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Abstract
This thesis explores existing and proposes new methods for assessing concentration risk in default-
only credit risk models. Within the existing methods, the analytic Granularity Adjustment is studied in
the single factor Gaussian threshold and in the CreditRisk+ framework. These adjustments are tested
on a sample portfolio in the presence of recovery risk, and we show that the CreditRisk+ adjustment
is more conservative than the Gaussian threshold adjustment. Furthermore, we show that in the pres-
ence of recovery risk, the accuracy of the adjustment on exposure level deteriorates. Additionally, the
Granularity Adjustment is extended to an independent single factor t-threshold model to account for
heavier tailed asset returns. Based on the independent single factor t-threshold model, we suggest
an ASRF equivalent that could serve as an alternative to the current IRB framework. Although much
existing literature is focusing on developing analytical methods for measuring concentration risk, recent
advances in computational speed make Monte Carlo methods an interesting substitute for measuring
concentration risk. Using the methods developed by [35], we propose a split between Monte Carlo
based Economic and Regulatory Concentration Risk and show that these measures do not coincide
for a given portfolio. This method involves a novel way of assessing idiosyncratic risk in multi factor
frameworks. In order to assess sector concentration risk, this thesis proposes a Diversification Factor
and a Capital Diversification Index as risk management tools. Finally, this thesis provides a clear ac-
count of the effects of concentration, diversification and recovery risk on the portfolio loss distribution
for both Gaussian and t-threshold models. This thesis was carried out in close cooperation with ING
Bank.
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1
Introduction

Within the core tasks of modern banks, supplying the market with various forms of credit is arguably the
most important. Naturally, supplying the market with credit brings along risks that should be properly
managed. One of these risks is credit risk; the risk that a borrower defaults on its obligations towards
the bank. Adequate measurements of credit risk in a banks portfolio is a heavily practiced, regulated
and studied topic. The main difficulties involved with modelling credit risk arise from the fact that default
events are generally quite rare and they occur unexpectedly. However, when a default does take place,
it might lead to significant losses.

In order for the bank to stay solvent and cover unexpected losses due to credit risk, the bank holds
capital as a protection against this type of risk. The European Central Bank extensively regulates the
amount of capital that has to be held through the Basel Accords. Credit risk in a portfolio arises from
two sources; systematic and idiosyncratic risk. Systematic risk is caused by unexpected changes in
macroeconomic conditions that affect the global and local economies to which borrowers are exposed.
This kind of risk cannot be eliminated through diversification across borrowers. The second source of
risk, idiosyncratic risk, arises from shocks to individual borrowers that do not affect other borrowers.
This borrower specific risk can be diversified away as the largest exposures in a portfolio account for
small shares of the total portfolio exposure.

The Internal Ratings Based approach of the Basel capital framework is well suited in measuring
systematic credit risk, but by being portfolio invariant approach, it does not allow for assessing credit
risk due to diversification. Essentially, the capital charge in the IRB framework is derived from an
asymptotic single risk factor model which inherently implies that idiosyncratic risk is assumed to be
diversified in the portfolio. This implies that the IRB framework is unable to explicitly account for con-
centration risk measurements due to idiosyncratic shocks to the portfolio. Under Basel II and III, banks
are obliged to assess concentration risk under Pillar II, but banks and regulators have a large degree
of freedom in choosing the exact quantitative tools to measure the additional capital required to cover
for concentration risk.

Throughout this thesis, we assess the existing techniques and develop new techniques for quanti-
fying concentration risk in credit portfolios. We restrict ourselves to default only models, therefore we
do not take any effects of credit migration into account. In contrast to many existing methods, we both
research the effect of recovery risk on concentration risk and the effect of heavier tailed asset returns.

Generally, concentration risk is a topic covering two specific effects: single name concentration risk
and sector concentration risk. Single name concentration risk refers to the type of risk that is due to
idiosyncratic shocks to large exposures in a portfolio. Sector concentration risk refers to the type of risk
that is due to diversifying a portfolio across multiple sectors and regions. In short, concentration risk in
credit portfolios arises from either an unequal distribution of loans to single borrowers or industrial and
regional sectors. We analyze both variants of concentrations risk and assess techniques to quantify
both effects. For major financial institutions, losses due to concentration risk can be extreme. There-
fore, adequate measurement of concentration risk in a bank’s portfolio of outstanding loans is essential
to the financial stability of the banking system. Historically, concentration risk in loan portfolios has
been shown to be one of the major causes of banking distress [21].
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3

This thesis has been conducted in close cooperation with ING Bank, a Dutch multinational banking
and financial service corporation active in over 40 countries. ING’s total assets exceed €890 million
in 2019 [11] making it one of the biggest banks worldwide, consistently ranking in the top 30 globally.
Additionally, ING is the only Dutch bank to be listed among the Globally Systemic Important Banks.

Contributions of this work
The purpose of this work is twofold. Firstly, we review existing methods for assessing concentration risk
in credit portfolios. We explore both Monte Carlo based and analytical methods and compare these
methods across aspects such as ease of implementation and accuracy. Secondly, we develop new
methods for measuring concentration risk and adapt existing methods to fit different underlying models
of credit risk, accounting for effects such as recovery risk. This work is designed to be relevant to
practitioners of credit risk management and model validators within all financial institutions. Since this
thesis is written in close cooperation with ING’s model validation department, this work is focused on
exploring and testing existing methods for assessing concentration risk.

More specifically, this work extends existing literature to real-life portfolios and test analytical meth-
ods for assessing concentration risk on portfolios many times the size of the portfolios that are under
investigation in the existing literature. Furthermore, we test the existing methods without any assump-
tions on the homogeneity of the portfolio in terms of LGD, PD and EAD. Additionally, we explore the
effects of diversification by allowing the obligors to depend on multiple systemic factors, in contrast to
a single region or industry in the existing literature. Furthermore, we allow the systematic factors to be
governed by a covariance matrix instead of the standard correlation matrix. We also adapt the meth-
ods developed in [35] to this new setting. Additionally, we introduce recovery risk across all analytical
methods proposed in this work and assess the accuracy of analytical approximation to credit risk in the
presence of recovery risk.

Moreover, we respond to the suggestions of existing literature to make different assumptions on
the underlying distributions of asset returns by adapting the concentration risk framework to student
t-distributed asset returns instead of normally distributed asset returns. This also involves finding a
solution to an ASRF and Granularity Adjustment equivalent for a t-threshold model with independent
systematic and idiosyncratic risk factors. Next, by adopting a different interpretation of the methods
developed by [35], we argue in support of adapting two new forms of concentration risk: Regulatory
and Economic Concentration Risk. Lastly, we suggest a measure of diversification by eliminating the
effects of diversification through assuming an all-ones matrix and showing that for this matrix, the multi
factor threshold model equals an equivalent single factor model.

Outline
In Chapter 2 we start with revisiting the regulatory framework and we introduce the general credit risk
model setting. Furthermore, we take a closer look at the definition of concentration risk and shortly
discuss ING’s current methods for determining Economic Capital. In Chapter 3 we discuss the math-
ematical tools required to assess concentration risk. Additionally, industry models such as Moody’s
RiskFrontier and CreditRisk+ are introduced and evaluated shortly. Lastly, we introduce current tech-
niques for measuring concentration risk. Chapter 4 applies the techniques developed to existing risk
models and introduces some more recent methods for evaluating concentration risk. Additionally, we
shortly explore some computational techniques such as Monte Carlo methods. To verify the perfor-
mance of the introduced methods, Chapters 5 and 6 are devoted to testing the methods empirically.
Chapter 5 introduces the portfolios and correlations structure on which the methods are evaluated,
while Chapter 6 focuses on the justification and tests of the methods discussed. Chapter 7 concludes
and suggests future research.



2
Concentration risk and the regulatory

framework
Throughout this chapter we will introduce the basics of credit risk modelling such as the
variables of risk (PD,LGD,EAD) andmeasures to quantify the riskiness of a credit portfolio,
such as the VaR and ES. Additionally, we will evaluate Gaussian threshold models and de-
rive the Asymptotic Single Risk Factor (ASRF) model. Lastly, we will review ING’s current
method for determining Economic Capital.

2.1. The Regulatory Framework
In the most recent Basel capital framework, the Asymptotic Single-Risk Factor (ASRF) model underpins
the Internal Rating Based (IRB) approach. However, this approach does not allow for the explicit
measurement of concentration risk. The IRB risk-weight functions of Basel II (on which we will elaborate
in Section 2.6.1) are designed to be portfolio invariant by nature, therefore neglecting the effects of
concentration on the loss distribution. Essentially, this means that the capital required for a specific loan
only depends on the risk profile of this specific loan and must not depend on the portfolio it is part of [30].
A major drawback of this method is its incapability of capturing concentration effects. Therefore, Basel
II states that banks should explicitly consider credit risk concentrations in the assessment of capital
adequacy under Pillar 2 [31]. Basel II states that ”banks should have in place effective internal policies,
systems and controls to identify, measure, monitor, and control their credit risk concentrations.” These
policies cover the following concentrations:

• Significant exposures to an individual counterparty or group of related counterparties.

• Credit exposures to counterparties in the same economic sector or geographic region.

• Credit exposures to counterparties whose financial performance is dependent on the same activity
or commodity.

• Indirect credit exposures arising from a bank’s CRM activities.

Throughout this work, wewill focus on addressing the first two of the aforementioned concentrations.
Basel developed a more extensive framework for managing concentration risk in 2013 under the name
Supervisory framework for measuring and controlling large exposures. In [32] the Committee stresses
that the large exposure framework complements the IRB capital standard as the standard IRB approach
is not explicitly designed to protect banks from large losses resulting from the sudden default of a single
counterparty. Furthermore, the large exposure framework will be part of Basel III when it is implemented
on January 1st, 2022. The framework sets prudent limits to large exposures. Large exposures are
defined by the sum of all exposures of a bank to a single counterparty that are equal to or exceed
10% of its Tier 1 capital. The limit for large exposures is set at 25% for general banks and at 15%
for globally systemically important banks. Some exposures will be exempted from these requirements
such as intraday interbank, sovereign and central bank exposures.

4



2.2. Risk Measurement and Variables of Risk 5

2.2. Risk Measurement and Variables of Risk
Credit risk is the risk that the value of a portfolio of loans changes due to unexpected changes in the
credit quality of issuers or trading partners. This includes both losses due to defaults as losses caused
by changes in credit quality [25]. According to the ECB, credit risk is defined ”as the risk of losses
due to credit events, i.e. default (an obligor being unwilling or unable to repay its debt) or a change in
quality of the credit (rating change)”[28]. Broadly speaking, credit risk can be quantified in default or in
migration mode. In default mode, the only relevant risk is the risk of default meaning mark to market
losses due to rating migrations are not taken into account. In contrast, migration mode deals with all
mark to market gains and losses due to changes in ratings [28]. Default is, in essence, an extreme
occasion of rating migration and can therefore be regarded as a particular case of migration mode.
Empirically, the calculated credit risk in migration mode is usually higher than in default mode since the
probability of a rating downgrade exceeds the probability of an upgrade [28]. In this work, we will focus
on default mode only.

Credit risk modelling poses several challenges. The main difficulties when modelling credit risk
arise from the fact that default events are rare and occur unexpectedly. Moreover, there is a lack of
public information and data regarding the credit quality of corporations. Often, this gives rises to a
problem of informational asymmetry in which the management of a firm is better informed about the
financial prospects of the firm than the lender, in this case the bank, is. Furthermore, loss distributions
are typically heavily skewed and have a relatively heavy upper tail. This translates into a large amount
of risk capital to be required to cover potential large losses [25].

The uncertainty of whether an obligor will default within a set time horizon, typically one year, is
measured by its probability of default. The probability of default (𝑃𝐷 ∈ [0, 1]) describes the probability
of the default event occurring before the specified time horizon. The exposure at default (𝐸𝐴𝐷) of an
obligor denotes the portion of the exposure to the obligor which is lost in case of an occurring default
event. The 𝐸𝐴𝐷 ∈ (0,∞) is a deterministic quantity. In case of the default of an obligor, the creditor
does not necessarily lose its full exposure. Obligors can partly recover meaning that the creditor can
receive a fraction of the notional value of the claim. This setting is measured by the loss given default
(𝐿𝐺𝐷 ∈ [0 − 𝜖, 1 + 𝜖]). 𝜖 can take non zero values as for instance, cost can be made in retrieving the
value of the claim. Throughout this work, we will assume 𝜖 = 0. The LGD is usually modelled as a
random variable describing the severity of losses in the default event. Typical values of its expectation
range from 40% to 80% [21]. Lastly, a variable of risk to consider is the default correlation. This measure
describes the degree to which the default risk of one firm depends on the default risk of another firm. It
is characterized by the joint default probabilities of the obligors over the specified time horizon. Default
dependence has been shown to have a strong impact on the tail of the loss distribution for a given
portfolio.

Generally, credit risk is measured in expected loss (EL) and unexpected loss (UL). The expected
loss is easily determined from the aforementioned variables and can easily be managed. Unexpected
loss is more difficult to measure and quantify. Economic capital (EC) is held to cover unexpected losses.
A more rigorous definition of these risk measures will be provided in the next sections.

2.3. General Model Setting
We specify a probability space, denoted as (Ω, ℱ, ℙ), with sample space Ω, 𝜎-algebra ℱ and probability
measure ℙ. This probability space is the domain of all random variables introduced in this paper.
Furthermore, we introduce a portfolio consisting of 𝑁 loans indexed by 𝑖 = 1, ..., 𝑁. Moreover, we
assume that the exposures have been aggregated in such a way that there is a unique obligor for each
position. Therefore, the amount of obligors equals the number of positions. The share of total portfolio
exposure for obligor 𝑖 is then defined by:

𝑤። =
𝐸𝐴𝐷።

∑ፍ፣ኻ 𝐸𝐴𝐷፣
(2.1)

Clearly, we have ∑ፍ።ኻ𝑤። = 1. Furthermore, denote 𝐷። as the default indicator of obligor 𝑖 . At 𝑡 = 0, all
obligors are assumed to be in a non-default state. Since at 𝑡 = 𝑇, obligor 𝑖 defaults or does not default,
𝐷። is represented as a Bernoulli random variable taking the values:
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𝐷። = {
1 if counterparty i defaults before time T
0 otherwise

(2.2)

with probabilities ℙ(𝐷። = 1) = 𝑃𝐷። and ℙ(𝐷። = 0) = 1−𝑃𝐷።. The loss of a single obligor is the random
variable 𝐿።:

𝐿። = 𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷። (2.3)

Similarly, the absolute loss of the whole portfolio 𝐿 = 𝐿ፍ is calculated as the sum over all individual
losses in the portfolio:

𝐿ፍ =
ፍ

∑
።ኻ
𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷። (2.4)

Throughout this text, the subscript 𝑁 is regularly omitted when there is no ambiguity about the
portfolio size. Furthermore, the following assumption holds:

Assumption 2.3.1. The exposure at default 𝐸𝐴𝐷።, the loss given default 𝐿𝐺𝐷። and default indicator 𝐷።
for all 𝑖 = 1, ..., 𝑛 are independent.

Therefore, the expected loss of loan 𝑖 is given by:

𝔼[𝐿።] = 𝔼[𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷።] = 𝐸𝐴𝐷። ⋅ 𝐸𝐿𝐺𝐷። ⋅ 𝔼[𝐷።] = 𝐸𝐴𝐷። ⋅ 𝐸𝐿𝐺𝐷። ⋅ 𝑃𝐷። (2.5)

where 𝐸𝐿𝐺𝐷 ∶= 𝔼[𝐿𝐺𝐷]. The same analysis can be conducted on the expected loss of the full portfolio
resulting in:

𝔼[𝐿ፍ] =
ፍ

∑
።ኻ
𝔼[𝐿።] =

ፍ

∑
።ኻ
𝐸𝐴𝐷። ⋅ 𝐸𝐿𝐺𝐷። ⋅ 𝑃𝐷። (2.6)

2.3.1. Measuring Credit Risk
Essentially, a credit risk model is a function mapping from a set of instrument-level characteristics
and market-level parameters to a distribution of portfolio credit losses over some chosen time horizon,
often chosen to be 1 year [9]. In order to grasp the risk presented by the portfolio loss distribution,
some summary statistic of this distribution is required. Currently, the preferred statistics for this are the
Value-at-Risk (VaR) and economic capital (EC).

Value-at-Risk
Value-at-Risk is the most widely used risk measure in financial institutions due to its interpretability
and its presence in the Basel II framework for measuring credit risk. The following derivation of the
VaR and other risk measures is largely based on [25]. Let 𝐹ፋ(𝑥) = ℙ(𝐿 ≤ 𝑥) be the distribution of
the loss variable, the distribution that is of interest in measuring credit risk. As mentioned before, for
large portfolios this distribution is expected to be highly skewed and heavy tailed. The goal is to define a
statistic based on 𝐹ፋ that measures the risk of holding the portfolio. Since the support of 𝐹ፋ is unbounded
in all models we will consider, the maximum loss is unbounded and therefore not a sufficient statistic.
The VaR, however, describes the maximum possible loss which is not exceeded in a given time period
at a set confidence level:

Definition 2.3.1. Consider some confidence level 𝑞 ∈ (0, 1). The Value-at-Risk (VaR) of a portfolio
at the confidence level 𝑞 is given by the smallest number 𝑥 such that the probability that the loss 𝐿
exceeds 𝑥 is not larger than (1 − 𝑞):

𝑉𝑎𝑅፪(𝐿) = inf{𝑥 ∈ ℝ ∶ ℙ(𝐿 > 𝑥) ≤ 1 − 𝑞} = inf{𝑥 ∈ ℝ ∶ 𝐹ፋ(𝑥) ≥ 𝑞} (2.7)

In probabilistic terms, the VaR equals the quantile of the loss distribution. Generally, the VaR can
be derived over different holding periods and at all confidence levels. However, typically the holding
period equals one year and the confidence level either equals 95%, 99% or 99.9%. Clearly, a higher
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confidence level leads to a higher VaR. Throughout this text, the following abbreviation for the VaR
will be widely used: 𝑉𝑎𝑅፪(𝐿) ∶= 𝛼፪(𝐿). Considering a continuous and strictly increasing distribution
function 𝐹ፋ(𝑥), we have 𝛼፪(𝐿) = 𝐹ዅኻፋ (𝑞), where 𝐹ዅኻፋ (𝑞) is the quantile function.

The VaR has some major and widely researched drawbacks. Firstly, by its very definition, the VaR
at confidence level 𝑞 does not contain any information about the severity of losses that occur with a
probability less than 1−𝑞. This shortcoming is addressed by the Expected Shortfall (ES). Secondly, the
VaR is a non-coherent risk measure as it is not subadditive [1]. This means that the VaR of a merged
portfolio of two individual portfolios is not necessarily bounded from above by the sum of the VaR’s of
the individual portfolios contradicting the intuition of diversification benefits [25].

Expected Shortfall
The Expected Shortfall (ES) is closely related to the VaR since it overcomes the deficiencies of the
VaR. The ES averages the VaR over all confidence levels exceeding 𝑞, therefore taking the tail of the
loss distribution into account. Formally:

Definition 2.3.2. For a loss 𝐿 with 𝔼[|𝐿|],∞ and distribution function 𝐹ፋ, the Expected Shortfall (ES) at
confidence level 𝑞 ∈ (0, 1) is defines as

𝐸𝑆፪ =
1

1 − 𝑞 ∫
ኻ

፪
𝑉𝑎𝑅፮(𝐿)𝑑𝑢 (2.8)

Clearly, from the definition we have 𝐸𝑆፪ ≥ 𝑉𝑎𝑅፪. For continuous loss distributions a more intuitive
express can be derived:

Proposition 2.3.1. For an integrable loss variable L with continuous distribution function 𝐹ፋ and any
𝑞 ∈ (0, 1) we have:

𝐸𝑆፪ =
𝔼[𝐿𝟙ፋጿፕፚፑᑢ(ፋ)]

1 − 𝑞 = 𝔼[𝐿|𝐿 ≥ 𝑉𝑎𝑅፪(𝐿)] (2.9)

For the proof of this proposition, see [25] page 45. Proposition 2.3.1 allows for a more intuitive
expression of the ES. The ES can be interpreted as the expected loss that is incurred in the event that
the VaR is exceeded.

Economic Capital
Economic capital is a measure of unexpected loss for a given portfolio:

Definition 2.3.3. The Economic Capital (EC) at confidence level 𝑞 ∈ (0, 1) is defined as the difference
between the VaR and the expected loss EL of the portfolio:

𝐸𝐶፪ = 𝑉𝑎𝑅፪(𝐿) − 𝔼[𝐿] (2.10)

For instance, assuming a one year time horizon, at a confidence level of 99.9% the EC can be
interpreted as the appropriate capital to cover unexpected losses in 999 out of a 1000 years. Therefore,
the EC represents the capital a financial institution should hold to limit the probability of default to a
given confidence level. Clearly, with the VaR being portfolio dependent, the EC is portfolio dependent,
whereas the EL is independent of the portfolio. Therefore, allocating EC to individual obligors is not as
straightforward. For example, the EC charge for a new loan that is added to a well-diversified portfolio
is much lower than the EC charge when the same loan is added to a heavily concentrated or very
small portfolio. The problem of allocating the VaR and thus the EC to individual obligors is discussed
in Section 3.5.1.

2.4. Merton’s Structural Model of Default
So far, we have evaluated the general credit risk modeling setting and reviewed the measures of
credit risk. To fully define the credit risk model, assumptions have to be made on the default sce-
nario. Throughout this section, we will briefly review Merton’s structural model of default. The model
proposed by [26] forms the essential basis of all asset value based models and although many mod-
els have been developed since 1974, it remains influential and popular in current credit risk modelling
practices [21]. The following derivation of the multi-factor model is based on [21] and [25]. Firstly,
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consider a firm whose asset value is described by a stochastic process 𝑉፭. The firm is financed by only
two classes of securities, equity 𝑆፭ and debt 𝐵፭. In Merton’s model, the firm’s debt is given by a zero
coupon bond with face value 𝐵 and maturity 𝑇. Furthermore, the model assumes a frictionless market,
meaning that there are no taxes or transactions costs involved. The firm defaults if the value of its
assets is less than the obliged debt repayment at time T, and default can only occur at maturity T of
the bond. The value of the firm is then given by:

𝑉፭ = 𝑆፭ + 𝐵፭ , 0 ≤ 𝑡 ≤ 𝑇 (2.11)

At maturity, two possible scenarios occur:

1. 𝑉ፓ > 𝐵 The value of the firms asset’s exceeds its debt, so the debtholders receive 𝐵 and the
shareholders receive the residual value 𝑆ፓ = 𝑉ፓ − 𝐵. No default occurs.

2. 𝑉ፓ ≤ 𝐵 The value of the firm’s assets are less than its debt. Hence, the firm cannot meet its
obligations and defaults. The debtholders take ownership of the firm 𝐵 = 𝑉ፓ and the shareholders
receive nothing 𝑆ፓ = 0.

The Merton model assumes that under the real-word probability measure ℙ the asset value process
(𝑉፭)፭ጿኺ follows a geometric Brownian motion with drift of the form:

𝑑𝑉፭ = 𝜇ፕ𝑉፭𝑑𝑡 + 𝜎ፕ𝑉፭𝑑𝑊፭ (2.12)

for constants 𝜇ፕ ∈ ℝ, 𝜎ፕ > 0 and standard Brownianmotion (𝑊፭)፭ጿኺ. The solution at time 𝑇 of stochastic
differential Equation (2.12) is given by:

𝑉ፓ = 𝑉ኺ𝑒((᎙ᑍዅኻ/ኼ
Ꮄ
ᑍ)ፓዄᑍፖᑋ) (2.13)

which implies that 𝑙𝑛(𝑉ፓ) ∼ 𝒩(𝑙𝑛(𝑉ኺ) + (𝜇ፕ − 1/2𝜎ኼፕ)𝑇, 𝜎ኼፕ𝑇). In essence, this means that under the
dynamics of (2.12), the default probability of the firm is given by:

ℙ(𝑉ፓ ≤ 𝐵) = ℙ(𝑙𝑛(𝑉ፓ) ≤ 𝑙𝑛(𝐵)) = Φ(
𝑙𝑛( ፁፕᎲ ) − (𝜇ፕ − 1/2𝜎

ኼ
ፕ)𝑇

𝜎ፕ√𝑇
) (2.14)

Essentially , Equation (2.14) justifies the methods we will discuss in Section 2.5 in which we explain
the more general idea of default occurring for a firm when some critical random variable falls below
some deterministic threshold at the end of time period [0, 𝑇]. In the Merton model, this critical random
variable is a lognormally distributed asset value and the default threshold is represented by the firms
liabilities.

2.5. Gaussian Factor Threshold Models
In general, factor models are models in which the asset returns (or any other measure of counterparty’s
well-being) of a counterparty are modelled as a combination of systematic factors and an idiosyncratic
factor. A major upside of these models is their economic interpretation. Factor models provide the
possibility to interpret the asset returns, and correlations among asset returns, in terms of underlying
economic variables. The following derivation of the multi-factor model is based on [21], [13] and [25].
In what follows, focus is on default-only models, meaning that a decision of a counterparty’s state is
made by comparing the counterparty’s asset value to a threshold value. If, at the end of a set period,
the counterparty’s asset value falls below the threshold, the counterparty defaults. Furthermore, we
consider a portfolio of 𝑁 exposures. Data is aggregated in such a way that each obligor 𝑖 has one loan
with principal 𝐸𝐴𝐷።. Additionally, fix the time horizon 𝑇 > 0 and define 𝑟። to be the asset return of obligor
𝑖. We will make the following assumption:

Assumption 2.5.1. The asset returns 𝑟። depend linearly on 𝐾 standard normally distributed risk factors
𝑋 = (𝑋ኻ, ..., 𝑋ፊ) affecting the counterparty’s returns in a systematic way as well as on a standard normally
distributed idiosyncratic term 𝜖።. Moreover, the 𝜖። ’s are independent, uncorrelated and independent
from the system factors 𝑋፤ for every 𝑘 ∈ {1, ..., 𝐾}.
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Under this assumption, the asset returns are driven by two different types of risk factors, systematic
and idiosyncratic risk factors:

Definition 2.5.1. Systematic risk represents the effect of unexpected changes in macroeconomic and
financial market conditions on the performance of borrowers. Borrowers may differ in their degree of
sensitivity to systematic risk, but few firms are completely indifferent to the wider economic conditions
in which they operate. Therefore, the systematic component of portfolio risk is unavoidable and only
partly diversifiable [30].

Definition 2.5.2. Idiosyncratic risk represents the effects of risks that are particular to individual bor-
rowers. As a portfolio becomes more fine-grained, in the sense that the largest individual exposures
account for a smaller share of total portfolio exposure, idiosyncratic risk is diversified away at the port-
folio level. This risk is totally eliminated in an infinitely granular portfolio [30].

Under assumption 2.5.1, the counterparty’s standardized asset returns are described by:

𝑟። = 𝛽።𝑌። +√1 − 𝛽ኼ። 𝜖። (2.15)

in which 𝑌። is the counterparty’s composite factor:

𝑌። =
ፊ

∑
፤ኻ

𝛼።,፤𝑋፤ (2.16)

Generally, systematic factors 𝑋፤ represent geographical and industrial effects on the asset returns and
factor loading 𝛼።,፤. Furthermore, consider the following decomposition of 𝑟።:

𝕍[𝑟።] = 𝛽ኼ። 𝕍[𝑌።] + (1 − 𝛽ኼ። )𝕍[𝜖።] (2.17)

Clearly, Equation (2.17) can be interpreted as splitting the total risk of a counterparty’s asset returns
into the systematic and idiosyncratic components. 𝛽ኼ። expresses the amount of variance of 𝑟። that can
be attributed to the systematic risk. Factor 1 − 𝛽ኼ። captures the contribution of idiosyncratic risk to the
total variance. As 𝑟። is standardized, the following condition should be satisfied: ∑ፊ፧ኻ 𝛼ኼ፧,፤ = 1. 𝑃𝐷።
denotes the one-year probability of default for counterparty 𝑖: 𝑃𝐷። = ℙ[𝑟። < 𝑐።] and since we impose
that 𝑟። ∼ 𝒩(0, 1) we obtain:

𝑐። = Φዅኻ[𝑃𝐷።] (2.18)

Rewriting the condition 𝑟። < 𝑐። yields:

𝜖። <
Φዅኻ(𝑃𝐷።) − 𝛽።𝑌።

√1 − 𝛽ኼ።
(2.19)

Therefore, since 𝜖። is normally distributed, the probability of default conditional on the systematic factors
can be written as:

𝑃𝐷።(𝑌።) = ℙ[𝑟። < 𝑐።|𝑌።] = ℙ
⎡
⎢
⎢
⎣
𝜖። <

Φዅኻ(𝑃𝐷።) − 𝛽።𝑌።
√1 − 𝛽ኼ።

|𝑌።
⎤
⎥
⎥
⎦
= Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝛽።𝑌።
√1 − 𝛽ኼ።

⎞

⎠

(2.20)

An interesting computation is that of the expected value of the conditional default probability:

𝔼[𝑃𝐷።(𝑌።)] = 𝔼[𝔼[1፫ᑚጺጓᎽᎳ(ፏፃᑚ)|𝑌።]] = 𝔼[1፫ᑚጺጓᎽᎳ(ፏፃᑚ)] = ℙ(𝑟። < Φዅኻ(𝑃𝐷።)) = Φ(Φዅኻ(𝑃𝐷።)) = 𝑃𝐷።
(2.21)

This means, that when we compute the average conditional default probability, the unconditional default
probability is recovered. The Gaussian threshold models share this characteristic with other model
approaches such as CreditRisk+.

A major upside of this model is the ability to describe the asset correlation between obligors through
their common systematic factors. Denote ΩΩΩ ∈ ℝፊ×ፊ to be the correlation matrix of the 𝐾 systematic
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factors 𝑋፤. Then X ∼ 𝒩(0,ΩΩΩ). Again, the assumption that 𝕍[𝑟።] = 1 means that 𝛼𝛼𝛼ᖣ።ΩΩΩ𝛼𝛼𝛼። = 1∀ 𝑖 ∈ [1, 𝑁].
Since 𝕍[𝑋፤] = 1 and through the independence of 𝑋፤ and 𝜖። the asset correlations are given by:

𝜌(𝑟። , 𝑟፣) = 𝑐𝑜𝑣(𝑟። , 𝑟፣) = 𝛽።𝛽፣𝛼𝛼𝛼ᖣ።ΩΩΩ𝛼𝛼𝛼፣ (2.22)

In using the model, the factor loadings 𝛼።,፤ and systematic risk component 𝛽። have to be determined
for each obligor and correlation matrix ΩΩΩ has to be determined. Usually, these factors are determined
through regression models on historical data.

