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Abstract

At the Center for Ultrasound and Brain imaging at Erasmus MC in Rotterdam, a mouse’s
visual cortex had been imaged using the functional ultrasound (fUS) technique. The
mouse had been exposed to different visual stimuli. The stimuli varied in position, size,
and shape. We investigate how the measured task-based fUS signals differ depending
on the visual stimuli presented to the mouse. For that purpose, we decompose the fUS
data with four different methods giving different levels of sparsity. This thesis compares
the performance of the four methods, and provides neurological insights obtained with
these methods.

For modeling the data, we consider four data-driven decomposition methods: inde-
pendent component analysis (ICA) and three sparse dictionary learning (sDL) variants.
The methods decompose the data into better interpretable spatial maps and time courses.
Every decomposition is further examined by training ¢;-regularized prediction models
that optimize for sparsity. The goal is to predict the presented stimulus based on the
decomposed data. Furthermore, the potential of group lasso regularization in prediction
models is illustrated.

The decompositions extract spatial maps anatomically linked to the visual cortex,
superior colliculus and the hippocampus. All decompositions achieve considerable per-
formance in the position prediction but have low success in the size and shape prediction.
ICA outperformed the three sDL variants in all prediction tasks. Furthermore, group
lasso regularization is found to be a useful tool to obtain discriminatory information in
the time dynamics.
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Introduction

Understanding the mind is one of the greatest desires in human history. The field of
neuroscience ultimately desires understanding the organization of memories, origin of
thoughts, basis of consciousness and others. To answer these questions, neuroscientists
have developed and used neuroimaging tools to aid in their research. Neuro- or brain
imaging techniques can be used to reveal the structure and function of the brain.

The first neuroimaging techniques had serious drawbacks. These techniques would
require the subjects to undergo surgery, be injected with artificial contrast agents or
be exposed to ionizing radiation. Due to the inherent risks in these imaging methods,
primarily patients with disorders could be analyzed limiting the “variety” of the dataset.

Since its introduction in the 1990s, functional magnetic resonance imaging (fMRI)
largely “solved” these issues and has consequently become the gold standard for deep
brain imaging. fMRI enabled studying the brain non-invasively by measuring a naturally
occurring contrast agent, the oxygenation of blood. This enabled frequent and recurrent
testing on healthy subjects because there was no fear of harming them [1].

However, fMRI is not perfect. The scanners are expensive and not portable. Fur-
thermore, it requires the subject to be stationary in the machine.

Recently, a new imaging technique called functional ultrasound (fUS) was developed
which measures the cerebral blood volume (CBV). The imaging machine is smaller
and, using ultralight probes, could potentially allow the subject to move freely during
the experiment. This technique matches the spatial resolution of fMRI and shows an
excellent temporal resolution [1].

1.1 Problem statement

At the Center for Ultrasound and Brain imaging at Erasmus MC in Rotterdam (CUBE),
a mouse’s visual cortex has been imaged with fUS. The mouse had been exposed to
visual stimuli. The stimuli varied in position, size, and shape. Are the responses to
these visual stimuli present in the measured fUS signal?

The answer to this question lies in the fUS’s ability to reveal and explain hemodynamic
patterns. The main objective of this thesis is to search for and understand hemodynamic
changes observed in the fUS data that are associated with diverse visual stimuli.

The research questions will be split in two categories: RQ 1 tackles questions from a
signal processing domain and RQ 2 will deal with the neuroscientific questions.

RQ 1. What type of models can be used to accurately describe the data?

To answer this question: we will consider two modeling approaches: independent
component analysis (ICA) and sparse dictionary learning (sDL).

RQ 2. What is the vascular response of the mouse brain to a visual stimulus?



To answer this question, we will consider how the response changes depending
on the type of stimulus presented, wherefore the following subquestions will be
answered:

2.1 How does the response differ depending on the position of the stimulus in the
field of view?

2.2 How does the response differ depending on the size of the stimulus?

2.3 How does the response differ depending on the shape of the stimulus?

1.2 Outline

We will briefly outline how the two research questions will be answered. First we
introduce the most important neuroscientific concepts relevant for our research in
Chapter 2. Then we describe the type of data and the acquisition methodology in
Chapter 3. Subsequently, we start by decomposing the data using the sDL and ICA
method. This can be seen as a dimensionality reduction step as we decompose the
dataset with 35200 voxels to a dataset of 80 spatial maps, also called features. This will
be described in Chapter 4. The question arises: how well does a decomposition describe
the data? For that purpose we set up a prediction experiment in which we predict
what stimulus was presented to the mouse, using the decomposed data. This will be
described in Chapter 5. The goal of the prediction experiments (Chapter 6) is twofold:

e Firstly, if the prediction model can predict the presented stimuli well, the dataset
should have useful discriminatory features. In that case we decide that the
decomposition describes the data well. This answers RQ1.

e Secondly, we can use the prediction model to obtain neurological insights. By
analyzing the decision function we can learn why models behave as they do. We
base our neurological insights upon to discriminatory information obtained from
prediction models. This answers RQ2.

The results of these experiments can be found in Chapter 7. Finally, the conclusion and
recommendations for future research are given in Chapter 8.



Neuroscience

In this chapter, a brief introduction to neuroscience will be given, primarily focusing
on concepts related to our data. In Section 2.1, it is explained why we are interested
in measuring the blood. Subsequently, the method for measuring the blood, fUS; is
highlighted in Section 2.2. What type of response is expected and the main decomposition
idea is explained in Section 2.3.

2.1 Measurements

The brain is arguably the most complex organ of all animals. It is responsible for acting
on almost all external tasks or stimuli. The data stream from the senses, such as a smell
or a touch, is processed in various brain networks leading to perception. Also, in the
seeming absence of any tasks, there is a resting state network active.

The brain’s processing occurs in the neurons with tiny electrical signals. Therefore,
it makes sense to measure electrical activity to learn more about the functioning of
the brain. This can be done directly with electroencephalography (EEG) or indirectly,
using the magnetic fields produced by electric currents, by magnetoencephalography
(MEG). However, accurately measuring the electrical activity of the brain is an almost
impossible task as there are millions of neurons. For example, there are about 10 million
neurons in a mouse brain. The spatial resolution of these techniques is not high enough
for measuring individual neurons.

Accompanying the neuronal activity is an increase in blood flow. This is because
the energy deficit in the neurons has to be resolved by transporting glucose and oxygen
towards them, using the bloodstream. This is done by increasing the blood flow rate
or an expansion of blood vessels. Therefore, neuronal activity can be inferred from
measurements of the blood flow in the brain.

This blood flow can be measured and quantified using particles in the blood called
hemodynamic contrasts. The main difference between imaging techniques lies in what
contrast is measured. For example, blood oxygen level dependent (BOLD) fMRI aptly
measures the oxygenation of hemoglobin and CBV-weighted fMRI the injected iron
oxide particles in the blood.

2.2 Ultrasound imaging

In the novel fUS imaging technique, the hemodynamic contrast is the red blood cells. An
ultrasonic pulse is sent to the blood vessels and part of the pulse will be backscattered
by red blood cells. The energy of the echoes is proportional to the CBV [1], [2]. The
measured signal can be converted into a power Doppler image by computing the average
energy of each voxel, for a period of time, typically around 200 ms [2].



Since the start of the 1990s research has been performed on fMRI data using an
enormous variety of advanced signal analysis methods. Conversely, most studies on
fUS data perform univariate voxel correlations on the task regressor. One study used
ICA on fUS data to find neurological insights but found that its results conflicted with
previous results obtained from fMRI experiments [3]. The differences were explained by
“the enhanced neurofunctional imaging capabilities of fUS as compared to fMRI”. The
question is if assumptions in fMRI models are equally valid in fUS models.

Whether these assumptions are valid, depends partly on the extent BOLD and CBV
signals differ. Research has been conducted in to what extent BOLD and CBYV are alike
in the brain. In these studies, the CBV was obtained in an fMRI scan by monitoring an
exogenous contrasting agent and, under some biophysical assumptions, converted to
CBV [4]. Tt is shown that significant BOLD signal changes can occur in the absence of
a corresponding CBV change. Besides that, the BOLD signal showed the post-stimulus
undershoot pattern while CBV did not show this effect [5]. Another study found that
CBV-weighted fMRI had better localization than BOLD fMRI because there was less
activation in draining veins. These differences could be explained by differences in
neurovascular coupling [6]. To what extent these different dynamics are of influence to
the data model selection is unknown.

2.3 Hemodynamic response

As mentioned before, we want to understand the brain’s reaction to stimuli from
measurements of blood. The brain’s hemodynamic response function (HRF) to a
stimulus is dependent on at least three variables: 1. the type of stimulus, 2. the location
in the brain, and 3. the timing of the measurement. Even though we can describe all
three variables very well, we do not know the interaction between the variables.

The responses measured at different locations can have similar time courses. In
that case, we can group the different location in single spatial structure. This grouping
action gives a spatial network as output with a corresponding hemodynamic time course.
The combination of such a spatial network and its temporal response is what we will
call a component.

Because the underlying hemodynamic behavior is poorly understood and the concept
of a network is not clearly defined, we need to rely on assumptions in either the temporal
or spatial structure for the grouping action. Common assumptions are independence or
sparsity in space [7]. It has been argued that sparsity is the superior assumption [3], [9].
The reason for that is that sparsity allows for overlapping networks while independence
does not. In Sections 4.4 and 4.5, it is explained how these assumptions can be used to
extract spatial networks with a similar time course.



Methodology

In this chapter, the type of data and the acquisition methodology are detailed. We start
by exploring the dataset and give the imaging parameters in Section 3.1. Subsequently
in Section 3.2, the acquisition method will be explained. The preprocessing steps will be
laid out in Section 3.3. Finally in Section 3.4, we will briefly discuss the generalizability
of possible results.

3.1 Data structure

One coronal slice of a single mouse brain was imaged in one run with an ultrasound
scanner. The left and right visual cortex are present in the slice. The output is a grid
of N time courses I(x, z,t), each corresponding to the power Doppler value of a voxel.
A mean image (I,(z,2) = +>.,1(x, 2,t)) is shown in Figure 3.1. In Figure 3.2 the
anatomical map corresponding to the coronal location is shown.

