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1
INTRODUCTION

The Neural Stochastic Differential Equations (NSDEs) connect ideas of stochastic differ-
ential equations and neural networks.

Formalized by Itô for the first time in [1], stochastic differential equations (SDEs) are
ordinary deterministic differential equations with a noise factor added. These equations
are useful in many contexts where predictable changes are paired with noisy fluctua-
tions.

Neural networks, on the other hand, emerged in the 1940s and 1950s as computa-
tional models inspired by biological nervous systems. Comprising interconnected artifi-
cial neurons, they possess the capability to learn from data and perform complex tasks.

Chapter 2 lays the groundwork by providing an overview of generative models. In
Chapter 3, we provide a comprehensive literature review, with particular emphasis on
two approaches: one outlined in [2] and another in [3]. These approaches are selected
due to their links with generative models. Additionally, we explore conditions for the ex-
istence and uniqueness of solutions in stochastic differential equations, aiming to iden-
tify analogous properties in the field of NSDEs. Through extensive research, we find that
certain techniques, such as weight clipping [3] and scalar normalization [4], yield the
desired results.

Financial modeling heavily relies on SDE-based models. This thesis explores the po-
tential application of neural SDEs in this domain. However, the question of which mod-
els to rely on arises. Rough volatility models, which employ fractional Brownian motion
instead of Brownian motion as noise, have gained popularity. While empirical evidence
supporting this approach has been identified in [5], conflicting opinions regarding its
reliability persist.

Chapter 4 focuses on replicating and explaining the results supporting the rough volatil-
ity hypothesis. Additionally, we propose counterarguments, particularly highlighting the
findings presented in [6] and [7]. These studies not only provide valuable insights but
also offer a new perspective on the topic. Furthermore, we replicate some of the results
presented in these articles, which raises questions about the validity of the empirical
evidence used to support the rough volatility models.

Motivated by the previous chapter’s discussion, we shift our focus to Markovian-type
models. Our research centers on the joint calibration of SPX and VIX options, as well
as SPX option calibration using Markovian-type neural SDEs. Chapter 4 also includes a

1
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literature survey of Markovian models addressing joint calibration. In the case of joint
calibration, we generate synthetic data following the idea described in [8], while con-
ducting calibration tests on real data.

Considering the issue of data scarcity, the final chapter is dedicated to exploring inter-
esting methods for generating synthetic data. We focus on the works of [9] and [10], as-
sessing their advantages, effectiveness, and suitability for generating financial data. The
first paper we examine, [9], is built on the idea of a signature, which we briefly discuss.
Additionally, we introduce optimal transport, the underlying principle in [10]. Lastly,
we propose a potential new method that incorporates GAF, a technique that allows to
transform time series in images, and diffusion models



2
BACKGROUND MATERIAL:

GENERATIVE MODELS

A generative model is a statistical or machine learning model that is designed to capture
and learn the underlying structure or distribution of a given dataset. It generates new
samples that closely replicate the original data on which it was trained.

They are particularly valuable in situations where data may be scarce or when there is
a need to generate synthetic data for testing or simulation purposes.

Examples of generative models include generative adversarial networks (GANs), vari-
ational autoencoders (VAEs), and restricted Boltzmann machines (RBMs). Each of these
models employs distinct techniques to learn from the data and generate new samples.

In terms of a concise taxonomy of generative models based on the maximum likeli-
hood approach, following [11] they can be broadly categorized into two groups: Implicit
Models and Explicit Models. Techniques such as generative adversarial networks (GANs)
that learn to produce samples by training a generator network to fool a discriminator
network are examples of implicit models. Explicit Models are further classified based
on the tractability of the underlying probability distribution. Tractable Models are those
in which the probability distribution can be efficiently computed, whereas Untractable
Models are those in which finding the exact distribution is infeasible. Normalising Flow
is an example of a Tractable Model, whereas the Variational Autoencoder (VAE) is an
example of an Untractable Model .

Generative Models

Implicit Models GAN

Explicit Models
Tractable Models

Untractable Models VAE

Figure 2.1.: Generative modelling taxonomy based on the maximum likelihood from [12]
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In this section, Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) will be introduced. These generative models have significant implications and
play a crucial role in the thesis. To provide a concise explanation, we will follow the
description in [12], [13] for the GAN and [14] for the VAE.

2.1. GAN

Generative Adversarial Networks (GANs) are a class of generative models that aim to gen-
erate realistic samples that correspond to a specific input distribution without explicitly
modeling the probability density or distribution of the input data. Introduced by Good-
fellow et al. [12], GANs learn intricate data distributions and generate high-quality sam-
ples. In the GAN architecture we have a generator G and a discriminator D , both are
typically implemented as neural networks. The generator takes in a fixed-dimensional
input and generates an output with a variable dimensionality that matches the target
data’s characteristics. On the other hand, the discriminator receives input samples and
produces a scalar output that represents the probability of the input being a real sample.
The discriminator’s output can be regarded as a binary classification task, with values
closer to 1 indicating that the input is real, and values closer to 0 indicating that the in-
put is fake. Through the adversarial interaction, the model iterates and refines its perfor-
mance, resulting in greater performance and the generation of more realistic and diverse
samples.

z x⃗fake
G(x)

generator

noise

xreal
Pdata(x)

x real?
D(x)

discriminator

Figure 2.2.: Example of GAN behaviour generated using the Tikz library [15]

Particularly, one of the important developments in the field of Generative Adversar-
ial Networks (GANs), the Wasserstein GAN proposed in [16] will be useful in the the-
sis. Leveraging the relationship with optimal transport theory, in the Wasserstein GAN,
the Earth-Mover’s distance (EM), also known as the Wasserstein distance, is utilized for
training the model instead of the Jensen-Shannon divergence used in the GAN.

2.2. VARIATIONAL AUTOENCODERS

The Variational Autoencoders (VAEs) are a class of generative models that aim to learn
a latent representation of the input data, which captures the underlying structure and
distribution of the data, and use this representation to generate new data samples that
resemble the input data distribution.
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5

Proposed by Kingma et al in [14], a crucial role is played in VAEs by the latent space,
which acts as a lower-dimensional representation that captures the essential character-
istics of the input data. It serves as a bottleneck layer in the VAE architecture, compress-
ing the information while preserving the key features. The latent space is defined by
a probability distribution, often a multivariate Gaussian distribution, which allows for
sampling and generating new data points. The encoder neural network maps the input
data to this latent distribution by outputting the mean and variance parameters. These
parameters are then used to sample latent points from the distribution. The sampled
latent points are then passed through the decoder network, which is symmetrical to the
encoder network. The decoder aims to reconstruct the original input data from the latent
representation, progressively generating outputs that resemble the input data distribu-
tion.

µ

σ

sample

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

input output

Figure 2.3.: Example of VAE architecture generated using the Tikz library [15]

In VAEs, the loss function is formed by two elements: the reconstruction loss and the
regularization loss. It is typically formulated as the sum of the first and a weighted term
of the second.

The capability of the VAE to recreate the initial input data from the latent space is
measured by the reconstruction loss. Depending on the type of input data, binary cross-
entropy (BCE) loss or mean squared error (MSE) loss are frequent options for the recon-
struction loss.

The regularization loss encourages the latent distribution to resemble a predefined
distribution, usually a multivariate Gaussian distribution. This regularization is achieved
through the Kullback-Leibler (KL) divergence between the learned latent distribution
and the target distribution. The KL divergence measures the difference between the two
distributions, and by minimizing it, the VAE ensures that the latent space follows a de-
sired distribution.
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NEURAL SDES

The two dominant modeling frameworks of neural networks and stochastic differential
equations are successfully merged in neural stochastic differential equations.

The main goal of the initial phase of our research was to conduct a thorough examina-
tion of the available literature in order to enhance our comprehension of neural stochas-
tic differential equations (NSDEs). Our focus was to comprehend the nature of these
mathematical objects, identify the criteria that ensure the existence and uniqueness, and
find potential applications to financial mathematics.

As a result, this chapter will begin with an overview of both neural networks and stochas-
tic differential equations, specifically with reference to [17], [18]. The topic of neural
stochastic differential equations will thereafter be covered while keeping in mind the
goals that were previously outlined.

3.1. STOCHASTIC DIFFERENTIAL EQUATIONS

A system’s evolution is described using ordinary differential equations (ODEs). When a
random noise is added it becomes a stochastic differential equations (SDEs).

Let W (t ), t ≥ 0, be a Brownian motion process. An equation of the form

d X (t ) =µ(X (t ), t )d t +σ(X (t ), t )dW (t ). (3.1)

where the given functions µ(x, t ) and σ(x, t ) are called drift and diffusion, X (t ) is the
unknown process termed a stochastic differential equation (SDE) driven by Brownian
motion.

Definition 1 (Strong solution, [17]). A process X (t ) is called a strong solution of the SDE
(3.1) if for all t > 0 the integrals

∫ t
0 µ(X (s), s)d s and

∫ t
0 σ(X (s), s)dB(s) exist, with the sec-

ond being an Itô integral, and

X (t ) = X (0)+
∫ t

0
µ(X (s), s)d s +

∫ t

0
σ(X (s), s)dB(s). (3.2)

7
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Proposition 1. The random noise W and the starting data ξ can be considered as the
input of a dynamical system characterized by whose output is X and is characterized by
coefficients (µ,σ), [19].

µ, σW

ξ

X

Figure 3.1.: Schematization of the behaviour of an SDE

3.1.1. EXISTENCE AND UNIQUENESS

Let X (t ) satisfy (3.1)

Theorem 1 (Existence and Uniqueness). If the following three conditions are satisfied

1. Coefficients are locally Lipschitz in x uniformly in t , that is, for every T and N there
is a constant K depending only on T and N , such that for all |x|, |y | ≤ N and all
0 ≤ t ≤ T

|µ(x, t )−µ(y, t )|+ |σ(x, t )−σ(y, t )| < K |x − y |. (3.3)

2. Coefficients satisfy the linear growth condition

|µ(x, t )|+ |σ(x, t )| ≤ K (1+|x|) (3.4)

3. X (0) is independent of (B(t ),0 ≤ t ≤ T ), and E2X (0) <∞
A unique strong solution X (t ) of the (3.1) exists.

As in the case of the proof for the existence of a solution to an ODE, the proof of exis-
tence of an SDE is based on the concept of Picard iterations [20]. The Lipschitz condition,
which permits use of Gronwall’s lemma, ensures uniqueness.

3.2. NEURAL NETWORKS

Their name and construction are inspired by the human brain, with the goal of mim-
icking how neurons transmit signals. The multilayer perceptron is a subclass of neural
networks that has shown to be one of the most useful in real-world applications.

Perceptrons, also known as nodes or units, are at the core of a neural network. Their
functioning is well explained in Figure (3.2). They are arranged in layers, resulting in a
layered architecture.
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Σ

b(2)
1

x1

x2

x3

g
Activation

ŷ1

ŷ2

ω(3)
1,1

ω(3)
2,1

ω(2)
1,1

ω(2)
1,2

ω(2)
1,3

Figure 3.2.: Example of Neural Networks architecture generated using [21]

Basically, in a perceptron, a non-linear function known as the activation function trans-
forms the weighted sum of the inputs, which are the outputs from the previous layer or
are from the input layer, and a bias term, which represents a learnable constant, into an
output.

The feedforward neural network, as shown in figure (3.3), is the most typical architec-
ture, in which information goes from the input layer, through one or more hidden layers,
and finally to the output layer. The input layer receives the initial data. The hidden layers
are intermediate layers that perform computations on the data. They gradually learn to
extract relevant features and capture complex patterns from the input. The output layer
produces the final prediction or output based on the information learned by the hidden
layers.

The number of hidden layers and neurons in each layer might vary depending on the
problem’s complexity and the amount of data provided.

Neural networks learn by iteratively modifying the weights and biases based on the
difference between the predicted and actual output during the training period. This is
accomplished using an optimization technique, such as gradient descent, which seeks to
minimize a predetermined loss function that measures the performance of the network.

a(0)
1

a(0)
2

a(0)
3

a(0)
4

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
5

a(2)
1

a(2)
2

a(2)
3

a(2)
4

a(2)
5

a(3)
1

a(3)
2

a(3)
3

a(3)
4

a(3)
5

a(4)
1

a(4)
2

a(4)
3

input
layer

hidden layers

output
layer

Figure 3.3.: Example of Neural Networks architecture generated using the Tikz library
[22]
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3.3. NEURAL STOCHASTIC DIFFERENTIAL EQUATIONS

A neural SDE is a stochastic differential equation as in Equation (3.1) of which the drift
and diffusion functions µ and θ are parametrized by neural networks.

Neural networks have been shown to possess significant learning capability, and there
exists a theoretical justification for utilizing them to approximate the drift and diffusion
functions in the context of stochastic differential equations (SDEs). The universal ap-
proximation theorem, which is the theoretical foundation, states that, given a sufficient
number of parameters, neural networks are capable of approximating any measurable
function with any degree of accuracy [23], [24]. This implies that the drift and diffusion
functions of any SDE can theoretically be approximated by a multi-layer neural network.

In circumstances where the drift and diffusion functions are unknown or when some
data is supposed to follow an SDE but the type of SDE is ambiguous, neural networks
can be used to simulate the process. The identification of the drift and diffusion func-
tions can be automated by updating the parameters in the neural networks to obtain the
best fit for the corresponding SDE [25]. In complicated systems where obtaining analyt-
ical formulations for the drift and diffusion functions is challenging or impossible, this
method can greatly simplify the modeling process.

3.4. EXISTENCE & UNIQUENESS OF A SOLUTION FOR NEURAL

SDES

Regarding the existence and uniqueness of solutions for Neural SDEs, it has been found
in the literature that a unique solution can exist in certain circumstances. This is the case
when weight clipping is used, as mentioned in [3].

The weight clipping approach involves training a neural network with weight param-
eters w , where the weights are restricted to a fixed range or box after each gradient up-
date, thus ensuring that the weight parameters w remain within a compact space. This
methodology has been discussed in literature in the context of Wasserstein GANs theory,
for example in [16], where it has been noted that this weight clipping technique leads to
all the functions fw being K -Lipschitz, with the Lipschitz constant K depending only on
the size of the weight parameter space and not on the individual weight values.

Another successful approach, inspired by the theory of Wasserstein GANs, is spectral
normalization. In [26] is provided a formal explanation of how weight normalization
guarantees the existence and uniqueness of the solution of a neural SDEs. Given the the
interest for our thesis, we decided to replicate it. In order to do that we need to define
the concept of spectral normalization

Consider a neural network with the input x and the following structure:

f (x,Θ) = θL+1αL(θLαL−1(θL−1(· · ·α1θ
1x · ··)))), (3.5)
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where Θ := {θ1, ...,θL ,θL+1} is the learning parameters set, θl ∈ Rd l×d l−1
, θL+1 ∈ R1×dL ,

and αl is an element-wise non-linear activation function. For reasons of simplicity, are
excluded the bias term of each layer.

3.4.1. SPECTRAL NORMALIZATION

Spectral normalization, introduced in the work of Miyato et al. [4], is a technique em-
ployed to regulate the Lipschitz constant of a function f by directly restricting the spec-
tral norm of each layer φ : Γi n 7→ Γout .

