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Abstract

The Shapley value method is an explanatory method that describes the feature attribution of Machine Learn-
ing models. There are three different definitions of the Shapley values, namely Conditional Expectation Shap-
ley, Marginal Expectation Shapley and Baseline Shapley. A comparison is made between the three defini-
tions and they are applied to one statistical and two Machine Learning models that predict house transaction
prices. Most existing methods to approximate Shapley values assume independence, which is in practice of-
ten violated. An existing copula-based method that tries to take into account the dependency is extended to
apply to problems with continuous and discrete features. This copula-based method approximates the Shap-
ley values more accurately than other methods. The Conditional Expectation Shapley values give unnatural
explanations, therefore other definitions of the Shapley values are more suitable. The Baseline Shapley values
seem to be the most promising since there is an accurate and fast approximation method and the B Shapley
values are the easiest to interpret.
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1
Introduction

Machine Learning methods are getting increasingly popular. Nowadays, there are many advanced Machine Learning
(ML) models and more are invented every day. Combining Machine Learning models in ensemble models give endless
possibilities of combinations. The main purpose is to get models that are more accurate in making predictions. However,
the increased accuracy is accompanied by increased complexity very often. The Machine Learning models can make very
accurate predictions but what is happening inside to come to that prediction is difficult, sometimes impossible, to inter-
pret for humans. For that reason, Explainable Artificial Intelligence (XAI) is an upcoming subject in the Machine Learning
discipline. Many applications of Machine Learning models demand an explanation next to a prediction. That opens the
way for explanatory methods, algorithms that extract an explanation from a Machine Learning model by looking at the
data and evaluating the model.

One specific application that will be highlighted in this research is the real estate valuation problem. The is the prob-
lem of predicting house prices, which is a regression problem with tabular data. But this problem has certain properties
that apply in other situations. For instance, house prediction is based on features that are discrete, continuous and cate-
gorical and there is often and strong correlation between the features.

Due to the high demand for explanation techniques, many explanatory methods have been invented. Some methods
are model specific, but there are also methods that can be applied to any ML model, the so-called agnostic explanatory
methods. The advantage of agnostic methods is that you can apply any ML that fits the problem well.

There are many different methods, but the most promising methods will be explained in Chapter 2. For that, first, an
explainability framework is sketched. From those methods, the most suitable method is chosen, which turns out to be
the Shapley values method. However, there are still some practical problems with the method. First, there are multiple
definitions of the Shapley values, so one needs to find out which definition suits the problem the best. That brings us to
the main question of this research.

Which of the three Shapley definitions is most suitable for the real estate valuation problem?

It turns out that the existing approximation methods do not determine all three Shapley values accurately. These methods
often assume independence between features, while this is not the case in practice. That leads to a sub-question that will
be investigated.

For each of the three Shapley values definitions, which approximation method determines the Shapley values
most accurately?

To answer the main question, there are three definitions of Shapley values given in Chapter 3. Also, the theoretically prop-
erties and interpretation of each definition will be explained. To test how the different definitions behave in practice, the
Shapley values are applied to the real estate valuation problem. This is the problem of predicting house prices using a
model. House transaction data of the Netherlands from 2008 to 2016 is used to train a statistical and two ML models to
which the Shapley values method is applied.

For an answer to the sub-question, a Shapley values approximation method of Aas et. al. [1] and a new approxima-
tion method are introduced in Chapter 4. Also, the copula method of Aas et. al. [1] is extended to discrete features and
is tested in a simulated environment. Discrete features occur in many problems, for instance, the real estate valuation
problem, but in many more.

Chapter 5 describes the experiments that will be performed to find solutions for the two problems stated above. The
results of these experiments are presented in Chapter 6. Finally, a conclusion of these results will be drawn in Chapter 7.
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2
Model Explainability

The definition of an explanation is not straightforward. Many researchers have attempted to define what an explanation
is. One that is used often is:

To explain an event is to provide some information about its causal history. - Lewis [2]

Miller put this definition in a more ML framework:

The degree to which an observer can understand the cause of a decision. - Miller [3]

Both refer to the word cause or causal for the definition of explanation. There are often many causes possible to explain
the same phenomena. That makes that explanations of the same event can differ much because a different explanation
can refer to a different cause of the event. Some explanations are more useful than others. To understand when an
explanation is useful, it first needs to be clear what the reason for an explanation is. The red line through this chapter will
be the real estate valuation framework.

2.1. Reasons for an Explanation
In general, there are multiple reasons why people demand not only a prediction but also an explanation [4, 5]. In most
cases where machine learning models are applied, the prediction alone does not tell the whole story.

