth boat bounding box is retrieved from the ground
truth file with the same name as the image. The ground truth bounding box is used to
measure the localisation algorithm without possible influence of the accuracy of the deep
learning detection bounding boxes. For the middle of this ground truth box, the GPS coordi-
nates are calculated using the positioning algorithm. These coordinates are then compared
to the ground truth coordinates. In this way, ground truth and calculated coordinates are
retrieved for each boat in each image (all images contain one boat with ground truth GPS).
The distance between the ground truth and the calculated coordinates is then calculated,
recorded and described in section 5.2.

40

4.5. Experiments

Algorithm 6 Process positioning accuracy

Input: Pp: path to positioning ground truth file
Pd: path to detection ground truth file
Pi: path to image folder

Output: .txt files with positioning errors
scatter plots positioning errors

GTp, GTd ← read Pp, Pd
for img in Pi do

M← get metadata from img
S← smallest time difference
for Cgt in GTp do

Ti, Tp ← convert timestring to miliseconds from M, Cgt
if abs(Ti − Tp) < S then

Sgt ← Cgt
end if

end for
for bb in GTd do

Cp ← use M to position bb
Elat, Elon ← calculate difference Sgt - Cp

write Elat, Elon,
√

E2
lat + E2

lon to .txt file
end for
create scatterplot of all errors E

end for

4.5.3. Speed real time connection

The speed of the real time connection and algorithm are also assessed. To measure the
running speed, the prototype was subdivided into different key components. Table 4.3
displays the different components that were tested. For the first two rows, the speed was
tested of the smart controller components with a stopwatch. The ’Start’ and ’End’ columns
represent the moments where the stopwatch is started and stopped. For the remaining
columns, the time is measured with the python Time library in the prototype code. A
timestamp is recorded at the ’Start’ and ’End’ column points. The difference in seconds
between these timestamps is then calculated, stored and described in section 5.3.2 The tests
were run with a 50 mbit/s download speed and 20 mbit/s upload speed, which could have
an influence on the outcome. At the time of testing, there were 8 devices connected to the
same connection, which could have decreased the upload and download speed.

41

4. Implementation

Table 4.3.: Prototype speed experiment

Test Start End

Download full size Press download button in
DJI Pilot app

Pop-up download complete in
screen

To Drive Press Sync in DJI Fly appli-
cation

Foldersync marking the sync
complete

From Drive Start Drive API call Image is retrieved in byte for-
mat

Detection Start inference with
model.predict() function

Prediction is outputted

Positioning Positioning algorithm is
started

coordinates are outputted

Write to file Start searching for file in Ar-
cGIS Online

File in ArcGIS Online is up-
dated with new feature

Code total Start while loop stack End of while loop

42

5. Results

In this chapter, the results of this research are presented. In section 5.1 the accuracy of the
pretrained and trained detection models is assessed. Section 5.2 describes the accuracy of
the positioning algorithms. Finally, in section 5.3 the real time functionality and speed of
the prototype is investigated and described.

5.1. Boat detection accuracy

In this section, the accuracy test results of the detection model will be displayed and anal-
ysed. The existing two datasets are split into three datasets. Dataset 1 contains all images
from dataset 1, captured in Den Oever. Dataset 2 contains all images of the Ameide data
collection from dataset 2 where the camera is pointed in the nadir direction. Dataset 3 con-
tains the remaining images from data collection in Ameide where the camera was pointed
in an oblique direction during image capture. The Ameide dataset was split to evaluate the
performance of the detection models on both nadir and oblique imagery.

For all images of these three datasets, ground truth and detection labels were collected to
calculate accuracy statistics. Specific implementation details can be found at 4.5.1. Using
the Python code of [Cartucho et al., 2018] with some minor alterations, the performance
parameters could be calculated. These minor alterations are made to mare visualisations
more clear and to change the IoU ratio. This is done for the pretrained model and the
trained model. Additionally, the accuracy is assessed taking into account all labels of the
pretrained model without filtering out the boat label. Tests are run with a standard IoU of
0.5 unless specified otherwise. The results of the accuracy assessment consist of an Average
Precision (AP) value and a precision-recall curve.

5.1.1. Results pretrained model

In this subsection, the accuracy of the pretrained model is evaluated. The produced results
are table 5.1 and the 5.1 plots. As can be seen in the AP column at 5.1, the precision of dataset
1 and dataset 2 are quite unsatisfactory. The largest difference with dataset 3 is that the first
two datasets were both taken with the camera in the nadir direction. In dataset 3 the camera
was pointed at an oblique angle.

This result is also visualised in Figure 5.1. The AP is the area under the curve, shown in light
blue. The precision on the y-axis shows how often the model predicts the bounding boxes
correctly. As can be seen for all three datasets, the precision is quite high for an increasing
recall, which indicates that when the model makes a prediction, this is a correct prediction.
At 5.1c the precision starts to drop at a recall of 0.5. This would indicate that predictions
made by the model with a probability of 0.5 or higher are always correct in this case, as the
precision is 1.0. For predictions with a 0.5 or lower, the predictions are not always correct.

43

5. Results

Table 5.1.: Detection results pretrained model

Dataset AP True
Positives

False
Positives

False
Negatives

Ground truth
objects

Detected
objects

1 25.15% 127 16 344 471 143
2 6.06% 2 0 31 33 2
3 74.29% 35 14 10 45 49

(a) Dataset 1: Den Oever (b) Dataset 2: Ameide nadir (c) Dataset 3: Ameide oblique

Figure 5.1.: Precision-recall curves pretrained model

The images from dataset 1 are recorded in a predefined flight path, with the camera in the
nadir direction. Because data is collected in a harbour, many different boats are captured in
this dataset, leading to a high boat variety. Also, because the drone flew at an altitude of
approximately 30 meters, many large boats could not be fully captured in one image. As a
result, many of the ground truth labels are boat objects that contain only part of the boat.
Figure 5.2 shows some examples of these cases. This could partly explain the low accuracy
of this dataset. Another explanation for the low accuracy could be that the model assigns
the wrong class to the right bounding box. The YOLOVv3 model used here is pretrained on
the COCO dataset, which contains 80 classes. This is investigated at section 5.1.2.

(a) (b)

Figure 5.2.: Images with boat parts

44

5.1. Boat detection accuracy

5.1.2. Results pretrained model with all classes

In this section, an investigation is done on whether the pretrained model could be predicting
the right labels, but with the wrong class. In the previous section, only predictions of
the boat class are taken into account. In this section, the accuracy is calculated using all
predicted labels, regardless of class. All classes are thus seen as boat class. Table 5.2 displays
the results. As anticipated, the number of false positives is quite high for all datasets. This
is the result of additional objects in the images found by the model wrongly being seen as
boat class in this method.

Table 5.2.: Detection results pretrained model all classes

Dataset AP True
Positives

False
Positives

False
Negatives

Ground truth
objects

Detected
objects

1 23.84% 217 526 254 471 743
2 50.47% 26 50 7 33 76
3 76.91% 39 64 6 45 103

Figure 5.3 also displays this. For datasets 1 and 2 the recall is a lot higher, meaning that there
are more correct predictions being made. This indicates that some bounding boxes around
boats are predicted with the wrong class in 5.1.1. When comparing with figure 5.7, it is
noticeable that the precision in 5.3 is a lot lower. This is the expected result of the high false
positive rate. When the model makes a prediction, the chance is lower that this prediction
is correct. In dataset 1, this results in the AP being lower than in 5.1.1. The reason for this
is that this dataset was collected partly over land, resulting in many additional objects like
cars being correctly predicted by the model. When all these additional classes are being
converted to boat, this leads to many false positives. In dataset 2 this is not the case, because
less additional objects were being predicted, so the precision is higher.