Definition 2 (Spectral norm). The spectral norm of matrix M, σ(M) can be expressed as:

σ(M) = max
Γ:Γ̸=0

||MΓ||2
||Γ||2

= max
||Γ||2≤1

||MΓ||2 (3.6)

which is equivalent to the largest singular value of M

By leveraging the definition of ||φ||Lip as supΓσ(∇φ(Γ)) and (2), we can further simplify
the analysis. For a linear layer φ(Γ) = θΓ, the following holds:

||φ||Lip = sup
Γ
σ(∇φ(Γ)) = sup

Γ
σ(θ) =σ(θ) (3.7)

Defining ||αl ||Li p = κl , and noting that ||φ1 ·φ2||Lip ≤ ||φ1||Lip · ||φ2||Lip we have:

|| f ||Lip ≤ ||(ΓL 7→ θL+1ΓL)||Lip · ||αl ||Lip · ||(ΓL−1 7→ θLΓL−1)||Lip · · ·

||α1||Lip · ||(Γ0 7→ θ1Γ0)||Lip = κ
L+1∏
l=1

||(Γl−1 7→ θ1Γl−1||Lip = κ
L+1∏
l=1

σ(θl )
(3.8)

where κ=∏L
l=1κl

Spectral normalization is employed to normalize the spectral norm of the weight ma-
trix θ such that it satisfies the Lipschitz constraint σ(θ) = 1:

θ̃SN (θ) := θ

σ(θ)
(3.9)

By normalizing each θl using θ̃SN (θ), we can utilize the inequality mentioned above

and the fact that σ( θ̃SN
(θ) ) = 1 to see that || f ||Lip is bounded from above by κ .

Theorem 2. Let µθ andσθ be neural networks with L and K number of layers respectively
and assume that it holds, for both µθ and σθ, that each activation function is in each cor-
responding layer is a global Lipschitz function.Therefore applying spectral normalization
µθ and σθ satisfies the conditions, (1), to guarantee existence and uniqueness of a neural
SDE.
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Proof. If we now apply spectral normalization to each weight matrix at our neural net-
work, for assumed finite L,κ≤∞, it holds that

||µθ(t , x)||Li p = ||µθ(t , x)−µθ(t , y)||
||x − y || ≤ κ→||µθ(t , x)−µθ(t , y)|| ≤ κ||x − y || (3.10)

for any x, y RN .

Knowing that ||µθ(t , x)−µθ(t , y)|| ≤ κ||x− y || for some constant κ and for all x, y ∈RN ,
then consider

||µθ(t , x)|| = ||µθ(t , x)−µθ(t ,0)+µθ(t ,0)|| ≤ ||µθ(t , x)−µθ(t ,0)||+ ||µθ(t ,0)||
= κ||x −0||+ ||µθ(t ,0)|| =κ||x||+ ||µθ(t ,0)|| =κ||x||+D

(3.11)

where κ=∏L
l=1κl

The proof provided for µθ also holds true for σθ.

3.5. THEORETICAL INTERPRETATION OF NEURAL SDES

In [2] a concise survey of the current state-of-the-art with regards to neural stochastic
differential equations is provided. As this survey served as a fundamental reference for
determining which methodologies and works to adopt in the present section, a brief
summary of its content is herein reported. Two approaches in particular will be thor-
oughly investigated due to their interesting mathematical frameworks. In general, the
formulations and applications of neural stochastic differential equations (SDEs) can be
classified into two major categories. One approach involves utilizing SDEs as a means
to systematically introduce stochastic perturbations into a system, with a focus on an-
alyzing the terminal state of the SDE. The other approach, on the other hand, places
emphasis on investigating the entire temporal trajectory of the SDE as the primary ob-
ject of interest. In [27] and [28], the authors present a training technique that relies on
optimizing a variational bound through the utilization of forward-mode autodifferen-
tiation. The methodology they propose involves deriving deep latent Gaussian models
as a continuous limit. In [29], the authors introduce the concept of neural stochastic
differential equations (SDEs) by employing rough path theory to obtain the limit of ran-
dom ordinary differential equations (ODEs). If until now all those mentioned have been
solely focusing on the terminal value of the SDE, the following are the cases belonging to
the second group. In [30], [3], and [31], the authors proposed to train a training strategy
with the goal of minimizing the difference between the expected value of a given func-
tion of interest f under the learned distribution µ and ν, expressed as

∫
f dµ− ∫

f dν,
where µ and ν are respectively the learned and true distribution. This methodology, in
particular the approach described in [3], is discussed more in depth in (3.5.2). Multiple
researchers, including [32], [25], and [29], aim to leverage stochasticity as a means to
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augment or regularize neural ordinary differential equation (ODE) models. The article
[33] presents an analogous approach to neural ordinary differential equations (ODEs) as
introduced in [34], which is considered as the foundational work for the entire theory. In
their research, the authors adopt a sophisticated method that incorporates two-sided fil-
trations and backward Stratonovich integrals to introduce neural stochastic differential
equations (SDEs).

NSDEs

Terminal state of
SDE is of interest

Optimize a varia-
tional bound [27]

Limit of random
ODEs and rough
path tehory [29]

SDE’s time-evolution
is of interest

NSDEs as in-
finte GAN [35]

[33]

Minimizing a distance

[3]

[31]

[30]

Leverage stochasticity
as to augment or

regularize neural ODE

[25]

[29]

Figure 3.4.: Representation of the State of the Art

3.5.1. NEURAL SDES AS INFINITE-DIMENSIONAL GANS

Within the context of the two aforementioned categories, we turn our attention to a
method that, in our opinion, merits further analysis: the approach presented in [2]. This
method falls into the second classification, it builds distributions on path space by using
stochasticity. Our decision to investigate this particular method is based on the fact that
it serves as a direct expansion of the well-established classical approach. In this case, a
perspective based on Wasserstein GANs can be used to expand the current traditional
approach for fitting SDEs. A generator-discriminator pair made up of a neural SDE and
a neural CDE is combined to accomplish this.

Since the Wasserstein loss function possesses a unique global minimum, it becomes
possible to learn arbitrary SDEs in the infinite data limit.

Furthermore, this is the first SDE modelling approach that does not rely on pre-specified
statistics or the utilization of density functions.

Going into more detail, the Neural SDEs considered in [35] are as follows:
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y(0) = ζθ(v),

d y(t ) =µθ(t , y(t ))d t +σθ(t , y(t )) ·d w(t ),

x(t ) =αθy(t )+βθ, (3.12)

where ζθ,µθ,σθ can be any type of neural networks, such as a simple feedforward net-
work. ζθ,µθ ,σθ,αθ,βθ are all parametrised by θ and v ∼ N (0,1)

The choice of passing the initial condition through ζθ is intended to introduce an ad-
ditional source of noise.

The hidden state is represented by the variable X , which is not meant to be the output.
Future evolution would follow to a Markov property if X were the output, even if this
might not always be the case. Hence, an additional readout operation is performed to
obtain the variable Y .

The approach described here addresses the challenge that arises in the context of solv-
ing stochastic differential equations (SDEs). When it comes to obtaining a solution for
ordinary differential equations (ODEs), we typically have the necessary data and aim to
minimize a distance or a loss as for example the mean squared error. However, in the
case of SDEs, both the data and equations themselves are inherently random. Conse-
quently, when comparing a sample of both there is no mathematical basis to expect a
close correspondence in terms of distances.

The idea is to achieve a distributional match, that is, to have the distribution of the
solutions of the SDEs be approximately equal to the distribution of the observed data.
There are two main schools of thought to achieve this match.

The first approach involves matching certain statistics, such as the difference between
the expected value of a function F evaluated at the solutions of the SDE and the expected
value of F evaluated at the data. The choice of the function F is crucial, and depends
on the specific problem at hand. For instance, if F belongs to a family with a Lipschitz
norm of at most one, then the Wasserstein distance can be used to measure the distance
between the distributions. On the other hand, if F belongs to a family defined by a kernel,
then the maximum mean discrepancy (MMD) can be employed.

Alternatively, the second approach involves utilizing ideas from variational inference.
In this approach, the evidence lower bound (ELBO) is maximized to achieve a match
between the two distributions.

In accordance with the article’s methodology, the neural SDEs are trained to minimize
the 1-Wasserstein distance, or W (·, ·). A critical decision is the choice of the function F ,
which is parametrized as Fφ.

Let the law of the model x be indicated by Px . If we define Pγ as the (empirical) law of
the data γ, the model is trained by optimizing the following :
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min
θ

W (Px ,Pγ), (3.13)

To do that they make use of the theory of Wasserstein GAN [16], exploiting the fact that
F is parametrized, to train the model using a minmax approach.

min
θ

max
φ

(Ex [Fφ(x)]−Eγ[Fφ(γ)]). (3.14)

Finding a function F that can correctly discriminate between real and generated data
is the subject of the second problem that is addressed. In this case, each sample gener-
ated by the generator corresponds to a continuous path that is infinite-dimensional, and
thus, the discriminator must be capable of accepting such paths as inputs.

Their solution involves utilizing a neural controlled differential equation as discrimi-
nator.

Definition 3 (Neural controlled differential equation, [35]). A neural controlled differen-
tial equation is defined as the solution of the Control Differential Equation

y(0) = ζθ(x(0)), y(t ) = y(0)+
∫ t

0
fθ(y(s))d x(s) t ∈ (0,T ]. (3.15)

where ζθ, fθ are both neural networks

Figure 3.5.: Summary of equations adopted from [2]

3.5.1.1. EXPERIMENTS

To test this approach the authors conducted an analysis on various datasets, including
Stocks, Beijing Air Quality, and Weights, using three different metrics. These metrics
were then compared against the Latent ODE model [36] and the continuous-time flow
process (CTFP) [37]

In their analysis, the researchers observed that Neural SDEs consistently outperformed
the Latent ODE model and CTFPs in terms of both predictive accuracy and the maximum
mean discrepancy (MMD) metric. Specifically, Neural SDEs exhibited substantially bet-
ter results compared to the other models.

When examining the Stocks dataset, which is a domain where SDE models have tra-
ditionally been applied, Neural SDEs demonstrated superior performance not only in
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predictive accuracy and MMD but also in a classification metric. This suggests that Neu-
ral SDEs excel in capturing the underlying dynamics and random fluctuations present in
these datasets, which are not purely driven by a deterministic drift.

The toy example presented in Figure (3.6) is an application of the method to a one-
dimensional Ornstein-Uhlenbeck process, using [38]

Figure 3.6.: Example of Generated paths

3.5.2. NEURAL SDES AS GENERATIVE MODELS

The second approach, which is proposed in [3], offers a valuable perspective on the con-
nection between generative models and stochastic differential equations (SDEs). It is
particularly relevant to our thesis as we made use of this approach in conducting experi-
ments. In the context of generative model we usually have a source distribution, denoted
as µ, and a target distribution, denoted as ν, which represents the input data. The idea is
to construct a mapping, denoted as T#µ = ν, that pushes the source distribution µ onto
the target distribution ν.

As indicated in equation (1), stochastic differential equations (SDEs), including neural
SDEs, can be interpreted as generative models. To gain a deeper understanding of this
approach, a case related to finance is presented. Let denote the true martingale measure
as Qmarket. Under this measure, all liquid derivatives are perfectly calibrated, meaning

that their expected values, denoted as EQ
market

[Ψi ], match their market prices, denoted
as p(Ψi ), for all i = 1, . . . , M .

In the case of Neural SDEs this translate into parametrize the mapping function, al-
lowing to the Neural SDEs to effectively map the source distribution µ of the underlying
financial variables, S0, as well as the Wiener measure on C ([0,T ];Rn), to the target distri-
bution Qθ = (T θ

t )#µ.

The objective is to find the optimal parameter values, denoted as θ∗, such that the
mapping T θ∗

#µ provides a good approximation of the target martingale measure Qmarket
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according to a metric. In the context of this paper, the focus is on a specific metric, the
mean squared error.

D(T θ
#µ,Qmarket) :=

M∑
i=1

L
(∫

ψi (ω)(T θ
#µ)(dω),

∫
ψi (ω)Qmarket(dω)

)
. (3.16)

3.6. CONCLUSION

In this chapter, we have obtained answer to the questions that arose concerning neu-
ral SDEs. For their potential applications in financial mathematics, we will specifically
draw inspiration from the studies conducted in [3] and [31]. However, prior to start this
work, we need to determine the models to reference and the problems to address. These
matters will be discussed in the following chapters.





4
VOLATILTY, ROUGH OR NOT?

Managing model selection and calibration are essential processes in the field of mathe-
matical finance .

Initially, for describing the dynamics of an asset price the Geometric Brownian Motion
(GBM) model was proposed, given by:

dSt =µSt d t +σSt dWt (4.1)

where µ and σ are constants.

The only unknown parameter in this model is σ, which is considered to be constant
and deterministic. In the Black-Scholes model, which relies on this Geometric Brownian
Motion, the implied volatility surface across various strike prices and time to maturity
would appear flat. However, empirical evidence shows that the volatility surface is never
flat. Thus, this type of models fails to adequately capture the dynamics of volatility.

Therefore, a commonly adopted method in finance is modelling the dynamic of the
volatility. There are two primary approaches to this representation:

1. Local Volatility: In this approach, volatility σ(t ,St ) is modeled to depend on both
the current asset level St and time t . This allows for a dynamic estimation of
volatility based on the specific characteristics of the underlying asset.

2. Stochastic Volatility Models: This approach considers the dynamics of σt as a
stochastic process driven by a Brownian motion. The equation governing the evo-
lution of σt is given by:

dσt =µ(t ,σt )d t +Λ(t ,σt )dWt (4.2)

Various models fall under this category, including the Hull and White model, the Hes-
ton model, and the SABR model, among others.

Usually these models were typically developed through a three-step process. First, sta-
tistical properties of the underlying time series, known as stylized facts, were gathered.

19
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Then, a parsimonious model was handcrafted to effectively capture the desired market
characteristics without unnecessary complexity. Finally, the handcrafted model was cal-
ibrated and validated.

The application of Neural Stochastic Differential Equations (NSDEs) represents a com-
pletely different approach. Rather than imposing a pre-defined model structure, the data
are allowed to dictate the model while still maintaining a strong prior. This is achieved
by using SDEs for the model dynamics but adopting an overparameterized neural net-
work to define the drift and diffusion terms, rather than fixed parametrization. In this
way, calibration and model selection are performed simultaneously, driven by the data
[3].

The main question addressed in this chapter is which type of stochastic process is
more suitable to use as a prior: the one driven by traditional Brownian motion or the one
driven by fractional Brownian motion. Initially, the theory was concentrated on stochas-
tic processes driven by Brownian motion. However, the introduction of models driven
by fractional Brownian motion, as proposed by Comte and Reanult [39], has garnered
considerable attention in recent times.

Definition 4 (Fractional Brownian motion). A fractional Brownian motion (W H
t ) with

Hurst parameter H ∈ (0,1) is a continuous Gaussian process with covariance structure

Cov(W H
t ,W H

s ) =
(
t 2H + s2H −|t − s|2H

)
, t , s ∈R. (4.3)

Figure 4.1.: Examples of fractional Brownian motion with different Hurst exponent

Originally, financial models primarily focused on Hurst parameters satisfying H > 1
2 .

However, the models introduced by Gatheral et al. [5], which are driven by a fractional
Brownian motion characterized by a Hurst parameter below 1

2 , have gained more popu-
larity and become increasingly favored in the field.

The motivation behind this approach comes from empirical evidence suggesting that
volatility exhibits a specific type of roughness, known as Hölder roughness, which is
strictly less than 1

2 .

