
Bachelor Thesis:
A Data Management System for P3D

Process Flow Analysis & Resource Optimization Within P3D

BEP TI3806

Client: P3D
Client contact person: Jeroen Gross
TU Delft Coach: Asterios Katsifodimos

Zeger Mouw,
Abri Bharos,
Tim Pelser,
Erik Sennema and
Gijs Paardekooper

Foreword
This project was carried out as part of the Bachelor End Project (BEP) at the TU Delft. The
BEP is part of the third year of the computer science bachelor. The project owner is P3D which
is a sub-company of Promolding, located in South-Holland. Our contact person from P3D is
Jeroen Gross who worked with us to create the requirements for the end project and guided
us through the inner workings of P3D. We have had many meetings with Jeroen ranging from
daily meetings near the end of the project to 2 or 3 meetings per week at the start. We are very
grateful with Jeroen for investing all his time into this project and with his help along the way
when problems arose. Jeroen has taken this problem very seriously and has helped us obtain
all the resources we needed to make this project a success.
From the TU Delft we were assisted and guided by Asterios Katsifodimos who works at the Web
Information Systems group of the EEMCS faculty of the TU Delft. Asterios helped us to think
about the way the project could be implemented and gave us helpful tips on how to go about
doing this project. Asterios his knowledge about the structure of web applications proved of
great help during our project and has helped us to get going much sooner than we would have
without his help. During our meetings with Asterios it was great to see his enthusiasm and
involvement with this project. We would therefore also like to thank Asterios for his assistance
and motivation throughout this project which helped us to get to our final product.

i

Contents

1 Introduction 1
1.1 Document structure . 1

2 Research Report 2
2.1 Overview . 2

2.1.1 Problem definition and analysis . 2
2.1.2 Problem Definition . 2
2.1.3 Problem analysis . 2
2.1.4 Workflow P3D . 3
2.1.5 Existing Technologies . 3

2.2 Design Goals . 4
2.2.1 Extensibility . 4
2.2.2 Maintainability . 5
2.2.3 Flexibility . 5

2.3 Requirements . 5
2.3.1 Must Have . 6
2.3.2 Should Have . 8
2.3.3 Could Have . 8
2.3.4 Won’t Have . 9

2.4 Implementation . 10
2.4.1 Architecture . 10
2.4.2 Development Methodology . 10
2.4.3 Technologies/Tools . 11
2.4.4 Testing . 12

3 Design 14
3.1 Overview . 14
3.2 Challenges . 14

3.2.1 Extensibility . 14
3.2.2 Maintainability . 14
3.2.3 Security . 15

3.3 Changes Made Throughout The Project . 15
3.4 Final Design Summary . 17

4 Implementation 19
4.1 Overview . 19
4.2 Microservices . 19

4.2.1 Microservice Implementation Overview . 19
4.2.2 Created microservices . 21
4.2.3 Python Package . 22

4.3 Deployment . 23
4.3.1 Docker . 23
4.3.2 Kubernetes . 23
4.3.3 Container registry . 24

ii

4.3.4 Google Cloud . 24
4.3.5 Docker-Compose . 25

4.4 Code feedback Software Improvement Group . 25
4.5 Proof of Concept . 26

4.5.1 Overview of the POC . 26
4.5.2 Project input . 26
4.5.3 Project overview . 26
4.5.4 Planning overview . 27
4.5.5 Timeline . 28
4.5.6 Tool-tip information . 29
4.5.7 Visual cues . 29
4.5.8 Overlap detection . 30
4.5.9 Conclusions . 30

5 Testing 31
5.1 Back-end Testing . 31

5.1.1 Testing Approach . 32
5.2 Code Coverage . 32

6 Product Evaluation 33
6.1 Overview . 33
6.2 Evaluation Design Goals . 33

6.2.1 Extensibility . 33
6.2.2 Maintainability . 33
6.2.3 Flexibility . 34

6.3 Evaluation requirements . 34
6.4 Summary . 38

7 Process Evaluation 39

8 Conclusions 40

9 Recommendations 41
9.1 Possible system extensions . 41

9.1.1 Connection to a cloud-based ERP system 41
9.1.2 Automatic planning of projects . 41
9.1.3 Addition of incremental progress and more types of processes 41
9.1.4 Data analysis of previous projects . 42

9.2 Maintainability and extensibility in the future . 42

10 Discussion On Ethical Implications 43
10.1 Privacy of Data . 43
10.2 Security . 43

Appendix A Original Project Definition 44

iii

1 | Introduction
P3D is an injection moulding company that uses a technology called PRIM®(Printed Injection
Mould) to create products for its customers. Different from traditional moulding companies,
P3D’s main business model resolves around an efficient workflow and fast delivery of products
to its customers. At the moment P3D is able to quickly fabricate and deliver its products be-
cause of a small team of skilled designers and engineers who have lots of expertise in the field of
injection moulding. Unfortunately, relying on the expertise of its employees, a lot of data about
the company’s workflow is memorised or written down. This poses a problem as P3D would
like to grow in the future and will not be able to entirely rely on memorised or analogue data.
The goal of this project is therefore to create a data management system (DMS) that digitises
information about P3D its workflow and saves it in an easily accessible centralised system.

The big challenge about this project is the fact that the system created will be linked to every
aspect of P3D’s workflow. It is therefore required that before executing this project, one has a
general understanding of this workflow and the company in general. Furthermore, P3D’s pro-
cesses are continuously evolving because of customer demands, the system implemented should
therefore be highly modular and extensible to keep up with this rapid innovation.

1.1 Document structure
As stated earlier, before work could be done on implementing the DMS, research had to be done
about the inner workings of the company and how the system was going to be designed and
implemented. This research phase is documented in chapter 2. Chapter 3 touches upon how
the system was finally designed and which changes were made throughout the project. Chapter
4 touches upon how this design was implemented and presents the proof-of-concept. A section
is dedicated to how the final system has been tested, which can be seen in Chapter 5. Chapter
6 provides an evaluation of the final product and chapter 7 evaluates the process leading up to
this product. Finally, recommendations on how this project should be continued in the future
are given in chapter 9.

1

2 | Research Report

2.1 Overview
The first two weeks of the project were dedicated to doing research. In the sections below the
findings and the important details relevant to the project will be discussed. Also the problem
raised by the client will be thoroughly explained. This will be done in section 2.1.1, as well as
the problem analysis.

2.1.1 Problem definition and analysis
As stated above, the following section focuses on detailing the problem raised by the client.
In 2.1.2, the problem will be explained and detailed to give the reader a good overview of the
challenge P3D faces. In section 2.1.3, the problem is further analysed and requirements for
tackling this challenge are presented. Furthermore, in section 2.1.4, the problem is put into
context through a top-down overview of P3Ds workflow. Lastly, section 2.1.5 elaborates on
existing technologies that exist on the market and why they fail to solve the problem defined
in section 2.1.2.

2.1.2 Problem Definition
The client’s core business model revolves around technology that was created within Promolding.
They saw a potential business idea and decided to further develop it through a sister company
called P3D. P3D uses 3D printed plastic moulds to produce small series of products by injection
moulding. This is a much faster process than its competitors. This is especially relevant in
industries where certification and testing has to be done early in the product development
process. Since P3D is a relatively small company with a lot of human expertise, communication
between production processes is mainly done person-to-person and not thoroughly reflected
within a broader system. This directly leads to the client’s problem: workflow and process data
inside of the company is distributed over several departments. This forms a problem as data
is not easily accessible for every employee, administrative tasks have to be done multiple times
and is in essence very prone to human error. In order for P3D to become more efficient and
resilient, this problem has to be solved.

2.1.3 Problem analysis
P3D has the ambition to grow and optimise its processes in the future, so the aforementioned
problem should be tackled. During this project a solution will be designed, implemented and
deployed. In order to comply with the client’s needs, the end result of this project should not
only fix P3D’s current problem but should also be aligned with their image of the future and
long-term goals. To this end, a system will be created that acquires and utilises the company’s
data, while keeping the possibility of adding new functionalities. More details on this will be
further discussed in the design goals in section 2.2.

The proposed solution ensures that the company’s workflow data can be accessed from a
central point, on top of which useful functionalities can be built. This will make sure that the
company’s internal workflow can be made more resilient, efficient and robust.

2

2.1.4 Workflow P3D
In order to have a better vision of P3D as a company, it is essential to have a clear overview of
their production process. In this section the 4-part production process will be detailed to the
reader, giving him a clear overview on how P3D serves their clients. Issues or bottlenecks that
are present in the workflow will also be pointed out.

Incoming Client
As expected, the first part of P3D’s process starts with an incoming business inquiry from a
potential client. From this business inquiry, P3D analyses the clients needs and wishes. This
often involves a 3D CAD File which will be checked by an experienced employee. This is a
process which requires human involvement, something that could lead to limitations in the
future. After all requirements and checks are completed, the project will be planned with
approval from the client. This planning process is done manually and not reflected in a broader
digital system. P3D considers this to be an issue as it is a very fault-prone and repetitive
process at the moment.

Printing/Mould Fabrication
Once a project is successfully planned, the printing process is initiated. It is important to
understand that P3D does not print its products directly. Instead, a plastic mould is 3D
printed or in case this is not possible, a steel mould is ordered from a trusted supplier. The
products are then fabricated using these moulds. This is explained in more detail in the next
part.

Production
The third part of P3D’s workflow involves the actual production of the clients order. P3D uses
a process called PRIM® (PRinted Injection Mould) which creates the desired products using
the mould fabricated earlier. This process involves analogue machines and manual labour as
some parts have to be reworked and checked by hand. The analogue nature of the process does
not form a problem for P3D but not being able to easily access the overall progress status of the
production is an issue. Furthermore, acquiring data about the multiple sub-processes involved
in production is also not possible at the moment which is a limitation.

Delivery
The last step in P3D’s workflow is delivering the order made by the client. Products are boxed
and the delivery is outsourced to another company. At the moment, this does not lead to
any complications. Data is not acquired about this part of the workflow which could lead to
limitations in the future.

2.1.5 Existing Technologies
A trivial element of the research phase of this project is to check out existing technologies that
could potentially solve the stated problem in 2.1.2. It is of course undesirable to come up with a
custom solution if proven technologies and services already exist on the market. In this section,
we will detail these solutions to the reader and cover why they do not meet all functionalities
or requirements the client needs.