(a) Dataset 1: Den Oever (b) Dataset 2: Ameide nadir (c) Dataset 3: Ameide oblique

Figure 5.3.: Precision-recall curves pretrained model, all classes

45

5. Results

Dataset 2 shows a much higher AP than in the previous section in Table 5.1. The other two
datasets show little difference in AP. From this we can conclude that in dataset 2, many
labels were in the right position around the boat, but contained the wrong class. Figure 5.4
shows some examples of this. The pretrained model predicted the bounding boxes in the
right position, but with the wrong classes ’skateboard’ and ’snowboard’.

(a) (b)

Figure 5.4.: Predictions with incorrect classes

5.1.3. Results trained model

Table 5.3 and Figures 5.5 and 5.7 display the results of the model trained for this research.
When looking at the average precision for the standard IoU ratio of 0.5, datasets 1 and 2
score significantly better than the pretrained model. Dataset 3 with oblique imagery scores
significantly worse for this model, which is to be expected. The goal of training the model
is to improve the nadir boat detection, hence why only one oblique image was added to the
training dataset.

Table 5.3.: Detection results trained model

Dataset IoU AP True
Positives

False
Positives

False
Negatives

Ground truth
objects

Detected
objects

1 0.5 42.83% 236 144 235 471 380
1 0.1 68.55% 330 50 141 471 380

2 0.5 12.12% 4 10 29 33 14
2 0.1 42.42% 14 0 19 33 14

3 0.5 4.44% 2 1 43 45 3
3 0.1 4.44% 2 1 43 45 3

46

5.1. Boat detection accuracy

(a) Dataset 1: Den Oever (b) Dataset 2: Ameide nadir (c) Dataset 3: Ameide oblique

Figure 5.5.: Precision-recall curves trained model IoU 0.5

Noticeable is the large proportion of false positives in dataset 1 and 2. In Figures 5.5a and
5.5b this can also be seen. The precision stays below 1.0 and in figure 5.5b a sharp drop can
be seen at a recall of 0.15. This high number of false positives could indicate that predicted
the bounding are in the right position, but do not overlap the ground truth bounding boxes
enough to be considered true positives. A visual inspection was done on the output of these
datasets, and it was concluded that this is causing the large number of false positives. Figure
5.6 shows some examples of this. The predicted bounding boxes are shown in red and the
ground truth in orange.

(a) Dataset 1 (b) Dataset 1

(c) Dataset 2 (d) Dataset 2

Figure 5.6.: Little overlap between predicted (red) and ground truth (orange) bounding boxes

47

5. Results

To avoid predicted bounding boxes in the right position with little overlap being sorted into
the false positives, the IoU ratio was decreased to 0.1. In that way, predicted bounding boxes
need to be less overlapped with ground truth bounding boxes to be considered valid. In
Table 5.3 it is shown that lowering the IoU increases the average precision notably. In 5.7,
the increase in precision and recall is also noticeable. Figure 5.7a displays that the precision
is a lot higher than in 5.5a and has a less steep downwards slope. In dataset 2 the increase
in precision is even larger. In figure 5.7b the precision is at 1.0 at every recall value. This
indicates that in datasets 1 and 2, the trained model predicted many bounding boxes with
a low overlap to the ground truth. Figure 5.6 shows that the predicted bounding boxes are
mostly larger than the ground truth bounding boxes.

(a) Dataset 1: Den Oever (b) Dataset 2: Ameide nadir (c) Dataset 3: Ameide oblique

Figure 5.7.: Precision-recall curves trained model IoU 0.1

5.2. Object positioning

In this section, the results of the positioning algorithms for the camera in the nadir and
oblique direction are displayed. Dataset Ameide was split into 4 subsets to investigate the
performance of the algorithms on difference camera angles and boat movement. All ground
truth coordinates are compared to the calculated coordinates by the model. Table 5.4 shows
the mean absolute error in meters of for the 4 subsets. More detailed results can be seen
at tables A.1, A.2, A.3 and A.4. These tables show the difference in meters of the latitude,
longitude and Euclidean distance between the ground truth and the calculated coordinates
for each image. For each subset, the average and absolute average is also calculated. Four
scatter plots are created to visualise the latitude and longitude errors of the four subsets. A
line is drawn at 0 for both axes to divide the plot into four quadrants to visualise the distri-
bution of the errors more clearly. In Table 5.4, it is shown that the errors of the positioning
of a motionless boat are lower than for a moving boat. Additionally, the oblique algorithm
has higher errors than the nadir positioning with the same boat movement. In sections 5.2.1
and 5.2.2 these results will be discussed further for the nadir and the oblique algorithms
respectively.

48

5.2. Object positioning

Table 5.4.: Average absolute errors in meters

Positioning accuracy in meters

Motionless Moving
Nadir 5.6 9.7

Oblique 8.2 19.6

5.2.1. Results nadir positioning

Table A.1 shows the distance in meters between the ground truth and calculated coordinates
for images of a motionless boat at a nadir position. There is a slight difference between the
latitude and the longitude average. The error of the different images has quite a large range.
The average shown in all positioning accuracy tables is the absolute average. Because the
error values for latitude and longitude are squared in the Euclidean distance calculation, the
total error values are all absolute values. This results in the average and absolute average
being the same value at all times for this column. Figure 5.8a shows the scatter plot of the
latitude and longitude errors. The errors seen highly clustered. Most of the errors seem to
have a negative value for both the latitude and the longitude.

In Table A.2, the nadir results of a moving boat are shown. The errors are slightly higher
than the Table A.1, which is expected, because a moving boat and drone could cause in-
consistencies, both in the drone metadata and the ground truth data. The mean absolute
latitude error is slightly higher than the longitude error, in contrast to Table A.1. Figure
5.8b visualises the errors of this subset. In contrast to the errors of the coordinates of the
motionless boat, the errors seem spread out. Almost all the errors seem to have a negative
value for the latitude. This indicates that the calculated latitude is higher than the ground
truth latitude. This could be due to the fact that the algorithm overestimates the latitude
shift that is needed from the metadata latitude to the latitude of the object.

(a) Camera in the nadir position, motionless boat (b) Camera in the nadir position, moving boat

Figure 5.8.: Nadir positioning error in meters

49

5. Results

5.2.2. Results oblique positioning

In this section, the results of the oblique positioning algorithm are shown. Table A.3 ex-
presses the results of the errors of the drone images at an oblique angle, with the boat lying
still. In Table A.4, the results with a moving boat are shown. Figure 5.9 shows the scatter
plot of the latitude and longitude errors of both subsets.

The absolute average longitude error of the oblique algorithm with a motionless boat in
Table A.3 is reasonably higher than the longitude error. However, in Table A.4, the absolute
average latitude error is slightly higher than the longitude error, which does not indicate a
pattern. In 5.9a, the errors of the calculated coordinates of the motionless boat are visualised.
Like in Figure 5.8a, the errors seem more clustered. The most errors seem to be negative for
both the latitude and longitude error, but this is not very distinct.

