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Preface
This documents describes the master thesis of Damy Ha, which was done under daily supervision of
Dr. Timo Deist and overall supervision of Prof. Dr. Peter A.N. Bosman. This work has been submitted
to the seventeenth International Conference on Parallel Problem Solving from Nature (PPSN XVII) in
the form of a conference paper. Support was granted in the form of an internship by CentrumWiskunde
& Informatica (CWI), which is financed by NWO.

In this document we look at different algorithms to solve realvaluedmultiobjective problems. Specif
ically, we look at an uncrowded hypervolumebased (UHV) evolutionary algorithm (EA) and an UHV
based gradient algorithm. EAs are wellknown to be highly suited for multiobjective (MO) optimization.
Recently however, a gradientbased UHV algorithm, known as UHVADAM, was shown to be more
efficient than (UHVbased) EAs if few local optima are present. If many local optima are present, EAs
generally remain more efficient. Combining the two techniques could exploit synergies, especially if
problems have many local optima, i.e., the EA could be leveraged to avoid local optima while the ef
ficiency of gradient algorithms could speed up convergence to the Pareto set. It is a priori however
not clear what would be the best way to make such a combination. In this work, therefore, we study
the use of a dynamic resource allocation scheme to create hybrid UHVbased algorithms. On sev
eral biobjective benchmarks, we find that the hybrid algorithms produce similar or better results than
the EA or gradientbased algorithm alone, even when finite differences are used to approximate gradi
ents. The implementation of the hybrid algorithm is available at https://github.com/damyha/uncrowded
hypervolume.

The members of the thesis committee are: Prof. dr. P. A.N. Bosman, Dr. S. Picek and Dr. T. Deist.
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Delft, August 2021

iii

https://ppsn2022.cs.tu-dortmund.de
https://github.com/damyha/uncrowded-hypervolume
https://github.com/damyha/uncrowded-hypervolume




Contents

1 Introduction 1

2 Background 3
2.1 Multiobjective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Defining a multiobjective problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Multi modal problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Approaches to solve multiobjective problems . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Dominationbased evolutionary approach on multiobjective problems . . . . . . . 4
2.2.2 UHVbased approach on multiobjective problems . . . . . . . . . . . . . . . . . . 5
2.2.3 UHVbased hybrid approach on multiobjective problems . . . . . . . . . . . . . . 6

2.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Hybridization 9
3.1 Gradient algorithm UHVADAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Mechanisms of UHVADAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Derivation of the UHV gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Changes made to UHVADAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Evolutionary algorithm UHVGOMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Mechanisms of UHVGOMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 GOMEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 The hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 The resource allocation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Improvement metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Distribution method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Experiments 17
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Benchmark problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Experiment 1: Improvement metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Results of experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Analysis of large population sizes in Problem 0 of experiment 1. . . . . . . . . . . 22

4.3 Experiment 2: Comparison between gradient algorithms . . . . . . . . . . . . . . . . . . 22
4.3.1 Results of experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Experiment 3: Distribution method of UHVADAM . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Results of experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 WFG Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 Results of the WFG Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Discussion 29

6 Conclusion 31

A Experiment 2: Gradient Parameters 33

v





1
Introduction

In realvalued single objective optimization, a commonly used and wellstudied type of algorithms are
gradient algorithms. Gradients indicate in which direction the most improvement can be obtained lo
cally. By iteratively following the gradients, an optimum can be efficiently found. This optimum however,
can turn out to be a local optimum, i.e. an optimum that is not globally optimal. Usually however, the
global optimum is what is desired. Evolutionary algorithms (EAs) are another class of optimization
algorithms. EAs, in general, are known for their control mechanisms in avoiding local optima. A key
mechanism for this lies in that multiple solutions are kept in a population. Search space information is
iteratively inferred from the population and used to guide the search towards an optimum.

In this work, we focus on realvalued multiobjective (MO) optimization, where multiple objectives
need to be optimized. Usually however, the objectives contradict each other, resulting in that there is
not a single solution that is optimal for all objectives. As a consequence, MOoptimization algorithms
usually try to find a diverse set of Pareto optimal solutions, usually as efficiently as possible.

Evolutionary algorithms (EAs)(e.g. [1], [2], [3]) are wellknown to be highly suited for MO optimiza
tion [4]. However, in realvalued MO optimization, classic dominationbased approaches (see section
2.2.1) lose selection pressure when approaching the Pareto set [5], [6]. Indicatorbased approaches,
such as optimizing the hypervolume (HV) [7] or the extended uncrowded hypervolume (UHV) [8], [9]
can overcome this issue and ensure that individual solutions converge to the Pareto set. Recently, a
gradientbased UHV algorithm known as UHVADAM [10] was shown to be more efficient than (UHV
based) EAs if few local optima are present. If many local optima are present however, EAs generally
remain more efficient. Combining the two techniques could exploit synergies, especially on problems
with many local optima, i.e., the EA could be leveraged to avoid local optima while the gradient algo
rithms could be leveraged to efficiently converge to the Pareto set. It is however unknown a priori, how
the techniques should be combined to get the best results. Attempts in the literature however have
been successful at creating efficient MO hybrid algorithms.

In [3] a hybrid algorithm was proposed that probabilistically executes different variation operators of
EAs. Gradient algorithms however have not been integrated into their work. In [11] a dominationbased
EA was combined with gradientbased algorithms that exploit either the gradient of a single objective or
a combination thereof that corresponds to maximum improvement in a multiobjective sense. Further
more, resources are dynamically assigned to the gradient algorithms via a resource allocation scheme
(RAS). A HVbased hybrid algorithm was introduced in [12], which combines both an EA and gradient
algorithm that aim to maximize the HV. In contrast to [11] however, [12] executes the gradient algorithm
after the EA is finished. Supplementing the EA during evolution however might be of key value.

In this work, we study the potential of unifying the convergence properties of UHVbased MO al
gorithms with a hybrid interleaving optimization scheme. Specifically, we formulate a new UHVbased
hybrid algorithm and show that the hybrid algorithm is capable of performing better than the worst of
the original algorithms or in some cases better than both algorithms. For this, we combine a UHV
based EA called UHVGOMEA [9] with UHVADAM [10] via an extended RAS of [11]. The resulting
hybrid algorithm is consequently UHVbased. The UHV distinguishes itself in that a set of solutions
is optimized instead of individual solutions. Concretely, this means that the UHVbased hybrid (and
EA) employ populations of solution sets, not individual solutions, where each individual solution set
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2 1. Introduction

is optimized towards the Pareto set. In this work, we furthermore empirically determine the hybrid’s
architecture using a similar set of benchmarks as in [9] and [10]. We then compare the final algorithm
with its component algorithms, UHVGOMEA and UHVADAM, and other UHVbased algorithms on
the Walking Fish Group (WFG) benchmark set. This report starts off with a literature study in chapter
2. Chapter 2 contains basic information on realvalued MO problems and lays the foundation of the
research questions. The hybridization method is then described in chapter 3. This chapter explains the
mechanics of the algorithms that are used for the hybridization, the modification done to those algo
rithms such that hybridization is achievable and ends with the hybridization scheme. The experiments
to investigate the architecture of the hybrid are then shown in chapter 4. After the experiments, the
discussion can be found in chapter 5 followed by the conclusion in chapter 6.



2
Background

This chapter introduces the terminology used in this work to describe realvalued multiobjective (MO)
optimization. It starts off by defining an MO optimization problem, followed by a brief summary of
existing MO algorithms. Finally, a research question and its sub questions are defined.

2.1. Multiobjective optimization
In realvalued single objective (SO) optimization, a single objective needs to be optimized. Solutions
are iteratively selected from a search space and are evaluated using the objective function until a
termination condition is satisfied, e.g. when a solution is found that satisfies a desired objective value
or when a computation budget has been depleted. Multiobjective (MO) optimization, differs from SO
optimization in that multiple objectives need to be optimized simultaneously. Generally, the objectives
contradict each other. As a consequence, a single solution usually does not exists that is optimal in
all objectives. Instead, a set of Pareto optimal solutions, called the Pareto set, exists. These Pareto
optimal solutions are optimal in that other solutions can not be found that are better in all objectives.
Only other Pareto optimal trade offs can be found. The goal of MO optimization is usually to find a
diverse and representative subset of this Pareto set. This set of solutions can then be given to a
decision maker that picks one of the trade off solutions.

2.1.1. Defining a multiobjective problem
In this work, an SO optimization problem is defined as a single function 𝑓 ∶ 𝒳 → ℝ which needs to be
minimized, where𝒳 ⊆ ℝ𝑛 is an 𝑛dimensional search space. In an MO optimization problem,𝑚 objec
tive functions need to be minimized. Let f ∶ 𝒳 → ℝ𝑚, with f = [𝑓0, ..., 𝑓𝑚−1] be an 𝑚dimensional vector
of objective functions. In this work, we only focus on biobjective problems (𝑚 = 2). The values that
vector f can take is called the objective space. A solution x of search space𝒳, where x = [𝑥0, ..., 𝑥𝑛−1],
will be called an MOsolution. Assessing an MOsolution x with f maps the solution from the search
space to the objective space. To asses the quality of an MOsolution, Pareto optimality is often used.
The terminology associated with Pareto optimality will be listed below. Figure 2.1 furthermore illustrates
the important concepts of Pareto optimality relevant to this work, for an arbitrary biobjective function
in a 2D search space.

• Weak dominance: A solution x0 ∈ 𝒳 is said to weakly dominate solution x1 ∈ 𝒳, written as
x0 ⪯ x1 if and only if 𝑓𝑖(xo) ≤ 𝑓𝑖(x1), ∀𝑖 ∈ {1, ..., 𝑚}

• Dominance: A solution x0 is said to dominate solution x1, written as x0 ≺ x1 when it is weakly
dominated and ∃𝑖 ∈ {1, ..., 𝑚} ∶ 𝑓𝑖(xo) < 𝑓𝑖(x1).

• Pareto optimal solution: A solution is Pareto optimal when it is not dominated by any
solution in 𝒳.

• Pareto set: Pareto set 𝒜⋆ is the set of all Pareto optimal solutions:
𝒜⋆ = {x0 ∈ 𝒳 ∶ ∄x1 ∈ 𝒳 ∶ x1 ≺ x0}.

3



4 2. Background

• Pareto front: The Pareto front is the vectors of objective values obtained by applying the
objective functions on all Pareto optimal solutions: {f(x) ∶ x ∈ 𝒜⋆}.

Using Pareto optimality, the goal of MOalgorithms is usually to find a set 𝕊 ⊂ 𝒳 of a manageable
number of (near)Paretooptimal MOsolutions, preferably also as efficiently as possible.

Search Space

x0

x1

f0

f1

Objective space
f(x): 2 à 2

Pareto set

Non dominated  
solutions

Dominated  
solutions

Pareto front

Figure 2.1: Pareto optimality shown for an arbitrary biobjective optimization problem in a 2D search space. The search space
and objective space are displayed on the left and right respectively.

2.1.2. Multi modal problems
Depending on which objective functions aMOoptimization problem contains, different objective spaces
can be constructed. In this work, two types of problems are examined. Unimodal problems are defined
as problems where the objective functions are unimodal, i.e. the functions only have one global optima
and no other local optima exists. Multimodal problems in this work, will be referred to as problems
where at least one objective function has local optima. Multimodal problems differ from unimodal
problems, in that MOoptimization algorithms can get stuck in an local optimum. This possibly prevents
an MOalgorithm from fully converging to the Pareto set.