2.6. Measuring Credit Risk with the Single Factor Model
In the previous section, we have derived the Multi Factor Gaussian Threshold model. Multi factor
indicates the existence of multiple systematic factors, Gaussian threshold indicates the fact that the
asset returns are assumed to be standard Normally distributed. For many practical implications, of
which the IRB approach is one, this model is simplified to contain only one single systematic factor, in
other words, 𝐾 = 1. Throughout this section, we will explore this model in more detail.

2.6.1. Asymptotic Single Risk Factor Approximation
The Asymptotic Single Risk Factor (ASRF) model, developed by [9], is based on several major as-
sumptions. We will briefly consider these assumptions as they are relevant to the derivation of the
granularity adjustment in later sections.

Assumption 2.6.1. Assume that the variables 𝑈። ≡ 𝐿𝐺𝐷።𝐷። for 𝑖 = 1, ..., 𝑁 are bounded in the interval
[−1, 1] and conditional on 𝑌, are mutually independent.
Assumption 2.6.2. Let 𝐸𝐴𝐷። be an increasing sequence of postive constants. Assume that

1. ∑ፍ።ኻ 𝐸𝐴𝐷። ↑ ∞ as 𝑁 → ∞

2. There exists a 𝜉 > 0 such that ፄፀፃᑅ
∑ᑅᑚᎾᎳ ፄፀፃᑚ

= 𝒪(𝑁ዅ(
ኻ
ኼዄ))

Assumption 2.6.2 guarantees that the share of the largest single exposure with respect to the total
portfolio exposure vanishes to zero as the number of exposures in the portfolio increases. These
assumptions are vital for guaranteeing that the idiosyncratic risk vanishes as more assets are added to
the portfolio. In practice, these assumptions are quite weak and are likely to be satisfied by real-world
large bank portfolios. Using these assumptions, we can state an important result:

Proposition 2.6.1. Under assumption 2.6.1 and 2.6.2, conditional on 𝑥 = 𝑋, 𝐿ፍ − 𝔼[𝐿ፍ|𝑥] → 0 almost
surely.

Where 𝐿ፍ denotes the portfolio loss ratio 𝐿ፍ = ∑ፍ።ኻ𝑤።𝐿𝐺𝐷።𝐷።. For the proof of this proposition,
relying on the law of large numbers, we refer to appendix A.1. This is the main result on which the
ASRF model is built as it enables one to approximate the true loss distribution by the expected value
of the conditional loss distribution. Proposition 2.6.1 says that the larger the portfolio is, the more
idiosyncratic risk is diversified away and in the limit, the portfolio is driven by systematic risk purely.
Regularly in literature, this limiting portfolio is referred to as the infinitely fine-grained portfolio or the
asymptotic portfolio [21]. If we now assume the following:

Assumption 2.6.3. The systematic risk factor 𝑋 is one dimensional

Assumption 2.6.4. There is an open interval 𝐵 containing 𝛼፪(𝑋) and a real number 𝑛ኺ < ∞ such that:

1. ∀𝑖 ∈ 1, ..., 𝑁, 𝔼[𝑈።|𝑥] in continuous in 𝑥 on 𝐵,
2. 𝔼[𝐿ፍ|𝑥] is monotonously decreasing in x on B for all 𝑁 > 𝑛ኺ,
3. for all 𝑁 > 𝑛ኺ, inf፱∈ፁ 𝔼[𝐿ፍ|𝑥] ≥ sup፱ጾinfፁ 𝔼[𝐿ፍ|𝑥] and sup፱∈ፁ 𝔼[𝐿ፍ|𝑥] ≤ inf፱ጿsupፁ 𝔼[𝐿ፍ|𝑥]
In short, assumption 2.6.3 imposes a single systematic risk factor as the source of dependence

across all obligors in the portfolio. Assumption 2.6.4 essentially guarantees that the neighbourhood of
the q፭፡ quantile of 𝔼[𝐿ፍ|𝑥] is associated with neighbourhood of the unique q፭፡ quantile of 𝑋. This leads
us to the following proposition:
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Proposition 2.6.2. Under assumption 2.6.4 and 2.6.3, for𝑁 > 𝑛ኺ we have 𝛼፪(𝔼[𝐿ፍ|𝑥]) = 𝔼[𝐿ፍ|𝛼ኻዅ፪(𝑋)]

For the proof of this proposition we refer to appendix 2.8.9 of [13]. Essentially, this relation enables
us to calculate the value at risk 𝛼፪(𝔼[𝐿ፍ|𝑥]), which in general is highly complicated, by the exposure-
weighted average of the individual assets’ conditional expected losses 𝔼[𝐿ፍ|𝛼ኻዅ፪(𝑋)]. This relation
constitutes the core of Basel’s regulatory capital formulas. We can now apply the expression derived in
Section 2.5. Firstly, we condense the multi-factor model to a single factor model in line with assumption
2.6.3:

𝑟። = 𝛽።𝑋 + √1 − 𝛽ኼ። 𝜖። for 𝑖 = 1, ..., 𝑁 (2.23)

All other assumptions from Section 2.5, such as the normality of 𝑋 and 𝜖።, also hold in this setting.
Therefore, from Equation (2.20) we have:

𝑃𝐷።(𝛼ኻዅ፪(𝑋)) = Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝛽።Φዅኻ(1 − 𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(2.24)

And therefore, when applying proposition 2.6.2 together with the previously derived equation we have
in the ASRF setting:

𝑉𝑎𝑅ፀፒፑፅ፪ =
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) + 𝛽።Φዅኻ(𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(2.25)

where we used the symmetry of Φዅኻ. This result enables one to estimate the value at risk of the loss
distribution of a portfolio of 𝑁 obligors in a single systematic factor setting.

2.6.2. Measuring Credit Risk with the Basel II-III IRB Approach
The Basel IRB approach is set up to be a portfolio invariant framework for assessing credit risk. There-
fore, the sum of the risk contributions of the individual facilities in the portfolio defines the measure of
risk for the full portfolio. Generally, the risk contribution of an obligor is calculated in the following way
within the A-IRB framework:

𝑅𝐶ፁፚ፬፞፥። = 𝐸𝐴𝐷።𝐿𝐺𝐷። [Φ(
Φዅኻ(𝑃𝐷።) + √𝜌።Φዅኻ(0.999)

√1 − 𝜌።
) − 𝑃𝐷።] ⋅

1 + 𝑏(𝑀። − 2.5)
1 − 1.5𝑏 ⋅ 1.06 (2.26)

with 𝑏 = [0.11852 − 0.05478 ⋅ 𝑙𝑛(𝑃𝐷።)]ኼ and

𝜌። = Λ ⋅ [0.12 ⋅
1 − 𝑒ዅኺፏፃᑚ
1 − 𝑒ዅኺ + 0.24 ⋅ (1 − 1 − 𝑒

ዅኺፏፃᑚ

1 − 𝑒ዅኺ )] (2.27)

The total reculatory capital for the full portfolio is then easily determined through 𝑅𝐶 = ∑ፍ።ኻ 𝑅𝐶ፁፚ፬፞፥። .
Taking a closer look at Equation (2.26) and comparing it with Equation (2.24), we can recognize the
following structure:

𝑅𝐶ፁፚ፬፞፥። = 𝐸𝐴𝐷።𝐿𝐺𝐷። [𝑃𝐷።(𝛼ኺ.ዃዃዃ(𝑋)) − 𝑃𝐷።] ⋅ 𝑀𝐴 ⋅ 1.06 (2.28)

With
𝑀𝐴 = 1 + 𝑏(𝑀። − 2.5)

1 − 1.5𝑏 (2.29)

denoting the Maturity Adjustment. From (2.28) we can notice that, similarly to economic capital, regu-
latory capital is expressed as a scaled difference between the conditional expected loss on a extreme
event and the unconditional expected loss. Additionally, the A-IRB approach shows great similarities
with the ASRF model and therefore clearly ignores the effect of idiosyncratic risk. An important detail of
the A-IRB approach is the choice of asset correlation (2.27). By construction, the correlation coefficient
lies in the interval 𝜌 ∈ [0.12, 0.24], given Λ = 1, and is a decreasing function of the unconditional default
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probability 𝑃𝐷።. Basel’s logic behind this choice is that if a counterparty has a large default probability,
then much of its inherent default risk is idiosyncratic and it is less highly correlated with other credit
counterparties. Conversely, low risk counterparties predominantly face systematic risk and thus ex-
hibit higher levels of asset correlation [2]. The asset correlation attains its maximum value below a
default probability of around 3-4% and for default probabilities exceeding 10%, the correlation function
essentially equals its lower bound of 0.12. The parameter Λ is a new addition of Basel III and equals
1.25 if firm 𝑖 is a large financial institution and equals 1 otherwise.

The maturity adjustment (2.29) reflects the notion that long term exposures are riskier than their
shorter-term equivalents. This means that regulatory risk capital contributions increase for longer-term
maturities. Additionally, through 𝑏, the maturity adjustment is a function of default probability. The
impact of the maturity adjustment is a decreasing function of its unconditional default probability.

2.6.3. Limitations of the A-IRB approach
The IRB approach to measuring credit risk was developed as a portfolio invariant measure [30]. In
essence, this means that the capital required for any set loan depends on the characteristics of that
specific loan only, and not on the portfolio the loan is added to. The upside to this approach is that it
makes the IRB framework widely applicable across countries and institutions. Furthermore, it allows
for a straightforward comparison of riskiness across individual loans [29].

In order to achieve portfolio invariance, the IRB approach builds on two key assumptions:

1. Bank portfolios are infinitely granular

2. There exists only one source of systematic risk

The first assumption implies that all idiosyncratic risk is diversified away. The second assumption
implies that there are no diversification possibilities beyond the reduction of idiosyncratic risk. A more
informal interpretation of the second assumption is that the banks’ portfolio is well diversified across
geographical regions and sectors meaning that the only remaining systematic risk is the performance
of the global economy [30]. As the IRB approach assumes idiosyncratic risk to be fully diversified
away, one only needs to assess the systematic component of risk which results in the IRB formulas for
assessing VaR. Being portfolio invariant, the contributing VaR’s for each exposure are simply added
up to provide the VaR assessment for the full portfolio. Therefore, the IRB approach does not allow for
an elaborate correlation structure between individual risks [29]. However, when these assumptions are
violated, there is no guarantee that the IRB approach will be accurate. Most likely, the marginal VaR
contributions of single exposures to the overall VaR depends on the risk profile of the full portfolio. In
general, the IRB-based capital requirements may either under- or overestimate the risk profile of the
portfolio depending on the level of diversification and systematic correlation.

2.7. Concentration Risk
Basel defines a risk concentration as ”any single exposure or group of exposures with the potential to
produce losses large enough (relative to a bank’s capital, total assets, or overall risk level) to threaten
a bank’s health or ability to maintain its core operations”[31]. This definition refers to concentration
risk across multiple sorts of risk such as credit risk, market risk, liquidity risk and operational risk.
Throughout this work, we will focus on solely on credit risk. Within credit risk, two kinds of concentration
risk can be identified: name concentration and sector concentration.

Definition 2.7.1. Name concentration risk is the residual idiosyncratic risk arising from the deviation
from the infinitely fine-grained ideal [2]. Name concentration risk can be split into two types:

• Individual name concentration risk refers to the type of concentration risk the results from an
exposure to one firm or to a conglomerate of firms that is extremely large compared to the rest of
the exposures of the portfolio [13].

• Portfolio name concentration risk refers to the risk that occurs if a banks holds a portfolio contain-
ing a relatively small amount of firms, each of them with large exposures [13].

Definition 2.7.2. Sector concentration risk stems from the existence of multiple systematic factors and
arises from the assumption of a single underlying risk factor [2].
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For the first type of name concentration risk, the risk of the portfolio is significantly driven by the
idiosyncratic risk of a set of large exposure obligors. The second type of name concentration risk is
driven by a lack of diversification. The bank faces high losses if several accidentally occur and are
not driven by default correlation of the obligors. Sector concentration can be both geographically or
industry-based.

2.8. Internal Capital at ING
This section is omitted on purpose.
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State of the art
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3
Tools for identifying concentration risk

This chapter addresses the mathematical tools needed to assess concentration risk in credit
portfolios. General mathematical tools such as the multivariate normal distribution and
Pearson’s correlation will shortly be studied. Additionally, the concept of recovery risk will
be introduced. The problem of capital allocation is treated in this chapter through the intro-
duction of the Euler allocation principle in both an analytical and Monte Carlo setting. Ad
hoc measures of concentration, such as the Gini index will be reviewed after which model-
based concentration measures, such as the Granularity Adjustment, will be derived.

3.1. Mathematical Tools
3.1.1. Multivariate Statistics
Credit risk models are inherently multivariate as the loss incurred by a credit portfolio depends on a
random vector of losses for individual counterparties in the portfolio [25]. In this section, we will briefly
touch upon the relevant statistical tools and multivariate distributions that are relevant to credit risk
modelling. We assume the reader to be familiar with statistical tools such as the notions of expectation,
variance and some basic distributions such as the normal distribution. Furthermore, we assume a basic
knowledge of linear algebra. In this section, we follow the standard notation and general concepts from
[25].

Multivariate Normal Distribution
A d-dimensional vector of random variables X = (𝑋ኻ, ..., 𝑋፝)ᖣ has a multivariate normal (or Gaussian)
distribution if

X ፝= 𝜇𝜇𝜇 + AZ (3.1)

where Z = (𝑍ኻ, ..., 𝑍፤)ᖣ is a k-dimensional vector of i.i.d. univariate standard normal random vari-
ables, and A ∈ ℝ፝×፤ and 𝜇𝜇𝜇 ∈ ℝ፝ are a matrix and vector of constants respectively. The mean of
this vector of random variables is 𝔼[X] = 𝜇𝜇𝜇 and its covariance matrix is given by Cov(X) = ΣΣΣ where
ΣΣΣ = A⊺A. The distribution if characterized by its mean vector and covariance matrix, therefore we use
the following standard notation throughout this work X ∼ 𝒩(𝜇𝜇𝜇,ΣΣΣ). Moreover, if ΣΣΣ has full rank 𝑑 and is
therefore invertible and positive semi-definite, X has an absolutely continuous distribution function with
joint density [25]:

𝑓(x) = 1
(2𝜋)፝/ኼ|ΣΣΣ|ኻ/ኼ 𝑒

ዅ
ኻ
ኼ (xዅ᎙᎙᎙)

ᖤጐጐጐᎽᎳ(xዅ᎙᎙᎙) (3.2)

where |ΣΣΣ| denotes the determinant of ΣΣΣ.
Linear combinations of multivariate normal random vectors, remain multivariate normal. This prop-

erty will be widely applied throughout this text. Let X ∼ 𝒩(𝜇𝜇𝜇,ΣΣΣ) and take 𝐵 ∈ ℝ፤×፝ and b ∈ ℝ፤,
then:

𝐵X+ b ∼ 𝒩(𝐵𝜇𝜇𝜇 + b, 𝐵ΣΣΣ𝐵⊺) (3.3)

15
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and in the case that b ∈ ℝ፝
a⊺X ∼ 𝒩(a⊺𝜇, a⊺ΣΣΣa) (3.4)

Student-t Distribution
Besides the normal distribution, another widely used distribution in the practice of portfolio credit risk
modelling is the student-t distribution, often named the t-distribution. Firstly, we introduce the notion of
normal variance mixtures:

Definition 3.1.1. The random vectorX is said to have amultivariate normal variancemixture distribution
if

X ፝= 𝜇𝜇𝜇 + √𝐶AZ (3.5)

where

1. Z ∼ 𝒩(000, 𝐼፤)

2. 𝐶 ≥ 0 is a non-negative, scalar valued random variable independent of Z

3. A ∈ ℝ፝×፤ and 𝜇𝜇𝜇 ∈ ℝ፝ are a matrix and vector of constants respectively.

Clearly, the resulting mixture X is itself not a multivariate normal distribution. However, conditional
on 𝐶, we can observe the following identity X|𝐶 = 𝑐 ∼ 𝒩(𝜇𝜇𝜇, 𝑐ΣΣΣ) with ΣΣΣ = 𝐴𝐴⊺. [25] suggest interpreting
the mixing variable 𝐶 as a shock that arises from new information and that impacts the volatilities of all
assets. Given that 𝐶 has a finite expectation, the following holds:

𝔼[X] = 𝔼[𝜇𝜇𝜇 + √𝐶AZ] = 𝜇𝜇𝜇 + 𝔼[√𝐶]A𝔼[Z] = 𝜇𝜇𝜇 (3.6)

Cov(X) = 𝔼[(√𝐶AZ)(√𝐶AZ)⊺] = 𝔼[𝐶]AA⊺𝔼[ZZ⊺] = ΣΣΣ𝔼[𝐶] (3.7)

An important note is that ΣΣΣ is the covariance matrix of 𝐴Z and only the covariance matrix of X in the
case that 𝔼[𝐶] = 1. Generally, 𝜇𝜇𝜇 and ΣΣΣ are referred to as the location vector and the dispersion
matrix of normal mixture distribution. The correlation matrices of X and Z are the same, given the
finite expectation of 𝐶.

The multivariate t distribution is retrieved from the normal variance mixture distribution if we take 𝐶
to be a random variable in the form of √ ᎔

ፖ where𝑊 ∼ 𝜒ኼ(𝜂), and 𝜂 the degrees of freedom of the chi-
squared distribution. Then, X has a multivariate t distribution with 𝜂 degrees of freedom. Our notation
for the multivariate t is X ∼ 𝑡፝(𝜂,𝜇𝜇𝜇,ΣΣΣ). The density of the multivariate t-distribution is given by:

𝑓(x) =
Γ(ኻኼ(𝜂 + 𝑑))

Γ(ኻኼ𝜂)(𝜂𝜋)
፝/ኼ|ΣΣΣ|ኻ/ኼ

(1 + (x−𝜇
𝜇𝜇)⊺ΣΣΣዅኻ(x−𝜇𝜇𝜇)

𝜂 )
ዅ(᎔ዄ፝)/ኼ

(3.8)

In Figure 3.1 the univariate t-distribution is depicted for varying levels of degree of freedom parameter
𝜂. In comparison with the standard normal univariate distribution, the t-distribution has heavier tails
and has a higher tendency to generate extreme values. Furthermore, the t-distribution is clearly bell
shaped and symmetrical and as the degrees of freedom increase, the distribution approaches the
standard normal distribution.

3.1.2. Monte Carlo Methods
Throughout this work, we will make generous use of the Monte-Carlo methods. MC methods have
been of great importance for credit risk modelling and well known industry models such as Moody’s
KMV and CreditMetrics rely heavily on them [40][19]. This section will briefly address the foundations
of the Monte-Carlo method. Throughout this section we will refer to the work of [2] and [7]. Firstly,
introduce the integral of an arbitrary function 𝑔(𝑥):

𝛾 = ∫
ኻ

ኺ
𝑔(𝑥)𝑑𝑥 (3.9)
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Figure 3.1: Example of the impact of degrees of freedom parameter ᎔ on the shape t-distribution. As ᎔ increases, the t-distribution
approaches the standard normal distribution.

We may represent this integral as an expectation 𝔼[𝑔(𝑈)]1 with 𝑈 uniformly distributed between 0 and
1. Suppose we draw 𝑈ኻ, 𝑈ኼ, ... independently and uniformly from [0, 1]. The Monte Carlo estimate �̂�ፍ is
given by evaluating the function 𝑓 at 𝑁 random points and then averaging the result:

�̂�ፍ =
ኻ
ፍ

ፍ

∑
።ኻ
𝑔(𝑈።) (3.10)

If 𝑔 is integrable over [0, 1], then by the strong law of large numbers:

�̂�ፍ → 𝛾 almost surely as 𝑁 → ∞ (3.11)

The error of the Monte-Carlo estimator goes to zero as √𝑁 goes to infinity, otherwise known as 𝒪( ኻ√ፍ )
convergence. More generally, consider a random variable 𝑋 defined on probability space (Ω, ℱ,ℚ).
Furthermore, we assume that 𝑋 is absolutely continuous and has probability density function 𝑓ፗ(𝑥).
For some measurable function 𝑔, the expectation of 𝑔(𝑋) is defined as:

𝔼[𝑔(𝑋)] = ∫
ጼ

ዅጼ
𝑔(𝑥)𝑓ፗ(𝑥)𝑑𝑥 (3.12)

Following the same procedure, we generate 𝑁 independent realizations of 𝑋: {𝑋ኻ, ..., 𝑋ፍ}. The integral
can then be estimated by:

𝔼[𝑔(𝑋)] = ኻ
ፍ

ፍ

∑
።ኻ
𝑔(𝑋።) (3.13)

Similarly, as 𝑀 tends to infinity, solution (3.13) converges to its true value. However, the question
remains how we can apply this method to credit risk problems. In essence, credit risk management is
about identifying quantiles of the loss distribution, not necessarily about computing expectations of the
form (3.13). The expression for losses is given as:

𝐿 =
፧

∑
።ኻ
𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷። (3.14)

1Since if ፔ is uniformly distributed on [0,1], ᑌ፟(፮)  ኻ
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And throughout this work, we are interested in the VaR, or the upper quantiles of the loss distribution:

ℙ(𝐿 ≥ 𝛼፪(𝐿)) = ℙ(
፧

∑
።ኻ
𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷። ≥ 𝛼፪(𝐿)) (3.15)

Using the general fact that ℙ(𝐿 ≥ 𝛼፪(𝐿)) = 𝔼[𝟙ፋጿᎎᑢ(ፋ)] we can transform Equation (3.15) into the
following expectation:

ℙ(𝐿 ≥ 𝛼፪(𝐿)) = 𝔼 [𝟙{∑ᑟᑚᎾᎳ ፄፀፃᑚ⋅ፋፆፃᑚ⋅ፃᑚጿᎎᑢ(ፋ)}] (3.16)

This places the VaR computation in a multidimensional framework of equation 3.12 and this implies
we can employ the estimator (3.13). This justifies the use of Monte Carlo simulations in a portfolio
credit risk setting. A remaining challenge is that we are considering extreme outcomes for 𝛼፪(𝐿) and
therefore, the simulation process is both relatively slow and computationally expensive. [8] suggested
the use of variance reduction technique called importance sampling to solve this problem. The general
idea of importance sampling is to sample in such a way that extreme events are more likely. For more
information on this method we refer to [7] and [8].

3.1.3. Correlation
In the practice of portfolio credit risk, we are interested in the joint behaviour of individual exposures. In
essence, the overall risk of a portfolio does not only depend on the risk of individual exposures, but also
on the correlations between the future values of the counterparties in the portfolios. Therefore, we will
shortly treat the notion of correlation in this section. Throughout this work, we will only consider Pearson
correlation, which assesses linear relationships between two random variables. Alternatives for the
Pearson correlation coefficient are for instance Spearman’s rank correlation coefficient or Kendall’s
rank correlation coefficient. Whereas Pearson’s coefficient is only a measure of linear relationships,
Spearman’s coefficient assesses monotonic relationships in general.

Generally, both the covariance and the Pearson correlation coefficient of two random variables
are measures of how the two random variables vary jointly linearly [33]. A positive linear correlation
indicates that the two random variables vary jointly in the same direction whereas a negative linear
correlation indicates that the two random variables vary jointly in opposite direction. The Pearson
correlation coefficient of two random variables 𝑋, 𝑌, generally denoted as 𝜌, is given by:

𝜌ፗፘ =
Cov(𝑋, 𝑌)
√𝜎ኼፗ𝜎ኼፘ

= 𝔼[(𝑋 − 𝜇ፗ)(𝑌 − 𝜇ፘ)]
√𝜎ኼፗ𝜎ኼፘ

(3.17)

Where 𝜇 and 𝜎 denote the expected value and the standard deviation of the individual random variables,
respectively. Using this notation and the fact that asset returns are assumed to be standard Normal
random variables, the asset return correlation between any two obligors for the single factor threshold
model can easily be determined:

𝜌፫ᑚ፫ᑛ = Cov(𝑟። , 𝑟፣) = 𝛽።𝛽፣Cov(𝑋, 𝑋) = 𝛽።𝛽፣ (3.18)

This immediately clarifies a major upside of factor models. Essentially, instead of defining the pairwise
correlation for each counterparty in a portfolio, if suffices to define only the systematic factor loading 𝛽።
for each counterparty. It must be noted that the asset correlation is not equal to the default correlation.
Default correlation is the degree of correlation between the default indicators for two counterparties,
𝜌ፃᑚ ,ፃᑛ . From Section 2.3 we already know that 𝐷። is a Bernoulli random variable, using this knowledge
we can easily determine 𝜌ፃᑚ ,ፃᑛ :

𝜌ፃᑚ ,ፃᑛ =
Cov(𝐷። , 𝐷፣)
√𝕍[𝐷።]𝕍[𝐷፣]

=
𝔼[𝐷። , 𝐷፣] − 𝑃𝐷።𝑃𝐷፣

√(𝑃𝐷። − 𝑃𝐷ኼ። )(𝑃𝐷፣ − 𝑃𝐷ኼ፣ )
(3.19)

This leaves us with determining 𝔼[𝐷። , 𝐷፣]:
𝔼[𝐷። , 𝐷፣] = ℙ(𝐷። = 1 ∧ 𝐷፣ = 1) = Φኼ(Φዅኻ(𝑃𝐷።), Φዅኻ(𝑃𝐷፣), 𝜌፫ᑚ ,፫ᑛ) (3.20)

Clearly, the default correlation depends on the joint distribution of 𝑟። and 𝑟፣, which in our case is a
multivariate Gaussian distribution.
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3.2. Recovery Risk
Recovery risk denotes the risk that following a default, contracts of the defaulting obligor cannot be
honoured in full, thereby leading to financial loss to the bank. Recovery risk is the complement of LGD
Risk. Recovery risk is expressed through the distribution of the LGD parameter. Throughout this work,
we will either model the LGD as a deterministic quantity or as a Beta distributed random variable. The
Beta distribution is used in two well known industry models; Moody’s RiskFrontier and CreditMetrics
[6]. The Beta distribution is a viable candidate for LGD modeling as it is defined on the interval (0, 1)
and therefore can be interpreted as returning a LGD. A random variable 𝑋 has a Beta distribution,
𝑋 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏), if its density is:

𝑓(𝑥) = 1
𝛽(𝑎, 𝑏)𝑥

ፚዅኻ(1 − 𝑥)ዅኻ (3.21)

With 𝑥 ∈ (0, 1) and 𝑎, 𝑏 > 0 and where:

𝛽(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏) (3.22)

Where Γ(⋅) denotes the Gamma function. The parameters 𝑎, 𝑏 are called the shape parameters of the
Beta distribution. The mean and variance of the distribution are respectively:

𝔼[𝑋] = 𝑎
𝑎 + 𝑏 (3.23)

𝕍[𝑋] = 1
(𝑎 + 𝑏)ኼ

𝑎𝑏
(𝑎 + 𝑏 + 1) (3.24)

However, instead of parameterizing the Beta distribution according to the shape parameters, we will
reparameterize the distribution according to its expected value and variance. We model the random
loss given default 𝐿𝐺𝐷 as a Beta distributed random variable with mean LGD:

𝔼[𝐿𝐺𝐷] = 𝐿𝐺𝐷 = 𝑎
𝑎 + 𝑏 (3.25)

𝕍[𝐿𝐺𝐷] = 𝐿𝐺𝐷(1 − 𝐿𝐺𝐷)
𝑎 + 𝑏 + 1 (3.26)

We then define a second parameter, 𝑘 = 𝑎 + 𝑏 + 1, we can fully describe the shape parameters 𝑎, 𝑏
according to LGD and 𝑘:

𝑎 = (𝑘 − 1)𝐿𝐺𝐷 (3.27)

𝑏 = (𝑘 − 1)(1 − 𝐿𝐺𝐷) (3.28)

Depending on the choice of parameters, the Beta distribution can be either bell-shaped, 𝑈 shaped
or 𝐽 shaped. Empirically, historic losses reveal that the LGD occur at either 0% or 100% loss [4]. This
indicates the choice of a low 𝑘 parameters, for instance at a LGD of 0.5 a value of 𝑘 below 4. This
choice produces a LGD distribution with a relatively high density at these extremities. However, if a
bank is very confident about their LGD estimates, a higher parameter 𝑘 is set in order to reduce the
variance around the set LGD mean.

3.3. Industry Threshold Models: Moody’s RiskFrontier
Throughout this section, we will briefly explore a widely applied industry model; Moody’s RiskFrontier.
Moody’s RiskFrontier, formerly known as Moody’s KMV, is the economic capital solution by Moody’s
Analytics. The model deployed by RiskFrontier is in essence a general multi factor model, although in
a somewhat different representation compared to the general multi factor model (2.15) [14]:

𝑟። = √𝑅𝑆𝑄።𝜙። +√1 − 𝑅𝑆𝑄።𝜖። (3.29)

Where 𝜙። , 𝜖። ∼ 𝒩(0, 1) and 𝜙። denotes the systematic factor. 𝑅𝑆𝑄። denotes the measure of an obligor’s
exposure to systematic risk compared to idiosyncratic risk. By construction, we have that 𝑟። ∼ 𝒩(0, 1).
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Figure 3.2: Example of the impact of LGD and k on the shape and location of the Beta distribution. The distribution can take on
multiple different shapes by adjusting LGD and ፤.

Clearly, by comparing (3.29) with (2.15) we have that 𝛽። = √𝑅𝑆𝑄።. This observation allows us to easily
adapt existing literature on general Gaussian multi factor threshold models to the Moody’s RiskFrontier
framework. Clearly, by construction, the asset returns are standard normal random variables. The
default threshold is defined exactly in line with the aforementioned general multi factor model. Further-
more, the EAD is assumed to be deterministic and the LGD is assumed to be Beta distributed, similarly
to the methods described in Section 3.2.

Within the full RiskFrontier framework, the systematic factor 𝜙። is a weighted combination of 245
correlated geographical and sector risk factors where the weights are uniquely determined for each
counterparty in the portfolio. In this thesis, we limit ourselves to corporate clients, which reduces the
number of correlated risk factors to 110. Of these 110 risk factors, 49 are country-specific and 61 are
industry-specific [14]. Clearly, these 110 risk factors are correlated through a 110 × 110 covariance
matrix ΩΩΩ. Whereas similar obligors can have an identical systematic factor, the idiosyncratic shocks 𝜖።
are obligor specific. Similarly to the general multi factor model, the systematic and idiosyncratic factors
are independent.