ERP
At first glance, it is tempting to say that an ERP (Enterprise Resource Planning) system
could solve much of the problems the client faces. In fact, P3D already uses a ERP system

3

called Plan-de-CAMpagne made by Bemet. This system is at the moment mainly used for
keeping track of potential clients, creating invoices and other administrative tasks. Even though
Plan-de-CAMpagne is already specifically designed for manufacturing companies, it still has its
limitations. P3D thinks Plan-de-CAMpagne as well as other existing solutions available on the
market do not meet their requirements mainly due to the closed nature of a premade system
and a lack of flexibility inside of the planning process. As one of the main focuses of the client
is to deliver products quickly, a tailor made extensible system would better suit P3D’s workflow
and therefore optimise its overall production process.

Other products

Other software products exist on the market which would solve some of P3D’s demands. An
example of this could be solutions built by a company called AMFG. However this system as
well as other similar products on the market are heavily focused on 3D printing companies
which P3D is not (3D printing is a tool in their production process).

2.2 Design Goals
This section will elaborate on the design goals for this project. They are highly important and
will be reflected in the design and implementation of (every requirement of) the new system.
The main design goals are: extensibility, maintainability and flexibility in that order of im-
portance. The implemented system will organise and manage the companies’ workflow data.
New features and systems will therefore be incorporated in its architecture, which is why it
should be extensible. In order to keep the system functioning after the project, it should also
be maintainable. And since the architecture will be developed further by other developers in
the future, it should be highly flexible.

2.2.1 Extensibility

Extensibility is the most important design goal of this project. The system that will be created
will have to be able to cope with P3D adding new systems to their company, effectively creating
a new source of data that should be utilised. To be able to use this data in new and innovative
ways, the system should allow for the creation of new features. These goals will be supported
by two sub-goals: separation of data and functionality and extensive documentation.

Separation of Data and Functionality

By separating data and functionality, future developers that will work with the code can easily
add new features, without having to change existing functionality or data structures. The same
applies to adding new data or data structures to the system, the existing functionality does not
have to be modified.

Extensive Documentation

Extensive code documentation not only makes it easier to work with the code for current
developers, it also helps future developers get a good understanding of the code. Extensive
architecture documentation, preferably with visual aids, also helps new developers in under-
standing the structure of the system. Both will help them create new functionalities and allow
them to efficiently reuse existing ones.

4

2.2.2 Maintainability
Maintainability is the second most important design goal of the project. Future developers
should be able to easily understand and work with the new code. In order to do this, certain
sub-goals have been created: code quality, testability and modular independence.

Code Quality
The code should conform to the general code quality standards. This will help ensure the code
is clean and consistent. High quality code makes it easier to read and understand the code,
which will make it easier to maintain. All libraries and packages used should also adhere to
these standards and be well maintained.

Testability
Improving testability will allow for more extensive testing. This in turn makes sure that the
code functions properly, improves the understandability and saves developers time.

Modular Independence
Creating a system where functionalities are modular improves the aforementioned testability.
This in turn helps developers pinpoint where an error occurs. Finally, it becomes easier to
replace and update parts of the system without affecting the rest of the architecture.

2.2.3 Flexibility
In order to create a system that can be extended in the future, developers should not make
too many assumptions about the code. In order to still create a well-functioning system which
is able to adapt and be expanded in the future, the code base should be flexible. In order to
make this happen, two sub-goals have been created: modular independence and extensive code
communication.

Modular Independence
As mentioned before, a system that is modular makes it easier to update and replace parts of
the system without affecting other parts of the code. This will give future developers a lot of
flexibility when implementing new functionalities. It is important to make sure these modules
do not become too large as this would defeat the purpose of modular independence.

Extensive Code Communication
Extensive code communication goes hand-in-hand with modular independence. To create new
functionalities from existing ones in such a system, it is important to have support for good
communication between different modules. This way, existing functionalities are accessible and
approachable for future developers.

2.3 Requirements
This chapter outlines the functional and non-functional requirements that have been set up in
cooperation with the client. The requirements have been divided into four categories using the
MoSCoW method (Waters, 2009).
All of the requirements will be explained as to what they mean and how they can be defined as
completed using success criteria.

5

2.3.1 Must Have
The first category of the MoSCoWmethod is the ’Must Have’ category to which all requirements
belong that are necessary to deliver a viable end-product. Therefore, the requirements in this
section also have the highest priority in our project planning.

1. Reading (existing) client data from the Enterprise Resource Planning (ERP)
system: it must be possible to extract client data from the ERP system currently in use
by P3D and use and process that data within our system. The success criterion for this
requirement can be defined by the presence of a data coupling between the system and
the current ERP system.

2. Project planning can be digitally entered by users: it must be possible for users of
the system to modify the project planning, that is, users must be able to assign employees
to tasks and specify in what time period the corresponding employee will work on said
task. The success criterion for this requirement is the functionality as described for this
item implemented in a Graphical User Interface (GUI).

3. Project planning can be digitally viewed by users: apart from the ability to enter
the project planning by users, the project planning must also be visualised within the
system to give users a clear understanding of the project planning and during what time
periods certain employees are available to work on certain tasks. This is completed when
a GUI is present that shows an overview of the current week and boxes that correspond
to employees working on a certain task at a certain time.

4. Multiple projects can be digitally viewed at the same time: The system should
allow multiple project plannings to be viewed at this same time. This is completed when
a GUI is present that shows an overview of the current week and the planning of projects
scheduled for that week.

5. The system should reflect the project status: within the system there must be a
visual representation of the project status for any order. The project status of an order
within P3D can be anything from ’Product in Printer’ to ’Product Completed’. This
requirement is a success if there is a visual representation of the status of any order
within P3D integrated into the GUI. Furthermore, the order status should correspond to
the actual current order status, so users must be able to change the order status via the
GUI as well.

6. System (planning) should show the starting of drying material: it must be
possible to visualise different order statuses as explained in the previous requirement.
Starting of drying material is one of those statuses and therefore it must be visualised as
well. The success criterion for this requirement is the presence of a way to visualise the
starting of drying material within the system.

7. System (planning) should show the ending of drying material: similar to the
previous requirement, the system should also show when the drying of material is ending.
The success criterion for this requirement is again the presence of a way to visualise the
starting of drying material within the system.

8. User can input the start of material drying: it must be possible for the users of
the system to input when the material drying process will start. The success criterion for
this requirement is the presence of an input part in the GUI of the system that allows the
user to put in this data.

6

9. System (planning) should show the starting of production: a visual status that
must be displayed in the GUI of the system is when the production of a new part or mould
starts. The success criterion for this requirement is the presence of a visual representation
of this status within the GUI.

10. System (planning) should show the ending of production: just like the previous
requirement was about the start of the production of a part or mould, the system should
also show when the production has ended. The success criterion is the presence of a visual
representation of this status within the GUI.

11. User can input the start of production: it must be possible for users to input when
the start of production has begun. This requirement is completed when there is an option
within the GUI of the system for users to input this data.

12. User can input the end of production: it must also be possible for users to input
when production of a part or mould has ended. This requirement is completed when there
is an option within the GUI of the system for users to input this data.

13. Shipping status should be reflected: the GUI of the system must be able to show
whether an order has been shipped or is awaiting to be shipped. This requirement is met
when there is an option within the GUI to show this order type.

14. Invoice status should be reflected: just like the shipping status there must also be a
part in the GUI that shows what the invoice status is. Completion of this requirement is
reached when there is a part of the GUI that shows the corresponding invoice status of
an order.

15. The user can access the system from anywhere: to allow the system to be used
from other places than just the P3D office, at home for example, it must be possible for
users to log in from any place. This requirement is met when there is a possibility for
users to access the system via a URL, allowing remote access.

16. User can log in to the system: when remote access is wanted there is a need for users
to authenticate themselves by logging in to the system. This must be present for the
system to work in a safe way. This requirement is completed when it is possible to login
through the GUI of the system.

17. User can log out off the system: if users can log in to the system they must also be
able to log off from the system via the GUI. This requirement is met when the GUI offers
users a way to log off which requires them to authenticate themselves the next time by
logging in again.

18. System should reflect correct material stock throughout the process: the system
must show how much materials are left for the 3D printers and the other materials that
are needed during the entire production process. This material stock must be shown in
the GUI of the system. This requirement is reached when the system has a part of the
GUI that shows the material stock.

19. System (planning) should show the starting of rework: when a product is finished
it might need some rework which is the finishing touch stage of the creation of new
products. The system should show when a product has started the rework phase. This
requirement is met when a part of the GUI of the system is dedicated to showing when a
product has entered the rework phase.

7

20. System (planning) should show the ending of rework: just like the previous re-
quirement was about the system showing when a products has started the reworking phase
there also must be a way to show a product has finished the reworking phase. This re-
quirement is met when the system can show when a product has finished rework within
the GUI of the system.

2.3.2 Should Have
The should have’s within the MoSCoW method are requirements that offer significant value to
the end-product, but the end-product does work without these requirements.

1. System should reflect the printing status: the system should be able to show the
correct printing status in its GUI. This is completed when there is a part of the GUI that
is dedicated to showing this printing status.

2. System can suggest the overall time of production: it should be possible for the
system to make an overall suggestion for the production time based on parameters like
the amount of products to print and their size. This requirement is met when the system
shows a time suggestion in the GUI and calculates this suggestion automatically based on
all the input data for a certain order.

3. System should reflect the print cleaning status: after a product has been printed
it needs to be cleaned. Within the system the status of cleaning a product should be
reflected. This is completed when there is a part in the GUI that shows the correct
product cleaning status.

4. System should reflect the status of making the sprue gate: the sprue gate is used
to inject the 3D print material into the mould. Within the system there should be a part
of the GUI that correctly reflects the status of making a new sprue gate, this is also the
success criterion for this requirement.

5. Ordering status of steel moulds should be mentioned: sometimes P3D uses steel
moulds instead of 3D-printed moulds, when these are used the system should show the
ordering status of these moulds. This requirement is completed when a part of the GUI
of the system is dedicated to showing the ordering status of steel moulds.

6. Quality control of moulds should be mentioned: to ensure every product made by
P3D is of the highest quality, P3D does quality control checks. This requirement is met
when the system has a part within the GUI that shows the users whether or not an order
is currently undergoing quality control.