This increased attention is based on the potential advantages and improved perfor-
mance they offer compared to traditional models. However, a major challenge arises due
to the computational complexity of rough volatility models. The non-Markovian nature
of these processes makes them computationally demanding, necessitating specialized
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numerical techniques or approximations for efficient calibration and simulation. When
combined with the use of Neural SDEs, the computational cost is further amplified, mak-
ing the modeling and estimation processes even more challenging. For this reason in
this chapter is conducted a thorough and meticulous analysis of the supporting results,
while also acknowledging the existence of conflicting opinions surrounding these find-
ings. The intention is to gain valuable insights into the problem at hand, and at the same
time develop a solid justification for picking the model type to use.

4.1. IS VOLATILITY ROUGH?

As mentioned, this theory is based on empirical evidence, specifically the ability of these
models to recreate properties of the implied volatility surface and properties of the his-
torical time series of volatility.

In exploring the empirical evidence of rough volatility models, this section will primar-
ily focus on the comprehensive examination and analysis of the main reference, [5].

4.1.1. THE IMPLIED VOLATILITY SURFACE

The correlation between the smile and the time to expiration is intricately connected
to the underlying dynamics. Given a stochastic volatility model the term structure of
at-the-money (ATM) volatility skew , ψ(τ), defined as

ψ(τ) :=
∣∣∣Çσi mp (k,τ)

ÇK

∣∣∣
k=0

(4.4)

is highly sensitive of the volatility models chosen. The term "skew" refers to the rate at
which implied volatility changes with respect to log-moneyness k , τ represents the time
to expiration and σi mp the implied volatility.

The fact that the term-structure of ATM skew exhibits a power-law-like decay for a
large range of maturities has been seen as a sign that volatility is rough. Moreover, in [41]

is shown the ATM volatility skew is of the form ψ(τ) ∼ τH− 1
2 for model where a fractional

Brownian motion with Hurst index H drives the volatility.

4.1.2. CHARACTERISTICS OF THE HISTORICAL TIME SERIES OF VOLATILITY

The second reason is associated with the characteristics of historical time series of volatil-
ity. Instantaneous volatility cannot be directly observed, but it can be estimated by inte-
grating the variance over a day. Estimating integrated variance is conceptually straight-
forward and various statistical methods are available for this purpose. However, the
practical challenge lies in data cleaning, which is performed by the Oxford-Man Insti-
tute. Therefore, daily estimates of realized variance from the Oxford-Man Institute are
used as proxy measures to represent the actual spot variance. The methodology pre-
sented refer to the work [5],[40].
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Figure 4.2.: Estimates of the AAPL volatility skews as of May 18 2020 with the fitted
power-law ψ(τ) = Aτ−0.4, adopted from [40]

As a first step, we examine the q-th sample moment of log volatility increments at a
given lag ∆. This can be defined as follows:

Let N = ∣∣ T
∆

∣∣ be the number of observations on the time grid, where T is the total time
period of observation and ∆ is the time interval between observations.

The log volatility increments can be calculated as

m(q,∆) = 1

N
|

N∑
k=1

log(σk∆)− log(σ(k−1)∆)|q (4.5)

where σi∆ represents the volatility at the i -th observation.

As shown in Figure (4.3), the plot of m(q,∆) against log(∆) underlines a clear linear
relationship.

Figure 4.3.: Plot of log(m(q,∆)) vesus log(∆), S&P 500

Hence, in the second step, we perform a linear regression of log(m(q,∆)), resulting
in the equation log(m(q,∆)) = ζq log(∆)+ zq , where ζq and zq are constants dependent
on q . From this equation, we can observe that it is equivalent to expressing m(q,∆) as
m(q,∆) =∆ζq ezq .
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In distribution log(σk∆)− log(σ(k−1)∆) ∼ log(σ∆); the almost surely convergence
(m(q,∆)) −−−−→

N 7→∞
E[| log(σ∆)− log(σ0)|q ] is guaranteed by the Strong Law of Large Num-

bers. Combining all the results we have that:

E[| log(σ∆)− log(σ0)|q ] =∆ζq ezq (4.6)

From the plot (4.4) of ζq versus q it is possible to observe that ζq ∼ Hq with H ≈ 0.13
for S&P 500

Figure 4.4.: Plot of ζq versus q , S&P 500

4.2. IS ROUGH VOLATILITY THE BEST CHOICE?

This chapter’s goal goes beyond just presenting a comprehensive study of rough volatility
models. We want to provide a study of the existing literature that critically evaluate the
empirical evidence just presented.

The first question that arises is whether the observed behavior can be accurately de-
scribed by a power-law decay.

Two recent empirical studies, [42],[43], have shed new light on the behavior of the at-
the-money (ATM) volatility skew. Interestingly, the findings from both studies are consis-
tent with each other and challenge the conventional belief that the ATM volatility skew
follows a power-law decay.

The first noteworthy result from these studies is that the ATM volatility skew does not
exhibit a precise power-law decay pattern. Additionally, both studies indicate the exis-
tence of Markovian models that can reasonably describe the ATM volatility

In the empirical study conducted in [43], an analysis of two years of S&P 500, Eurostoxx
50, and DAX data revealed an interesting observation regarding the behavior of the at-
the-money (ATM) skew. The researchers propose a non-explosive parametrization to
describe the ATM skew, taking into account its behavior across different maturities.

A key finding of the study is that the ATM skew generally follows a power-law shape
across a significant range of maturities. However, there is an interesting exception ob-
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served for very short maturities, where the ATM skew does not display the expected
blow-up or explosive behavior associated with a power-law decay.

In the study conducted in in [42] , an analysis of the S&P 500 data from 2007 to 2015
led to the proposal of a parametrization that incorporates a tamed explosion rate.

The results highlighted by Rømer further support the idea that rough volatility mod-
els may not be the most suitable for capturing the dynamics of the at-the-money (ATM)
volatility term structure. In his study [44], Rømer affirm that “the fractional kernel as
used in the rough Bergomi and rough Heston models is not flexible enough to separate
the short and long time scale properties of volatility that is implied by quoted SPX op-
tions;” that “the fractional kernel [...] lacks flexibility in decoupling the short and long
lag volatility autocorrelations;” and that “the volatility autocorrelation structure is better
captured by a classical but two-factor volatility model.”

These results seem to lead to the conclusion that there are models that are not based
on the assumption that volatility is rough that can recreate the empirical evidence re-
garding ATM term structure.

In relation to the second empirical evidence, concerns have been raised and valuable
contributions have been made in two notable works, [6], [7].

In [6], Rogers proposes a different perspective that challenges the notion of rough
models being highly non-Markovian. According to Rogers, in order to make predictions,
it is needed to consider the entire history of the data, as rough models do not exhibit true
Markovian behavior. This raises the question of what economic narrative would justify
a model where knowledge of the complete historical context is necessary to predict the
future.

Furthermore, the value of the Hurst parameter varies across different financial indices,
indicating that there is no universal law or principle that can be universally applied to all
assets.

Looking for example at a generic daily volatility estimates of the S&P500 he observed
"a plot which fluctuates strongly on small time scales, but on longer time scales the level
seems to be changing" [6]. Therefore his idea is to model the price process as an ener-
getic OU process mean-reverting to a slower one for volatility:

dYt =σY dW ′
t −βYt d t , d X t =σX dW t +λ(Yt −X t )d t (4.7)
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Figure 4.5.: Example with σ2
Y = 0.625,β= 2.5 σ2

X = 20,λ= 210

Given that it is a bivariate Gaussian diffusion, it is considerably simpler to use. Ad-
ditionally, the figure (4.6) shows that the proposed model fits the data and accurately
reproduces scaling behavior as the rough volatility models.

Figure 4.6.

In agreement with the views expressed by Rogers there are the results presented in [7]
by Cont and Das. Their article identifies the microstructure noise as the true source of
the observed irregularity in volatility. Those findings raise doubts as to whether the evi-
dence provided by high-frequency volatility estimates supports the hypothesis of ’rough
volatility’.

All their findings are based on a new non-parametric way to estimate the Hurst expo-
nent of a path, i.e via normalized p-variation statistic: W (L,K ,π, p, t , X ). All the following
definitions are taken from [7].

Definition 5 (Normalized p-th variation). Let π a sequence of partitions of [0,T ] with

|πn | 7→ 0 and πn =
(
0 = t n

0 < t n
1 < · · · < t n

N (πn ) = T
)
, x ∈ V p

π ([0,T ],R) is said to have norml-

ized p-th variation along π if there exists a continuous function w(x, p,π) : [0,T ] 7→R such
that
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∀t ∈ [0,T ]
∑

πn∈[0,t ]

|x(t n
j+1)−x(t n

j )|p

[x]p
π(t n

i+1)− [x]p
π(t n

i )
× (t n

i+1 − t n
i ) −−−−→

n 7→∞ w(x, p,π)(t ) (4.8)

The ’normalized p-th variation statistic’ is the discrete equivalent of the normalized
p-th variation. Given observations on a refining time partition πL normalized p-th vari-
ation statistic’ is defined as:

W (L,K ,π, p, t , X ) = ∑
πK ∈[0,t ]

|X (t K
i+1)−X (t K

i )|p∑
πL∈[t K

n ,t K
n+1] |X (t L

j+1)−X (t L
j )|p × (t K

i+1 − t K
i ) (4.9)

The statistic (4.9) considers two frequencies, denoted as K and L, where L is signifi-
cantly larger than K . These frequencies are referred to as the block frequency and the
sampling frequency, respectively.

Figure 4.7.: Example of block and sampling frequency

Increasing the sampling and block frequency the statistic (4.9) converges to the nor-
malized p-th variation (4.8).

lim
K 7→∞

lim
L 7→∞

W (L,K ,π, p, t , x) = w(x, p,π)(t ) (4.10)

Definition 6 (Variation index). The variation index of a path x along a partition sequence
π is defined as the smallest p ≥ 1 for which x has finite p-th variation along π:

pπ(x) = inf{p ≥ 1 : x ∈V π
p ([0,T ],R)}. (4.11)

To obtain the variation index estimator p̂L,K (X ) the approach is to calculate, for differ-
ent values of p, the quantity W (L,K ,π, p, t , X ) solving the following equation for pπL,K (X ),

W (L,K ,π, p̂πL,K (X ),T, X ) = T (4.12)

Finally the Hurst index is calculated as

Ĥπ(x) = 1

p̂πL,K (X )
(4.13)
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The tests presented utilizes the function W (L,K ,π, p, t , X ) to showcase the inconsis-
tency between the roughness observed in Realized Volatility (RV) data and instanta-
neous volatility data. The experiments will be run using stochastic volatility models that
simulate price trajectories with varying levels of "roughness."

For the calculations of the Realized Volatility (RV) is used the following definition

Definition 7 ( Realized Volatility (RV)). The realized volatility of a price process S over
time interval [t , t +∆] sampled along the time partition πn is defined as:

RV (πn)t ,t+∆ =
√ ∑

πn∩[t ,t+∆]
(X (t n

i+1)−X (t n
i ))2 (4.14)

where X = logS

The first test is conducted on the following model:

dSt =σt St dBt , σt =σt dt +dBt , (4.15)

where σ0 = 1, B is a Brownian motion and the volatility is an Ornstein Uhlenbeck pro-
cess. Simulation is carried on an interval T = [0,1], with ∆t = 1

30000 observations.

The estimated roughness index for the realized volatility is significantly smaller than
the roughness index for the instantaneous volatility, as shown in (4.8), where the loga-
rithm of W (K = 300,L = 300×300,π, p, t = 1, X ) is plotted against H = 1/p for both the
instantaneous volatility and the realized variance.

Figure 4.8.: Example of calculation of Hurst index

To more reliably analyze the first experiment’s conclusion, which appears to show that
realized volatility has a rougher behavior than instantaneous volatility, we run tests with
the following stochastic volatility models

dSt =σt St dBt , σt = eB H
t (4.16)

where B and B H are respectively a classical and a fractional Brownian motion with Hurst
index H ∈ (0,1).

In Figure (4.9), the price process, realized volatility, and the instantaneous volatil-
ity from Model (4.16) with Hurst index values of {0.2,0.4,0.5,0.6,0.8} can be observed.
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Similarly to what has been observed in the case of volatility described by a fractional
Ornstein-Uhlenbeck process by Cont and Das, it is notable that for smaller H values, the
instantaneous volatility appears rougher than the realized volatility. However, as the H
value increases, the realized volatility exhibits significantly rougher behavior compared
to the instantaneous volatility,

Figure 4.9.: On the left the fractional GBM in the center its realized variance and on the
right the instantaneous variance for H = {0.2,0.4,0.5,0.6,0.8}

The experimental results obtained for the calculation of the Hurst index exhibit a re-
markable consistency with the findings of Cont and Das in their tests involving volatility
modeled by a fractional Ornstein-Uhlenbeck process. This results led them to consider
realized volatility a poor estimate for the Hurst index.

4.3. CONCLUSION

One issue we wanted to examine is that of the neural calibration of SPX options.
We have chosen to continue using Markovian models for that after careful examination

of both counterparts. The issues mentioned and the remedies suggested in the [6],[7]
served as the basis for our conclusion. We also considered the length of time required
and the complexity of implementation.

The other issues we wanted to examine is that of the neural joint calibration of SPX
and VIX options. However, we lacked the necessary information to reach a decision . As
a result, we dedicated the following chapter to discuss the issue of joint calibration and
explore insights that will help us make a rational decision.



5
JOINT CALIBRATION OF SPX AND

VIX

5.1. INTRODUCTION

The CBOE Volatility Index (VIX), often referred as the "fear gauge" of the stock market,
serves as a valuable tool for understanding investors’ expectations regarding the volatil-
ity of the S&P 500 index (SPX) over a 30-day timeframe. It provides key insights into
market sentiment and plays a critical role in evaluating market risk [45].

Volatility indices, such as the VIX index, have additional important functions other
from functioning as a market-implied measure of volatility. Cboe1 has offered futures on
the VIX since March 24, 2004, and options were added in 2006. These derivatives serve as
valuable tools for market participants to hedge their exposure to volatility and safeguard
their portfolios from unforeseen market movements [46].

Figure 5.1.: S&P and VIX

1https://www.cboe.com

29
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The SPX options market and the VIX options market are closely related because of the
VIX index’s structure. The market for VIX index products has continuously increased
liquidity, which has highlighted the necessity to work on the joint calibration. Joint cali-
bration of SPX and VIX options may result in improved market prediction performance.
By merging information from both markets, analysts may take use of the distinct risk-
neutral information available in each market, as noted in [47].

As noted by Guyon in [48], the generation of a model capable of simultaneously cap-
turing the very steep short SPX skews and the right level of VIX implied volatilty is one
of the primary challenges while working on the joint calibration. In the same article he
found that the convex ordering is a necessary condition for solving the joint calibration
problem. This results in a volatility process with a high mean-reversion speed and a
significant negative correlation to the S&P 500 index when applied to models with con-
tinuous trajectories.

The joint calibration problem has been addressed through various methodologies,
and one promising approach for studying it involves the application of neural stochastic
differential equations. While the existing literature (5.2) discusses several approaches,
two potential candidates that stand out for the application of neural stochastic differ-
ential equations are the Rough Volatility models and Markovian models. After thorough
consideration of the motivations presented in Chapter 4, it is evident that the decision
has been made to proceed with the Markovian models

Joint calibration
S&P and VIX

Rough
volatility
models

Markovian
models

Martingale
optimal

transport

Models with
Jumps

Signature
based model

Figure 5.2.: Representation of the existing methodology for the joint calibration

Based on the analysis conducted in the previous chapter, we provide a state of the
art for models that express volatility using Markovian models. Several findings provide
further support for this approach. The first finding, presented in [49], examines the
unskewed rough Bergomi model and reveals "a 20% difference between the [vol-of-vol]
parameter obtained through VIX calibration and the one obtained through SPX. This
suggests that the volatility of volatility in the SPX market is 20% higher when compared
to VIX" . If the authors of the article, Jacquier et al., suggest potential data inconsis-
tencies or arbitrage opportunities, Guyon in his work [50] highlights that the observed
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disparity in implied volatilities of volatility between the VIX and SPX markets should not
be immediately construed as evidence of an arbitrage opportunity. Instead, it implies
that the employed model may not be fully consistent with the available market data In
addition to this there are also the findings highlighted in [44], which illustrate the rea-
sons why simple rough models such as Rough Heston, Rough Bergomi, and Extended
Rough Bergomi fail in joint calibration and which will be expanded in (5.2.1).