The values for 𝑅𝑆𝑄። and covariance matrix ΩΩΩ are a product of Moody’s GCorr Corporate model.
GCorr Corporate has access to historical weekly asset returns of firms around the world, dating back
to July 1, 1999 [14]. The asset values are driven by equity prices combined with debt information such
as the amount of debt, duration and interest rate level. To compute the 𝑅𝑆𝑄። and covariance matrix
ΩΩΩ, market-weighted asset return indexes are computed for each country and industry combination.
These combinations are then decomposed into country and industry-specific return indices. Using
these specific returns, the covariance matrix of the risk factors can be computed. Having estimated the
110 industry and country risk factors, 𝑅𝑆𝑄። can be determined by regressing the firm’s asset returns on
the returns of its systematic factor. When there is a lack of public data, such as for private firms, 𝑅𝑆𝑄።
is modeled based on the size, country and industry weights of the firm. Throughout this work, both
𝑅𝑆𝑄። and ΩΩΩ are assumed to be given and therefore we do not elaborate on the mathematical methods
of estimating these values. For more information regarding GCorr, we refer to [14].

3.4. CreditRisk+
Throughout this section, we will briefly study the CreditRisk+ model, first introduced by Credit Suisse
Financial Products (CSFP) and is currently a widely used portfolio credit risk model in the financial
service industry. In contrast to threshold models such as the single and multi factor Gaussian threshold
model, in thesemodels the conditional default probabilities aremodelled directly. Generally, in threshold
models, conditional probabilities of default are modelled indirectly through defining a stochastic process
for the firms asset value which then indirectly leads to a default event based on the passing of asset
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values of some kind of pre-defined threshold [21]. The full-blown CreditRisk+ approach is a multi
factor implementation, we will however derive the model in the one-factor setting. The derivation and
explanation of the CreditRisk+ model is based on the official technical document [40] in combination
with [2] and [25]. Generally, the CreditRisk+ model is built around the following assumption:

Assumption 3.4.1. Assume that the random default probabilities are influenced by a common set
of Gamma distributed systematic factors. Therefore, the default events are assumed to be mutually
independent conditional on the realizations of the risk factors.

Firstly, we introduce the notation of the default event for counterparty 𝑖:

𝐷። = {
1 if counterparty i defaults at time T
0 otherwise

(3.30)

Basically, the CreditRisk+ model is a Poisson-gamma mixture model. Therefore, the default event for
counterparty 𝑖 is given by:

1ፃᑚ = 1ፗᑚጿኻ (3.31)

Where 𝑋። ∼ 𝒫(𝑝።(𝑆)). Furthermore, to fully define the CreditRisk+ model we need an expression for the
default probability of counterparty 𝑖 conditional on the realization of the Gamma distributed systematic
factor 𝑆 ∼ Γ(𝑎, 𝑏):

𝑝።(𝑆) = 𝑃𝐷።(𝜔ኺ + 𝜔ኻ𝑆) (3.32)

Where 𝑃𝐷። denotes the unconditional default probability of counterparty 𝑖, similar to its definition in the
one and multi factor setting and where 𝜔ኺ, 𝜔ኻ ∈ ℝ. Additionally, the parameters 𝜔 are forced to sum
to unity, in essence: 𝜔ኺ + 𝜔ኻ = 1. Also, the shape and scale parameters 𝑎, 𝑏 that define the Gamma
distribution are set in such a way that 𝔼[𝑆] = 1. Given that the expected value of a Gamma distributed
random variable is given by 𝔼[𝑆] = 𝑎𝑏 we introduce the new variable 𝜖 and set 𝑆 ∼ Γ(𝜖, ኻᎨ ). Revisiting
Equation (3.32), we can exploit an economical interpretation of parameters 𝜔ኺ, 𝜔ኻ. These parameters
have a similar interpretation to the parameter 𝛽 in the Gaussian threshold model, namely that of relative
exposure to the systematic and idiosyncratic risk. 𝜔ኻ is essentially a factor loading for the dependence
on systematic risk on the default probability of the individual counterparty. Note that the model admits
factor loadings that differ across counterparties and using the summing to unity condition for 𝜔ኺ, 𝜔ኻ
yields:

𝑝።(𝑆) = 𝑃𝐷።(𝜔ኺ + 𝜔ኻ𝑆) = 𝑃𝐷።(1 + 𝜔።(𝑆 − 1)) (3.33)

An additional interesting observation we can make is calculating the expected value of the conditional
probability of default:

𝔼[𝑝።(𝑆)] = 𝔼[𝑃𝐷።(𝜔ኺ + 𝜔ኻ𝑆)] = [𝑃𝐷።(𝜔ኺ + 𝜔ኻ𝔼[𝑆]) = 𝑃𝐷። (3.34)

Which shows the relation between the conditional and unconditional default probability, in a similar way
as we have seen with the standard Gaussian threshold model. This indicates that in essence, forcing
the Gamma distributed systematic factor to have an expectation of unity is an equivalent trick to forcing
the asset returns in the Gaussian threshold model to be standard normally distributed.

3.5. Risk Contributions
In previous sections, multiple models for measuring value at risk have been described and using the
value at risk, we have defined economic capital the difference between the portfolio’s value at risk
and its expected loss. However, the question remains how to allocate the economic capital of the full
portfolio to sectors, industries, countries and single-name counterparties within the portfolio. Allocating
capital to the various components of the portfolio is vital for management decisions, business planning,
performance measurement, pricing and profitability assessments [36].

For instance, the performance of individual loans or business units can be measured using some
sort of return on risk-adjusted capital (RORAC) approach. In essence, performance is measured by
[25]:
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𝑅𝑂𝑅𝐴𝐶 = 𝑃𝑟𝑜𝑓𝑖𝑡
𝐸𝐶

There is no unique way of allocating capital; each methodology exhibits its own pros and cons
depending on the application. The most popular decomposition is the marginal risk contribution, due
to its additive properties. Given the definition of the EC, allocating capital based on contributions to the
VaR is the most natural choice. However, this brings some difficulties, especially since the VaR refers to
one particular value of loss which makes it difficult to obtain accurate risk contributions through Monte
Carlo simulation.

Broadly, three capital allocation methodologies can be classified [36]:

• Stand-alone capital contributions - sub-portfolios are assigned the amount of economic capital as
if it is a stand-alone portfolio. A drawback of this method is that it does not reflect diversification
effects. Therefore, the sum of stand-alone economic capital might exceed total EC for the full
portfolio.

• Incremental capital contributions - capital contributions of sub-portfolios are calculated through
calculating the EC for the full portfolio and subtracting the EC for the portfolio without the sub-
portfolio. This method captures the amount of capital that would be released if the sub-portfolio
were sold. A major disadvantage of this method is that it does not yield an additive risk decom-
position.

• Marginal capital contributions - By construction, the sum of the marginal capital contributions sum
to the total EC of the portfolio. Capital is allocated to each sub-portfolio on a marginal basis. This
method will be described in more detail.

3.5.1. Euler Allocation
We define the contributing economic capital (ECC) as:

𝐸𝐶𝐶። = 𝑉𝑎𝑅𝐶፪(𝐿።) − 𝐸𝐿። (3.35)

As stated in Equation (2.5) the expected loss per obligor is portfolio invariant. Using this, the problem
of calculating the contributing economic capital of individual obligors boils down to determining the con-
tributing VaR (VaRC). This problem is known as capital allocation and a known solution to this problem
is Euler’s allocation principle which states that when a risk measure positive-homogeneous (such as
the VaR and ES) and differentiable with respect to exposure, then the total VaR can be allocated to the
individual obligors using a relatively simple formula. Formally, the Euler principle reads [39]:

Theorem 3.5.1. Euler’s theorem on homogeneous functions
Let 𝑈 ⊂ ℝ be an open set and let 𝑓 ∶ 𝑈 → ℝ be a continuously differentiable function. Then 𝑓 is
homogeneous of degree 𝜏 if and only if it satisfies:

𝜏𝑓(𝑢) =
፧

∑
።ኻ
𝑢።
𝜕𝑓(𝑢)
𝜕𝑢 for 𝑢 = (𝑢ኻ, ..., 𝑢፧) ∈ 𝑈 (3.36)

With the VaR being a homogenous differentiable risk measure of degree 1, the Euler allocation of
the VaR simplifies to [18]:

𝑉𝑎𝑅፪(𝐿) =
፧

∑
።ኻ
𝐸𝐴𝐷።

𝜕𝑉𝑎𝑅፪(𝐿)
𝜕𝐸𝐴𝐷።

(3.37)

Regularly, we will calculate the VaR as a fraction of total portfolio exposure, which results in the following
equation for VaRC [15]:

𝑉𝑎𝑅፪(𝐿) =
፧

∑
።ኻ
𝑤።
𝜕𝑉𝑎𝑅፪(𝐿)
𝜕𝑤።

(3.38)
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Therefore, we can define the contributing VaR (VaRC) as:

𝑉𝑎𝑅𝐶፪,። = 𝑤።
𝜕𝑉𝑎𝑅፪(𝐿)
𝜕𝑤።

(3.39)

Clearly, Equation (3.38) satisfies the full allocation property, meaning that the sum of the contributing
VaRs equals the total portfolio VaR.

3.5.2. Monte Carlo Extension
Equation (3.39) is an analytical approach to determining the contributing VaR of individual obligors.
However, since many models apply Monte Carlo sampling in determining the VaR at portfolio level,
these models lack an analytical formula for the portfolio VaR and therefore we cannot directly use
Equation (3.39) for determining the risk contribution in MC basedmodels. However, [10] determined the
derivatives of the VaR and [16] used these results to derive the following expression under appropriate
conditions:

𝑉𝑎𝑅𝐶፪,። = 𝔼[𝐿።|𝐿 = 𝛼፪] (3.40)

It can easily be shown that Equation (3.40) satisfies the full allocation property by the linearity of the
expectation:

ፍ

∑
።ኻ
𝑉𝑎𝑅𝐶፪,። =

ፍ

∑
።ኻ
𝔼[𝐿።|𝐿 = 𝛼፪]

= 𝔼[
ፍ

∑
።ኻ
𝐿።|𝐿 = 𝛼፪]

= 𝔼[𝐿|𝐿 = 𝛼፪] = 𝑉𝑎𝑅፪(𝐿)

(3.41)

Unfortunately, Equation (3.40) poses some computational challenges. Each VaR contribution depends
on the probability of an inherently rare event, namely default, conditional on an even more rare extreme
loss event. Computationally, this issue translates in a need for an extreme number of MC trials in
order to reduce the statistic noise inherent in this approach. Alternatively, we could try to improve
the accuracy by not conditioning on the single event 𝐿 = 𝛼፪ but on a small range around 𝐿 = 𝛼፪:
𝐿 ∈ [(1 − 𝛾)𝛼፪ , (1 + 𝛾)𝛼፪]. In Section 4.1 we will go into more depth on this subject.

3.6. Ad Hoc Measures of Concentration
This work focuses on model-based methods for measuring and assessing concentration risk, such as
the granularity adjustment. However, we will briefly touch upon on some ad-hoc measures of concen-
trations such as the Gini coefficient and the Herfindahl-Hirschman index (HHI). These indices will be
useful in the empirical analysis as one would expect a positive dependence of any constructed model-
based measurement on ad-hoc indices. In principle, both measures can be applied to both name
and sector concentrations. We will shortly discuss the aforementioned measures in terms of a set of
desirable properties, adapted from [37] and [3]:

1. Transfer Principle: The reduction of an exposure and a sequential equal increase of an existing
bigger exposure must not decrease the concentration measure.

2. Uniform distribution principle: If all exposures are equal, then the concentration measure attains
its minimal value.

3. Lorenz-criterion: If two portfolios, which are composed of the same number of loans, satisfy that
the aggregate size of the 𝑘 biggest loans of the first portfolio is greater or equal to the size of the
𝑘 biggest loans in the second portfolio for 1 ≤ 𝑘 ≤ 𝑛, then the same inequality must hold between
the measures of concentration for the two portfolios.

4. Superadditivity: If two or more loans aremerged, themeasure of concentrationmust not decrease
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5. Independence of loan quantity: Consider a portfolio consisting of loans of equal size. The mea-
sure of concentration must not increase with an increase in the number of loans.

6. Irrelevance of small exposures: Granting an additional loan of relatively low amount must not
increase the concentration measure. More formally, if 𝑠ᖣ denotes a share of a loan and a new
loan with a share �̃� ≤ 𝑠ᖣ is granted, then the concentration measure must not increase.

For a more mathematical formal definition of the aforementioned properties, the reader is referred
to [3]. Furthermore, [3] has shown that if a concentration measure satisfies properties 1 and 6, all the
aforementioned six properties are satisfied.

3.6.1. Gini’s Index
As previously mentioned, the most common heuristic approaches to quantifying concentration risk are
the Gini coefficient and the Herfindahl-Hirschmann Index [30]. In order to describe the Gini coefficient,
we will first introduce the Lorenz curve. The Lorenz curve is a widely used graphical representation of
the distribution of a variable 𝑧 and the degree of inequality of this variable [13].

Definition 3.6.1. The Lorenz curve is the piece-wise linear function connecting the points (𝑥። , 𝑦።) with

𝑥። =
𝑖
𝑛 and 𝑦። =

∑።፣ኻ 𝑧፣
∑፧፣ኻ 𝑧፣

(3.42)

where 𝑧፣ is the ordered set such that 𝑧ኻ ≤ 𝑧ኼ ≤ ... ≤ 𝑧፧
Therefore, 𝑥። denotes the relative amount of included elements and 𝑦። the relative amount of the

𝑖 smallest elements of 𝑧።. If all elements are of equal size, Equation (3.42) reduces to 𝑦 = 𝑥 which
is called the line of perfect equality. Conversely, the line of perfect inequality is the situation where
one elements accounts for the total such that 𝑦 = 0 for all 𝑥 < 1 and 𝑦 = 1 for 𝑥 = 1. In terms of
concentration risk, the Lorenz curve displays the cumulative share of exposures for each cumulative
share of credits.

Figure 3.3: Example of the Lorenz curve for a portfolio of credit exposures.

The Gini coefficient is related to the Lorenz curve since it is depicted by the red area (denote as
area A) between the line of perfect equality and the Lorenz curve in Figure 3.3. Therefore, it represents
a measure for the deviation from a equal distribution as this area would decrease to zero as the Lorenz
curve approaches the line of perfect equality. The Gini coefficient G is defined as twice the shaded
area A transforming the coefficient from 𝐴 ∈ [0, 0.5] to 𝐺 ∈ [0, 1]. Therefore, the Gini coefficient is given
by:
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𝐺 =
∑፧።ኻ(2𝑖 − 1)𝑤።

𝑁 − 1 (3.43)

Themajor advantage of the Gini coefficient is its ease of implementation and its graphical interpretability
[13]. However, its main drawback is that the coefficient does not take the size of a portfolio into account,
meaning it represents a measure of inequality instead of concentration. Furthermore, [3] has shown
that the Gini coefficient only satisfies properties 1,2,3 and 5.

3.6.2. Herfindahl-Hirschman Index
To overcome the shortcomings of the Gini coefficient, we introduce the Herfindahl-Hirschman Index
(HHI).

Definition 3.6.2. The HHI is defined as the sum of the squared exposure shares (measured as a
fraction of the total portfolio) of each facility:

𝐻𝐻𝐼 =
ፍ

∑
።ኻ
𝑤ኼ። =

1
𝑁∗ (3.44)

Where we denote 𝑁∗ as the number of effective exposures. Comparing the HHI to the Gini Coef-
ficient, the HHI has two major advantages. Firstly, the HHI satisfies all aforementioned six properties
of an ideal risk measure. Furthermore, it accounts for the size of the portfolio. By considering the sum
squares of the portfolio shares, small exposures affect the level of concentration less than a proportional
relationship [3].

Although both the HHI and the Gini Coefficient may seem to be intuitive concentration risk mea-
sures, they both lack to incorporate any other information than the EAD of individual exposures and
the size of the portfolio whereas we would expect an ideal measure of concentration risk to incorporate
EAD, LGD, PD and the correlation structure. Furthermore, there is no intuitive way of applying these
measures in constructing add-ons for accounting for concentration risk. Therefore, the indices only
provide superficial estimates for concentration risk, both name and sector.

Having mentioned this, these ad hoc measures should only be used for gaining a rough insight into
the degree of concentration present in portfolios across sectors and countries and tracking the differ-
ences in concentration in time. Thus, there is a need for a more sophisticated model-based approach
of measuring and accounting for concentration risk. The Basel Committee has stressed this fact in
[30] as model-based measurements represent a more consistent approach to the measurement and
management of all dimensions of credit risk for the portfolio.

3.7. Model Based Single Name Concentration Risk Measurement
The need for a model-based adjustment to account for undiversified idiosyncratic risk was first intro-
duced in an early draft of Basel II, known as the Second Consultative Paper [22]. The adjustment was
called the granularity adjustment and was introduced as a formal component of the minimum required
capital rules of the IRB approach. However, the GA was determined differently from the proposed
method in this work. The GA was obtained by fitting a functional form between the actual, Monte Carlo
obtained, VaR and the ASRF VaR for a set of synthetic portfolios. [41] was the first to introduce an an-
alytically derived formula for the GA based on a linear approximation around the ASRF VaR solution.
[23] elaborated on the work by [41] with a more rigorous derivation of Wilde’s formula, based on the
work by [10]. [12] then extended the method by incorporating higher order terms of the Taylor extension
around the ASRF VaR in the GA in an effort to improve accuracy. An approach largely related to [41]
is the GA proposed [22] who extend the adjustment to the CreditRisk+ model.

3.7.1. Granularity Adjustment
Before elaborating on the theoretical framework of the granularity adjustment (GA), an intuitive example
of how the GA works is presented. This brief example is adopted from the work by [21]. Assume a one-
factor structural model of default with systematic factor 𝑋 ∼ 𝒩(0, 𝜈ኼ) and that the loss rate conditional
on the systematic risk factor 𝑈።|𝑋 ∼ 𝒩(0, 𝜎ኼ) are both normally distributed with 𝜎 and 𝜈 being known
constants. From this it follows that the unconditional portfolio loss ratio 𝐿ፍ is also a normally distributed
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random variable. The qth quantile of this distribution is given by √𝜈ኼ + 𝜎ኼ/𝑁 ⋅ Φዅኻ(𝑞). Clearly, as the
total number of obligors N increases to infinity, the distribution of 𝐿ፍ converges to that of 𝑋, meaning
that the qth quantile of the asymptotic distribution is 𝜈 ⋅ Φዅኻ(𝑞). This expression corresponds to the
systematic contribution to the VaR. Therefore, the idiosyncratic contribution can be derived as the
difference between the quantile of the true loss ratio 𝐿ፍ and the asymptotic loss 𝐿ጼ. Applying a Taylor
expansion around 𝜎ኼ/𝑁 = 0 yields:

√𝜈ኼ + 𝜎ኼ/𝑁 = 𝜈 + 1
𝑁
𝜎ኼ
2𝜈 + 𝒪(

1
𝑁ኼ ) (3.45)

Therefore, the idiosyncratic contribution to the VaR can be estimated by ኻ
ፍ
Ꮄ
ኼΦ

ዅኻ(𝑞) + 𝒪( ኻፍᎴ ). This
add-on contribution to the VaR is what is referred to as the Granularity Adjustment. A more formal
derivation and definition is given in the next section.

3.7.2. Name Concentration Granularity Adjustment
The granularity adjustment refers to incorporating the effect of portfolio size in the EC calculation.
This section will elaborate on the formal derivation of the granularity adjustment. Firstly, assume an
infinitely fine grained portfolio for which the VaR can be estimated under the ASRFmodel. Furthermore,
we assume all dependence across counterparties to be driven by a single systematic factor. For this
portfolio, a add-on factor is constructed which takes the finite granularity of the portfolio into account.
This factor is determined through a Taylor expansion of the VaR around the ASRF solution. The ASRF
model estimates the VaR as the qth percentile of the expected loss conditional on the systematic factor
𝛼፪(𝔼[𝐿|𝑋]). We are looking for an approximation to the exact adjustment 𝛼፪(𝐿) − 𝛼፪(𝔼[𝐿|𝑋]) for the
effect of undiversified idiosyncratic risk in the portfolio. We start with subdividing the portfolio loss into
a systematic and an unsystematic component:

𝐿 = 𝔼[𝐿|𝑋] + 𝜆{𝐿 − 𝔼[𝐿|𝑋]} =∶ 𝑌 + 𝜆𝑍 (3.46)

𝑌 = 𝔼[𝐿|𝑋] describes the source of systematic risk in the portfolio loss and the second term 𝜆𝑍 =
𝜆{𝐿−𝔼[𝐿|𝑋]} describes the the unsystematic idiosyncratic part of the portfolio loss. Clearly, 𝜆 describes
the fraction of idiosyncratic risk present in the portfolio, which tends to zero if the number of obligors
approaches infinitiy. For the GA, we claim that the assumption of infinite granularity is not met, meaning
that 𝜆 exceeds zero. A Taylor expansion around 𝜆 = 0 yields:

𝛼፪(𝐿) = 𝛼፪(𝑌 + 𝜆𝑍) = 𝛼፪(𝑌) + 𝜆 [
𝑑𝛼፪(𝑌 + 𝜆𝑍)

𝑑𝜆 ]
᎘ኺ

+ ᎘Ꮄ
ኼ [
𝑑ኼ𝛼፪(𝑌 + 𝜆𝑍)

𝑑𝜆ኼ ]
᎘ኺ

+ 𝒪(𝜆ኽ) (3.47)

Clearly, the first term describes the systematic contribution to the portfolio VaR and the remaining terms
add an aditional component of the VaR due to undiversified idiosyncratic components. [10] derived the
expression for the first two derivatives of the VaR:

[
𝑑𝛼፪(𝑌 + 𝜆𝑍)

𝑑𝜆 ]
᎘ኺ

= 𝔼[𝑍|𝑌 = 𝛼፪(𝑌)] (3.48)

[
𝑑ኼ𝛼፪(𝑌 + 𝜆𝑍)

𝑑𝜆ኼ ]
᎘ኺ

= − 1
𝑓ፘ(𝑦)

𝑑
𝑑𝑦 [𝑓ፘ(𝑦)𝕍[𝑍|𝑌]]፲ᎎᑢ(ፘ) (3.49)

Where 𝑓ፘ(𝑦) describes the probability density function of 𝑌 = 𝔼[𝐿|𝑋]. The first derivative of the VaR
equals zero:

𝔼[𝑍|𝑌] = ኻ
᎘𝔼[𝐿 − 𝑌|𝑌] =

ኻ
᎘𝔼[𝐿] −

ኻ
᎘𝔼[𝔼[𝐿|𝑌]] = 0 (3.50)

Furthermore, we have:
𝜆ኼ𝕍[𝑍|𝑌] = 𝕍[𝜆𝑍|𝑌] = 𝕍[𝐿 − 𝑌|𝑌] = 𝕍[𝐿|𝑌] (3.51)

Since the first derivative of the VaR vanishes the second derivative is the only relevant term in calcu-
lating the granularity adjustment. Using (3.49) and (3.51) we have:

𝐺𝐴 = ᎘Ꮄ
ኼ [
𝑑ኼ𝛼፪(𝑌 + 𝜆𝑍)

𝑑𝜆ኼ ]
᎘ኺ

= ᎘Ꮄ
ኼ (−

1
𝑓ፘ(𝑦)

𝑑
𝑑𝑦 [𝑓ፘ(𝑦)𝕍[𝑍|𝑌]]፲ᎎᑢ(ፘ)) = −

1
2𝑓ፘ(𝑦)

𝑑
𝑑𝑦 [𝑓ፘ(𝑦)𝕍[𝐿|𝑌]]፲ᎎᑢ(ፘ)

(3.52)
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Therefore, Equation (3.55) is the expression for the general GA. This representation of the GA admits
any definition of loss. As the conditional expectation 𝑌 = 𝔼[𝐿|𝑋] is assumed to be continuous and
strictly monotonously decreasing in 𝑋, the probability density function 𝑓ፘ(𝑦) can be transformed using
the inverse function theorem (using 𝑔ዅኻ(𝑦) = 𝑥):

𝑓ፘ(𝑦) = 𝑓ፗ(𝑔ዅኻ(𝑦)) |
𝑑𝑔ዅኻ(𝑦)
𝑑𝑦 | = 𝑓ፗ(𝑥)

|𝑑𝑦/𝑑𝑥| = −
𝑓ፗ(𝑥)
𝑑𝑦/𝑑𝑥 = −

𝑓ፗ(𝑥)
፝
፝፱𝔼[𝐿|𝑋]

(3.53)

Furthermore, we have:

𝑦 = 𝛼፪(𝑌)
⇔ 𝔼[𝐿|𝑋] = 𝛼፪(𝔼[𝐿|𝑋])
⇔ 𝔼[𝐿|𝑋] = 𝔼[𝐿|𝛼ኻዅ፪(𝑋)]
⇔ 𝑥 = 𝛼ኻዅ፪(𝑋)

Therefore, we have:
𝛼፪(𝐿) ≈ 𝛼ፀፒፑፅ፪ (𝐿) + 𝐺𝐴 (3.54)

with GA:

𝐺𝐴 = − 1
2𝑓ፗ(𝑥)

𝑑
𝑑𝑥 [

𝑓ፗ(𝑥)𝕍[𝐿|𝑋 = 𝑥]
፝
፝፱𝔼[𝐿|𝑋 = 𝑥]

]
፱ᎎᎳᎽᑢ(ፗ)

= −12 [
𝑓ᖤፗ(𝑥)
𝑓ፗ(𝑥)

𝕍[𝐿|𝑋 = 𝑥]
፝
፝፱𝔼[𝐿|𝑋 = 𝑥]

+
፝
፝፱𝕍[𝐿|𝑋 = 𝑥]
፝
፝፱𝔼[𝐿|𝑋 = 𝑥]

−
𝕍[𝐿|𝑋 = 𝑥] ፝

Ꮄ

፝፱Ꮄ𝔼[𝐿|𝑋 = 𝑥]
( ፝፝፱𝔼[𝐿|𝑋 = 𝑥])

ኼ
]
፱ᎎᎳᎽᑢ(ፗ)

(3.55)

3.7.3. Granularity Adjustment and the HHI
Referring back to the HHI of Section 3.6.2 we expect some kind of positive dependence of the granu-
larity adjustment on the HHI. [13] derived some properties of this relation and showed that the GA is a
term of order 𝒪( ኻፍ∗ ) where 𝑁

∗ denotes the number of effective exposures from Equation (3.44). Since
conditional on the underlying systematic factors, default events are independent and by construction
we have that the individual loss rate is bounded, i.e. 𝐿𝐺𝐷።𝐷𝑖 ∈ [−1, 1] for all 𝑖 ∈ (1, ..., 𝑛), there exists a
finite number 𝐸(𝑥)∗ ≤ 1 such that

𝔼[𝐿|𝑋] = 𝔼 [
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷።|𝑋] =

ፍ

∑
።ኻ
𝑤።𝐸(𝑥)∗ = 𝐸(𝑥)∗

ፍ

∑
።ኻ
𝑤። = 𝐸(𝑥)∗ (3.56)

and similarly, there exists a finite number 𝑉(𝑥)∗ ≤ 1 such that

𝕍[𝐿|𝑋] = 𝕍 [
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝐷።|𝑋] =

ፍ

∑
።ኻ
𝑤ኼ። 𝕍[𝐿𝐺𝐷። ⋅ 𝐷።|𝑋] = 𝑉(𝑥)∗

ፍ

∑
።ኻ
𝑤ኼ። = 𝐻𝐻𝐼 ⋅ 𝑉(𝑥)∗ =

ኻ
ፍ∗𝑉(𝑥)

∗

(3.57)
Substituting these equations in (3.55) yields

𝐺𝐴 = − 1
𝑁∗

1
2𝑓ፗ(𝑥)

𝑑
𝑑𝑥 [

𝑓ፗ(𝑥)𝑉(𝑥)∗
፝
፝፱𝐸(𝑥)

∗
]
፱ᎎᎳᎽᑢ(ፗ)

(3.58)

Clearly, this results states that the granularity adjustment is linear in terms of the HHI, which confirms
our suspicion of some positive relationship between the HHI and the GA.
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3.7.4. Sector Concentration Risk Measurement
The aforementioned methods are developed to account for name-concentration in economic capital
assessments. Some analytic or semi-analytic methods exist that account for sectoral diversification.
The seminal paper by [35] describes a rigorous analytical approach that extends the ideas by [23]
to a multiple systematic factor setting. Furthermore, they derive this setting in both the VaR as the
ES setting. Alternatively, a semi-analytic approach is developed by [5]. The authors construct an
adjustment to the single factor model by scaling the economic capital resulting from the ASRF model
with a capital diversification factor. The diversification factor is estimated numerically using Monte Carlo
methods. More recently, [17] proposed a concentration charge by assessing the impact of different
sectors on the portfolio loss curve. For calculating the concentration charge, they propose a method
based on Monte Carlo simulations and a method based on the analytical approximation to the VaR by
[35].

3.7.5. Pykhtin Multi-Factor Adjustment
In this section, a model is presented that extends the general idea of the GA to the multi factor situation.
This model was first described in [35] and has since been widely applied in the literature. For instance,
[17] applies the Pykhtin approach to measure sector concentration risk. The multi factor adjustment
provides an analytical method for calculating the VaR and EC in a multi factor setting without going
through computationally time-consuming Monte Carlo simulations. The idea of [35] is to approximate
the portfolio loss 𝐿 in the multi factor model by adjusting the portfolio loss �̄� of the ASRF model. Pykhtin
does this by mapping the correlation structure of the multi factor model to a single correlation factor
through maximizing the correlation between the new single risk factor and the original sector and ge-
ographical factors. Then, similar to the process described in Section 3.7.2, a Taylor series expansion
around the constructed single factor model yields the desired adjustment. In this section, we follow the
derivations by [35], [13] and [21].