The slice was continuously imaged for approximately 42 min with a sampling time
of dt ~ 0.22 s resulting in 7" = 11780 time samples for each voxel. The PDI images were
cropped to slices with a grid of NV, x N, = 160 x 220 voxels, giving 35200 voxels in total.

The measurements can intuitively be organized as a 3-dimensional matrix Y €
RN=XNaoXT representing the number of samples in the depth, length, and time dimension
respectively. However, for analysis, it is usually necessary to reshape this into a 2-
dimensional matrix Y € RT*N. Here N = N, x N, is the total number of voxels and
every column represents a voxel’s time course.

3.2 Experimental protocol

The mouse is repeatedly shown a visual stimulus, for approximately 3s followed by
a rest period of 5 to 9 seconds. This is what we will call the stimulus pattern. It
gives a stimulus frequency fstimulus = % Hz. Therefore, the number of time samples for
which the stimulus was shown is T, ~ 12 and there are at least 37 time samples in each
stimulus.

The visual stimuli varied in three ways as illustrated in Figure 3.3:

e Position: the stimulus was either left or right. It is expected that a left (right)
stimulus causes a greater response on the right (left) side of the brain due to the
lateralization of brain function.

e Size: the stimulus was shown in 5 different sizes. It is expected that a larger size
causes a greater response than a smaller size.



Figure 3.1: Mean image. Vascular structures are revealed by the power Doppler imaging.
Taking 10log;, of the 99.9'" percentile for a decibel scale increases contrast for visualization
purposes.

Figure 3.2: Anatomical map of approximately the same slice as Figure 3.1. The image is taken
from the online Allen Mouse Brain Atlas. The visual cortex is in the upper left and right
corner in the darker turquoise color.

e Shape: the stimulus was either a circle or a square. In advance, it is unclear how
the shape influences the hemodynamic response.

These three categories result in a total of 2 x 2 x 5 = 20 different input combinations.
Every combination was presented 10 times giving in a total of S = 200 stimuli. The
experiment was split into two blocks. In the first block, only squares were presented
while the size and location varied. Subsequently, there was a short rest period after
which the second block started where the circles were shown. The first block was
preceded by a short acclimatization period.



Size1 Size2 Size3 Size4 Size5

EENERL N |
EEREERI ]

Figure 3.3: Square and circle stimuli shown to the mouse in different sizes.

Group- and stimulus-level

The observations Y can be viewed on two different levels: the group- and stimulus-level.
The stimulus-level matrix Y; € R¥™*N where 1 < i < S, represents the observations
related to stimulus 7 and the directly following rest period.

A group-level observation matrix Y € R™*" (indicated by the overline) can be
formed by a temporal concatenation of all stimulus-level matrices Y;, so
Y;
Y =|:
Ys
Conversely, this operation can be reversed by the splitting or “ungrouping” the group-
level matrix into S stimulus-level matrices.

3.3 Preprocessing

A following operations were performed on the dataset:

e Thresholding: all voxels with a mean power Doppler value below —25dB of
the maximum (10log,, % < —25), were regarded as noise and therefore
discarded.

e Temporal filtering: all voxels were filtered with a 4*® order Butterworth high-pass
filter at f. = 11—6 Hz < fstimulus -

e Temporal normalization: each voxel for each stimulus was normalized to zero mean
and unit variance.

3.4 Generalizability

This dataset was created from one continuous recording of a single mouse. This means
that the dataset has limited variation. The scope of the results are limited to only
this mouse at this particular recording time. This influences the generalizability of the
research.

Besides that, not the whole brain was imaged. Only one coronal slice was investigated.
Therefore one should be careful in extrapolating the results to slices in the near vicinity



of this slice. For example, in this report three-dimensional anatomical regions such
as the visual cortex (VC) will be described. One should keep in mind that only a
two-dimensional slice of the three-dimensional structure is imaged.



Decompositions

This chapter will concern the decomposition techniques applied on the fUS data. First,
we discuss what characteristics a suitable model should exhibit in Section 4.1. In
Sections 4.2 and 4.3 we start from a simple linear model and build up to the general
linear model (GLM). Sections 4.4 and 4.5 describe the two decomposition techniques
(ICA and sDL) that will be applied on the dataset. Section 4.6 describes how time
courses can be back-reconstructed after the spatial maps are obtained.

4.1 A brief note on model selection

Little is known about the statistical methods and signal processing for fUS. Most studies
on fUS data perform univariate voxel correlations on the task regressor. However, such
univariate methods leave some questions unanswered. From three decades of fMRI
research, we have learned that more advanced models can give answers to otherwise
inconclusive questions.

A major challenge is developing advanced models that not only perform well, but
also give some insight into how they work. This conflict is illustrated by modern deep
neural networks (DNNs) that deliver astonishing results but require estimating many
parameters, therby complicating the interpretability. The black-box nature of DNNs
has impeded the adoption in clinical use, because its results are hardly explainable and
therefore untrusted by clinicians.

Sparsity

To obtain explainable results, Occam’s razor should be used; choose the simplest model
that describes the data well [10]. Simple models are typically more interpretable and
require less training data to make them work. However, simple models can underfit the
data and obstruct the discovery of more complex patterns.

We can stimulate a model’s interpretability by actively selecting for sparsity. This can
be done with regularization. A regularization term imposes a cost on the optimization
function. Common regularization functions are the ¢;- and ¢;-norm on the weight
vector. Both penalties restrain the coefficients to be small, but for parsimonious models,
the /1-norm is recommended. The reason for this is that ¢;-regularization encourages
coefficients to shrink to zero. Only the most explanatory variables are used and the
variables with less explanatory power are not selected. The ¢y-norm also stimulates
sparse models but is not convex and therefore more difficult to solve.



Model types

The selected model and the posed questions are strongly connected. Hardly ever,
different models explain the observed data similarly [I1]. To obtain meaningful insights,
the chosen model should have dependable assumptions and output types related to the
questions asked. Therefore, it is important to have well-justified criteria for choosing
among different models.

There are two main modeling approaches that one can choose to use:

e Hypothesis-driven
e Data-driven

The hypothesis-driven approach directly assumes prior knowledge of the model. Using
prior knowledge, the model can be steered into the desired direction which can be
specifically useful for a particular research question. The output of the model is related
to the prior information fed into the model. An example of a hypothesis-driven method
is the general linear model (GLM) which is detailed in Section 4.3.

Contrarily, the data-driven approach does not use any prior information about the
model. No prior knowledge of the experimental task is necessary to detect hidden
patterns. Available information in the data is extracted using possibly constraint-based
assumptions. Because the model is not steered in any desired direction (except for the
constraints), the outcome is less narrow than in hypothesis-driven models. Examples of
data-driven methods are ICA and sDL which are detailed in Sections 4.4 and 4.5.

4.2 Linear model

Without choosing a hypothesis- or data-driven approach, we can start modeling the
voxels with a linear model. A single voxel’s time course can be modeled as

y=Xp (4.1)
hn B
y.2 — (w1a$27"'7mK) ﬂZQ
yr Bk

where @) are column vectors of length 7' called the regressors and 3 collects the weights
of their respective regressors. The idea behind this model is that a single voxel’s
time course y can be modeled as the sum of K time courses x; multiplied by their
corresponding weights in .

Multiple voxels can be modeled by extending Equation (4.1) with extra columns to
the y and 3 for each new voxel. The new model can be written as

Y = XB (4.2)

where Y = [y, y@ . yM] and B = [BM,3®), ..., B™)] such that each column
contains a different voxel’s time course indexed by the superscript. It will be useful to
index the rows of B with a subscript, so BT = [3, 8s, ..., 8k]. For totality

10



e Y is the T' x N observation matrix.
e X is the T' x K design matrix where K is the number of regressors.
e B is the K x N weighting matrix.

Equation (4.2) can be rewritten as

K
Y =S 8l (4.3)
k

highlighting that the observations Y are a summation of K rank-1 components consisting
of a column vector of length 7" multiplied by a row vector of length N. These vectors
have a physical meaning:

e The columns of X, @) represent K time courses (TCs).
e The rows of B, B represent K spatial maps (SMs).

So the observations are modeled as a sum of SM and TC pairs. This is a latent space
model; the observations Y are explained through K latent factors encoded in X and B.
Generally K' < N which results in a reduction of dimensionality and compression of the
data. Unfortunately, determining the hyper-parameter K is mostly an open question.

These latent factors or components offer a global, rather than local, analysis. In a
local analysis, every voxel is analyzed individually. That is computationally expensive
depending on the spatial resolution. Additionally, it is ignorant of any possible spatial
correlation that might exist between the voxels. So to simplify, it is useful to parcellate
the brain’s voxels into several global regions of interest. This stems from the idea of a
spatio-temporal organization of the brain: a group of voxels can show similar TCs or
at some time samples can show similar activations in a particular SM. For this reason,
the model decomposes the input into separate sets of spatial and temporal components.
Such component analysis is a way to extract neurologically better interpretable and
thus more relevant information.

Limitations

Without additional constraints, Equation (4.2) has inherent limitations. Let R be an
invertible matrix, then this model can be written as

Y =XB
=(XR)* (R 'B) (4.4)

- XB
thus rendering the decomposition non-unique. However, most decomposition methods
impose some form of constraint on X or B make the solutions X and B better defined.
For example ICA imposes independence constraints on B and sDL imposes sparsity
constraints on B. Another common constraint is to make the columns of X unit

lo-norm. Note that in this case, the signs are still ambiguous because we can multiply a
component pair by —1 without affecting the model. This is known as the sign ambiguity.

11



4.3 General linear model

In a general linear model (GLM) the design matrix X from Equation (4.2) is assumed
known; thus it is a hypothesis-driven analysis method. In the design matrix, the K
columns of X are each constructed to reflect a time signal regressor, the independent
variable, thought to influence the observations Y, the dependent variables. The list of
regressors could include, but are not limited to, the task pattern, head motion, or signal
drift. These experimental variables should be recorded as they are not obtained from
the data.

With Y and X assumed known, the K columns linearly independent (X is full
rank), and K < T (overdetermined system), the GLM model is uniquely solved in a
least-squares sense. Because GLM is a compact way of simultaneously writing several
multiple linear regression models, all individual models can be solved by themselves.
The loss function for voxel n is

1
H(B™) = Slly™ — X8 (4.5)

Then the average loss function over all voxels must be N distinct estimation problems

|
I(B) = 5% Z 1(B™). (4.6)
Minimizing the loss in Equation (4.6) gives
B =arg mBinl(B) (4.7)
~ argmin]]Y — X B (18)
= (XTX)'XTy . (4.9)

There is a drawback to the GLM modeling method. Dependence in the columns of X
would cause the linear system to be ill-conditioned. This usually leads to unreliable
estimates of the regression coefficients [12].