If there is an explanation why the ML predicts what it predicts, there is more trust in the ML model. Imagine that you
and your neighbour both have your house for sale. You let an ML model predict a reasonable asking price for both of the
houses. The ML model tells you that your neighbour’s house is worthe20.000 more than your house. You are completely
thunderstruck since you have approximately the same house at approximately the same location. You demand an expla-
nation from the ML model why it predicts that your house is less worth than your neighbour’s. A clarifying explanation
that your neighbour has a garage will give you more trust that the model is reasonable.

A good explanation could give the user of an ML model an informative explanation. For instance, which features are
the most important, on what domain the model works appropriately, how the model could be improved and what the
weak spots of the model are. For every prediction that an ML model makes, there could be a lot happening inside the
model, but the model only returns a single value. Getting more insight into the processes inside the machine can be more
useful than only looking at the prediction.

ML could be used to find indications of possible causal relationships. If the explanation of an ML model hints at a rela-
tionship, then a researcher can investigate further whether this is relation is causal. Nevertheless, let it be clear that ML
models are not based on causal relationships. The objective of training an ML model is to maximize the accuracy of pre-
dictions. That means that an ML method can base its predictions on non-causal grounds if this increases the predictive
power. So one should always handle the results of an ML model with care.

Another actual problem of ML being a black box is that it could be unfair or unethical. ML have a risk of implicit bias
which could have an undesired effect when an ML model makes a prediction based on associations, such as sex, age or
race. This might also become a problem in real estate valuation when more features are added, think of personal data of
the inhabitant or the neighbours. An explanatory method might reveal implicit bias in ML methods, such that the creator
or regulator can come into action.
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8 2. Model Explainability

2.2. Properties of an Explanation
An explanation has multiple properties that say something about the quality of the explanation. Molnar made an exten-
sive list of properties [6]. Here the most important properties are summarized.

Comprehensibility
An explanation should not be too simplified and also not too complex. This is of course dependent on the person that
gets the explanation, or the explainee as Miller called it [3]. So before a comprehensible explanation can be made, you
need to determine the knowledge of the explainee. Then you can build an explanation on top of that knowledge in un-
derstandable language.

Comprehensibility is difficult to get a grip on. It is hard to measure since it depends on the level of understanding of
the explainee. For some ML models, the level of comprehensibility can be approximated by model internals, such as the
depth of a decision tree or the number of non-zero weights in a linear regression model. For other ML methods is that
more difficult. The definition of Ribeiro can be helpful to get a measure of comprehensibility [7]

whether a human understands a model enough to make accurate predictions about its behaviour on unseen
instances.

This can be tested in an experiment where a model and a human both predict unseen instances, which is what Ribeiro
did in fact [7].

Goal-Oriented
The goal of the explanation should be kept in mind when an explanation is constructed. If someone asks for an expla-
nation, then he will only be satisfied with an explanation that answers his questions. So after you have determined what
who your explainee is, you should find out what he wants to know and why. The four reasons of explanation described in
Paragraph 2.1 can all have a different approach to explaining.

Stability
Also a desirable property of an explanation is that it is stable. If two instances have very similar features and the prediction
of a fixed model is also similar, then both explanations should also be comparable. If the explanations differ much then
the explainee would not have much trust in the explanatory method.

For instance, you and your neighbour have (almost) the same house and you value both houses with a model. You both
get the same house value, however, the explanation tells you that the price of your house is due to the neighbourhood you
are living in while your neighbours’ house price is dominated by the living space. This is an undesirable situation since
you don’t know what the real most important feature is for both houses. Therefore high stability is a good property of an
explanation.

Certainty
Statistical methods do not only produce predictions, but also confidence intervals. These intervals are very useful since
they tell you something about how certain the model is about its prediction. If you get a prediction with wide prediction
intervals, then at least you know that your model was struggling with the input. So maybe for that specific input instance,
the model has a weak spot.

However, most ML methods do not produce confidence intervals. So from the single prediction, you don’t get the in-
formation if the input instance is in a well-trained region of the model, or that it might be the first time that the model
sees an instance of this kind. That is especially an issue if you have an instance that is from a region far from the training
data of the model. Most ML models do not generalize so well for instances far from their training data, but they won’t
tell you that, so they produce a prediction. To which extent the explanation reflects the certainty of the model is also a
property.