In essence, the distribution of �̄�, denoting the loss of the adjusted single factor model, can be
calculated with the known solution of the ASRF method:

�̄� = 𝜇(�̄�) =
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝑐።�̄�

√1 − 𝑐ኼ።
⎞

⎠

(3.59)

Where 𝑐። is the desired parameter that maximizes the correlation between the existing systematic
factors and the new single systematic factor. Since this method shows great similarities with the one-
factor granularity adjustment, we start by describing the method for determining the single correlation
factor to condense the multi factor model into a single factor model. Denote the original systematic
sector factors from the multi factor model as 𝑋፤ for 𝑘 = 1, ..., 𝐾 normally distributed systematic factors.
To relate the estimated �̃� by the ASRF model to the true portfolio loss 𝐿 we link the new effective single
systematic risk factor �̄� to the original systematic risk factors 𝑋፤ by:

�̄� =
ፊ

∑
፤ኻ

𝑏፤𝑋፤ (3.60)

Where ∑ፊ፤ኻ 𝑏ኼ፤ = 1 to preserve unit variance of �̄�. In order to determine �̄�, 𝑐። and 𝑏፤ have to be
specified. Remember the general multi factor framework:

𝑟። = 𝛽።𝑌። +√1 − 𝛽ኼ። 𝜖። (3.61)

Similar to the granularity adjustment approach, we assume that �̄� = 𝔼[𝐿|�̄�]. To calculate 𝐸[𝐿|�̄�] we
make the following assumption:

𝑌። = 𝛿።�̄� + √1 − 𝛿ኼ። 𝜂። (3.62)

Where 𝜂። ∼ 𝒩(0, 1) independent of �̄� and:

𝛿። = Corr(𝑌። , �̄�) =
ፊ

∑
፤ኻ

𝛼።,፤𝑏፤ (3.63)
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Using the introduced equations and notations, we can rewrite Equation (3.61) as:

𝑟። = 𝛽።𝛿።�̄� + √1 − 𝛽ኼ። 𝛿ኼ። 𝜖። (3.64)

The conditional expectation of 𝐿 is then clearly given by:

𝔼[𝐿|�̄�] =
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝛽።𝛿።�̄�

√1 − 𝛽ኼ። 𝛿ኼ።
⎞

⎠

(3.65)

By comparing (3.59) and (3.65) the equality �̄� = 𝔼[𝐿|�̄�] is obtained if and only if the following restriction
for the effective factor loading holds:

𝑐። = 𝛽።𝛿። = 𝛽።
ፊ

∑
፤ኻ

𝛼።,፤𝑏፤ (3.66)

While the coefficients 𝛽። and 𝛼።,፤ are known, the coefficients 𝑏፤ are unknown. Unfortunately, determin-
ing the coefficients 𝑏፤ is not obvious nor trivial. Ideally, we want to identify a set {𝑏፤} that minimizes the
difference between the quantiles of the true loss function and the approximation of the loss function.
However, finding such a set is outside the scope of [35]. Therefore, [35] opts for a method such that
the coefficients are determined through maximizing the correlation between the single risk factor �̄� and
the original risk factor 𝑌። for all 𝑖. This leads to the following maximization problem:

max
Ꮃ ,...,ᑂ

(
ፍ

∑
።ኻ
𝑑።

ፊ

∑
፤ኻ

𝛼።,፤𝑏፤) such that
ፊ

∑
፤ኻ

𝑏ኼ፤ = 1 (3.67)

A solution to this maximization problem is given by an application of the Lagrange multiplier:

Λ(𝑏፤ , 𝜆) =
ፍ

∑
።ኻ
𝑑።

ፊ

∑
፤ኻ

𝛼።,፤𝑏፤ − 𝜆(
ፊ

∑
፤ኻ

𝑏ኼ፤ − 1) (3.68)

Taking partial derivatives leads to a system of 𝐾 + 1 equations:

𝜕Λ(𝑏፤ , 𝜆)
𝜕𝑏፤

=
ፍ

∑
።ኻ
𝑑።𝛼።,፤ − 2𝜆𝑏፤ = 0 for all 𝑘 = 1, ..., 𝐾

𝜕Λ(𝑏፤ , 𝜆)
𝜕𝜆 =

ፊ

∑
፤ኻ

𝑏ኼ፤ − 1 = 0

The solution for this system of equations is given by the following 𝑏፨፩፭፤ :

𝑏፤ =
ፍ

∑
።ኻ

𝑑።𝛼።,፤
2𝜆 (3.69)

Where the Lagrange multiplier 𝜆 is chosen in such a way that {𝑏፤} satisfies the second constraint,
in essence, such that {𝑏፤} has a Euclidian norm of one. Unfortunately, we have not considered the
coefficients 𝑑። yet. [35] has empirically determined that the following definition is the best performing
choice:

𝑑። = 𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝛽።Φዅኻ(1 − 𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(3.70)
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The intuition behind this choice for 𝑑። is that obligors with a high exposure in terms of VaR should have
a large weight in the maximization problem whereas obligors with a small VaR should have a minor
impact [13]. Summing up, we can now define the comparable one factor model (3.64) through using
Equation (4.77) together with the expressions for 𝑏፤ and 𝑑። we have derived.

Having constructed the loss variable �̄� = 𝔼[𝐿|�̄�], we can largely adopt the method described in
Section 3.7.2. We again perturb the true portfolio loss variable 𝐿 by 𝑍 ∶= 𝐿 − �̄�:

𝐿 = �̄� + 𝜆𝑍 (3.71)

Note that 𝜆 as applied here denotes the perturbation coefficient, and is not equal to the Langrange
multiplier in previous sections. Applying exactly the same reasoning as in Section 3.7.2 and Section
4.2.1 to retrieve a adjustment of the form:

Δ𝛼፪ = 𝛼፪(𝐿)−𝛼፪(�̄�) ≈ −
1
2 [
𝑓ᖤፗ(𝑥)
𝑓ፗ(𝑥)

𝕍[𝐿|𝑋 = 𝑥]
፝
፝፱𝔼[𝐿|𝑋 = 𝑥]

+
፝
፝፱𝕍[𝐿|𝑋 = 𝑥]
፝
፝፱𝔼[𝐿|𝑋 = 𝑥]

−
𝕍[𝐿|𝑋 = 𝑥] ፝

Ꮄ

፝፱Ꮄ𝔼[𝐿|𝑋 = 𝑥]
( ፝፝፱𝔼[𝐿|𝑋 = 𝑥])

ኼ
]
፱ᎎᎳᎽᑢ(ፗ)
(3.72)

3.7.6. Kurtz’s Capital Charge for Concentration Risk
The following section is largely based on the work by [17]. The authors propose a method to compute
the (economic) capital charges for concentration risk in a multi factor model setting similar to the model
explained in Section 2.5. The sector concentration effect is defined as the impact of the weight of
sector losses on the portfolio loss curve. To compute the capital charge, the loss distribution of the
portfolio both with and without the sector under consideration is calculated. The sector concentration
is then calculated as the difference between the original VaR contribution, and the VaR contribution
of the sector after removal. [17] propose two methods to perform the required calculations of the loss
distribution, one based on theMonte Carlo approach and one based on themethod described in Section
3.7.5.

The authors of [17] argue that sector concentration charges are implicitly present in the analytical EC
calculations of [35], but not presented as an isolated component. The Pykhtin framework decomposes
the VaR into a linear component, a non-linear multi factor adjustment associated with adjusting the
multi factor to a single factor model and a granularity adjustment (see Equation (4.54)). [17] argues
that the linear component incorporates a large amount of the sector concentration risk meaning that
the multi factor adjustment only measures a small portion of the concentration risk and cannot be used
in isolation to compute sector concentration add-ons.

Multi Factor Concentration Charge
The framework for measuring concentration effects from [17] is based on a general multi factor model.
We again consider a portfolio of 𝑁 loans to unique obligors. The obligors can be assigned to𝑀 different
industries (or geographical regions). Furthermore, define 𝑠(𝑖) as a function mapping obligor 𝑖 to its
sector 𝑠(𝑖). Additionally, denote 𝑁፬ as the number of obligors in sector 𝑠 = 1, ..., 𝑀. Thus, the total
number of obligors equals 𝑁 = ∑ፌ፬ኻ𝑁፬.

In this setting, EC is measured as usual, i.e. as the difference between portfolio VaR and expected
loss. Additionally, we apply the Euler allocation principle (see Section 3.5.2) to define the contributing
VaR of sub-portfolio 𝑆 ⊂ {1, ..., 𝑁}:

𝑉𝑎𝑅𝐶፪,ፒ = 𝔼[𝐿(𝑆)|𝐿 = 𝛼፪] (3.73)
Furthermore, using this equation we can define the economic capital of sub-portfolio 𝑆 as:

𝐸𝐶፪(𝑆) = 𝑉𝑎𝑅𝐶፪,ፒ − 𝔼[𝐿(𝑆)] (3.74)

Next, we denote the portfolio 𝑃 = 1, ..., 𝑁 and the complement of the sub-portfolio as �̄� = 𝑃\𝑆. Fur-
thermore, we assume that an obligor either belongs to 𝑆 or �̄�, meaning that obligors cannot be split.
According to [17], if the exposure of 𝑆 is increased linearly (for instance by doubling each exposure),
and �̄� is kept constant, then 𝐸𝐶(𝑆) increases more than linearly. An explanation for this effect is that be-
sides the losses associated with 𝑆 being higher, scenarios with a high loss rate of 𝑆 are also more likely
to be tail scenarios. This non-linear effect is what [17] refers to as the concentration effect. Formally,
the concentration charge is defined through:
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Definition 3.7.1. The concentration charge for sub-portfolio 𝑆 equals

𝐶𝐶፪(𝑆) ∶= 𝐸𝐶፪(𝑆) − 𝐸𝐶ፍፂ፪ (𝑆) (3.75)

Where 𝐸𝐶ፍፂ፪ (𝑆) denotes the economic capital contribution of portfolio S to the non-concentrated
portfolio. 𝐸𝐶ፍፂ፪ (𝑆) is given by:

𝐸𝐶ፍፂ፪ (𝑆) ∶= lim
᎘→ጼ

𝔼[𝐿(𝑆)|𝐿(𝑆 ∪ 𝜆�̄�) = 𝛼ፒ∪᎘ፒ̄፪ ] − 𝔼[𝐿(𝑆)] (3.76)

With 𝜆 ∈ ℝዄ. The sub portfolio 𝜆�̄� is the original sub portfolio �̄� scaled by 𝜆. The intuition behind (3.76)
is that all non-linear concentration effects associated with 𝑆 are eliminated due to the linear scaling of
�̄�. Formally, [17] shows this behaviour using the following argument for 𝜇 > 0:

𝐸𝐶ፍፂ፪ (𝜇𝑆) = lim
᎘→ጼ

𝔼[𝐿(𝜇𝑆)|𝐿(𝜇𝑆 ∪ 𝜆�̄�) = 𝛼᎙ፒ∪᎘ፒ̄፪ ] − 𝔼[𝐿(𝜇𝑆)]

= lim
᎘→ጼ

𝔼[𝐿(𝜇𝑆)|𝐿(𝜇𝑆 ∪ 𝜇𝜆�̄�) = 𝛼᎙ፒ∪᎙᎘ፒ̄፪ ] − 𝔼[𝐿(𝜇𝑆)]

= lim
᎘→ጼ

𝔼[𝐿(𝜇𝑆)|𝐿(𝑆 ∪ 𝜆�̄�) = 𝛼ፒ∪᎘ፒ̄፪ ] − 𝜇𝔼[𝐿(𝑆)]

= 𝜇 ( lim
᎘→ጼ

𝔼[𝐿(𝑆)|𝐿(𝑆 ∪ 𝜆�̄�) = 𝛼ፒ∪᎘ፒ̄፪ ] − 𝔼[𝐿(𝑆)]) = 𝜇𝐸𝐶ፍፂ፪ (𝑆)

Where all arguments essentially follow from the positive homogeneity of the VaR and the linearity of
the portfolio loss variable 𝐿(⋅). In order to define a method for calculating 𝐸𝐶ፍፂ፪ (𝑆) we use the following
proposition:

Proposition 3.7.1. Let 𝑃 = 𝑆∪ �̄� and let the loss distribution of �̄� be a strictly increasing function in the
vicinity of quantile 𝑞. Then

𝐸𝐶ፍፂ፪ (𝑆) = 𝔼[𝐿(𝑆)|𝐿(�̄�) = 𝛼ፒ̄፪] − 𝔼[𝐿(𝑆)] (3.77)

For the proof of this proposition we refer to Theorem 2.4 in [17]. Using Equations (3.73) through
(3.75) we can express the concentration charge as:

𝐶𝐶፪(𝑆) = 𝔼[𝐿(𝑆)|𝐿 = 𝛼፪] − 𝔼[𝐿(𝑆)|𝐿(�̄�) = 𝛼ፒ̄፪] (3.78)

Using this format, we notice that determining the concentration charge essentially boils down to cal-
culating the loss distribution of �̄�. If we define the sub-portfolio 𝑆 as all exposures within a specific
sector, we need to calculate a new loss distribution 𝐿(�̄�) for each sector. As the numbers of sectors
in a portfolio increases, this is a very demanding task as it involves new Monte Carlo simulations for
each sector. Alternatively, we could apply the analytic Pykhtin approach formulated in Section 3.7.5 to
speed up this task.



4
Model based techniques for assessing

concentration risk
Throughout this chapter, themethods derived in Chapter 3 are applied to credit riskmodels
by making assumptions on the distribution of the underlying systematic and idiosyncratic
factors. Furthermore, we will briefly touch upon some computational techniques such as
MC simulation and sampling correlated random variables. This chapter ends with several
extensions on existing methods, such as the introduction of Recovery Risk, applying Euler
allocation to both the single factor as the multi factor GA, Economic & Regulatory Concen-
tration Risk and concentration risk in t-threshold models.

4.1. Monte Carlo Approach
All measures of interest (VaR, ES, EC) are obtained from the portfolio loss distribution. The loss dis-
tribution is affected by three stochastic sources: systematic factors, idiosyncratic factors and random
LGD’s. Additionally, the correlation structure of the systematic factors influences the portfolio loss dis-
tribution. Because of these complex sources of randomness, loss distributions cannot be determined
analytically for realistic portfolios. Therefore, the most widely applied method to calculate the portfolio
loss distribution is Monte Carlo simulation. Monte Carlo simulations are used to calculate both portfolio
and obligor level risk metrics.

On a high level, the MC sampling algorithm proceeds as follows:
Algorithm 1: Multi-Factor Monte Carlo Method
for i= 1:trials do

1. Draw a set of 𝐾 i.i.d. standard normal systematic factor realizations;

2. Correlate systematic factor realizations ;

3. Draw 𝑁 i.i.d. standard normal idiosyncratic factor realizations;

4. Compute the value of each instrument at horizon using Eq. (2.15) ;

5. Check whether asset returns breach default point ;

• If no default occurs, set loss to zero ;
• If default occurs, draw i.i.d. Beta distributed LGD

end
Compute portfolio risk measures from summed portfolio losses ;
Compute obligor level risk measures from obligor specific losses

32
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In order to accurately determine the portfolio loss distribution and risk contributions of individual
obligors, the amount of trials is extremely large, up to ten million. Depending on the size of the portfolio,
the algorithm takes up to several days to fully run. However, for smaller portfolios a high accuracy can
be attained at several hundred thousands of trials. Furthermore, the performance of the algorithm can
be improved substantially by removing the for loop and using matrix operations instead. For this work,
in which we are dealing with 𝑁 = 40.000+ obligors, a combination of the for loops together with matrix
operations is applied to satisfy memory limits of the computing systems.

Determining VaR and contributing VaR using MC
Suppose we perform 𝑀 ∈ ℕ Monte Carlo trials using algorithm 1 resulting in a collection of portfolio
losses: {𝐿(፦);፦ኻ,...,ፌ}. The simulation provides us with all the necessary ingredients to estimate the
portfolio VaR and the VaR contributions. To estimate the 𝑉𝑎𝑅(𝐿)፪, we place the collection of portfolio
losses in ascending order and denote is as a vector �̂�. Then the VaR estimator is given by:

𝑉𝑎𝑅፪(𝐿) = �̂�(⌈𝑞 ⋅ 𝑀⌉) (4.1)

where ⌈𝑥⌉ denotes the smallest integer greater or equal to 𝑥 [2]. In order to compute the VaR contribu-
tions, we first recall the following fundamental property of conditional expectation:

𝔼[𝐿።|𝐿 = 𝑉𝑎𝑅፪(𝐿)] =
𝔼[𝐿።𝟙ፋፕፚፑᑢ(ፋ)]
ℙ(𝐿 = 𝑉𝑎𝑅፪(𝐿))

(4.2)

This convenient form leads to the following equation for contributing VaR estimator

𝑉𝑎𝑅𝐶፪,። =
∑ፌ፦ኻ 𝐿

(፦)
። 𝟙ፋ(ᑞ)ፕፚፑᑢ(ፋ)

∑ፌ፦ኻ 𝟙ፋ(ᑞ)ፕፚፑᑢ(ፋ)
(4.3)

for 𝑖 = 1, ..., 𝑁. However, in practice, the denominator is often equal to one, since we will typically only
observe one single VaRmeasure at a certain level 𝑞. This observation makes the contributing VaR very
susceptible to noise. One way to solve this problem is by repeating the entire MC simulation multiple
times and then averaging the contributing VaR results over these multiple simulations. However, as
mentioned in Section 3.5.2, we opt for a slightly different method. To this extend, we use the following
proposition, adapted from [27]:
Proposition 4.1.1. Let (Ω,𝒜, ℙ) be a probability space, 𝑈 ∶ (Ω,𝒜, ℙ) → ℝ፧ be an n-dimensional
random variable and 𝑓 ∶ (Ω,𝒜, ℙ) → ℝ be a real random variable with finite mean. Then for ℙፔ- almost
every 𝑢 ∈ ℝ፧ and almost every sequence (𝜔።)።∈ℕ in Ω, we have

𝔼[𝑓|𝑈 = 𝑢] = lim
Ꭸ↓ኺ

lim
ፊ→ጼ

∑ፊ፤ኻ 𝟙ፁᒠ(፮)(𝑈(𝜔።))𝑓(𝜔።)
∑ፊ፤ኻ 𝟙ፁᒠ(፮)(𝑈(𝜔።))

(4.4)

where ℙፔ denotes the probability distribution of 𝑈. By applying this result to compute 𝑉𝑎𝑅𝐶፪,። using
MC methods, we get

𝑉𝑎𝑅𝐶፪,። ≈
∑ፌ፦ኻ 𝐿

(፦)
። 𝟙ፋ(ᑞ)∈[ፕፚፑᑢ(ፋ)ዅᎨ,ፕፚፑᑢ(ፋ)ዄᎨ]

∑ፌ፦ኻ 𝟙ፋ(ᑞ)∈[ፕፚፑᑢ(ፋ)ዅᎨ,ፕፚፑᑢ(ፋ)ዄᎨ]
(4.5)

for a sufficiently large number of MC trials𝑀 and a sufficiently small 𝜖 > 0. Essentially, this means that
we evaluate the losses of the full portfolio around the quantile of 𝐿ፍ and average the individual losses
𝐿። at these positions.

4.1.1. Sampling Correlated Random Variables
In step two of the standard MC method, algorithm 1, standard normal random variables have to be
correlated according to the covariance matrix ΩΩΩ of the 𝐾 systematic factors. Suppose we wish to
generate a random vector X = (𝑋ኻ, ..., 𝑋፤)ᖣ where X ∼ 𝒩(0, Ω). Let Z = (𝑍ኻ, ..., 𝑍፤)ᖣ be a vector of i.i.d.
standard normal random variables, i.e. 𝑍። ∼ 𝒩(0, 1) for 𝑖 = 1, .., 𝐾. Let A be a 𝐾𝑥𝐾 matrix, then it
follows that:

A⊺Z ∼ 𝒩(0,A⊺A) (4.6)
Therefore, the problem reduces to finding A such that A⊺A = ΩΩΩ. A well-established method for solving
this problem is the Cholesky decomposition.
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Cholesky Decomposition
For any symmetric positive-definite matrix1 𝑀, the following equation holds:

M = U⊺DU (4.7)

where U is an upper triangular matrix and D is a diagonal matrix with all diagonal elements being
positive. Since by construction, the variance-covariance matrix ΩΩΩ is symmetric positive-definite, we
have:

ΩΩΩ = U⊺DU = (U⊺√D)(√DU) = (√DU)⊺(√DU) (4.8)

Clearly, matrix A = √DU satisfies A⊺A = ΩΩΩ. A is called the Cholesky Decomposition of ΩΩΩ. In
the actual sampling procedure, we need to take the factor weights of the individual counterparties into
account. For each counterparty, denote their vector of factor weights asw። = (𝑤።,ኻ, ..., 𝑤።,ፊ) that satisfies
the constraint ∑ፊ፤ኻ𝑤።,፤ = 1. The calculation of the factor loadings proceeds as follows:
Algorithm 2:Weighted Correlated Random Variables
Apply Cholesky decomposition to variance covariance matrix Ωፊ፱ፊ = 𝐴⊺ፊ፱ፊ𝐴ፊ፱ፊ ;
for i= 1:N do

Calculate the factor loadings for counterparty 𝑖

(𝛼።,ኻ, ..., 𝛼።,ፊ) = (𝑤።,ኻ, ..., 𝑤።,ፊ) × 𝐴ፊ፱ፊ

Normalize the factor loadings for counterparty 𝑖

(𝛼።,ኻ, ..., 𝛼።,ፊ) =
(𝛼።,ኻ, ..., 𝛼።,ፊ)

||(𝛼።,ኻ, ..., 𝛼።,ፊ)||ኼ
Set (𝛼።,ኻ, ..., 𝛼።,ፊ) = (𝛼።,ኻ, ..., 𝛼።,ፊ)

end
Essentially, algorithm 2 constitutes step 2 of algorithm 1. Therefore, a combination of the two algo-

rithms constitutes the full MC method for the multi factor threshold model. However, algorithm 2 will
prove to be applicable more widely throughout this work.

4.2. Granularity Adjustment applied to Credit Risk Models
Equation (3.55) describes the general form of the GA, without making any assumptions on the distri-
bution of the systematic risk factor or on the variance and expected value of the conditional loss of the
portfolio. In order to apply this equation, a model has to be fixed, for instance the one-factor threshold
model or the one-factor CreditRisk+ model. In the following sections, we will further evaluate the GA
for these specific credit risk models.

4.2.1. First-Order granularity adjustment for the single factor Gaussian thresh-
old model

As we have seen in Equation (2.20) the conditional probability of default on the systematic factor 𝑋 is
given by:

𝑃𝐷።(𝑋) = Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝛽።𝑋

√1 − 𝛽ኼ።
⎞

⎠

(4.9)

where the systematic factor 𝑋 is standard normally distributed. To ease notation, we denote 𝜇(𝑥) =
𝔼[𝐿|𝑋 = 𝑥] and 𝜎ኼ(𝑥) = 𝕍[𝐿|𝑋 = 𝑥]. Furthermore, since 𝑋 is standard normally distributed, it follows
from the probabiliy density function of a standard normal random variable that:

𝑓ᖤፗ(𝑥)
𝑓ፗ(𝑥)

= −𝑥 (4.10)

1M is positive definite if for any a ∈ ℝᑂ\{0}: a⊺Ma ጻ ኺ
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Using this notation and Equation (4.10) the GA (3.55) can be easily expressed as:

𝐺𝐴 = ኻ
ኼ [
𝑥 ⋅ 𝜎ኼ(𝑥) − 𝜎ኼᖤ(𝑥)

𝜇ᖤ(𝑥) + 𝜎
ኼ(𝑥)𝜇ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ ]

፱ጓᎽᎳ(ኻዅ፪)
(4.11)

Note that this equation follows from assuming 𝑋 to be normally distributed alone, no assumptions are
made on 𝜎ኼ(𝑥) and 𝜇(𝑥) yet. In order to determine the first and second derivative of the conditional
expectation and the first derivative of the conditional variance a credit risk model has to be set. There-
fore, the loss given default are assumed to be independent. Furthermore, denote the expectation of
the loss given default to be LGD and its variance as VLGD. The conditional expectation and variance
are given by:

𝜇(𝑥) =
፧

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝑃𝐷።(𝑥) (4.12)

𝜎ኼ(𝑥) =
፧

∑
።ኻ
𝑤ኼ። ⋅ [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) ⋅ 𝑃𝐷።(𝑥) − 𝐿𝐺𝐷ኼ። ⋅ 𝑃𝐷።(𝑥)ኼ] (4.13)

The desired derivatives are given by:

𝜇ᖤ(𝑥) =
፧

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝑃𝐷

ᖤ
። (𝑥) (4.14)

𝜇ᖦ(𝑥) =
፧

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝑃𝐷

ᖦ
። (𝑥) (4.15)

𝜎ኼᖤ(𝑥) =
፧

∑
።ኻ
𝑤ኼ። ⋅ [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) ⋅ 𝑃𝐷

ᖤ
። (𝑥) − 𝐿𝐺𝐷ኼ። ⋅ (𝑃𝐷።(𝑥)ኼ)

ᖤ] (4.16)

Again, to ease notation denote 𝑃𝐷።(𝑥) = Φ(𝑧።) with 𝑧። =
ጓᎽᎳ(ፏፃᑚ)ዅᎏᑚፗ

√ኻዅᎏᎴᑚ
. Using this notation:

𝑃𝐷ᖤ። (𝑥) =
𝑑
𝑑𝑥Φ(𝑧።) = −

√𝛽።
√1 − 𝛽።

𝑓ፗ(𝑧።) (4.17)

𝑃𝐷ᖦ። (𝑥) = −
𝛽።

1 − 𝛽።
𝑓ፗ(𝑧።) ⋅ 𝑧። (4.18)

(𝑃𝐷።(𝑥)ኼ)
ᖤ = 𝑑

𝑑𝑥Φ(𝑧።)
ኼ = −2 √𝛽።

√1 − 𝛽።
𝑓ፗ(𝑧።) ⋅ Φ(𝑧።) (4.19)

Combining Equations (4.12) through (4.19) together with (4.11) yields the following elaborate expres-
sion for the GA in case of the single factor Gaussian threshold model:
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𝐺𝐴 = ኻ
ኼ [Φ

ዅኻ(𝑞)
∑፧።ኻ𝑤ኼ። ⋅ [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) ⋅ Φ(𝑧።) − 𝐿𝐺𝐷ኼ። ⋅ (Φ(𝑧።)ኼ)]

∑፧።ኻ𝑤። ⋅ 𝐿𝐺𝐷። ⋅
√ᎏᑚ
√ኻዅᎏᑚ

𝑓ፗ(𝑧።)
]

−ኻኼ [
∑፧።ኻ𝑤ኼ። ⋅ [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) ⋅

√ᎏᑚ
√ኻዅᎏᑚ

𝑓ፗ(𝑧።) − 2 ⋅ 𝐿𝐺𝐷ኼ። ⋅
√ᎏᑚ
√ኻዅᎏᑚ

𝑓ፗ(𝑧።) ⋅ Φ(𝑧።)]

∑፧።ኻ𝑤። ⋅ 𝐿𝐺𝐷። ⋅
√ᎏᑚ
√ኻዅᎏᑚ

𝑓ፗ(𝑧።)
]

−ኻኼ [
፧

∑
።ኻ
𝑤ኼ። ⋅ [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) ⋅ Φ(𝑧።) − 𝐿𝐺𝐷ኼ። ⋅ (Φ(𝑧።)ኼ)]]

⋅
⎡
⎢
⎢
⎣

∑፧።ኻ𝑤። ⋅ 𝐿𝐺𝐷። ⋅
ᎏᑚ
ኻዅᎏᑚ

𝑓ፗ(𝑧።) ⋅ 𝑧።

(∑፧።ኻ𝑤። ⋅ 𝐿𝐺𝐷። ⋅
√ᎏᑚ
√ኻዅᎏᑚ

𝑓ፗ(𝑧።))
ኼ

⎤
⎥
⎥
⎦

|
፳ᑚ

ᐋᎽᎳ(ᑇᐻᑚ)ᎽᒇᑚᐋᎽᎳ(ᑢ)

√ᎳᎽᒇᎴᑚ

(4.20)

4.2.2. Contributing VaR for the Single Factor Granularity Adjustment
The GA of Equation (3.55) indicates the size of the GA for the full portfolio. However, in managing
portfolio credit risk, one is interested in the build up of the total credit risk. In other words, one is looking
for the risk contributions of individual counterparties to the total risk. To that extend, we can apply
the theory developed in Section 3.5.1. In this section, we limit ourselves to the single factor Gaussian
threshold setting of Section 4.2.1, and therefore we have:

𝐺𝐴 = ኻ
ኼ [
𝑥 ⋅ 𝜎ኼ(𝑥) − 𝜎ኼᖤ(𝑥)

𝜇ᖤ(𝑥) + 𝜎
ኼ(𝑥)𝜇ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ ]

፱ጓᎽᎳ(ኻዅ፪)
(4.21)

Furthermore, we introduce a slight abuse of notation where for instance 𝜇ᖤ(𝑥) denotes a partial deriva-
tive with respect to 𝑥 and Ꭷ᎙(፱)

Ꭷ፰ᑚ
denotes the partial derivate with respect to exposure weight 𝑤።. In

essence, using Equation (3.39), determining risk contribution reduces to taking the partial derivative of
Equation (3.54) with respect to 𝑤።:

𝑤።
𝜕𝛼፪(𝐿)
𝜕𝑤።

≈ 𝑤።
𝜕𝛼ፀፒፑፅ፪ (𝐿)
𝜕𝑤።

+𝑤።
𝜕𝐺𝐴
𝜕𝑤።

(4.22)

Where Ꭷᎎᐸᑊᑉᐽᑢ (ፋ)
Ꭷ፰ᑚ

allows for a very straightforward solution:

𝑤።
𝜕𝛼ፀፒፑፅ፪ (𝐿)
𝜕𝑤።

= 𝑤።
𝜕
𝜕𝑤።

ፍ

∑
።ኻ
𝑤። ⋅𝐿𝐺𝐷። ⋅Φ⎛

⎝

Φዅኻ(𝑃𝐷።) + 𝛽።Φዅኻ(𝑞)

√1 − 𝛽ኼ።
⎞

⎠

= 𝑤።𝐿𝐺𝐷። ⋅Φ⎛

⎝

Φዅኻ(𝑃𝐷።) + 𝛽።Φዅኻ(𝑞)

√1 − 𝛽ኼ።
⎞

⎠
(4.23)

Unfortunately, the expression for 𝑤።
Ꭷፆፀ
Ꭷ፰ᑚ

is slightly more cumbersome to derive. The partial derivative
with respect to exposure weight of Equation (4.11) is given by:

𝑤።
𝜕
𝜕𝑤።

𝐺𝐴 = 𝑤።
1
2 [𝑥

𝜕
𝜕𝑤።

(𝜎
ኼ(𝑥)
𝜇ᖤ(𝑥) ) −

𝜕
𝜕𝑤።

(𝜎
ኼᖤ(𝑥)
𝜇ᖤ(𝑥) ) +

𝜕
𝜕𝑤።

(𝜎
ኼ(𝑥)𝜇ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ )]

፱ጓᎽᎳ(ኻዅ፪)
(4.24)

This leaves us with calculating the expressions Ꭷ
Ꭷ፰ᑚ

(
Ꮄ(፱)
᎙ᖤ (፱) ),

Ꭷ
Ꭷ፰ᑚ

(
Ꮄᖤ (፱)
᎙ᖤ (፱) ) and Ꭷ

Ꭷ፰ᑚ
(

Ꮄ(፱)᎙ᖦ (፱)
(᎙ᖤ (፱))Ꮄ ). For

the exact expressions of these partial derivatives and their application to the single factor Gaussian
threshold model, we refer to appendix A.2. Using the exact expressions, the analytical contributing
VaR in the single factor setting, is easily calculated using Equation (4.22).
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4.2.3. CreditRisk+ Adjustment
The following derivation of the granularity adjustment for assessing economic capital is largely based on
the work by [22]. The authors propose a granularity adjustment for portfolio credit VaR that accounts
for undiversified idiosyncratic risk in the portfolio based on the CreditRiks+ model. Similarly to the
derivation of the GA in the one-factor setting, we start of with the general expression for the GAEquation
(3.55). The below described derivation of the GA for the CreditRisk+ model is largely based on the work
by [21] in combination with [22].