2.2. Approaches to solve multiobjective problems
In order to solve multiobjective problems, in this work we will look at two types of algorithms, namely:
evolutionary algorithms (EAs) and gradient algorithms. We will also look at two different approaches,
namely: dominationbased and indicatorbased.

2.2.1. Dominationbased evolutionary approach on multiobjective problems
Evolutionary algorithms (EAs) have shown to be effective at solving realvalued MOoptimization prob
lems [4]. EAs, which use natural evolution as a metaphor for constructing randomized search algo
rithms, are heuristic algorithms. They usually maintain a collection of solutions, referred to as a “pop
ulation“, and use the population to infer information from the search space. In general, an EA follows
the cyclic pattern displayed in figure 2.2. The EA starts off by initializing a population of solutions in
the search space. From the population, parents are selected to produce offspring. The offspring are
evaluated, and depending on the selection strategy, used to replace members of the old population.
The process repeats until a termination condition is satisfied, e.g. when the computational budget has
expended or when a solution has been found that satisfies certain criteria. Determining which parents
are selected for producing offspring is an important design aspect of an EA. Premature members of a
population canmake the gene pool too homogeneous, resulting in convergence to local optima. Choos
ing less fit parents decreases the probability of ending up in local optima but usually also slows down
convergence. How offspring is created from parent solutions is an another important design decision.

Well known realvalued MO EAs (e.g. [1], [13]) are dominationbased. Dominationbased EAs
employ dominationbased fitness selection schemes to push the individual MOsolutions to the Pareto
set. Usually, if a solution is found that dominates a solution of the population, the dominated solution
is replaced by this newly found nondominated solution. Dominationbased strategies however, often
lose selection pressure when approaching the Pareto set [5], [6]. When the population size is much
smaller than the Pareto set, at some point in time, the population of an EA is likely to only consist
of nondominated solutions. From this population of nondominated solutions and the nondominated
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Evolutionary
Cycle

Initial
population Selection

Create
offspring

TerminationCalculate
fitness

Figure 2.2: General evolutionary cycle of an EA

offspring solutions that it creates, solutions must be selected for the population of the next generation.
All nondominated solutions are considered equally good in terms of Pareto optimality. As such, it is
not clear which nondominated solutions must be brought over to the next population and which must
be discarded. This results in the loss of selection pressure. Losing selection pressure not only causes
the selection to turn into a random selection, but also causes the search to turn into a random search.
Discarding nondominated solutions furthermore causes loss of information of the search space. Loss
of information is detrimental to the search, as solutions can deteriorate in terms of quality as the search
progresses.

Figure 2.3 illustrates an example in objective space where solutions deteriorate in terms of Pareto
efficiency. In this example, a search process is initiated in generation 0, where the population size is 4.
In generation 1, offspring is produced and 4 solutions must be selected for the next population. In this
example, 2 parents consistently generate dominated solutions that are discarded, causing the parent
solutions to always be selected for the next generation. We are however, more interested in the other
2 nondominated parent and nondominated offspring pairs in “Situation A“ and “Situation B“. To fill
up the 2 remaining spots of the next generation’s population, we are free to pick any combination of
the nondominated solutions. We decide, for an arbitrary reason, to pick the nondominated offspring
solution in situation A, and the nondominated parent solution in situation B. In generation 2, we once
more select 2 solutions to our liking. In situation A, we once again choose the nondominated offspring
solution. In situation A however, it is not evident that this decision leads to the loss of quality. The
offspring’s grand parent solution (of generation 0) dominates the current offspring solution, however it
was earlier discarded. In situation B, we choose the offspring solution, as it clearly dominates the parent
solution, and thus leads to an improvement of the front. These two situations lead to a simultaneous
front degradation and front improvement. In practice, this effect occurs regularly once most solutions
of a population are nondominated, and effectively prevents the solutions from fully converging to the
Pareto set.

2.2.2. UHVbased approach on multiobjective problems
Indicatorbased approaches, which for example optimize the hypervolume (HV) [14] or uncrowded hy
pervolume (UHV) [9], have shown promising results to overcome the stagnation that occurs in domination
based approaches and ensures that individual solutions converge to the Pareto set. Indicatorbased
MO algorithms use indicator functions to asses and assign a numeric value to a solution or more com
monly a set of limited number of solutions 𝑝, as is the case with the HV and UHV indicator functions.
Assessing a set of solutions allows these indicator functions to combine proximity and diversity into a
numeric value, effectively redefining an MO optimization problem into an SO optimization problem. In
this work, we focus on UHVbased MO algorithms. The UHV is based on the wellknown HV indicator
function, but additionally applies pressure on dominated solutions to improve.

The UHV, which is calculated over a set 𝕊 consisting of 𝑝 solutions, measures the HV, i.e. the area
in objective space enclosed by the nondominated solutions of 𝕊 and a predetermined reference point
r = (𝑟0, 𝑟1), and punishes the dominated solutions of 𝕊 via the uncrowded distance (ud) as displayed
in equation 2.1. To calculate the HV, let 𝒜 be the approximation set that contains all nondominated
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Figure 2.3: An example of dominationbased EAs and the consequences of losing selection pressure for a population size of 4.
In each generation, 4 solutions must be selected for the next generation’s population. In situation A and B, front degradation and
front improvement are observed over time.

solutions of 𝕊. 𝒜 then forms an approximation boundary 𝜕f(𝕊) in objective space, as is shown in figure
2.4. The HV is the region encapsulated between approximation boundary 𝜕f(𝕊) and reference point
r. The aforementioned uncrowded distance ud(x, 𝕊) is the closest Euclidean distance between MO
solution x’s objective values f(x) and the approximation boundary 𝜕f(𝕊). By definition, ud(x, 𝕊) is zero
for a nondominated solution. In equation 2.1, the uncrowded distances are taken to the power of 𝑚
(number of objectives), to get to the same unit as the HV [9]. The sum of uncrowded distances is
furthermore scaled by 1

|𝕊| to reduce the undesired effect of increasing the uncrowded distances when
the HV improves.

The goal of UHVbased algorithms is to maximize the UHV, as maximization leads directly to the
minimization of the original objective functions as well improving the diversity [15].

UHV(𝕊) = HV(𝕊) − 1
|𝕊| ∑

x∈𝕊
ud(x, 𝕊)𝑚 (2.1)

f0

f1

Uncrowded distance ud(x, 𝕊)

Reference point r
Approximation set 𝒜(𝕊)
Dominated solution of 𝕊
Hypervolume HV(𝕊)
Approximation boundary ∂f(𝕊)

Objective space

Figure 2.4: Illustration of the uncrowded hypervolume in an arbitrary biobjective minimization problem.

2.2.3. UHVbased hybrid approach on multiobjective problems
In this work, we select two recently introduced UHVbased algorithms as candidates for hybridiza
tion, namely: evolutionary algorithm UHVGOMEA [9] and gradient algorithm UHVADAM [10]. UHV
GOMEA has been selected, as in [9] it was shown that UHVGOMEA is able to overcome stagnation,
which dominationbased EAs suffer from. Furthermore, UHVGOMEA is part of the Genepool Optimal
Mixing (GOM) family of algorithms, which have shown great success in various optimization problems.
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UHVADAM has been selected as gradient algorithm, not only because it is also UHVbased and thus
limits the potential number of compatibility issues between UHVGOMEA and UHVADAM, but also
because it has shown superior performance with respect to UHVGOMEA in [10], when MO problems
have few local optima and, especially when the gradients are analytically calculated at no additional
cost.

We will combine both algorithms by extending the resource allocation scheme (RAS) of [11]. The
resulting hybrid algorithm is consequently UHVbased. The UHV is used to optimize a set of solutions
towards the Pareto set, instead of individual solutions. Concretely, this means that the UHVbased
hybrid that will be constructed and UHVGOMEA both employ a population of solution sets, not a
population of individual solutions as usually is the case with dominationbased EAs such as [1], [13].
Each solution set is optimized towards the Pareto set, where at termination, the best solution set is
selected from the population. For UHVADAM, only a single solution set is optimized. The internal
mechanics of UHVADAM and UHVGOMEA will be discussed in section 3.1 and 3.2 respectively.

2.3. Research question
In this work the main research question is: “Using the redefinition of multiobjective problems to single
objective problems via the uncrowded hypervolume distance, can hybrid algorithms be constructed
that are more efficient in solving multiobjective problems compared to pure evolutionary algorithms or
gradient algorithms? “

To answer the research questions the following sub questions must be asked:

• How should the architecture of the hybrid, and in particular a hybrid that uses a dynamic resource
allocation scheme, look like ?

• How does the empirically determined hybrid algorithm compare to its component algorithms?





3
Hybridization

This chapter describes the hybridization method of combining evolutionary algorithm UHVGOMEA
with gradient algorithm UHVADAM. This chapter starts off by highlighting the mechanics of the indi
vidual algorithms and the changes made to the original algorithms to facilitate the hybridization. The
hybridization method is then described.

3.1. Gradient algorithm UHVADAM
3.1.1. Mechanisms of UHVADAM
UHVADAM [10] is based on the stochastic gradient descent algorithm ADAM [16]. It optimizes a single
solution set 𝕊 of 𝑝 number of MOsolutions, which it parameterizes as 𝜙0 such that 𝜙0 = [x0, ...,xp−1] ∈
ℝ𝑝⋅𝑛. Let F(𝜙0) be the operator that assesses the objective functions for every MOsolution in 𝜙0,
as displayed in equation 3.1. UHVADAM starts by randomly initializing the MOsolutions of 𝜙0 and
evaluates the objective values (𝑓0(xi), 𝑓1(xi)) and objective gradients (∇𝑓0(xi), ∇𝑓1(xi)) for every MO
solution xi (𝑖 = 0,⋯ , 𝑝 − 1) of solution set 𝜙0. Using the objective values and objective function
gradients, the gradient of the UHV indicator: ∇UHV(𝜙0) is calculated. ∇UHV(𝜙0) indicates how MO
solutions in the search space must move to (locally) obtain the most UHV gain. In section 3.1.2, the
derivation of the UHV gradient is summarized for the interested reader.

UHVADAMdetermines the direction in which solutions aremoved in the next iteration via a variance
corrected weighted average of ∇UHV(𝜙0) dubbed 𝜁. How far the solutions are moved is determined
by 𝛾 and the variance correction. 𝛾 is determined by a shrinking scheme which reduces 𝛾 by 1 percent
if no UHV improvement was found. The initial 𝛾 is computed by taking 1% of the average initialization
range. This initialization method will be used later to reinitialize UHVADAM within the hybrid algorithm.
UHVADAM repeats the process of calculating the UHV gradient and moving the solutions until all com
putation resources, e.g., a time or function evaluation budget, have been spent or a desired UHV value
has been reached. The pseudo code of UHVADAM is shown in algorithm 1.

F(𝜙) = [
f(x0)
...

f(xp−1)
] = [

𝑓0(x0) ... 𝑓𝑚−1(x0)
⋮ ⋱ ⋮

𝑓0(xp−1) ... 𝑓𝑚−1(xp−1)
] ,where 𝜙 = [

x0
...

xp−1
] (3.1)

3.1.2. Derivation of the UHV gradient
In section 3.1.1, the UHV gradient, i.e. ∇UHV(𝜙0), was calculated as it indicates how MOsolutions
in the search space must move to (locally) obtain the most UHV gain. Consequently, an expression
needs to be determined for ∇UHV(𝜙0). We will summarize the derivation of [10] and [17], by starting
off with the formalization of the UHV gradient in equation 3.2.