7. Historical project data should be saved for later use: P3D would like to do analysis
on past projects to gain knowledge about their system. This requirement is completed
when data about old projects remains saved.

2.3.3 Could Have
The could have’s represent requirements that only will be implemented when time within the
project planning allows to do so.

1. System should show invoice documents: With every order an invoice is sent to
P3D clients, these could be displayed within the GUI of the system. This requirement is
completed when there is a part of the GUI in which users can view the invoices they have
sent to clients.

8

2. Reading Product Information from 3D File client: whenever a new order is created
a design is made based on a 3D file supplied by the client. It could be possible to create
a functionality in the system that reads product information from this 3D file to save
employees the hassle of having to manually enter the information. The success criterion
for this requirement is the presence of the functionality to automatically read the 3D client
file and process the file data.

3. Project should be planned automatically by the system: currently the project
planning is done by hand, thus employees are planned and assigned to projects manually.
This could be automated by having new orders automatically be assigned to employees
that have time left at that moment. This would save the employees time and could
therefore make the client, P3D, more efficient. This requirement is completed whenever
an automatic project planning is present which also shows the planning in the system’s
GUI.

4. The system sends alerts when the stock of material is getting low: the system
could have the ability to send automatic notifications to users upon noticing that the stock
level of certain materials is getting low. This is already implemented in the ERP system
used by P3D so the focus on implementing this requirement is rather low. Since the focus
of this project is on centralising all different systems of P3D into one system, it is desirable
to take this ERP functionality and put it into the new system. This requirement is met
when the system has a built-in functionality that lets users set when certain stock levels
of materials are low and sends a notifications to those users when these ’low levels’ are
reached.

5. Historical project plannings can be viewed digitally inside of the system: P3D
would like to have insights on how past projects are planned and executed. This is
completed when a GUI is present that shows an overview of the old project’s planning
and which employees worked on certain tasks at certain times.

2.3.4 Won’t Have
The wont haves of the MoSCoW method are functionalities that are out of the scope of this
project. These requirements will therefore not be implemented in this project.

1. User can input finishing of material drying: when a material is entering the drying
part of the P3D process it will always be picked up after it has been dried. Therefore,
it is not needed to manually enter that drying has finished after a user has picked up
the material from drying. Thus this requirement won’t be implemented in the system.
However, in the future it could be automatically integrated into the system by coupling
the drier to the system so that the drier can signal the system that drying has finished.

2. The clients of P3D can login to the system and place new orders: it won’t be
possible for clients of P3D to place new orders within the system by logging in. The
system within the scope of this project is being designed to be used by employees within
P3D. However, for future improvements the ability for clients of P3D to create accounts
and place direct orders could be an enhancement to the system.

3. The system automatically schedules and creates backups of its entire state:
during this project the ability to automatically schedule and create backups of the entire
system won’t be implemented because this would require an extensive amount of time.
For future enhancements to the system this could however prove to be a requirement that
makes the system more reliable to faults.

9

2.4 Implementation
This section is about technical and strategical decisions that are made before implementing the
software. It contains all explanations for the choice of tools and technologies that will be used
in this project as well as the architecture these tools will rely on.

2.4.1 Architecture
The structure of the system, also known as the software architecture, is the core of any software
project. There are multiple software architectures to choose from, but two major architec-
tures that are relevant for this project are the Monolithic architecture and the Microservice
Architecture.

Monolithic architecture
In a monolithic architecture, all developers work on one application. This results in a fast build
if the system is not too complex. However, a monolithic application has many disadvantages.
A monolithic application is edited and deployed as a whole system. When a service must be
updated, the whole system must be deployed and therefore all services must be deployed. This
causes a bad experience for the current users. The same applies to a failure in one of the
services. If a monolithic architecture is scaled, all the services will be scaled. This results in a
larger consumption of server capacity (Villamizar et al., 2015).

Microservice architecture
A microservice architecture is a little bit more complex. Every service of the application is
developed and deployed individually. Deploying the services individually has many advantages.
Other services won’t go down when a services is deployed. Services can be scaled individually
when the demand of the service increases and if there is a new functionality, this can easily
be added by adding a new microservice (Villamizar et al., 2015). The microservices commu-
nicate with each other via API calls. The most important design goal of P3D is extensibility.
Microservices is therefore the best architecture for this project since this architecture is more
accessible to extend. This was also recommended by the TU Delft coach that supervises this
project.

2.4.2 Development Methodology
The development methodology is a set of practices, principles or a framework that provides
guidance to plan, structure and control the processes during development. The chosen method-
ology has an impact on the goal of the project. Different types of methodology frameworks
aim to achieve different interests of the software development and may change during a project.
This section will detail to the reader the different methodologies that can or will be used.

Agile
Traditional and plan-based methods assume that problems are fully specifiable and that prob-
lems have an optimal or predictable solution. Waterfall development is a traditional method,
where before starting the development all requirements should be specified and no adjustments
are meant to be made on the way. Agile, in contrary to these plan-based and traditional meth-
ods, doesn’t make this assumption.

Agile is based on the fundamental assumptions that projects are delivered using rapid feed-
back and change. The design is continuously improved during the project. This way the agile

10

methodology tries to handle change and uncertainty during the development process. In this
project requirements may be added or modified in the future, development must be quick due
to the time constraint and work is done by a small team. Therefore, agile is the best choice for
this project. (Dybå and Dingsøyr, 2008)

There are multiple development methods which have the same fundamental assumptions as
the agile methodology. A few of these were considered before making the choice to manage
the project using the scrum method. The agile methods considered are dynamic software de-
velopment method (DSDM), feature-driven development, lean development, Rapid application
development (RAD) and scrum. DSDM and lean are a better fit with bigger teams or multi-
ple small teams with complex projects. Feature-driven and Rapid application development are
more appropriate with critical systems or prototypes. At last a big part of the development
team is already comfortable with the scrum principles. This concluded the choice for scrum.
(Dybå and Dingsøyr, 2008)

DevOps
DevOps combines development and operations using automated deployment. This approach
focuses on continuous operational feature deliveries. it ‘helps deliver value faster and contin-
uously, reducing problems due to miscommunication between team members and accelerating
problem resolution.’ (Ebert et al., 2016). Agile works well in combination with DevOps, the
small iterations of the agile methodology can be supported by the continuous deliveries of the
DevOps methodology. Some tools are needed to get this high degree of automation. One tool
is the build tool, which handles compiling, dependency management, running tests, etc. The
other is a continuous-integration tool that continuously runs the build. Another advantage of
using DevOps is the possibility for the client to continuously evaluate new feature deliveries,
this will be handy during this project.

2.4.3 Technologies/Tools
This section will explore possible tools and technologies that support the development process
and that fit the architecture and methodology of the project.

Docker
The microservice talked about earlier must run on different machines. Instead of running each
microservice on a virtual machine, there is a faster and more efficient method: the microservices
can be containerised. A container doesn’t have its own operation system and is therefore more
lightweight. A useful tool to do this is Docker. Docker is a lightweight application which is
specialised in containerising and deploying applications. Each microservice is transformed into
an Docker image. From these images, Docker containers can be deployed (Turnbull, 2014).

Kubernetes
In the future, the demand on the system might increase. A single container might not be enough
if it is used by many users. Kubernetes can wrap up containers in a new package called a pod.
The Kubernetes software can distribute the workload and scale each pod as many times as
needed (Vohra, 2016).

Gitlab
This project will be developed by five students. To make sure that the project will always
contain stable code and that every student can share their code, there must exist some kind

11

of continuous integration. GitLab is a development platform with built-in CI/CD. In GitLab
there is also the possibility to register containers and use Kubernetes to cluster, scale and deploy
those containers.

Programming language
The codebase of this project is primarily going to be written in Python. Python is currently
popular and is actively developed (Fuchs et al., 2020). Because of these facts, by developing in
Python future development teams that want to adjust or extend can still program in a relevant
language. Languages as Java, PHP etc. where considered as well, but had less promising
advantages. Java and PHP are less popular in the current development community.

Framework
By making the choice of the programming language Python, the available frameworks were
reduced to Flask and Django. Where Flask is a lightweight web framework and Django a full-
stack framework (Ashley, 2020). Since the Microservices architecture is decided to be used for
this project, a full-stack framework for these services would be too much. The Flask framework
could provide all the necessary features for the services while having the advantage of remaining
lightweight and is therefore the chosen framework for this project.

GraphQL and REST API
GraphQL and REST API are two architectural concepts for calling an api and retrieving data.
GraphQL uses its query language to tailor the request and retrieve the exact data needed, it
operates over a single endpoint. The flexibility of these tailored requests could benefit our
extensibility design goal, where new systems could tailor their requests to get the data they
need.(Brito and Valente, 2020)

The REST API architectural concept provides robustness, simplicity and has become the
industry standard for deploying APIs.(Brito and Valente, 2020) These elements benefit future
development more than the benefits of GraphQL, which has a greater complexity and learning
curve. Therefore the REST architectural concept is the better overall choice for this project.

2.4.4 Testing
This section will elaborate on the testing tools en methods. For each level of the development
process a testing tool is chosen. Starting with unit testing, that supports the developer during
programming. Ending with End to End testing, where the client can experience the full product.

Unit testing
Unit testing is used to test the functionality of small snippets of code, independent of other
functionality. This type of testing ensures these units of code meet there design and behave as
intended. Python has a library for unit testing, it provides methods to assert output of different
functions. This makes unit testing the codebase easily possible.

Integration testing
Integration testing is the principle of making sure different components of a bigger system
work well together. Since this project is based on a Microservice architecture, it is viable that
different parts of our system communicate flawlessly. Integration testing is therefore needed in
this project.

12

End to End testing
As the core features of this project do not necessary have a user interface, end to end testing is
not considered to be a high priority. End to end testing will be therefore done through demos
which is preferred over using an end to end testing tool, such as selenium. Selenium is a tool
where a path through the user interface can be recorded and replayed as a test. This tool takes
time to configure for new features and is only useful for testing repetitively, concluding that
testing using regular demos is a better option.

13

3 | Design

3.1 Overview
This chapter contains the design of the software architecture. It describes the challenges that the
team encountered while implementing the architecture. Furthermore, it contains the changes
that the team made during the project. Finally, the final design is shown and described.