As we have seen in previous sections, the expressions for 𝑓ፗ(𝑥), 𝕍[𝐿] and𝔼[𝐿] in Equation (3.55) are
model dependent. Instead of basing these expressions on the model that underlies the IRB formulas,
[22] propose to base these expressions on the single factor CreditRisk+ model. The CreditRisk+ model
is a widely used industry model for portfolio credit risk that was introduced by Credit Suisse Financial
Products in 1997 and is further explained in Section 3.4. A major upside to the GA in the CreditRisk+
setting is its analytical tractability and transparency, compared to the intricate expression for the GA
in the one factor Merton model setting Equation (4.20). Especially in a regulatory setting, analytic
tractability of expressions is a desired property.

Firstly, we define the loss rate as 𝑈። = 𝐿𝐺𝐷። ⋅ 𝐷። where 𝐷። denotes the default indicator. A major
approximation on which the CreditRisk+ model is build, is the approximation of the default indicator to
be Poisson distributed. This assumptions will help us later on in the derivation of the GA. In order to
ensure tractability, the following notation is introduced:

𝜇(𝑥) = 𝔼[𝐿|𝑥] =
ፍ

∑
።ኻ
𝑤።𝜇።(𝑥) (4.25)

𝜎ኼ(𝑥) = 𝕍[𝐿|𝑥] =
ፍ

∑
።ኻ
𝑤ኼ። 𝜎ኼ። (𝑥) (4.26)

In the CreditRisk+ setting, 𝜇(𝑥)። is given by:

𝜇።(𝑥) = 𝐿𝐺𝐷። ⋅ 𝑃𝐷።(𝑥) = 𝐿𝐺𝐷። ⋅ 𝑃𝐷። ⋅ (1 + 𝜔።(𝑥 − 1)) (4.27)

For the conditional variance, we have:

𝜎ኼ። (𝑥) = 𝔼[𝐿𝐺𝐷ኼ። 𝐷ኼ። |𝑋] − 𝐿𝐺𝐷ኼ። ⋅ 𝑃𝐷።(𝑥)ኼ = 𝔼[𝐿𝐺𝐷ኼ። ]𝔼[𝐷ኼ። |𝑋] − 𝜇።(𝑥)ኼ (4.28)

Since we assume the default indicator 𝐷። given 𝑋 to be Poisson distributed, the expected value and
variance of a Poisson distributed variable yield 𝔼[𝐷።|𝑋] = 𝕍[𝐷።|𝑋] = 𝑃𝐷።(𝑥) which in turn implies by
definition of the variance:

𝔼[𝐷ኼ። |𝑋] = 𝑃𝐷።(𝑥) + 𝑃𝐷።(𝑥)ኼ (4.29)
Furthermore, substituting 𝔼[𝐿𝐺𝐷ኼ። ] = 𝕍[𝐿𝐺𝐷።]+𝐿𝐺𝐷ኼ። and denoting𝕍[𝐿𝐺𝐷።] = 𝑉𝐿𝐺𝐷። in Equation (4.28)
together with the previous expression yields the following expression for the conditional variance in the
CR+ setting:

𝜎ኼ። (𝑥) = (𝑉𝐿𝐺𝐷። + 𝐿𝐺𝐷ኼ። ) ⋅ (𝑃𝐷።(𝑥) + 𝑃𝐷።(𝑥)ኼ) − 𝜇።(𝑥)ኼ = 𝐶።𝜇።(𝑥) + 𝜇።(𝑥)ኼ
𝑉𝐿𝐺𝐷።
𝐿𝐺𝐷ኼ።

(4.30)

With 𝐶። =
ፕፋፆፃᑚዄፋፆፃᎴᑚ

ፋፆፃᑚ
. Again, similarly to the GA for the one-factor Merton model, an expression for the

distribution of the single risk factor 𝑋 is required. In the CR+ setting, we assume the single risk factor
to be Gamma distributed, 𝑋 ∼ Γ(𝜖, ኻᎨ ).

𝑋 being Gamma distributed, the shape-scale version of the Gamma PDF is given by:

𝑓ፗ(𝑥) =
𝑥Ꭸዅኻ𝑒ዅ፱Ꭸ

Γ(𝜖)(ኻᎨ )
Ꭸ

(4.31)

Where Γ(𝜖) denotes the Gamma function. The first derivative with respect tor 𝑥 has the following
convenient form:

𝑑𝑓ፗ(𝑥)
𝑑𝑥 = 𝑓ፗ(𝑥) (

𝜖 − 1
𝑥 − 𝜖) (4.32)
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Therefore, since the GA requires the ratio of the probability density function to its derivative, we have:

𝑓ᖤፗ(𝑥)
𝑓ፗ(𝑥)

= (𝜖 − 1𝑥 − 𝜖) = 𝐴 (4.33)

Furthermore, the linear dependence of 𝜇(𝑥) on 𝑥 implies that the second derivative of the conditional
expectation 𝜇ᖦ(𝑥) vanishes. Therefore Equation (4.33) together with Equation (3.55) and a simple
application of the quotient rule for derivatives yields the following expression for the GA in the CR+
setting:

𝐺𝐴 = −ኻኼ (
𝐴𝜎ኼ(𝑥) − 𝜎ኼᖤ(𝑥)

𝜇ᖤ(𝑥) ) |
፱ᎎᑢ(ፗ)

(4.34)

Where 𝑞 is used instead of 1−𝑞 in the point of evaluation since the probability of default is monotonically
increasing function of the state variable in the CR+ setting that is considered [2]. Taking the derivative
of Equations (4.25) and (4.26) and plugging these expressions into (4.34) would yield an expression for
the granularity adjustment in the CR+ setting. [22] however stress the importance of analytic tractability
of their GA. Therefore, they introduce several new terms, of which the first is:

𝑅። = 𝐿𝐺𝐷።𝑃𝐷። (4.35)
The second newly introduced term is the total amount of regulatory capital for obligor 𝑖 as a proportion
of its total exposure in the CR+ setting:

𝐾። = 𝐿𝐺𝐷።𝑃𝐷።𝜔።(𝛼፪ − 1) (4.36)
Where 𝛼፪ ≡ 𝛼፪(𝑋). The final new term introduced is an adaption to our before derived 𝐴:

𝛿፪(𝜖) = −(𝛼፪ − 1) ⋅ 𝐴 = (𝛼፪ − 1) (
1 − 𝜖
𝛼፪

+ 𝜖) (4.37)

In this setting, Equation (4.34) can be rewritten in:

𝐺𝐴 =
𝛿፪(𝜖)𝜎ኼ(𝛼፪) − (𝛼፪ − 1)𝜎ኼ

ᖤ(𝛼፪)
2(𝛼፪ − 1)𝜇ᖤ(𝛼፪)

(4.38)

Therefore, in order to finish the derivation of the GA in CR+ scenario, expressions for both the derivative
of the conditional expectation and conditional variance with respect to 𝑥 are required. Using the recently
introduced notation, these terms simplify to the following:

(𝛼፪ − 1)𝜇
ᖤ(𝛼፪) =

ፍ

∑
።ኻ
𝑤።𝐾። = 𝐾∗ (4.39)

(𝛼፪ − 1)𝜎ኼ
ᖤ(𝛼፪) =

ፍ

∑
።ኻ
𝑤ኼ። 𝐾። (𝐶። + 2(𝑅። + 𝐾።)

𝑉𝐿𝐺𝐷።
𝐿𝐺𝐷ኼ።

) (4.40)

Combining Equation (4.38) together with the two previously derived expression, the full expression for
the GA in the CR+ setting is given by:

𝐺𝐴ፂፑዄ =
1
2𝐾∗

ፍ

∑
።ኻ
𝑤ኼ። ((𝛿፪(𝜖)𝐶።(𝑅። + 𝐾𝑖) + 𝛿፪(𝜖)(𝑅። + 𝐾𝑖)ኼ

𝑉𝐿𝐺𝐷።
𝐿𝐺𝐷ኼ።

) − 𝐾። (𝐶። + 2(𝑅። + 𝐾።)
𝑉𝐿𝐺𝐷።
𝐿𝐺𝐷ኼ።

))

(4.41)
For many purposes, including part of this thesis, the LGD parameter will be deterministic, 𝐿𝐺𝐷 ∈ [0, 1],
which clearly yields 𝔼[𝐿𝐺𝐷] = 𝐿𝐺𝐷 and 𝑉𝐿𝐺𝐷። = 0 which in turn greatly simplifies Equation (4.41):

𝐺𝐴ፂፑዄ =
1
2𝐾∗

ፍ

∑
።ኻ
𝑤ኼ። 𝐿𝐺𝐷 (𝛿፪(𝜖)(𝑅። + 𝐾𝑖) − 𝐾።) (4.42)
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Where we used the fact that for the deterministic case 𝐶። = 𝔼[𝐿𝐺𝐷] = 𝐿𝐺𝐷. In order to fully specify the
adjustment, a value for shape parameter 𝜖 is required. [22] propose a value 𝜖 = 0.125.

Contributing VaR for the CR+ Granularity Adjustment
Similar to Section 4.2.2, to fully assess single name concentration risk, the CR+ GA has to be derived
on obligor level. This derivation is fairly straightforward as we can easily apply (3.39) to (4.41). One
has to be cautious however, since 𝐾∗ = 𝐾∗(𝑤።):

𝑤።
𝜕𝐺𝐴ፂፑዄ
𝜕𝑤።

= 𝑤።
𝜕
𝜕𝑤።

( 1
2𝐾∗)

ፍ

∑
፧ኻ

𝑤ኼ፧ ((𝛿፪(𝜖)𝐶፧(𝑅፧ + 𝐾፧) + 𝛿፪(𝜖)(𝑅፧ + 𝐾፧)ኼ
𝑉𝐿𝐺𝐷፧
𝐿𝐺𝐷ኼ፧

)

−𝐾፧ (𝐶፧ + 2(𝑅፧ + 𝐾፧)
𝑉𝐿𝐺𝐷፧
𝐿𝐺𝐷ኼ፧

) + 𝑤።
𝐾∗ ((𝛿፪(𝜖)𝐶።(𝑅። + 𝐾𝑖) + 𝛿፪(𝜖)(𝑅። + 𝐾።)

ኼ𝑉𝐿𝐺𝐷።
𝐿𝐺𝐷ኼ።

)

−𝐾። (𝐶። + 2(𝑅። + 𝐾።)
𝑉𝐿𝐺𝐷።
𝐿𝐺𝐷ኼ።

)

(4.43)

where we have:
𝜕
𝜕𝑤።

( 1
2𝐾∗) = −

𝐾።
2(𝐾∗)ኼ (4.44)

Referring back to Equation (3.54), one still needs an ASRF equivalent for the CreditRisk+ model. In
the CreditRisk+ setting, this expression essentially equals (4.36) on obligor level [22]. This yields an
opportunity to match the ASRF model with the CreditRisk+ model, by setting Equations (4.23) and
(4.36) equal to each other. From this procedure, and expression can be derived that expresses 𝜔። as
a function of 𝛽። and confidence level 𝑞. For details about this procedure, we refer to chapter 6.3.7 of
[2]. In this work, we will opt for a different approach in which we set 𝜔። = 𝛽። and use the usual ASRF
solution (3.54) to which the CR+ GA is added.

Remark
Two main limitations are identified for the above-proposed method. Firstly, the GA formula is itself an
asymptotic approximation, limiting its applicability on very small portfolios. Secondly, since the GA is
based on the CreditRisk+ model, it differs from the underlying methods in determining the IRB formulae.
Therefore, there is a model mismatch. This issue is however solved by the GA for the single risk factor
model derived previously. Additionally, the GA is derived in a single factor setting. Because of this, the
GA only accounts for name concentration risk and is not able to assess sector concentration risk.

4.3. Multi Factor Concentration Adjustment
4.3.1. Pykhtin Multi-Factor Adjustment
In order to derive the explicit adjustment Δ𝛼፪ Equation (3.72) we have to determine the conditional
variance and mean of 𝐿 given �̄� = 𝑥. Luckily, a large part of the work has been done in Section
4.2.1. Since 𝜇(𝑥) is given by Equation (3.59) we can adapt Equations (4.14) and (4.15) given that the
original 𝛽። is replaced by the newly derived correlation 𝑐።. Therefore, it remains to determine conditional
variance 𝜎ኼ(𝑥) and its first derivative 𝜎ኼᖤ(𝑥). The conditional variance is given by:

𝜎ኼ(𝑥) ∶= 𝕍[𝐿|�̄� = 𝑥] (4.45)

In contrast to the single-risk factor framework, the defaults are not independent conditional on 𝑥 = �̄�.
This dependence becomes apparent if we rewrite the asset returns (3.61) in terms of the definitions of
𝑌። and �̄�:

𝑟። = 𝑐።�̄� +
ፊ

∑
፤ኻ
(𝛽።𝛼፧,፤ − 𝑐።𝑏፤)𝑋፤ +√1 − 𝛽ኼ። 𝜖። (4.46)

Although the asset returns are not independent conditional on 𝑥 = �̄�, they are independent conditional
on {𝑋ኻ, ..., 𝑋ፊ}. Using the law of total variance, we can decompose the variance to include the conditional
independence:
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𝜎ኼ(𝑥) = 𝕍[𝔼[𝐿|{𝑋፤}]|�̄�]⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
Ꮄᐴ(፱)

+𝔼[𝕍[𝐿|{𝑋፤}]|�̄�]⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
Ꮄᐾᐸ(፱)

(4.47)

The first term on the right-hand side, denoted as 𝜎ኼጼ(𝑥), is the variance of the limiting loss distribution
𝔼[𝐿|{𝑋፤}] conditional on the effective systematic risk factor �̄�. It describes the systematic risk adjust-
ment, accounting for the difference between the multi-factor and single factor loss distribution. This is
further emphasized by the fact that it disappears if the single systematic factor �̄� is set equal to the
independent factors {𝑋ኻ, ..., 𝑋ፊ}. The second term on the right-hand side, denoted as 𝜎ኼፆፀ(𝑥), captures
the effect of granularity in the portfolio. Therefore, it accounts for the difference between a finite and
infinite number of loans in the portfolio [35].
Proposition 4.3.1. The conditional variance term 𝜎ኼጼ(𝑥) is given by:

𝜎ኼጼ(𝑥) =
ፍ

∑
።ኻ

ፍ

∑
፣ኻ
𝑤።𝑤፣𝐿𝐺𝐷።𝐿𝐺𝐷፣[Φኼ(Φዅኻ(𝑃𝐷።(𝑥)), Φዅኻ(𝑃𝐷፣(𝑥)), 𝜌ፗ̄።፣) − 𝑃𝐷።(𝑥)𝑃𝐷፣(𝑥)] (4.48)

where Φኼ(⋅) denotes the bivariate normal distribution and 𝜌ፗ̄።፣ denotes the asset correlation between
asset 𝑛 and 𝑚 conditional on �̄� given by:

𝜌ፗ̄።፣ =
𝛽።𝛽፣ ∑

ፊ
፤ኻ 𝛼፧,፤𝛼፦,፤ − 𝑐።𝑐፣

√(1 − 𝑐ኼ። )(1 − 𝑐፣)
(4.49)

Moreover, the derivative of 𝜎ኼጼ(𝑥) is given by:

፝
፝፱𝜎

ኼ
ጼ(𝑥) = 2

ፍ

∑
።ኻ

ፍ

∑
፣ኻ
𝑤።𝑤፣𝐿𝐺𝐷።𝐿𝐺𝐷፣𝑃𝐷

ᖤ
። (𝑥)

⎡
⎢
⎢
⎣
Φ⎛

⎝

Φዅኻ(𝑃𝐷፣(𝑥)) − 𝜌ፗ̄።፣Φዅኻ(𝑃𝐷።(𝑥))

√1 − (𝜌ፗ̄።፣)ኼ
⎞

⎠

− 𝑃𝐷፣(𝑥)
⎤
⎥
⎥
⎦

(4.50)

For the proof of this proposition we refer to the proof of Theorem 10.1.2 of [21]. Similarly, [35] shows:
Proposition 4.3.2. The conditional variance term 𝜎ኼፆፀ(𝑥) is given by:

𝜎ኼፆፀ(𝑥) =
ፍ

∑
።ኻ
𝑤ኼ። [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።)𝑃𝐷።(𝑥) − 𝐿𝐺𝐷ኼ። ⋅ Φኼ(Φዅኻ(𝑃𝐷።(𝑥)), Φዅኻ(𝑃𝐷።(𝑥)), 𝜌ፗ̄፧፧)] (4.51)

Its derivative equals

፝
፝፱𝜎

ኼ
ፆፀ(𝑥) =

ፍ

∑
።ኻ
𝑤ኼ። 𝑃𝐷

ᖤ
። (𝑥)

⎡
⎢
⎢
⎣
(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) − 2𝐿𝐺𝐷ኼ። Φ⎛

⎝

Φዅኻ(𝑃𝐷።(𝑥)) − 𝜌ፗ̄፧፧Φዅኻ(𝑃𝐷።(𝑥))

√1 − (𝜌ፗ̄፧፧)ኼ
⎞

⎠

⎤
⎥
⎥
⎦

(4.52)

For the proof of this proposition we refer to the proof of Theorem 10.1.3 of [21]. Exploiting the fact
that the multi-factor adjustment (3.72) is linear in the conditional variance 𝜎ኼ(𝑥) = 𝜎ኼጼ(𝑥) + 𝜎ኼፆፀ(𝑥) and
in its first derivative, the multi-factor adjustment can be rewritten in the following form:

Δ𝛼፪ = Δ𝛼ጼ፪ + Δ𝛼ፆፀ፪ (4.53)

Therefore, the multi-factor adjustment can be split into a systematic risk adjustment component and a
granularity adjustment component. To summarize, the approximation of the loss quantile 𝛼፪(𝐿) is given
by:

𝛼፪(𝐿) ≈ 𝛼፪(�̄�) + Δ𝛼፪ = 𝛼፪(�̄�) + Δ𝛼ጼ፪ + Δ𝛼ፆፀ፪ (4.54)
In principle, implementation of the Pykhtin model as elaborated on above is fairly straightforward. Unfor-
tunately, the computation of the analytic adjustment poses some challenges. The main problem is that,
due to the double sums in Equations (4.48) and (4.50), computation can be extremely time-consuming
when applying the adjustment to large portfolios. In addition to the double sums, the calculation of the
conditional asset correlations requires ፍᎴ

ኼ computations. We will return to this issue in later sections.
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Risk Contributions in the Pykhtin Setting
Similarly to the derivation of Section 4.2.2, the aforementioned theory enables us to compute the VaR
analytically on portfolio level. We again apply the Euler allocation principle to compute the contributing
VaR of each obligor. The individual terms in Equation (4.54) are given by:

𝛼፪(�̄�) = 𝜇(𝑥)|፱ጓᎽᎳ(ኻዅ፪) (4.55)

Δ𝛼ፆፀ፪ = ኻ
ኼ [
𝑥 ⋅ 𝜎ኼፆፀ(𝑥) − 𝜎ኼ

ᖤ
ፆፀ(𝑥)

𝜇ᖤ(𝑥) + 𝜎
ኼ
ፆፀ(𝑥)𝜇

ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ ]

፱ጓᎽᎳ(ኻዅ፪)
(4.56)

Δ𝛼ጼ፪ =
ኻ
ኼ [
𝑥 ⋅ 𝜎ኼጼ(𝑥) − 𝜎ኼ

ᖤ
ጼ (𝑥)

𝜇ᖤ(𝑥) + 𝜎
ኼ
ጼ(𝑥)𝜇

ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ ]

፱ጓᎽᎳ(ኻዅ፪)
(4.57)

where 𝜇(𝑥) = ∑ፍ።ኻ𝑤።𝐿𝐺𝐷።Φ(
ጓᎽᎳ(ፏፃᑚ)ዅᑚፗ

√ኻዅᎴᑚ
). The expressions for the derivative of 𝜇(𝑥) are similar to the

derivatives presented in 4.2.1 with 𝛽። replaced by the adjusted correlation factor 𝑐። and therefore we
will not repeat deriving these equations in the Pykhtin setting. Applying the Euler allocation principle to
(4.54) yields:

𝑤።
𝜕𝛼፪(𝐿)
𝜕𝑤።

= 𝑤።
𝜕𝛼፪(�̄�)
𝜕𝑤።

+𝑤።
𝜕Δ𝛼ጼ፪
𝜕𝑤።

+𝑤።
𝜕Δ𝛼ፆፀ፪
𝜕𝑤።

(4.58)

The first expression on the right hand side of this equation is easily calculated to equal

𝑤።
𝜕𝛼፪(�̄�)
𝜕𝑤።

= 𝑤።𝐿𝐺𝐷።Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝑐።Φዅኻ(1 − 𝑞)

√1 − 𝑐ኼ።
⎞

⎠

(4.59)

To determine the other two quantities on the right hand side of Equation (4.58) we notice that the
adjustments (4.56) and (4.57) are of similar form to (4.21) and therefore the partial derivatives with
respect to the weighted exposure are of the form (4.24):

𝑤።
𝜕Δ𝛼ጼ፪
𝜕𝑤።

= 𝑤።
1
2 [𝑥

𝜕
𝜕𝑤።

(𝜎
ኼ
ጼ(𝑥)
𝜇ᖤ(𝑥) ) −

𝜕
𝜕𝑤።

(𝜎
ኼᖤ
ጼ (𝑥)
𝜇ᖤ(𝑥) ) +

𝜕
𝜕𝑤።

(𝜎
ኼ
ጼ(𝑥)𝜇

ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ )]

፱ጓᎽᎳ(ኻዅ፪)
(4.60)

𝑤።
𝜕Δ𝛼ፆፀ፪
𝜕𝑤።

= 𝑤።
1
2 [𝑥

𝜕
𝜕𝑤።

(𝜎
ኼ
ፆፀ(𝑥)
𝜇ᖤ(𝑥) ) −

𝜕
𝜕𝑤።

(𝜎
ኼᖤ
ፆፀ(𝑥)
𝜇ᖤ(𝑥) ) +

𝜕
𝜕𝑤።

(𝜎
ኼ
ፆፀ(𝑥)𝜇

ᖦ(𝑥)
(𝜇ᖤ(𝑥))ኼ )]

፱ጓᎽᎳ(ኻዅ፪)
(4.61)

Due to its familiar form, we can use previously derived Equations (A.5) through (A.10) with 𝛽። replaced
by 𝑐።. However, due to form of the conditional variance terms 𝜎ኼጼ(𝑥) and 𝜎ኼፆፀ(𝑥), its partial derivatives
take a different form:

𝜕𝜎ኼጼ(𝑥)
𝜕𝑤።

= 2𝐿𝐺𝐷።
፧

∑
፣ኻ
𝑤፣𝐿𝐺𝐷፣ [Φኼ(Φዅኻ(𝑃𝐷።(𝑥)), Φዅኻ(𝑃𝐷፣(𝑥)), 𝜌ፗ̄።፣) − 𝑃𝐷።(𝑥)𝑃𝐷፣(𝑥)] (4.62)

𝜕𝜎ኼፆፀ(𝑥)
𝜕𝑤።

= 2𝑤። [(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።)𝑃𝐷።(𝑥) − 𝐿𝐺𝐷ኼ። Φኼ(Φዅኻ(𝑃𝐷።(𝑥)), Φዅኻ(𝑃𝐷።(𝑥)), 𝜌ፗ̄።።)] (4.63)

𝜕𝜎ኼᖤጼ (𝑥)
𝜕𝑤።

= 2𝐿𝐺𝐷።
ፍ

∑
፣ኻ
𝑤፣𝐿𝐺𝐷፣𝑃𝐷

ᖤ
፣(𝑥)

⎡
⎢
⎢
⎣
Φ⎛

⎝

Φዅኻ(𝑃𝐷።(𝑥)) − 𝜌ፗ̄፣።Φዅኻ(𝑃𝐷፣(𝑥))

√1 − (𝜌ፗ̄፣።)ኼ
⎞

⎠

− 𝑃𝐷።(𝑥)
⎤
⎥
⎥
⎦

+2𝐿𝐺𝐷።
ፍ

∑
፣ኻ
𝑤፣𝐿𝐺𝐷፣𝑃𝐷

ᖤ
። (𝑥)

⎡
⎢
⎢
⎣
Φ⎛

⎝

Φዅኻ(𝑃𝐷፣(𝑥)) − 𝜌ፗ̄፣።Φዅኻ(𝑃𝐷።(𝑥))

√1 − (𝜌ፗ̄፣።)ኼ
⎞

⎠

− 𝑃𝐷፣(𝑥)
⎤
⎥
⎥
⎦

(4.64)
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𝜕𝜎ኼᖤፆፀ(𝑥)
𝜕𝑤።

= 2𝑤።𝑃𝐷
ᖤ
። (𝑥)

⎡
⎢
⎢
⎣
(𝐿𝐺𝐷ኼ። + 𝑉𝐿𝐺𝐷።) − 2𝐿𝐺𝐷ኼ። Φ⎛

⎝

Φዅኻ(𝑃𝐷።(𝑥)) − 𝜌ፗ̄።።Φዅኻ(𝑃𝐷።(𝑥))

√1 − (𝜌ፗ̄።።)ኼ
⎞

⎠

⎤
⎥
⎥
⎦

(4.65)

These equations show great similarities with the equations presented in [17] and [34], however, Equa-
tions (4.62) through (4.65) account for random LGD’s whereas the expressions derived in the two
aforementioned works do not. This implies that the original derivation by [35] were unable to account
for the effects of recovery risk, whereas in this work we assume recovery risk through Beta distributed
LGD rates.

4.4. An Extension: Economic versus Regulatory Name Concentra-
tion Risk

Regulatory Name Concentration Risk
Currently, a fairly widespread and agreed upon measure of single name concentration risk is the gran-
ularity adjustment in the single factor case, essentially Equation (3.55). More generally, name concen-
tration risk is measured as the difference in VaR between the true, MC based, VaR resulting from a
single factor model and its asymptotic VaR:

𝐶𝑅፪(𝐿ፍ) ∶= 𝑉𝑎𝑅ፒፅ፪ (𝐿ፍ) − lim
ፍ→ጼ

𝑉𝑎𝑅ፒፅ፪ (𝐿ፍ) (4.66)

Given the assumption of a single factor, we have seen that the asymptotic portfolio VaR limፍ→ጼ 𝑉𝑎𝑅ፒፅ፪ (𝐿ፍ)
can analytically be determined by the ASRF model. Therefore, Equation (4.66) reduces to:

𝐶𝑅፪(𝐿) = 𝑉𝑎𝑅ፒፅ፪ (𝐿) − 𝑉𝑎𝑅ፀፒፑፅ፪ (𝐿) (4.67)

For the concentration risk contributions of individual obligors we have:

𝐶𝑅𝐶፪,።(𝐿) = 𝑉𝑎𝑅𝐶ፒፅ፪,። − 𝑉𝑎𝑅𝐶ፀፒፑፅ፪,። (4.68)

Both 𝑉𝑎𝑅ፒፅ፪ (𝐿) and 𝑉𝑎𝑅𝐶ፒፅ፪,። are a result of numerous Monte Carlo simulations on a single systematic
factor and 𝑁 idiosyncratic factors through the use of the single factor variant of algorithm 1. The ex-
pression for 𝑉𝑎𝑅ፀፒፑፅ፪ (𝐿) is given by Equation (2.25) and the contributing 𝑉𝑎𝑅𝐶ፀፒፑፅ፪,። for each obligor is
easily determined through apply the Euler Allocation principle (3.39) on Equation (2.25):

𝑉𝑎𝑅𝐶ፀፒፑፅ፪,። = 𝑤።
𝜕𝑉𝑎𝑅፪(𝐿)ፀፒፑፅ

𝜕𝑤።
= 𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) + 𝛽።Φዅኻ(𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(4.69)

Notice that 𝐶𝑅፪(𝐿) is equal in terms of VaR and in terms of EC since 𝑉𝑎𝑅ፒፅ፪ (𝐿)−𝔼[𝐿]− (𝑉𝑎𝑅ፀፒፑፅ፪ (𝐿)−
𝔼[𝐿]) = 𝑉𝑎𝑅ፒፅ፪ (𝐿) − 𝑉𝑎𝑅ፀፒፑፅ፪ (𝐿). Clearly, for a infinitely fine grained portfolio the concentration charge
𝐶𝑅፪(𝐿) equals zero since limፍ→ጼ 𝑉𝑎𝑅ፒፅ፪ (𝐿) = 𝑉𝑎𝑅ፀፒፑፅ፪ (𝐿) by construction of the Asymptotic Single
Risk Factor approximation. However, for real life portfolio we expect 𝐶𝑅፪(𝐿) to be larger than zero.
Furthermore, by construction of the Granularity Adjustment (i.e. Equation (3.54)), we expect 𝐶𝑅፪(𝐿) ≈
𝐺𝐴፪(𝐿). The concentration charge 𝐶𝑅፪(𝐿) will slightly differ from the analytical GA since 𝐶𝑅፪(𝐿) is
a result of a numerical approximation of the VaR and the GA is a analytical approximation based on
a second order Taylor expansion around the VaR. However, since banks often have access to Monte
Carlo methods for determining VaR, practitioners may opt for the numerical concentration charge (4.67)
instead of the analytical GA. A major upside to the numerical concentration charge is the fact that it is
based on existing MC methods and that therefore 𝐶𝑅፪(𝐿) always equals the difference between known
regulatory capital requirements and the ASRF approximation whereas the GA, being an approximation,
does not always equal this difference. However, calculating the numerical concentration charge is more
time consuming and computationally intensive compared to the straightforward calculations required
for calculating the GA (i.e. (4.20)).

However, we argue that Equation (4.67) only holds in single factor regulatory A-IRB framework.
This means using a single global systematic factor, regulatory correlation parameter 𝜌 (i.e. Equation
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(2.27)) and using the LGD, EAD and PD determined by the bank’s internal risk models. The regulatory
correlation parameters are adjusted to the single risk factor model, whereas economic capital is often
calculated in a multi factor model to account for diversification effects. In a multi factor model, the
correlation parameter 𝛽 is determined through a regression onmultiple systematic factors and therefore
differs from 𝜌. Moreover, the capital requirements from a multi factor model might either exceed or be
less than the capital requirements for the single factor model depending on the correlation structure
that allows for diversification benefits. This effect is depicted in Figure 4.1 where we compare the loss
distribution of a heterogeneous portfolio of a 1000 obligors. One loss distribution is based on a single
factor model whereas the other is based on a multi factor model with equal EAD, PD, LGD and 𝛽
parameters. Clearly, the loss distribution differs greatly between the multi factor and the single factor
model. Measuring single name concentration risk using with respect to the multi factor loss distribution
by plainly using the ASRF solution yields senseless results because implicitly, one would be measuring
the concentration risk with respect to the single factor variant of the multi factor model. Therefore we
propose a difference between Regulatory Concentration Risk (RCR) and Economic Concentration Risk
(ECR).