∇UHV(F(𝜙)) = 𝜕UHV(F(𝜙))
𝜕𝜙 = [𝜕UHV(F(𝜙))𝜕x0

, ..., 𝜕UHV(F(𝜙))𝜕xp−1
] (3.2)

9



10 3. Hybridization

Algorithm 1 Pseudo code of UHVADAM
1: function UHVADAM
2: 𝑡 ← 0
3: 𝜙0(𝑡) ← initializeSingleSolutionSet()
4: 𝛾(𝑡) ← setInitialStepSize(𝒳init)
5: F(𝜙0(𝑡)), ∇F(𝜙0(𝑡)) ← evaluate(𝜙0(𝑡)) // Evaluate fitness and gradients
6:
7: while ¬terminate do
8: ∇UHV(𝜙0(𝑡)) ← calculateUHVGradient(F(𝜙0(𝑡)), ∇F(𝜙0(𝑡)))
9: 𝜁(𝑡) ← updateWeightedAverage(∇UHV(𝜙0(𝑡)))

10: 𝜙0(𝑡 + 1) ← 𝜙0(𝑡) + 𝛾(𝑡)𝜁(𝑡) // Update solution set
11: F(𝜙0(𝑡 + 1)), ∇F(𝜙0(𝑡 + 1)) ← evaluate(𝜙0(𝑡)) // Evaluate fitness and gradients
12:
13: if UHV(𝜙0(𝑡 + 1)) < UHV(𝜙0(𝑡)) then // Update step size
14: 𝛾(𝑡 + 1) ← 0.99 ⋅ 𝛾(𝑡)
15: else
16: 𝛾(𝑡 + 1) ← 𝛾(𝑡)
17: 𝑡 ← 𝑡 + 1
18: return 𝜙0 // Return the solution set

In section 2.2.2, the UHV was shown to be calculated in objective space. The MOsolutions of the
solution set however, move in the search space. To bridge the two different spaces, the chain rule is
applied on the UHV indicator, that is: first derive the UHV with respect to the objective space followed
by a derivative of the objective space with respect to the search space. Equation 3.3 shows the chain
rule for a single MOsolution xi.

𝜕UHV(F(𝜙))
𝜕xi

= 𝜕UHV(F(𝜙))
𝜕F(𝜙)

𝜕F(𝜙)
𝜕xi

=
𝑝−1

∑
𝑗=0

𝜕UHV(F(𝜙))
𝜕f(xj)

𝜕f(xj)
𝜕xi

(3.3)

In equation 3.3, 𝜕f(xj)𝜕xi
can be observed, which is the objective gradient, i.e. how the objective value

changes with respect to the MOsolutions in the search space. To make it even more clear, this is the
gradient that is analytically calculated or must be estimated. The objective gradient of MOsolution
𝑗 is calculated irrespective of MOsolution 𝑖. Consequently, in equation 3.3, 𝜕f(xj)𝜕xi

= 0 ∀𝑖 ≠ 𝑗. For

𝑖 = 𝑗, we obtain 𝜕f(xi)
𝜕xi

= [∇𝑓0(xi), ..., ∇𝑓𝑚−1(xi)], which is a concatenation of all objective gradients

with respect to solution xi. As we only consider biobjective problems, 𝜕f(xi)𝜕xi
can be further reduced to

[∇𝑓0(xi), ∇𝑓1(xi)]. Furthermore, equation 3.3 can be reduced to equation 3.4.

𝜕UHV(F(𝜙))
𝜕xi

= 1
𝑊
𝜕UHV(F(𝜙))
𝜕𝑓0(xi)

∇𝑓0(xi) +
1
𝑊
𝜕UHV(F(𝜙))
𝜕𝑓1(xi)

∇𝑓1(xi) (3.4)

Equation 3.4 shows that the UHV is directly influenced by the objective gradients. An imbalance in
the size of the objective gradients can bias the UHV gradient towards one of the objectives. For this
reason, the objective gradients are normalized by𝑊 = ‖[ 𝜕UHV𝜕𝑓0(xi)

, 𝜕UHV𝜕𝑓0(xi)
]‖, transforming equation 3.4 to

equation 3.5.

𝜕UHV(F(𝜙))
𝜕xi

= 𝜕UHV(F(𝜙))
𝜕𝑓0(xi)

∇𝑓0(xi) +
𝜕UHV(F(𝜙))
𝜕𝑓1(xi)

∇𝑓1(xi) (3.5)

The final step is to unpack the UHV into the hypervolume (HV) and uncrowded distance (ud). Equa
tion 3.6 shows the unpacking for a single objective function, where 𝑘 is the objective number (𝑘 ∈ {0, 1}).
𝜕HV(F(𝜙))
𝜕𝑓𝑘(xi)

is the HV improvement with respect to objective function 𝑘. 𝜕UHV(F(𝜙))𝜕𝑓1(xi)
is the improvement of

the uncrowded distance with respect to objective function 𝑘.
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𝜕UHV(F(𝜙))
𝜕𝑓𝑘(xi)

= 𝜕HV(F(𝜙))
𝜕𝑓𝑘(xi)

− 𝜕UD(F(𝜙))𝜕𝑓𝑘(xi)
(3.6)

When a solution is dominated, 𝜕HV(F(𝜙))𝜕𝑓𝑘(xi)
does not contribute to the HV and can be set to 0. If it

is nondominated 𝜕HV(F(𝜙))
𝜕𝑓𝑘(xi)

, can be directly determined from the approximation boundary 𝜕f(𝕊), as is
shown in figure 3.1 for x2.

For 𝜕UD(F(𝜙))
𝜕𝑓𝑘(xi)

, when a solution is nondominated, it influences where the approximation front is
located and thus potentially can worsen the uncrowded distance. An improvement in HV however, is
always more desirable than a worsening uncrowded distance. For this reason, the uncrowded distance
is set to 0 for nondominated solutions. If an MOsolution is dominated however, 𝜕UD(F(𝜙))𝜕𝑓𝑘(xi)

can be
determined as it is the horizontal and vertical distance to the the closest point on the approximation
boundary, as is shown in figure 3.1 for x4.

f0

f1

x1

x2

x3

x4

Uncrowded distance d(x, 𝕊)

Reference point r
Approximation set 𝒜(𝕊)
Dominated solution of 𝕊
Hypervolume HV(𝕊)

Approximation boundary ∂f(𝕊)

Objective space

 
 

 

 
 

Figure 3.1: Components of the hypervolume and uncrowded distance gradients.

3.1.3. Changes made to UHVADAM
In this work UHVADAM has been extended such that the singlesolution set solving algorithm is com
patible with populationbased UHVGOMEA. To this end, UHVADAM steps are applied to population
members after a generation of UHVGOMEA. UHVADAM instances are assigned to each solution set
of the population, allowing the weighted moving average and 𝛾 to be tuned accurately and differently
to the environment of each solution set in the population. UHVADAM instances are reset every time
the variation operator of UHVGOMEA is applied to prevent 𝛾 and the moving averages of UHVADAM
instances to become inaccurate if UHVGOMEA makes big leaps in the search space. Resetting the
UHVADAM instances comes at the cost of warming up the moving averages again as well as redeter
mining 𝛾. 𝛾 is reestimated by creating the tightest box that contains all MOsolutions of the population
and to take 1 percent of the average box width. Finally, a RAS will be used to adaptively determine
which algorithm (ADAM or GOMEA) should be used more during a run. After determining the resource
distribution, the resources assigned to UHVADAM must be distributed over the population members.
The distribution methods will be introduced in section 3.3.3, after the resource allocation scheme is
introduced.

3.2. Evolutionary algorithm UHVGOMEA
3.2.1. Mechanisms of UHVGOMEA
UHVGOMEA [9] is a recently introducedUHVbased EA that leverages strengths of the singleobjective
modelbased EA known as RVGOMEA [2]. UHVGOMEA is part of the Genepool Optimal Mixing
(GOM) family of algorithms, known for its use of the GOM operator and the modeling of linkage via a
Family Of Subsets (FOS). Both mechanisms will be explained in section 3.2.2.
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UHVGOMEA starts off by randomly initializing and evaluating a population of 𝑁 solution sets: 𝜙 =
[𝜙0, ⋯ , 𝜙𝑁−1], where each individual𝜙𝑖 (𝑖 = 0,⋯ ,𝑁−1) has 𝑝MOsolutions. Gradient information is not
used nor calculated. UHVGOMEA then selects the best 35% of the solution sets with the highest UHV
value as parents. A variation operator is applied on the parents to create new offspring solution sets,
offspring is evaluated and statistics are calculated to tune the variation operator for the next generation.
This process is repeated until termination. The pseudo code is shown in algorithm 2.

Algorithm 2 The basic structure of UHVGOMEA
1: function UHVGOMEA
2: 𝑡 ← 0
3: 𝜙(𝑡) ← initializePopulation()
4: F(𝜙(𝑡)) ← evaluate(𝜙(𝑡)) // Evaluate population
5:
6: while ¬terminate do
7: parentSet ← selectParents(𝜙(𝑡),F(𝜙(𝑡)))
8: for ℱ𝑗 ∈ ℱ do // Determine parameters for offspring
9: 𝒩(𝜇ℱ𝑗(𝑡), Σℱ𝑗(𝑡)) ← estimateAndAdaptGaussian(parentSet)

10: 𝜙(𝑡 + 1) ← createNewSolutionSets()
11: 𝑡 ← 𝑡 + 1
12: return 𝜙 // Return the solution set

3.2.2. GOMEA
The variation operator of UHVGOMEA is based on the GOM operator of RVGOMEA. The GOM op
erator is used together with a Family Of Subsets (FOS) linkage model. The FOS allows dependencies
between problem variables to be captured. Normally a FOS, denoted by ℱ, is a subset of the power
set of all problem variables. However as UHVGOMEA optimizes multiple MOsolutions, the powerset
is taken over the parameterization of the solution set, i.e. 𝒫([0, 1, ..., 𝑝 ⋅ 𝑛 − 1]). Each subset ℱ𝑗 of ℱ
describes the indices of the solution set that are deemed dependent. Although any linkage model can
be constructed, for the hybrid, we only focus on the marginal product linkage model (Lm) as UHV
GOMEA has shown superior performance with Lm in most experiments of [9]. The Linkage Tree (Lt)
FOS however, will also be used, but only by UHVGOMEA when it acts as a reference in the WFG
benchmark.

Before any linkage model is created in UHVGOMEA, UHVGOMEA first greedily rearranges the
MOsolutions of each solution set at the start of a generation. MOsolutions of each solution set are
sorted such that all 𝑖’th MOsolution xi (𝑖 = 0,… , 𝑝−1) is in the same region of the approximation front.
For this, the objective space means 𝑚𝑖 are calculated, where 𝑚𝑖 measures the mean objective values
of the set of all 𝑖’th MOsolution, i.e. m𝑖 =

1
𝑁 ∑

𝑁
𝑗=1 f(x

𝑗
𝑖 ). Each MOsolution of every solution set is then

greedily reordered by iteratively finding the (next)nearest MOsolutionmean pair. At initialization,
this greedy sorting process will not directly lead to sorted solution sets, however as time progresses
solutions will be correctly ordered.