Lasso

To solve ill-conditioned GLM problem a regularization function €2 can be added to
Equation (4.6) on the 3 vectors:

B = argmln—Zl )+ aQ(B™). (4.10)

where « is a positive constant. For example, the ridge regression [13] was proposed to
solve the problem of collinearity in linear regression and uses the ¢;-norm as regularizer.
A drawback of the ridge regression is that it does not set any coefficients to zero and
therefore does not give an easily interpretable model.

12



Another regularization function is the ¢;-norm Q(8) = ||3||;. This regularization
function is known as the lasso [11]. Unlike the ridge regression, lasso does shrink
coefficient values to zero and is therefore more interpretable. In lasso, Equation (4.10)
becomes

A . 1
B:argménﬁHY—XBH?,—i—aHBHM. (4.11)

The regularization parameter « controls the trade-off between sparsity and minimization
error. Large values for a cause the SMs of B to be sparse. Small values for o put more
importance to minimizing the loss function.

4.4 Sparse dictionary learning

In sDL the design matrix and mixing matrix are both learned from the data with the
constraint that the columns of the mixing matrix B are sparse. The design matrix is
now called a dictionary with K columns x; € RT. Two common methods to enforce
sparsity in B are the ¢;- and {y-constraint on 3. This means that every voxel is a
combination of a few TCs. All voxels with a nonzero value related to a time course are
part of the same SM.

In a similar style as Equation (4.11), the ¢;-norm regularized sDL problem can be
solved as an optimization problem:

. o )
X,B = argr)r(l}gﬁHY — XB||7 + Bl (4.12)

Because both the design and mixing matrix are both learned from the data, sDL is
called a data-driven model. As in Section 4.3, the parameter « controls the trade-off
between sparsity and the minimization error.

One method for solving Equation (4.12) is the online dictionary learning algorithm
[15]. In this algorithm the problem is solved by a two-stage alternating optimization.
In the first stage, also called the sparse coding stage, the lasso solution is computed for
B assuming X is fixed. In the second stage, also called the dictionary updating stage,
X is solved assuming B is fixed.

4.5 Independent component analysis
The goal of ICA is to decompose the observed data Y into X and B, like Equation (4.2),

Y = XB (4.13)

where the rows B are optimized to be maximally statically independent. Because the
rows of B represent SMs, we call this spatial ICA (sICA) where the components are
assumed independent in space. Because the SMs are independent, this means that SMs
have little overlap in space. This is unlike sDL where overlap is allowed.
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The independence can be measured using some function F'(B) = F(B4,...,Bk) of
independence. There are no assumptions on X. Thus, if W is the invertible linear
transformation matrix that maximizes F'(B), then

WY =B
Y =W'B (4.14)

where * denotes the pseudo-inverse. Comparing Equations (4.13) and (4.14) we can
conclude that X must be the pseudo-inverse of W. Because both X and B are learned
from the data, this is a data-driven model.

Different ICA algorithms use different measures of independence in F'(B). We use the
fastICA algorithm for computing the solution. FastICA uses non-Gaussianity, measured
by an approximation of negentropy, as a measure of independence [16].

4.6 Back-reconstruction

If the SMs B are known, they can be used to derive the TCs in X. In that case, it can
be considered as a GLM, only now the BT collects the regressors

Y’ =B"Xx". (4.15)

and can be solved for X as in Section 4.3. This might seem as a trivial step because
Equations (4.12) and (4.13) already compute the B matrix. However, this could be
useful when we have already learned a set of SMs and want to use those to extract
TC from a new dataset. It is also useful when the last sparse coding step in sDL uses
a different algorithm then in the previous sparse coding steps. In that case the time
courses do not truly reflect the newly computed B and have to be computed again.
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Prediction models

In Chapter 4, we assumed no knowledge of the underlying spatial maps. Consequently,
we resorted to unsupervised techniques for obtaining those maps. Contrarily, now it is
known what stimulus was presented for each experiment. We can use that knowledge
with supervised learning techniques to obtain insights. The idea is to create a model
that can predict the stimulus that was shown. Once we have trained the model, it
is possible to analyze its decision function. The decision function is used to make a
prediction. Understanding the decision made by the model gives insight.

In this section, we will introduce metrics and methods to obtain predictive results.
Section 5.1 introduces a Pearson correlation method to compare the time courses with
the known stimulus pattern. These values are fed into prediction models. A theoretical
framework for developing these models is explained in Section 5.2. In Section 5.3 we
explain the performance evaluation and cross-validation strategy is detailed in Section 5.4.
Finally we discuss methods for determining feature importance in Section 5.5.

5.1 Pearson correlation

The X matrix contains time courses. We can find the correlation of the time courses
with the known stimulus pattern. The Pearson correlation coefficient r is a proxy for
how well the stimulus pattern is resembled by the time course.

The stimulus pattern a can be modelled as a box-car function a where

1, ift<T,
ay =
0, ift>T;

and T is the stimulus duration in samples. Additionally, time delaying a with D
samples can be more useful as the hemodynamic response is also delayed.
The Pearson correlation r for TC @ with stimulus pattern a is computed with

VL (@ — (e - a)?

where the overline designates the mean. The maximum value r = 1 indicates a perfect
positive correlation. Conversely r = —1 indicates a perfect negative correlation. The
absence of correlation is indicated by r = 0.

The Pearson correlation is the standard method for determining the correlation
between two time series. For this method to work we have to make strong assumptions
on the shape of the stimulus pattern a. Ideally, the shape of @ would be exactly the
hemodynamic response function (HRF). However, the shape of the HRF is not easy to
determine and might be dependent on the anatomical location.
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We assume the HRF has an active region with a response and an inactive region
without a response. The box-car function gives equal weight to all time samples in
the active region. Still, we have no method for determining delay D except by using
trial and error. Besides that, we have set the duration of the box-car arbitrarily to the
length of duration T,. As we will see later, group lasso regularization, introduced in
Section 5.2, will be useful in determining these two parameters analytically.

5.2 Supervised learning

By correlating a TC x with the box-car function a we obtain the value r (see Equa-
tion (5.1)). This can be done for all time courses in a stimulus 7 to obtain the correlation
vector r; € RE. This correlation vector can be used to make predictions. More details
on how 7; is obtained is given in Section 6.1.

The goal of the predictions is to predict the stimulus ¢ based on the computed
correlations r;. To check the validity of the predictions, we need to know the ground
truth to compare the predictions with. We construct a ground truth label vector y € R,
The target to predict is categorical in the position and shape experiments: left or
right and square or circle. There are two categories and therefore we use binary label
yi € {—1,4+1}. For these categories, predicting the correct label is a classification
problem.

In the size experiment the stimulus was in five different sizes so we use y; €
{1,2,3,4,5}. Predicting to correct size is a regression problem. As we will explain later,
this a modeling inadequacy. The target to predict is in fact ordinal because there is an
intrinsic order in the sizes (small to large). More appropriate is a qualitative description
such as y; € {smallest, small, medium, large, largest} where we make no assumption on
the quantitative size, but where the order of the labels is still present. We will discuss
this issue later when we explain the prediction model for the regression problem.

Regularized risk minimization

For making predictions, we need a model that takes the correlation vector r as input and,
after a computation with the model’s weight vector w, gives an output or prediction
y. Ideally, the output y is the same as the ground truth y. As that is not always the
case, we need a loss function [ to measure how different the prediction is from the
ground truth. The average of all loss function in the training dataset is known as the
the empirical risk:

J(w) = Remp(w)
_ %; ys, 75, w) (5.2)

where S is the number of samples in the dataset. The goal is to minimize the empirical
risk by tweaking w appropriately. This is called training the model. However, if w
is not constrained, the model can suffer from overfitting. In that case, the model is
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able to predict the training dataset well, but fails on unseen data. This issue is further
discussed in Section 5.4.

To prevent overfitting, we want to regularize the weights of the model. A penalty on
the weight vector w can be added to Equation (5.2). This is known as the regularized
risk:

S
J(w) = % Z I(y;, 7, w) + A\Q(w) (5.3)

where ) is a constant that controls the importance of the regularization, and € is the
regularization function [17]. The goal is to choose w such that the cost function in
Equation (5.3) is minimized. The chosen w that minimizes the cost function provides
the optimal model weights and can be analyzed in more detail.

Adding a regularization term has the added benefit that we can steer the model into
a desirable direction. Commonly, a sparsity constraint is enforced on w as it leads to
simpler and more interpretable models. Therefore we will primarily use ¢;-regularized
models.

When the loss function [ is constrained to

Uyi,ri, w) = l(}’i,”'iT’w)

then this is a linear predictor. This is advantageous because every element of the weight
vector w is directly linked to an element of the feature vector r;. In that case, if r; is
interpretable then w must be too. However, it does assume that the target labels can
be modeled as a linear combination of features. Kernel predictors could be more flexible
as they can model non-linear combinations of features [18]. However, we will stick to
linear predictors because kernel predictors are generally more difficult to interpret.
Regression

For the regression problems we use lasso [11] so
Q(w) = [Jwl), (5.4)

because the ¢1-norm forces nonzero coefficients in w. This makes the regression model
interpretable. The loss function [ is the squared loss so

1
Z(Yi,”‘i,w) = 5(}’1 - TiTw)2- (5-5)

Substituting Equations (5.4) and (5.5) into Equation (5.3), gives the cost function
1
J(w) = 55y = Rwlls + Allw]: (5.6)

Training this regression model is equivalent to minimizing the cost function. Once the
model is trained, its prediction is

Ji=rlw. (5.7)
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As mentioned before, using continuous labels for the size experiment is a modeling
mistake. The linear model regards the size labels as a continuous variable while the labels
are ordinal. Ordinal regression techniques are appropriate in this case [19]. However,
while the model is not correct, it can be good enough for our purposes. For example,
continuous regression models have been applied on fMRI size prediction tasks with
high accuracy [20]. Also, because we are interested in the relative performance between
different decompositions, and all models suffer from the same inadequacy, they can still
be compared. However, we have to be careful in interpreting the model’s weights, as
it might attempt to model relations which are only in the data due to the artificial
labeling.