As expected, in Table A.4 the absolute average errors are higher than for a boat that is
not moving, both in the latitude and longitude direction. Similar to Figure 5.8b, in Figure
5.9b the errors are very dispersed. For this subset, there is no distinct trend in negative or
positive for both axes. When looking at the image names, it can be seen that images taken
consecutively are in usually the same quadrant.

(a) Camera in the oblique position, motionless boat (b) Camera in the oblique position, moving boat

Figure 5.9.: Oblique positioning error in meters

Concluding, there exists an error of several meters for all of the four subsets. As expected,
the errors of the subsets with the moving boat are larger and more dispersed than the
errors of the motionless boat. Because the boat is moving, the ground truth may be less
accurate. Additionally, because of rapid movements of the drone to follow the moving
boat, the image metadata quality is expected to decrease, which directly translates to the
positioning accuracy. The errors of the oblique subsets are larger than its nadir counterparts.
This is due to the fact that inaccuracies of the image metadata have a larger influence on the
results when the translation is larger.

50

5.3. Real time connection

5.3. Real time connection

In this subsection, the real time functionality is assessed. Firstly, the connection of the drone
controller with the cloud is assessed in section5.3.1. Then, the results of the prototype speed
test are described in section 5.3.2.

5.3.1. Connection drone controller with Google Drive

As mentioned in section 3.4, the method used to make a real time connection to the prototype
is to make a connection to and from Google Drive. The drone used for this research is the DJI
Mavic 2 Enterprise Advanced, which is controlled with a smart controller. This controller
can be connected to WiFi and has an android environment. As mentioned, the goal is to
install a syncing app on the smart controller that syncs local folders to Google Drive. When
trying to install this app called FolderSync, it was found that no apps could be installed
through the verified Google Play Store, because it did not exist on this device. To install
apps without the Google Play Store, websites that host the raw installation .apk files can be
used. However, these websites are not verified and are thus more prone to computer viruses.
After consultation with the owners of the drone, it was decided to install the app with the
.apk hosting website Apkpure. The Foldersync app was installed successfully and linked to
Google Drive and local data.

However, this brought to light two problems with this method. First of all, the cache folder
is not filled directly when the images are made. It is filled at an unspecified time from the
image capture, which could be as late as when the drone has already landed. A workaround
for this problem was found. The person holding the controller could manually export images
in the DJI Fly application to Google Drive. This needs to be done separately for every image,
and is thus not desirable.

The second problem with this method is the image quality. The images that are received
by the smart controller are of lower pixel size than the images stored on the drone its self.
The drone images stored on the drone are of size 6000X8000 and the ones cached to the
smart controller are of size 960X720 pixels. The lower pixel size does not have a critical
influence on the output. The lowered image quality does have another crucial flaw: images
received by the controller do not contain the GPS and camera metadata, which makes them
unusable by the positioning algorithm. These findings are not mentioned in the DJI smart
controller documentation. Finally, a solution was found for both of these problems to stream
the images with the correct metadata to Google Drive. When an image is captured, it is also
stored in the DJI fly app in the smart controller. In this app, the preview of these images
can be seen. For each image, there is also a download button available. When pressing
this button, the image is downloaded in full 6000X8000 size with the needed metadata. The
image is downloaded to the ./djipilot/DJIPilot Album, which is synced to Google Drive
with the Foldersync app. The cache folder is thus not needed. This app syncs the images
in the folder every 5 minutes, which is the most frequent option this app contains. In this
way, there is a near real time connection with the cloud and prototype. Although not fully
automatic, because the person with the drone controller has to manually download the
images in the DJI Fly application.

51

5. Results

5.3.2. Speed of the real time connection

In Table 5.5, the speed in seconds of different components of the prototype method are
recorded for 10 random images. For the columns ’Download full size’ and ’To Drive’ the
time was measured with a stopwatch. In the First column, the time to download one image
to get the full size 6000x8000 on the DJI Fly app was measured for 10 different images. In
the next column, ’To Drive’, the time was measured to upload an image from the controller
to Google Drive by the Foldersync app.

The speed of the remaining columns were measured in Python with the time library. The
start time and end time of different parts of the code of the prototype were recorded, sub-
sequently the time difference between the start and end time could be calculated. For the
’Detection’ column, the time to inference one image was measured. In the ’Positioning’ col-
umn, the time to convert the pixel coordinates to latitude and longitude was measured. A
0.0 indicates that the time to carry out this code block was lower than 0.1 seconds. In the
’Write to file column’ the time was recorded to add the point and polygon data to the layers
in ArcGIS Online. The last column, ’Code Total’, stores the time it takes for one image to be
fully processed. So the total time for one image can be considered as ’Download full size’ +
’To Drive’ + ’Code total’. The average of this is 2.53 + 9.97 + 13.21 = 25.72seconds.

The components that rely on an internet connection have a large influence on the results. The
number of images stored on Google Drive also has a large influence on the total running
time. In each loop, these images need to be retrieved and for each image it needs to be
determined if it has been processed or not. This means that the more images are stored on
Google Drive, the longer processing takes in the code. At the time of testing, there were 10
images stored on the linked Google Drive.

Table 5.5.: Speed real time connection

Recorded speed in seconds

Image Download
full size

To
Drive

From
Drive

Detection Positioning Write to file Code
total

1 3.26 8.32 0.29 2.19 0.0 3.68 13.84
2 3.19 8.75 0.30 0.99 0.0 4.01 9.34
3 2.29 12.48 0.29 0.96 0.0 3.13 12.23
4 2.30 13.50 0.31 0.99 0.0 3.08 14.70
5 2.64 9.53 0.37 0.97 0.0 4.13 12.66
6 2.22 7.06 0.26 0.97 0.0 2.99 13.50
7 1.80 9.35 0.30 0.98 0.0 3.42 13.19
8 3.05 10.46 0.32 0.98 0.0 3.38 13.58
9 2.43 9.30 0.30 0.98 0.0 3.18 12.96
10 2.10 10.99 0.31 0.98 0.0 3.89 16.11

Average 2.53 9.97 0.31 1.01 0.0 3.49 13.21

52

6. Conclusion and future work

6.1. Discussion & Limitations

In this section, the research project is discussed and the research limitations are described.
Firstly, the results from Chapter 5 are thoroughly discussed and the limitations of the re-
search method are described. After, the use of drones in this research project is evaluated.
Finally, a discussion is made on the results and limitations of the use case of this research.

6.1.1. Discussion of the results

When looking at the average precision of the pretrained detection model on each of the
three datasets, it is clear that it is too low to directly use in production. The difference in
AP between the nadir and oblique datasets are noticeable. An expected explanation for this
is that the boat class of the COCO dataset, which the model is trained on, has been trained
mostly on images from an oblique angle. A method to improve the detection accuracy
would be to collect data from the object of a nadir angle, label this data and train the
model. To improve the performance of the prototype, the pretrained YOLOv3 model was
trained further using mostly nadir imagery acquired in this research. This has been proven
to increase the accuracy. It was also found that the pretrained model misclassifies some
predictions. Taking these findings into account, it is recommended to train the pretrained
model when using the prototype for other use cases. In that way, the accuracy is expected
to be higher and misclassification is not possible due to that fact that the model is focused
only on one class.
The pretrained detection model used for this research is trained on the COCO dataset, which
consists of 80 classes. This model can be used for further training for other use cases where
other objects present in the COCO classes list should be detected. Because this pretrained
model is used, the prototype can be directly used for other use cases. Moreover, it was found
that using the Python for ArcGIS API, detection models could be loaded in and directly used
for inference. Using and training the model can be done in ArcGIS Pro, which provides a
visual interface where intermediate steps of the training can also be shown on a map. This
is an advantage for other use cases, where inspectors with little programming experience
may need to train the model.