After sorting the MOsolutions of each solution set, the aforementioned linkage models can be
constructed. Lm groups all solution set variables pertaining to xi (𝑖 = 0,… , 𝑝 − 1) into sets. These sets
are part of the Lm FOS. Figure 3.2 illustrates the relationship between xi and ℱ𝑖 for Lm. Lt creates
multiple levels of linkage, by hierarchically clustering the indices of the solution set. It does this in two
stages. Figure 3.3 will be used as an example where a solution set consists of 4 MOsolutions with
a problem dimensionality of 3. At the bottom of figure 3.3, the individual indices of the solution set
are represented as squares, indexed from 0 to 11. Subsets [0, 1, 2], [3, 4, 5], [6, 7, 8] and [9, 10, 11]
represent MOsolutions x0, x1, x2 and x3 respectively. In the first stage of constructing the Lt, a
hierarchical tree is created of the indices pertaining to an MOsolution. For this, UPGMA [18] is used,
where the two nearest subsets are merged iteratively based on a metric, until the original MOsolution
is reconstructed or until a subset size larger than 0.35𝑁−1 is reached. In the example, this means that
in the first stage we merge solution indices 0, 1, 2, according to the UPGMA process, until set [0, 1, 2] is
obtained. The metric used to merge subsets is based on joint mutual information (MI). For the MI, we
collect all the problem parameter values of the population pertaining to the indices of a FOS subset.
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The MI is then calculated as MI𝑖𝑗 = log (√
1

1−(
Σ̂𝑖𝑗
�̂�𝑖�̂�𝑗

)2
), where �̂�𝑗 is the estimated standard deviation of

all problem parameter values pertaining to index 𝑖 and Σ̂𝑖𝑗 is the estimated covariance between indices
𝑖 and 𝑗. For a set of indices 𝑋, where 𝑋 = 𝑎 ∪ 𝑏, the MI between 𝑋 and another set of indices 𝑌 is
calculated as 𝑀𝐼𝑋𝑌 =

|𝑎|
|𝑋|MI𝑎𝑌 +

|𝑏|
𝑋 MI𝑏𝑌.

After the tree is created for the MOsolutions, UHVGOMEA continues to the second phase, where
it merges the indices of the solution sets pertaining to the individual MOsolutions. It reuses UPGMA to
do this, however the Euclidean distance between the mean objective value𝑚𝑖 is used instead of mutual
information. In the second phase, Lt still limits the subset size to 0.35𝑁 − 1 as dependencies of larger
subsets can not be estimated. After the second phase is done, Lt contains all merged subsets and
original problem variables indices, except the FOS subsets that are larger than the subset size limit.
An example where everything is included is shown on the right side of figure 3.3. Lt is reconstructed
every generation as the MOsolutions of the population change over time.

Using any linkage model that is eventually created, the GOM operator is finally applied on all pop
ulation members such that new solutions are created. The GOM operator mixes a selected parent
solution with a donor solution, by changing the parent’s problem variables with that of a donor solution
according to the indices of a selected FOS. Specifically, for each FOS element which contains a set of
indices, a multivariate joint Gaussian distribution is estimated over all values of the population pertain
ing to the indices of the selected FOS subset. From this distribution, new solutions are sampled and
injected into the parent solution. If the UHV of the parent improves, the change is kept. Otherwise, the
change is rejected. All FOS subsets of the FOS are applied, on all parents of the population.

Before sampling happens though, the distribution parameters are slightly changed. The “anticipated
mean shift“ feature anticipates where the mean of the Gaussian should move based on the historic
values. The “adaptive variance scaling“ feature enlarges the variance of the distribution to counter the
variance diminishing effects of selection.

Population of UHV-GOMEA

X0

X0

X0

X0

X1

X1

X1

X1

X2

X2

X2

X2

Xp-1

Xp-1

Xp-1

Xp-1

Figure 3.2: Marginal linkage (Lm) of UHVGOMEA. Each circle represents an MOsolution that is greedily sorted, such that all
𝑖’th MOsolution (𝑖 = 1,⋯ , 𝑝−1) is in the same part of the approximation front. The solution sets of the population are displayed
horizontally. The linkage subsets are shown vertically.

3.3. The hybridization
The hybrid created in this work is based on [11], where a resource allocation scheme (RAS) was used
to dynamically assign resources to gradient algorithms. The RAS of [11] is extended in this work, to
accommodate themodified UHVADAM. Furthermore, only UHVGOMEA and themodified UHVADAM
are hybridized.

The hybrid algorithm starts off similar to UHVGOMEA, by initializing a population of N solution
sets. Each solution set is assigned a UHVADAM instance, which is initialized accordingly. The hybrid
algorithm executes the variation operator of UHVGOMEA and the update operator of UHVADAM
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X0 X1 X3

Linkage Tree in UHV-GOMEA

X2

Solution set
indices 0 1 2 3 4 5 6 7 8 9 10 11

0, 1

0, 1, 2

3, 4

3, 4, 5

6, 7

6, 7, 8

9, 10

9, 10, 11

3, 4, 5, 6, 7, 8

3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Phase 1: 
Mutual information-based

Linkage Tree

Phase 2: 
Mean objective values-

based Linkage Tree

Linkage Tree FOS

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

3, 4, 5, 6, 7, 8, 9, 10, 11

3, 4, 5, 6, 7, 8

0, 1, 2 3, 4, 5
6, 7, 8 9, 10, 11

0, 1 3, 4
6, 7 9, 10

0 1 2 3 4 5
6 7 8 9 10 11

Figure 3.3: The two phased construction of a linkage tree (Lt) in UHVGOMEA. UHVGOMEA first constructs amutual information
based tree for the MOsolutions. In the second phase, it constructs subsets of MOsolutions using the Euclidean distance
between the mean of the objective values. On the right side of the image, all the FOS subsets are displayed.

sequentially. UHVGOMEA’s operator is always executed once per generation, while the extended
RAS determines the number of UHVADAM operations.

3.3.1. The resource allocation scheme
Let the actual number of evaluations and improvements found in generation 𝑡 by optimizer 𝑜 ∈ {GOMEA,
ADAM} be 𝐸𝑜(𝑡) and 𝐼𝑜(𝑡) respectively. An evaluation occurs when one MOsolution xi is evalu
ated. What entails an improvement will be discussed later in section 3.3.2. Let the number of eval
uations and improvements to be considered for redistribution be ℰ𝑜(𝑡) and ℐ𝑜(𝑡) respectively. For
UHVADAM, only the values of the current generation are of interest, that is: ℰADAM(𝑡) = 𝐸ADAM(𝑡)
and ℐADAM(𝑡) = 𝐼ADAM(𝑡). The number of evaluations and improvements to be considered for UHV
GOMEA is a sum of values of previous generations, that is: ℰGOMEA(𝑡) = ∑𝑡𝑡′=𝑡𝑚𝑖𝑛 𝐸GOMEA(𝑡) and
ℐGOMEA(𝑡) = ∑𝑡𝑡′=𝑡𝑚𝑖𝑛 𝐼GOMEA(𝑡), where 𝑡𝑚𝑖𝑛 ≥ 0 and 𝑡𝑚𝑖𝑛 is chosen as large as possible such that
ℰGOMEA(𝑡) ≥ ℰADAM(𝑡) still holds. Loosely speaking, by imposing the aforementioned criteria on 𝑡𝑚𝑖𝑛,
UHVGOMEA, at the minimum, matches the resources spent by UHVADAM. Figure 3.4 illustrates two
arbitrary examples. UHVGOMEA includes past values for two reasons: it makes the comparison be
tween the gradient algorithm and EA fairer and also allows the number of gradient algorithm calls to
grow [19].

Resources spent

t t-1 t-2

t

UHV-GOMEA

UHV-ADAM UHV-ADAM t

Situation A Situation B

UHV-GOMEA t t-1 t-2

Resources spent

tmin=t tmin=t-2

Past resources spent

Resources considered

Legend

Figure 3.4: Resources considered by UHVGOMEA and UHVADAM in two arbitrary situations. The resources considered by
UHVGOMEA is at minimum the number of resources considered by UHVADAM.

Following [19], the EA’s variation operator is executed once per generation while the number of
executions of the gradient algorithms are related to the respective reward they receive. The reward,
displayed in equation 3.7, is the efficiency of finding improvements. The reward is 0 if ℰ𝑜(𝑡) = 0.
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ℛo(𝑡) =
ℐ𝑜(𝑡)
ℰ𝑜(𝑡)

(3.7)

Let the evaluations to be redistributed to UHVADAM be ℰRedistributedADAM (𝑡). ℰRedistributedADAM (𝑡) is the ratio
of UHVADAM’s contribution to the total reward times the total sum of evaluations to be considered in
generation 𝑡 as shown in equation 3.8.

ℰRedistributedADAM (𝑡) = ℛADAM(𝑡)
∑𝑜′ ℛ𝑜′(𝑡)

∑
𝑜′
ℰ𝑜′(𝑡) (3.8)

To calculate the number of iterations UHVADAM can execute with budget ℰRedistributedADAM (𝑡), let the
number of calls be 𝒞Redistributed

ADAM (𝑡), where 𝒞Redistributed
ADAM (𝑡) can be calculated by dividing the resources as

signed to UHVADAM by the average number of evaluations required per call. The average evaluations
per call are estimated using the resources and calls of generation 𝑡, resulting in equation 3.9.

𝒞Redistributed
ADAM (𝑡) = ℰRedistributedADAM (𝑡)

ℰADAM(𝑡)
𝒞ADAM(𝑡)

= 𝒞ADAM(𝑡)
ℰADAM(𝑡)

ℰRedistributedADAM (𝑡) (3.9)

To ensure a smooth decrease in the number of gradient calls, memory decay is implemented in
equation 3.10. If the number of calls after redistribution is smaller than the number of calls executed
in the current generation, a running average is used to decrease the number of calls. If the number of
calls increases, memory decay is not applied in order to stimulate the use of gradient algorithms [19].
The (memory) decay factor 𝜂 is the is kept to the original value of 0.75 [19].

𝒞Run
ADAM(𝑡 + 1) = {

𝒞Redistributed
ADAM (𝑡), if 𝒞Redistributed

ADAM (𝑡) ≥ 𝒞Run
ADAM(𝑡)

𝜂decay𝒞Run
ADAM(𝑡) + (1 − 𝜂decay)𝒞Redistributed

ADAM (𝑡), otherwise
(3.10)

The number of UHVADAMcalls to execute next generation could be set to 𝒞ADAM(𝑡+1) = ⌊𝒞Run
ADAM(𝑡 + 1)⌋,

However, if at some point 𝒞ADAM(𝑡) = 0 holds, UHVADAM cannot be activated any more. As UHV
ADAM could become useful again in the future, a waiting scheme is used that makes UHVADAM wait
𝒲ADAM(𝑡) generations. In [19], gradient algorithms are only allowed to be executed at most once per
individual per generation. Furthermore, at most (population size) 𝑁 number of total calls can be exe
cuted per generation. Early experiments have shown that executing one UHVADAM call per individual
does not substantially affect convergence. For this reason, multiple gradient calls can be applied to the
same individual. Furthermore, a lower bound is introduced such that if UHVADAM is to be executed,
it executes at least 𝒞min

ADAM calls. This ensures that the performance of UHVADAM is assessed after it
warms up its internal parameters. 𝒞min

ADAM is set to 10 and has not been further optimized. The cap on
total gradient calls is kept and set to 𝑁.