5.2. STATE OF ART

Drawing upon the comprehensive and essential overview presented in [51], which covers
the existing methods used for joint calibration, we have developed state-of-the-art for
Markovian models.

The initial approach involved the utilization of a double constant elasticity of variance
model (CEV) as proposed in [52]. Despite the model’s flexibility, it was not adequately
fitting the implied volatilities of both SPX and VIX options in a joint calibration setting.

To tackle the joint calibration problem, continuous stochastic volatility models us-
ing Markovian semimartingales have been explored. However, calibration on the Hes-
ton model with stochastic volatility-of-volatility was limited to maturities exceeding four
months, as VIX options exhibit lower liquidity for shorter maturities [53].

In recent developments, Jaber et al. proposed a novel model belonging to the category
of continuous Markovian models in [54, 55]. This model represents volatility using a
fifth-order polynomial within a single Ornstein-Uhlenbeck (OU) process.

For the state of the art two publications by Guyon merit attention.
The first paper [56], in collaboration with Mustapha, introduces a successful joint cal-

ibration approach using a neural stochastic differential equation model. This innovative
methodology demonstrates the effectiveness of incorporating neural networks into the
calibration process.

In the second paper [57], Guyon and Lekeufack conduct empirical and statistical anal-
yses, along with joint calibration, for a family of models where volatility depends on the
asset’s paths. These models, although continuous, may not strictly adhere to Markovian
properties. However, they can be transformed into Markovian models by substituting
general kernels with exponential kernels.

Moreover, in the second article, a 4-factor Markovian PDV model is presented. This
model achieves an impressive joint fit to the SPX and VIX smiles, indicating its robust-
ness and accuracy in capturing market dynamics.

Finally, extremely valuable for this state of the art is the work done by Rømer’s [44]
which earned him the title of Risk quant of the year in 2021. Given the special interest in
the following section, the key steps are presented

5.2.1. EMPIRICAL ANALYSIS OF ROUGH AND CLASSICAL STOCHASTIC

VOLATILITY MODELS

Rømer conducted an extensive calibration study using SPX options data from 2004 to
2019. The focus of the study was on calibrating the rough Bergomi model, an extended
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version of it, and the original Heston model.
Rømer’s observations revealed that the models under consideration, were unable to

achieve a perfect fit across all market scenarios.
One important limitation of these models is their inability to accurately reproduce the

ATM skew structure. Furthermore, these models might not sufficiently heavy-tailed to
capture the short-term behavior of volatility effectively.

His primary conclusions from this first phase of the investigation, in brief, are that
the fractional kernels employed in the rough Bergomi and rough Heston models lack
the necessary flexibility to separate the short and long-term properties of volatility, as
implied by SPX options prices. These limitations highlight the need for alternative ap-
proaches or modifications to better capture the complex dynamics of volatility in finan-
cial markets.

Following the identification of the limitations in the previous models, Rømer pro-
ceeded to conduct a secondary analysis that involved testing more advanced models.
These included various two-factor volatility models and a quadratic rough Heston model.

In selecting these models, Rømer considered the insights gained from the previous
analysis. It was determined that a two-factor model would be more suitable for captur-
ing volatility dynamics. Specifically, one factor should exhibit lower negative correlation
with the S&P 500 index and have a stronger influence on short expiries. Furthermore,
this factor was expected to be noisier and demonstrate faster mean-reversion character-
istics.

Upon comprehensive analysis of the results, it was discovered that the advanced mod-
els outperformed the initial models across a broader range of market conditions. The
best outcomes were obtained by a volatility model driven by two Ornstein-Uhlenbeck
processes using a non-standard transformation function. Calibrating this model to SPX
options yielded almost perfect fits, and calibrating it jointly to SPX and VIX options re-
sulted in highly satisfactory fits. Here we presented it:

Vt =µX1,t + (1−µ)X2,t + c (5.1)

Xi ,t = fhyp(Z 2
1,t −di )+ fhyp(−di ) (5.2)

Zi ,t = ηiδi (θi Y1,t + (1−θi )Y2,t ) (5.3)

Yi ,t = ζi ,0(t )+
∫ t

0
Ki (t − s)dWi+1,s i = 1,2 t ≥ 0 (5.4)

where µ,θ1,θ2 ∈ [0,1], η1,η2,c ≥ 0 d1,d2 ∈R

The choices made in this study are detailed in [44]. However, we would like to highlight
three key choices that are particularly interesting.
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Firstly, the selection of the gamma kernel K (t ) = e−λt tα, where t > 0 and λ≥ 0. In this
specific case, the kernel reduces to the exponential kernel with α= 0. The choice of the
gamma kernel guarantees asymptotically bounded variance when λ> 0. Furthermore, it
provides separate control over the singular part (via α) and the long-term behavior (via
λ).

The second important choice is the use of the hyperbolic transformation fhyp(x) :=p
x2 +1+ x , inspired by [58]. This approach was adopted to address the issue of heavy-

tailed distributions in the resulting calibrations. The hyperbolic transformation offers
a more suitable alternative to the exponential transformation, leading to more accurate
estimation results.

Lastly, the use of ζ is also important. Any time-dependence exhibited by ζ can be
interpreted as an expression of the historical path-dependence that has occurred before
time zer

5.3. HOW TO CALCULATE VIX AND VIX OPTIONS

By definition, the VIX index is a derivative of the SPX index S, which may be expressed as

VIXt =−
√

2E[log
(St+∆)

St
|Ft ]×100 (5.5)

In this case, ∆ is equal to one month and E is the risk-neutral expectation. [59].

The VIX future at time t ∈ [0,T ] with maturity T is given by

F VIX
t ,T = E[VIXt |Ft ] (5.6)

VIX options are formally defined as options on the VIX future at time T maturing at
the same time. Therefore Calls and Puts on VIX respectively are simply:

CallVIX
t = E[(FT ;T −K )+|Ft ], PutVIX

t = E[(K −FT ;T )+|Ft ] (5.7)

5.4. CONCLUSION

We are now prepared to move on to the experimental phase after conducting an exten-
sive literature review and being convinced of the effectiveness of Markovian models in
joint calibration.
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SPX CALIBRATION

This chapter focuses on employing neural stochastic differential equations (NSDEs) to
face the calibration of SPX and the joint calibration.

Calibration is important because, while easily tradable assets like call and put options
have their market prices determined by supply and demand, less common and illiquid
options may not have readily available quoted market prices.

Calibration’s role is to determine the model parameters that best fit the available mar-
ket data. These calibrated models can then be used to effectively price illiquid deriva-
tives.

According to the approach and notation specified in the section (3.5.2), the calibration
process is reduced to determining the optimal model parameters, indicated as θ∗, that
minimize the loss function defined by:

θ∗ = argmin
θ∈Θ

M∑
i=1

L (p(Ψi ),EQ(θ)[Ψi ]) (6.1)

To model the trajectory of the underlying securities for the specified options St , we
define the following Neural SDEs:

dSt = r St d t +σS (t ,St ,Vt ,δ)St dB S
t , S0 = s0 (6.2)

In case of the calibration we will test considering the volatility Vt following two differ-
ent dynamics, the first defined as follows:

dVt = γV (Vt ,α)d t +ΛV (Vt ,β)dBV
t , V0 = v0, (6.3)

here, are simultaneously optimized the neural networks’ parameters, α,β,δ as well as
ρ, v0 ∈R

35
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The second volatility is the one described in (5.1). This second case involves assuming
both ζ as neural networks, d , η, µ, α, v0 ∈R ρ ∈R3, as parameters. The value of c is set to
0, as advised in [44]. As in the first case, the model’s parameters and the neural network’s
parameters are both optimized simultaneously.

We hereafter refer to the first volatility model as the "S-V." Regarding the second model,
we use similar notation to the one employed in [44]. As a result, we called it "S-M-2f-
QHYP".

In both volatility models, the Brownian motions driving the dynamics of the assets are
correlated with the Brownian motions driving the volatility. To incorporate and address
this correlation, we can employ the Cholesky decomposition and leverage the trans-
formed noise W̃ within the algorithm.

The Cholesky decomposition is a method that allows us to express a covariance matrix
as the product of a lower triangular matrix and its transpose.

In the first volatility model, we have two correlated Brownian motions. We can define
a vector Z = (Z1, Z2) of independent Brownian motions, applying the Cholesky decom-
position we can construct the vector W̃ = (W̃1,W̃2) as follows:

W̃1 = Z1 W̃2 = ρ1,2Z1 +
√

1−ρ2
1,2Z2

Here, ρ1,2 represents the correlation coefficient between the two Brownian motions.

In the second volatility model, we have three correlated Brownian motions. There-
fore in this case define a vector Z = (Z1, Z2, Z3) of independent Brownian motions and
applying the Cholesky decomposition we can construct the vector W̃ = (W̃1,W̃2,W̃3) as
follows:

W̃1 = Z1

W̃2 = ρ1,2Z1 +
√

1−ρ2
1,2Z2

W̃3 = ρ1,3Z1 +
ρ2,3 −ρ1,2ρ1,3√

1−ρ2
1,2

Z2 +
√√√√1−ρ2

1,3 −
(ρ2,3 −ρ1,2ρ1,3√

1−ρ2
1,2

)2
Z3

Here, ρ1,2, ρ1,3, and ρ2,3 represent the correlation coefficients between the different
pairs of Brownian motions.

Let us proceed to a more detailed examination of the algorithm’s structure from [3],
whose theoretical foundation is explained in (3.5.2) and which represents the basis for
our experiments. The first step of the implementation consists of simulate trajectories
from the neural SDEs using the tamed Euler scheme (8) and calculate a Monte Carlo
estimator for EQ(θ)[Ψ].

Typically, Euler scheme is employed for path simulations. However, when dealing, as
in this case, with situations where the volatility term can grow super-linearly a modifica-
tion proposed in [60],[61] is utilized (8).
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Definition 8 (tamed Euler scheme). Given a generic stochastic model of the form:

d X θ = γ(X θ
t , t ,θ)d t +Λ(X θ

t , t ,θ)dW (t ) (6.4)

The tamed Euler scheme reads

X θ
tk+1

= X θ
tk
+

γ(X θ
tk

, tk ,θ)

1+|γ(X θ
tk

, tk ,θ)|√∆tk

∆tk +
Λ(X θ

tk
, tk ,θ)

1+|Λ(X θ
tk

, tk ,θ)|√∆tk

∆Wtk (6.5)

This scheme ensures that the moments do not experience a blow-up. It is employed
for the simulation of the underlying asset and for both volatility processes.

Finally, by considering a set of N independent and identically distributed (i.i.d.) sam-
ples of (6.2) generated using the modified equation (8) the empirical approximation of
Q(θ) can be defined as follows :

QN (θ) := 1

N

N∑
i=1

δSθi
(6.6)

By applying the Law of Large Numbers, as N tends to infinity, the empirical expecta-

tion EQ
N (θ)[Ψ] converges in probability to the true expectation EQ(θ)[Ψ]. This means that,

on average, the empirical approximation becomes increasingly accurate as the sample
size increases.

Furthermore, the Central Limit Theorem tells that:(
E(θ)[Ψ] ∈

[
EQN (θ)[Ψ]− zα/2

σp
N

,EQN (θ)[Ψ]+ zα/2
σp
N

])
7→ 1 as N 7→∞

The value zα/2 is determined in such a way that the cumulative distribution function
(CDF) of the standard normal distribution Z evaluated at zα/2 is equal to 1− α

2 and σ

represents the standard deviation, which is calculated as the square root of the variance
of the random variable Ψ

As N increases, the empirical approximationQN (θ) becomes more reliable in estimat-
ing the true measureQ(θ) but we increase the computational cost. Hence the attempt is
to apply variance reduction techniques. Using the martingale representation theorem is
possible to define.

Ψcv =Ψ−
∫
Ξ(s)dW (s) (6.7)

In this context, the hedging strategy Ξ(s) can be obtained by parameterizing it as a
neural network, incorporating a dependency on the stock path.

Specifically, Ξ((X θ
s∧t )t∈[0,T ], s,ξ), where ξ ∈ Rd , represents the neural network’s input,

taking into account the stock path up to time s. By employing this approach, the expecta-
tion remains unchanged, while the variance tends to zero. The algorithm is built around
a two-stage optimization problem. The first stage addresses the calibration problem,
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while the second stage focuses on adapting the abstract hedging strategy to minimize
variance. The calibration problem can be expressed as follows

θ∗ ∈ argmin
M∑

i=1

(
EQN

[
Ψi ((Sθt )t∈[0,T ])−

∫ T

0
Ξ̂((Sθs∧t )t∈[0,T ], s,ξi )dŜθ(s)

]
−p(Ψi )|F0

)2
(6.8)

During this stage, the algorithm optimizes the parameters of the Neural SDEs while
keeping the hedging strategy parameters fixed. The formulation of the variance reduc-
tion problem is as follows:

ξ∗ ∈ argmin
[

VarQN
[
Ψi ((Sθt )t∈[0,T ])−

∫ T

0
Ξ̂((Sθs∧t )t∈[0,T ], s,ξ)dŜθ(s)|F0

]
(6.9)

During this stage, the algorithm optimizes the parameters of the hedging strategy while
keeping the Neural SDEs parameters fixed

The use of d(Ŝθt ) = e−r tσS (t , X θ
t ,θ)dWt and Ξ̂= e−r tΞtσ

S (t , X θ
t ,θ)dWt is motivated by

the desire to achieve better hedge results, even if it results in a potentially worse variance
reduction.

In the following is reported the entire algorithm taken from [62]

Algorithm 1 Neural SDE Calibration with Empirical Risk Minimization

Input: {t0, t1, ..., tn } time grid; Ψ vector of option payoffs; p(Ψ) market option price vector
Initialization:

- Choose initial values for the parameters θ ∈Θ for the neural SDE.
- Set the number of epochs Nepochs.
- Choose the number of Monte Carlo (MC) paths NMC.
- Set the learning rate α and other hyperparameters for the optimizer for the Adam optimizer.

for epoch i in 1 to Nepochs do

Forward pass: Generate NMC paths S
j
t using the tamed Euler scheme with the current parameter values

θ.

Calculate the empirical expected value EQNMC of the payoff function Ψ(ST ) over the NMC paths:
Backward pass: Update the parameter θ ∈Θ using the Adam optimizer according to the following rule
During one epoch Freeze ξ, use Adam to update θ, where

θ = argmin
θ∈Θ

∣∣∣∣∣∣EQNMC
[
Ψ j (Sπ,θ)−

Nsteps−1∑
k=0

Ξ̂(tk , Xπ,θ
tk

,ξi )∆Ŝπtk

]
−p(Ψ)

∣∣∣∣∣∣2

2

During one epoch Freeze ξ, use Adam to update θ, where

ξ= argmin
ξ

VarQNMC
[
Ψ j (Xπ,θ)−

Nsteps−1∑
k=0

Ξ̂(tk , Xπ,θ
tk

,ξi )∆Ŝπtk

]
end for
return θ for all prices Ψ

6.1. COMPUTATION OF VIX
Exploiting that Vix is the square-root of a conditional expectation the initial idea was to
proceed with the Nested Montecarlo simulation.
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6.1.1. NESTED MONTE CARLO

The strategy suggested in [63] involves estimating VIX using the Nested Monte Carlo
(NMC) simulation technique.