Although results are reasonable for positioning and useful for the use case of fisher boat de-
tection, it is clear that due to some reasons, there is still a significant error in the calculated
coordinates. One of the main reasons for this error is the inaccuracy of the metadata. As
mentioned in section 4.2, certain metadata parameters are used as input in the positioning
algorithm. When one or several of the parameters are less accurate, this directly translates
to loss of accuracy of the positioning algorithm. As mentioned in 4.2, the AbsoluteAltitude
parameter was so inaccurate, it was not usable to produce credible results. This could be
improved in future projects by using a Real Time Kinematic (RTK) module on the drone. For

53

6. Conclusion and future work

this research, the RTK module was unfortunately not available. Another option that could
lead to improvement is to use a more professional drone. The drone used for this research
was relatively light and inexpensive. A heavier drone would experience less influence of fac-
tors like wind. Also, a more expensive drone is expected to carry more accurate equipment
to record the metadata, which would lead to an improvement of accuracy. Another solution
which could improve the drone metadata accuracy is to determine the drone fly times based
on the GPS constellation. The recorded metadata GPS position is gathered from a connection
with the satellites in this constellation. During certain times of the day, more satellites could
be in sight of the drone, thus a more accurate position can be recorded.
Besides the inaccurate metadata, the simplification of reality could also lead to a loss of ac-
curacy. In the nadir positioning algorithm, the assumption is made that the camera is facing
nadir at all times. Additionally, in both algorithms we assume that the terrain is entirely
flat. In this use case, for inspection flights in The Netherlands over water bodies, these are
credible assumptions. For autonomous flight, the DJI Fly app requires a predefined path
with the camera facing downwards at all times. Moreover, the surface over inland water
is mostly flat. When using this method on sea, waves could influence the flatness of the
terrain and thus the accuracy of the output. When using this method to detect objects on
land, the outcomes are highly dependent on the terrain. In the Netherlands, the terrain is
relatively flat in most cases, so acceptable results are expected. When using this method in
a mountainous or hilly area, it is expected that this could highly influence the results. This
can be seen in Figure 6.1, the trigonometric approach for calculating the ground distance
does not hold true for uneven terrain. It is recommended that the user should use a DEM to
account for this uneven terrain.

Al
tit

ud
e

Distance

Figure 6.1.: Influence terrain on positioning approach

Ideally, the time for the prototype to process one image is less than the time between two
image captures by the drone. The time between two images captures is 2.5 seconds when the
drone is flying a predefined inspection flight plan. As mentioned in section 5.3.2, the average
time to process one image is 25.72 seconds, much larger than the capture gap of two seconds.
This means that images will be processed with a huge delay while the drone is in the air.
For this use case, a delay of minutes is not ideal, but not a very big problem. Inspectors
still need to inspect the images and make their way to the incident location. However, for
other use cases, like search and rescue, this could lead to serious loss of usability. About
half of the processing time can be accounted for by getting the images to and from Google
Drive. An improvement on time could thus be to install the prototype on the controller and

54

6.1. Discussion & Limitations

leave out Google Drive. This could largely decrease the uploading and downloading time
needed. Through ArcGIS Runtime, many ArcGIS functionalities, like writing data to layer
files, are available on Android. Loading in the deep learning model can also be done offline
by downloading the model.
A large part of the processing time of the Python code can be accounted for by the uploading
and downloading of data. For uploading the data for the dashboard to ArcGIS Online, an
ArcGIS function is used. Consequently, little can be altered in the code to improve the speed.
When searching for new images in Google Drive with the API, the whole cloud is inspected
to search for files that fit the requirements. With this API, it is not possible to limit the search
to just one folder on Google Drive. This could potentially influence the speed when there
are many files stored on the cloud.
As mentioned, the connection also has a large influence on the components of the prototype
that use this connection to upload and download data. This can be an issue, because the
connection can be unreliable in the field, which leads to unstable performance. This is
expected to improve, because wireless connections continue to improve in the past years
and are expected to do so in the future. Concretely, with the introduction of 5G in the
upcoming years and the recently launched Starlink connection for remote areas.
Another limitation of the real time connection with the controller is that the connection
could not be created fully automatically. A pilot still needs to press the download button to
receive the drone images in high quality with the necessary metadata. There however exist
a large variety of drones and drone controllers. It is possible that for other controllers, the
downloading of the images to full quality would not be necessary. This research was limited
to the drones and controllers available by the NVWA, for which it was concluded that it is not
possible.
When the drone is flying a predefined path and capturing images every few seconds, it is
a given that large parts of images overlap with each other. Not all images are thus crucial
to process when other images can convey the same information. A method to decrease the
delay in processing could thus be to increase the time gap between incoming images to be
processed. A method for this is described in [Dhanda et al., 2018] where they use metadata
to filter out redundant images.

It is important to consider that the detection results could influence the positioning results.
In the experiments of this research, the detection and positioning were tested separately.
This was done by using the ground truth bounding boxes as input for the positioning algo-
rithm instead of the detected bounding boxes. Figure 5.6 displays the possible influence the
detection output could have on the positioning result. In orange, the bounding box of the
ground truth is given and in red, the bounding box of the detection result is shown. As can
be seen, the predicted boat appears to be larger than it actually is. When using the proto-
type, the bounding box of the detection result would be directly translated to a polygon on
the dashboard. The polygons on the dashboard are thus not guaranteed to directly relate
to object size and have to be interpreted with caution. When the predicted bounding boxes
do not directly overlap the ground truth, so the bounding boxes are not situated at the right
position in the image, the positioning accuracy will also decrease as a result.

55

6. Conclusion and future work

6.1.2. Use of drones

In this research, drones were used to detect and localise certain objects. This means that
all data collection and testing needs to be carried out in the field. The use of a drone for
research proved to be quite challenging, due to several reasons.

First of all, research with drones was challenging from a logistic point of view. Because a
pilot licence is needed to fly the drones, drone pilots from the NVWA carried out the necessary
data acquisition. There was considerable communication necessary for these data acquisition
instances to take place. A drone pilot needed to be arranged who was willing to help with
my research. Also, a date, time and fitting location needed to be discussed. Flying drones is
not allowed in all Dutch airspace, so the location had to be carefully chosen. Also, a detailed
flight plan for each data acquisition instance had to be created to let all involved parties
know what the goal of the plan was. Additionally, for on ground testing with the drone and
its controller, these items needed to be borrowed from the NVWA. When alterations needed
to be done, these obviously had to be mutually agreed to by the drone owner. The persons
involved with the NVWA were of very great help. But nevertheless, these aspects still made
the research more time-consuming.

Secondly, it is important to note that fully autonomous flight is not allowed yet in the Nether-
lands. The current law imposes that the drone pilot should keep the drone in sight at all
times. This means that autonomous inspection flights at interesting locations are restricted
by law at this time. However, there exist signs that laws on this are about to change, at least
for certain parties like the NVWA. Recently, a testing area has been fitted at Katwijk called
the BVLOS corridor. This corridor runs from the former Valkenburg Air Base to the North
Sea and was created to test autonomous drone flights without a pilot in the light of sight1.