The modified waiting scheme is shown in equation 3.11. UHVADAM is forced to wait for some
generations when 𝒞Run

ADAM(𝑡 + 1) ≤ 𝒞min
ADAM. Because the extended UHVADAM executes a minimum

number of calls, 𝒞min
ADAM has been added to prevent the waiting scheme from triggering too early. The

actual number of calls to be executed is shown in equation 3.12, where 𝒞min
ADAM has also been added to

the original equation.

𝒲𝑜(𝑡 + 1) = {
⌊ 𝒞min𝑜
𝒞Run𝑜 (𝑡+1) ⌋ , if𝒲𝑜(𝑡) = 0
𝒲𝑜(𝑡) − 1, otherwise

(3.11)

𝒞𝑜(𝑡) = {
𝒞min
𝑜 , if𝒲𝑜(𝑡 − 1) = 1

min(⌊𝒞Run
𝑜 (𝑡)⌋ , 𝑁), otherwise

(3.12)

3.3.2. Improvement metric
In the resource allocation scheme, any improvement metric can be used to guide the allocation of
resources. In this work, five different methods have been investigated. The results of the investigation
will be presented in experiment 1. Each metric is measured after the execution of a single call:
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1. Bosman2012⋆: The number of MOsolutions that are added to an infinite sized elitist archive.
This methodology is based on the original metric used in [19].

2. ΔBestUHV: Takes the difference between the best found solution’s UHV value.

3. ΔAverageUHV: Takes the difference between the population’s average UHV value.

4. CountUHVImproved: Counts the number of times a solution set has improved its UHV value.

5. CountBestUHVImproved: Counts the number of times a solution set has been found that im
proved the best found UHV.

In Bosman2012 [11], an improvement is defined as when a newly created MOsolution is added to
an elitist archive. The elitist archive is a finite sized storage space for nondominated MOsolutions.
In Bosman2012⋆, we use an infinitely large elitist archive to encourage counting MOsolutions that
improve the UHV, which otherwise are potentially rejected by a finite sized elitist archive when it is full. In
an elitist archive of [9] or [11] that is full, new MOsolutions are only accepted if existing MOsolutions of
the archive are dominated. Undesirable rejections are likely to occur in this archive when, for example,
MOsolutions are offered that improve the UHV by spreading out without dominating any existing MO
solution of the archive. The infinite sized elitist archive in contrast, accepts all nondominated solutions.
The infinite sized elitist archive however, comes at the cost of additional memory requirements and
computation time. This is however, not measured in the experiments. In this regard, Bosman2012⋆

should be considered as a best case scenario.
In this work, indicator function based improvement metrics, as well as counting methods are also

investigated. Metrics ΔBestUHV and ΔAverageUHV are the difference between the best found UHV and
average population UHV respectively in subsequent generations. CountUHVImproved andCountBestUHVIm
proved count the number of times the UHV of a solution and that of the best solution have improved
respectively.

3.3.3. Distribution method
In the resource allocation scheme, the resources assigned to UHVADAM must be distributed over the
population members. The following allocation methods have been explored and will be discussed in
experiment 3:

• BestmSolutions: Distribute the resources uniformly to the solution sets that have the𝑚 highest
UHV values.

• Bestm%Population: Distribute the resources uniformly to the solution sets that have the top
𝑚% highest UHV values of the population.

• All: Distribute the resources to all solution sets, starting at 𝜙0, 𝜙1, ⋯ until all resources have been
distributed.

• Random: Distribute the resources randomly, with replacement.



4
Experiments

This chapter describes the experiments that were performed in this work. The setup of the experiments
is explained first. The four experiments that were conducted are then shown. In the first experiment,
the effects of the improvement metrics of section 3.3.2 are displayed. In the second experiment, the
effects of choosing a different gradient algorithm (operators) are shown. In the third experiment, the
effects of the choice of different gradient algorithm distribution methods are presented. Finally, the most
promising hybrid algorithms in this work are benchmarked on the WFG [20] problem set.

4.1. Setup
4.1.1. Benchmark problems
The multiobjective problems used in the experiments are given in table 4.1, where 𝑛 is the problem
dimensionality. Figure 4.1 further shows a 3D impression of the singleobjective functions that are used,
where we zoom into the interesting parts of the objective functions. The height of the surface and the
heat map both represent the obtained objective values. For this, MOsolutions are sampled from a
grid and evaluated. The lower and redder the surface, the fitter an MOsolution is. The blue crosses
indicate the optimum of an objective function. Figure 4.2 shows an impression of the biobjective
problems of table 4.1. The height of the surface and the heat map both represent the domination rank
calculated by sampling MOsolution from a grid. The domination rank indicates how dominated an
MOsolution is. As the desired Pareto set contains all nondominated solutions, the lower the rank, the
better. The domination rank is calculated by determining the nondominated solutions of the grid, to
rank these nondominated solutions starting from rank 0, to remove these nondominated MOsolutions
from the ranking process and finally to repeat the process of finding, ranking and removing the next
nondominated solutions. In figure 4.2, the blue crosses in the lowest row indicate the nondominated
solutions of the grid.
Table 4.1: The biobjective benchmark problems selected for the experiments.

# Problem name Objectives Properties

0 Convex
bisphere

𝑓0 = 𝑓sphere(x), with 𝑓sphere(x) = ∑
𝑛−1
𝑖=0 (𝑥𝑖)2

𝑓1 = 𝑓sphere(x− c0)
c0 = [1, 0,⋯ , 0]

Unimodal,
Decomposable

1 Convex sphere
Rosenbrock

𝑓0 =
1
𝑛𝑓sphere(x)

𝑓1 =
1
𝑛−1𝑓ros(x), with 𝑓ros(x) = ∑

𝑛−2
𝑖=0 (100(𝑥𝑖+1 − 𝑥2𝑖 )2 + (1 − 𝑥𝑖)2)

Multimodal,
Attraction to 𝑓0

2 Convex sphere
Rastrigin

𝑓0 = 𝑓sphere(x)
𝑓1 = 𝑓rast(x− c2), with 𝑓rast(x) = 𝐴𝑛 + ∑

𝑛−1
𝑖=0 𝑥2𝑖 − 𝐴cos(2𝜋𝑥𝑖)

𝐴 = 10,c2 = [0.5, 0,⋯ , 0]
Multimodal

3 BiCosine
sphere

𝑓0 = 𝑓cos(x), with 𝑓cos(x) = 𝑓sphere(x)(1 − 𝛽cos(2𝜋𝑓 |x|))
𝑓1 = 𝑓cos(x− c0)
𝛽 = 0.6, 𝑓 = 0.1

Multimodal
in 𝑓0 and 𝑓1

Problem 0 (Convex bisphere) is unimodal, objectivewise decomposable [9] and can be quickly
solved with gradient algorithms [10]. The Pareto set that is formed by slightly shifting 𝑓1 is visible in

17



18 4. Experiments

the bottom row of figure 4.2. Problem 1 (SphereRosenbrock) is a low multimodal problem based on
the the Rosenbrock function which has pairwise dependencies [21]. It is known for pulling algorithms
towards the optimum of the more easily solvable Sphere function while potentially getting solutions
stuck in a local optimum of the Rosenbrock function. The local optimum however, is not visible in
figure 4.1. Problem 1 is scaled to have its Pareto endpoints located at (1, 0) and (0, 1) as was done in
[9]. Problem 2 (SphereRastrigin) contains the multimodal Rastrigin [22] problem, where many local
optima are evenly scattered around the solution space. The scattering is visible in figure 4.1 and 4.2.
During early experiments, it was observed that Problem 2 can not be easily scaled without retaining its
multimodal properties. Scaling the Rastrigin function by 1

𝑛 (as was done in Problem 1) for example,
makes the problem solvable for UHVADAM when 𝑛 gets larger. Most likely, dividing by 𝑛 flattens
the objectives, allowing UHVADAM to ignore any local optima it encounters. Shifting the optima of
Rastrigin, such that a disconnected Pareto set is created is also undesirable, as it makes the problem
hard to solve with a marginal product linkage model. For these reasons, Problem 2 is not scaled nor
shifted into having a disconnected Pareto set. Problem 3, which is designed by myself, is multimodal
in both objectives. The Pareto set of Problem 3 is enveloped by basins, as shown in figure 4.2.

Figure 4.1: Impression of the singleobjective problems used in the experiments in a 2D search space. The heat map and height
represent the objective values obtained by assessing an objective function on a grid of solutions. The blue crosses indicate the
optimum of an objective function.

Figure 4.2: Impression of the Biobjective problems in a 2D search search space, where the height and heat map represent the
domination rank. The lower the domination rank, the less dominated an MOsolution is. In this first row, a 3D impressions is given
of the domination rank. In the second row, a topview of the 3D representation is given, where the blue crosses represent the
nondominated solutions of all the MOsolutions used to generate this graph. The nondominated solutions give an impression
where the Pareto set lies.

The algorithms are asymmetrically initialized around the Pareto set for Problem 0, 1 and 3. The
initialization ranges are [−400, 100]𝑛 for Problem 0 and 3, [−20, 10]𝑛 for Problem 1. In Problem 2 the
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recommended initialization range of [−5.12, 5.12]𝑛 are used. For every problem, the HV reference point
is set at 𝑟 = (11, 11).

4.1.2. Convergence criteria
In this work, all algorithms are run until the computational budget of 107 MOevaluations is expended
or until convergence criteria are met. In the first three experiments, the gradients are analytically cal
culated and come at no cost. In the WFG benchmark, gradients are approximated, which do come at
a cost. Regarding the convergence criteria, a target hypervolume (HV) is set per problem and problem
dimension, where algorithms that reach the target HV with 6 digits of accuracy, i.e. ΔHV𝑝 < 10−6, are
considered to have converged and successfully solved the problem. The HV is chosen over the UHV,
as it is expected that during convergence, all the MOsolutions of a solution set become nondominated,
which reduces the UHV to the HV.

The best found HV is used as the target HV. The best found HV is determined by initializing all
algorithms close to the Pareto set, to run each algorithm 30 times with a budget of 108 MOevaluations,
after which the best found HV is selected. To produce stable experimental results, it is furthermore
confirmed that the 30 best performing runs, amongst all results, all obtain the same HV up to 6 digits
of accuracy.

4.2. Experiment 1: Improvement metric
In the resource allocation scheme, the improvement metric quantifies the performance of an optimizer
and influences how many resources an optimizer is assigned. In the first experiment, we look at the
effect of different improvement metrics. Specifically, we use the problems of table 4.1, and investigate
how the implementations behave on different problem dimensionalities. The results are presented in
two ways. In the first method, we quantify the performance of each improvement metric via a numerical
value. In the second method, we visualize the scalability of the implementations.