The main goal of the algorithm is to create a simulation of N values of the VIX, as ex-
pressed in Equation (5.5). By using Monte Carlo simulation and repeatedly applying
the simulation procedure, the algorithm generates a nested structure of simulations, en-
abling the estimation of the conditional expectation and facilitating the pricing of VIX
derivatives.

Figure 6.1.: Example of behaviour of Nested Montecarlo Simulation

Given the parameters and initial state variables, the NMC method may simulate the
model’s state variables across a time horizon T. The authors assume that the variance
between time T and T +∆, as well as the integral

∫ T+∆T
T vudu, can be calculated from the

time T state variables.
In the provided algorithm of Nested Monte Carlo from [63], the notation ψ is used to

represent the model parameters, while the initial state variables are represented as γ.

Algorithm 2 NestedMonteCarlo

function MC(ψ, γ, t ) ▷ Provided by the model
function NMC(ψ, γ, t ,N ,M)

for i ← 1 to N do ▷ Outerpaths
β′i ← MC(ψ, γ, T ) ▷ Simulates outer path
for j ← 1 to M do ▷ Innerpaths

Si , j ← MonteCarlo(ψ, γ′i , ∆) ▷ Simulates inner path
Xi , j ← InnerX(Si , j ) ▷ Inner estimate

end for
Yi ← Mean(Xi ) ▷ Averages inner estimates

end for
return β′, Y ▷ State variables and target variable

end function

The NMC (Nested Monte Carlo) method, as observed from the algorithm, can be com-
putationally slow. This is primarily because it requires performing additional Monte
Carlo simulations for each outer path. As a result, the algorithm often becomes imprac-
tical due to its time-consuming nature.

The idea therefore is to use the method of the Itô-Taylor expansions, presented in [64],
for computing the VIX. The computer resources required can be significantly lowered
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through this method and it offers a highly accurate representation of the VIX due to its
convergence properties.

The VIX represents the 30-day expectation of future volatility, which implies that it is
influenced by small-time dynamics. The Itô-Taylor expansion, being a small-time ex-
pansion technique, converges rapidly in this context.

6.1.2. ITÔ-TAYLOR EXPANSION

Following the methodology used in [64] for a stochastic variance process given by

dVt =µ(Vt )d t +σ(Vt )dWt , (6.10)

it is possible to express the expectation E[ f (Vt )] using a Taylor-like formula (6.11) by
iteratively applying Dynkin’s formula (as described in [65]).

The Taylor-like formula is given by

E[ f (Vt )] =
N∑

n=0
Ln f (V0)

t n

n!
+δN+1, (6.11)

∀N ∈N, f (·) ∈ R is a smooth function and L is defined as the infinitesimal generator
of the diffusion in (6.10)

L f (v) =µ(v)
Ç f (v)

Çv
+ σ2(v)

2

Ç2 f (v)

Çv2 (6.12)

As demonstrated in [66], [67], [68]
∑N

n=0 Ln f (V0) t n

n! represents an approximation of
the expectation E[ f (Vt )] .

By combining (5.5) with (6.11) and ignoring the term δN+1 we have:

V I X 2
T ≈ 1

τ

∫ T+τ

T

N∑
n=0

Ln f (VT )
(γ−T )n

n!
dγ×1002. (6.13)

The equation can be further simplified by factoring out the variable γ from the in-
finitesimal generator, as it does not appear in the generator. This simplification allows
us to rewrite the integral as follows:

V I X 2
T ≈ 1

τ

N∑
n=0

Ln f (VT )
(τ2)n+1

n +1!
×1002. (6.14)

To further enhance the computational efficiency of computing the VIX, we can adopt
the approach presented in [69]. In this approach, we simplify the calculations by con-
sidering the identity function f and stopping at the first order. This means that we only
need to compute L 0 f (VT ) =VT and L 1 f (VT ) =µ(VT ).

V I X 2
T ≈VT + µ(VT )

2
τ×1002 (6.15)
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6.2. EXPERIMENTS

We have implemented the methodology described in the report using Python and vari-
ous libraries such as Numpy [70], PyTorch [71], and Scipy [72]. The architectures of the
experiments can be found in A.1. We made use of the GPU machines provided by the
Delft High-Performance Computing Centre [DHPC2022] for our computations.

Each calibration test was conducted multiple times to evaluate the consistency and
reliability of the results. The Adam optimization algorithm was employed for each it-
eration of the calibration process. During each iteration, a total of 4×104 Monte Carlo
trajectories were simulated, and the time interval for each month was discretized into 8
equally spaced time steps

6.2.1. TOY TEST

As first test we replicate the example proposed in the paper. The calibration has been
done with synthetic data generated using the Heston model:

dSt = r St d t +
√

Vt St dW1

dVt = κ(θ−Vt )d t +σ
√

Vt dW2

(6.16)

The parameters used are x0 = 1,r = 0.025,k = 0.78,µ = 0.11,η = 0.68,V0 = 0.04,ρ =
0.044. The call prices were acquired from the Heston model by means of Monte Carlo
simulation utilizing a total of 107 Brownian trajectories.

Figure 6.2.: Heston Implied Volatility Figure 6.3.: Heston call prices

Initially, we performed a test on the calibration using six different maturities over 500
epochs. The obtained MSE error of O (10−8) aligns well with the results reported in the
referenced paper. Furthermore, we conducted a benchmark test with just two maturi-
ties, which provides a consistent comparison for the calibration of real data. In this case,
we performed 100 epochs and achieved an MSE error in the range of O (10−6)-O (10−7).
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Although slightly higher compared to the previous test, this error level is still considered
satisfactory and indicative of a robust calibration.

Figure 6.4.: Calibration Heston prices using S-V

Figure 6.5.: Calibration Heston prices using S-M-2f-QHYP

6.2.2. SPX CALIBRATION

6.2.2.1. FIRST TEST WITH REAL DATA

The first test was conducted on a data set downloaded from https:// historicaloption-
data.com. The test were conducted studying the problem of the calibration of 6 bi-
monthly maturity with 22 Strikes, as shown in the figure (6.6).



6.2. EXPERIMENTS

6

43

Figure 6.6.: Calibration SPX for 6 Maturity

Then, we tested for the case of just the first two maturities, as reported:

Figure 6.7.: Calibration with S-V

Figure 6.8.: Calibration with S-M-2f-QHYP
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Figure 6.9.: Example of behaviour loss 6 Maturity and 2 Maturity

6.2.2.2. SECOND TEST WITH REAL DATA

The second test is carried out using the data set from the github [62]:
First we train the data using 6-Month Maturity with 23 different strikes.

Figure 6.10.: Calibration SPX for 6 Maturity

Secondly we concentrated as before with the first two maturities, using both S-V and
S-M-2f-QHYP training both 23 strikes and 46 strikes.
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Figure 6.11.: Calibration with S-V for 23 and 46 Strikes

Figure 6.12.: Calibration with S-M-2f-QHYP for 23 and 46 Strikes

Figure 6.13.: Example of behaviour loss 23 Strikes and 46 Strikes

6.2.3. ANALYSIS OF THE EXPERIMENTS

Given the limited availability of financial data, especially in terms of option pricing, our
objective was to evaluate the performance of a calibration method that produces ex-
cellent loss results in scenarios with minimal data. The obtained results from the three
types of experiments, namely the 6-Maturity experiment and those with 2 Maturity with
varying numbers of strikes, are consistent with the findings using the toy model.
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In general, we observed a slight improvement when incorporating additional data
points, such as increasing the number of strikes or extending the maturity period, as
evidenced in (6.9) and (6.13).

Nevertheless, it is important to emphasize that even in the base case scenario, where
both data sets were utilized, the results were already deemed satisfactory. This outcome
suggests that this calibration method exhibits a remarkable adaptability and effective-
ness, yielding reliable calibration outcomes even under conditions of limited data avail-
ability.

The behaviour of the loss values are consistent with those obtained in the toy test, as
shown in (6.14). It is important to note that during the simulation, both prices and strikes
were scaled down. Therefore, the losses presented in (6.14) need to be rescaled, consid-
ering the values used for the downsizing, taking in mind that the MSE loss function was
utilized to find losses in the original problem.

Figure 6.14.: Example loss’s behaviour for 23 and 46 strikes

However, a remark regarding the behavior of the loss function arises in the experi-
ments with a two-month maturity, particularly when using the S-M-2f-QHYP volatility
model. There is a certain level of rigidity present. Although the learning process ini-
tially progresses smoothly, it tends to slow down after a certain number of epochs, as
evidenced by the figures below

In order to address the issue mentioned above and improve the algorithm’s perfor-
mance, we conducted various tests and explored potential areas for enhancement.

One observations made during these tests was that the value object of the second op-
timization (6.9) often becomes very small, leading to a reduced learning capacity of the
algorithm. To overcome this challenge, we propose reducing the learning rate specifi-
cally for the optimization related to this value object (6.9). By doing so, the calibration
process becomes slower but can improve results due to increased sensitivity.

To illustrate the effect of a different learning rate, we provide an example in Figure
(6.15).
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Figure 6.15.: Example of the effect of a different learning rate

Furthermore, additional techniques such as dropout or regularization could also be
explored to further enhance the algorithm’s performance. In terms of computational
cost, the S.V model outperforms the S-M-2f-QHYP model. For instance, when consid-
ering a case with 23 strikes, a complete iteration using the S.V model typically takes less
than 1 second. On the other hand, the S-M-2f-QHYP model requires approximately 1 to
2 seconds to complete a similar iteration.

6.2.3.1. JOINT CALIBRATION

The first challenge encountered is the lack of data for studying joint calibration. How-
ever, following the approach suggested in [69], it is possible to overcome this issue by
generating synthetic data for joint calibration using the Heston model.

6.2.3.2. GENERATION SYNTHETIC DATA

In [8], the authors propose to represent the dynamics of the S&P 500 index following the
standard analysis found in the literature (e.g., [73]; [74]; [75]; [76]) as follows:

dSt = St (rt +γt )d t +St

√
Vt dW S

t +d
( Nt∑

n=1

[
e Zn −1

]
Sτ−n

)
−St µ̃λd t (6.17)

dVt = κ(θ−Vt )d t +σV

√
Vt dW V

t +d
( Nt∑

n=1
Z v

n

)
(6.18)

For our purpose, we eliminate the jumps in both the dynamics and simplify to a straight-
forward Heston model.

Leveraging how the VIX is defined, in [77] and [78] is developed a formula to explicitly
calculate assuming the dynamics previously presented:
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V I X 2
t = 100×

√
(aVt +b). (6.19)

where 

a = 1−e−κτ
kτ , τ= 30

365 .

b =
(
θ+ λµV

k

)
(1−a)+λc,

c = 2
[
µ̃− (µS +ρ JµV )

]
,

Since we reduced to the case without jumps, it reads as
a = 1−e−κτ

kτ , τ= 30
365 .

b = θ(1−a)+λc,

Finally the prices of the options can be calculated using different computational meth-
ods.

6.2.4. RESULTS

We performed multiple tests by varying the number of generated Brownian motions for
the simulations and the number of maturities. The results presented here are based on
70,000 simulations and six maturities. As expected, we observed that increasing either
one or both parameters led to a more accurate calibration.

The total MSE error after 20 epochs is of O (10−4) for SPX and O (10−1) for VIX. For the
forward pass it takes from 3 to 5 second for each iteration.



6.2. EXPERIMENTS

6

49

Figure 6.16.: Results of the joint calibration for SPX options

Figure 6.17.: Results of the joint calibration for VIX options

We also questioned whether the results we obtained were limited to the synthetic data
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Figure 6.18.: On the left SPX’s losses and on the right VIX’s losses are presented

generated in the described manner. In our experiment, we utilized the 4-factor Marko-
vian PDV model mentioned in the state of the art. We generated options data for the SPX
and VIX with a 1-month maturity.

Figure 6.19.: Example of calibration using 4-factor Markovian PDV model

What we observed regarding the loss functions is that both the models exhibit a sim-
ilar order of Mean Squared Error (MSE) loss during the calibration of 1-Month maturity
options.
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SYNTHETIC GENERATION OF DATA

Synthetic data is a fascinating and rapidly evolving field that has captured the attention
of various disciplines [79], [80], [81], [82]. Although the concept of synthetic data may be
easy we consider theoretical definition given in [11] :

Definition 9. Synthetic data is data that has been generated using a purpose- built math-
ematical model or algorithm, with the aim of solving a (set of) data science task(s).

Data scarcity poses a significant challenge for modern methodologies, especially those
related to machine and deep learning, and this issue was also encountered during the
course of this research. Synthetic data offers a fundamental tool for addressing this chal-
lenge in mathematical finance, and has already been widely adopted, consider, for in-
stance, the fundamental role of Monte Carlo simulations.

The primary goal of this chapter is to examine some of the most powerful techniques
for creating synthetic data with a specific focus on the financial ones. More specifically,
the chapter delves into the generation of financial time series using advanced method-
ologies. It is not extensively proposed a discussion on the potential applications and
advantages of using synthetic data to address privacy concerns; for which is advised to
refer to [82], [11] .

In light of the growing interest and development of generative models, this chapter
examines two specific methodologies for generating synthetic financial data. The first
method employs Generative Adversarial Networks (GANs). The second approach lever-
ages Variational Autoencoders (VAEs). For essential explanation of both this generative
models we refer to the chapter 2. This chapter provides an in-depth analysis of the
strengths and limitations of each approach. By doing so, the chapter seeks to provide
valuable insights into the state-of-the-art techniques for generating synthetic financial
data and their possible applications.

Additionally, a potential new, at least to the best of our knowledge, approach is intro-
duced that combines the theory of Gramian Angular Fields with diffusion models.

51
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7.1. VAE FOR GENERATION OF TIME SERIES

Generating synthetic market paths poses a significant challenge due to the fact that the
distribution of paths is defined on an infinite-dimensional space, whereas current gen-
erative modelling tools are limited to finite dimensions. To overcome this challenge,
the approach is to project the infinite-dimensional space of paths onto a suitable finite-
dimensional space, where standard generative modelling methods can be applied.

An approach that has proven effective in projecting the infinite-dimensional space of
paths to a finite-dimensional space is through the use of the signature or log-signature,
as proposed in [9]. The signature transforms the continuous path into a sequence of
statistics, represented by an infinite-dimensional vector of signature entries. These statis-
tics provide a complete characterization of the original path, taking into account its time
parametrization, and are described in a concise manner even by just the first few entries
of the signature vector. The truncation error at level N decreases rapidly, with a factorial
decay rate of O ( 1

N ! ) [83].

This section is divided in two parts, the aim of the first part is to provide a concise and
self-contained account of the fundamental concepts and results of rough path theory.
Those who seek a more detailed understanding of this field are advised to refer to the
extensive body of work of Terry Lyons and his research group, whose articles, conference
presentations, and books are the basis upon which this section is founded and which
offers a more comprehensive discussion of the theory of rough paths.

The second involves analyzing the experiment using the methodology described in [9].