Classification

For binary classification problems (position and shape) we use the ¢;-constrained logistic
regression [21]. That is, [ is the log-loss of a logistic model

1
Uy, i, w) = —log m

= log (1 + exp (—yrl w)) . (5.8)

Substituting the ¢;-norm from Equation (5.4) and Equation (5.8) into Equation (5.3),
the cost function becomes

S
Jaw) = 2> log (1 -+ exp (~yirfw)) + M|l 5.9

=1

Training this regression model is equivalent to minimizing the cost function. Once the
model is trained, its prediction is

¥: = sign(rlw) . (5.10)

Group regularization

We can also leave out the Pearson correlation step and directly unravel the time courses
of stimulus 7 into r; € R3%. More details on this can be found in Section 6.6. We
should not use the ¢1-norm for regularization anymore because we have 37 x 80 = 2960
features. A trained model with ¢;-regularization would probably be hardly interpretable
because it selects features sporadically. Therefore we need a different regularization
function.

As before, we can use the regularization to steer the model into a desirable direction.
It is desirable to have predefined groups of variables in r be included or excluded
together. In our case, a group is defined as all 37 time features related to one SM.

We can use group lasso for this purpose [22]. In group lasso, the sparsity in the
group is forced by the regularization function

Qw) =) [w], (5.11)
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where G is the number of groups and w'¥ is the coefficient vector of group ¢. This
regularization function can be viewed as an f5-norm over members of each group and
an f1-norm over all groups. If the size of each group is 1, this gives us the regular lasso
solution.

The group lasso regression uses the loss from Equation (5.5) so the cost function is

G G
1
J(w) = EH?J—ZR(g)w(g)Hng)\ZHw(g)Hz (5.12)
g=1 g=1

where R is the submatrix of R with columns corresponding to the predictors in group
g.
The group penalty can also be used in combination with the logistic regression [23]
which gives
1S €]
_ = —v. (T (9)
J(w) = S ZZ:;log(l + exp(—yi(r; w))) + )\;Hw Il2 - (5.13)

5.3 Performance evaluation

To evaluate the performance of the trained models, we need to introduce performance
metrics. The accuracy of the classifier, denoted k, is defined as

S
K(y,y) = %Zé(yi,yz-) (5.14)

where § is Kronecker’s delta and y; is calculated with Equation (5.10). In other words,
it is the number of correct predictions over the total number of predictions. This is a
fair score because the dataset is class-balanced; there is an even number of positive and
negative labels. A score of kK = 1 means that all samples are classified correctly (y =y)
and a score of Kk = 0.5 would be expected when the samples are randomly assigned a
label.

For regression analysis, the performance of the model is evaluated using the coefficient
of determination, denoted R?, and is calculated with

_ Zf:I(Yi — 3i)?
S~ 5)?
where y; is calculated with Equation (5.7). It represents the proportion of the variance
in y that can be explained by the independent variables. Alternative metrics would be
the mean squared error or the mean absolute error. However, since the range 1 to 5
only indicates the order and not a measurable length, they are not selected. The R?
metric is selected because we are interested in what extent of the variance of y can be

explained.
When the prediction is always correct, y =y, then R? = 1. A score of R? = 0 could
be obtained by always predicting the mean value y =y. For illustration, if the model

correctly predicts the smallest and largest size and fails on the remaining three sizes
(that is, it predicts the mean size), then R* = (0.8.

R(y,y) = (5.15)
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5.4 Cross-validation

In training any model derived from Equation (5.3), we have to choose the regular-
ization constant A\. We select A such that the model’s performance, measured with
Equations (5.14) and (5.15), are maximized on data it has not seen before. This is called
the model’s generalization performance. To obtain an estimate of the generalization
performance we have to test the model’s performance on the data it had been trained
with. Ideally we would split that data in three sets: a training set, a validation set,
and a test set. The model is trained with the training set, the A is validated with the
validation set, and the generalization performance is calculated on the test set. However,
we do not have the luxury of splitting the dataset into three parts because there are a
small number of samples S = 200. We resort to cross-validation techniques to obtain a
good estimate of the generalization performance.

Because the distribution of the target classes is balanced, we can resort to the
basic k-fold cross-validation strategies. The classes are balanced because every stimulus
combination is presented an equal amount. Therefore it can be assumed that the relative
class frequencies are approximately preserved in each train and test set.

Furthermore, the stimuli were presented in two blocks with a test period in between.
The first block contained only square stimuli while the second had only circles. Therefore,
we will need to shuffle the stimuli beforehand to ensure that each training and validation
set contains an approximately equal number of squares and circles.

In k-fold cross-validation, the data is split into k “folds”. We choose k = 10 as
that is suggested as good choice in general [21]. In each iteration of the algorithm, the
model is trained on the k£ — 1 folds as input and tested on the remaining fold. The next
iteration trains the model on a different subset of folds and tests on another fold. This
way we evaluate the performance of model k times on unseen data. The performance
metrics (Section 5.3) can be averaged over all folds giving the mean and the standard
deviation of the R? or s value. When cross-validation algorithm is run for several values
of A\, we choose the A\ that gives the largest mean performance over all folds.

The problem with this method is that the estimation of the generalization performance
has an optimistic bias because the performance is directly optimized in choosing the
A parameter [25]. An alternative is nested cross-validation where the A parameter is
chosen independently of the generalization performance. Therefore the predictions will
be unbiased. So if we want to compare the performance of the decompositions we have
to use nested cross-validation. It is nested because the A parameter is cross-validated in
an inner loop. The inner loop is run inside the outer loop. The outer loop measures the
unbiased performance. A more detailed overview of the intricacies of cross-validation is
given by Raschka [21].

Note that nested cross-validation does not give a single best value \. Because the
A is chosen independently of the performance, it can have a different value in each
iteration. So if we want to find the best A, we still have to use the normal or “flat” cross
validation to determine that value [25]. When that A is found, we can use it to train
the final model on the whole dataset.
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5.5 Feature importance

After choosing the optimal A with flat cross-validation strategy, the model can be trained
on the whole dataset once more, but this time with the selected A as hyperparameter. The
resulting model can be analysed. This is part of a research direction called explainable
artificial intelligence where it is investigated why models behave as they do. The most
popular technique for this purpose is feature importance [20].

Feature importance can be defined as a measure of the contribution of a feature to a
particular predictor [26]. From this definition we can see that the feature importance
is inherently linked to a predictive model. A feature important for one model can be
unimportant for another model. Therefore the importance score always has be put in
context of the model it was obtained with.

A common method to measure the importance is the permutation feature importance
score. In this method the single feature’s values are randomly shuffled and the decrease
in model performance is measured. However such scores could be misleading in the
presence of correlated features [27]. That is because in case of shuffling a correlated
feature, the algorithm still has access to the other feature to make prediction. This will
result in low scores for both features. In general, most measures of feature importance
are biased in the presence of correlated features [25].

As shown in Section 5.2, we opted to use ¢;-regularized models for feature selection
such that redundant features are eliminated. This can be seen as a first step in
determining the feature importance, because actively selecting for sparsity pushes weights
to zero, and therefore of lowest importance. However, it can not be concluded that the
eliminated features are always unimportant because a different subset of features could
give similar predictive performances [29]. That is because the algorithm is selective in the
presence of highly correlated features. Therefore, we have to remember in interpreting
the results that ¢;-regularized models do not necessarily give a comprehensive set of
important features and predictive features could be ignored.

When we have obtained a subset of features and their weights, we can order the
weights by absolute value. This is usually advantageous because larger weights are
generally more important in the model’s prediction. However, it is a crude method
because the weight is not necessarily a proper measure of importance [29]. For example,
multiplying a feature with a scalar and dividing the weight by the same scalar, the
resulting model does not change but the conjectured importance does. Nevertheless,
the features are all in range of [—1, 1] due to the Pearson correlation, and can therefore
for our purposes be compared.

So although there are large limitations to a feature importance measure, it is desirable
to investigate it. We will consider the feature importance as given by the model weights
w. Still; we have to be careful interpreting the weights and take the above mentioned
limitations into account.
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Experiments

In this chapter, we describe the experiments for answering the research questions. In
Section 6.1 we explain how the dataset is decomposed with four different methods.
Sections 6.2 to 6.4 explain what prediction models are used for each task and how the
models are set up. In Section 6.5, we explain the sensitivity study of the prediction
models to their regularization parameter. Finally, we explain the experiment with the
group lasso regularization in Section 6.6.

6.1 Extraction of SM with ICA and sDL

Four sets of SMs are extracted; one extracted with ICA and the others extracted with
sDL variations. In all decompositions we will use the group-level observations Y as input
and set the number of components to K = 80. Additionally, the TCs are constrained to
unit fo-norm, so: ||@x||l2 = 1 to alleviate the scaling ambiguity. Three sDL variations are
used. They differ in which algorithm is run in the sparse coding step. The variations
are:

(1) ¢;-constrained with @ = 1
(2) ¢1-constrained with a = 10
(

3) {1-constrained with v = 1 and in the last sparse coding step ¢y constrained where
18I0 < 1.

From now on these methods will be referred to as sDL1, sDL2, and sDL3 method
respectively.

In sDL, the LARS algorithm was used in the sparse coding step. In sDL3 the
last sparse coding step was performed with the OMP algorithm. The dictionary was
initialized by randomly shuffling the input data.

Note that the SMs of sDL1 and sDL3 will be alike because the underlying algorithm
is the same, except the last step. However, because the last sparse coding step differs,
the sDL3 method will be sparser than the sDL1.

The fastICA algorithm is used for the ICA decomposition. The parallel method is
used and the algorithm’s mixing matrix at initialization is normally distributed. The
decompositions are performed with Python via the scikit-learn open-source package [30].