Representativeness
The representativeness of an explanation is the range of instances the explanation covers. An explanation can cover the
whole model, for instance, that the amount of living space is a dominant factor for the house price. On the other hand,
an explanation could also only be accurate in a local region. For example, in New York, a high-level apartment means a
nice city view which increases the price. However in general a high-level apartment is often a small flatlet which reduces
the price. A good explanation is not necessarily local or global. Both can be desired, depending on the explainee and the
goal.
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2.3. Properties of Explanatory Methods
If the intrinsic explainability of a model is not enough, then one can make use of a post hoc explanatory method. The
main idea of these methods is that you already fitted a model on your data. Then you use the explanatory method to
extract more information on how the model comes to a prediction.

There are different dimensions in given an explanation for an ML prediction. There are differences in how the explanation
is derived, the range to which the explanation applies and the form of the explanation. Here follows a short description
of these three aspects, inspired by Molnar [6].

Applicability
The applicability does not tells much about the explanation itself, but more about how the explanation is derived. The
method for deriving the explanation might apply to every type of model. The main requirement is a function with input
and output variables, and the method comes up with an explanation. This means that it is not only applicable to ML
models but that it could also be applied to statistical models. These methods are called model-agnostic methods. The
advantage is that they are flexible and that the results of different models can easily be compared.

On the contrary, some methods only work for a specific model. Sometimes the method uses certain model internals
or the explanation is derived intrinsically. These are called model-specific explanatory methods.

Scope
An ML model could be explained on a global scale. Then you can say something about the features and interactions that
influence the prediction in general. The scope of the explanatory translates directly to the representativeness of the ex-
planation.

On the contrary, an explanation could describe how the prediction of a specific instance is made. However, this does
not necessarily mean that this explanation also generalizes well to the whole range of the model. For example, the value
of an apartment in a big city could very much be based on its livings space, because of the limited available space. On the
other hand, this would probably be less important for a house in a rural area, since there is space enough.

Furthermore, there is everything between the extremes of the explanation of the whole model and the explanation of
one single instance. One could think of an explanation for a certain subgroup or cluster.

Result
There are many ways of giving a good explanation and there is no one best way. It always depends on the situation and
the explainee. Here follows a list of possible outcomes of an explanatory method.

The result could be a feature summary statistic. This is a list or table with a value for each feature that says something
about the importance of the feature. One could do this for every feature, but this might be inconvenient in problems with
dozens of features, so one could also choose to do this only for a subset or for the most important features. It could also
have a more complex interpretation, for instance, the effect of the interaction of features on the prediction.

Another result that is close to the feature summary statistic is the feature summary visualization. Instead of a list or
table, this is a figure. That could, for instance, be a 2 or 3-dimensional plot, but also a pie chart is possible. Humans have
problems with imagining more than 3 dimensions. That makes that these methods are often constrained to visualizing
only 2 features.

The model internals are the outcome of parameters after the model is trained. That could be the coefficients of a lin-
ear regression model or the weights of a neural network. But that could also be the structure of a decision tree. For some
models, this gives a human interpretable explanation such as the coefficients of a linear regression model. But for exam-
ple, the weights of a deep neural network give no interpretable explanation of how the model predicts. Besides, very deep
decision trees can be hard to interpret.

The result of an explanatory method could be a data point, another instance of the problem. That could be an instance
that is representable for the input instance or that is contrastive to the input instance. If you want to know why your house
has a certain value according to the model, then a useful explanation could be that your neighbour sold their house for
the same price. Another useful explanation could be that your other neighbours sold their house for e20.000 more be-
cause they have a garage.

Another outcome could be an intrinsically interpretable model. If the model itself is not interpretable, then one could
train an interpretable model that mimics the behaviour of the machine learning model. Linear regression with little fea-
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tures or shallow decision trees are still interpretable by human, especially for machine learning specialists. Also, a simple
set of rules could be seen as an interpretable model, which looks like a decision tree but with a planar structure.

Finally, the outcome of an explanatory method could also be a conditional statement. The conditional statement con-
tains some conditions about feature values that need to be satisfied for the outcome to be of a certain kind. An example
of such a conditional statement would be: if your house was 20 m2 bigger and it had a garage, then the value would be
e20.000 more.

2.4. Existing Explanatory Methods
There are many different explanatory methods with different properties as described above. Some explanatory methods
are more sophisticated than others. Some easy to apply methods are Partial Dependence Plot (PDP), Individual Condi-
tional Expectation (ICE), Accumulated Local Effects (ALE), Feature Interaction (FI) and Permutation Feature Importance
(PFI). Molnar gives a good explanation of all these individual explanatory methods in his book [6]. All these methods give
a feature statistic or feature visualization where you need certain knowledge to interpret the data. A more detailed review
of the newest and most promising methods will follow below.