7.1.1. SIGNATURE OF A PATH

The concept of signatures, as introduced in the reference [83], is based on the framework
of rough path theory. The signature is a powerful method to represent data. At a mathe-
matical level the signature is a faithful transform of a multidimensional time series.

Definition 10 (Signature of a path, [84]). Let E := Rd and J be a compact time interval.
Let X : J 7→ E be a continuous path of finite p-variation such that the following integration
makes sense.

The signature S(X ) of X over the time interval J is defined as follows X J = (1, X 1, . . . , X n , . . .),
where for each integer n ≥ 1,

X k =
∫

. . .
∫

u1<...uk ,u1,...,uk∈J
d Xu1 ⊗ . . .⊗d Xuk (7.1)

The truncated signature of X of order n is denoted by Sn(X ), i.e. Sn(X ) = (1, X 1, ..., X n),
for every integer n ≥ 1.
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Figure 7.1.: Example of Signature at the
1st level

Figure 7.2.: Example of Signature at the
2nd level

7.1.1.1. ORIGIN

The concept of a signature of a path is closely related to the idea of a controlled differen-
tial equation in the form of

dYt = g (Yt )d X t , Y0 = y0, (7.2)

In this form, the state of a complex system, represented by Y , evolves over time as a
function of its present state and the incremental changes in the driving signal X , which
is controlled by the function g . To solve this equation, one can use Picard iteration,
where a sequence of {Y n : [0,T ] 7→ W := Rd }n≥1 is defined recursively for every t ∈ [0,T ]
assuming smooth paths. Specifically, the starting point of the sequence is Y 0

t = y0, and
the following terms are obtained by iteratively integrating the previous term up to time
t , [84].

Y 0
t = y0; Y n+1

t = y0 +
∫ t

0
g (Y n

s )d Xs (7.3)

By using the fixed point argument, it can be shown that Y n converges in 1-variation
norm and the limit of Y n is a solution to (7.2) under some appropriate conditions.

Let X : J 7→ E := Rd be a d-dimensional path where J is a compact interval. The set of
any continuous path X : J 7→ E of finite p-variation is denoted by V p (J ,E). Assuming as
done, in [84], X ∈ V 1([0,T ],E) and g : W 7→ L(E ,W ) is a bounded linear map, it can be
deduced that

Y n
t =

(
I +

n∑
k=1

g⊗k
∫

· · ·
∫

u1<...<un

d Xu1 ⊗ ...⊗d Xun

)
y0 (7.4)

and Y n
t converges to Yt as n tends to infinity, and Yt yields the following representation

Yt =
(
I +

∞∑
k=1

g⊗k
∫

· · ·
∫

u1<...<un

d Xu1 ⊗ ...⊗d Xun

)
y0 (7.5)

where u1...un ∈ J and g⊗k (x1 ×·xk ) = g (x1) · ·g (xk )
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The solution of the problem is exclusively determined by g⊗k and the set of iterated
integrals in X .

In a broader sense, based on Chen’s finding [85], it can be stated that for any given
smooth function g , which does not necessarily have to be linear, the solution is entirely
determined by the signature of X .

Therefore, as observed as [86], the signature can be seen as a reliable and powerful
tool with the ability to accurately describe a system’s dynamics as it responds to an input
signal. In light of the fact that the signature does not necessitate the specification of any
precise set of parameters, this understanding provides a promising indication of why it
is often viewed as a non-parametric strategy for summarizing a path.

Furthermore, this suggests that a similar approach to that of reservoir computing can
be applied to comprehending the data. This involves analyzing the data’s impact on the
signature of a specific segment of the data. By doing so, it becomes possible to charac-
terize the data themselves.

The properties that will be discussed in the sections that follow are the most important
for comprehending the significance of the signature path in the context of the article [9].

Proposition 2. Signatures offer a way to represent functions on the space of curves, with-
out explicitly modeling or parameterizing the curve itself. In contrast to Fourier trans-
forms and wavelets, which use a functional basis to model a curve as a linear combina-
tion, signatures provide a basis of functions for a functional on path space, [87].

Theorem 3 (Uniqueness of signature, [88]). Let X ∈ V 1([0,T ],E). Then the signature of
X determines X up to the tree-like equivalence. .

According to Levin et al. ([84]), a tree-like path can be heuristically interpreted as a
null-path under a specific control. The definition of tree-like equivalence is precisely
given in Hambly and Lyons’ work ([88]).

Proposition 3 (Invariance under reparametrisation, [89] ). Let X : [0,T ] 7→V be a piece-
wise smooth path, and letϕ : [0,T ] 7→ [0,T ] be a reparametrisation. Then, the signature of
X coincides with the signature of X ·ϕ

To better understand, it is convenient to think about the connection with the con-
trolled differential equations explained in (7.1.1.1). Indeed if one moves along the con-
trol faster he simply goes along the response faster. Therefore looking at the path and
after at the response over all the interval does not matter how quickly you move, you get
the same response. This factors out an infinite dimensional group of symmetry.

As for instance, when representing an object, such as a numerical value, using time
series data generated at different speeds, it results in distinct time series representations.
However, the property of invariance under reparametrization offers a solution to this
problem.
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Proposition 4 (Robustness to missing Data and irregular sampling, [90]). The signature
feature set is capable of handling time series with varying lengths and unequal time spac-
ing. The signature feature transformation provides a fixed dimension descriptor for any
d-dimensional time series, regardless of its length or time spacing.

This property is particularly valuable in finance where data can often be incomplete
or difficult to obtain at regular intervals

Proposition 5 (Universality, [91]). The universal nonlinearity property asserts that for
any given ϵ> 0 and under certain assumptions, there exists a linear function L that can be
used to approximate any function f mapping data x to labels y.

|| f (x)−L(Si g (x))|| ≤ ϵ (7.6)

This property holds due to the fact that linear functionals on the signature are densely
defined in the set of functions on x

Remark 1 (Itô-Lyons Map, [92] ). In stochastic process theory, the integral map (X ;Y ) 7→∫ T
0 Ys d Xs lacks continuity. This means that we cannot define a meaningful topology on

the space of paths such that the integral map is continuous [[93], Prop 1.1]. However,
by extending the given path X with its rough path structure, denoted as X = (X ;X), and
considering the integration of Y with respect to X , we can overcome this limitation.

In this scenario, we observe that, according to the rough path metric, the integral be-
comes a continuous function. This continuity of the integral is proven in [[92], Thm
3.2.2], [[93], Thm 4.10].

Consider the following problem:

dYt = g (Yt )dXt , Y0 = y0, (7.7)

As suggested in [86], the Itô-Lyons map can be represented as the diagram (7.3), where
Γ̃g :X 7→ (Y ;Y ′) and Γg : X 7→ Y represent the solution map of (7.7) and the solution map
of the problem reduced to only X , respectively. In this context, Y ′ can be interpreted as
a ’derivative’ of Y .

X

(Y ,Y )

Y

(X ,X )

Γg

Project

Γ̃g

Lift

Figure 7.3.: Ito-Lyons map diagram
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This property may have several applications, one of which is connected to the hedging
strategy. Hedging strategy might be considered as an integral versus the pricing process.
Hence, this property ensures that two prices exhibiting similar signatures will demon-
strate comparable performance when subjected to the same hedging strategy

The memory cost of the depth-N signature is not dependent on the series length n,
but on the dimensionality of the problem, and can be expressed as (d N+1 − 1)/(d − 1).
To address this issue, log-signatures can be used as they retain all the properties of the
signature, while being of lower dimensionality when truncated to the same degree.

Definition 11 (log-signature, [94]). If γt ∈ E is a path segment and S is its Signature then

S = 1+S1 +S2 +· · · ∀i , Si ∈ E⊗i

log(1+x) = x − x2

2
+· · ·

log(S) = (S1 +S2 +· · ·)− (S1 +S2 +·· )2

2
+· · · (7.8)

log(S) = (S1 +S2 +· · · )− (S1+S2+··· )2

2 +· · · is referred to as the log Signature of γ.

Defining with d the path dimension and k the truncated degree of the signature we
have the following:

k \d 2 3 4 5 6 7
1 3 2 4 3 5 4 6 5 7 6 8 7
2 7 3 13 6 21 10 31 15 43 21 57 28
3 15 5 40 14 85 30 156 55 259 91 400 140
4 31 8 121 32 341 90 781 205 1555 406 2801 728

Table 7.1.: The left integer is the signature dimension whereas the right integer (in bold)
is the log-signature dimension [95]

Definition 12 (Expected signature,[84]). Given a probability space (Ω,P,F ), X is a E-
valued stochastic process. Suppose that for every ω ∈Ω, the signature of X (ω) is well de-
fined a.s and under the probability measure P, its expectation denoted by E[S(X (ω)] is
finite. We call E[S(X (ω)] the expected signature of X

The expected signature of a random path plays a similar role as that the moment gen-
erating function of a random variable does. In [95], by Proposition 6.1 in [96], the follow-
ing result is presented:

Theorem 4. Let X and Y be two Ω(J ,Rd )− valued random variables. If E[S(X )] = E[S(Y )],
and E[S(X )] has infinite radius of convergence, then X = Y in the distribution sense.
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The fundamental question surrounding the expected signature, often known as the
moment problem, namely whether the expected signature unequivocally determines
the probability distribution of a random signature, has thus been resolved under proper
conditions.

Now that a better understanding of the rough paths theory has been acquired, it be-
comes clearer why it is used. The properties of the theory allow for the encoding of im-
portant information about the path, and the process of vectorization, combined with
the characteristics of the expected signature, facilitates the definition of a concept of
distance. This distance measure enables the training of models to generate new paths
and improve their performance.

Remain to establish which kind of evaulation metrics use

7.1.1.2. WHICH METRICS USE FOR THE EVALUATION

In [9] is suggested to make use of Two-sample tests as a suitable approach. These tests,
as specified in the article, are used to assess whether two given data samples are from
the same distribution, without describing the nature of that distribution.

The test specifically evaluates if p ̸= q given i.i.d. observations {x1..., xm} and {y1, ..., yn}
from p and q , where p and q are the probability measures of the two random variables
X and Y

Compared to distributional metrics and divergences, two-sample tests exhibit distinc-
tive characteristics that make them more suitable as performance evaluation metrics.
Distributional metrics often require inferring the underlying distribution from the avail-
able data sample before being applicable. In contrast, two-sample tests offer a direct
assessment of the dissimilarity between two data samples without relying on explicit
distributional assumptions.

Growing popularity between the two sample tests has the Mean Maximum Discrep-
ancy distance proposed in [97]. The MMD is based on the largest divergence in expecta-
tions over predefined set of functions H .

MMD[H , p, q] := sup
f ∈H

(EX∼p [ f (X )]−EY ∼q [ f (Y )]) (7.9)

The choice of H is critical; in this case, considering all functions in the unit ball of a
Reproducing Kernel Hilbert Space (RKHS) as H enables distinguishing between metrics
p and q .

This approach solve, as observed in [9], the problem that the underlying distribution
of the data generating model is not known explicitly.

However, this metric does not tackle the problem of the potential non-universality
of features to control for in the generated time-series and the problem of generalising
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distributional metrics to path space

Among the different methods available for Maximum Mean Discrepancy (MMD), the
authors chose the approach based on the signature, which was introduced in [98] .

Given a sample of real paths Y1, . . . ,Yn is collected and n sample of generated paths
X1, . . . , Xn the test statistic T (X1, . . . , Xn ;Y1, . . . ,Yn), proposed in [98], is computed using
the following procedure:

T (X1, ., Xn ;Y1, .,Yn) := 1

n(n −1)

∑
i , j ,i ̸= j

k(Xi , X j )− 2

n2

∑
i , j

k(Xi ,Y j )+ 1

n(n −1)

∑
i , j ,i ̸= j

k(Yi ,Y j )

(7.10)
where k(·, ·) is signature kernel; the recursive structure allows for an efficient and ro-

bust calculation.
The test in [9] proceeds by determining a threshold value based on a fixed confidence

level, α, which lies between 0 and 1. The threshold is computed as cα := 4
√
−n−1 logα.

The generative model will be considered realistic with a confidence level of α if T 2 < cα.
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7.1.2. EXPERIMENTS

For conducting the experiments we followed the approach in [9] schematized as follows:

Data extraction from time series

Preprocessing the data

Creating and training the VAE or CVAE network

Postprocessing of the outputs of the VAEs

Performance Evaluation

where CVAE stands for Conditional Variational Autoencoder, which is the same as VAE
but conditioned on some current market conditions.

It is worth noting that after dividing the original partitions into weekly or monthly path
segments, the collected data samples are turned into log signatures using the already im-
plemented esig, tosig and iisignature libraries and the lead-lag transformation method.
The lead-lag transformation is defined as follows:

Definition 13 (Lead-lag path, [9]). The lead-lag transformation of {X ti }ti∈D is defined by
the 2d-dimensional continuous path

X D
t = (X D,b , X D, f ) :=


(X tk , X tk+1 ), t ∈

[
2k

2nT , 2k+1
2nT

)
(X tk , X tk+1 +2(t − (2k +1))(X tk+2 −X tk+1)), t ∈

[
2k

2nT ,
2k+ 3

2
2nT

)
(X tk +2(t − (2k + 3

2 ))(X tk+1 −X tk ), X tk+2 ), t ∈
[

2k+ 3
2

2nT , 2k+2
2nT

)
(7.11)

The component X D,b is the backward or lag component, and X D, f is the forward or lead
component. The signature of the lead-lag transformation will be denoted by X D,<∞

0,T

The VAE is then trained to generate new data. However, because those data are in the
signature form, they should be postprocessed before they can be evaluated.



7

60 7. SYNTHETIC GENERATION OF DATA

The first test consist in generate new data using monthly paths of S&P in the period
from 01-01-2000 to 01-01-2022. The projections of the high-dimensional log-signatures
onto various two-dimensional subspaces are visually represented on the right plot.

After repeatedly running the algorithm, we found that it takes approximately 30-35
minutes to complete on a MacBook Air. The table below (7.2) displays the confidence
levels at which the signature-based MMD test detects a transition from similarity to
dissimilarity between the two sample distributions. Higher confidence levels indicate
greater similarity between the generated and original samples. The experimental results
align with the results in [9].

Weekly signature paths Monthly signature paths
MMD signature confidence level 99.95 % 99.87 %

Table 7.2.

We created two sets of data from the S-M-2f-QHYP model, one identical to the prior
test on S&P and the other substantially larger. We discovered that the generated paths
had a very comparable quality based on our observations. This experiment, as done
in [9] with Rough Bergomi model, aims to showcase the optimal performance of the
method already on a small number, as in the case of S&P 500 data. Projections of high-
dimensional log-signatures onto 2D subspaces are shown for both experiments, with the
first on the left and the second on the right.
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We also tested the model’s capability to simulate future market behavior. The results
were modest. However, we believe that by imposing constraints during the training pro-
cess, such as incorporating market sentiment, better results can be achieved.

For instance, in Figure (7.4) is tested the capability of the model to simulate the future
market behavior between 01-01-2022 to 01-02-2022, by estimating the error compared
to the actual market behavior. It is evident that the algorithm failed to capture the up-
ward movement in the market during that period. We think that by incorporating sen-
timent analysis or other relevant factors into the training process, the algorithm can be
improved to better capture such movements.

Figure 7.4.: Error generated paths

It is important to note that the primary purpose of the presented algorithm is to gen-
erate synthetic data that closely resembles market data. This synthetic data can be used
for training other algorithms, such as the deep hedging algorithm. However, we think
it is possible to modify and refine the algorithm to generate data that can be useful for
other type of studies.