Following the extraction of the spatial maps, the time courses are back-reconstructed
as described in Section 4.6. This gives in total four separate sets of SMs B and their
TCs X. We can “ungroup” X into S stimulus-level matrices X;. For every column in
stimulus-level X;, Equation (5.1) can be computed giving r; = [r1,...,rk]. We choose
a delay D = 7. Applying this for all S stimuli and concatenating the results row-wise,
gives the feature matrix R € R¥*X. To sum up, we have obtained four different features
matrices, one for every decomposition method.
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6.2 Experiment about position

In this experiment, we investigate how the response differs depending on the position of
the stimulus in the field of view (RQ 2.1). The goal is to predict if the stimulus was
presented left or right by only using the feature matrix R. We know the ground truth of

the position of the stimulus. For stimulus ¢, we assign the label y; = —1 if the stimulus
was left, and y; = +1 if the stimulus was right. So ground truth label vector is
y € {-1,1}".

We trained an ¢;-regularized logistic regression on R and y by minimizing Equation (5.9)
using the SAGA solver. The model included a bias term that was not regularized.

For all four feature matrices, we compute the generalization performance using the
nested cross validation with 10 folds in the outer loop and 3 folds in the inner loop.
Furthermore, we choose A giving the largest mean accuracy using the flat cross-validation
with 10 folds. The A parameter is varied in the range 1072 to 10° in 20 steps evenly
spaced on the log,, scale. When the best A is found, we use it to train the final model
on the whole dataset. We used Equation (5.14) as the scoring function. More details on
the cross-validation are given in Section 5.4.

The final model can be analysed. By analyzing the weights of the model, we can infer
which components are mostly related to the position of the stimuli. A more detailed
discussion on the importance of features is given in Section 5.5.

6.3 Experiment about size

In this experiment, we investigate how the response differs depending on the size of the
stimulus (RQ 2.2). The goal is to predict the size of the stimulus only using the feature
matrix R. We know the ground truth of the size of the stimulus. Because the stimulus
was in five different sizes, we use

y € {1,2,3,4,5}°

for the ground truth label. We trained an /¢;-regularized linear model on R and y by
minimizing Equation (5.6) with the coordinate descent algorithm. The model included
a bias term that was not regularized.

The same flat and nested cross-validation procedure as described in Section 6.2 is
used. The only difference is that Equation (5.15) is used as the scoring function, and
the \ parameter is varied in the range 1073 to 10° in 20 steps evenly spaced on the log;,
scale.

6.4 Experiment about shape
In this experiment, we investigate how the response differs depending on the shape of

the stimulus (RQ 2.3). The goal is to predict if the presented stimulus was a square or
circle by only using the feature matrix R. We know the ground truth of the shape of
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the stimulus. For stimulus ¢, we assign the label y; = —1 if the stimulus was a square
and y; = +1 if the stimulus was a circle. So ground truth label vector is

y € {-1,1}".

An /;-regularized logistic regression model is trained by minimizing Equation (5.9) with
the SAGA solver. The model included a bias term that was not regularized.

The same flat and nested cross-validation procedure as described in Section 6.2 is
used. The only difference is that the \ parameter is varied in the range 10~ to 10°%°
in 20 steps evenly spaced on the log,, scale.

6.5 Sensitivity analyses

We performed two kinds of sensitivity analyses. The first sensitivity study aims to
assess the sensitivity of the final cross-validated model with regard to the regularization
parameter A. We investigate how the model’s performance and complexity changes
as a function of A. The model complexity is measured as the number of nonzero
coefficients in w. The same range of A\ as in Sections 6.2 to 6.4 is chosen. Therefore,
we can use these results to validate the ranges of X\ in the cross-validation stages in
the previous experiments. Besides that, the results of this experiment are used to
investigate how the models suffer from overfitting and underfitting by comparing the
model’s complexity with the model’s performance. This sensitivity analysis is performed
for all four decomposition methods.

The second sensitivity study investigates the sensitivity of the final cross-validated
model with regard to the number of components K. We investigate how the model’s
prediction accuracy and the model’s weights change as a function of K. Due to the
computational complexity of the sDL decompositions, we could only perform this
experiment for the ICA method. For this analysis we use K € {2,5, 10,40, 80, 120} .
We chose this range for K to obtain a clear picture while remaining computationally
feasible.

6.6 Experiment with group lasso

In this experiment, the effectiveness of group lasso for position, size, and shape ex-
periments is examined. Unlike before, we skip the Pearson correlation and directly
unravel the time courses into feature matrix R € R%*37K guch that one row in R is
[x?, ..., xk]. Therefore, R = [RW,..., R(“)], highlighting the group structure of the
feature matrix. The submatrix R*) € R5*37 is one group, namely the group belonging
to the time courses of component k. The number of groups is equal to the number of
components so G = K.

In the position and shape tasks, we minimize Equation (5.13). In the size task,
we minimize Equation (5.12). Both cost function were minimized with the FISTA
algorithm. The models included a bias term that was not regularized.

We only consider ICA and sDL3 as decomposition methods due to the extensive
computational complexity. ICA is used for the position and size experiment, and sDL3
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Figure 6.1: Pipeline - After preprocessing the input power Doppler images (PDIs), the images
are decomposed into TCs and SMs. The TCs are further analyzed with linear and logistic
models depending on the input task. The regularization function is either on the group or on
the set of correlations as with ¢1-regularization. The output of the models is linked with the
SMs from before and analyzed further.

for the shape experiment. Cross-validating A was computationally expensive, so we
hand-picked models with different A values that provided good insight.

A pipeline of all steps is shown in Figure 6.1. In all experiments the preprocessed data is
first decomposed with 4 different methods. The TC are either directly used for training
group regularized models, or first correlated for the ¢;-regularized models. The weights
of both /;- and group regularized models are analyzed together with the previously
obtained SMs.
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Results

In this section, the research questions will be answered. We start by showing the results
of the decompositions in Section 7.1. Subsequently, we show the model’s sensitivity on
the regularization parameter and sensitivity on the number of components in Sections 7.2
and 7.3 respectively. In Section 7.4, we compare the predictive performance of the
decompositions. Sections 7.5 to 7.7 answer neuroscientific RQs 2.1 to 2.3 respectively.
Section 7.8 reveals additional insights obtained with the group lasso method.

7.1 Decomposition with ICA and sDL

The SMs obtained with ICA and the three variations of sDL are displayed in Appendix A.
As seen in the color bar, red colors represent negative values and blue colors positive
values. These sign of the values only hold compared to other voxels in the same SM
because of the sign ambiguity. Only by multiplying the SM with its TC we can find the
meaning of the component to be positive or negative about its baseline.

Even though the SMs are quantitatively different, we can qualitatively organize the
important anatomical regions. In Table 7.1 it is laid out what indices from Figures A.1
to A.4 correspond to similar-looking spatial maps. Most decompositions extract SMs
positioned in one of two hemispheres. The exception is sDL2, where the superior
colliculus (SC) from both hemispheres get merged into one.

Two sets of SMs are displayed in Figure 7.1. Only the methods ICA and sDL1 are
shown, but comparable SMs are found in the remaining decompositions. Similarities
between the two hemispheres and the two decompositions are clear. We found the
anatomical names by comparing the images with the Allen Mouse Brain Atlas [31].
Figure 7.1(a) corresponds to the visual cortex (VC), Figure 7.1(b) corresponds to the
hippocampus (HC), and Figure 7.1(c) corresponds to the SC!.

LConfirmed in personal communication by neuroscientists at the CUBE group

Table 7.1: SMs extracted by the decomposition methods are similar. Values enclosed in
parentheses denote a map that also encompasses another region.

Region Location ICA sDL1 sDL2 sDL3
. Upper right 69 25 8 25
Visual cortex (VC) Upper left £S . .
. Lower right 54 1 (8) 1
Hippocampus (HC) Lower left 34 8 (1) 8
. . Middle right 21 15 61 15
Superior colliculus (SC) Middle Joft 9 22 (61) 99
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(a) Visual cortex (VC)

(c) Superior colliculus (SC)

(i) ICA (ii) sDL1

Figure 7.1: Extraction of mirrored components from both hemispheres. For comparison
purposes, we merged the lateral components into one and overlayed that image onto the mean
image from Figure 3.1. The left column (i) contains SMs extracted with the ICA method and
the right column (ii) from the sDL1 method.
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Table 7.2: Average number of nonzero coefficients in every column of B for each decomposition
method.

Method % Zflvzlllﬁ(")llo

ICA 80
sDL1 29
sDL2 17
sDL3 1

The average number of nonzero coefficients in every column of B is given in Table 7.2.
The value represents the average number of components that influence a single voxel.
Large values represent contributions from many components per voxel while small values
represent few contributions. As expected, the ICA method does not enforce any sparsity.
Thus every voxel is explained by K components. Contrarily, sSDL3 enforces the strongest
sparsity where every voxel is explained by only one component. The remaining methods
offer mediocre parsimony.

Even though ICA has the largest number of nonzero components, it is unlikely that
all components have equal influence on a single voxel. Because of the independence
constraint it is likely that only a small number of components have considerable influence
on an individual voxel and the remaining components are close to zero.

7.2 Sensitivity on regularization parameter

A sensitivity analysis for the classification models with regard to parameter \ is per-
formed. The results of that analysis are shown in Figure 7.2. The box plots show the
range of the cross-validated scores. The {yp-norm of w, the number of nonzero elements,
serves as a proxy for model complexity and is displayed with a line plot.

The standard convention for box-and-whisker plots is used. “The box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers
extend from the box to show the range of the data. Flier points are those past the end
of the whiskers” [32]. The range of the data is defined as 1.5 times the interquartile
range above the upper quartile and 1.5 times the interquartile range below the lower
quartile.

In Figure 7.2(a) the sensitivity of the classification accuracy in the position experiment
is shown. It explored the sensitivity of the x score and the model complexity to hyper-
parameter A\. Each of the four graphs contains a box plot. In each graph, the box plot
can be broken up in three regions (from right to left): 1. a baseline region (around
0.5), 2. a transition region and 3. a plateau region (around 0.85). It is clear that
for large values of A, w = 0 and the model’s prediction is a random guess. As we
decrease A, the model enters a transition region where the model’s complexity rises and
simultaneously improves the prediction accuracy. For smaller A, the prediction plateaus,
while model complexity keeps increasing. These patterns are broadly consistent for all
four decomposition methods. After the performance score has plateaued the model
complexity keeps increasing. This could be problematic for our purposes. We find that
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Figure 7.2: Cross-validated accuracy k (box plots, left y-axis) vs regularization parameter A
(x-axis). Besides that, {p-norm of w (line plot, right y-axis) is given for the same values of A.
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the plateau is reached with only a few nonzero coefficients. This indicates that only a
select group of SMs contain valuable information for the position classification task.