2.4.1. Local Interpretable Model-agnostic Explanations (LIME)
The LIME method is invented by Ribeiro et al. [8]. The idea is that you train a local surrogate model that tries to approxi-
mate the predictions of the underlying ML model.

Suppose you have an ML model and you can do predictions with it but you do not know anything about the model.
If you want to understand why the model makes a prediction y on a specific instance x, you can use the LIME method.
First, you generate many samples xi in the neighbourhood of x and let the model make predictions y i . Then you choose
an interpretable surrogate model, for instance, a linear regression model. You train this model on the samples (xi , y i ). If
you have trained your model, then the β coefficients of your linear regression model, tell you something about how the
ML attributes the features around your instance x.

The difficulty is how to sample in the neighbourhood of x. A logical choice is to perturb x in each direction with a nor-
mal variable with mean zero. But then one has to choose the size of the variance. If the variance is too small, then the
neighbourhood around x is too small and the explanation has a very local scale. If the variance is too big, then the neigh-
bourhood is too big and the surrogate model might not pick up the local relations. Then the explanation is not telling the
whole story. What the right size of the neighbourhood is, is a difficult task and needs a lot of fine-tuning. In certain cases,
the explanation changes completely if the neighbourhood size is modified.

Advantages
The choice of the surrogate model can make the explanation human friendly. For instance, the lasso model can create a
short explanation in problems with many features, where only the most explaining features appear in the explanation.

Another advantage is that the features of the ML model are not necessarily the same as the features where the surro-
gate model is trained on. One could choose to aggregate some features in one feature to create a more interpretable
feature. This is very useful where ML is applied to image classification. Then the input feature of the ML model are colour
values of a pixel, but this can be aggregated to picture segments as input for the surrogate model.

The accuracy of the fitted surrogate model tells something about the certainty of the explanation. For instance, linear
regression with very small confidence bounds is likely to give an accurate explanation.

The choice of the surrogate model does not depend on the ML model that is used. Suppose you choose a certain surrogate
model because the explainees prefer that model, for instance, linear regression. Then the ML model can be exchanged by
another model that has higher accuracy. The surrogate model can stay the same, it only has to be trained on the new ML
model.

Disadvantages
Finding the right size of the neighbourhood is one of the main problems when using the LIME method. One needs to
do a lot of fine-tuning to the neighbourhood size. Modifying the neighbourhood size can change the explanation, which
makes that the explanatory method is inconsistent.

Another problem is that the method is not stable. Two instances that have similar features and a similar prediction can
have a very different explanation [9].
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2.4.2. Scoped Rules (SR)
The Scoped Rules or Anchors method explains in the form of local sufficient conditions for certain predictions. The
method constructs rules that are called anchors. An anchor states something like ‘if feature 1 falls in the interval [a,b]’. If
all anchors hold, then you can give an estimate of the prediction that holds with high probability. The anchors method
takes an input instance and returns which features should be kept (approximately) the same as the input instance, to
keep the prediction also the same as the input instance.

A concrete example of an anchors explanation in the real estate valuation framework would look like this:

If the property has a living space between 100m2 and 120m2,

and if the property is between 5 and 8 years old,

and if the property is located in the city of Amsterdam,

then the value is betweene300.000 ande320.000 with a probability of 0.95.

The alibi package in Python contains an implementation of the anchors method that is based on the method of Ri-
biero [7]. This implementation can handle numerical and categorical input features. However, the prediction should be
categorical. Therefore the predictions have to be put in bins before the method can be applied.

Advantages
The output of the method is a text that is understandable for people, even for laymen. One can limit the number of anchor
rules such that the explanation is selective and easier to understand.

This method overcomes the shortcoming of some other methods that try to locally linearize the model. If the model is
locally highly non-linear, a linear model is too confident about its result and should not be trusted. The anchors method
handles this issue by returning a coverage value, which indicates how much of the input data is covered by the explana-
tion.

Disadvantages
If the feature space is large (in the order of tens or hundreds) then the anchors method needs a lot of computation time.
The implementation of Alibi makes bins for every continuous feature and samples new instances from these bins. If there
are many features and the bin size is chosen small, then there are a lot of permutations on the input instance possible.
Therefore this implementation can have a very high computation time.

Furthermore, the result of the method can be unsatisfying for the explainee. For instance, if one wants a high proba-
bility bound for the prediction, then the bin size of the input feature might be so small, that the coverage becomes almost
0 and the anchors only apply for that specific instance. Furthermore, it might need a lot of anchors to get a high prob-
ability. If 30 anchor rules need to apply to an instance to make a probable prediction, then the interpretation of these
rules becomes a bit cumbersome. One can force the method to limit the number of rules, but then the precision of your
prediction could reduce significantly.