We conducted a similar test on the VIX, focusing on the same period. Our goal was to
study whether the algorithm was able to capture the dependencies between the move-
ments of the VIX and SPX. Comparing all the generated paths was challenging, so we fo-
cused on the paths that correspond to the respective means of all paths for both the VIX
and SPX. Additionally, we considered the scenario where the selected paths minimize the
absolute error. As shown in Figure (7.5), we found that the SPX and VIX’s synthetic data
combined show that interact in a way that is consistent with real-world observations.
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Figure 7.5.: Synthetic SPX and VIX

Finally we tested this approach on three different metrics proposed in [99]
The first two, the Discriminative Metric and the Predictive Metric, both work with a

two-layer LSTM. The third metric is the Independence Metric. These metric scores are
used to assess the algorithms’ discriminative and predictive abilities, as well as the dis-
tance and correlation between generated data and the true distribution. In all cases,
lower values yield better results. The following arrangements were taken into considera-
tion when conducting the tests; for the predictive metric, we used the data after applying
the min-max scalar. No changes were made in the other circumstances. The data used
are those that were created without any condition; as a result, their initial values are all
0 for each generated path. The test were conducted ten times and in the Figure (7.6),
(7.7)are reported the boxplot regarding the Discriminative and Predective metrics. Re-
garding the independence metrics, given the structure of the pre-posed algorithm and
the available data tend to always give the same value equal to 0.0867

Figure 7.6.: Box plot discriminative Figure 7.7.: Box plot Predective

The values provided by these tests are interesting since they are consistent with values
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found in the article for various data types and methods [99]. However, to provide an
accurate comparison, we would need to test the other algorithms with the same quantity
of data. Indeed, the tests in [99] were performed on number sequences of the order of 103

and involved 5 channels. In our case, we generated four different channels , presented in
the Figure (7.8), representing the close, adjusted, high, and low prices of the S&P index
for the same period of the first experiment. However, the number of sequences available
for analysis was less than 300.

Figure 7.8.: From left to right Close, High, Adjusted, Open SPX index

7.2. GAN FOR GENERATION OF TIME SERIES

This section aims to investigate the combined use of generative models, such as Genera-
tive Adversarial Networks (GANs), with optimal transport problems. Specifically, we are
interested in the method presented in the the article [10], where is proposed a new adver-
sarial object that draws from the theory of optimal transport and introduces the mixed
Sinkhorn divergence to address the issue of bias. To provide a clear and rigorous under-
standing of this approach, a brief introduction to the mathematical objects involved will
be presented in the first part. In the second part, the method proposed in the article will
be examined in greater detail, including testing it and exploring the challenges related to
generating synthetic financial data

7.2.1. AN INTRODUCTION TO OPTIMAL TRANSPORT

For this section, relevant sources include the two books by C. Villani ([100], [101]), [102]
and [103] that cover the topic comprehensively.

All started when Gaspard Monge began by asking himself, "How do I fill a hole with
dirt as efficiently as possible?"

In other words he sought a solution that would efficiently transfer the contents of one
density distribution to another, ensuring that the overall mass is conserved. This prob-
lem has since become known as the Monge’s optimal transport problem.

The problem considers two densities f , g ≥ 0 on Rd , with
∫
R f (x) = ∫

R g (y) = 1, the task
is to find a map T that push the density f onto the density g .

Mathematically it reads as follows:
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∫
E

g (y)d y =
∫

T −1(E)
f (x)d x = 1 (7.12)

At the same time the problem aims to minimize the quantity

C (x) =
∫
Rd

|T (x)−x| f (x)d x (7.13)

If in the equation (7.12) found the map T : Rd 7→ Rd that does exactly what required,
the second equation (7.13) guarantees the efficiency by minimizing the cost function
C (T ). In this context, the term |T (x)− x| represents the transportation cost associated
with moving mass from one location to another, while f (x)d x quantifies the amount of
mass being moved. By minimizing the cost function C (T ), we are essentially minimizing
the total cost incurred in transporting all the mass.

The problem remained unsolved for centuries, as it was unclear whether a minimizer
existed and how to characterize it. Only with Kantorovich’s work was it placed into a
suitable framework, which allowed for approaching and solving it. Solutions have been
found, and by incorporating more general measures, spaces, and cost functions c(x, y),
instead of the Euclidean distance |x − y | the problem has been broadly extended.

Kantorovich’s innovative concept was to address Monge’s problem by relating it to lin-
ear programming. Instead of assigning a specific destination, T (x), to each particle ini-
tially located at x, Kantorovich proposed assigning a number of particles from x to y
for each pair (x, y). This formulation allows for more flexible movements, as particles
originating from a single point x can potentially move to different destinations y .

Considering a probability measure µ on X , a probability measure ν on Y , and a cost
function c : X ×Y 7→R he formulated the classical optimal as:

min
π∈Π(µ,ν)

Eπ[c(x, y)] (7.14)

whereΠ(µ,ν) is the space of transport plans (couplings) between µ and ν. In addition,
it is possible to define a subspace that will become fundamental later, namely the causal
transport plan

Definition 14. A transport plan π ∈Π(µ,ν) is called causal if

π(d yt |d x1, · · ·,d xT ) =π(d yt |d x1, · · ·,d xt ) ∀ t = 1, · · ·,T −1. (7.15)

The set of all such plans will be denoted by ΠK (µ,ν).

The minimizers are defined optimal transport plans between µ and ν.

Considering now
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Wc (µ,ν) = inf
π∈Π(µ,ν)

{Eπ[c(x, y)]} (7.16)

Wc is a distance and in particular for c(x, y) = ||x−y ||1 correspond to , the Wasserstein-
1 distance. Solving equation (7.16), whereµ and ν are supported on finite sets containing
n elements, has a computational complexity that is super cubic in n according to refer-
ences [104], [105], and [106]. This means it becomes computationally expensive when
dealing with large data sets.

The Sinkhorn loss, an OT-based loss function, was proposed in [107] as a means of
addressing these issues.

This approach utilizes two fundamental techniques: (a) entropic smoothing, which
transforms the original OT loss into a more robust and differentiable quantity that can
be evaluated using Sinkhorn fixed point iterations; and (b) algorithmic differentiation
of these iterations, enabling seamless execution on GPUs. For an introduction to the
Sinkhorn distance and algorithm, we referred to the following articles [104] its corre-
sponding GitHub repository and [108] .

7.2.2. SINKHORN DISTANCE

To gain a comprehensive understanding of the Sinkhorn distance, let us examine a clas-
sic illustrative scenario that involves a transportation problem between bakeries and
bars in Manhattan. Every morning, the bakeries supply croissants to the bars throughout
the area. The problem is to determine the best way to transport the croissants, based on
the cost associated with each Bakery and Bar. The cost of transporting croissants from
bakery A to bar B is given by the function c(A,B).

Figure 7.9.: Map of Bars and Bakery generated using [109]



7

66 7. SYNTHETIC GENERATION OF DATA

The amount called transportation plan is π(i , j ), where i is one of the Bakery, and j
is one of the Bar. Given any such kind of amount π(i , j ), we will have a deterministic
total cost, and the cost can be written as

∑
π(i , j )c(i , j ). We define αi the amount of

croissants produced by bakery i , and β j is the amount needed by bar j . To interpret
both αi and β j as probability distributions without any loss of generality, we impose∑

i αi = 1 =∑
j β j = 1.

Instead of considering the classical optimal transport we now consider the following
modified optimal transportation problem where an extra constraint is imposed to make
sure that the KL divergence distance between π and αβT is smaller to some predefined
parameter.

Γ∗ = min
∑
i , j
πi , j ci , j (7.17)

with the following constraints: 
K L(π|αβT ) ≤ a∑

j πi , j =αi∑
i πi , j =β j

(7.18)

The Sinkhorn distances is the optimal value of the following revised optimal trans-
portation problem.

The decision to introduce an additional parameter is motivated by the fact that the
Kullback-Leibler (KL) divergence is a measure of how different two probability distribu-
tions are from each other. Here it means the distance between the two distances should
be close, or the optimal solution of π should be around αβT , which is a pre-defined dis-
tributions as a result of α and β being both known distributions. The underlying moti-
vation for this constraint lies in the impact of the distributionαβT on the transportation
plan. Essentially, this plan ensures that if the Bakery produces more, it should transport
a greater amount, and if the Bar requires more, it should receive proportionally more
from each producer.

Expanding K L(π|αβT ) we have:

K L(π|αβT ) =∑
i , j
πi , j log(

πi , j

αiβ j
) =∑

i , j
πi , j log(πi , j )−∑

i , j
πi , j log(αi )−∑

i , j
πi , j log(β j ) (7.19)

Using that
∑

i πi , j =αi and
∑

j πi , j =βi we have:

K L(π|αβT ) =∑
i , j
πi , j log(

πi , j

αiβ j
) =∑

i , j
πi , j log(πi , j )−∑

i
αi log(αi )−∑

j
β j log(β j ) (7.20)

Using the definition of entropy, i.e
∑

i , j πi , j log(πi , j ) = h(π) and
∑

i αi log(αi ) = h(α) we
can write the constraint as simple as follows
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h(α)+h(β)−h(π) ≤ a (7.21)

Therefore looking at the dual problem we have the following:

Γ̂=∑
i , j
πi , j ci , j − 1

λ
h(π) (7.22)

with constraints: {∑
j πi , j =αi∑
i πi , j =β j

Writing the Langrangian and looking for the optimality, i.e ÇL
Çπi , j

= 0 we have the fol-

lowing:

π∗
i , j = ui e−λci , j v j (7.23)

Equivalently

π∗ = diag(u)eλc diag(v) (7.24)

where u and v are two positive vectors.

7.2.2.1. SINKHORN ALGORITHM

The Sinkhorn algorithm performs alternating projections between two sets: one that
contains all matrices with row sums equal to α, and another that contains all matrices
with column sums equal to β. Two vectors of scalar values, u and v , are iteratively up-
dated starting from some initial values to achieve these projections. As the algorithm
progresses, it converges to the intersection of the two sets, which corresponds to the set
of matrices with row sums equal to α and column sums equal to β, and represents the
optimal solution [110].

Figure 7.10.: Example of Sinkorn algortihm behaviour adopted from [110]

Finally using this approach for the example of the Bakery and Bar we have:
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Figure 7.11.: Visual rapresentation of Optimal transport results and Transport matrix

7.2.3. COT-GAN

Having introduced OT theory, Sinkhorn distance and Sinkhorn algorithm we can now
present the approach, COT GAN, taken in the [10].

The goal of COT-GAN is to generate new d-dimensional (number of channels), T -long
sequences. The idea is to make use of causal optimal transport between X = Rd×T and
Y =Rd×T in order to encode temporal dependencies in of the sequences.

To utilize the Sinkhorn algorithm, they consider the entropic regularization problem,
which formulates the following problem:

ΓK
c,ϵ(µ,ν) := inf

π∈ΠK (µ,ν)
{Eπ[c(x, y)]−ϵH(π)} (7.25)

Hereµ, ν are distributions on the path spaceRd×T and H(π) =∑
i , j π(xi , y j ) log(π(xi , y j ))

is the Shannon entropy of π. On X ×Y , we denote by x = (x1, ..., xT ) and y = (y1, ..., yT )
the first and second half of the coordinates, and we let FX = (F X

t )T
t=1 and FX = (F Y

t )T
t=1

be the canonical filtrations. ΠK (µ,ν) is the set of causal transport plan defined in (14)

The optimizer for the mentioned problem (7.25) is denoted as πK
c,ϵ(µ,ν), and the regu-

larized COT distance is defined as follows:

Wc,ϵ(µ,ν) := EπK
c,ϵ(µ,ν)[c(x, y)] (7.26)

Instead of examining equation (7.25) directly, an alternative approach is adopted, which
involves reformulating the problem as a maximization over non-causal problems utiliz-
ing a specific family of cost functions. This significant finding has been demonstrated in
the research conducted in [111]. For that the reformulation of causality constraint given
in [112] is taken in consideration

Let M (F X ,µ) be the set of (X ,F X ,µ)-martingales, and define
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H (µ) := {(h, M) : h = (h)T−1
t=1 ,h ∈Cb(Rd×t ), M = (M)T−1

t=1 ∈M (F X ,µ), M ∈Cb(Rd×t )},
(7.27)

where, as usual, Cb(X ) denotes the space of continuous, bounded functions on X.
Then, a transport plan π ∈Π(µ,ν) is causal if and only if

Eπ[
T−1∑
t=1

ht (y≤t )∆t+1M(x≤t+1)] = 0 (7.28)

where x≤t := (x1, x2, ..., xt ) and similarly for y≤t , and ∆t+1M (x ≤ t +1) :=Mt+1(x +1)−
Mt (x ≤ t ).

From [111] we have that supl∈L (µ)[l (x, y)] =

{
0 if π is casual

∞ otherwise

where L (µ,ν) :=
{∑J

j=1

∑T−1
t=1 h j

t (y)∆t+1M j (x), J ∈ N , (h j , M j ) ∈ H(µ)
}

This allows to rewrite

ΓK
c,ϵ(µ,ν) = inf

π∈Π(µ,ν)
sup

l∈L (µ)

{
Eπ[c(x, y)+ l (x, y)]−ϵH(π)

}

By leveraging the min-max theorem, it can used the convexity of L (µ) and the con-
vexity and compactness of Π(µ,ν) to obtain the following result:

ΓK
c,ϵ(µ,ν) = sup

l∈L (µ)
inf

π∈Π(µ,ν)

{
Eπ[c(x, y)+ l (x, y)]−ϵH(π)

}
= sup

l∈L (µ)
Γc+l ,ϵ(µ,ν) (7.29)

Hence, in accordance with the notation in equation (7.26), the problem addresses the
worst-case distance between µ and ν, defined as:

sup
l∈L (µ)

Wc+l ,ϵ(µ,ν) (7.30)

This serves as a regularized Sinkhorn distance, ensuring adherence to the causal con-
straint on the transport plans.

The paper addresses two main problems, with the first one focusing on the applica-
tion of Sinkhorn divergence in the context of mini-batches. In this scenario, the train-
ing dataset comprises a collection of paths {xi }N

i=1, all having the same length T , where

each xi represents a sequence (x1
i , x2

i , . . . , xT
i ) in Rd . Given the potentially large size of N ,

the approach involves approximating Wc+l ,ξ(µ,ν) using its empirical mini-batch coun-
terpart. Specifically, a batch size of m is chosen, and {xi }m

i=1 is sampled from the dataset,

along with {zi }m
i=1 from the latent space ζ. The generated samples are denoted as yθi =

g θ(zi ), while the empirical distributions are represented as x̂ =∑m
i=1δxi and ŷθ =

∑m
i=1δyθ .
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During the optimization process of the original Sinkhorn divergence over mini-batches,
they have identified a potential issue that can result in biased parameter estimation. To
overcome this problem, the authors propose utilizing a mixed Sinkhorn divergence at
the mini-batch level, which helps improve the accuracy of parameter estimation. The
mixed Sinkhorn divergence is defined for a generic cost function c as follows:

W mi x
c,ϵ (x̂, x̂ ′, ŷθ , ŷ ′

θ) :=Wc,ϵ(x̂, ŷθ)+Wc,ϵ(x̂ ′, ŷ ′
θ)−Wc,ϵ(x̂, x̂ ′)−Wc,ϵ(ŷθ , ŷ ′

θ) (7.31)

The specific cost function employed during training is defined as follows:

cK
ϕ (x, y) := c(x, y)+

J∑
j=1

T−1∑
t=1

h j
ϕ1,t (y)∆t+1M j

ϕ2
(x) (7.32)

where hϕ2 := (h j
ϕ1

)J
j=1 and Mϕ2 := (M j

ϕ2
)J

j=1 are two separate neural networks.