The original idea was to use drone video instead of images. However, due to the metadata
not being available for videos taken with DJI drones, this method was not possible at this
time. Section 6.3 describes a possible future method should the metadata be made available
for videos.

6.1.3. Use case discussion

Although this method looks promising to automate the detection of fisher boats in restricted
areas, some remarks need to be made. When using predefined inspection flight times,
these need to be variable. Otherwise, fishers with bad intentions will know to avoid the
restricted areas during inspection times. Additionally, inspections flights would also need
to be carried out by night, as it is expected that many illegal activities would be carried out
in a low light environment. To detect fisher boats during nighttime, an infrared camera is
necessary. The detection algorithm would also need to be trained on this type of imagery. So
with the current detection model, detection on infrared images is not possible yet. Also, to
prevent boats from being detected, fishers could alter their boat to make it undetectable by
the model, like using camouflage colours or high reflectance material. To prevent this from
happening, the detection model needs to be trained for these types of situations as well.

The storage of all data is also important to discuss. An inspection flight will usually lead
to hundreds of images in high quality, which all need to be stored. These images are being
stored on Google Drive, but as mentioned before, increase in files on Google Drive leads to

1https://unmannedvalley.nl/en/news/press-release-first-bvlos-corridor-in-the-netherlands/

56

6.2. Conclusion

a large increase of the processing time of the prototype, because limiting the image search
to a certain folder is not possible. It is therefore recommended to clean out the Google Drive
connected to the prototype at least once every 24 hours and store the images elsewhere. The
produced features added to ArcGIS online are added to a layer that has a filter to show
only the features of the previous 24 hours. When features are continuously adding to the
layer in ArcGIS Online, processing of the statistics on the dashboard and visualising the
layer becomes more computationally expensive. Recommendations on when to back up and
clear the feature layer depends on the number of incoming features and thus the number of
inspection flights. It is expected that ArcGIS Online has no trouble handling feature layers
with up to one million features.

To make this method more usable for other use cases, a tracking functionality needs to be
added, that can track the detected objects. In the current method, images are processed
separately, so the case where the object is present in both images is not handled yet. Several
solutions to this issue were investigated and are described in section 6.3.

When working with visual data of the public space, privacy can be an issue. A solution
for this could be to automatically blur faces on the drone images, this can be done with
a deep learning model. Additionally, sensitive data can be prone to hacks. It is therefore
recommended to limit access to servers where data is stored, like Google Drive and ArcGIS
Online and use protected log-in like two-factor authentication. Google Drive at least as
secure as other cloud platforms, as it uses a strong encryption when transferring files and
has the option to use 2-factor authentication.

6.2. Conclusion

The aim of this research is to develop a prototype to detect and localise objects in real
time. This was done by integrating several components, like the deep learning model, the
positioning algorithm, the real time connection and the localisation dashboard. To carry out
this aim, the following research question was defined: To what extent can drones be used to
localise objects in real time? In the previous sections, the research method, implementation,
results and analysis are described. Based on these sections, a conclusion of the research will
be given. Firstly, answers to the subquestions and the main question will be given. Then,
the contributions of this research are described.

6.2.1. Research Questions

In this subsection, the research questions are answered and evaluated.

1. How can deep learning be used to detect objects on drone images?

To answer this research question, an investigation was done on the available deep
learning options to detect objects. The YOLOv3 detection model from the Python
for ArcGIS API was found to be the most fitting. The YOLOv3 model is the best fit
for real time use, because it had the most optimal tradeoff between inference speed
and accuracy. The model is pretrained on the COCO dataset, which makes it directly
usable for 80 classes. A drone image can be inputted into the model, which predicts the
bounding box around the object, the class and the prediction probability. Moreover, to
increase the nadir boat detection accuracy, the model was trained with data acquired

57

6. Conclusion and future work

in this research. It was found that to increase accuracy and avoid misclassification, the
pretrained model needs to be trained.

2. How can detected objects be automatically positioned in a geographical coordinate
system?

To investigate this research question, multiple methods were researched. Because of
processing time constrains due to the real time functionality, an algorithm is imple-
mented for images taken with a nadir angle that calculates the meters per pixel using
the image metadata. The necessary input for this is: the drone GPS coordinates, drone
camera angle and height. To make this method useful for more use cases, a positioning
algorithm is developed for objects on images taken with an oblique camera angle. Be-
cause both algorithms directly use the image metadata, the accuracy has a very large
influence on the results. It was found that the used drone has an acceptable metadata
quality for positioning in this specific use case. However, if more accurate results are
needed, the drone metadata quality needs to be improved. To visualise and localise
the geographical coordinates of the object, the features are stored in a map layer in
ArcGIS Online, which is visualised as a map on a dashboard.

3. What hardware and software is needed for this method to be carried out in real
time?

The drone used in this research has no real time image streaming functionality built
in, so this had to be constructed. The hardware required for the constructed method
is a controller that can be synced with the cloud and a device to run the prototype
code on. The needed software a sync application, the cloud and the Python code of
the prototype. To create a real time connection, a connection with the cloud is made
through Google Drive. On the smart controller, an app is installed that automatically
syncs local files with the cloud. The images can then be retrieved from Google Drive
with Python code using the Google Drive API. Unfortunately, this method could not be
made fully automatic because full quality images with the necessary metadata could
only be stored locally on the controller after a manual download. Because of the
multiple uploading and downloading, the speed of this method is dependent on the
connection of the controller and the device running the prototype code. Current testing
points out that with the current method, the time interval between image captures is
much smaller than the duration to process one image, which leads to delays. Solutions
for this problem are running the code directly on the controller or increasing the time
interval between image captures by removing redundant images.

After the sub-questions are answered, the main research question can be answered. To what
extent drones can be used to localise objects in real time depends on the specific use case
and drone used. For the use case of finding fisher boats in restricted areas with the Mavic 2
Enterprise Advanced drone, it is possible, but with a few remarks. The expectation for this
use case is that inspection flights with a predefined path will be carried out with a nadir
pointed camera. As concluded, the detection accuracy of the boat class with pretrained
model is not very high, and it was found that this can be increased by training the model.
To increase detection accuracy and avoid misclassification, it is therefore recommended that
the pretrained model is trained further for the class needed in the use case. Additionally,
the accuracy of the image metadata will directly influence the accuracy of the positioning.
However, the found accuracy is satisfactory for this use case, as visual inspection is still
necessary. The real time functionality could not be made fully automatic for this drone and
the image processing will be delayed due to the upload and download time. For this use

58

6.3. Future work

case, the objects do not need to be localised immediately on the dashboard, so this method
is suitable.
For other use cases, these results could be less sufficient, depending on the need to have
very accurate results for detection of boats, positioning or speed. Several recommendations
to increase the accuracy of the results are given in 6.1. Nevertheless, this method seems a
good starting point for the localisation of objects with drones that can be used for a variety
of use cases.

6.2.2. Contributions

This research integrates several components to localise objects on a map in real time with
the use of drones. The separate components have been researched before, but have not been
integrated in such a way before to localise objects from drone images. With this integrated
method, objects on drone images can be localised on a map in a dashboard while the drone
is still in the air. The current methodology is highly adaptable for many use cases that
require the geographical location of objects on drone images in real time. To carry out
this method, a prototype was constructed using the programming language Python and
a variety of software libraries. The prototype gives a good estimation on the position of
detected objects. With this method, many in-person inspections could become redundant,
saving money and time. Additionally, the created method allows multiple inspection flights
to be processed and visualised at once. This research also provides insight in the usability
of relatively light drones for research purposes.