The method assumes that the input features are independent since it samples new instances. This is often not the case
and it could be possible that if two features are highly correlated, that the method samples instances that are impossible
in real life.

The method has a lot of hyperparameters that need to be tuned. Therefore it is not so easy, and might even be impossible
to get a satisfying explanation from this method.

2.4.3. Shapley (SHAP)
The Shapley method is a feature attribution method, with its origins in Game Theory. The Shapley values were first used
to assign the contribution of a single player to the payoff of a coalition. This is translated to a prediction game, where the
features are the players and the prediction is the payoff. Then the Shapley method is a feature attribution method that
describes how much each feature attributes to the predicted outcome. The attribution of a feature is called the Shapley
value.

Here follows an example of the Shapley method to illustrate how it works. Suppose there is an ML model that predicts
house prices. As input, it takes the surface area, the house type and the city of the house. Now, you give the ML an apart-
ment with a surface area of 100m2 in Amsterdam. The ML predicts that the house is worth e300.000, but how much is
each feature contributing to this price? For that, the Shapley values explain the difference between the average house
price, which is determined at e250.000 for example, and the predicted house price, which was e300.000. Then a result
of the Shapley method could be that the surface area of 100m2 contributes e30.000, the house type being apartment
contributes -e20.000 and the fact that the house is in Amsterdam contributese40.000. The sum of the Shapley values of
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all features equals the difference between the prediction and the average,

e300.000−e250.000 =e30.000−e20.000+e40.000.

To determine the Shapley values, one uses a method from Game Theory. The features are gathered in coalitions. Then the
attribution of a feature is the prediction if the feature is in the coalition minus the prediction if the feature is excluded from
the coalition. The Shapley value is the average over all possible coalitions. The prediction of a coalition is not straightfor-
ward, since the ML model is trained on all features, so how can it make a prediction when only a subset of features are
known. For that, there are different solutions, as will be described in Chapter 3.

Advantages
The Shapley values have a few desirable properties, such as efficiency, symmetry and dummy. The efficiency property
means that the Shapley values describe the full difference between the prediction and the average. The symmetry prop-
erty tells that if two features contribute equally, then the Shapley values are equal. The dummy property makes that the
feature that never changes the prediction, has a Shapley value of 0. The above properties are in line with human intuition.
Also, these properties are a solid foundation when an explanatory method needs to hold in court.

The scope of the Shapley values can be modified by changing the background data set. The Shapley can be compared to
a big data set or to a single instance. That makes that Shapley values have the possibility to give contrastive explanations
by choosing a certain background data set. For instance, one can explain where the difference between two predictions
comes from by making the background data set only a single point. In Chapter 3 these Shapley values will be defined as
B Shapley values.

Disadvantages
The computation time for the Shapley values is exponential in the number of features. The Shapley values are namely
the sum over all possible coalitions, so for N features this is a sum with 2N terms. For models with many features, the
Shapley values become very expensive to calculate. Luckily, there is an approximation method named the kernel Shap
method. This method is implemented in Python in the shap package. This method makes it possible to calculate the
Shapley values for models with more features, however, the approximation of the Shapley values to the exact Shapley
values becomes worse for higher numbers of features.

Another disadvantage is that a background data set is necessary to calculate the Shapley value. A prediction function
of the ML model is not enough, because of two reasons. First, the Shapley values explain the difference between the pre-
diction and the average of the background data set. Second, the calculation method of the Shapley value makes a new
random instance by drawing some features from the background data set. Without a background data set, the random
samples can have feature values that are not possible in the real world.

The last and maybe the biggest issue is that the calculation of Shapley values has problems when there are correlated
features. Current implementations assume independence between features, for instance the kernel Shap implementa-
tion [10]. Random sampling goes wrong when there are correlated features because each feature is sampled from the
marginal distribution. If the features are dependent, then the random samples can have very unlikely features values. For
example, if the features surface area and volume are drawn from their marginal distribution, then a house can occur with
a surface area of 100m2 and a volume of 100m3, but this is a very unlikely instance.

2.4.4. Counterfactual Instances (CFI)
A type of explanation that is easily understandable for people without any knowledge of models is a counterfactual ex-
planation. Counterfactual explanations can be defined as:

”How the world had to be different for the outcome to be different" [11].

An example of a counterfactual explanation for the commercial real estate valuation problem would be:

Now my house has 50 m2 living space and is worth e100.000,-. If my house had 20 m2 extra living space,
then my house would be worthe30.000,- more.