For the first method, we tune the implementations on Problem 1 to 3 on the following problem di
mensionalities 𝐷 = [2, 5, 10, 20, 40, 80]. Problem 0 is excluded from this method, as tuning the hybrid
on such a simple problem is undesirable. For each dimension, we determine the best population 𝑁 by
running the following population sizes 𝑁 = [40, 80, 160, 320, 640, 1280] 30 times and select the most
efficient population size that reaches a median target HV accuracy of ΔHV𝑝 < 10−6 with a success
rate higher than 29 out of 30 runs. Implementations without a single population that meets the success
rate threshold are disqualified. The performance score of an implementation is calculated in equa
tion 4.1, which sums the relative performance of the improvement metric 𝑖𝑚𝑝 with respect to the best
performing improvement metric amongst all improvement metrics 𝐼, over all problems 𝑃 and problem
dimensionalities 𝐷.

score(imp) = ∑
pr∈P

∑
d∈D(pr)

median(MOEvaluations(pr,d, imp))
minimp′∈I(median(MOEvaluations(pr,d, imp′)))

(4.1)

In the second method, we reuse the population tuning method and visualize the results of the opti
mized populations. Specifically, we show the median and interquartile ranges of each optimized pop
ulation size for each problem dimensionality. Implementations that are disqualified for not reaching
the target success rate remain an important source for analysis. For these disqualified implementa
tions, we sort the populations on success rate and MOevaluations, and determine the statistics on all
successful runs.

The base hybrid algorithm used in experiment 1 uses UHVADAM as gradient algorithm. Gradient
calls are applied on the best 3 solutions with the highest UHV, as in initial experiments this method
showed decent results. The number of MOsolutions in a solution set is set to 𝑝 = 9. In the visualization,
UHVGOMEA and UHVADAM are also added as a reference.

4.2.1. Results of experiment 1
The effect of the improvement metrics on the required number of MOevaluations to reach a target
accuracy of ΔHV𝑝 < 10−6, the corresponding success rates (SR) and optimized population sizes are
shown in figure 4.3. Table 4.2 shows the scores obtained by the hybrids when using the respective
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improvement metrics, according to equation 4.1.
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Figure 4.3: The effect of the improvement metrics on the required number of MOevaluations to reach a target accuracy of
ΔHV𝑝 < 10−6 for various problems where 𝑝 = 9. The success rate (SR) measures the fraction of runs that reach the target
accuracy out of 30 runs, where the target threshold (TH) is 29/30 runs. The bottom row shows the optimized population size.

Inspecting UHVGOMEA in figure 4.3, shows that UHVGOMEA is able to reach the target HV in all
problems except Problem 1, where it fails to find the target HV in dimension 80 due to the computation
budget limit. In Problem 2, the problem seems to become easier for UHVGOMEA after 𝑛 = 40.
Analysis shows that reliability is not the main issue, as the dip in the the graph persists when the
number of runs is increased from 30 to 90 runs. It is unknown why UHVGOMEA dips. Inspecting
UHVADAM shows that the algorithm is able to reach the target HV for Problem 0 reliably and most
efficiently. In Problem 1 it can not reliably reach the target HV. Interestingly, in [10], it is able to solve
Problem 1 if it is initialized closer to the Pareto set ([0, 2]𝑛). In this experiment, however it gets stuck
on local optima. UHVADAM fails to reach any target HV in Problem 2 and Problem 3.

Among the improvement metrics in figure 4.3, Bosman2012⋆ and ΔBestUHV (hidden underneath
Bosman2012⋆) are performing the best in Problem 0. Interestingly, these improvement metrics pick
large population sizes starting from 𝑛 = 80. CountBestUHVImproved mimics this behavior, but aban
dons this strategy when 𝑛 >= 160. An analysis of the substantial increase in population is done in
section 4.2.2. Figure 4.4 shows the average utilization rate and interquartile ranges for the largest
problem dimensions. The utilization rate is the number of calls that are executed, normalized by the
maximum number of calls permitted by the resource allocation scheme, which is population size 𝑁.
Figure 4.4 shows that most improvement metrics at some point have full utilization for Problem 0.
This is to be expected as UHVADAM is extremely efficient at solving Problem 0. Improvement metric
ΔAverageUHV is the only improvement metric that does not reach full utilization; hence it is the least
efficient out of all the improvement metrics in figure 4.3. ΔAverageUHV is biased towards UHVGOMEA
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Table 4.2: The scores assigned to each improvement metric. The lower the score, the better. The numbers in bold are the lowest
scores of a category.

Problem ΔBestUHV ΔAverage
UHV

Count
UHVImproved

CountBestUHV
Improved Bosman2012⋆

Convex Sphere
& Rosenbrock (1) 9.0 9.0 8.3 9.2 9.0

Convex Sphere
& Rastrigin (2) 6.1 9.8 7.9 6.4 7.1

BiCosine sphere (3) 6.1 8.6 7.1 6.4 6.4

Average 7.1 9.1 7.8 7.3 7.5

as (the modified) UHVADAM is not designed to improve an entire population. A reason for this is be
cause UHVADAM is only applied on 3 solutions. Furthermore, concentrated gradient calls suffer more
from diminishing returns compared to calls that are evenly spread over the population.

In Problem 1 of figure 4.3, a drop in MOevaluations by the improvement metrics can be observed.
Only CountUHVImproved does not experience a decrease in MOevaluations. It is unknown why these
drops happen. Analysis however once again show that like in Problem 2, reliability is not the issue. The
drop in MOevaluations could be related to UHVADAM overtaking UHVGOMEA in terms of efficiency
after 𝑛 ≥ 10. Regardless of the observed peculiarities, table 4.2 shows that the scores obtained by the
improvement metrics in Problem 1 are rather similar. CountUHVImproved takes the lead as it is able
to reach the target HV with a much lower median at 𝑛 = 20, while not performing worse than the other
improvement metrics for the other dimensions.

In Problem 2 of figure 4.3, ΔBestUHV and CountBestUHVImproved perform the best, where the
former improvement metric takes a slight lead over the latter in table 4.2.

In table 4.2, the results of Problem 3 show that ΔBestUHV is slightly better than CountBestUHVIm
proved and Bosman2012⋆. Interestingly, in the normalized call graph (figure 4.4), ΔBestUHV and
CountBestUHVImproved both execute gradient calls at the end, while Bosman2012⋆ never enters the
waiting state. Although different call strategies are observed, all three improvement metrics obtain
similar scores.

Overall, ΔBestUHV has the best average performance according to table 4.2. It is however, not the
best improvement metric for all problems, as can be seen from Problem 1. This suggests that the best
improvement metric could be problem dependent. ΔBestUHV however, will continue to be used in the
experiments that follow, due to having the best average performance.

Figure 4.4: The normalized number of calls (utilization rate) per improvement metric for Problem 0 (𝑛 = 320) and Problem 1 to
3 (𝑛 = 80). The number of executed calls are normalized by the maximum number of gradient calls allowed by the resource
allocation scheme.
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4.2.2. Analysis of large population sizes in Problem 0 of experiment 1
In Problem 0 of experiment 1, 3 out of 5 improvement metrics have their associated best population
size change from 𝑁 = 40 to 𝑁 = 1280. Understanding the substantial increase in population size
provides key insights into the consequences of design choices. Figure 4.3 showed that UHVADAM
is magnitudes faster than UHVGOMEA, as the gradients come for free. Intuitively, UHVGOMEA’s
contribution to the search should thus be kept at a minimum. Increasing the population size however
contradictingly makes UHVGOMEA calls more expensive.

Figure 4.5 shows the convergence in uncrowded hypervolume (UHV) of improvementmetric ΔBestUHV
for problem dimension 𝑛 = 320. The convergence, defined as: ΔUHV(𝒜𝑝) = HV(𝒜⋆

𝑝) − UHV(𝒜𝑝),
is the difference between the target HV and the UHV of the best found individual. Figure 4.5 shows
a single run of every population size used during the optimization, such that individual calls can be
observed. The legend of figure 4.5 further shows two colors for each population size. The colors from
left to right represent a UHVGOMEA call and UHVADAM call respectively. Region 1 of figure 4.5
illustrates an example of individual calls.

There are numerous reasons why a large population can be desirable for Problem 0. In this anal
ysis two important reasons will be described. Inspecting all population sizes except 𝑁 = 1280 shows
that all population sizes show repeating horizontal patterns during convergence. Annotation 2 shows
examples of regions that stall. Furthermore, it can be observed that all population sizes need multiple
generations to converge. Inspecting 𝑁 = 1280, only two horizontal patterns are visible during conver
gence. Furthermore, it can be observed that 𝑁 = 1280 only needs 2 generations to converge. The first
generation can be observed at annotation 3, where the first UHVGOMEA and first 10 UHVADAM calls
are executed. At annotation 4, the last generation can be observed. An important reason that makes
𝑁 = 1280 converge the fastest among the optimized population sizes is that stalling does not occur.
𝑁 = 1280 is perceived not to stall because of the convergence criterion. Stalling is likely to occur if the
convergence criterion becomes more strict, e.g. when more digits of accuracy are required. The sec
ond reason is that a large population size allows more gradient calls to be executed consecutively, as
the cap on gradient calls is determined by the population size. Since only 2 generations are executed
by 𝑁 = 1280, 𝑁 = 1280 effectively spends less resources warming up the parameters of UHVADAM,
making its UHVADAM calls more efficient compared to other population sizes.

Further investigating why stalls occur reveals potential methods to improve future hybrid algorithms.
Region 5 shows a region that stalls. In this region, UHVADAM calls are still observed. Contrary to
region 5, for 𝑁 = 1280 at annotation 3, shows that UHVADAM is easily able to improve the UHV. The
reason UHVADAM is unable to improve the UHV as fast as 𝑁 = 1280 for populations other than 𝑁 =
1280, can be mainly attributed to the step size estimation. The resource allocation scheme resets UHV
ADAM instances after each UHVGOMEA call to ensure that UHVADAM’s internal parameters remain
tuned to its local search space surroundings. After resetting the parameters, the step size of a UHV
ADAM instance must be reestimated. Reestimation happens based on the worst solutions. During
convergence, the best solutions quickly move further and further from the worst solutions causing the
estimated step sizes to become larger and larger until UHVADAM stalls. UHVGOMEA needs to shrink
the gap between the best and worst solutions for UHVADAM to become effective again. During this
process, UHVGOMEA is unable to simultaneously improve the best solutions causing UHVGOMEA
to appear as if it is not making any progress. Furthermore, the stalls are worsened by the fact that UHV
ADAM is not entirely stalling. Small improvements are still made by UHVADAM, as can be observed
in region 6. This causes the resource allocation scheme to assign maximum resources to UHVADAM,
as UHVGOMEA makes no progress at all, prolonging the stalls.

In short, the analysis of large population sizes of Problem 0 has shown that substantial stalls occur
during convergence. Large population sizes can converge faster than small population sizes if con
vergence occurs before stalling sets in. Furthermore, stalling can be mainly attributed to the step size
estimation method. Improving the step size estimation method could potentially improve convergence.

4.3. Experiment 2: Comparison between gradient algorithms
To investigate the effect of different gradient algorithms, two UHVbased gradient algorithms are con
structed. The first algorithm, dubbed PlainGradient, uses the raw UHV gradient without any other
mechanism except the step size reduction scheme of UHVADAM. The second gradient algorithm,
dubbed LineApproximation, uses the same raw UHV gradient, but does an approximation of what a
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Figure 4.5: Convergence of ΔBestUHV for different population sizes, where 𝑛 = 320 (Problem 0). A single run is displayed for
each population size such that each individual call can be observed.

line search algorithm does by sampling at multiple distances. If distance 1 is the sample that would
have been obtained by PlainGradient, then LineApproximation samples at distances [0.01, 0.05, 0.1,
0.5, 0.99, 1, 1.5, 2]. The sample distance factor that produces the solution set with the highest UHV is
picked. The step size reduction scheme of UHVADAM is not needed for LineApproximation, as the
sample distance that is chosen can be directly used to update 𝛾.