In short, Regulatory Concentration Risk equals the residual idiosyncratic risk present in a single
factor regulatory framework, where the asymptotic VaR is estimated by the usual ASRF solution and
the true VaR is a result of numerous MC trials. The GA is developed to approximate RCR, but we
propose a method for assessing RCR in a Monte Carlo framework. Although being a relevant risk
measure, as it effectively equals the add-on risk that the A-IRB method does not take into account
under Pillar I, it does not take the effects of diversification into account. To this extend, we introduce
Economic Concentration Risk.

Figure 4.1: Histogram of portfolio losses based on a corporate sub portfolio of ING of 1000 obligors and 1e6 MC trials. One can
see clearly that the portfolio loss distribution strongly differs across the used methods with the single factor model seemingly
exhibiting a heavier tail, indicating higher capital requirements. The expected loss is equal across both models.

Economic Name Concentration Risk
In this section we assume that a banksmeasures their EC in amulti factor framework to stress the differ-
ence with a single factor regulatory framework. Essentially, we are looking for the following expression
for the economic concentration charge:

𝐸𝐶𝑅፪(𝐿ፍ) = 𝑉𝑎𝑅ፌፅ፪ (𝐿ፍ) − lim
ፍ→ጼ

𝑉𝑎𝑅ፌፅ፪ (𝐿ፍ) (4.70)

Where the superscript𝑀𝐹 denotes multi-factor. This expression poses a problem, as we cannot use the
tools used in Section 2.6.1 to compute limፍ→ጼ 𝑉𝑎𝑅ፌፅ፪ (𝐿) as assumption 2.6.3 is violated by introducing
multiple risk factors. Instead, we propose measuring 𝐸𝐶𝑅፪(𝐿) by adjusting a single factor model in such
a way it approximates a multi factor model and then compute 𝐸𝐶𝑅፪(𝐿) by subtracting the ASRF solution
of this adjusted single factor model. The question that remains is how to accurately adjust a multi factor
model to a single factor model. This would involve mapping the correlation structure of the systematic
factors to a scaling parameter for the single factor model. To this extend, we apply the theory developed
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by [35] and previously described in Section 3.7.5. In short, we adjust a single factor loss distribution in
such a way that 𝐿ፌፅ = �̃�ፀ-ፒፅ. Essentially, we start with the general multi model for asset returns:

𝑟። = 𝛽።𝑌። +√1 − 𝛽ኼ። 𝜖። (4.71)

in which 𝑌። is the counter-party’s composite factor:

𝑌። =
ፊ

∑
፤ኻ

𝛼።,፤𝑋፤ (4.72)

Where the parameters 𝛼።,፤ are based on a combination of the factor weights of obligor 𝑖 and the
Cholesky decomposition of the covariance matrix of the systematic factors (see Section 4.1.1). As
usual, the random variable describing the portfolio loss is then given by:

𝐿ፌፅ =
፧

∑
።ኻ
𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝟙፫ᑚጺጓᎽᎳ(ፏፃᑚ) (4.73)

�̃�ፀ-ፒፅ satisfies a very similar expression:

�̃�ፀ-ፒፅ =
፧

∑
።ኻ
𝐸𝐴𝐷። ⋅ 𝐿𝐺𝐷። ⋅ 𝟙፫̃ᑚጺጓᎽᎳ(ፏፃᑚ) (4.74)

In order to satisfy the constraint 𝐿ፌፅ = �̃�ፀ-ፒፅ, the following equality has to be satisfied:
𝑟። = �̃�። (4.75)

To satisfy this constraint, the following adjusted single factor model is introduced:

�̃�። = 𝑐።𝑋 + √1 − 𝑐ኼ። 𝜖። (4.76)

Parameter 𝑐። is derived completely in line with Section 3.7.5 by maximizing the correlation between 𝑋
and 𝑌። which leads to the following expressions:

𝑐። = 𝛽።
ፊ

∑
፤ኻ

𝛼።,፤𝑏፤ (4.77)

𝑏፤ =
ፍ

∑
።ኻ

𝑑።𝛼።,፤
2𝜆 (4.78)

𝑑። = 𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) − 𝛽።Φዅኻ(1 − 𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(4.79)

To empirically show the performance of the adjusted single factor model, compare Figures 4.1 and
4.2 in which the same multi factor loss distribution is depicted but differing single factor models. In
Figure 4.1 we naively apply multi factor parameter 𝛽። whereas in Figure 4.2 parameter 𝑐። is applied.
Empirically, Figure 4.2 shows that the adjusted single factor model coincides with the original multi
factor model for this specific heterogeneous portfolio.

However, Figure 4.2 does not sufficiently depict the tail behaviour of the distribution, which is mainly
of interest in terms of credit risk assessments. Figure 4.3 shows that the performance of the model is
high across all quantiles of the distribution. Furthermore, from Figure 4.4 it is clear that again, the
performance across the frequently used VaR confidence intervals is accurate.

The upside of this method is that known methods, developed for the usual single risk factor model,
can be applied to this adjusted form such as the Asymptotic Single Risk Factor approximation. Applying
this, similarly to Equation (4.67), Economic Concentration Risk on portfolio level is defined by:

𝐸𝐶𝑅፪(𝐿) ∶= 𝑉𝑎𝑅ፌፅ፪ (𝐿) − 𝑉𝑎𝑅ፀ-ፀፒፑፅ፪ (𝐿) (4.80)
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Figure 4.2: Histogram of portfolio losses based on a corporate sub portfolio of ING of 1000 obligors and 1e6 MC trials, similar to
the portfolio of Figure 4.1. One can clearly see that the portfolio loss distributions of the two models seemingly overlap.

Figure 4.3: QQ plot (quantiles expressed as % of total exposure) of the portfolio loss distributions of the adjusted Single Factor
and Multi Factor model of Figure 4.2. The clustering of the data points around the 45∘ line indicates that the quantiles of the loss
distributions of the two different models agree across all quantile levels.

Equivalently, we can define the Economic Concentration Risk Contribution as:

𝐸𝐶𝑅𝐶፪,።(𝐿) = 𝑉𝑎𝑅𝐶ፌፅ፪,። − 𝑉𝑎𝑅𝐶ፀ-ፀፒፑፅ፪,። (4.81)

Where the superscript 𝑀𝐹 denotes Multi Factor and 𝐴-𝐴𝑆𝑅𝐹 Adjusted ASRF. Using the framework
developed by [9] we can apply assumptions 2.6.1 through 2.6.4 together with proposition 2.6.2 to derive
an expression for the 𝑉𝑎𝑅ፀ-ፀፒፑፅ፪ (𝐿):

𝑉𝑎𝑅ፀ-ፀፒፑፅ፪ (𝐿) =
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) + 𝑐።Φዅኻ(𝑞)

√1 − 𝑐ኼ።
⎞

⎠

(4.82)

𝑉𝑎𝑅𝐶ፀ-ፀፒፑፅ፪,። = 𝑤።
𝜕𝑉𝑎𝑅፪(𝐿)ፀ-ፀፒፑፅ

𝜕𝑤።
= 𝑤። ⋅ 𝐿𝐺𝐷። ⋅ Φ⎛

⎝

Φዅኻ(𝑃𝐷።) + 𝑐።Φዅኻ(𝑞)

√1 − 𝑐ኼ።
⎞

⎠

(4.83)

These results are combined in Figure 4.4 which both depicts the effect of undiversified idiosyncratic
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risk and the excellent performance of the adjusted single risk factor model compared to the full multi
factor model in the tail of the loss distribution.

Figure 4.4: This graph depicts the portfolio VaR at quantile levels ranging from 95% upwards based on the portfolio loss distri-
bution of 4.2. Clearly, the VaR of the adjusted Single Factor and Multi Factor model agree to a high degree of accuracy. The
gap between the Multi Factor VaR and the adjusted ASRF indicates the amount of economic concentration risk. Parameter ᑚ is
calibrated at ፪  ኺ.ዃዃዃ.

4.5. An Extension: Sector and Geographical Diversification
Definition 2.7.2 states that sector concentration risk stems from the existence of multiple systematic
factors and arises from the assumption of a single underlying risk factor. In order to quantify the effect
of diversification, the following proposition will prove to be useful:
Proposition 4.5.1. Assume multi factor model 𝑟ፌፅ። with perfectly positive correlated systematic factor,
meaning that for any pair of systematic factors (𝑋። , 𝑋፣) we have 𝐶𝑜𝑟𝑟(𝑋። , 𝑋፣) = 1 or in other words
X ∼ 𝒩(0,Jፊ×ፊ) where Jፊ×ፊ denotes a matrix of ones. Then 𝑟ፌፅ። has an equivalent single factor model
𝑟ፄ-ፒፅ። such that 𝑟ፌፅ። ∼ 𝑟ፄ-ፒፅ። .

Proof. Firstly, let 𝑟ፌፅ። = 𝛽።𝑌። +√1 − 𝛽ኼ። 𝜖። with 𝑌። = ∑
ፊ
፤ኻ𝑤።,፤𝑋፤ bounded to the constraint ∑

ፊ
፤ኻ𝑤።,፤ = 1

meaning that the factor weights of counterparty 𝑖 on systematic factors 𝑋ኻ, ..., 𝑋ፊ sum to one. Since
the systematic factors are perfectly correlated, we have 𝑋ኻ = 𝑋ኼ = ... = 𝑋ፊ ≡ 𝑋. Therefore, 𝑌። =
∑ፊ፤ኻ𝑤።,፤𝑋፤ reduces to 𝑌። = ∑ፊ፤ኻ𝑤።,፤𝑋 = 𝑋 ⋅ ∑ፊ፤ኻ𝑤።,፤ = 𝑋. Clearly, this fact yields 𝑟ፌፅ። = 𝛽።𝑋 +
√1 − 𝛽ኼ። 𝜖። which is an equivalent single factor model 𝑟ፄ-ፒፅ። .

Essentially, this proposition states that a perfectly correlated multi factor model reduces to a single
factor model with identical systematic factor loading 𝛽።. Empirically, we can depict the effect of the
proposition by comparing the quantiles of the loss distributions of the two models, simulated in a Monte
Carlo setting. This experiment is performed in Figure 4.5. We see that, besides some simulation noise,
the quantiles of the two factor models are equivalent.

Proposition 4.5.1 yields a way to measure the effect of systematic diversification for both the full
portfolio and individual obligors. The perfectly correlated multi factor model introduced in proposition
4.5.1 has one major implication, namely a lack of diversification benefits. Generally, banks employ multi
factor models for more accurate risk assessments but also to profit from the diversification benefits
these models possibly imply. The diversification effects stem from the correlation matrix describing
the pairwise dependency of the systematic factors. In a single factor model, all counterparties are
100% dependent from the global systematic factor, whereas in a multi factor setting, obligors can have
an arbitrary factor loading on a arbitrary amount of systematic factors. Clearly, this greatly increases
the effects of diversification. To measure the effect of diversification, we introduce the Diversification
Factor:

𝐷𝐹 = 𝐸𝐶ፌፅ
𝐸𝐶ፄ-ፒፅ , 𝐷𝐹 ≤ 1 (4.84)
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Figure 4.5: QQ plot of the portfolio loss distributions of the perfectly correlated MF and E-SF model, based on a ING corporate
sub-portfolio of 1000 obligors and 1e6 MC trials. Clearly, the quantiles of the two models agree which indicates that the loss
distributions of the two models are equivalent.

The idea of a diversification factor of this form is not necessarily new, as [5] introduced a definition of
similar form. However, [5] introduce it as an adjustment to a single factor model to account for the effects
of diversification and numerically approximate it as a function of two parameters that capture the sector
concentration and the average cross-sector correlation. We introduce it as a relatively easily observable
measure to assess the effects of diversification in the portfolio and thoroughly substantiate the measure
through the use of proposition 4.5.1. Through assuming perfect correlation, ΩΩΩ = 𝐽𝐽𝐽, we assume that all
systematic factors vary perfectly in line with one another. This implies that the portfolio risk is insensitive
to the sectors, as for instance, an exposure in sector 1 is equally influenced by the systematic factors
as an equivalent exposure in sector 2. The benefits of diversification are therefore best expressed as
the discrepancy between the EC of the perfectly correlated and realistically correlated model, which by
applying proposition 4.5.1, equals the discrepancy between the multi factor and its equivalent single
factor model based EC.

Equation (4.84) produces a measure of diversification, whereas we are also looking to quantify the
effect of diversification within subsets of the portfolio. To that extend, consider a portfolio of 𝑁 loans
to unique obligors. The obligors can be assigned to 𝑀 different industries (or geographical regions).
Additionally, denote 𝑁፬ as the number of obligors in sector 𝑠 = 1, ..., 𝑀. Thus, the total number of
obligors in the portfolio equals 𝑁 = ∑ፌ፬ኻ𝑁፬. The diversification factor for sector 𝑠 is then given by:

𝐷𝐹፬ =
𝐸𝐶ፌፅ፬
𝐸𝐶ፄ-ፒፅ፬

, 𝐷𝐹፬ ≤ 1 (4.85)

Where 𝐸𝐶ፌፅ፬ is the economic capital assigned to sector 𝑠, based on the Euler allocation principle. We
will additionally define the Capital Diversification Index (CDI):

𝐶𝐷𝐼 =
∑ፒᑤ።ኻ 𝐸𝐶ኼ።
𝐸𝐶ፌፅ፬

(4.86)

With 𝑆፬ denoting the amount of exposure with a sector 𝑠, essentially 𝑁 = ∑
ፌ
፬ኻ 𝑆፬. The CDI was also

first introduced by [5], however, in a slightly different form and again with a different purpose. In [5], the
CDI is based on the single factor capital requirements instead of the multi factor capital requirements
that take the effects of diversification into account. Basically, the CDI is the HH index, but instead of
applying the HHI at exposure level, the HHI is applied at economic capital level. Therefore, the CDI
indicates the level EC concentration within a certain sector (either an industry or a region). A low value
of the CDI indicates that the EC within the sector is fairly well distributed among the obligors in that
sector, whereas a high value of the CDI indicates the contrary.
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4.6. An Extension: The t-Threshold Model
A major drawback of the general multi factor model described in Section 2.5 is its assumption of stan-
dard normally distributed asset returns. However, empirical investigations of asset returns, for example
by [24] and [20], reject the normal distribution because of its inability to mimic the empirical fat tails of
empirically observed asset returns. [20] suggests using the t distribution for modelling asset returns.
In this section we will introduce the multi factor t-threshold model and apply aforementioned theory on
equivalent and adjusted single factor models to this multi factor t-threshold model. Furthermore, we
will derive an ASRF equivalent for an independent t-threshold model, which differs from the general
t-threshold model.

Firstly, we will start by introducing the general t-threshold model:

𝑟። = √
𝜂
𝑊 [𝛽።𝑌። +√1 − 𝛽ኼ። 𝜖።] = 𝛽።√

𝜂
𝑊𝑌። +√1 − 𝛽

ኼ
። √

𝜂
𝑊𝜖። (4.87)

in which 𝑌። is the counter-party’s composite factor:

𝑌። =
ፊ

∑
፤ኻ

𝛼።,፤𝑋፤ (4.88)

and where 𝑋፤ , 𝑌። , 𝜖። ∼ 𝒩(0, 1). In addition to the general multi factor model, the scaling factor √ ᎔
ፖ

is introduced in Equation (4.87). In this scaling factor, 𝑊 denotes the chi-squared distribution, 𝑊 ∼
𝜒ኼ(𝜂), and 𝜂 the degrees of freedom of the chi-squared distribution. Furthermore, we impose that 𝑊
is independent of 𝑋፤ , 𝑌። , 𝜖።. Through scaling factor √

᎔
ፖ , the standard normally distributed asset returns

𝑟። are transformed into t distributed asset returns 𝑟። with 𝜂 degrees of freedom, essentially 𝑟። ∼ 𝑡(𝜂).
Note that the asset returns are still correlated through the factor loadings 𝛼።,፤. Furthermore, we denote
the cumulative distribution function of the t distribution as 𝐹(𝑥). Analogous to the normally distributed
threshold factor model, a default threshold has to be identified.

𝑃𝐷። denotes the one-year probability of default for counter-party 𝑖: 𝑃𝐷። = ℙ[𝑟። < 𝑐።] and since we
assume that 𝑟። ∼ 𝑡(𝜂) we obtain:

𝑐። = 𝐹ዅኻ(𝑃𝐷።) (4.89)

Rewriting the condition 𝑟። < 𝑐። yields:

𝜖። <
𝐹ዅኻ(𝑃𝐷።) − 𝛽።𝑌።

√1 − 𝛽ኼ።
(4.90)

Therefore, since 𝜖። is standard normally distributed, the probability of default conditional on the
systematic factors and𝑊 can be written as:

𝑃𝐷።(𝑌። ,𝑊) = ℙ[𝑟። < 𝑐።] = ℙ
⎡
⎢
⎢
⎣
𝜖። <

√ ᎔
ፖ𝐹

ዅኻ(𝑃𝐷።) − 𝛽።𝑌።

√1 − 𝛽ኼ።

⎤
⎥
⎥
⎦
= Φ⎛

⎝

𝜖። <
√ ᎔
ፖ𝐹

ዅኻ(𝑃𝐷።) − 𝛽።𝑌።

√1 − 𝛽ኼ።
⎞

⎠

(4.91)

Unfortunately, due to its dependence on𝑊, the t-threshold model does not readily admit an asymptotic

single risk factor solution. In the original t-threshold model of (4.87), the scaling factor √ ᎔
ፖ introduces a

dependence between the systematic and idiosyncratic risk. Whereas 𝑌። and 𝜖። are independent, √
᎔
ፖ𝑌።

and √ ᎔
ፖ𝜖። are clearly not. However, we can impose independence by assuming the following single

factor model:

𝑟። = 𝛽።√
𝜂
𝑊𝑋 + √1 − 𝛽

ኼ
። √

𝜂
𝑊።
𝜖። (4.92)
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As both 𝑌 and 𝜖። are standard normal random variables, scaling them with √ ᎔
ፖ and √ ᎔

ፖᑚ
respectively

yields t distributed random variables: 𝑇 = √ ᎔
ፖ𝑋 ∼ 𝑡(𝜂) and 𝜁። = √

᎔
ፖᑚ
𝜖። ∼ 𝑡(𝜂). Using these expres-

sions, we can rewrite Equation (4.92):

𝑟። = 𝛽።𝑇 + √1 − 𝛽ኼ። 𝜁። (4.93)

where 𝑇 and 𝜁። are independent. We will refer to this model as the indepedent single factor t-
threshold model. Equation (4.93) shows great similarities with its Gaussian single factor threshold
counterpart which raises the question of the existence of an asymptotic result for the VaR in this setting.
The default condition 𝑟። < 𝐹ዅኻ(𝑃𝐷።) yields

𝜁። <
𝐹ዅኻ(𝑃𝐷።) − 𝛽።𝑇።

√1 − 𝛽ኼ።
(4.94)

With conditional default probability:

𝑃𝐷።(𝑇) = 𝐹 ⎛

⎝

𝐹ዅኻ(𝑃𝐷።) − 𝛽።𝑇

√1 − 𝛽ኼ።
⎞

⎠

(4.95)

Referring back to assumptions 2.6.1 through 2.6.4, no assumption is made on the distribution of either
the asset returns or the systematic factor. Therefore, this adapted single factor t-threshold model sat-
isfies all assumptions and we can easily deduce the adapted t-threshold ASRF solution by applying
proposition 2.6.2 through assuming that the only source of risk is systematic:

𝑉𝑎𝑅t-ፀፒፑፅ፪ =
ፍ

∑
።ኻ
𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝐹 ⎛

⎝

𝐹ዅኻ(𝑃𝐷።) − 𝛽።𝐹ዅኻ(1 − 𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(4.96)

Equation (4.96) exhibits many similarities with its normally distributed single factor counterpart. Fur-
thermore, as we have seen in Section 3.1.1, the t-distribution converges to the normal distribution as
the degrees of freedom increase (see Figure 4.6). We should however stress that Equation (4.96) is
an asymptotic solution to (4.93) and not to (4.87), and therefore applying it as a measure of systematic
risk in a portfolio results in a model mismatch. The existence of the ASRF solution in the independent

Figure 4.6: Graph depicting the convergence of independent t-threshold ASRF solution to the Gaussian threshold ASRF solution
as the degrees of freedom of the underlying t-distribution increases. The VaR levels displayed are based on a 100 obligor
heterogeneous sample portfolio.
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single factor t-threshold setting and its similarities with its Gaussian threshold equivalent, raises the
question of the existence for a GA in this setting. Intuitively, the GA would be an add on to t-ASRF VaR
(4.96) such that the sum of (4.96) and GA approximates the true VaR that results from the independent
single factor t-threshold model (4.93). To this extend, we can apply the theory developed in Section
3.7.2 to this new setting. Essentially, since we did not make any assumptions on the distribution of the
single systematic factor in the derivation of Equation (3.55), the GA is given by:

𝐺𝐴፭ = −
1
2 [
𝑓ᖤፓ (𝑡)
𝑓ፓ(𝑡)

𝕍[𝐿|𝑇 = 𝑡]
፝
፝፭𝔼[𝐿|𝑇 = 𝑡]

+
፝
፝፭𝕍[𝐿|𝑇 = 𝑡]
፝
፝፭𝔼[𝐿|𝑇 = 𝑡]

−
𝕍[𝐿|𝑇 = 𝑡] ፝

Ꮄ

፝፭Ꮄ𝔼[𝐿|𝑇 = 𝑡]
( ፝፝፭𝔼[𝐿|𝑇 = 𝑡])

ኼ
]
፭ᎎᎳᎽᑢ(ፓ)

(4.97)

where 𝑇 indicates the single t distributed systematic factor, 𝑇 = √ ᎔
ፖ𝑋 ∼ 𝑡(𝜂). Firstly, we recall the

probability density function of a t distributed random variable:

𝑓ፓ(𝑡) =
Γ(᎔ዄኻኼ )

√𝜋𝜂Γ(
᎔
ኼ )
(1 + 𝑡

ኼ

𝜂 )
ዅ
᎔ዄኻ
ኼ

(4.98)

Which results in:

𝑓ᖤፓ (𝑡) = −𝑡
𝜂 + 1
𝜂 (1 + 𝑡

ኼ

𝜂 )
ዅኻ

𝑓ፓ(𝑡) (4.99)

From which we have
𝑓ᖤፓ (𝑡)
𝑓ፓ(𝑡)

= −𝑡𝜂 + 1𝜂 (1 + 𝑡
ኼ

𝜂 )
ዅኻ

(4.100)

Within this new setting, we will define loss exactly in line with Equation (2.4), only the underlying asset
returns and default threshold are defined slightly different. Therefore, we can adapt Equations (4.12)
through (4.16) by replacing 𝑃𝐷።(𝑋) and its derivatives by 𝑃𝐷።(𝑇) and its derivatives:

𝑃𝐷ᖤ። (𝑡) = −
𝛽።

√1 − 𝛽ኼ።
𝑓ፓ(𝑢።) (4.101)

𝑃𝐷ᖦ። (𝑡) = −𝑢።
𝛽ኼ።

√1 − 𝛽ኼ።

𝜂 + 1
𝜂 (1 + 𝑢

ኼ

𝜂 )
ዅኻ

𝑓ፓ(𝑢።) (4.102)

(𝑃𝐷።(𝑡)ኼ)
ᖤ = −2 𝛽።

√1 − 𝛽ኼ።
𝐹ፓ(𝑢።)𝑓ፓ(𝑢።) (4.103)

where 𝑢። =
ፅᎽᎳ(ፏፃᑚ)ዅᎏᑚ፭

√ኻዅᎏᎴᑚ
. Notice that, contrary to the Gaussian framework, Equations (4.101) through

(4.103) are dependent on degrees of freedom 𝜂, which introduces an extra parameter to the GA com-
pared to its Gaussian counterpart. The remaining part of the derivation of 𝐺𝐴፭ and the risk contributions
associated with 𝐺𝐴፭ is analogous to the derivation for the single factor Gaussian threshold model of
Sections 4.2.1 and 4.2.2 and will therefore not be repeated in this section.

As we have seen in Figure 4.6, the t-ASRF solution converges to its Gaussian counterpart as the
degrees of freedom tend to infinity. For the 𝐺𝐴፭, we expect a similar result as 𝜂 tends to infinity. By
the properties of the t-distribution, 𝑓ፓ(𝑥) → 𝜙(𝑥) and 𝐹ፓ(𝑥) → Φ(𝑥) as 𝜂 → ∞. Therefore, 𝑢። → 𝑧።
with 𝑧። =

ጓᎽᎳ(ፏፃᑚ)ዅᎏᑚ፱

√ኻዅᎏᎴᑚ
as 𝜂 → ∞. Additionally, since ᎔ዄኻ

᎔ (1 + ፮Ꮄ
᎔ )

ዅኻ
→ 1 as 𝜂 → ∞, all the individual

components of the 𝐺𝐴፭ converge to the individual components of the Gaussian GA and therefore,
𝐺𝐴፭ → 𝐺𝐴, as 𝜂 → ∞.
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Adjusted t-Threshold Model
In the previous section, we derived the general t-threshold multi factor model. In order to apply the
theory developed in Section 4.4 on economic concentration risk, we need to derive an adjusted single
factor t-threshold model that mimics the results of the multi factor t-threshold model Equation (4.87).
Unfortunately, to our knowledge, no theory has been developed for this specific model. However, the
approach developed by [35] performs excellently in the Gaussian setting. Therefore, we will try to adopt
this method to the t-distributed setting.

Since the t-threshold model is essentially a scaled version of the Gaussian-threshold model, we
can largely adopt the methods from Section 3.7.5. We will derive an adjusted single factor model 𝑟ፒፅ።
such that 𝑟። ∼ 𝑟

ፒፅ
። in which we have

𝑟ፒፅ። = √ 𝜂𝑊 [𝑐።�̄� + √1 − 𝑐ኼ። 𝜖።] (4.104)

in which �̄� ∼ 𝒩(0, 1) is the single systematic factor. Analogous to Gaussian case, �̄� is linked to the 𝐾
original systematic factors 𝑋፤ in the following way:

�̄� =
ፊ

∑
፤ኻ

𝑏፤𝑋፤ (4.105)

Where ∑ፊ፤ኻ 𝑏ኼ፤ = 1 to preserve unit variance of �̄�. This reduces our problem to specifying 𝑏፤ for
𝑘 ∈ (1, ..., 𝐾) and 𝑐። for 𝑖 ∈ (1, ..., 𝑁). To this extend, we make the following assumption:

𝑌። = 𝛿።�̄� + √1 − 𝛿ኼ። 𝜁። (4.106)

Where again, 𝜁። ∼ 𝒩(0, 1). Hence, the original systematic factor 𝑌። is driven by systematic and idiosyn-
cratic risk, weighted by 𝛿።. 𝛿። is set to be the correlation between the original systematic factors and
the new single systematic factor:

𝛿። = Corr(𝑌። , �̄�) = Corr(
ፊ

∑
፤ኻ

𝛼።,፤𝑋፤ ,
ፊ

∑
፤ኻ

𝑏፤𝑋፤) =
ፊ

∑
፤ኻ

𝛼።,፤𝑏፤ (4.107)

Combining Equations (4.87) and (4.106) yields:

𝑟። = √
𝜂
𝑊 [𝛽።𝛿።�̄� + √1 − 𝛽ኼ። 𝛿ኼ። 𝜖።] (4.108)

Clearly, by comparing this equation with Equation (4.104), we have 𝑐። = 𝛽።𝛿። = 𝛽። ∑
ፊ
፤ኻ 𝛼።,፤𝑏፤. While

the coefficients 𝛽። and 𝛼።,፤ are known, the coefficients 𝑏፤ are unknown. Analogous to [35] method,
we determine 𝑏፤ through maximizing the weighted correlation between the single risk factor �̄� and the
original risk factor 𝑌። for all 𝑖. This leads to:

max
Ꮃ ,...,ᑂ

(
ፍ

∑
።ኻ
𝑑።

ፊ

∑
፤ኻ

𝛼፧,፤𝑏፤) such that
ፊ

∑
፤ኻ

𝑏ኼ፤ = 1 (4.109)

Where we introduce a weight 𝑑። for each counterparty in the portfolio. The solution to this maximization
problem is given by (see Section 3.7.5 for details):

𝑏፤ =
ፍ

∑
።ኻ

𝑑።𝛼፧,፤
2𝜆 (4.110)

Where the Lagrange multiplier 𝜆 is chosen in such a way that {𝑏፤} satisfies the second constraint,
in essence, such that {𝑏፤} has a Euclidian norm of one. Unfortunately, we have not considered the
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coefficients 𝑑። yet. Empirically, we will see that, in contrast to the original method, the follow choice
works well:

𝑑። = 𝑤። ⋅ 𝐿𝐺𝐷። ⋅ 𝐹 ⎛

⎝

𝐹ዅኻ(𝑃𝐷።) − 𝛽።𝐹ዅኻ(1 − 𝑞)

√1 − 𝛽ኼ።
⎞

⎠

(4.111)

We note that Equation (4.111) is essentially equal to the contributing VaR of counterparty 𝑖 in the inde-
pendent t-ASRF setting. The intuition behind this choice for 𝑑። is that obligors with a high exposure in
terms of VaR should have a large weight in the maximization problem whereas obligors with a small
VaR should have a minor impact. Summing up, we can now define the adjusted one factor model
(4.104) with 𝑐። = 𝛽። ∑

ፊ
፤ኻ 𝛼።,፤𝑏፤ together with the expressions for 𝑏፤ and 𝑑። we have derived. Figure 4.7

depicts the performance of the approximation which proves to be accurate. Furthermore, this figure
depicts the heavier tail of the t-threshold model compared to its Gaussian counterpart. The aforemen-
tioned developed theory makes it possible to apply many of our results on economic concentration risk
and sector diversification to the t-threshold model.

Figure 4.7: This graph depicts the difference in portfolio VaR across the tail of the loss distribution for a single portfolio, but
different modelling assumptions. Clearly, the multi factor t-threshold model implies higher capital requirements compared to its
Gaussian counterpart. Furthermore, the accuracy of the adjusted single factor model in comparison with the full multi factor
t-threshold approach is depicted. Clearly, the loss distributions of the adjusted SF t-threshold and MF t-threshold models largely
agree. Results are displayed for a heterogeneous portfolio of 1000 facilities and 1e6 MC trials, for ᎔  .
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5
Portfolio Data

In the previous chapters, no assumptions have been made on the underlying portfolios in
terms of size and heterogeneity. This chapter introduces the portfolios on which the devel-
oped methods will be examined. We will also take a closer look at the correlation structure
that describes the linear interaction of the 110 systematic factors.