The advantages of counterfactual explanations are that this way of explaining is comprehensible for people without any
knowledge of the model. Furthermore, the explanation is selective and someone can get to know which feature (if possi-
ble) he needs to change to increase the value of his property by a certain amount.

Multiple algorithms in literature generate counterfactual examples[11, 12]. The most useful for this problem seems to
be the method of Dandl et al.[12], since their method is superior in performance and can handle numerical and categor-
ical features. The method is based on simultaneously optimizing four different objective functions.

The four objective functions make that the counterfactual example is understandable and sensible to humans. The ob-
jectives are
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1. The prediction of the counterfactual example should be close to the desired prediction.

2. The counterfactual example should be close to the original instance.

3. The counterfactual example may differ from the original instance only on a few features.

4. The counterfactual example should be realistic. So it should be close to another instance in the input data.

The four objective functions are optimized simultaneously with an optimisation method called Nondominated Sorting
Genetic Algorithm II.

Advantages
Counterfactual explanations are easy to interpret. The resulting outcome of the explanatory method is close to how hu-
mans explain to each other. That makes the method understandable for people with all kinds of backgrounds.

The method only needs the models’ prediction function. A background data set is not necessary to create counterfac-
tual explanations.

Counterfactual explanations can also be created for non ML models. That makes them widely applicable and easy to
compare between different (non) ML models.

Disadvantages
In most cases there will be many counterfactual explanations. There is no best explanation since every explanation is
true, but some of the explanations won’t be very useful. It is hard for people to handle an overload of 20 or more explana-
tions. It becomes an even bigger problem when some explanations are contradicting.

It could also be the case that the counterfactual explanations are not useful for the explainee. For instance, if the explainee
wants a counterfactual explanation of why his mortgage request is rejected by the bank. If the result is a counterfactual
explanation that tells that the mortgage would not be rejected if he was a female, then the explanation is not very useful
for the explainee. It is not a feature that he can change, such that his mortgage request is accepted.

2.4.5. Summary
A summary of the explanatory methods of Section 2.4 is given in Table 2.1. Remember that the framework is the real
estate valuation problem. The explainees of our explanation are house appraisers. These have high knowledge of houses
and which features drive the price. However, they are probably not familiar with mathematics. So difficult to interpret
attributions or plots should be avoided. The goal is to assist the appraisers with appraising real estate by using an ML
model and accordingly an explanation. The main application is real estate valuation for taxation purposes. Therefore, an
explanation with a solid theoretic foundation is preferred. In that light, the Shapley values seem to be the most promising
explanation method, since this method satisfies certain properties as symmetry, dummy, efficiency and linearity. There-
fore the Shapley value method is the topic of further investigation. Also, the disadvantage of needing a background data
set is not a problem, since there is a big data set available of over 1 million house transactions. The disadvantage of
assuming independence in the approximation method will be part of the research.

method scope applicability result advantages disadvantages

LIME local model-agnostic interpretable - easy interpretable - a lot of hyperparameter tuning
model - feature engineering - unstable

- accuracy of explanation
SR local model-agnostic conditional - interpretable for laymen - computationally heavy

statement - coverage value - possible useless explanation
- assumes independence
- a lot of hyperparameter tuning

SHAP local model-agnostic feature summary - solid theory - computationally heavy
statistic - select background data - needs background data set

- implementation assumes
independence

CFI local model-agnostic conditional - easy interpretable - many (contradicting)
statement explanations

- possible useless explanation

Table 2.1: A summary of the four explanatory methods described in Section 2.4





3
Shapley Value Definition

In Section 2.4 already a brief introduction of the Shapley method is given. Since it is the subject of the rest of the research,
it is necessary to dive deeper into the method. This chapter will give the exact definition (in fact there are three) and some
properties of the Shapley values.

The Shapley method is a way to attribute the value of a single player i to the value of the coalition S, where S is a subset of
all players N . The value or value function of a coalition S is defined as v(S). Then the Shapley value of player i compared
to the whole group of players N is defined as

ϕi =
∑

S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |! (v(S ∪ {i })− v(S)) (3.1)

The Shapley value can be interpreted as the contribution of player i to the value averaged of all possible coalitions S. The
game-theoretic Shapley values can be translated to feature attribution of a model cleverly. Observe a model prediction
as a game in which the players are features and the outcome is the model prediction. For instance, an instance x =
(x1, ..., x|N |)T , model f and prediction f (x) = y . Of course, the coalition of all features have as value the prediction of the
model, so

v(N ) = f (x) = y

Also, when none of the features is in the coalition, the empty coalition, the value should be 0,

v(;) = 0

But for all other possible coalitions it is not clear what the value function should be. There are different options for how
to define the value function. A different value function gives different Shapley values.
In Section 3.1 the most important properties of the Shapley values will be enumerated. These properties hold for all value
functions. In Sections 3.2, 3.3 and 3.4 there will follow three different definitions of the value function, which give different
Shapley values. The question is which of these definitions is most suitable for the real estate valuation problem.