The cost function mentioned in Equation (7.32) is employed to approximate the four
terms described in Equation (7.31) using the Sinkhorn algorithm. By executing the Sinkhorn
algorithm for a specified number of iterations L, these approximations are obtained.

Using this method, the model incorporates only the information available up to the
current time step. As a result, it successfully captures the process’s temporal dependen-
cies.

The second challenge pertains to the integration of the martingale property within the
algorithm. This challenge arises from the inherent difficulty of imposing constraints re-
lated to conditional expectations, as enforcing the martingale condition directly proves
to be non-trivial. They propose to penalize the processes M if their increments on every
time step have a non-zero average. For an (X ,F X )-adapted process we have

pMϕ2
(x̂) = 1

mT

J∑
j=1

T−1∑
t=1

|
m∑
i

∆t+1M j
ϕ2

(xi )√
V ar [Mϕ2 ]+η | (7.33)

Accordingly, the adversarial objective function related to COT-GAN is defined as.

W mi x
cK
ϕ ,ϵ

(x̂, x̂ ′, ŷθ, x̂ ′)−λpMϕ2
(x̂ ′) (7.34)

Taking λ a positive constant we update θ to decrease this objective, and ϕ to increase
it.

Incorporating these arrangements, they proposed a GAN consisting of a generator, and
two discriminators, represented by hϕ1 and Mϕ2 . Here, the generator gθ is a parameter-
ized function that takes a distribution ζ from a latent space and is trained to produce an
induced distribution νθ = ζ ·g−1 that closely approximates the target distribution µ. The
discriminators, parameterized by ϕ1 and ϕ2 respectively, learn to distinguish between
the real data distribution µ and the generated distribution νθ using a robust (worst-case)
distance.The algorithm is summarized in Algorithm [10].
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7.2.4. EXPERIMENTS

7.2.4.1. SINUSOIDAL SERIES

We utilized s to conduct tests on sinusoids with random phase, frequency,amplitude and
dimensions, specifically 1, 5, and 10. The computational performance of the algorithm
was evaluated on a MacBook Air, and each iteration for the 10-dimensional case took
approximately 1-2 seconds to complete. As for the Sinkhorn Loss, the results align, as
expected, with the results presented in the article, as shown in Figure (7.12). These find-
ings provide support for the proposed approach and demonstrate its consistency with
the reported results in the research paper

Figure 7.12.: Example of Sinkhorn Loss function for a 1-dim on the left and the analyzed
(7.13) 10-dim sine series on the right

To enhance comprehension, Figure (7.13) illustrates the step-by-step progression of
the process. The figure showcases different stages of the process, enabling a clearer vi-
sualization of the overall procedure.

Figure 7.13.: Training of the first 5 dimensions of a 10 dimensional Sine series

7.2.4.2. FINANCIAL TIME SERIES

We conducted some tests on different financial time series, we have arrived at findings
that are in line with the results discussed in the article. The article identifies the high
non-stationarity of financial data is a significant element limiting the algorithm’s ability
to train effectively. In light of this results, they suggested concentrating future efforts on
creating an improved COT-GAN algorithm that is especially suited to handle these diffi-
culties. It is crucial to remember that the use of causality as a technique for calculating
the distances between sequences will still be essential in this improved approach.
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7.3. GENERATING FINANCIAL TIME SERIES USING DIFFUSION

MODELS

Time series data can be represented as images using an interesting method called the
Gramian Angular Field (GAF) [113]. The idea it to apply this to transform financial time
data into images.

Once the financial time series is encoded as an image using the GAF, the next step is to
generate new images that are similar to the original one. For this purpose we choose to
use Diffusion models.

The crucial advantage of using the GAF encoding map is its bijectivity, which implies
that the generated images can be translated back into new financial time series. There-
fore the idea is, by applying the inverse transformation, to convert the generated images
into time series data. The expectation is that these newly generated time series will pos-
sess similarities to the initial ones.

7.3.1. GAF

Proposed by Wang and Oates in [113], the initial stage of constructing the Gramian An-
gular Field (GAF) involves rescaling the n real-valued observations X = {x1, x2, ..., xn} of
a time series. The objective is to ensure that all values are within the interval [−1,1] or
[0,1] through the following process:

x̃i = (xi −max(X))+ (xi −min(X))

max(X)−min(X)
(7.35)

The scaled series X̃ is is transformed to a polar coordinates system by computing the
angular cosine of the single components of the scaled time series:

θi = arccos(x̃i ) r = ti

n
where x̃i ∈ X̃, ti ∈ N (7.36)

Here, ti is the time stamp and N is a constant factor to regularize the span of the polar
coordinate system.

Gramian Summation Angular Field (GASF) and Gramian Difference Angular Field (GADF)
can be defined as the sum or difference of the time series’ points:

GASF = [cos(θi +θ j )] = X̃′ · X̃−
√

I − X̃′2 ·
√

I − X̃2 (7.37)

GADF = [sin(θi −θ j )] =
√

I − X̃′2 · X̃− X̃′ ·
√

I − X̃2 (7.38)

A key aspect of the Gramian Angular Fields (GAFs) is that yields one and only one
outcome in the polar coordinate system with a unique inverse map. This characteristic
enable us to translate the images produced back into time series data.

Moreover, GAFs possess the ability to preserve temporal dependencies. In this method
time is represented by the position within the image. As we move from the top-left to the
bottom-right of the image, time progressively increases. The inherent temporal relation-
ships and ordering of the original time series are preserved in this spatial representation.
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Figure 7.14.: Example of Gramian Angular Fields behavior adopted from [113]

7.3.2. DIFFUSION MODEL

As defined in [114], a diffusion probabilistic model, commonly referred to as a "diffusion
model," is a parameterized Markov chain trained using variational inference. The objec-
tive of a diffusion model is to generate samples that match the data distribution after a
finite number of transformations. To provide a concise explanation, we will follow the
description in [114], [115], [116].

Diffusion models consist of two distinct steps: the Forward and the Reverse diffusion
process. In the first, Gaussian noise is gradually added to the observed data, starting
from an initial distribution and progressing through a series of transformations. In the
second, the original data is reconstructed based on the final latent variables obtained
from the Forward process.

Mathematically, for the Forward process, given a data point sampled from a real data
distribution x0 ∼ q(x), is built a Markov chain that progressively introduces Gaussian
noise to the data according to a variance schedule β1, ...,βT :

q(x1:T ) :=
T∏

t=1
q(xt |xt−1), q(xt |xt−1) :=N (xt ;

√
1−βt xt−1,βt I ) (7.39)

However, when it comes to reconstruction, estimating q(xt |xt−1) directly is challeng-
ing since it requires using the entire dataset. As a result, a model is learned to approx-
imate these conditional probabilities, allowing to perform the reverse diffusion process
described below:

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1|xt ), pθ(xt−1|xt ) :=N (xt−1;µθ(xt , t ),Σθ(xt , t )) (7.40)

Here, the model pθ(x0:T ) is a Markov chain with learned Gaussian transitions starting
at p(xT ), which is assumed to be a Gaussian with mean zero and unit covariance.
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7.3.3. EXPERIMENTS

To preprocess the financial time series data, we adopt a partitioning approach where the
original data is divided into monthly path segments. Then, as shown in the Figure (7.15),
we apply the Gramian Angular Field (GAF) transformation.

Figure 7.15.: Sample of financial time series as images

Next, we proceed to train the diffusion model described in [117] using the generated
images. The Forward process, as shown in Figure (7.16), effectively deconstructs the
images

Figure 7.16.: Forward process

However, when we attempt to apply the reverse process, we encounter certain chal-
lenges. As evident from Figure (7.17),

Figure 7.17.: Reverse process

To assess the algorithm’s performance, we ran a number of tests across 100 epochs.
However, the observed lack of similarity between the produced images can be attributed
to several factors.

Firstly, the number of epochs utilized in our experiments might be insufficient. As
highlighted by the author, achieving satisfactory results with this algorithm often re-
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quires a significantly larger number of epochs. Unfortunately, due to the computational
demands, training for more than 100 epochs already exceeds a duration of 12 hours

Secondly, it is worth noting that the algorithm was trained on a substantially larger
data set consisting of over 8,000 images, while our own data set comprises less than 300
images. This disparity in the training data size could have an impact on the algorithm’s
ability to generate similar images.

Lastly, the inherent structure of the images themselves might contribute to the ob-
served results. Although we experimented with higher resolution images by incorporat-
ing more pixels, the similarity of the outcomes remained largely consistent.





8
CONCLUSION AND FUTURE WORKS

In conclusion, this thesis addressed various problems, with an initial emphasis on Neu-
ral Stochastic Differential Equations (NSDEs). The theory behind NSDEs is relatively
new, but there is a growing belief in its tremendous potential for further expansion, sup-
ported by an increasing number of researchers working in this field and the publication
of numerous papers.

The exploration of existing literature in this thesis gave the opportunity to gain a bet-
ter understanding of NSDEs. During the model selection process, an ongoing discussion
arose regarding the efficiency of rough volatility models in reproducing real-world situa-
tions compared to classical volatility models. After replicating and comparing the results
from both factions, we decided to embrace the second faction. This decision was also in-
fluenced by the time constraint prevalent in real-world finance, as the algorithm based
on Markovian models already consumed a significant amount of time. Consequently,
using rough volatility models would have further exacerbated this problem.

The financial mathematics issues used to evaluate NSDEs were calibration and neural
joint calibration. While we were convinced to employ Markovian models for calibration,
we undertook extensive research before making a conclusion on joint calibration. A brief
literature review confirmed the validity of our choice, and we found the results presented
in the aforementioned paper [44] to be particularly interesting. The results concerning
calibration are excellent, even when working with real data, which presents a different
scenario compared to calibration with synthetic data. The relative errors allow for effi-
cient calibration of Neural SDEs, even with a very small data set. To test efficiency, we
performed various tests on different data sets using two types of stochastic models.

Regarding joint calibration, we proposed two possible approaches related to the dif-
ferent ways of simulating the VIX. We only tested the case where the VIX is obtained as an
approximation using a simplification of the formula proposed in [64]. The results reveal
that this approach achieves good calibration for the SPX and gives decent for the VIX.
This partial problem may be due to multiple reasons. We believe it is because we used
an approximation to calculate the VIX and that more data and more simulation numbers
are needed. In fact, we tested the algorithm with a smaller amount of data and simula-
tions and observed a significant impact on the algorithm’s ability to capture the correct
dependency. Therefore, we believe that using more data and employing Nested Monte
Carlo simulations could yield even better results. Supporting our conviction is the work

77
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done by Guyon, who achieved optimal results by using Least Monte Carlo Squares and a
significantly larger amount of data.

The issue of data played a prominent role in our thesis and is becoming increasingly
common in the need to train algorithms with a larger amount of data. Therefore, we
delved deeper into exploring methods for generating synthetic data. Among all the pro-
posed methods, two in particular caught our attention: the method presented in [10]
and the one presented in [9]. These methods stood out for their ability to incorporate
theoretical mathematical concepts into data generation. Consequently, we extensively
studied their potential applications.

Method in [9], in particular, yielded excellent results in generating financial time se-
ries. Its implementation showcased its effectiveness in capturing the dynamics of real-
world financial data. On the other hand, method in [10] demonstrated great potential in
generating time series but struggled when applied to non-stationary series.

Finally we proposed a possible new approach. However, we tested using a basic algo-
rithm and better results can be reached in the future.

We were finally able to see throughout the thesis that very theoretical mathematical
topics like SDEs, optimal transport, and rough path theory fit well with the new mod-
els related to deep learning and machine learning, and I believe this thesis allows us
to further our understanding of how both fields can benefit from each other by further
contaminating one another.
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ARCHITECTURES

A.1. ARCHITECTURE CALIBRATION

For conducting the experiments, we adopted the existing architecture proposed in [3]
[62] and [69] to ensure a robust methodology and reliable results

A.1.1. ARCHITECTURE CALIBRATION AND JOINT CALIBRATION IN CASE OF

S.V.

Three distinct neural networks are employed to capture the behavior the two volatility
γV ,σS , and the volatility drift ΛV , respectively. In both case, calibration and joint cali-
bration these neural networks have a straightforward feed-forward architecture. In the
first case they consist of four hidden layers, each containing 50 neurons, in the second
they consist of three hidden layers, each containing 20 neurons. The parameterisation
of the hedging strategy for the vanilla option prices is achieved by a feed-forward lin-
ear network with three hidden layers, each comprising 20 neurons. In all of the neu-
ral networks, the activation functions employed in each hidden layer are nonlinear and
specifically the rectified linear unit (ReLU) functions. Moreover, for the neural network
corresponding to σS , a non-linear activation function is applied after the output layer to
ensure a positive output. Specifically, the rectifier softplus(x) = log(1+exp(x)) is utilized
for this purpose.

Input Size Output Size Output Layer

µV 2 1 Linear

ΛV 2 1 Softplus/Sigmoid

γS 3 1 Softplus/Sigmoid

Figure A.1.: Summary of the neural network structures in Neural SDEs driven by a gen-
eral stochastic volatility models
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A.1.2. ARCHITECTURE IN CASE OF THE S-M-2F-QHYP MODEL

The selection of the neural network architecture was similar to the previous one. In this
case three distinct neural networks must be employed to capture the behavior of the
two function ζ, and the volatility drift µV , respectively. These neural networks have a
straightforward feed-forward architecture, consisting of four hidden layers, each con-
taining 50 neurons. Similarly, the parameterisation of the hedging strategy for the vanilla
option prices is achieved by a feed-forward linear network with three hidden layers,
each comprising 20 neurons. This ensures uniformity in the neural network architec-
ture across the entire modeling process.

Input Size Output Size Output Layer

ζ1 1 1 Linear

ζ2 1 1 Linear

σS 3 1 Softplus/Sigmoid

Figure A.2.: Summary of the neural network structures in Neural SDEs driven by S-M-2F-
QHyp

A.2. ARCHITECTURE VAE

As explained in 2, VAE consists of two key components: an encoder and a decoder. We
adopted the existing architecture proposed in [9], [118]. In this architecture the encoder
comprises one hidden layer and two latent layers, each with 50 nodes. The activation
function used is a leaky (parametric) ReLU with a parameter of λ= 0.3. The decoder, on
the other hand, consists of one hidden layer with 50 units and the same leaky ReLU acti-
vation function. The output layer of the decoder employs a sigmoid activation function.

A.3. ARCHITETURE COT-GAN

We adopted the existing architecture proposed in [10],[119]. The latent state dimen-
sionality is set to 10 at each time step, accompanied by a 10-dimensional time-invariant
latent state. The generator of synthetic data employed consists of a single-layer LSTM
network. The output of each time step is then fed through two layers of fully connected
ReLU networks. Both the latent h and t M employ the same discriminator architecture.
It consists of two layers of 1-D causal CNNs with a filter length of 5 and a stride of 1. Each
layer comprises 32 synthetic data neurons per time step. The ReLU activation function is
used for all layers, while the output layer utilizes the sigmoid activation function. For pa-
rameter updates, the Adam optimization algorithm is used with a learning rate of 0.001,



A.3. ARCHITETURE COT-GAN

A

89

optimizing θ and ϕ. The batch size is set to 32.Furthermore, the hyperparameters λ and
ϵ are assigned values of 10.0 and 10, respectively.
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