3.2 Challenges
This section will elaborate on the design challenges that were encountered during the project.
The design was based on the design goals that were constructed in the research phase of the
project. The main design goals were extensibility, maintainability and flexibility. These are
general concepts but are good guidelines upon designing the system.

3.2.1 Extensibility
Extensibility as a design goal has implications on the integration with new systems and the
introduction of new features within a system. One of the main challenges that was encountered
was coupling the project with the Entreprise Resource Planning (ERP) system of P3D. The
challenge here was not only a technical one but a communication one as well. On the technical
side, it was a challenge to get familiar with the structure of the data of the ERP system and to
design the system in a way that neatly connects the data of the ERP to the Data Management
System (DMS). The communication challenge here was to explain the necessity of access to the
database of ERP and getting information about the possibility of achieving this. The integra-
tion of the ERP system and thereby achieving the main design goal was the biggest challenge
of the project.

The system is designed to have a separate microservice for each part of the system that man-
ages different types of data or different functionalities. When needing new data sources or
functionalities, one can add new microservices which can be called by existing microservices or
user interfaces. In this way, the system is easy to extend. The challenge here is to design the
endpoints of the microservices in a way that future developers can understand it without too
much effort. Future developers will then be able to adjust the functionality or include already
existing functionality in new systems.

Not only the API of the system is extendable, the front-end as well. The system is designed to
be able to use multiple front-end interfaces. By using a Nginx(Reese, 2008) reverse proxy, new
front-end interfaces can be added and linked together. When future developers want to build
a new user interface (UI), it can be used next to the old system or a transition can be done to
slowly migrate to a new front-end.

3.2.2 Maintainability
One of the other design goals was maintainability. To design a system with a high degree of
maintainability it needs to have great code quality, high testability, and good separation of
functionality. The challenge here was to keep the duplication of code and the use of resources
to a minimum. With a microservice based architecture, as each service is an application that

14

can run on its own, many of them need the same functions and resources. Here the design choice
was made to create a custom package library that is used by all API microservices. This way
the shared functions can be maintained in one place. Another challenge with maintainability
was to be able to update the operating system (OS) on which the microservices run. Because
the microservices are designed to run in a container, the image of the OS can be changed on
each deployment, making the maintenance of the resources and packages easy.

By designing the endpoints of the microservices with an eye for simplicity and by extensively
using the functionality of the custom package, the microservices have great code quality and a
high degree of testability.

Another design challenge was to make sure the system is always available as the client is heavily
going to rely on the system. This was achieved by using the container orchestration tool, the
load balancer and the rollout functionality built into kubernetes (Burns et al., 2018).

The load balancer can increase the available resources on the server when the load is high
and will decrease the capacity to keep the cost low. On a new software release, the rollout
functionality makes sure that the new version of the application is started before the old one is
stopped. This way requests during the rollout can still be handled by the old version and users
will not notice a performance decrease.

3.2.3 Security
The last design challenge was security. Because the system is going to be used with company
data the system must be secure. One of the requirements of the client was the availability
of the system from anywhere, this collides with making the system as secure as possible. A
more desired situation from a security standpoint would be, a system that is only available
on the VPN of the company. Because this is not the case, there are several security design
measures taken during this project. To protect the data, that is the databases, the access to
it is limited to the internal IP address in the used Google Cloud environment. This way only
the services that are on the cluster can access it. The cluster itself is protected by an ingress
Nginx(Reese, 2008) controller which handles all traffic from outside the cluster. This is the
single point of entrance, making the attack surface minimal. Another challenge of security is
authentication. This part of the security is outsourced in the design. There are several good 3rd
party authentication providers. Combining the authentication providers with an OAuth(Hardt
et al., 2012) microservice on the cluster solves the problem of authentication.

3.3 Changes Made Throughout The Project
At the beginning of the project, some functionality goals were set with the client. The design
goals were based on those agreements. However, some agreements turned out to be impossible or
too hard to implement. Therefore, some changes were needed in the design during the project.

ERP Connection
One of the main functionalities of the product was making a coupling with the existing ERP
system of P3D. Some microservices would connect to the external ERP database and retrieve
the data that we could use in the system. However, the company that hosts the ERP database
explained at the beginning of January, that an external connection with the ERP database was
not possible due to security issues. Because of this issue the DMS got a big adjustment since
P3D’s project data was needed in the system. The solution was an extra database to replace

15

the ERP database. This database contains all the information about P3D’s projects that the
system currently uses. Since project data is not automatically in this new database, the system
needs to have an insert functionality. Project data can therefore now be inserted via a front-end
into the replica of the ERP database. In the future, P3D wants to connect to a cloud-based
ERP system. When this is done, the system can connect to the real ERP database and the
project data is automatically available in the system.

Security Design

As mentioned in 3.2.3, the security design is very hard to implement. The first design was to
have a homepage with a button to log in. Users were only allowed to visit the the homepage.
For other URLs, the user had to be authenticated. The authentication check occurred in the
Nginx(Reese, 2008) microservice and since the system uses a microservice architecture, every
microservice needs to have a security check. The old design is shown in figure 3.1.

Figure 3.1: The old security design

However, it appeared easier to implement the security check at the entrance of the system.
Now, every user has to be authenticated when visiting the front-end. If the user isn’t authen-
ticated, he will get redirected to the Azure login. The current log-in design is shown in figure
3.2

Activity Input System

Another main functionality was changing the statuses of processes in P3D’s workflow. The
client wants to keep track of the activities of a project. The first design was an input system
that the user could use to change status, start and end date/time of an activity. However,
after exploring the planning framework, it appeared to be unnecessary since this was easier to
implement in the planning front-end. After double-clicking on an activity in the planning page,
the activity can be marked as done or active. This solution gives a better overview for the
user if he wants to change a date. Now, he sees immediately if an activity would overlap with
another if he changes this date.

16

Figure 3.2: The new security design

Cert-Manager
In the start of the project, we knew that the website should have a secured connection but there
was no design made for this problem. HTTPS is a secured version of an HTTP network. An
HTTPS network encrypts the communications between the client and the system. Therefore,
an attacker is unable to read the data sent over the network. In order to have an HTTPS
connection, the system needs an SSL certificate. However, SSL certificates have an expiry
date. This is needed to recheck the validation of the website. Since P3D doesn’t have any
IT employees, the SSL certificate would expire and the website would not be secure anymore.
Therefore, a new microservice called Cert-Manager is installed. This microservice checks if the
SSL certificate is still valid and will create a new certificate otherwise. This way, the website
will always have an HTTPS connection.

3.4 Final Design Summary
Our final design is a microservice based architecture. This architecture makes sure that the
extensibility and maintainability design goals are satisfied. Some microservices are connected
to the (mocked) ERP database. When the ERP database changes, these microservices will be
able to connect to the other database with minor changes. The other back-end microservices
will connect to a planning database where all data present in the front-end will be saved. The
ingress microservice serves as an open external IP. The OAuth (Hardt et al., 2012) microservice
makes sure that every visiting user is authenticated and the react microservice is responsible
for the front-end. When a user is logged in, it will be redirected to the Nginx (Reese, 2008)
microservice. This microservice is a reverse-proxy, which will redirect the user to the correct
microservice. The final design can be found in figure 3.3. More details about these microservices
can be found in 4.2.1.

17

Figure 3.3: The final design

18

4 | Implementation

4.1 Overview
This chapter will cover the implementation of the final product. This implementation is based
on the design of the system and can be divided into several parts: a front-end, a back-end and
the deployment. The front-end is represented by a proof of concept and will be talked about
in section 4.5. The back-end is represented by the microservices and will be talked about in
section 4.2. Finally, the deployment will be covered in section 4.3.

4.2 Microservices
For this project a microservice architecture, as discussed in the design part of this project, was
used. It was decided to implement this type of architecture after recommendation from the TU
Delft coach and because it suits the usage of this system well. This section will give a general
overview of the microservice implementations, discuss all microservices that have been created
and how code duplication has been minimised by creating a custom Python package (P3D,
2021).

4.2.1 Microservice Implementation Overview
The microservices have been implemented using Flask, which is a framework specifically de-
signed for microservices made in Python. The product uses six different microservices, which
will be discussed in the upcoming sections. Each microservice contains its own routes which can
be called upon. This then results in data being returned or entered into the database. Before
a route is called, a database connection is made using the method shown in figure 4.1.

Figure 4.1: Microservice connect method for database connection

After a request to a route within a certain microservice the connection to the database is
closed using the disconnect method shown in figure 4.2.

Both the connect and disconnect method are present in all of the microservices. The reason
for this will be further explained in section 4.2.3.
Another important aspect of the microservices is that data validation is being done inside each

19

Figure 4.2: Microservice disconnect method for closing the database connection

microservice. This project uses a Python data validation package to ensure this. This package,
flask-expects-json, can be found here: https://pypi.org/project/flask-expects-json/.
This package allows all request data to be validated before it is being processed within the
method of the respective route. A route within Flask annotated with @expects_json is a route
that uses the validation package, an example is given in figure 4.3.

Figure 4.3: Example Route That Uses The Validation Package

The variable within the @expects_json field of the route in figure 4.3 is a JSON schema
that is used by the package to define what the structure of the payload must be in order to be
valid. This schema is shown in figure 4.4.

20

https://pypi.org/project/flask-expects-json/

Figure 4.4: JSON Schema Used For Validation

As can be seen in the schema of figure 4.4, the valid input for the route shown in figure 4.3 is
a JSON with five fields: ’activity_id’, ’duration’, ’start_date’, ’end_date’ and ’is_finished’. For
numbers like ’activity_id’ it can be specified if the number must have a minimum or maximum
value or whether it must lie between a certain interval. In this case since all IDs in the database
used are positive values, the minimum value of ’activity_id’ must be zero.

4.2.2 Created microservices
Our project uses 10 different microservices of which 7 have been coded by ourselves:

1. db_activities: this microservice is connected to the database of the created project and
handles the deletion, creation and updating of tasks within projects.

2. db_clients: this microservice is connected to the (mocked) ERP database and handles
the retrieval of clients from the database.

3. db_material_stocks: this microservice is connected to the (mocked) ERP database
and retrieves the stock information of the materials used by P3D.

4. db_projects: this microservice is connected to the (mocked) ERP database and handles
all data modifications that are done on projects in the user interface.

5. planning: this microservice is not connected to a database but calls other microservices
to combine and process data to be shown in the planning part of the user interface.