6.3. Future work

When multiple images of the same boat produce a predicted polygon, it seems like there
are many boats, while in truth there is only one. To solve this issue, the boats need to be
tracked. Several methods were investigated. Two of these methods which seemed the most
viable to do further research on are described.
The first method is based on template matching and can be implemented directly into the
prototype. In this method, a smaller template image is compared to another image. This is
done by sliding the template across the other image and comparing the pixel colour values.
In the prototype, it can be used to compare objects from two sequentially captured images.
For each previous image where a boat is detected, the boat bounding box is cut out. For this
cutout, a match is attempted to be found in the next image. If there is a match, this means
that the same boat is present at both images. The template matching functionality can be
directly implemented using the OpenCV Python library.
Another proposed method for further research is the use of FMV. This is an extension for
ArcGIS that that can geospatially analyse video data. When a local video or video stream
is available together with a FMV-compliant metadata file, the dynamic field of view of the
camera can be shown on a map. Figure 6.2 displays a screenshot of this functionality. This
FMV image stream can be combined with a deep learning model for object tracking on video2.
Once an object is found, it can be tracked, which is shown directly on the map as points
connected by lines.

2https://pro.arcgis.com/en/pro-app/latest/help/analysis/image-analyst/object-tracking-in-motion-
imagery.htm

59

6. Conclusion and future work

Figure 6.2.: Screenshot FMV functionality in ArcGIS Pro

For now, this functionality is available only for ArcGIS Pro, so created layers still have to
be automatically uploaded to ArcGIS Online. The main issue why this has not been im-
plemented yet is because many drones do not create a flight log for video captures. Using
the DJI Fly app for the drone used for this research, no flight log was created for video.
With other drone flying applications, like ArcGIS Site Scan a flight log is created after flight,
on which still numerous alterations had to be made to make it fit for FMV use. The fact
that many drone fly apps produce a flight log for videos only after landing, if at all, poses
implications for the real time functionality. Nevertheless, this method has high potential
because of the detection and oblique tracking capabilities on video stream. It therefore is
recommended to look into further if drone or fly apps exist where the drone flight is logged
in real time in a format easily fit for FMV. If the flight log of the drone is not available, it
would be interesting to research if the predefined flight plan could be converted to the right
flight log format for FMV. In this flight plan, the start and end time, as well as the flight
track is recorded. The camera is always in the nadir position, so in theory all the necessary
metadata is recorded in the flight plan to be able to convert it to a flight log.

Several potential solutions to limitations, mentioned in section 6.1, could also be considered
interesting topics to research further in the future. It would be appealing to research in
what way the positioning accuracy could be improved. For example, the quantification on
how the metadata quality influences the positioning accuracy could be researched. Also,
the influence of a drone with a RTK module or more precise equipment on the positioning
accuracy could be investigated.
As theorised in 6.1, running the prototype on the controller or on the drone itself could
decrease the processing time. It would be interesting to research the feasibility of this theory
and what software and equipment is needed to achieve this.
Finally, it would be worthy to research different drones and controllers to find the drone
equipment that is most fit for these type of monitoring use cases. The quality of this drone
was scarcely suitable for this use case, but would not be fit for other monitoring use cases.
As mentioned in this section, a drone which records a flight log with drone streaming
capabilities fit for FMV would be most optimal.

60

A. Positioning errors

Table A.1.: Positioning accuracy with nadir camera and motionless boat

Positioning accuracy in meters

Image number Longitude error Latitude error Total error

21 -2.1 3.2 3.8
22 -2.3 -2.9 3.7
23 -3.1 -2.7 4.1
24 -7.2 -1.2 7.3
25 -7.2 -1.6 7.4
26 -7.1 -2.3 7.5
27 -7.1 -3.3 7.8
28 -6.9 -3.2 7.6
29 1.8 3.2 3.7
30 -0.3 3.3 3.3
31 -6.2 -3.0 6.9
32 -3.8 -1.2 4.0
33 -3.0 -1.4 3.3
34 -1.5 -1.9 2.4
35 -2.5 -4.4 5.1
36 -4.3 -8.0 9.1
37 -4.7 -7.3 8.7

Average -4.0 -2.0 5.6
Absolute average 4.2 3.2 5.6

61

A. Positioning errors

Table A.2.: Positioning accuracy with nadir camera and moving boat

Positioning accuracy in meters

Image number Longitude error Latitude error Total error

50 4.5 2.9 5.4
51 2.9 -1.5 3.3
52 -0.6 -8.1 8.1
53 -2.4 -10.7 11.0
54 -1.3 -12.5 12.6
55 -5.4 -13.2 14.3
56 -10.2 -16.3 19.2
57 -18.1 -16.0 24.2
58 -14.1 -1.0 14.1
59 1.6 -6.9 7.1
60 3.5 -4.1 5.4
61 5.4 -5.9 8.0
62 4.4 -4.5 6.3
63 3.3 -6.4 7.2
64 0.4 -2.6 2.6
65 2.9 -4.9 5.7

Average -1.5 -7.0 9.7
Absolute average 5.1 7.3 9.7

Table A.3.: Positioning accuracy with oblique camera and motionless boat

Positioning accuracy in meters

Image number Longitude error Latitude error Total error

38 -2.0 2.1 2.9
39 -2.2 2.2 3.1
40 -17.3 -3.7 17.7
41 -14.5 -1.0 14.5
42 2.7 1.7 3.2
43 4.4 3.5 5.6
44 1.3 -0.8 1.5
45 -6.8 -5.2 8.6
46 -7.6 -5.2 9.2
49 -14.8 -4.2 15.4

Average -5.7 -1.1 8.2
Absolute average 7.4 3.0 8.2

62

Table A.4.: Positioning accuracy with oblique camera and moving boat

Positioning accuracy in meters

Image number Longitude error Latitude error Total error

66 3.8 -19.1 19.5
67 13.9 -18.8 23.4
68 14.6 -17.5 22.8
69 14.0 -20.0 24.4
70 10.8 -18.8 21.7
71 0.1 -17.1 17.1
72 -5.5 -17.9 18.7
73 -20.5 -4.4 21.0
74 -15.0 13.2 20.0
75 -10.8 10.1 14.8
76 -5.8 5.8 8.2
77 -3.0 7.2 7.8
78 1.9 6.1 6.4
79 14.5 2.5 14.7
80 19.8 -9.5 22.0
81 13.6 -19.9 24.1
82 -12.3 -28.9 31.4
83 -31.5 -16.0 35.3

Average 0.1 -9.1 19.6
Absolute average 11.7 14.0 19.6

63

Bibliography

Aburasain, R. Y., Edirisinghe, E. A., & Albatay, A. (2021). Palm tree detection in drone images
using deep convolutional neural networks: Investigating the effective use of YOLO v3. In
Digital interaction and machine intelligence (pp. 21–36). Springer International Publishing.
Retrieved from https://doi.org/10.1007/978-3-030-74728-2 3 doi: 10.1007/978-3-030
-74728-2 3

Apoorva, A., Mishra, G. K., Sahoo, R. R., Bhoi, S. K., & Mallick, C. (2020, July). Deep
learning-based ship detection in remote sensing imagery using TensorFlow. In Algorithms
for intelligent systems (pp. 165–177). Springer Singapore. Retrieved from https://doi.org/