5.1. Portfolios
In order to test both the analytical and Monte Carlo based methods examined and developed in the
previous chapters, credit portfolios have to be constructed. Throughout this section, these portfolios will
be explored. In order to fully define a portfolio, several parameters are required, which are summarized
in Table 5.1.

Abbreviation Full Name Typical Values Source

𝐸𝐴𝐷። Exposure at Default (0,∞) ING, Matlab, Randomly Generated
𝑃𝐷። Probability of Default [0, 1] ING, Matlab, Randomly Generated
𝐿𝐺𝐷። Loss Given Default [0, 1] ING, Matlab, Randomly Generated
𝛽። Correlation Parameter [0, 1] Moody’s, Regulatory Correlation
ΩΩΩ Covariance Matrix ℝፊ×ፊ Moody’s
𝑤።,፤ Sectoral Weights [0, 1] ING, Randomly Generated

Table 5.1: Set of parameters essential for fully defining a portfolio. Depending on the application, the parameters will be gathered
from different sources.

5.1.1. Sample Portfolio
To illustrate some of the effects of for instance concentration, diversification, recovery risk and heavier
tailed asset returns, we opt for using a fictitious sample portfolio. Using a single sample portfolio across
multiple methods allows for a frame of reference in terms of risk measures. To this extend, we use a
small heterogeneous portfolio, based on the example portfolio CreditPortfolioData.mat that is part of
Matlab’s Risk Management Toolbox. The portfolio consists of 100 obligors, the total exposure equals
3143 USD and the average exposure equals 31.4 USD. The exposures are assigned to 6 PD classes
and 3 LGD classes. The correlation parameter 𝛽። is given by Equation (2.27) with Λ = 1 and therefore
PD dependent. Furthermore, the Gini index equals 0.557 and the HH index equals 0.0239meaning that
from first sight, the exposure is fairly concentrated. The portfolio exists of a broad range of exposures
which should make for interesting analysis. Additionally, the portfolio is sufficiently small such that we
can focus on individual counterparties and their risk contributions. In order to research the effects of
diversification, every individual obligor is assigned to both a country and an industry based on the 110
sectors in table A.1. Since the original Matlab portfolio does not include factor loadings on sectors, the
country and industry for each obligor is drawn from a scaled and shifted uniform distribution. Figure 5.1
gives some insight into the distribution of the default probabilities and exposures of our sample portfolio.
However, it does not tell the full story. Figure 5.2 yields some insights in the interaction of the PD and
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Figure 5.1: Illustration of the individual exposures and unconditional default probabilities associated with the 100 obligor sample
portfolio.

exposure. Intuitively, you would expect a bank to take a higher risk on small loans as the potential
impact on the business is small and as the exposures grow, one would expect lower probabilities of
default. Clearly, this is the case for our sample portfolio which justifies that our sample portfolio broadly
matches a real portfolio, although a lot smaller in size.

Figure 5.2: LGD and the interaction of EAD and PD for the 100 obligor sample portfolio.

5.1.2. Simulated Portfolios
In order to test some analytical methods across a wider set of portfolios, we suggest simulating portfolio
with fairly similar properties to the sample portfolio of Section 5.1.1. Simulating credit portfolios is
reasonably straightforward. For our purposes, we adopt the suggestion by [2] to normalize the total
exposure to 10.000, split over 100 exposures. This implies that the average exposure per counterparty
equals 100 units. The actual exposures are drawn from the Weibull distribution. The values for the PD
are drawn from a 𝜒ኼ distribution with an average value of 1%. Values for the LGD are drawn from a
Beta distribution, centered around an average value of 50%. Both the Weibull and 𝜒ኼ distribution are
selected for the positive support and skew, which allows for the construction of relatively interesting
heterogeneous portfolios. Otherwise, there is no specific reasoning underlying this choice. There are
plenty of alternatives to the choices we make, for instance log-normally distributed EAD’s and Beta
distributed PD’s (see, for instance [38]). For illustrative purposes, Figures 5.3 and 5.4 display some of
the properties of a single draw of the simulated portfolios. Clearly, for each draw, the simulated portfolio
will have slightly different properties.
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Figure 5.3: Illustration of the individual exposures and unconditional default probabilities associated with the simulated portfolio
containing 100 exposures.

Figure 5.4: LGD and the interaction of EAD and PD for the simulated portfolio containing 100 exposures.

5.2. Correlation Structure
Throughout this work, in order to quantify the effect of systematic diversification, we will impose a co-
variance matrix to describe the joint behaviour of the systematic factors. The framework for sampling
the correlated systematic factors is described in Section 4.1.1. In essence, we are looking for covari-
ance matrix ΩΩΩ ∈ ℝፊ×ፊ of the 𝐾 systematic factors. To this extend, we opt for the 𝐾 = 110 covariance
matrix obtained from Moody’s Analytics. Due to confidentiality reasons, we cannot publish or display
the full covariance matrix in this work. Of the 110 systematic factors, 49 systematic factors match a
geographical region such as the Middle East or Eastern Europe and 61 systematic factors match an
industry such as Agriculture, Broadcast Media or Automotive. For the full set of regions and industries,
we refer to table A.1 in the appendix. The associated correlation matrix 1 is graphically depicted in
Figure 5.5. To further ensure non-replicability, the matrix depicted is a perturbed version of the true
correlation matrix. However, the perturbations are relatively modest in order to conserve the main
properties of the correlation matrix. The correlation matrix, displayed in Figure 5.5, clearly satisfies the
main properties of a correlation matrix by being symmetric and having a diagonal elements 𝑎።,። = 1 for
all 𝑖 = 1, ..., 110. Furthermore, all elements 𝑎።,፣ are bound in the interval [−1, 1], with 𝑎።,፣ = 1 indicating
perfect positive linear correlation and 𝑎።,፣ = −1 indicating perfect negative linear correlation. The first
49 rows and columns indicate the regional correlation, the second 61 rows and columns indicate the
industry correlation. This explains the presence of the distinct pattern of two darker shaded square
planes and two lighter shaded square planes. The darker shade indicates a higher level of positive
linear correlation. Focusing on the first 49 rows of the matrix, we can clearly observe that regions are
highly positively correlated with each other but exhibit nearly no or negative linear correlation with the
1Knowing the covariance matrix, we can easily calculate the associated correlation matrix since the diagonal elements of the
covariance matrix match the variances of the 110 systematic factors
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61 industries. Focusing on the second 61 rows, we observe that the different industries are highly
positively correlated with each other. This matches our intuition that the impact of changes in a specific
country do not necessarily impact a specific industry and vice versa.

Figure 5.5: Perturbed Correlation Matrix for 110 systematic factors. The darker shaded square patterns can be explained by a
high degree of intra-regional and intra-industrial correlation, but a lower degree of correlation between regions and industries.



6
Results

This chapter will commence with exploring the effects of concentration, diversification and
random recovery on portfolio credit risk. Additionally, the effects of diversification and
concentration will be evaluated for the t-threshold model, for which the effects are shown
to be less prevalent. Next, the accuracy of the analytic approximations on portfolio and
obligor level to concentration risk are explored in both a deterministic and stochastic LGD
setting. Next, we will explore systematic diversification and Economic versus Regulatory
Concentration Risk and show that these measures do not coincide. Lastly, we analyse the
DF and CDI measures for the sample portfolio.

6.1. Justification: Sample Portfolio
In this section wewill briefly discuss some results based on the sample portfolio of Section 5.1.1 to justify
some of the claims made on the effects of concentration, diversification and recovery risk. Firstly, by
essentially running algorithm 1, the single factor loss distribution for our sample portfolio is depicted in
Figure 6.1. The values for 𝑉𝑎𝑅ፀፒፑፅ, 𝑉𝑎𝑅 and 𝐸𝑆 are all determined at a 99.5% quantile level.

Figure 6.1: Single factor portfolio loss distribution of the sample portfolio based on 3e6 MC trials at ፪  ዃዃ.% and deterministic
LGD. The portfolio loss distribution indicates the relative frequency (relative to the 3e6 trials) of the losses depicted on the x-axis.
Clearly, lower losses are expected to occur more frequently than extreme losses.

This figure yields the first insights into our sample portfolio. Firstly, the default-loss distribution is
indeed asymmetric, highly skewed and heavy tailed, which is in line with our general expectations on
portfolio loss distributions. Furthermore, one can notice that the ASRF assumptions are not satisfied as
the true VaR exceeds its ASRF equivalent. This behaviour is expected since the sample portfolio size of
100 does not agree with the assumption of infinite portfolio size. Figure 6.2 depicts the contributing VaR
of the individual obligors to the total VaR. From the first figure, we can conclude that the contributing
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Figure 6.2: VaR contribution perspective: These graphs illustrate the contributing VaR of each obligor compared to its exposure
and the top 20 riskiest obligors, based on a deterministic LGD and 3e6 MC trials.

VaR differs widely from counterparty to counterparty and that not necessarily, the highest exposures
contributes the most to the total risk of the portfolio. In the second figure, the 20 highest contributing
obligors are ranked on the basis of contributing VaR and compared with its ASRF contributing VaR
equivalent. Firstly, the true contributing VaR seems to exceed its ASRF equivalent, which we would
expect from the conclusions based on Figure 6.1. A more interesting observation is that the ranking
differs with respect to the true VaR compared to its ASRF equivalent. This means that some loans
might seem to be relatively safe in an ASRF setting, whereas in the full Monte Carlo setting, they add
more risk than expected to the portfolio. This stresses the need for Pillar II compliance, in which the
bank has to operate its own models next to the standard IRB methods.

6.1.1. The Single Name Concentration Effect
Throughout this section we will explore the effects of concentration, or in other words, of residual id-
iosyncratic risk, on the sample portfolio. We will compare our 100 obligor portfolio with a more diver-
sified portfolio. However, to make a reasonable comparison, the diversified portfolio should resemble
the sample portfolio. To this extend, we make a simple adjustment to the sample portfolio by replicating
the portfolio ten times but with each exposure 1/10th of its original exposure. The diversified portfolio
will be of a size of 1000 obligors but with an equal total exposure to the original sample portfolio. By the
portfolio invariance of the ASRF method, the ASRF VaR for both these portfolios is exactly equal. The
Gini index for this portfolio is equal to the sample portfolio whereas the HH index is ten times smaller;
0.00239. This observation underlines a major drawback of the Gini index, namely its incapability of tak-
ing portfolio size into account. Based on its HHI, the diversified portfolio is ”ten times” less concentrated
than the original sample portfolio.

The actual effect of concentration is depicted in Figure 6.3. This figure is based on 1e6 MC trials a
single risk factor model for both the diversified and concentrated version of our sample portfolio. Clearly,
the concentrated portfolio has a heavier tale and is, therefore, a riskier portfolio. The tail quantiles of the
diversified portfolio nearly coincide with the ASRF quantiles, indicating that idiosyncratic risk is nearly
diversified away. Increasing the number of exposures in the diversified portfolio further would decrease
its HHI and bring its tail quantiles closes to the ASRF equivalent. The difference in VaR between the
concentrated and diversified portfolio is entirely due to resididual idiosyncratic risk and is what we call
the Concentration Effect.

6.1.2. The Diversification Effect
In Section 6.1.1 we discussed the effects of concentration on a portfolio. In exploring this effect, we
limited ourselves to the single factor Gaussian threshold model. Clearly, since this model depends only
on a single systematic factor, the effects of diversification are not taken into account. In this section,
we will briefly explore the effects of systematic diversification on our sample portfolio. To this extend,
we will apply a 110 factor Gaussian threshold model and compare it with the single factor model. As
mentioned in Section 5.1.1, regional and industry dependencies are drawn from a uniform distribution.
In total, we consider 110 indices, of which 49 (#1-49) are region related and 61 (#50-110) are industry
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Figure 6.3: The effect of portfolio size on residual idiosyncratic risk for our sample portfolio in the tail of the default loss distribution.
The ፍ  ኻኺኺኺ portfolio’s quantiles approach the ASRF quantiles, indicating that the portfolio is nearly perfectly diversified.

related. Each counterparty is assigned to one country and one industry, as illustrated in Figure 6.4.
This is done purely from a practical point of view; one would for instance also be able to assign multiple
countries to a specific counterparty if that counterparty is active in multiple regions.

Figure 6.4: Multi factor perspective: These graphics depict the dependence on the 49 regional and the 61 industrial systematic
factors of the 100 obligors. Our sample portfolio seems to be relatively well diversified across regions and industries.

Figure 6.5 depicts the effect of diversification on the tail of the loss distribution of our sample portfolio.
As expected, the single factor model overestimates the VaR compared to the multi factor model since it
lacks to take any diversification effects into account. Interestingly, the effect of diversification seems to
increase as we move further into the tail of our loss distribution. Additionally, if we compare the ASRF
quantiles to the multi factor quantiles, one can notice that the ASRF based VaR might overestimate the
risk compared to the multi factor model.
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Figure 6.5: The effect of diversification through switching from a single systematic factor to 110 systematic factors, based on the
sample portfolio at 1e6 MC trials and deterministic LGD. The effects of diversification are quite apparent, with the ASRF solution
even exceeding the true portfolio VaR from quantile levels of approximately 98% upwards.

The results displayed in Figure 6.5 have an interesting link with the theory developed in Section 4.5
as essentially, the single factor results displayed are the 𝐸𝐶ፄዅፒፅ፪ for our sample portfolio. Summing the
EC contributions of the obligors belonging to a certain region yields the results depicted in Figure 6.6.
Clearly, across every region, the lack of diversification causes higher risk contributions for the single
factor model compared to its multi factor equivalent. More strikingly, the ranking of riskiest regions
differs across the two models. For instance, according to the multi factor model, region 19 contributes
more to the total EC than region 2, whereas in the single factor framework, this statement does not
hold. This clearly suggests that the information in these two risk measures do not coincide. The last
five regions do not add any risk to the portfolio risk level as these regions are not present in our sample
portfolio. A very similar result follows from splitting the total EC across the 61 industries represented in
the portfolio.

Figure 6.6: EC contribution of the individual regions in the sample portfolio, ranked on the contribution in the Multi Factor frame-
work at a 99.5% quantile level, based on 1e6 MC trials. The EC contribution in the MF case is lower across all regions compared
to the SF case. Moreover, the rankings of EC do not match between the two underlying models.
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6.1.3. Recovery Risk Effect
In the previous two sections, we explored the effects of concentration and diversification in a determin-
istic LGD setting. This thesis aims to research a third effect, the effect of recovery risk on concentration
and diversification and the ability of analytic approximations, such as the GA, to capture this effect.
Therefore, we will explore this effect empirically in this section. Again, we assume are 100 exposures
sample portfolio. We apply the single factor Gaussian threshold model to this portfolio, however, we
set the LGD to be Beta distributed with recovery parameter 𝑘. Intuitively, we expect a higher VaR at a
given quantile level for a portfolio with random LGD, as these random recovery rates ”add risk” to the
portfolio. Our intuition is in line with the results of our sample portfolio, depicted in Figure 6.7. Note that
the expected loss is equal, invariant of the Beta distributed LGD. Clearly, the random LGD results in a
higher VaR across the tail of the portfolio loss distribution. As the value of 𝑘 increases, the uncertainty
and variance around the LGD estimates decrease and therefore, at high values 𝑘, the recovery risk
effect diminishes. Furthermore, the results underline the inability of Basel’s ASRF method to capture
the effect of recovery risk on the portfolio VaR.

Figure 6.7: Graphic representation of the effects of recovery risk in the single factor setting on our sample portfolio. Introducing
Beta distributed LGD rates (፤  ኾ) has a clear effect on the tail behaviour of the portfolio loss distribution, increasing the capital
requirements at every observed quantile level.

6.1.4. t-Threshold Model
Throughout this section, we will shortly address the effects of diversification and concentration for the
t-threshold model (4.87). Essentially, we perform a similar analysis to Sections 6.1.1 and 6.1.2 on our
sample portfolio, only with different underlying model assumptions. The results of this experiment are
displayed in Figure 6.8. Firstly, one will notice that as expected, the VaR is higher across the upper
quantiles for the t-threshold model compared to its Gaussian counterpart, depicted in Figures 6.3 and
6.5. This result can be attributed to the fatter tails of the t distribution and the dependence between
systematic and idiosyncratic factors. Secondly, compared to Figures 6.3 and 6.5, both the concen-
tration and diversification is less prevalent. The effects of increasing portfolio size and diversifying
the portfolio across sectors is only minimal compared to its Gaussian counterparts. This implies that
in the t-threshold setting, idiosyncratic risk cannot be diversified away as the number of facilities in a
portfolio increases. Furthermore, spreading one’s portfolio over multiple sectors and regions has only
a limited effect on the risk level of the portfolio. This effect can again be attributed to the fatter tails
of the t distribution and the dependence between the idiosyncratic and systematic factors. To clarify,
we should note that Figure 6.8 displays the results based on 𝜂 = 5, meaning the distribution of asset
returns substantially differs from the standard normal distribution. For higher degrees of freedom, both
the concentration and diversification will be more prevalent and approximate the Gaussian case as the
degrees of freedom tend to infinity. From a risk management point of view, these results can be of
interest, as the t-threshold model is less sensitive to misspecifications in the correlation parameters.
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Figure 6.8: t Threshold perspective: Depiction of the VaR at varying quantile levels for the t-Threshold model based on 1e6 MC
trials at ᎔  . The left figure depicts the effect of increasing the portfolio size on the portfolio VaR. The right figure depicts
the effect of switching from a single factor to a multi factor setting. Both the concentration and diversification effect seem to be
minimal.

6.2. Analytic Single Name Concentration Risk
Throughout Chapter 4 we developed methods to assess concentration risk in the general Gaussian
threshold single risk factor setting (2.23). Throughout this section, we briefly put the single factor GA
to practice on our sample portfolio. In essence, we will see whether the GA can ’bridge the gap’ of
Figure 6.3. We will examine this both in a deterministic LGD and a Beta distributed LGD setting.
Furthermore, we will examine whether the risk contributions of individual obligors coincide between the
full MC methods and the analytical approximations based on the Euler allocation principle.

6.2.1. Gaussian Threshold GA
First, we focus on the GA of (4.20) and of (4.41) applied to our sample portfolio. In Section 6.1.1
we concluded that there is a fair amount of idiosyncratic risk involved in our sample portfolio as its
”true” VaR exceeds its ASRF-VaR across the entire tail of the portfolio loss distribution. The GA was
developed to analytically bridge the gap between the ASRF-VaR and the ’true’ VaR. We will test the GA
on our sample portfolio by applying Equations (4.20) and (4.41) as an add-on to the ASRF VaR of the
sample portfolio. This experiment results in Figure 6.9. This figure suggests that both the CR+ and the
SF adjustment seem to perform quite well as an add on to the ASRF solution in approximating the true
loss distribution of our sample portfolio. In general, both the CR+ and SF GA slightly overestimate the
true VaR at the lower quantile levels which means that to this extend, the GA is relatively conservative.

Figure 6.9: Illustration of the performance of the single factor GA based on Equation (4.20) and the CreditRisk+ GA based
on Equation (4.41) for the sample portfolio. Both methods slightly overestimate the true portfolio VaR for quantile levels up to
approximately 98%, after which both methods provide a reasonable analytical estimation for portfolio VaR. Numerical single risk
factor results are based on 1e6 MC trials and a deterministic LGD.
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In Table 6.1 we zoom in on some widely used levels of 𝑞 by comparing the VaR approximations of
both the CR+ and the SF Granularity Adjustment with its Monte Carlo based counterpart. Again, across
all quantiles, the analytical approximations perform well. However, one can note that in general, the
SF GA outperforms the CR+ GA slightly.

𝑞 95% 99% 99.5% 99.99%

MC 2.6140 4.2232 4.9693 9.7030
ASRF + SF GA 2.6649 4.2607 4.9970 9.6359
Δፒፅዅፌፂ 0.0509 0.0375 0.0276 -0.0671
ASRF + CRዄ GA 2.7530 4.1930 4.9341 9.8537
ΔፂፑᎼዅፌፂ 0.1390 -0.0302 -0.0352 0.1508

Table 6.1: Percentage point difference between the true VaR and its analytical approximations across the most frequently used
quantile levels. Values are displayed as percentage of total exposure.

Although promising, the aforementioned results do not substantiate the performance of the GA
across multiple heterogeneous portfolios. We therefore introduce the simulated portfolios of Section
5.1.2. In essence, we will perform the following experiment:
1. Sample 25 portfolios, each containing 100 obligors and a total exposure of 10.000 each
2. Compute the portfolio loss distribution numerically, using 1e6 MC trials for each portfolio
3. Compute the 99.5% MC-based VaR for each portfolio
4. Compute the 99.5% VaR analytically based on the SF GA
5. Compute the 99.5% VaR analytically based on the CR+ GA
6. Determine the residual sum of squares for the SF and CR+ GA by

𝑅𝑆𝑆 =
ኼ

∑
።ኻ
[𝑉𝑎𝑅ፌፂ። − 𝑉𝑎𝑅ፆፀ። ]ኼ (6.1)

The results of this experiment are displayed in Figure 6.10. Two interesting conclusions can be drawn
from this figure. Firstly, in general, the SF GA seems to slightly outperform the CR+ GA as the VaR
values for the SF GA seem to be more centered around the 45∘ line. This observation is supported by
the RSS, which equals 0.11 for the SF GA and 0.70 for the CR+ GA. Secondly, the CR+ GA seems
to consistently overestimate the true VaR at the 99.5% quantile. This observation agrees with [22] in
which the authors suggest that the GA might have difficulties with smaller portfolios and that it might
overstate the effect of granularity.

Figure 6.10: Illustration of the performance of the single factor GA based on Equation (4.20) and the CreditRisk+ GA based
on Equation (4.41) for 25 simulated portfolios at a single quantile level. The CR+ GA slightly overestimates the portfolio VaR
across all simulated portfolios whereas the SF GA performs very well overall. Numerical results are based on 1e6 MC trials and
a deterministic LGD.
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Risk Contributions
In the previous section we focused our efforts on the accuracy of the GA on portfolio level. However,
when assessing concentration risk, we are instead more interested in the contributions of individual
obligors to the total risk of the credit portfolio. We therefore introduced methods to determine risk
contributions, both in the MC setting and in the analytic setting, using the Euler allocation principle
(Sections 3.5.1 and 3.5.2). In this section, we will limit ourselves to the SF GA, as we have seen in
previous sections that is seems to slightly outperform the CR+ GA. Ideally, the risk contributions de-
termined through the MC method would equal the risk contributions determined analytically using the
GA. Practically, this will outcome will not occur due to two reasons. Firstly, in the previous section we
have seen that the GA-VaR does not necessarily exactly equal the MC-VaR. When applying the Euler
allocation principle, the risk contributions obey the full allocation property by construction. Therefore,
the analytical risk contributions will add up to analytical portfolio VaR whereas the numerical risk contri-
bution will add up to the MC portfolio VaR. Clearly, if the analytical and MC VaR are not equal, their risk
contributions cannot be either. Secondly, MC methods always introduce some kind of statistical noise.
Using many trials, we can relatively accurately determine the portfolio VaR, whereas the individual risk
contributions exhibit more statistical noise. To test the accuracy of the analytic risk contributions, we
focus on our sample portfolio. For each of the 100 obligors, we compute the contributing VaR using
both MC methods and the analytical approximation Equation (4.24). The results of this experiment
are displayed in Figure 6.11. Again, from the scatter plot, we can conclude that the risk contributions
largely agree between the analytic and the MC methods. Using this result, the risk contributions for the
20 riskiest obligors based on their ASRF VaR contribution are computed. Where the ASRF contribution
can be interpreted as the systematic risk contribution, the GA can be regarded as the idiosyncratic risk
contribution. Interestingly, some obligors that add a large amount of systematic risk to the portfolio,
do not necessarily add much idiosyncratic risk to the portfolio VaR. This stresses the importance of
assessing the effects of idiosyncratic risk on one’s portfolio.

Figure 6.11: Risk contribution perspective: Accuracy of the risk contributions of the SF GA compared to its MC counterpart for our
sample portfolio. The risk contributions are clustered around the 45∘ reference line, indicating agreement between the analytical
and MC based risk contributions. Furthermore, the GA allows for a clear division in systematic ASRF and idiosyncratic GA risk
on obligor level. The impact of the GA on the risk contributions for the highest 20 contributing exposures are substantial. Based
on 5e6 MC trials at a 99.5% quantile level.

Overall, we can conclude that, although mathematically rigorous, the GA can be a powerful tool
to assess residual idiosyncratic risk in our sample portfolio. However, since the single factor model
lacks the ability to account for diversification, the GA as presented above is mainly a useful tool in the
regulatory setting in settings where Basel’s A-IRB solution underestimates the true risk in a portfolio.

Stochastic LGD
In Section 6.1.3 we have researched the effect of introducing independent Beta distributed LGD’s to the
single risk factor model. Depending on parameter 𝑘, the effect of recovery risk becomes more prevalent
compared to its deterministic counterpart. As 𝑘 increases, the Beta distribution becomes more cen-
tered around its expected value and therefore, as 𝑘 increases, the resulting portfolio VaR approximates
its deterministic counterpart. In this section, we will briefly examine the GA’s ability to account for re-
covery risk. In the previous sections, we concluded that in the presence of a deterministic LGD, the GA
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performs excellent. However, since a random LGD has a clear impact on the tail of the portfolio loss
distribution, we will examine the performance of the GA in the stochastic LGD setting. Both the single
factor GA (4.20) and the CreditRisk+ GA (4.41) are derived in a setting that accounts for stochastic
LGD’s. We again focus our efforts on the sample portfolio and perform an experiment very similar to
the deterministic LGD case of Figure 6.9. The results of this experiment are displayed in Figure 6.12.
Essentially, Figure 6.12 matches Figure 6.7, but it overlays the analytical results of the stochastic LGD
GA. Clearly, the SF GA outperforms the CR+ GA across most quantile levels and especially as we
approach the higher quantile levels, the SF GA approximates the true VaR better compared to the CR+
GA. Strikingly, for the lower quantile levels, both the CR+ and SF GA overestimate the true portfolio
VaR. In general, the SF GA slightly overestimates the true portfolio VaR across all quantile levels, which
coincides with the accuracy of the deterministic LGD versions. While ideally, we would like to exactly
match the true VaR analytically, from a regulatory point of view overestimation is preferred over under-
estimation. We can therefore conclude that the SF GA estimates the true portfolio VaR in the presence
of Beta distributed LGD fairly accurately, and consequently, it is a useful tool in analytical regulatory
risk approximations. However, taking a closer look at the SF GA’s performance on obligor level, by
comparing the contributing VaR of the individual exposures to the portfolio VaR, some disagreements
occur between the analytical approximation and the numerical solution. Especially for some relatively
high contributing exposures, the MC solution does not match the GA approximation. Whereas for the
highest contributing exposures one would ideally have the most accurate risk measurement, this is a
major drawback to the GA applied to stochastic LGD models.

Figure 6.12: Illustration of the performance of the single factor GA based on Equation (4.20) and the CreditRisk+ GA based
on Equation (4.41) for the sample portfolio. The risk contributions are based on the SF GA only, as we have seen that it
approximates the true VaR more accurately. Compared to the deterministic LGD case, the accuracy of the adjustment on both
portfolio as contribution level seems to be worse. Numerical results are based on 1e6 MC trials and stochastic LGD.

6.2.2. Independent t-threshold Granularity Adjustment
In Section 4.6, two different t-threshold models were introduced. The first model was based on the
original normal variance mixture approach, by scaling the original Gaussian threshold factor model with
a stochastic scaling factor, resulting in Equation (4.87). In Section 6.1.4, the effects of diversification
and concentration in this model have been reviewed, and we concluded that these effects are less
prevalent compared with the Gaussian threshold model. Secondly, we introduced the independent t-
threshold model (4.93), in which the systematic and idiosyncratic factors remain independent, similar
to its Gaussian counterpart. For this model, we have derived both an ASRF solution (4.96) and a
GA (4.97), and we have shown their convergence to the Gaussian model as the degrees of freedom
increase. In this section, we will briefly explore the performance of the t-threshold GA on portfolio level
on our sample portfolio. In essence, we repeat the same experiment as performed on the Gaussian
single factor model by trying to approximate the true portfolio MC based VaR by the sum of the ASRF
and the GA analytical approximations. The results of this experiment are displayed in Figure 6.13.
For reference purposes, we also included the results for the single factor Gaussian threshold model.
The degrees of freedom 𝜂 are set to 5, in order to ensure a significant difference in portfolio VaR
between the two models under review. Taking a closer look at Figure 6.13, we can first note that up
until approximately the 99.5% quantile level, the portfolio VaR of the Gaussian threshold model exceeds
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that of the independent t-threshold model. From this point onwards, a sharp increase in portfolio VaR
is apparent for the t-threshold model. Secondly, the t-ASRF solution seems to be a relatively good
approximation to the true VaR at very high quantile levels. Thirdly, the t-GA seems to approximate
the true solution very well; the accuracy of the analytical approximation seems to be in line with the
accuracy of the Gaussian GA of the previous section.

Figure 6.13: Illustration of the performance of the independent t-threshold GA based on Equation (4.97) on estimating the portfolio
VaR across the tail of the loss distribution. From a quantile level of 99.5% the independent t-threshold based VaR exceeds its
Gaussian counterpart. The GA seems to approximate the true VaR accurately. Numerical results are based on 1e6 MC trials
and a deterministic LGD.

From this analysis, we can conclude that the t-GA performs on par with the regular Gaussian GA for
their respective models. The independent t-threshold model is particularly interesting from a regulatory
perspective. As we have seen, the portfolio EC requirements are higher compared to the current IRB
methods, depending on the choice of degrees of freedom and the quantile level. This indicates that the
regulator can have more control over capital requirements, by simply adjusting the degrees of freedom
in for instance periods of economic downturn. This makes the independent t-threshold model, its ASRF
solution and its Granularity Adjustments a powerful tool from a regulatory perspective.