The sensitivity of the classification accuracy in the shape experiment is illustrated in
Figure 7.2(b). Similarly to Figure 7.2(a), we can split the box plots into three regions.
However, the differences between the regions are more subtle than in the position
experiment. The transition region in the ICA decomposition is linear, meaning that
model complexity and accuracy increase simultaneously over a range of lambdas. This
steady increase is unlike the other three decompositions, where the transition is short
and over a much shorter range of lambdas. It is sharp because a slight increase in
model complexity from ||w|o = 0 to ||w||p = 1 gives a (near) optimal change in the
shape classification task. This result implies that ICA finds various components slightly
related to the shape task while the sparsity inducing methods find only one that is
strongly related.

Finally, we performed a similar sensitivity analysis for the size experiment detailed in
Figure 7.3. It explored the sensitivity of the R? score and the model complexity to hyper-
parameter A. The results indicate that the R? score is sensitive to the regularization
parameter. For large lambdas the model predicts the average size, because the bias term
is equal to the mean size ¥ = 3 and therefore the R? = 0. As we decrease A, the model
complexity and R? score increase linearly until reaching an optimal value. After that,
model complexity keeps increasing while the R? score decreases, suggesting over-fitting.
The results indicate that a large group of SMs give a similar amount of information for
the size regression task. Only sDL3 shows aberrant behavior. Unlike the other models,
at its optimal R? value there is a large variation in cross-validated scores, as seen in the
lengths of the whiskers at the largest median value. This could be a sign of over-fitting.
Therefore the cross-validation is possibly ineffective.

In both the position and shape sensitivity analysis we find for sufficiently small A
where the prediction score is insensitive to A while the model complexity is sensitive to
A. This means that the model complexity keeps increasing while the prediction score
remains approximately constant (reached the plateau region). This could be problematic.
If the prediction score is insensitive to A, then the cross validation algorithm does not
have a clear “winner” and can be indifferent in the A\ that it selects. Any trained model
with a sufficiently small A could be selected as the optimal model. This is not a problem
for the predictive performance (as the predictions are stable), but it is a problem for
the model’s interpretability. If the cross-validation algorithm is indifferent, then it
could select a model with high complexity by chance. This slight increase in model
performance accompanied by large increase in model complexity is undesirable.

7.3 Sensitivity on number of components

In this section, we investigate the sensitivity of the prediction models on the parameter
K, the number of components. The cross-validated prediction scores of the position,
size, and shape task are plotted for 6 values of K in Figure 7.4. We observe for a
small number of components (K = 2 or K = 5) that the predictions are unsuccessful
in all tasks. For K = 10, the position experiment significantly improves. As we see
in Figure 7.5(a), this is caused by the extraction of the left and right VC. The other
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Figure 7.3: Size experiment - Cross-validated coefficient of determination R? (box plots, left
y-axis) vs regularization parameter A\ (x-axis). Besides that, {p-norm of w (line plot, right
y-axis) is given for the same values of A. Upper left: ICA - Upper right: sDL1 - Lower left:
sDL2 - Lower right: sDL3

two tasks also improved slightly, as seen in Figures 7.4(b) and 7.4(c). For the three
largest values of K, the prediction results are mostly constant. The exception is the
shape experiment at K = 80. Therefore, we conclude that the prediction accuracies are
mostly insensitive to the K parameter when K is sufficiently large.

We also analyze the components of best classifier for the four largest K'’s in the
position experiment. We want to investigate to what extent similar spatial maps are
found. We only consider the four largest K’s because they all had good classification
accuracy. We find that Figures 7.5(b) to 7.5(d) give the HC largest weights. For K = 10,
seen in Figure 7.5(a), the HC was not separated into both hemispheres. The VC was
separated into two components and therefore given the largest weights.

We conclude that for a sufficiently large K, the most important features are stable.
However, this is only tested for a small set of K’s in the position task and only when
using the ICA method. Therefore this finding should not be extrapolated to the other
experiments and should function as an illustration.

7.4 Comparison of performance

We start this section by giving the generalization performance of the four methods
obtained with nested cross-validation. These scores are unbiased and therefore their
performances can be fairly compared. However, the performance scores are derived from
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Figure 7.4: Sensitivity of prediction scores on parameter K, the number of components. We
plot the best cross-validated prediction score (k or R?) for 6 values of K. Only the ICA
method is examined for computational purposes.

models with different A parameters and different model weights. Therefore we can only
use these models to investigate about the generalization performance.

The unbiased estimations of generalization performance are given in Table 7.3. The
presented scores are calculated taking the average and standard deviation of the unbiased
estimations. We find that all decompositions obtain similar generalization performances
in the position experiment. There are large variations in the R? score between ICA and
sDL3 in the size experiment. The same is true for the shape experiment. Based on
these observations we can say that the most predictive information is available in the
ICA method and the least predictive information in sDL3.

We will train the models a second time with the flat cross-validation algorithm. The
models trained with the standard cross-validation will be analysed in the remainder
of the chapter. We should be careful, in comparing the performance scores because
they are biased. However, by comparing Table 7.3 with Tables 7.4 to 7.6 we find the
performances are slightly better than unbiased estimation, but mostly comparable. The
exception is the size experiment where large differences are observed. Therefore the
performances in the size experiment should be regarded with care.
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Table 7.3: Unbiased estimation of generalization performance in the position, size and shape
task.

Method Position Size Shape
mean x std x mean R?> std R?> mean k std &
ICA 0.85  0.09 0.43 0.15 0.70  0.09
sDL1 0.83  0.09 0.36 0.14 0.64 0.12
sDL2 0.81 0.11 0.28 0.16 0.65 0.09
sDL3 0.81 0.10 0.24 0.16 0.59  0.09

The results of the position experiment are given in Table 7.4. All decompositions
can achieve mostly similar classification performances. The minor variations in cross-
validated means and standard deviations give a slight advantage to the sDL1 method.

ID: 9 w: 3.62 ID: 6 w:2.10 ID: 3 w: 185 ID: 8 w: 0.43

(a) K = 10, VC: 6,9 - HC: 3

ID: 3 w:3.43 |D:37 w:-3.37 ID:20 w:0.01

we
¥

(b) K = 40 VC: 20 - HC: 3, 37

ID: 54 w:5.81 ID:34 w:-4.79 |D:21 w:1.77 ID:13 w:1.40

ID: 69 w:-0.61 |ID:60 w:0.45 |D:58 w:0.30 ID: 74 w:-0.04

R

(¢c) K=280 VC: 58, 69 - HC: 34, 54 - SC: 21

Figure continued on next page
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Figure 7.5: Position experiment - Illustration of the stability of the weights for 3 values of K.

Additionally, we prefer solutions with few nonzero components for interpretability. This
preference for sparse solutions means that ICA and sDL2 are helpful too. sDL3 is just
as sparse as ICA but has poorer accuracy so therefore slightly worse overall.

The bias term requires an explanation. All methods find a positive bias which
means that the model classifies the stimulus to be “right” by default. We speculate
that is because left stimuli are more noticeable in all decompositions. Right stimuli are
relatively less detectable, and therefore the model obtains a positive bias.

The results of the size experiment are given in Table 7.5. Again, the mean and
standard deviation of R? are mostly comparable, although the ICA and sDL2 methods
perform slightly better. ICA excels in the mean score while the sDL2 method has
slightly smaller standard deviation and model complexity. For a visual understanding
of what an R? = 0.46 score resembles, we compare the true sizes and predicted sizes
visually in Appendix B.

The results of the shape experiment are given in Table 7.6. ICA outperforms the
other methods. It achieves considerably better scores, albeit with the largest model
complexity. This complexity renders the model tough to interpret. The sDL2 and sDL3
method find an optimal classifier with one nonzero coefficient in the model. These
models also change the bias slightly negative such that it predicts a square by default.
For the model to make sense, we can deduce that the nonzero coefficient turns the
model positive in particular cases and is therefore related to circle stimuli.

To conclude, only the shape experiment had notable differences in performance. In
the position and size experiment, the scores and biases were alike.
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Table 7.4: Position experiment - Comparison of the different decomposition methods in terms
of biased classification performance, model complexity and bias.

Method mean x std k ||w|lp Bias

ICA 0.86 0.07 8 0.50
sDL1 0.87  0.05 12 041
sDL2 0.82  0.06 6 0.58
sDL3 0.82 0.05 8 0.27

Table 7.5: Size experiment - Comparison of the different decomposition methods in terms of
biased regression performance, model complexity and bias.

Method mean R? std R? |wl|o Bias

ICA 0.46 0.10 19 1.95
sDL1 0.41 0.10 23 2.01
sDL2 0.42 0.08 17 2.21
sDL3 0.38 0.13 25 214

Table 7.6: Shape experiment - Comparison of the different decomposition methods in terms of
biased classification performance, model complexity and bias.

Method mean x std k ||w|p Bias

ICA 0.73  0.08 27 0.32
sDL1 0.65 0.06 17 0.21
sDL2 0.63  0.09 1 -0.04
sDL3 0.64 0.11 1 -0.04

7.5 Results of position experiment

We analyze the optimal classifiers from Table 7.4 in more detail. In Figure 7.6 all
extracted SMs are displayed. The weights of the SMs are given on the top right side of
each image. The SMs are ordered by the absolute value of their weight.

In Figure 7.6 we observe large weights for the left and right HC. The left HC has
positive weight and therefore pushes the classifier into predicting a ‘right’ stimulus. Vice
versa for the right HC. The right SC is found in Figures 7.6(a) and 7.6(b) but not in
Figures 7.6(c) and 7.6(d). That is odd because sDL3 had extracted that region. The VC
is found with varying importance. In Figures 7.6(a) and 7.6(d) it is given very minor
weights while in Figure 7.6(b) it is more significant. In general, the HC contains the
most explanatory information for the position classification task. The importance of
the VC varies for different decompositions, it appears valuable but not as much as the
HC. Only the right SC is meagerly important.

The left and right VC, HC, and SC naturally allow themselves to be compared.
Figure 7.7 plots the correlation values of the left and right HC, VC, and SC against
each other. We observe a trend in the data approximately along the diagonal. This is
particularly visible in the HC and SC and to a lesser extent in the VC. The hyperplane
separating the two classes is also approximately along the diagonal. Therefore, the
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discriminatory information is in the difference between the two correlations, i.e., which
correlation is larger. In a stimulus from the right, the left hemisphere has a stronger
correlation than the right hemisphere and vice versa.