10.1007/978-981-15-5243-4 14 doi: 10.1007/978-981-15-5243-4 14

Bodensteiner, C., Bullinger, S., Lemaire, S., & Arens, M. (2015, December). Single frame
based video geo-localisation using structure projection. In 2015 IEEE international con-
ference on computer vision workshop (ICCVW). IEEE. Retrieved from https://doi.org/

10.1109/iccvw.2015.136 doi: 10.1109/iccvw.2015.136

Bos, O. (2018). Report on the eel stock and fisheries in the netherlands 2016/2017 (Tech. Rep.).
Retrieved from https://doi.org/10.18174/445173 doi: 10.18174/445173

Bozzini, C., Conedera, M., & Krebs, P. (2012, September). A new monoplotting tool to
extract georeferenced vector data and orthorectified raster data from oblique non-metric
photographs. International Journal of Heritage in the Digital Era, 1(3), 499–518. Retrieved
from https://doi.org/10.1260/2047-4970.1.3.499 doi: 10.1260/2047-4970.1.3.499

Carranza-Garcı́a, M., Torres-Mateo, J., Lara-Benı́tez, P., & Garcı́a-Gutiérrez, J. (2020, De-
cember). On the performance of one-stage and two-stage object detectors in autonomous
vehicles using camera data. Remote Sensing, 13(1), 89. Retrieved from https://doi.org/

10.3390/rs13010089 doi: 10.3390/rs13010089

Cartucho, J., Ventura, R., & Veloso, M. (2018, October). Robust object recognition through
symbiotic deep learning in mobile robots. In 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS) (p. 2336-2341). IEEE. Retrieved from https://doi

.org/10.1109/iros.2018.8594067 doi: 10.1109/iros.2018.8594067

Chang, Y.-L., Anagaw, A., Chang, L., Wang, Y., Hsiao, C.-Y., & Lee, W.-H. (2019, April). Ship
detection based on YOLOv2 for SAR imagery. Remote Sensing, 11(7), 786. Retrieved from
https://doi.org/10.3390/rs11070786 doi: 10.3390/rs11070786

Ciocarlan, A., & Stoian, A. (2021, October). Ship detection in sentinel 2 multi-spectral images
with self-supervised learning. Remote Sensing, 13(21), 4255. Retrieved from https://

doi.org/10.3390/rs13214255 doi: 10.3390/rs13214255

65

https://doi.org/10.1007/978-3-030-74728-2_3
https://doi.org/10.1007/978-981-15-5243-4_14
https://doi.org/10.1007/978-981-15-5243-4_14
https://doi.org/10.1109/iccvw.2015.136
https://doi.org/10.1109/iccvw.2015.136
https://doi.org/10.18174/445173
https://doi.org/10.1260/2047-4970.1.3.499
https://doi.org/10.3390/rs13010089
https://doi.org/10.3390/rs13010089
https://doi.org/10.1109/iros.2018.8594067
https://doi.org/10.1109/iros.2018.8594067
https://doi.org/10.3390/rs11070786
https://doi.org/10.3390/rs13214255
https://doi.org/10.3390/rs13214255

Bibliography

Dhanda, A., Remondino, F., & Quintero, M. S. (2018, May). A METADATA BASED AP-
PROACH FOR ANALYZING UAV DATASETS FOR PHOTOGRAMMETRIC APPLICA-
TIONS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, XLII-2, 297–302. Retrieved from https://doi.org/10.5194/isprs-archives

-xlii-2-297-2018 doi: 10.5194/isprs-archives-xlii-2-297-2018

Groves, P. (2013). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems,
Second Edition.

Hartley, R., & Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge
University Press.

Hassanalian, M., & Abdelkefi, A. (2017, May). Classifications, applications, and design
challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131. Retrieved
from https://doi.org/10.1016/j.paerosci.2017.04.003 doi: 10.1016/j.paerosci.2017
.04.003

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017, October). Mask R-CNN. In 2017 IEEE
international conference on computer vision (ICCV). IEEE. Retrieved from https://doi.org/

10.1109/iccv.2017.322 doi: 10.1109/iccv.2017.322

Heikkila, J., & Silven, O. (1997). A four-step camera calibration procedure with implicit
image correction. In Proceedings of IEEE computer society conference on computer vision and
pattern recognition. IEEE Comput. Soc. Retrieved from https://doi.org/10.1109/cvpr

.1997.609468 doi: 10.1109/cvpr.1997.609468

Htet, K. S., & Sein, M. M. (2021, April). Toddy palm trees classification and counting using
drone video: Retuning hyperparameter mask-RCNN. In 2021 7th international conference on
control, automation and robotics (ICCAR). IEEE. Retrieved from https://doi.org/10.1109/

iccar52225.2021.9463466 doi: 10.1109/iccar52225.2021.9463466

Joyce, K. E., Duce, S., Leahy, S. M., Leon, J., & Maier, S. W. (2019). Principles and practice of
acquiring drone-based image data in marine environments. Marine and Freshwater Research,
70(7), 952. Retrieved from https://doi.org/10.1071/mf17380 doi: 10.1071/mf17380

Keller, A., & Ben-Moshe, B. (2022, April). A robust and accurate landing methodology for
drones on moving targets. Drones, 6(4), 98. Retrieved from https://doi.org/10.3390/

drones6040098 doi: 10.3390/drones6040098

LeCun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep learning. Nature, 521(7553), 436–444.
Retrieved from https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539

Leeuwen, S., Traag, W., Hoogenboom, L., & De Boer, J. (2002). Dioxins, furans and dioxin-
like PCBs in wild, farmed, imported and smoked eel from the Netherlands. Organohalogen
compounds, 57, 217–220.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017, October). Focal loss for dense
object detection. In 2017 IEEE international conference on computer vision (ICCV). IEEE.
Retrieved from https://doi.org/10.1109/iccv.2017.324 doi: 10.1109/iccv.2017.324

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016).
SSD: Single shot MultiBox detector. In Computer vision – ECCV 2016 (pp. 21–37). Springer
International Publishing. Retrieved from https://doi.org/10.1007/978-3-319-46448-0

2 doi: 10.1007/978-3-319-46448-0 2

66

https://doi.org/10.5194/isprs-archives-xlii-2-297-2018
https://doi.org/10.5194/isprs-archives-xlii-2-297-2018
https://doi.org/10.1016/j.paerosci.2017.04.003
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/cvpr.1997.609468
https://doi.org/10.1109/cvpr.1997.609468
https://doi.org/10.1109/iccar52225.2021.9463466
https://doi.org/10.1109/iccar52225.2021.9463466
https://doi.org/10.1071/mf17380
https://doi.org/10.3390/drones6040098
https://doi.org/10.3390/drones6040098
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/iccv.2017.324
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2

Bibliography

Mlambo, R., Woodhouse, I., Gerard, F., & Anderson, K. (2017, March). Structure from motion
(SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse
gas emissions from forests in developing countries. Forests, 8(3), 68. Retrieved from
https://doi.org/10.3390/f8030068 doi: 10.3390/f8030068

Mount, R. (2005, December). Acquisition of through-water aerial survey images. Pho-
togrammetric Engineering and Remote Sensing, 71(12), 1407–1415. Retrieved from https://

doi.org/10.14358/pers.71.12.1407 doi: 10.14358/pers.71.12.1407

Nan, L. (2021a). Camera models. https://3d.bk.tudelft.nl/courses/geo1016backup/

handouts/01-camera models.pdf.