4.3.1. Results of experiment 2
The effect of different gradient algorithms on the required number of MOevaluations to reach a target
accuracy of ΔHV𝑝 < 10−6 and the corresponding success rate is shown in figure 4.6. The gradient
algorithms are optimized on the initial 𝛾 estimation factor (percentage of average population range)
and 𝛾 decay rate (rate of reducing 𝛾 when the solution does not improve) when applicable. The opti
mized parameters are included in appendix A. The optimized population size of experiment 1 is used.
Furthermore, all three hybrids use the ΔBestUHV improvement metric.

In Problem 0 of figure 4.6, UHVADAM is the worst choice amongst the gradient algorithms. One
reason lies with the fact that other (more important) step size parameters of UHVADAM are not opti
mized, e.g. the influence factor of the variance. The step size of the other algorithms are more easily
influenced and over optimized for Problem 0 as the step size only depends on the parameters that
are currently optimized. In figure 4.6, Problem 1 shows that both HybridPlainGradient and Hybrid
LineApproximation do not converge within budget around 𝑛 ≥ 20. A possible hypothesis is that it
becomes increasingly more difficult to follow the curvatures of the Rosenbrock problem without any
mechanisms suited for the task. UHVADAM on the other hand is able to follow the curvature. In Prob
lem 2, HybridADAM is clearly the most efficient gradient algorithm. In Problem 3, a clear difference
can not be seen between HybridADAM and HybridPlainGradient. Analysis shows that call graphs,
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Figure 4.6: The effect of different gradient algorithms on the required number of MOevaluations to reach a target accuracy of
ΔHV𝑝 < 10−6 for various problems where 𝑝 = 9. The success rate (SR) measures the fraction of runs that reach the target
accuracy out of 30 runs, where the target threshold is 29 out of 30 runs.

similar to figure 4.4 of experiment 1 were obtained, where the selected improvement metric does not
execute many gradient calls. Overall, picking UHVADAM, with all its intricate mechanics, seem to be
preferable over basic gradient algorithms when more difficult problems are presented.

4.4. Experiment 3: Distribution method of UHVADAM
After the resource allocation scheme assigns resources to the modified UHVADAM, the resources
need to be converted to calls that are applied on the individuals of the population. In the third experi
ment, the effects of different distribution methods of section 3.1.3 are investigated.

4.4.1. Results of experiment 3
The effect of the choice of method to distribute the resources assigned to the modified UHVADAM,
on the required number of MOevaluations to reach a target HV accuracy of ΔHV𝑝 < 10−6 and the
corresponding success rate (SR) is shown in figure 4.7. Table 4.3 shows the scores obtained by the
distribution methods. Distribution methods that are unable to find a population size that meets the
success rate (SR) threshold are disqualified and denoted as: “DQ“. The evaluation budget, population
optimization method and solution set size are the same as in experiment 1. The population is retuned
as some distribution methods are dependent on the population size. ΔBestUHV is once again the
selected improvement metric.

Figure 4.7 shows various implementations of the BestmSolutions and Bestm%Population distri
bution methods. Missing from the legend are the distribution methods that have 𝑚 values of [10, 20]
and [20(%), 35(%), 50(%)] for the BestmSolutions and Bestm%Population distribution methods re
spectively. These distribution methods are not included in figure 4.7 as their performances are equal
or worse than distribution methods Best5Solutions and Best10%Solutions respectively.

In Problem 0 of figure 4.7, it should not come as a surprise that BestSolution reaches the target
HV the most efficiently. UHVADAM, which outperforms all other algorithms in figure 4.3 of experiment
1, only optimizes a single solution set. Selecting a similar distribution method yields similar results.
Distribution method Best3Solutions comes in second place.

In Problem 1, BestSolution is overall, once more the most efficient at reaching the target HV. Redis
tribution methods: ALL, Random, Best5%Population and Best10%Population fail to reach the target
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HV within budget or target success rate when 𝑛 = 80 in figure 4.7. The distribution methods that are
not disqualified, excluding BestSolution, have scores that are substantially worse than BestSolution in
table 4.3. In experiment 1, it was observed that UHVADAM is able to efficiently solve Problem 1 if it is
initialized away from local optima. For BestSolution, UHVGOMEA might be able to escape local op
tima easily in Problem 1, while BestSolution leverages the same principle of UHVADAM, i.e. applying
calls on a single solution set; hence superior performance is observed. In figure 4.7 however, BestSolu
tion intersect with Best2.5%Population when 𝑛 = 80, raising concerns that BestSolution could perform
worse for higher dimensions. Furthermore, it is concerning that the population size becomes smaller
when 𝑛 ≥ 20. It is unknown why this happens. Interestingly, Best2.5%Population and Best3Solutions,
seem to perform better than Best5Solutions or Best10%Population when 𝑛 ≥ 40. The opposite is true
however when 𝑛 ≤ 10. No explanation could be found for this observation.

In Problem 2, Best3Solutions performs the best according to table 4.3. It is followed by BestSolution
and Best5Solutions. Interestingly, in previous problems All and Random performed similarly, however
in Problem 2, 𝑛 = 80, All is disqualified for failing to reach the target success rate while Random is not.

In Problem 3, Best3Solutions performs the best according to table 4.3. Analysis once again shows
that ΔBestUHV, does not execute many gradient calls as was observed in figure 4.4; hence similar
performance is observed. An interesting observation is that BestSolution picks a large population at
𝑛 = 80. It is unknown why this happens.

Overall, according to table 4.3, Best3Solutions has a slight lead over BestSolution followed by
Best5Solutions and Best2.5%Population. Furthermore, table 4.3 shows that concentrating gradient
calls on the best solutions works better than diluting gradient calls over the population.

Figure 4.7: The effect of the choice of method to distribute the resources assigned to the modified UHVADAM on the required
number of MOevaluations to reach a target accuracy of ΔHV𝑝 < 10−6 for various problems where 𝑝 = 9. The success rate
(SR) measures the fraction of runs that reach the target accuracy out of 30 runs, where the target threshold (TH) is 29/30 runs.
The bottom row shows the optimized population size.
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Table 4.3: The scores assigned to each distribution method. The lower the score, the better. The numbers in bold are the lowest
scores of a category. Improvement metrics that do not meet one or more success rate threshold are denoted as disqualified
(DQ).

Problem All Random Best
Solution

Best3
Solutions

Best5
Solutions

Best2.5%
Population

Best5%
Population

Best10%
Population

Convex sphere
& Rosenbrock(1) DQ DQ 6.6 18.3 17.4 19.7 DQ DQ

Convex sphere
& Rastrigin(2) DQ 13.4 7.1 6.7 7.7 8.1 8.2 9.4

BiCosine sphere(3) 11.6 11.9 17.8 6.3 7.1 6.7 7.1 7.2

Average DQ DQ 10.5 10.4 10.7 11.5 DQ DQ

4.5. WFG Benchmark
We use the WFG suite [20] as an independent method to benchmark the results of the hybrid algorithm.
For detailed characteristics of these 9 benchmark functions, the reader is referred to [20]. WFG1
is a separable problem, with a flat region which can stagnate the search. WFG2 has a unimodal
disconnected convex front. WFG3 is multimodal and has a linear front. WFG49 all have concave
fronts, where WFG4 and WFG9 are multimodal. Following [10] and [9], the benchmark is used in a bi
objective setting with 𝑘WFG = 4 position variables and 𝑙WFG = 20 distance variables, resulting in 𝑛 = 24
decision variables. The HV reference point r is set to 𝑟 = (11, 11). The computation budget is set to
107 MOevaluations for each algorithm, where snapshots are taken at 105 and 107 MOevaluations,
to get comparable experiments as in [10] (105 MOevaluations) and [9] (107 MOevaluations). For the
solution set size, we use 𝑝 = 9.

The algorithms we consider in this experiment include the base algorithms: UHVGOMEA(Lm),
UHVADAM, the constructed hybrid algorithms: ΔBestUHV with distribution methods BestSolution and
Best3Solutions, as well as other UHVbased algorithms: UHVGOMEA with a linkage tree (Lt) and
UHVGAMO [10]. Concerning the hybrid algorithms, Best3Solutions and BestSolution are included as
in experiment 3, both distribution methods obtained average scores that were rather similar. Further
more, concerns were raised that BestSolution might scale worse than Best3Solutions. For the external
algorithms, UHVGAMO and UHVGOMEA(Lt) are included to create a similar experimental setup
as in [10] and [9]. UHVGAMO is based on the GAMO scheme [23]. UHVGAMO uses the same
UHV indicator function as UHVADAM, but replaces the modified ADAM gradient ascent scheme with
a modified GAMO gradient ascent scheme. UHVGOMEA(Lt) is similar to UHVGOMEA(Lm), but a
linkage tree is used to estimate and adapt Gaussians instead of the marginal product linkage model.
More on the linkage tree can be found in section 3.2.2.

Each algorithm is executed 30 times. Algorithms that use populations have their population sizes
set to 200 following [9], [10]. Gradientbased algorithms use finite difference gradient approximations
and will be indicated by the suffix “FD“. Finite difference approximations come at the cost of (1+𝑛) ⋅ 𝑝
MOevaluations [10]. Differences of outcomes are compared to the best result and tested for statistical
significance up to 4 decimals by a Wilcoxon twosided ranksum test with 𝛼 = 0.05.

4.5.1. Results of the WFG Benchmark
Table 4.4 shows the results for 105 MOevaluations and table 4.5 shows the results for 107 MO
evaluations. In Table 4.4, substantially different results than [10] are obtained for UHVADAMFD and
UHVGAMOFD. The reasons for this is that a bug was detected by me. This work uses the imple
mentations where the bug is resolved.

In Table 4.4, on average the hybrids are performing the best, where HybridBestSolutionFD is
performing better than HybridBest3SolutionsFD. With the exception of WFG4, HybridBestSolution
FD never obtains a rank worse than 2. HybridBest3SolutionsFD however, from time to time ranks
second to last. Interestingly, in multimodal problems WFG3, WFG4 and WFG9, HybridBestSolution
FD (and to an extent HybridBest3SolutionsFD) obtains similar or better results than the evolutionary
algorithms. This indicates that the gradient techniques are at worst not slowing down convergence, but
in some cases can be beneficial in the search. InWFG3 however, HybridBestSolutionFD is performing
worse than UHVADAMFD.
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Table 4.4: Snapshot taken of the WFG benchmark for 105 MOevaluations. Hypervolume values are shown (mean, ± standard
deviation(rank)). Finite differences (FD) are used for the gradientbased algorithms. Scores in bold are the best or not statistically
different from the other bold scores indicated per problem.