7.6 Results of size experiment

We want to extract neuroscientific understanding using the optimal model, similar to the
previous section. However, as given in Table 7.5, all optimal models have many nonzero
coefficients. The SMs from the ICA method are shown in Figure 7.8. We only show
this decomposition as this was the best performing one and the other decomposition

ID:54 w: 581 |D:34 w:-4.79 |D:21 w: 1.77 1D:13 w: 1.40

ID:69 w:-0.61 ID:60 w:0.45 |ID:58 w:0.30 ID:74 w:-0.04

“

(a) ICA VC: 58, 69 - HC: 34, 54 - SC: 21
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. % i | WP

¥ % 1
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o

ID:6 w: 0.51 ID:3 w: -0.34 |D:51 w: 0.16 ID:45 w:-0.12

(b) sDL1 VC: 25,7 - HC: 8, 1 - SC: 15

Figure continued on next page
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Figure 7.6: Position experiment - Spatial maps found by the best performing models. The
weight for each SM is given in the top right corner. SMs are ordered by absolute value of their
weight.

methods did not provide new information. The other SMs are shown in Appendix B.

We find that the left and right VC and HC are extracted. The model does not
consider SC to be important. Also fifteen other SMs are extracted. These fifteen SMs are
difficult to understand anatomical. Therefore, it is not easy to interpret the extracted
models from the size experiment.

We can analyze the correlation from the left and right HC in detail. In Figure 7.9
we plot the variations of the correlations for each size. As expected, a larger input
size causes a stronger response. The right HC gives stronger and less variation in the
responses than the left HC, which explains why the model gave it a larger weight.

Another observation is that our model finds in the HC only minor differences in the
correlation values between sizes 4 and 5. Also, between sizes 1 and 2, a slight change
in correlation value was observed. These resemblances might explain why the model
scored poorly in the coefficient of determination score.
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Figure 7.7: Position experiment - Scatter plot of the correlation values, comparing the left
and right hemisphere of (a) the HC, (b) the VC, and (c) the SC. The y-axis displays the
correlations on the left hemisphere and the x-axis the correlations on the right hemisphere.

7.7 Results of shape experiment

In the shape experiment we found significant differences among the optimal models.
As seen in Table 7.6, the number of nonzero coefficients and model accuracy vary
significantly. We investigated all models and found that sDL1 method provided no
additional information. Therefore, we only describe the other three models in this
section. To be thorough, the components of sDL1 are shown in Appendix C.

sDL2 and sDL3 methods find component 13 and 18 respectively, which relates to the
same anatomical region, as shown in Figures 7.10(b) and 7.10(c). The correlation values
of this component are detailed in Figure 7.11. The circle and square stimuli have different
correlation distributions. Square stimuli are on average negatively correlated while circle
stimuli are on average positively correlated. Accordingly, circle stimuli elicit on average
an increase in blood flow compared to the baseline. In Figure 7.12 the component is

38



ID:34 w:1.17 |ID:29 w:1.04 |D:17 w:0.92 ID:1 w: -0.51

ID:71 w:-0.51 |D:54 w: 0.48 |D:58 w: 0.46 ID:11 w: -0.37

ID:26 w:-0.34 |ID:79 w:-0.26 ID:37 w:0.26 |D:49 w:-0.25

ID:40 w:-0.24 |D:78 w:-0.24 |1D:69 w:0.23 |D:7 w: -0.15

o

ID:44 w:-0.06 |D:63 w:-0.05 |D:48 w: 0.04

Figure 7.8: Size experiment - Spatial maps found by the best performing model. The weight
for each SM is given in the top right corner. SMs are ordered by absolute value of their weight.
Only the SMs from the ICA method are shown.

VC: 58, 69 - HC: 34, 54

displayed on the mean image of Figure 3.1. This component is hypothesized to be a
vessel that supplies blood to or receives blood from the HC 2.

We give two explanations for this observation. Firstly, there could be a different
hemodynamic response depending on the type of shape presented to the mouse. In this
case the underlying physiological explanation is not clear. Secondly, we repeat that the
the stimuli are presented in two blocks, where the first block consisted of squares and
the second of circles. The differences could be explained by the state of excitement or
boredom in the mouse. The available data can not disclose this issue.

The best performing classifier was made with ICA. Its SMs are displayed in Fig-
ure 7.10(a). Component 19 resembles the same component as in Figure 7.12. However

2Confirmed in personal communication by neuroscientists at the CUBE group

39



| | {1

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Correlation Correlation
(a) Left HC (b) Right HC

Figure 7.9: Size experiment - Box plots of the left and right HC’s correlations for five different
stimuli sizes represented on the y-axis. The smallest stimulus size is on label 1 and the largest
on label 5.

in this classifier, component 17 received a larger weight. The correlation values of these
components are compared in Figure 7.13. It is clear that indeed, component 19 does not
have the same discriminatory value as it had in Figure 7.11. Component 17 is positively
correlated with square stimuli while it appears neutral for circle stimuli.

7.8 Results obtained with group lasso

This section highlights the new results and insights obtained with a group lasso regu-
larization for classification and regression. As before, we tackle the position, size, and
shape problem individually. Each section is started by briefly showing the sensitivity of
the performance on the regularization parameter. After that, we explore two models
obtained with two different value of A giving a different model complexity.

Because the Pearson correlation step was omitted we can use the full time scale in
the model. The results obtained with this method can be used to validate or reject the
assumptions made in the Pearson correlation step.

Position experiment

Figure 7.14 provides the sensitivity analysis results for the position classification problem.
This figure illustrates that the classification accuracy & is stable for sufficiently small .

At A = 2-1072, only two nonzero groups can provide a biased cross-validated
accuracy of x = 0.92. This is significantly more accurate than any model from Table 7.4.
However, it is premature to say that the performance is better because we are comparing
biased estimations. Unfortunately a nested cross validation was computationally too
expensive.

Figure 7.15(a) displays the SMs and the weights for every time sample belonging
to these two groups. We find that the left and right VC provide the most useful
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discriminatory information.
We find nonzero weights for the whole time scale. Therefore, the whole time scale
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Figure continued on next page
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Figure 7.10: Shape experiment - Spatial maps found by the best performing models. The
weight for each SM is given in the top right corner. SMs are ordered by absolute value of their
weight.
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Figure 7.11: Shape experiment - Histogram of the correlations related to component 13 and
18 for sDL2 and sDL3 methods respectively.

contains discriminatory information. We can dissect the full time scale in three regions:

(1) Pre-response undershoot. This region ends at the first intersection of the x-axis

(2) Main response

(3) Post-response undershoot. This region starts at the second intersection of the
X-axis

We remark that the pre- and post-response undershoot both have negative weights.
The compelling explanation is that the normalization step in the preprocessing causes
negative values in X. The negative weights are more significant in the pre-response

42



Figure 7.12: Shape experiment - Component 18 from sDL3 method displayed on the mean
image of Figure 3.1.
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Figure 7.13: Shape experiment - Histogram of the correlations related to component 17 and
19 for the ICA method

period than in the post-response period, suggesting that the time courses had not settled
to a steady baseline before the next stimulus was shown.

Besides that, we observe a double-peak structure in the VC. The weights in the
positive response dip at approximately sample 18 but rise a second time shortly after
that. In the trough, there is less discriminatory information between left and right. We
investigate the average time courses of the VC in Figure 7.16 for (a) the left VC and (b)
the right VC. The time courses are averaged for each time sample to obtain a single
time course. We observe that for the right VC, there is an approximate equal response
around time sample 18 in the left and right stimuli. This means that there is barely
any discriminatory information and that explains the trough.
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Figure 7.14: Group lasso for position experiment - Cross-validated predicted accuracy x (box
plots, left y-axis) vs regularization parameter A (x-axis). The line plot shows the number of
nonzero groups in w (right y-axis) for the same values of A\. These results are obtained with
the ICA method.

We decreased the regularization to A = 8- 102 which allows for an increase in model
complexity. This results in six nonzero groups, shown in Figure 7.15(b). The component
numbers 41 and 74 have negligible weights. The VC, HC, and SC, do have significant
weights and are considered the primary explanatory groups.

From bar charts in Figure 7.15(b) we observe the same time dynamics in the VC
such as the double-peak structure and negative weights. The right HC and SC are not
considered important regressors by this model. We speculate this is because the right
VC gave enough discriminatory information.

Finally, we observe that the main response region starts between time samples 5 and
10. The main response of the HC and SC slightly precedes the VC’s response. Using
this knowledge we can make an informed statement about the validity of the Pearson
correlation. As mentioned we opted for a delay of 7 samples followed by a box-car
function of 12 samples long. By looking at the extracted weights, this region (from
sample 7 to sample 19) closely matches the first peak in the VC but not in the HC
and SC. In the HC the first peak is of much shorter duration and in the SC there is an
undershoot which can effectively nullify the correlation. Therefore we have to be careful
and understand the box-car correlation methodology has limitations.

Size experiment

Results of the sensitivity analysis for the size regression problem are provided in
Figure 7.17. The R? is not stable over this regularization range. In the visible box plots
no significant improvement in R? score was obtained compared with Table 7.5.

In Figure 7.18 we show the extracted nonzero groups for varying values of A. Setting
A = 81072, the model finds only the VC as in the group lasso position experiment.
However, the shape of the computed weights is different, as shown in Figure 7.18(a). In
this size experiment, the shape is characterized by an initial undershoot, followed by a
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Figure 7.15: Group lasso for position experiment. Spatial maps and their group weight vector
wy. The inset axis contains a barchart for all 37 values in w,. The ticks on the x-axis depicts
steps of five samples.

VC: 58, 69 - HC: 54 - SC: 2

single peak and ending in slow decay to the baseline. This shape is unlike Figure 7.15(a),
which had a double-peak structure in the middle section.