3.1. Properties
Regardless of the definition of the value function, the Shapley values have certain desirable properties. Proofs of these
properties are straightforward and can be found in many different papers and books [13, 14]. The most important prop-
erties are

1. Symmetry If f is symmetric in i and j and if the input data has xi = x j , then ϕi =ϕ j

2. Dummy If i is a dummy variable, then the Shapley value is zero. A variable is a dummy variable if for any xi , x′
i and

for all xN \{i } it holds that f (xi ; xN \{i }) = f (x′
i ; xN \{i }). In other words, a dummy variable is a variable that does not

add to the prediction, no matter what the values of the other features are.

3. Efficiency The sum of the Shapley values over all features is equal to the difference between the prediction and the

global average,
∑|N |

i=1ϕi (x) = f (x)−E[
f (X )

]
4. Additivity If f and g are both prediction functions, then the Shapley values of the sum of the predictions is equal

to the sum of the Shapley values of both prediction functions.

15
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3.2. Conditional Expectation Shapley (C)
First, one could choose the conditional expectation as the value function. Then one defines the explicand x and the
distribution of the input data D. Also define the restriction of x to a set of features S as xS = {xi : i ∈ S}. Then the
conditional expectation value function is defined as

vC
x (S) =EX ′∼D

[
f (X ′)|x′

S = xS
]−EX ′∼D

[
f (X ′)

]
.

This is the conditional expectation of the prediction function conditioned on the feature values of x that are in S. This
is how Lundberg et. al. [10] defined the value function when they invented the SHAP method. But because of their
approximation method, they essentially calculated the M Shapley values, which are defined in a coming paragraph. If the
prediction function is a linear regression model, then the value function of the C Shapley values get the explicit form

vx (S) =EX ′∼D

[
f (X ′)|X ′

S = xS
]

= ∑
i∈S

βi xi +
∑

i∈N \S
βiEX ′∼D

[
X ′

i |X ′
S = xS

]
. (3.2)

Combining the value function of the Shapley values with the definition of the Shapley values, defines the C Shapley values,
namely

ϕC
i (x) = ∑

S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |!
(
vC

x (S ∪ {i })− vC
x (S)

)
.

It is difficult to interpret the C Shapley values directly. Note that one needs to know (or approximate) the underlying
distribution D to calculate the C Shapley values. Two solutions for that are given in Sections 4.2 and 4.3.

3.3. Baseline Shapley (B)
On the other hand, one could choose the baseline value function. For that, a baseline instance r (reference instance)
needs to be chosen. Then the value function becomes

vB
x,r (S) = f

(
xS ;rN \S

)− f (r ).

The composite instance
(
xS ;rN \S

)
has the feature values of x for features in set S and has feature values of r otherwise.

This can be interpreted as the explicand x against the baseline r . Note that it is not necessary to know the underlying
distribution D to calculate the B Shapley value, because there is no expectation in the value function. The definition of
the B Shapley value becomes

ϕB
i (x,r ) = ∑

S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |!
(
vB

x,r (S ∪ {i })− vB
x,r (S)

)
.

The B Shapley values do not give an overall attribution of the features to the prediction. Instead, the B Shapley values
explain how much a feature contributes to the difference between the prediction of x and the prediction of b. This can
be useful if you want to compare the prediction of specific cases. For instance, if two adjacent houses have a significantly
different predicted house price, then the B Shapley values can give an indication of where the difference comes from. To
get an overall attribution from the B Shapley values, one can average the baseline value function over different baselines,
which give the M Shapley values.

3.4. Marginal Expectation Shapley (M)
The B Shapley values can be combined to an overall Shapley value, the M Shapley values. The value function is the
expectation of the baseline value function over every possible baseline,

v M
x (S) =ER∼D

[
vB

x,R (S)
]

=ER∼D

[
f (xS ;RN \S − f (R)

]
=ER∼D

[
f (xS ;RN \S )

]−ER∼D

[
f (R)

]
.