Problem UHV
GOMEA(Lm)

UHV
GOMEA(Lt)

UHV
ADAMFD

UHV
GAMOFD

Hybrid
BestSolutionFD

Hybrid
Best3SolutionsFD

WFG1 85.67±0.29(5) 85.29±0.31(6) 96.97±0.36(3) 96.02±2.35(4) 97.77±0.22(1) 97.66±0.22(2)
WFG2 109.22±0.21(2) 109.21±0.26(3) 106.24±5.09(6) 109.20±6.79(4) 109.87±0.19(1) 108.07±0.94(5)
WFG3 115.01±0.22(4) 115.20±0.17(3) 116.48±0.00(1) 114.63±0.37(6) 116.37±0.06(2) 114.90±0.41(5)
WFG4 108.26±1.26(3) 108.88±0.56(2) 103.34±3.61(6) 106.72±0.90(5) 108.03±2.66(4) 108.90±0.77(1)
WFG5 102.57±0.66(6) 102.64±0.83(5) 108.78±1.87(4) 109.30±1.97(3) 110.97±0.94(1) 109.66±0.59(2)
WFG6 108.81±0.84(6) 108.99±1.11(5) 113.73±0.09(1) 109.43±2.12(4) 113.70±0.11(2) 113.51±0.13(3)
WFG7 112.46±0.51(6) 112.70±0.46(5) 114.35±0.04(1) 113.47±0.47(4) 114.34±0.03(2) 113.84±0.20(3)
WFG8 109.04±0.26(6) 109.07±0.24(5) 110.38±0.83(2) 109.24±1.25(3) 110.45±0.86(1) 109.16±0.64(4)
WFG9 108.14±0.53(3) 107.95±0.57(4) 106.70±1.53(5) 102.83±5.15(6) 108.72±0.67(1) 108.22±0.54(2)
Rank 4.56(6) 4.22(4) 3.22(3) 4.33(5) 1.67(1) 3.00(2)

Table 4.5: Snapshot taken of the WFG benchmark for 107 MOevaluations.Hypervolume values are shown (mean, ± standard
deviation(rank)). Finite differences (FD) are used for the gradientbased algorithms. Scores in bold are the best or not statistically
different from the other bold scores indicated per problem.

Problem UHV
GOMEA(Lm)

UHV
GOMEA(Lt)

UHV
ADAMFD

UHV
GAMOFD

Hybrid
BestSolutionFD

Hybrid
Best3SolutionsFD

WFG1 94.63±1.73(6) 99.66±2.06(2) 97.32±0.60(4) 96.74±0.60(5) 98.90±0.29(3) 101.57±0.49(1)
WFG2 110.13±0.03(4) 110.14±0.03(3) 106.26±5.09(6) 109.60±6.68(5) 110.36±1.20(2) 110.84±2.04(1)
WFG3 116.50±0.00(5) 116.50±0.00(1) 116.50±0.00(1) 114.78±0.33(6) 116.50±0.00(1) 116.50±0.00(1)
WFG4 112.75±0.58(4) 113.38±0.32(3) 103.34±3.61(6) 107.21±0.97(5) 113.46±0.35(2) 114.02±0.13(1)
WFG5 112.19±0.10(5) 112.22±0.01(1) 112.21±0.03(4) 111.32±0.68(6) 112.22±0.00(2) 112.22±0.00(3)
WFG6 114.38±0.03(3) 114.38±0.04(4) 113.79±0.10(5) 110.52±2.00(6) 114.40±0.00(1) 114.40±0.00(2)
WFG7 114.40±0.01(4) 114.40±0.00(1) 114.37±0.03(5) 113.88±0.16(6) 114.40±0.00(3) 114.40±0.00(1)
WFG8 111.43±0.28(4) 111.54±0.23(3) 110.57±0.81(5) 109.48±1.06(6) 111.70±0.23(2) 111.82±0.01(1)
WFG9 111.46±0.16(4) 111.50±0.03(2) 107.54±1.10(5) 103.18±5.31(6) 111.49±0.03(3) 111.51±0.02(1)
Rank 4.33(4) 2.22(3) 4.56(5) 5.67(6) 2.11(2) 1.33(1)

In Table 4.5, on average the hybrids are once again performing the best. HybridBest3SolutionsFD
however is performing better than HybridBestSolutionFD in Table 4.5. This could suggest that Hybrid
BestSolutionFD is more likely to end up with suboptimal solutions or converges slower when a bigger
computation budget is made available. Interestingly, rankwise, the hybrids never perform worse its
component algorithms, i.e. UHVGOMEA(Lm) and UHVADAMFD. Furthermore, only in WFG3 do
the hybrids share a rank with UHVADAM. Another observation is that for the multimodal problems
(WFG3, WFG4 and WFG9) the hybrids not only obtain competitive results compared to the EAs, but
occasionally find better HVs. In WFG5, WFG6 and WFG7, the hybrids find HVs that are deemed
statistically different from the best found HV in four instances, even though similar means and standard
deviations are reported. The reason for this lies with the Wilcoxon test, which by default removes runs
that have the same HV. For example, in WFG5, 22 out of 30 equal HV pairs were observed when
comparing HybridBestSolutionFD and UHVGOMEA(Lt). In WFG 6 however, HybridBest3Solutions
FD most likely remains statistically different from HybridBestSolutionFD as only 12 equal HV pairs
were observed. Overall, the hybrid algorithms produce competitive or better results than its component
algorithms and other comparable HVoptimizing algorithms. The performance of the hybrids tested in
this experiment however seem to fluctuate depending on the computation budget available.





5
Discussion

A realvalued multiobjective (MO) hybrid algorithm was created by combining two uncrowded hyper
volume (UHV) indicatorbased algorithms via a dynamic resource allocation scheme. In Experiment 1
it was shown that for UHV optimization, picking an improvement metric is not trivial, as problem de
pendency has been observed. The results of experiment 1 however, also showed that if the hybrid
is tasked to do UHV optimization, on average it benefits most from using the ΔBestUHV improvement
metric, followed by CountBestUHVImproved. Both metrics quantify the improvement of the best UHV,
while the remaining metrics (Bosman2012, CountUHVImproved, ΔAverageUHV) measure the improve
ment over all solution sets. This opens the question why resource allocation towards the algorithms
which improve fewer solution sets with higher UHV is preferable over the full runtime of the hybrid.

Experiment 1 also showed cases where UHVGOMEA or the hybrid algorithms of experiment 1, ex
perienced a significant reduction in the number of MOevaluations needed to solve a problem when the
problem dimensionality grows. No explanation could be found for this phenomenon. Analyzing these
peculiarities in future work could obtain key insights into the mechanics of the respective algorithms.

One peculiarity of experiment 1, where large population sizes were used by the hybrids to solve the
Bisphere problem, was analyzed however. Analysis showed that the hybrid algorithms frequently stall
during convergence, due to an inaccurately estimated step size of UHVADAM. In the current setup,
only UHVGOMEA is able to correct the step size. This “bottleneck“ however exacerbates the longevity
of stalls. When UHVGOMEA is unintentionally improving the step size estimation, it is unable to im
prove the best solutions simultaneously. UHVADAM meanwhile is able to make tiny improvements.
As a consequence, the resource allocation scheme allocates a substantial amount of resources to
UHVADAM while it would be better not to, until an appropriate step size is obtained. Many solutions
to reduce the impact of the inaccurate estimate of the step size can be constructed. An interesting
approach would be to estimate the step size using the solution on which gradient calls are applied to
keep the estimation more local. Preventing the resource allocation scheme from prematurely assign
ing resources to UHVADAM while stalling however, is more difficult to solve. It is difficult to determine
whether or not UHVADAM is stalling or is actually finding small improvements.

Experiment 1 also provided additional insight in the properties of UHVADAM. It confirms that prob
lems with few local optima (e.g. Convex sphere & Rosenbrock) can be solved by UHVADAM, while
problems with many local optima (e.g. Convex sphere & Rastrigin) are not solvable.

In experiment 2, it was shown that choosing the appropriate gradient algorithm, with the correct
mechanics, remains vital to ensure convergence towards the Pareto set. It was also shown that op
timizing the correct parameters of the gradient algorithms can have substantial effects on the rate of
convergence. In future work, more care needs to be taken to optimize the appropriate parameters of
the gradient algorithms.

Experiment 3 has shown that concentrating gradient calls on a select number of solutions is pre
ferred over diluting calls over the entire population. Distributing resources to the solutions with the top
3 highest UHV performed the best on average.

One of the limitations of this work is that the problems that were used to tune the hybrid, all share
the commonality of having a connected Pareto set. A connected Pareto set simplifies finding all other
Pareto optimal solutions as soon as one solution has been determined. If one of the objectives then
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happens to be easily solvable (e.g. Sphere), it potentially creates situations where even algorithms
that are not suited to solve multimodal problems can still find the Pareto set by first solving the easy
objective before moving over to the other objective, bypassing any local optimum. Future work should
thus consider disconnected Pareto sets.

Another limitation of this work, is that only a single EA, i.e. UHVGOMEA, has been selected for
hybridization. In [9], it was already observed that dominationbased EA MORVGOMEA [13] initially
performs better than UHVGOMEA. An even more efficient hybrid algorithm could potentially be created
with MORVGOMEA. However, as MORVGOMEA is a dominationbased EA, compatibility issues
are likely to occur with UHVbased algorithms. Introducing a different EA could furthermore expand the
number of experiments, such that the robustness can be tested of the resource allocation scheme.

The final limitation of this work that will be mentioned, is that there is not enough emphasis placed
on finite difference approximations. [10] has shown cases where UHVADAM converges slower than
UHVGOMEA if finite difference approximations are used. Although this was not observed in the WFG
benchmark, in early experiments similar observations were made if UHVADAM and UHVGOMEA
were initialized without enclosing the Pareto set. For this reason, more finite difference cases should
thus be studied.

Overall, the hybrid that has been created has shown that is able to obtain competitive or better
results than its components algorithms, especially when the gradients come for free. The naive lesson
to be learned from this thesis is that a variety of algorithms should be hybridized as soon as possible
as the potential of hybrids has been shown. However, we must be reminded that in every experiments
executed in this thesis, peculiarities were observed. This shows that constructing a hybrid algorithm
is not easy. Not only do we need to tune the resource allocation process as is seen in experiment 1,
where the improvement metric is problem dependent, we also need to pick the right algorithms, as was
shown in experiment 2. I believe that the lesson to be learned from this thesis, is that every algorithm
or resource allocation method that is combined into a hybrid algorithm, needs to be picked carefully
and requires tuning. Each algorithm brings its own parameters with it. These parameters not only bring
another point of failure into an algorithm and thus require careful tuning, but also, the algorithms must
be tuned carefully to each other. Nevertheless, the complexity of hybrid algorithms should not halt the
development of hybrid algorithms. Hybrids remain a promising addition the spectrum of evolutionary
algorithms.



6
Conclusion

In this work, for the first time, a multiobjective optimization algorithm was introduced that hybridizes
an uncrowded hypervolumebased (UHV) evolutionary algorithm with a UHVbased gradient algorithm
via a dynamic resource allocation scheme (RAS). Experiments used to study the RAS showed that
selecting a reward metric for the RAS is not trivial as it was observed that the best metric is problem
dependent. Furthermore, the selection and tuning of gradient algorithms remains vital for convergence.
Illsuited gradient algorithms can deceive the resource allocation scheme, causing the hybrid to con
verge slower than the original algorithms. Experiments also showed that concentrating gradient steps
on a select number of solutions of the population, outweighs dispersing gradient steps over the entire
population. Implementations of the hybrid algorithm have also been compared to other UHVbased
algorithms. It was shown that even if finite difference approximations are used to calculate gradients,
it is still able to obtain competitive or better results than the original component algorithms as well as
other UHVbased algorithms. We conclude that the resulting hybrid is therefore a promising addition
to the existing spectrum of evolutionary algorithms for multiobjective optimization.
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A
Experiment 2: Gradient Parameters

Figure A.1: The initial gamma estimation factor and gamma decay factor of various problems of experiment 2, where 𝑝 = 9.
Please note that yaxis is nonlinear.
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