6. project_input: this microservice is not connected to a database but calls other microser-
vices to combine and process data to be shown in the project part of the user interface.

7. Front-end (React): this microservice is used to generate the front-end of the DMS.
More detail can be found in chapter 4.5.

8. NGINX (Reese, 2008): This microservice routes every incoming request to the corre-
sponding microservice.

9. OAuth (Hardt et al., 2012): this microservice checks on every incoming request if the
user is authenticated.

10. Certificate Manager: This microservice checks if the SSL certificate is still valid. Oth-
erwise, it will generate a new one.

A full description of what all the endpoints inside each microservice do can be found in the API
documentation found at this link: https://documenter.getpostman.com/view/14222885/
TVzYetMk

21

https://documenter.getpostman.com/view/14222885/TVzYetMk
https://documenter.getpostman.com/view/14222885/TVzYetMk

4.2.3 Python Package
One recurring problem with the microservice architecture used during this projects was that a
lot of code was duplicated. This caused problems at the beginning since multiple methods were
copied to all six microservices. When a change was made to one method it had to be repeated
in all microservices. After the first code upload the aim was therefore to reduce the amount of
duplicated code, which eventually led to the decision to make a custom Python package.
Since this project used a GitLab repository that was hosted on the gitlab.ewi.tudelft.nl
domain it was not possible to use the GitLab package management, and therefore it was decided
to create a public Python package. This package was named ’bep-framework’ and can be found
via this link: https://pypi.org/project/bep-framework/#description. The usage of this
package meant less code duplication occurred and the code was easier to maintain. One small
problem was that the methods ’connect’ and ’disconnect’ as discussed in section 4.2.1 could not
be placed in the package since this did not create a connection in the correct place, which is
why each microservice still has those two methods. Because the Python package was designed
and created in such a way that no sensitive information has been exposed in the code, uploading
the package to PyPi does not create any security threats.

22

gitlab.ewi.tudelft.nl
https://pypi.org/project/bep-framework/#description

4.3 Deployment
To build and deploy all changes automatically to the server, the project uses continuous inte-
gration and deployment. This section describes the tools that were used to set this up.

4.3.1 Docker
Each microservice is contained in a docker container. A container is a shell or OS in which
the application of the microservice runs. This container provides all the libraries and packages
needed by the application.To get a container for the application one needs to create a Dockerfile.
This Docker file contains some commands by which the docker application can build a docker
image. This set of instructions contains the base image, what packages or modules need to be
installed, and what instructions need to be executed when the image is converted to a container
(when it starts to run).

The base images of the API microservices are python images and the front-end microservice
uses a node-js alpine base image. These base images only have the required libraries and no
other software on them, this contributes to a small container image. By having less software in
the container the possibility of an exploit decreases.To even decrease the size of the containers
further, a multi-stage building can be used. With multi-stage building, only the bare minimum
remains in the last stage. By using this during the project the front-end image decreased from
900 MB to 125 MB in size.

The project uses two different docker files for each microservice excluding the Nginx (Reese,
2008), OAuth (Hardt et al., 2012), ingress controller (Burns et al., 2018), and cert-manager.
These two are the production and development docker files. The development docker file is
used for development by the software developer on its machine. The development docker file
has more tools installed and the file system of the container is connected to the file system of
the host machine by making use of docker volumes. When the developer changes some file on
its machine the docker container can use this changed file directly, without needing to rebuild.

Figure 4.5: The stages of docker (neilkillen.com)

4.3.2 Kubernetes
Kubernetes is a container orchestration tool that manages the deployment, scaling, and net-
working of containers. The Google Kubernetes Engine that is used in this project is a cluster
consisting of multiple nodes. The nodes are the workers of the cluster, they provide the CPU
and memory. Each deployed container runs inside a Kubernetes pod, the pods run directly on
the nodes. By using a Kubernetes service, multiple pods with the same container can be linked
together, making the scaling of a deployed container possible without static IPs. Ingress is used
to expose the cluster to the outside. Kubernetes is configured by YAML files, each container
deployment, service and ingress has its own YAML file.

23

Some of the containers need production-specific environment variables and not all of them
can be specified within the config file. Some of these variables are too sensitive to commit to
the repository. These variables can be added to the secret config service of the Kubernetes
engine. The secret environment variables are loaded when starting the deployed container.

Figure 4.6: The stages of kubernetes (cloud.google.com)

4.3.3 Container registry
When deploying, the Kubernetes cluster needs to fetch the Docker containers from an online
container registry. This is done using Gitlab. The containers are pushed to a container-registry
and the Kubernetes cluster fetches the containers from that server.

Figure 4.7: Container registry (https://www.itzgeek.com/)

4.3.4 Google Cloud
The product is hosted on the Google cloud environment. The choice was based on a couple of
factors:

• The team members were familiar with the Google cloud environment.

24

• Google cloud has a very structured Kubernetes management. The console has many
functions, the most used functions in this project are:

– The number of pods for each docker image.
– The requested CPU of the nodes can be viewed
– The statuses of the containers are displayed and if a container fails, the error logs

are displayed well.
– The secrets for the project are displayed.

• The google cloud console comes with a built-in terminal. In this terminal, the kubectl
command is available for all Kubernetes functionalities.

4.3.5 Docker-Compose
Docker-compose is used by the developers to start all the microservices in a stack. This makes
the integration of the different services easier as they all start by using one command, they can
use the same virtual defined network and can have a single entry point. Nginx provides the
single entry point and redirects the request to the correct microservice. During the project,
the Kompose tool was used to convert the docker-compose configuration to the Kubernetes
configuration.

4.4 Code feedback Software Improvement Group
As part of this project its evaluation process, a code analysis was performed by the Software
Improvement Group (SIG). SIG tested the maintainability of the code based on 8 different
factors: volume, duplication, unit size, unit complexity, unit interfacing, module coupling,
component balance and component independence. Figure 4.8 shows the score for each of these
factors after the first code submission.

Figure 4.8: Scores from the first SIG upload

As can be seen, 3 factors have a score below 4: duplication, unit size and unit complexity. It
was necessary to improve these and they were therefore given priority during the continuation
of this project. This section will now outline how the code was restructured to improve the low
scores present in figure 4.8.

• A low duplication score occurs when the same code is used in different parts of the code-
base. Code duplication mainly occurred due to the microservice architecture of this
project. As stated in 4.2.3, this low score was improved by building a custom python
package which could be called in each different microservice, avoiding duplication.

25

• A low unit size score occurs when different units (functions, constructors, etc.) inside
the codebase are composed of too many lines of code. In this project, this occurred in
the back-end as well as the front-end. In the front-end, helper classes were created to
split up large components. In the back-end, unit size was reduced by using the custom
python package and by paying special attention to the size of functions and split them if
necessary.

• A low unit complexity score occurs when functions and methods have too many execution
paths. This issue was solved similarly to the low unit size score by breaking up methods
and functions in the back-end and front-end.

4.5 Proof of Concept
This project was heavily focused on designing and implementing an all-round data management
system for the company P3D. To prove this has been achieved and the system could actually be
used in real-life applications, a proof-of-concept was needed. This proof-of-concept is used to
show to the client that the requirements are being met as well give an example of the possibilities
of the system itself. In this section, an overview of the different parts of the proof of concept
(POC) will be given followed by a more detailed explanation of these parts individually. This
section will only focus on the user interface of the POC as other parts are already discussed in
previous chapters (see 4.2 and 4.3).

4.5.1 Overview of the POC
The POC comes in the form of a project planning tool designed specifically for P3D’s internal
workflow. As requested by the client, this planning tool shows projects that are currently
running and gives the user the ability to insert, modify and delete projects as they so wish.
Thanks to the microservice architecture and the way the system is designed, the insertion of
projects could in the future be automated based on company data (by retrieving it from an
ERP system for example). Currently, the POC provides a way for P3D’s managers to visualise
and modify their entire workflow planning from start to finish by manually inserting and editing
projects.
On a more technical note, the POC makes use of different web development technologies namely
React ((Aggarwal, 2018)) and Typescript ((Freeman, 2019)). After discussing with the client,
it was decided that in order to facilitate the creation of the planning interface, a library would
be used called DHTMLX Gantt (more information about this package can be found here:
https://dhtmlx.com/docs/products/dhtmlxGantt/)

4.5.2 Project input
The first part of the proof of concept is the project input. The project input is a single page
form that allows the user to input all relevant data of a project. Figure 4.9 shows how the form
looks in the POC and which data can be entered.
Once a project is submitted, our back-end infrastructure takes care of calculating default values
if needed and inserts the project to the database. The newly added project can then immediately
be viewed inside of the project overview interface or the planning.

4.5.3 Project overview
The project overview section allows the user to view and make modifications to an existing
project. This is needed when a project is already running but some information changed and
needs to be reflected in all systems. The project overview is composed of three sections:

26

https://dhtmlx.com/docs/products/dhtmlxGantt/

Figure 4.9: Screenshot of the project input user interface

• Project list and deletion (Figure 4.10): This section shows a list of all projects and gives
the option to only show the currently active projects if wanted. It also enables the user
to delete a project by clicking on the respective icon next to a project.

• Project details (Figure 4.11): This section shows a single-page overview of all data be-
longing to a project. It also gives the user the ability to go to the project modification
section (described below) which enables the modification of this data.

• Project modification (Figure 4.12): This section enables the user to modify project or
production data (depending on which button is pushed in the projects details section). It
shows a basic form which can be submitted to save the newly update data.

4.5.4 Planning overview
The main component and most interesting part of the POC is the planning overview. It gives
the client a direct overview of all running processes in P3D its workflow and enables him to
individually plan and manage each process. It also notifies the user when certain processes are
not finished even though their deadline has expired and does some simple resource management

27

Figure 4.10: Screenshot of the project list
and deletion user interface

Figure 4.11: Screenshot of the project details
user interface

Figure 4.12: Screenshot of the project modification user interface

by checking for possible overlaps of the same processes in the timeline.
As it is difficult to correctly represent such an interactive application on paper, this section will
only briefly describe the different functionalities of the planning component in order to provide
the reader with a general overview of what the application can offer.