The reason for the difference in shapes is illustrated in Figure 7.19. The time courses
are averaged for all sizes. We find that no matter the size of the stimuli, there is a second
activation around sample 23. This means that there is no discriminatory information for
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(box plots, left y-axis) vs regularization parameter A (x-axis). The line plot shows the number
of nonzero groups in w (right y-axis) for the same values of X\. These results are obtained with
the ICA decomposition.

size task in the second peak. That explains why the second peak is absent in Figure 7.18.
The largest variations in the curves can be found in the first 20 samples. The smallest
size elicits no activation in the first peak. The largest two sizes have the strongest
activation. The sizes 3 and 4 have intermediary responses.

We decreased the regularization parameter to A\ = 2 - 1072 and obtained seven
nonzero groups shown in Figure 7.18(b). The weights of component 11 are near zero,
and component 71 is a non-distinct region. Therefore the five remaining components
are considered the primary explanatory groups.

Comparing the maps in Figures 7.15 and 7.18, the same components are extracted.
The only exception is the right HC, which was not important in the position problem but
is in the size experiment. Both problems did not consider the right SC to be important.
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Figure 7.19: Group lasso for size experiment - Average time courses in left and right VC for
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Throughout the position and size experiments, the left SC had an oscillating time
course. After the initial positive response comes a significant undershoot, and after
that, a smaller overshoot. The shape is consistent for both experiments, although the
significance of the weights varies. The oscillating pattern illustrates the vulnerability
of our Pearson correlation step. After oscillation with the box-car function we are left
with a correlation likely around » = 0. So even though it does have discriminatory
information it will not be considered by the prediction models. This also explains why
this component was not found in the earlier experiments.

Shape experiment

In Figure 7.20 we show the sensitivity of the models performance on A. We find the
accuracy unstable. Only a marginal increase over a random prediction is obtained by
increasing the number of nonzero groups.

Taking A = 1.14 - 1072, we find one nonzero group shown in Figure 7.21(a). This
group belongs to the same SM found by the classifiers of sDL2 and sDL3. The accuracy
of this classifier, k = 0.64, is comparable to the accuracies found in Table 7.6. Therefore,
we note that including more time samples does not increase this SM’s discriminatory
value.

Decreasing the regularization parameter to A = 1.135 - 1072 reveals two new compo-
nents as shown in Figure 7.21(b). It is unclear what the groups resemble because it is
difficult to link them to an anatomical region.
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Conclusion

The main objective of this research was to search for changes in the fUS data of a mouse
associated with diverse visual stimuli. The stimuli were grouped into three categories:
position, size, and shape. For each category, we wanted to understand the hemodynamic
change associated with that category. In particular, we set to find how response differs
depending on the position, size, and shape of the stimulus. Furthermore, we examined
what decomposition could be used to describe these changes, independent component
analysis (ICA) or sparse dictionary learning (sDL).

Four decomposition variations were examined; one with ICA and three variations
of sDL. We first decomposed the input data into spatial maps (SMs) and time courses
(TCs). That gave four sets of spatial maps with different levels of sparsity in the SMs.
All decomposition methods, except sDL2, found maps belonging to the visual cortex
(VC), hippocampus (HC), and superior colliculus (SC) and in both hemispheres.

All the decompositions are data-driven; we only constrain the algorithm to find
sparse or independent SMs. The advantage of the data-driven nature is that the model
has a broad range of outcomes because the model is not steered in a desired direction.
The disadvantage is that the components can be non-interpretable or instable over the
number of components K. We found that many extracted components required expert
knowledge for interpretation or were non-interpretable at all. This complicated the
neurological interpretation. Furthermore, determining the optimal setting of K is an
open question. We have shown that the predictive performance is approximately stable
in range K > 40 in the ICA method, but verifying the same for the sDL methods is
computationally expensive.

Models for position, size, and shape prediction were trained given the TCs correlated
with a delayed stimulus box-car function. Although this a standard procedure for finding
the resemblance of a TC with a known stimulus pattern, it is vulnerable to assumptions.
Using group lasso, we found an analytical procedure validating the stimulus pattern.
By looking at the start and end point of the “main response” we could determine the
duration of the stimulus pattern. Further, we could determine the shape of the stimulus
pattern.

We found that there is no single shape nor duration of the stimulus pattern that fits
all components. For example, the onset of the discriminatory information in the SC
and HC is almost simultaneously while the onset of the VC is later. Besides that, the
shape of the left SC had a deviating time pattern compared to the other components.
The left SC was oscillating in the active region while the other components were not.
This explained why it was not considered in any of the created models. We did find VC
was well described using our box-car methodology.

We trained an ¢;-regularized logistic regression for the position and the shape
classification task. A lasso linear regression was trained for the size regression task.
Both models select for sparsity, which should lead to interpretable models. The models
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are interpretable in the sense that they are simple and with few nonzero coefficients.
However, the simplicity can be detrimental because being selective might be undesirable
in the presence of correlated features.

Nevertheless, we found that the models were not overly selective. In fact, all
three experiments resulted in a large set of predictive components which could not
be interpreted. The goal of the prediction functions was the opposite. Therefore the
sparsity inducing regularization in combination with cross-validation was ineffective.
This can be explained by the large sensitivity of the model complexity on A while the
biased performance estimation is insensitive after reaching a plateau. This means that
model complexity grows without suffering from overfitting.

By comparing the model’s estimates of the generalization performance we could
determine what decomposition methods gave the most informative features for the
prediction tasks. The reasoning is that if the decomposition gives discriminatory features
then it accurately describes the data.

We found significant differences in the estimates of the generalization performance.
ICA outperformed the other three decompositions in all prediction tasks. Especially
in the size prediction there were large variations in performance between ICA and the
other methods. In the position and shape task, the difference in performance between
ICA and sDL1 was slight but existent. We therefore conclude that ICA gives the most
informative features and thereby describes the data the best of all investigated methods.
However, this result is only verified with our predictor models. It is unclear if different
predictors would rate other decompositions higher.

The goal of the predictive models was twofold: not only did we want to measure
the generalization performance, we also wanted to obtain neurological insights. By
basing our neurological insights upon the predictive models we were essentially limited
to discriminatory insights. For example, we investigated how the response from a
circle stimulus differs from a square stimulus and not how the circle stimulus causes a
hemodynamic response in general.

We investigated the differences in response by looking at the model’s weights, a
proxy for feature importance. However, feature importance is a complex subject that we
have to be careful about. The feature importance rankings did not align with the most
important features obtained with group lasso. This is most likely caused by additional
temporal information included in the group lasso regularized model. This illustrates
that the feature rankings have to be placed in relation to the underlying assumptions in
the Pearson correlation step.

In the position experiment, the most valuable discriminatory information is in the HC.
We illustrated that also the VC and SC provided discriminatory information but were
considered less important by our feature importance score. Group lasso regularization
also provided an interesting look in the temporal dynamics. Using that method, we
found the most valuable features in the VC. There was discriminatory information in
strength of the two peaks but less in between.

In the size experiment, all four models found a large group of SMs, making it hard
to interpret the results. An explanation for this unclear result is the use of a continuous
variable where an ordinal variable is correct. The model might have tried to predict the
artificial continuous spectrum by including many unnecessary components.
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Group lasso regularization provided a more coherent picture because we manually
constrained it to simple models. It also found the left and right VC important in
the size prediction task. We showed that the discriminatory information in the VC is
primarily in the first peak and the second peak is present for all sizes and thus gives no
information for this task. Although group lasso did give a more coherent picture, there
was only a minor increase in generalization performance. This means that the biased
performances were similar to regular ¢;-regularized models.

We found the most considerable model differences in the shape experiment. sDL2
and sDL3 found a single SM possibly related to the shape stimulus. Also group lasso
verified its validity. This SM is hypothesized to be a vessel that supplies to or receives
blood from the HC. It provided a minor but considerable improvement in classification
accuracy. The underlying physiological explanation is unclear.

To sum up, we obtained a clearer picture on the vascular response, related to how
different stimuli are processed differently. As expected, we found a clear lateralization of
the brain function. We also saw that in general larger sizes give stronger responses. This
is only the case for the first peak and not in the second. We found little discriminatory
information in the shape prediction. In general, the circles and squares are processed
similarly except for one component that appears to be slightly different for circles and
squares.

Future directions

A problem with the acquisition methodology is the long duration (42 min). The mouse’s
sensitivity to the stimulus can decrease over time as the mouse becomes bored. This is
a problem because the squares were presented in the first block of the recording and
the circles in the second block. Mixing the shapes throughout the recording would
already help resolve this issue. Furthermore, longer rest periods could be useful. As
shown in the results of group lasso, we found that the VC had not settled to a steady
baseline before the next stimulus was shown. It is unclear if this is a problem, but it is
worthwhile to investigate if longer rest periods give clearer results.

We limited our decompositions to ICA and sDL algorithms. There are many other
data-driven decompositions to consider. For example, one can consider a total-variation
constrained sDL that uses a smoothness constraint in addition to the sparsity constraint
[33]. This would especially be useful if it would create more robust components. It
could potentially allow for a smaller K because the brain networks are constrained to
be localized.

Another idea is to use dynamic mode decomposition models [31]. They model the
measurements at time ¢ as a linear mapping of the measurements at time ¢ — 1. When
the functional ultrasound (fUS) technique has the ability to measure three-dimensional
structures, it could potentially reveal dynamical modes in the blood flow.

Group lasso regularization is an exciting direction for continuing the research, as it
gives not only a list of SMs but also gives a full temporal scale. However, due to massive
computational overload, we could not test this regularization for all decomposition
methods. One can even extend to sparse group lasso [35] that can provide sparsity
in the temporal dimension. It is unclear if this desired. A probably more desirable
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direction is fused group lasso [36]. Fused group lasso does not enforce sparsity in the
temporal dimension but smoothness with a total variation regularizer. Smoothness
is a desirable property as the hemodynamic response function (HRF) is also smooth.
However, the results we obtained with group lasso are already quite smooth, so it might
not be beneficial.

Another idea is to use multi-task learning methods. In this architecture multiple
tasks are solved at once [37]. In our case, that would mean we train the model for
the position, size, and shape tasks simultaneously. Multi-task learning algorithms can
exploit the commonalities shared among the tasks. Requiring the model to perform well
on its related task can act as a superior regularization method. This is in contrast with
regularization by penalizing model complexity, as we did in this thesis.
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Appendices
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Spatial Maps A.
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Figure B.1: Size experiment - true size labels vs predicted labels. Every point represents one
stimulus. The predictions are made with the ICA decomposition.
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Figure B.2: Remaining SM extracted in the size experiment.
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