Nan, L. (2021b). Reconstruct 3D geometry. https://3d.bk.tudelft.nl/courses/

geo1016backup/handouts/04-reconstruct 3D geometry.pdf.

Nan, L. (2022a). Introduction to machine learning. https://3d.bk.tudelft.nl/courses/

geo5017/handouts/01-Introduction.pdf.

Nan, L. (2022b). Performance metrics for classification. https://3d.bk.tudelft.nl/courses/
geo5017/handouts/09-ClassificationMetrics.pdf.

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458.

Padilla, R., Netto, S. L., & da Silva, E. A. B. (2020, July). A survey on performance metrics
for object-detection algorithms. In 2020 international conference on systems, signals and image
processing (IWSSIP). IEEE. Retrieved from https://doi.org/10.1109/iwssip48289.2020

.9145130 doi: 10.1109/iwssip48289.2020.9145130

Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s approach. O’Reilly Media,
Inc.

Pedersen, S. A., Fock, H., Krause, J., Pusch, C., Sell, A. L., Böttcher, U., . . . Rice, J. C.
(2008, December). Natura 2000 sites and fisheries in german offshore waters. ICES Journal
of Marine Science, 66(1), 155–169. Retrieved from https://doi.org/10.1093/icesjms/

fsn193 doi: 10.1093/icesjms/fsn193

Prayudi, A., Sulistijono, I. A., Risnumawan, A., & Darojah, Z. (2020, September). Surveillance
system for illegal fishing prevention on UAV imagery using computer vision. In 2020
international electronics symposium (IES). IEEE. Retrieved from https://doi.org/10.1109/

ies50839.2020.9231539 doi: 10.1109/ies50839.2020.9231539

Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767. Retrieved from https://arxiv.org/abs/1804.02767 doi: 10.48550/
ARXIV.1804.02767

Ren, S., He, K., Girshick, R., & Sun, J. (2017, June). Faster R-CNN: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6), 1137–1149. Retrieved from https://doi.org/10.1109/tpami

.2016.2577031 doi: 10.1109/tpami.2016.2577031

Salz, P., Hoefnagel, E., Bavinck, M., Hoex, L., Bokhorst, J., Blok, E., & Quaedvlieg, J. (2008).
Maatschappelijke gevolgen van de achteruitgang in de visserij (Tech. Rep.). LEI. Retrieved from
https://edepot.wur.nl/44406

67

https://doi.org/10.3390/f8030068
https://doi.org/10.14358/pers.71.12.1407
https://doi.org/10.14358/pers.71.12.1407
https://3d.bk.tudelft.nl/courses/geo1016backup/handouts/01-camera_models.pdf
https://3d.bk.tudelft.nl/courses/geo1016backup/handouts/01-camera_models.pdf
https://3d.bk.tudelft.nl/courses/geo1016backup/handouts/04-reconstruct_3D_geometry.pdf
https://3d.bk.tudelft.nl/courses/geo1016backup/handouts/04-reconstruct_3D_geometry.pdf
https://3d.bk.tudelft.nl/courses/geo5017/handouts/01-Introduction.pdf
https://3d.bk.tudelft.nl/courses/geo5017/handouts/01-Introduction.pdf
https://3d.bk.tudelft.nl/courses/geo5017/handouts/09-ClassificationMetrics.pdf
https://3d.bk.tudelft.nl/courses/geo5017/handouts/09-ClassificationMetrics.pdf
https://doi.org/10.1109/iwssip48289.2020.9145130
https://doi.org/10.1109/iwssip48289.2020.9145130
https://doi.org/10.1093/icesjms/fsn193
https://doi.org/10.1093/icesjms/fsn193
https://doi.org/10.1109/ies50839.2020.9231539
https://doi.org/10.1109/ies50839.2020.9231539
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2577031
https://edepot.wur.nl/44406

Bibliography

Schenk, T. (2005). Introduction to photogrammetry. The Ohio State University, Columbus.

Snyder, J. P. (1987). Map projections–a working manual (Vol. 1395). US Government Printing
Office.

Steiner, L. (2011). Reconstruction of glacier states from geo-referenced, historical postcards.
Master’s diss. Eidgenossische Technische Hochschule Zurich.

Tiberius, C., van der Marel, H., Reudink, R., & van Leijen, F. (2021). Surveying and mapping.
Netherlands: TU Delft Open. doi: 10.5074/T.2021.007

van Oostenbrugge, J., Bartelings, H., & Buisman, F. (2010). Distribution maps for the north sea
fisheries; methods and application in natura 2000 areas. LEI, part of Wageningen UR.

Voinov, S. (2020). Deep learning-based vessel detection from very high and medium resolution
optical satellite images as component of maritime surveillance systems (Unpublished doctoral
dissertation). Universität Rostock.

Xu, G., & Zhang, Z. (1996). Epipolar geometry in stereo, motion and object recognition: a unified
approach. Springer Science & Business Media.

Yang, Z., Yu, X., Dedman, S., Rosso, M., Zhu, J., Yang, J., . . . Wang, J. (2022, September).
UAV remote sensing applications in marine monitoring: Knowledge visualization and
review. Science of The Total Environment, 838, 155939. Retrieved from https://doi.org/

10.1016/j.scitotenv.2022.155939 doi: 10.1016/j.scitotenv.2022.155939

Zhang, H., Wang, G., Lei, Z., & Hwang, J.-N. (2019, October). Eye in the sky. In Proceedings
of the 27th ACM international conference on multimedia. ACM. Retrieved from https://

doi.org/10.1145/3343031.3350933 doi: 10.1145/3343031.3350933

Zhao, X., Pu, F., Wang, Z., Chen, H., & Xu, Z. (2019). Detection, tracking, and geolocation
of moving vehicle from UAV using monocular camera. IEEE Access, 7, 101160–101170.
Retrieved from https://doi.org/10.1109/access.2019.2929760 doi: 10.1109/access
.2019.2929760

68

https://doi.org/10.1016/j.scitotenv.2022.155939
https://doi.org/10.1016/j.scitotenv.2022.155939
https://doi.org/10.1145/3343031.3350933
https://doi.org/10.1145/3343031.3350933
https://doi.org/10.1109/access.2019.2929760

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Research questions
	Scope and challenges
	Thesis overview

	Theoretical background and related work
	Data acquisition with drones
	Deep learning
	Convolutional Neural Networks
	Architectures
	Research on the detection of objects

	Object Positioning
	Terminology
	Positioning
	Positioning methods
	Research on the positioning of objects

	Summary

	Methodology
	Focus area and data acquisition
	Object detection model
	Construction of the positioning algorithm
	Real time connection
	Localisation with a dashboard
	Prototype improvement
	Oblique positioning
	Training the deep learning model

	Validation
	Object detection accuracy
	Positioning accuracy
	Speed real time connection

	Implementation
	Tools
	Software tools
	Hardware tools

	Used data
	Code structure
	Train Deep learning model
	Experiments
	Object detection
	Object positioning
	Speed real time connection

	Results
	Boat detection accuracy
	Results pretrained model
	Results pretrained model with all classes
	Results trained model

	Object positioning
	Results nadir positioning
	Results oblique positioning

	Real time connection
	Connection drone controller with Google Drive
	Speed of the real time connection

	Conclusion and future work
	Discussion & Limitations
	Discussion of the results
	Use of drones
	Use case discussion

	Conclusion
	Research Questions
	Contributions

	Future work

	Positioning errors