4.5.5 Timeline
The planning component has a timeline which shows each process of P3D’s workflow individu-
ally. Individual processes can be dragged and dropped to easily modify their start and end time
or change their order inside of a project. The client requested to have the timeline accurately
reflect the possibilities and limitations of P3D’s workflow, in practice this meant the applica-
tion has automatic constraints on the processes displayed, mainly dealing with ordering. An

28

example of this functionality can be seen in figure 4.13.

Figure 4.13: Screenshot of the planning timeline

4.5.6 Tool-tip information
The client requested to have a quick way to show all relevant information of a project. This
has been satisfied by implementing a tool-tip which shows the information manipulated by the
project input (4.5.2) and overview (4.5.3) parts of the POC. An example of this functionality
can be seen in figure 4.14.

4.5.7 Visual cues
The planning implements multiple visual cues in order to show the user the different state of
each process. These visual cues enable managers that work at P3D to immediately see which
processes require the most attention and need to be handled straight away. Regular processes
can take 3 colours : a process with a grey colour has been finished. A process with a blue colour
is not finished yet but its deadline is still in the future. Finally, a process with a red colour has
not been finished but its deadline is already overdue. Processes that are purple are treated as
final deadlines and are used to reflect when a product needs to be shipped. An example of this
functionality can be seen in figure 4.16.

Figure 4.14: Screenshot of the tool-tip
functionality

Figure 4.15: Screenshot of the overlap function-
ality

29

Figure 4.16: Screenshot of the visual cues functionality

4.5.8 Overlap detection
The client asked for the functionality to be able to demand an overview of which processes are
currently overlapping given a specific threshold. The grid can show an overview of all vertically
overlapping tasks (which are retrieved form the back-end) in a simple message. This allows the
user to quickly see if any mistakes have been made regarding resource allocation of processes
for example. An example of this functionality can be seen in figure 4.15.

4.5.9 Conclusions
The POC created for this project clearly shows that the architecture implemented works as
expected but is also a fully featured and usable product on its own. In fact, the POC will
be used by P3D to digitise their planning system. The application has a lot of potential and
in conjunction with the microservice based architecture, can be easily modified to allow extra
functionalities in the future. Chapter 9 will provide more detail about this but one could already
see that an auto-scheduling feature is easy to implement given the current user interfaces and
architecture. As a conclusion, the POC provides a way for the client to have a general overview of
its company’s workflow while simultaneously showing that the microservice architecture backing
it is working as expected.

30

5 | Testing
This chapter discusses how testing has been handled throughout this project and what code
coverage has been achieved. As stated in the research report, end-to-end testing, or front-end
testing, has not been handled directly. Instead of front-end testing this project used many
demos to the client to test and verify the system’s behaviour. Therefore this chapter does not
contain a specific section for end-to-end testing. The most important part of this project is the
correct functioning of the microservices and database which is why the main focus has been
back-end testing.

5.1 Back-end Testing
For back-end testing within this project, the Pytest library has been used to test the behaviour of
microservices. This library allows the usage of GET and POST which enabled testing the routes
within each microservice. Since the complexity and amount of routes within each microservice
varies strongly, the amount of tests per microservice also differs. Before a test can be executed,
a so-called Pytest ’fixture’ is created that gives the ability to use the methods and routes of the
to-be-tested microservice. This fixture is setup and created as shown in figure 5.1.

Figure 5.1: Setting Up The Testing Fixture

The created ’client’ is passed as a parameter to all testing methods and allows the tests to
make GET and POST requests. An example test for testing the 404 route of a microservices is
given in figure 5.2.

Figure 5.2: Example Test For The 404 Route

In the test in figure 5.2 a call is made to a route that does not exist upon which the

31

corresponding microservice response with an HTTP 404 code and error data in a JSON format.

5.1.1 Testing Approach
The main testing approach throughout this project has been to write both tests that call routes
using the correct data payload and using requests that do not adhere to the routes rules and
data schemes. This results in multiple tests per route to ensure the data validation works
correctly and the route only functions when it has received all the correct data.

5.2 Code Coverage
The code coverage of this project is at the moment this report was written 62%, but the aim
is to increase this to 75% when the code deadline is due. Figure 5.3 shows the current code
coverage for each microservice and the total code coverage.

Figure 5.3: Code Coverage Of The Project

One major reason why some microservices have a rather low code coverage percentage is that
many statements that were not tested are error and exception handling statements that could
only be reached by breaking a connection to the database or corrupting data in the .env files.
Time has been spent to figure out how .env files could be changed for the testing environment
but since no solution worked in the project environment, it was decided to ignore these missing
statements. Rather, effort and time was spent on testing the routes and methods that were
used by the user interface. Another thing to note from figure 5.3 is that both the planning and
project_user_input microservices have rather low code coverage, this is caused by the fact that
those microservices call routes from other microservices and combine those data-sets. Since the
routes in those microservices are already tested in their own test packages it was decided to
spend less time on testing the aforementioned microservices leading to a lower code coverage
rating.

32

6 | Product Evaluation

6.1 Overview
In this chapter, the final product will be evaluated. In order to successfully do this, this chapter
will look at different benchmarks to measure the success of the project and its resulting product.
In section 6.2, an evaluation will be done on the design goals (stated in section 2.2). It will
explain exactly how the design goals have been integrated into the system. In section 6.3,
the requirements (stated in section 2.3) of the project will be evaluated. It will go over every
requirement and explain for each one if it has or has not been implemented.

6.2 Evaluation Design Goals
The three design goals of the project are extensibility, maintainability and flexibility, each with
their own sub-goals. They will be evaluated in this section. For each of them, a brief description
will be given. After that, it will be checked how many of its sub-goals have been satisfied and
how its integration with the product is being reflected by the final product. From this will be
concluded if the design goal has been achieved.

6.2.1 Extensibility
Extensibility is the most important design goal of the system. Future developers should be able
to freely add new data sources and features to the system.

Sub-goals
This design goal has two sub-goals. The first one is ‘separation of data and functionality’. Due
to the use of the microservice architecture, this sub-goal has been satisfied. The second sub-goal
is ‘extensive documentation’. As all of the code has been documented, this sub-goal has also
been satisfied.

Integration
The integration with the product has been a success; all of the code has been documented and
developers are able to add new data sources and functionality to the system without having to
change a lot of the existing code.

Because the sub-goals have been satisfied and integration has been successful, this design goal
is considered ‘achieved’.

6.2.2 Maintainability
Maintainability is the second most important design goal of the project. Future developers
should be able to easily understand and work with the new code.

Sub-goals
This design goal has three sub-goals. The first one is ‘code quality’. The code conforms to
general code quality standards, is understandable and easy to read. Therefore the first sub-goal
has been satisfied. The second sub-goal is ‘testability’. The code of the system is modular and

33

therefore highly testable, which is shown by the 75% coverage. Therefore the second sub-goal
has been satisfied. The third and final sub-goal is ‘modular independence’. Because of the use
of the microservice architecture, the code is modular independent and changes in one module
will change little to nothing in other modules. Therefore, the third sub-goal has been satisfied.

Integration
The integration with the product has been a success; future developers have many tools to their
disposal to quickly understand and work with the code. On top of that, they have a lot of
liberty in adjusting existing code when necessary. This will allow them to work more easily
with the code, which supports maintainability.

Because the sub-goals have been satisfied and integration has been successful, this design goal
is considered ‘achieved’.

6.2.3 Flexibility
Flexibility is the third-most important design goal of the project. In order to create a well-
functioning system that is able to adapt and be expanded in the future, the code base should
be flexible.

Sub-goals
This design goal has two sub-goals. The first one, ‘modular independence’, was also mentioned
in section 6.2.2 and, as described there, has been satisfied. The second sub-goal is ‘extensive
code communication’. The way the code base is set up, there is a lot of communication between
the different microservices. This sub-goal has therefore been satisfied.

Integration
The integration with the product has been a success; the code base does not make predictions
about possible future features that might or might not be added to the project, which makes it
very flexible.

Because the sub-goals have been satisfied and integration has been successful, this design goal
is considered ‘achieved’.

6.3 Evaluation requirements
In this section, the requirements listed in section 2.3 will be evaluated. In table [t1] the re-
quirements are listed, along with their priority, their status, success, and an explanation. Their
priority refers to their category according to the MoSCoW model. Their status can be either
implemented or not implemented. If the status is implemented, the explanation will describe
how this has been done. If the status is not implemented, the explanation will explain why this
is the case. Success refers to their success criteria mentioned in the research section 2. If its
entry is true, it means the success criteria has been met, otherwise it will be false.

34

No Category Name Status Explanation Success

1 Must
Have

Reading client
data from the
ERP system

not implemented Team did not get access to the ERP
database, which made this require-
ment not feasible within the timeframe
of the project. Can still be imple-
mented in the future.

NO

2 Must
Have

Project plan-
ning can
be digitally
entered by
users

implemented Planning data can be entered through
the UI.

YES

3 Must
Have

Project plan-
ning can
be digitally
viewed by
users

implemented Planning can be viewed through the
UI

YES

4 Must
Have

Multiple
projects can
be digitally
viewed at the
same time

implemented Planning can be viewed through the
UI

YES

5 Must
Have

The system
should reflect
the project
status

implemented Project status can be viewed through
the UI.

YES

6 Must
Have

System
should show
the starting
of drying
material

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

7 Must
Have

System
should show
the ending
of drying
material

implemented Is shown on a timeline in the planning
as a task for a specific project.

YES

8 Must
Have

User can in-
put the start
of material
drying

implemented Planning data can be entered through
the UI.

YES

35

9 Must
Have

System
should show
the starting of
production

implemented Is shown on a timeline in the planning
as a task for a specific project.

YES

10 Must
Have

System
should show
the ending of
production

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

11 Must
Have

User can in-
put the start
of production

implemented Planning data can be entered through
the UI.

YES

12 Must
Have

User can in-
put the end of
production

implemented Planning data can be entered through
the UI.

YES

13 Must
Have

Shipping sta-
tus should be
reflected

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

14 Must
Have

Invoice status
should be re-
flected

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

15 Must
Have

The user can
access the sys-
tem from any-
where

implemented System has been deployed on Google
Cloud.

YES

16 Must
Have

User can log
in to the sys-
tem

implemented Login system has been implemented. YES

17 Must
Have

User can log
out of the sys-
tem

implemented Login system has been implemented. YES

18 Must
Have

System
should re-
flect correct
material stock
throughout
the process

not implemented Team did not get access to the ERP
database, which made this require-
ment not feasible within the timeframe
of the project. Can still be imple-
mented in the future.