6.3. Analytic Sector Concentration Risk
Deterministic LGD
In the previous sections, we have limited our analysis to single factor models, both the Gaussian and
t-threshold variants. Additionally, we have shortly addressed the effects of allowing diversification in the
sample portfolio in Section 6.1.2, which essentially describes the effects of switching from a single factor
to a multi factor framework. In Sections 3.7.5 and 4.3.1 we explored Pykhtin’s multi factor adjustment
[35] and derived it for both the portfolio level adjustment and obligor level adjustments. Throughout
this section, we will assess the performance of these adjustments for our sample portfolio. Ideally, the
adjustments would yield an accurate analytical method to approximate the multi factor VaR solution of
Figure 6.5. In order to test the performance of the adjustment, we performed two experiments of which
the results are displayed in Figure 6.14. Essentially, we consider two portfolios. Firstly, we consider
the standard sample portfolio of 100 exposures with each exposure assigned to both a specific country
and specific sector, analogous to Figure 6.4. Secondly, we increased the portfolio in size, using a
similar process to the methods described in Section 6.1.1. For both portfolios, the Adjusted ASRF
solution is determined according Equation (4.55) and the adjustment is calculated using (4.56) and
(4.57). Since the adjusted ASRFmodel is portfolio invariant, both adjusted ASRF solutions displayed in
figure (6.14) equal each other. TheMC solution differs for both portfolios since due to the size difference,
concentration risk is reduced in the second portfolio compared to the first portfolio. Noticeably, the
accuracy of the MF GA analytical approximation differs across the two portfolios. Especially in the
small 100 exposure sample portfolio, performance seems to be relatively poor. This indicates that
the MF GA has difficulties with approximating the portfolio VaR for very small portfolios with much
residual idiosyncratic risk and performance increases as idiosyncratic risk is increasingly diversified
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away. Although the accuracy is not perfect, the GA adjusted solution is clearly preferable over the
adjusted ASRF solution in estimating the true portfolio risk in the Gaussian threshold multi factor setting.

Figure 6.14: Illustration of the performance of the Multi Factor GA based on Equation (4.54) for two sample portfolios of differing
size. The overestimation for the ፍ  ኻኺኺ portfolio indicates that the MF GA is inaccurate in the presence of much residual
idiosyncratic risk. Numerical results are based on 1e6 MC trials and deterministic LGD.

As mentioned before, a major drawback of the MF GA is its computational complexity as it requires
calculating a conditional correlation matrix between any two obligors, in essence Equation (4.49). Fur-
thermore, the MF GA requires calculating the joint conditional default probability between any two
obligors, essentially Φኼ(Φዅኻ(𝑃𝐷።(𝑥)), Φዅኻ(𝑃𝐷፣(𝑥), 𝜌ፗ̄።፣). This has a major implication on the computing
time of this analytical approximation. To illustrate, for the 𝑁 = 500 portfolio, the MC method takes just
over a minute to compute the full portfolio loss distribution, whereas the analytical method takes over
21 minutes to compute the 50 discrete values of the portfolio VaR displayed in the second graph of
Figure 6.14. However, since we are often only interested in computing the portfolio VaR at a single
quantile level, the analytical method outperforms the MC method at 25 seconds. Be that as it may, the
memory issues with generating the conditional correlation matrix between any two obligors increase
disproportionally compared to the memory needs involved with running MC trials.

Nonetheless, the accuracy of the MF GA on portfolio level seems to be promising. We will now
focus our efforts on the risk contributions of the individual obligors and their numerical and analytical
approximations, similarly to the results displayed in Figure 6.11. We will apply the theories developed
in Section 4.3.1, and Equation (4.58) in particular as it yields a method to allocate the portfolio VaR to
the individual exposures analytically. The result of this experiment, performed on the enlarged sample
portfolio of 500 exposures, are displayed in Figure 6.15. Overall, the GA and MC approximations are
centered around the 45∘ reference line, indicating that the two approximations broadly agree on the
value of the individual risk contributions to the portfolio VaR. Notably, an interesting pattern occurs in
which risk contributions are clustered horizontally. This pattern is caused by the enlargement proce-
dure, in which obligors are replicated in the portfolio. In this case, we enlarged the portfolio by a factor
of 5. Essentially, this means that that portfolio of 500 obligors exists of 100 unique obligors, in sets
of 5 identical obligors. In terms of risk contribution, we would expect the contributions of the identical
obligors to contribute an identical amount of risk to the portfolio VaR. Since the risk contribution clusters
are lined up horizontally, the analytical solution is equal among the sets of 5 identical obligors, whereas
the MC approximation differs among these obligors. This effect stresses a major drawback of MC trials
versus an analytical approximation; MC trials inherently exhibit statistical noise.
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Figure 6.15: Illustration of the performance of the multi factor GA risk contributions based on Equation (4.58) at a single quantile
level of 99.5%. Generally, the point are clustered around the 45∘ reference line, indicating a large degree of agreement between
the numerical and analytical methods. Numerical results are based on 2e6 MC trials and a deterministic LGD.

Stochastic LGD
Having analyzed the multi factor granularity adjustment in a deterministic setting, we will now shortly
assess its accuracy in the presence of stochastic LGD rates. We continue our analysis on the 𝑁 = 500
portfolio, as we have concluded that the accuracy of the MF GA is relatively poor on the 100 exposure
sample portfolio. Essentially, introduce recovery risk to the multi factor Gaussian threshold model using
the same methods described in 6.1.3 by setting the LGD parameter 𝑘 to a value of 4, which represent
a high degree of uncertainty in the given LGD rate. For average LGD rates of approximately 50%, a
value of 𝑘 = 4 results in a U shaped Beta distribution, with a higher probability of sampling either a 0%
or 100% LGD rate. Clearly, we could consider higher values of 𝑘, indicating a larger degree of certainty
of our LGD estimates. However, a 𝑘 increases, the results will converge towards a deterministic LGD
setting and therefore we opt for low values of 𝑘.

We repeat the experiment performed in assessing the accuracy of the multi factor GA in a deter-
ministic LGD setting. The results of this experiment are displayed in Figure 6.16. There are two main
takeaways we can conclude from this experiment. Firstly, the introduction of stochastic LGD rates has
only a minor effect on the portfolio VaR since the VaR levels in the tail of the loss distribution are nearly
equal to those displayed in right graph of Figure 6.14. Secondly, the MF GA seems to accurately ap-
proximate both the portfolio VaR as the VaR contributions of the individual obligors analytically for this
specific portfolio. Performing the same experiment on the smaller 𝑁 = 100 sample portfolio would yield
less accurate results.

Figure 6.16: Illustration of the performance of the Multi Factor GA based on Equation (4.54). The horizontal clustering of data
points in the VaRC plot is due to the method used to reduce the idiosyncratic risk in the portfolio, by replicating exposures 5
times. Numerical results are based on 1.5e6 MC trials and Beta distributed LGD (፤=4).
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Conclusion
Throughout the previous sections, we have explored the multi factor granularity adjustment. In addition
to the original formulation of the adjustment, based on the work by [35], we have adjusted it to both
account for stochastic LGD rates and double dependencies of exposures on both a regional and an
industry-based systematic factors. By testing the adjustment on the sample portfolio, we deduced
that the adjustment systematically overestimates the true portfolio VaR. This indicates that the MF GA
overestimates risk in portfolios with a relatively high level of idiosyncratic risk. However, since realistic
portfolios tend to contain many more exposures compared to our sample portfolio, we showed that as
the portfolio size increases, the MF GA is an accurate approximation to both the portfolio VaR as the
VaR contributions in both a deterministic and stochastic LGD framework. Practical implementation of
the MF GA is however hindered by its extensive computational needs, making it less of an attractive
alternative to the usual MC methods.

6.4. Economic vs Regulatory Concentration Risk
In Section 4.4 we introduced the concepts of Regulatory and Economic Concentration Risk. The dif-
ference between these two kinds of risk arises from the different underlying modelling frameworks in
which concentration risk can be assessed; single factor versus multi factor models. Regulatory con-
centration risk is defined to be the difference between the full-blown MC based single factor model and
its ASRF equivalent, given by Equation (4.67). Similarly, economic concentration risk is defined as
the difference between the full-blown MC based multi factor model and its adjusted ASRF equivalent,
given by Equation (4.67). These two forms of concentration risk on our sample portfolio are graphically
depicted in Figure 6.17.

Figure 6.17: Graphical interpretation of the effects of economic concentration risk and regulatory concentration risk on the
sample portfolio. Clearly, for high quantile levels the amount of economic concentration risk exceeds the amount of regulatory
concentration risk. Numerical results are based on 3e6 MC trials and a deterministic LGD.

As we have concluded before, the portfolio VaR of the single factor framework exceeds that of the
multi factor framework, which can be attributed to the diversification effect. Clearly, this does however
not imply that regulatory concentration risk also exceeds economic concentration risk. From Figure
6.17 we can conclude that across the higher quantiles, economic concentration risk exceeds regulatory
concentration risk. To further stress this observation, we have included Figure 6.18 in which we take a
closer look at the highest contributing obligors in terms of EC and concentration risk contributions.
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Figure 6.18: Graphical depiction of the highest contributing obligors in terms of EC and concentration risk to total portfolio EC
and concentration risk. The contributions are ranked on basis of the highest contributors in the multi factor setting (depicted in
red). All results are assessed at the 99.5% quantile, using our sample portfolio.

The left bar graph of Figure 6.18 confirms the observation that the capital requirements are generally
higher in the single factor setting compared to the multi factor setting, both for the full portfolio EC as
the individual contributions. An important additional observation arises from the fact that the ranking
of EC contributions is not preserved, meaning that the single factor model predicts certain exposures
to be relatively riskier compared to the multi factor model and vice versa. Generally, the multi factor
model is assumed to be a more accurate representation of the world economy by assuming multiple
systematic factors. This indicates that the IRB approach, which is based on the single factor model,
might assign risk incorrectly.

The right bar graph of Figure 6.18 attributes the concentration risk in the portfolio to the individual
exposures, both for regulatory as economic concentration risk. Interestingly, this figure tells a different
story compared to the left figure displaying EC contributions. Having already concluded that portfolio
economic concentration risk exceeds regulatory concentration risk, we can now conclude that this is
also the case at exposure level. So whereas the total risk contribution of exposures (in terms of EC) is
higher in the regulatory setting, concentration risk is higher in the economic framework. This conclusion
can be attributed to the choice of correlation parameters 𝛽። and 𝑐።. Whereas in the sample portfolio case
𝛽። is equal to 𝜌። (2.27), 𝑐። is determined through Equation (4.77). This implies that whereas 𝛽። is only
PD dependent, 𝑐። depends on the correlation structure, LGD and EAD. For our sample portfolio this
results in higher 𝛽። values compared to the 𝑐። values; the average value for 𝛽። equals 0.1852 whereas
the average value for 𝑐። equals 0.0642. A lower value of the correlation parameter (either 𝛽። or 𝑐።)
indicates that relatively less of the asset returns can be attributed to systematic factors and more to the
idiosyncratic factors, implying more idiosyncratic risk and therefore a higher level of concentration risk.

In a final effort to verify the statements made about RCR and ECR, we perform a similar experiment
to that of the justification of the concentration effect. The original sample portfolio is diversified by a
factor of 100, with each exposure equalling 1/100th of its original exposure. In the single factor setting,
we have seen that the idiosyncratic risk is diversified for this portfolio and that the true portfolio VaR
equals the ASRF approximation of the VaR (compare with Figure 6.3). Therefore, as RCR equals the
concentration effect, RCR diminishes by the diversification with a factor 100. When ECR is formulated
correctly, we expect a similar effect for the ECR. As the portfolio is diversified, both RCR and ECR
should subside. The results of this experiment are displayed in Figure 6.19. The graphical depiction of
RCR and ECR verify our understanding, as both have clearly diminished trough the diversification.
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Figure 6.19: Verification of the claims of Economic Concentration Risk by diversifying the portfolio with a factor 100. Both the
single factor and multi factor VaR levels are very well approximated by their respective ASRF solutions, indicating the elimination
of concentration risk. Numerical results are based on 1e6 MC trials and a deterministic LGD.

In short, the Economic Concentration Risk framework poses a method to asses the levels of id-
iosyncratic risk in a multi factor framework, a measure that was previously not trivially assessed at
ING.

6.5. Sectoral Diversification
In order to assess the benefits diversification, we developed the theory on sectoral diversification in
Section 4.5 where we introduced the Diversification Factor (4.85) and the Capital Diversification Index
(4.86). Before applying thesemethods to our sample portfolio, we have to gain a slightly different insight
into the distribution of the exposures among the 110 regions and industries of Table A.1. In Figure 6.4
we explored the frequency of occurrence of the different sectors in the sample portfolio, however, this
does not yield any insights in the distribution of exposures over among these sectors.

Figure 6.20: Graphical representation of the distribution of exposures among the regions and industries, with indices matching
those of A.1.

Whereas from Figure 6.4 it is apparent that the sectors were assigned to the individual obligors uni-
formly, Figure 6.20 takes the relative exposure of each of the sectors into account with respect to the full
portfolio exposure. From this figure, we can conclude that some regions and industries hold a higher
share of total portfolio exposure compared to other regions and sectors. This observation is in line
with our expectations on realistic portfolios; banks are often focused on certain regions and industries
in their lending activities. In order to determine the diversification factor (4.85), the loss distribution of
two models has to be determined; the multi factor and the equivalent single factor model. This method
essentially matches the procedures performed in Section 6.1.2, since in showing the effects of diver-
sification on portfolio VaR, we essentially compared the multi factor loss distribution with its equivalent
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single factor loss distribution. Throughout this section, we will focus on the effects of diversification on
the individual regions and industries through the use of the diversification factor (4.85). The following
experiment will be performed: First, we generate the loss distribution the multi factor and equivalent
single factor model using the MC algorithm. Second, for both loss distributions, the portfolio VaR is
determined after which the EC risk contributions of the individual exposures are computed. The diver-
sification factor is then easily determined by summing the EC contribution of all exposures assigned
to a particular region or industry for both underlying models. Using Equation (4.85), the diversification
factor for each region and industry is calculated. The results of this experiment are displayed in Figure
6.21. It should be noted that, by definition, a lower value of the 𝐷𝐹 indicates a higher degree of diversi-
fication benefits. The upside of using the diversification factor is that the underlying models only differ
in correlation structure. This means that for both the MF as the E-SF model, the parameters 𝐸𝐴𝐷።,
𝐿𝐺𝐷።, 𝑃𝐷። and 𝛽። are identical, also resulting in an equal expected loss for both models. Therefore, the
difference in capital requirements, expressed through the diversification factors, can be attributed to
the correlation structure alone. For our sample portfolio, the portfolio diversification factor (4.84) at a
quantile level of 99.5% equals 0.6814 which essentially indicates that diversification has an impact of
-31.86% on Economic Capital of our sample portfolio. Figure 6.21 assigns the diversification factors of
the individual sectors. Clearly, whereas some regions and industries hardly benefit from the effects of
diversification (such as region 3 and 19), other sectors benefit to a very high degree from diversification
(region 4 for instance). Two effects should be noted when analysing these results. Firstly, because
of the relatively small size of our sample portfolio, some sectors are fully defined by a single expo-
sure. This possibly leaves a high degree of idiosyncratic risk impacting the capital requirements for
both the MF as the E-SF models. This effect could be offset by instead using the ASRF and A-ASRF
models in calculating the DF, which assume all idiosyncratic risk to be diversified away and therefore
only addressing the effect of systematic risk. However, for real-life portfolios which are much greater
in size, we expect the effects of idiosyncratic risk on the diversification factor to be minimal. Secondly,
exposures are assigned to both a region and an industry. Therefore, the diversification benefits are not
necessarily fully due to the correlation of the region or industry alone, but by a combination of the two.
Ideally, one would like to isolate the effects. A possible suggestion is to run the method twice, once
assigning no industries to the exposures, and once by assigning no region to the exposures.

Figure 6.21: Level of diversification among the regions and industries present in our sample portfolio. A lower value of the
diversification factor indicates a high level of diversification. When no diversification factor is given, this industry or region is not
present in our sample portfolio. Results are based on the 99.5% VaR at 3e6 MC trials and deterministic LGD.

Lastly, we will shortly explore the level of economic capital concentration in the specific sector by
applying the CDI (Equation (4.86)) to the sample portfolio at a 99.5% quantile level. The CDI’s are dis-
played in Figure 6.22. As expected, some CDI’s equal one which essentially indicates that the specific
sector only contains a single obligor. In real life portfolio’s, typical values of the CDI are expected to
be lower. Low values of the CDI indicated that the economic capital is split fairly among the obligors
within the sector, meaning that sector concentration risk is low.
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Figure 6.22: Level of capital diversification within the regions and industries present in our sample portfolio. A lower value of
the CDI indicates a low level of EC concentration. When no CDI is given, this industry or region is not present in our sample
portfolio. Results are based on the 99.5% VaR at 3e6 MC trials and deterministic LGD.

In short, the diversification factor and the capital diversification index can be effective tools for risk
management purposes to evaluate the effects of diversification on sector level. It can be applied to
investigate which sectors, or even which obligors, benefit to a high degree from diversification and
which sectors do not. Additionally, the DF could be used for identifying capital sensitivities, stress
testing and possibly for identifying the added benefits or disadvantages of adding certain exposures to
existing portfolios.



7
Conclusions

Throughout this work, we have explored a wide range of topics concerning the concept of concentration
risk in credit portfolios. The purpose of this thesis is twofold; it should serve both as a study into
current methods for assessing concentration risk as an exploration into more advanced methods. This
eventually led to considering analytical methods (such as the GA), Monte Carlo based methods and
a combination of the two (such as the CDI) for gauging concentration risk. Before considering these
methods, this thesis presents a concise overview of the topic of credit risk modelling in general with a
strong focus on threshold models, both the Gaussian and t-threshold models.

The subject of concentration risk spans two topics; single name concentration risk and sector con-
centration risk. Single name concentration risk is assessed within the single systematic factor models,
analytically through the GA. The GA is derived in two frameworks, the Gaussian threshold and Cred-
itRisk+ (based on the work by [22]) framework. This leads to two different GA’s, of which the Gaussian
threshold GA outperformed the CR+ GA both in terms of portfolio VaR as for individual risk contribu-
tions. Additionally, both methods were tested for their accuracy in accounting for recovery risk. We
concluded that although still relatively accurate, the performance of the GA decreases in the presence
of recovery risk. The GA has shown to be a powerful tool in regulatory risk management, as an add
on to the standard IRB approach built on the ASRF model. It would increase capital requirements to
account for idiosyncratic risk, which the standard IRB model is unable to capture due to its inherent
assumptions of perfect granularity. However, in practice, multi factor models, relying on numerous
correlated systematic factors, are applied which the GA cannot account for. This led us to the topic of
sector concentration risk.

To that extend, we introduced a multi factor GA based on the work by [35]. By essentially deriv-
ing an adjusted single factor model that mimics the loss distribution of the multi factor model, a multi
factor GA (MFGA) is derived. The MF GA has shown to be portfolio dependent in its accuracy, on
our small sample portfolio the MF GA overestimated the true VaR substantially. Furthermore, the MF
GA in computationally expensive and nearly impossible to solve for larger portfolios without compli-
cated computational techniques and is therefore not deemed to be a suitable alternative to existing MC
methods.

In general, analytical methods provide a viable alternative to MCmethods, but only on relative small
portfolios or in a regulatory setting. Additionally, analytical methods could be used to quickly estimate
the add on risk of adding a new loan to an existing portfolio, which would be a demanding task in the MC
setting as it involves running the MC algorithm on the full portfolio. However, for more straightforward
methods of assessing concentration risk, the MC methods outperform the analytical methods.

Having concluded that in a multi factor setting, the analytical methods do not fully satisfy our needs in
terms of accuracy and computational complexity, the methods developed by [35] do present a useful
method for assessing concentration risk in amulti factor setting. By applying themethods for developing
an adjusted single factor model to mimic the multi factor loss distribution, we have defined the concepts
of Regulatory and Economic Concentration Risk, depending in which framework concentration risk is
evaluated. Additionally, we derived the diversification factor (DF) and the capital diversification index
(CDI) as sector concentration risk indicators and applied both to the sample portfolio. Themethods have
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shown to be present relevant insights into the sample portfolios, such as the disagreement between
the economic and regulatory concentration risk values.

Existing literature has repeatedly suggested to evaluate the effects of fatter tailed distributions on
concentration risk. In this work, we explored two different models accounting for this effect; the t-
threshold model and the independent t-threshold model. The independent t-threshold model allowed
for an ASRF and GA solution which converges to its Gaussian counterparts. For the general t-threshold
model, we explored the possibilities to develop an adjusted single factor t-threshold model in the spirit
of [35], and we have empirically shown this to be viable. Next, we explored both the effects of diversi-
fication and concentration on the t-threshold model, and we have shown that these effects are much
less apparent within this model compared to its Gaussian counterpart. This makes it an interesting
model from a risk management perspective, as the VaR measures are less dependent on uncertainty
in parameters such as the covariance matrix describing the linear relationships between the different
systematic factors. Lastly, we suggested the independent single factor t-threshold model to be a fea-
sible alternative to the current IRB ASRF model, as it allows for an intuitive extra regulatory parameter
impacting the capital requirements without any additional computational complexity.

Critical view
All threshold models stem from the early work of Merton [26]. Since then, the advances in terms of
modelling have been modest. Throughout this work, we have also mostly evaluated concentration risk
within these threshold models, although in multiple forms. This means that all methods presented are
inherently limited by the accuracy of the threshold model to compute realistic loss distributions. This
shortcoming is not limited to this work but to threshold modelling in general but worth noting.

Throughout this work, we assumed default only models. Basically, this implies that the effects of
migration of rating classes have been omitted. However, more advanced methods such as Moody’s
RiskFrontier and CreditMetrics can take the effects of migration on the portfolio loss distribution into
account. Literature on concentration risk in migration models is only limited, but would be worth explor-
ing.

Furthermore, the correlation parameter 𝛽። is assumed to be either given or PD dependent according
to IRB correlation Equation (2.27). However, as the correlation parameter is an indirect factor loading
to the idiosyncratic risk to which the asset returns are dependent, there is a strong link between this
parameter and concentration risk. Through Basel’s equations, the correlation parameter is limited to a
small range ([0.12, 0.24]). In practice, these correlation parameters are not based on the IRB formulas
but are modelled, which does not necessarily bound the parameters to the IRB’s bounds.

A similar issue arises with the t-threshold models studies in this thesis. The IRB correlation pa-
rameter is adapted to the IRB ASRF model, which assumes the normally distributed systematic and
idiosyncratic factors. In our implementation, we assumed the same equation for the correlation pa-
rameters for the Gaussian threshold as the t-threshold models, whereas in practice, one would expect
different, degrees of freedom dependent, correlation parameters.

Focusing slightly more on the analytical methods, we have concluded that they do not perform
accurately across all portfolios and quantile levels. In practice, this means that the analytical method
has to be tested against MC methods to verify their accuracy. However, this takes away the upside of
the analytical methods being independent on MC methods. This leaves the analytical methods most
useful for quickly approximating the risk contributions of added loans to a portfolio.

In this work, plain MCmethods are widely applied. However, these methods inherently exhibit some
stochastic noise. We have not quantified this level of stochastic noise nor evaluated it. A widely applied
method to overcome this shortcoming is the concept of importance sampling. Importance sampling is
widely applied in risk management, for instance, in Moody’s RiskFrontier simulations. It has also been
widely studied, for instance in [7].

Lastly, in this thesis obligors were assumed to depend on a single country and a single industry
whereas, in practice, obligors can be active in a set of countries and industries. Whereas many of the
developed methods can easily be adapted to this setting, it is not trivial how to assign EC contributions
of individual exposures to the sectors on which their asset returns depend. This issue already occurs
with the current double dependence setting, as for example the EC contributions of a single country
are split over contributions of multiple industries.
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Suggestions for further research
Many of the suggested research directions are a direct result of the shortcoming of our approach. This
covers, for instance, studying the dependence of concentration risk on the correlation parameter and
tweaking the correlation parameters to the t-threshold models. Also assigning the risk contribution of
exposures among their respective sectors is a relevant topic to pursue.

In addition to the shortcomings, several other topics can be explored. For instance the effect of PD-
LGD correlation on concentration risk, or modelling the LGD through a single factor model depending
on the same systematic factors as the asset returns. Furthermore, this work limits itself to the VaR as a
measure of risk since it has a straightforward link to Economic Capital. However, EC can also be defined
with respect to the Expected Shortfall, evaluating the proposed methods for the Expected Shortfall
would be of value to this work. Finally, the effects of varying correlation matrices of the systematic
factors should be assessed with respect to sectoral diversification and concentration risk.
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Appendix

A.1. Proof of proposition 2.6.1
In this proof, we will follow the proof of proposition 1 in [9]. In order to prove proposition 2.6.1, we will
make use of the following lemmas:

Lemma A.1.1. Let {𝑎፧} be a sequence of positive constraints and {𝑌፧} a sequence of independent
random variables. If 𝑎፧ ↑ ∞ and ∑ጼ፧ኻ

𝕍[ፘᑟ]
ፚᎴᑟ

< ∞, then for 𝑛 → ∞

ኻ
ፚᑟ
(

፧

∑
።ኻ
𝑌። − 𝔼 [

፧

∑
።ኻ
𝑌።]) → 0 a.s. (A.1)

Lemma A.1.2. If {𝑏፧} is a sequence of positive real numbers such that {𝑎፧} is 𝒪(𝑛ዅ) for some 𝜌 > 1,
then

ጼ

∑
፧ኻ

𝑏፧ < ∞ (A.2)

Proof. In order to prove proposition 2.6.1, let 𝑌፧ = 𝐸𝐴𝐷፧𝑈፧ and let 𝑎፧ ≡ ∑፧።ኻ 𝐸𝐴𝐷።. Conditional
independence on realization 𝑥 implies

ጼ

∑
፧ኻ

𝕍[𝑌፧|𝑥]
𝑎ኼ፧

=
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Clearly, by definition 𝑈፧ ∈ [0, 1] so 𝕍[𝑈፧|𝑥] < 1 for any 𝑋 = 𝑥. Therefore, there exists a finite constant
𝑉∗ such that

ጼ

∑
፧ኻ
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≤ 𝑉∗ ( 𝐸𝐴𝐷፧
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)
ኼ

(A.4)

As we assumed that there exists a 𝜉 > 0 such that ፄፀፃᑟ
∑ᑟᑚᎾᎳ ፄፀፃᑚ

= 𝒪(𝑛ዅ(
ኻ
ኼዄ)), we have that ( ፄፀፃᑟ

∑ᑟᑚᎾᎳ ፄፀፃᑚ
)
ኼ

is 𝒪(𝑛ዅ(ኻዄኼ)). By lemma A.1.2, the series sum ( ፄፀፃᑟ
∑ᑟᑚᎾᎳ ፄፀፃᑚ

)
ኼ
is finite and therefore ∑ጼ፧ኻ

𝕍[ፘᑟ]
ፚᎴᑟ

< ∞.
Furthermore, since we assumed that ∑፧።ኻ 𝐸𝐴𝐷። ↑ ∞ as 𝑛 → ∞ the conditions of lemma A.1.1 are
satisfied. Since the loss ration 𝐿፧ is equal to

∑ᑟᑚᎾᎳ ፘᑚ
ፚᑟ

, proposition 2.6.1 is proved.
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A.2. Analytical expression for the contributing VaR for the single
factor Gaussian threshold model

In order to apply equation (4.24), the following expressions have to be derived: Ꭷ
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Where in the final expression we have:
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This reduces the problem of deriving the contributing VaR in the single factor setting to determining the
following derivatives:
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A.3. Geographical location and industry table

Region Industry

1 USA/CARIBBEAN 1 AEROSPACE & DEFENSE
2 CANADA 2 AGRICULTURE
3 DENMARK 3 AIR TRANSPORTATION
4 GREECE/SOUTHEAST EUROPE 4 APPAREL & SHOES
5 JAPAN 5 AUTOMOTIVE
6 AUSTRALIA 6 BANKS AND S&LS
7 INDONESIA/SOUTHEAST ASIA 7 BROADCAST MEDIA
8 CHINA 8 BUSINESS PRODUCTS WHSL
9 AUSTRIA 9 BUSINESS SERVICES
10 BELGIUM/LIECHTENSTEIN/LUXEMBOURG 10 CHEMICALS
11 SWITZERLAND 11 COMPUTER HARDWARE
12 GERMANY 12 COMPUTER SOFTWARE
13 SPAIN 13 CONSTRUCTION
14 FRANCE 14 CONSTRUCTION MATERIALS
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15 UNITED KINGDOM 15 CONSUMER DURABLES
16 HONG KONG 16 CONSUMER DURABLES RETL/WHSL
17 ITALY 17 CONSUMER PRODUCTS
18 MALAYSIA 18 CONSUMER PRODUCTS RETL/WHSL
19 NETHERLANDS 19 CONSUMER SERVICES
20 SINGAPORE 20 ELECTRICAL EQUIPMENT
21 SWEDEN 21 ELECTRONIC EQUIPMENT
22 THAILAND 22 ENTERTAINMENT & LEISURE
23 SOUTH AFRICA 23 FINANCE COMPANIES
24 FINLAND 24 FINANCE NEC
25 IRELAND 25 FOOD & BEVERAGE
26 NORWAY 26 FOOD & BEVERAGE RETL/WHSL
27 KOREA, REPUBLIC OF 27 FURNITURE & APPLIANCES
28 NEW ZEALAND 28 HOTELS & RESTAURANTS
29 NORTH AFRICA 29 INSURANCE - LIFE
30 CENTRAL AFRICA 30 INSURANCE - PROP/CAS/HEALTH
31 FORMER USSR 31 INVESTMENT MANAGEMENT
32 EAST EUROPE 32 LESSORS
33 PACIFIC OCEAN ISLANDS 33 LUMBER & FORESTRY
34 CENTRAL/SOUTH AMERICA 34 MACHINERY & EQUIPMENT
35 SOUTHERN SOUTH AMERICA 35 MEASURE & TEST EQUIPMENT
36 ISRAEL 36 MEDICAL EQUIPMENT
37 TURKEY 37 MEDICAL SERVICES
38 PHILIPPINES 38 MINING
39 TAIWAN 39 OIL REFINING
40 INDIA 40 OIL, GAS & COAL EXPL/PROD
41 PAKISTAN 41 PAPER
42 PORTUGAL 42 PHARMACEUTICALS
43 SOUTH ASIA 43 PLASTIC & RUBBER
44 POLAND 44 PRINTING
45 MIDDLE EAST 45 PUBLISHING
46 ARGENTINA 46 REAL ESTATE
47 BRAZIL 47 REAL ESTATE INVESTMENT TRUSTS
48 CHILE 48 SECURITY BROKERS & DEALERS
49 MEXICO 49 SEMICONDUCTORS

50 STEEL & METAL PRODUCTS
51 TELEPHONE
52 TEXTILES
53 TOBACCO
54 TRANSPORTATION EQUIPMENT
55 TRANSPORTATION
56 TRUCKING
57 MISCELLANEOUS
58 UTILITIES NEC
59 UTILITIES, ELECTRIC
60 UTILITIES, GAS
61 CABLE TELEVISION

Table A.1: Indices representing the various regions and industries.
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