NO

19 Must
Have

System
should show
the starting of
rework

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

36

20 Must
Have

System plan-
ning should
show the
ending of
rework

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

21 Should
Have

System
should reflect
the printing
status

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

22 Should
Have

System can
suggest the
overall time of
production

implemented System provides standard values for
durations during entering planning
data.

YES

23 Should
Have

System
should re-
flect the
print cleaning
status

not implemented Discussed with the client. Prioritized
implementing other features over this
one. Can still be implemented in the
future.

NO

24 Should
Have

System
should reflect
the status of
making the
sprue gate

not implemented Prioritized implementing other fea-
tures over this one. Can still be im-
plemented in the future.

NO

25 Should
Have

Ordering sta-
tus of steel
moulds should
be mentioned

implemented Will be shown on a timeline in the
planning as a task for a specific
project.

YES

26 Should
Have

Quality con-
trol of moulds
should be
mentioned

not implemented Prioritized implementing other fea-
tures over this one. Can still be im-
plemented in the future.

NO

27 Should
Have

Historical
project data
should be
saved for later
use

implemented Unless explicitly deleted, the data will
remain in the database.

YES

28 Could
Have

System
should show
invoice docu-
ments

not implemented No data present that was required to
implement this feature. Also not feasi-
ble within the timespan of the project.
Can still be implemented in the future.

NO

37

29 Could
Have

Reading
product infor-
mation from
3D file client

not implemented No data present that was required
to implement this feature. Also not
feasible within the timeframe of the
project. Can still be implemented in
the future.

NO

30 Could
Have

Project
should be
planned auto-
matically by
the system

implemented System provides standard values for
durations during entering planning
data.

YES

31 Could
Have

The system
sends alerts
when the
stock of mate-
rial is getting
low

not implemented Team did not get access to the ERP
database, which made this require-
ment not feasible within the timeframe
of the project. Can still be imple-
mented in the future.

NO

32 Could
Have

Historical
project plan-
nings can be
viewed digi-
tally inside of
the system

implemented Planning shows all projects with a
deadline later than two weeks ago.

YES

33 Won’t
Have

User can in-
put finishing
of material
drying

implemented Did not seem like a good idea to add
the feature during the Research Phase,
which is why it is under Won’t Have.
Discussed with the client Eventually
decided to add.

YES

34 Won’t
Have

The clients of
P3D can login
to the system
and place new
orders

not implemented Not feasible within the timeframe of
the project.

NO

35 Won’t
Have

The system
automatically
schedules
and creates
backups of its
entire state

not implemented Not feasible within the timeframe of
the project.

NO

6.4 Summary
The final product integrates all of the design goals into the system. Also, most of the require-
ments have been implemented and all of the requirements that have not been implemented have
a valid reason. Therefore, the product is evaluated to be a success.

38

7 | Process Evaluation
During the project, the team encountered obstacles on its way, but also things that went better
than expected. This chapter contains the evaluation of the process.

Scrum
During this project, the team used the scrum methodology. This choice is described in chapter
2.4.2. Each sprint had a duration of 2 weeks. To keep track of the sprints, the team used the
Boards functionality on GitLab. The Boards functionality keeps track of all open issues where
each issue is assigned to an ’Epic’ issue (main functionality of the system) and a milestone
(sprint). Every morning on a workday there was a stand-up with the team and two times per
week there was a meeting with the client.

Coronavirus
Due to the coronavirus, every meeting was online. These meetings went fine as Jeroen Gross
was able to answer our questions thoroughly. However, it would have been easier and more
efficient to learn about P3D’s workflow if more on site visits could be have been organised.
Unfortunately, this was impractical due to the imposed COVID-19 regulations.

Client
The communication with the client went very well during this project. Before the project
started, the team and the client had a few meetings already. When the project started, the
teams visited, in groups of two, the company in The Hague to have an overview of the workflow
of the company. The meetings with the client were always very informative and the team
enjoyed these meetings. The client has always been very helpful for the team.

Communication hosting company
The ERP database is hosted by a 3rd party company. The communication with this company
did not go as expected. It took a couple of weeks until the team got a response. After this
response, the company told the team that they could not help the team because they did not
want to be responsible for any security flaws in the system. The new database creation and its
input systems had to be built in the last weeks.

Parallelisation
At the beginning of the project, the team was divided into 2 groups. The first group started with
continuous integration and continuous deployment (CI/CD). While the other group worked on
the first microservices. In this way, the team could work in parallel on the different components
of the project. This turned out to be a good approach and meant a well-working development
framework was setup while not delaying the implementation of the desired features of the client.

39

8 | Conclusions
This chapter discusses the findings and conclusions found during the duration of this project.
The main focus throughout this project has been to develop a data management system for
the company P3D. Before the actual development could start, time was spent on researching
different architectures for the web application which lead to the current design. P3D asked for
the system to be easily extendable and maintainable which is why a microservice architecture
hosted on a Kubernetes (Burns et al., 2018) environment was chosen. Although this required
more work to create, it achieves an easy to expand and maintainable framework. After the entire
framework was set up, the group concluded that creating the specified architecture allowed for
easy expansion of the system and allowed microservices to be automatically replaced when they
went down. The usage of microservices has allowed the project to be clearly divided in separate
Flask projects, each with its own sole purpose. This way it is clear what each microservices does,
and more importantly, when one microservices goes down other microservices are unaffected.
The user interface of the product has been made using React which made the development of
the front-end faster because of re-usable components and open-source components. One part of
the user interface, the planning, was made using a third party library called DHTMLX which
provided a pre-made solution to the planning interface and allowed easy modification.

Aside from the technical conclusions, there are also conclusions to be drawn from the com-
munication with the client. The first two weeks were spent on getting to know the client’s
company, P3D, and what they do. These lead to the creation of a list of requirements that were
used to setup milestones for the entire duration of the project. Along the way some obstacles
or challenges showed up that caused the team to re-evaluate the goals and requirements with
the client, what can be concluded from this process is that a clear explanation of certain prob-
lems during a project towards the product owner or client causes the client to be pro-actively
involved in finding a solution to this problem. One such example was that the client stated that
a connection to their ERP system was a requirement, however the contact with the third party
company that manages the ERP system of P3D was quite slow, stagnating the entire project
process. Therefore, it was decided, after having contacted the client about this problem, to
mock the ERP database which saved time and allowed the product development to continue.
Furthermore, it can be concluded that having multiple meetings per week with the client to
give updates on the progress of the project allows the client to give more feedback which speeds
up the development time.

40

9 | Recommendations
As the total duration of this project was around 3 months, it is of course inevitable that not
all features the client desires could be implemented in the final product. Moreover, given the
nature of this project, the system will continue to evolve in the future to match P3D’s ever-
improving workflow. This section will therefore outline the recommended features that could be
implemented in the future, starting with the ones that will be the most beneficial to the client.
Also, this section will talk briefly about what is required for the project to be maintained and
extended by other people in the future.

9.1 Possible system extensions
This section outlines the possible features that could be implemented in the future to the benefit
of the client. Note that this section does not list all features that are recommended to be added
but merely the ones that are believed to be the most significant in the improvement of P3D’s
workflow. The should-haves (2.3.2) and could-haves (2.3.3) sections of the research chapter (2)
give more examples of possible additions.

9.1.1 Connection to a cloud-based ERP system
As outlined in chapter 3, complications arose when coupling this project with P3D’s existing
ERP system. This was eventually solved by creating a manual input interface for projects
(4.5.2) but this is not ideal. Coupling this project to P3D’s ERP system means more data
is available to be used (budgets, employee data and inventory data for example) and no data
duplication occurs as projects do not have to be entered twice. For these reasons, making this
connection is recommended to improve the data management system as a whole. The choice for
a cloud-based ERP system (like Microsoft dynamics 365 ®) is proffered as this limits security
issues when integrating with the already cloud-based data management system.

9.1.2 Automatic planning of projects
When a new project is created in the project input interface (4.5.2), the system currently uses
static default values to calculate start and end times for all processes. This is of course not ideal
as it does not take in to account vacations, resource availability and other constraints of P3D
its workflow. In the future, it would be preferred to automatically schedule processes based
on data retrieved from an ERP system or other sources. The library DHTMLX Gantt used in
the planning component (4.5.4) already has support for an auto-scheduling functionality, it is
therefore only required to collect the necessary data and constraints to implement this feature
into the system. This feature is believed to be very beneficial as it would significantly reduce the
time managers of P3D spend on planning different projects and, if implemented well-enough,
would result in more efficient workflow planning.

9.1.3 Addition of incremental progress and more types of processes
In the current implementation of the system, the incremental process is not saved nor displayed.
Processes can either be finished or not but no visual indicator is given on how far a process is in
its completion. In the future, it would give P3D its managers a better overview if the progress
of processes can be viewed as a percentage of their estimated finishing time. This is directly

41

linked to another functionality, namely adding more precise types of processes. Currently the
system supports 6 different types of processes. These are the main processes in P3D’s workflow
but could be further subdivided into more precise tasks. Alongside the incremental progress
functionality, this could give a very detailed overview of P3D’s workflow state. Both of these
features are already supported in the planning interface and therefore only require the necessary
data for these features to be acquired and added to the overall DMS.

9.1.4 Data analysis of previous projects
The current implementation of the DMS saves historical data about projects that have been
finished in the past. This offers an opportunity as this data can give valuable insides into P3D’s
planning of projects and workflow behaviour. P3D could analyse this data in order to optimise
and better predict the behaviour of projects in the future. Bottlenecks and mistakes in its current
workflow could also be found using this analysis. As the data required for this functionality is
already available, adding this functionality simply consists of starting the analysis.

9.2 Maintainability and extensibility in the future
The features presented in the previous section are believed to be most beneficial to P3D and
would improve the planning of P3D’s workflow significantly. During the entire course of this
project, special attention has been given on making sure these features could be added with
little effort in the future. It is therefore believed that adding these aspects will not create
significant change to the overall design but will only require the feature to be implemented and
connected to the already existing infrastructure.
It is however required that people with the right set of skills are hired to maintain and extend
this project. P3D is advised to hire developers that have experience in the following fields and
technologies:

• Continuous integration and development using Docker (Turnbull, 2014) and Kubernetes
(Burns et al., 2018)

• Front-end development using React (Aggarwal, 2018) and TypeScript (Freeman, 2019)

• Back-end development using Python (Rossum, 1995) and Flask (Aslam et al., 2015)

42

10 | Discussion On Ethical Implica-
tions

This chapter will discuss the ethical implications of this project and what these implications
mean for the way the product should be maintained and handled.

10.1 Privacy of Data
In the system, client data is being processed to enable the end users to see what projects belong
to what clients. The data in these projects is stored in a Google Cloud PostgreSQL database.
This database is located in Europe and therefore it follows the European GDPR rules regarding
privacy, this takes away the major concern of privacy of data. Other data that is being entered
into the system via the user interface is not as sensitive and therefore no ethical concerns apply
to that data. P3D will notify their clients about the location of their data. In case they do
not agree with this, P3D will offer the option to not use this system for their project. If in the
future, more clients report having an issue with the hosting location of their data, it is possible
to modify the system to make use of alternative database hosting solutions with minimum effort.

10.2 Security
Although the data used within the project is stored in a database that follows strict regulations
from the EU, the way the data is being processed within the system can also be seen as an ethical
discussion point. However, since all data in the project is being sent over secure connections, and
authentication is needed to access the system the security has been taken care of in this project.
It is recommended that the system will be maintained by other developers upon delivery to
make sure that the latest security fixes have been implemented and no possible security issues
arise.

43

A | Original Project Definition
P3D (part of Promolding Holding) has developed the PRIM® (PRinted Injection Mould) tech-
nology: injection moulding of plastic products in 3D printed plastic moulds. P3D has all the
expertise and machines for 3D printing and injection moulding available in-house. This way
we are able to get from product design to production in the shortest way possible. With this
service we provide a substantial part of product development and production start-up for our
clients in a way that was not possible before.
In short: automate all steps in our workflow by building (parts of) a management system.

P3D is a young company and a sister company of injection moulder Promolding. P3D pro-
duces small series injection moulded products for a wide variety of clients. We have found
developed an affordable way to let injection moulding have very short lead-times for making
small series injection moulded parts by applying 3D printed moulds.
At the moment we are very much a company mainly focused on making physical products. And
although this will remain the core of our activities, we need to improve our processes in all areas
to make them leaner, better controlled, quicker, of higher quality, etc.
In this processes improvements we see digitisation as the way forward.
This goes for all steps in our processes. Sales, project management, planning, mould design and
making, materials management and handling, supplier management, production, finance, etc,
etc. Are you the ones to help us out with our next steps?

The project will consist of:

• Getting to know the processes of P3D; why, what and how?

• What can be automated and done smarter?

• Get better grip on project management and planning: this will be the focal point of the
project.

• What is needed and how can it be realised?

• Whatever we build: how will it be sustainable for future implementations of automation?

First you will get to know the processes of what we do from A to Z. How do we work, what
do we do, who are involved, what is injection moulding, etc, etc. With this information a rough
picture can be painted of what, where and how digitisation/automation can be implemented.
Data will be obtained from current software being CAD-software (Autodesk Fusion 360), ERP
(Bemet Plan de Campagne), Excel and webforms.
The biggest part of the assignment will be: how can project management and planning be
automated, optimised and better controlled? From the first contact with a client, his project
should be (visibly) planned and scheduled with a simple push of a button (so to speak). At
the start of a client project, most steps are still pending and preliminary. During the project
steps become done, fixed, adjusted, etc. This should be clear to all stakeholders, including our
co-workers, suppliers and clients. Visual, flexible and accessible with people focusing on decision
making rather than data entry.
So, your student project will be to develop a planning module for P3D that has the flexibility
to grow and be implemented in the bigger picture of our company.

44

Bachelor Thesis:
A Data Management System for P3D

Client organization: P3D
26-01-2021

P3D is an injection moulding company that uses a technology called PRIM®(Printed Injection
Mould) to create products for its customers. The data of the workflow of P3D was not

digitised and was therefore prone to human errors. The company needed a data management
system to keep track of the workflow. The system needed to connect to multiple databases
and was therefore developed with a microservice architecture. The big challange during the
research phase was understanding how microservices work, how docker containers are created

and how to deploy those containers on a kubernetes server. It is hosted on the Google
Kubernetes Engine. The final product became a web application that was tested with
back-end tests and front-end client confirmation. The product will be used and further

developed by P3D.

Members:

• Zeger Mouw (Project Data, Deployment) zegermouw@gmail.com

• Gijs Paardekooper (Microservices, Databases and testing) gijs.paardekooper@gmail.com

• Abri Bharos (Back-end Development, specifically planning tool) a.r.j.bharos@gmail.com

• Tim Pelser (Front-end Development) timpelser@outlook.com

• Erik Sennema (ScrumMaster, Deployment) eriksennema@outlook.com

All team members contributed to preparing the report and the final project presentation

Client: Jeroen Gross (Business Unit Manager)
TU Coach: Asterios Katsifodimos (Faculty of Engineering, Mathematics and Computer

Science Tu Delft, Web Information Systems)

The final report for this project can be found at: http://repository.tudelft.nl

Bibliography
Aggarwal, Sanchit (2018). “Modern Web-Development Using ReactJS | Document Object Model

| Model–View–Controller”. In: International Journal of Recent Research Aspects 5.1, pp. 133–
137. url: https://www.scribd.com/document/379709841/Modern-Web-Development-
Using-ReactJS#download.

Ashley, David (2020). “Comparing CGI, SSI, Flask, and Django”. In: Foundation Dynamic Web
Pages with Python. Springer, pp. 201–208.

Aslam, Fankar Armash, Hawa Nabeel Mohammed, Jummal Musab Mohd. Munir, and Murade
Aaraf Gulamgaus (2015). “Efficient Way of Web Development Using Python And Flask”.
In: International Journal of Advanced Research in ComputerScience 6.2, pp. 54–57. url:
https://core.ac.uk/download/pdf/55305148.pdf.

Brito, G and M T Valente (2020). “REST vs GraphQL: A Controlled Experiment”. In: 2020
IEEE International Conference on Software Architecture (ICSA), pp. 81–91.

Burns, Brendan, Joe Beda, and Kelsey Hightower (2018). Kubernetes. Dpunkt.

Dybå, Tore and Torgeir Dingsøyr (2008). “Empirical studies of agile software development: A
systematic review”. In: Information and Software Technology 50.9-10, pp. 833–859. issn:
09505849.

Ebert, C, G Gallardo, J Hernantes, and N Serrano (2016). “DevOps”. In: IEEE Software 33.3,
pp. 94–100. issn: 1937-4194.

Freeman, Adam (2019). “Understanding TypeScript”. In: Essential TypeScript: From Beginner
to Pro. Berkeley, CA: Apress, pp. 35–40. isbn: 978-1-4842-4979-6. url: https://doi.org/
10.1007/978-1-4842-4979-6_2.

Fuchs, C, S Spolaor, M S Nobile, and U Kaymak (2020). “pyFUME: a Python Package for Fuzzy
Model Estimation”. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp. 1–8.

Hardt, Dick et al. (2012). The OAuth 2.0 authorization framework. Tech. rep. RFC 6749, Oc-
tober.

P3D, BEP (2021). Bep-framework. url: https://pypi.org/project/bep-framework/.

Reese, Will (2008). “Nginx: the high-performance web server and reverse proxy”. In: Linux
Journal 2008.173, p. 2.

Rossum, Guido (1995). Python Reference Manual. Tech. rep. NLD.

Turnbull, J (2014). The Docker Book. James Turnbull. isbn: 9780988820234. url: https://
books.google.nl/books?id=CtMEBwAAQBAJ.

Villamizar, Mario, Oscar Garces, Harold Castro, Mauricio Verano, Lorena Salamanca, Rubby
Casallas, and Santiago Gil (2015). “Evaluating the monolithic and the microservice architec-
ture pattern to deploy web applications in the cloud”. In: 2015 10th Colombian Computing
Conference, 10CCC 2015 October, pp. 583–590.

https://www.scribd.com/document/379709841/Modern-Web-Development-Using-ReactJS#download
https://www.scribd.com/document/379709841/Modern-Web-Development-Using-ReactJS#download
https://core.ac.uk/download/pdf/55305148.pdf
https://doi.org/10.1007/978-1-4842-4979-6_2
https://doi.org/10.1007/978-1-4842-4979-6_2
https://pypi.org/project/bep-framework/
https://books.google.nl/books?id=CtMEBwAAQBAJ
https://books.google.nl/books?id=CtMEBwAAQBAJ

Vohra, Deepak (2016). Kubernetes Microservices with Docker. 1st. White Rock: Apress, pp. 39–
42.

Waters, Kelly (2009). “Prioritization using MoSCoW”. In: Agile Planning 12, p. 31.

	Introduction
	Document structure

	Research Report
	Overview
	Problem definition and analysis
	Problem Definition
	Problem analysis
	Workflow P3D
	Existing Technologies

	Design Goals
	Extensibility
	Maintainability
	Flexibility

	Requirements
	Must Have
	Should Have
	Could Have
	Won't Have

	Implementation
	Architecture
	Development Methodology
	Technologies/Tools
	Testing

	Design
	Overview
	Challenges
	Extensibility
	Maintainability
	Security

	Changes Made Throughout The Project
	Final Design Summary

	Implementation
	Overview
	Microservices
	Microservice Implementation Overview
	Created microservices
	Python Package

	Deployment
	Docker
	Kubernetes
	Container registry
	Google Cloud
	Docker-Compose

	Code feedback Software Improvement Group
	Proof of Concept
	Overview of the POC
	Project input
	Project overview
	Planning overview
	Timeline
	Tool-tip information
	Visual cues
	Overlap detection
	Conclusions

	Testing
	Back-end Testing
	Testing Approach

	Code Coverage

	Product Evaluation
	Overview
	Evaluation Design Goals
	Extensibility
	Maintainability
	Flexibility

	Evaluation requirements
	Summary

	Process Evaluation
	Conclusions
	Recommendations
	Possible system extensions
	Connection to a cloud-based ERP system
	Automatic planning of projects
	Addition of incremental progress and more types of processes
	Data analysis of previous projects

	Maintainability and extensibility in the future

	Discussion On Ethical Implications
	Privacy of Data
	Security

	Appendix Original Project Definition