It is called M Shapley values because it essentially calculates the marginal expectation. Note that is different from the con-
ditional expectation value function in the sense that there is not conditioning on the features in S, it is just the expectation
over the underlying distribution D. The definition of the M Shapley values is

ϕM
i (x) = ∑

S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |!
(
v M

x (S ∪ {i })− v M
x (S)

)
.
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This can be interpreted as explicand x against the average instance of D, where the average instance is the instance with
every feature value the average of that feature. Note that one needs to know (or approximate) the underlying distribution
D to calculate the M Shapley values. Two solutions for that are given in Sections 4.2 and 4.3.

In some literature, the M Shapley value is referred to as the random baseline Shapley value [14]. A short proof shows
that this is equal to the expected B Shapley value [15]

ER∼D

[
ϕB

i (x,R)
]
=ER∼D

[ ∑
S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |!
(
vB

x,R (S ∪ {i })− vB
x,R (S)

)]

= ∑
S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |!
(
ER∼D

[
vB

x,R (S ∪ {i })
]
−ER∼D

[
vB

x,R (S)
])

= ∑
S⊆N \{i }

|S|! (|N |− |S|−1)!

|N |!
(
v M

x (S ∪ {i })− v M
x (S ∪ {i }

)
=ϕM

i (x).

A summary of the possible Shapley values is in Table 3.1.

Shapley value value function v(S)
B Shapley function evaluation f (xS ;rN \S )− f (r )
M Shapley marginal expectation ER∼D

[
f (xS ;RN \S )

]−ER∼D

[
f (R)

]
C Shapley conditional expectation EX ′∼D

[
f (X ′)|x ′

S = xS
]−EX ′∼D

[
f (X ′)

]
Table 3.1: A summary of the three different Shapley value definitions.





4
Shapley Value Approximation

The Shapley values are elegant in theory, but in practice, there are two main problems to overcome. First, the definition
of the Shapley values in Equation 3.1 is exponential in the number of features d = |N |. For each Shapley value, one needs
to calculate a sum with 2d terms, which is computationally heavy for high dimensions. In that case, an approximation
method is necessary. Luckily, the kernel approximation method is invented by Lundberg et al. [10] which will be explained
in paragraph 4.1.

Furthermore, the C and M Shapley values both take the expectation of the prediction function f over the data distri-
bution D. There are two problems with calculating this expression. First, the value function f is often not analytically
known, for instance when a complex ML model is used. Nevertheless, there is the possibility to gain knowledge of f by
evaluating it for different data points. Second, the data distribution D is unknown. A solution is to approximate D. Two
ways to approximate D are described in respectively paragraphs 4.2 and 4.3. When approximating the C Shapley values
and the features are dependent, then it is important to take this into account. Chapter 5 describe the experiments that
try to find out what is the best method to take the dependence into account.

4.1. Kernel Approximation
The definition of the Shapley values implies

f (x) =φ0 +
d∑

j=1
φ j .

where φ0 =EX∼D

(
f (X )

)
is the average prediction of the model over the data set. Then the Shapley values can also be

stated as a weighted least squares problem [10] where you want to minimize

∑
S⊆N

(
v(S)−

(
φ0 +

d∑
j=1

φ j

))2

k(d ,S) (4.1)

and

k(d ,S) = d −1( d
|S|

)|S|(d −|S|)
.

Equation 4.1 can be rewritten in matrix form [1]. Let φ be the vector of Shapley values. Let Z be the 2d ×d +1 coalition
matrix, where every row is a different coalition and the cells with value 1 are members of the coalition and cells with value
0 are not. Note that the first column contains only value 1 since φ0 is always included. Also, let v be the value function
vector where every row of Z has value function v(S). Finally, W is the 2d ×2d diagonal matrix with values k(d ,S). Then
equation 4.1 becomes

∑
S⊆N

(
v(S)−

(
φ0 +

d∑
j=1

φ j

))2

k(d ,S) = (v −Zφ)T W (v −Zφ).

The solution for φ of this problem is

φ= (Z T W Z )−1 Z T W v.

19
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For a problem with many features d , this becomes a huge matrix product. Therefore, Lundberg et al. [10] came with the
idea to sample coalitions S from a probability distribution proportional to the kernel weights k(d ,S). The subset M of M
is the sampled subset of coalitions S and |M |¿ |M |. Then the solution of the Shapley values becomes

φ= (Z T
M WM ZM )−1 Z T

M WM vM = RM vM .

The advantage of this kernel method is that the matrix product is smaller than the original matrix product because only a
subset of all possible coalitions is included. Another advantage is that RM only has to be determined once.

4.2. Monte Carlo Approximation
The other problem is that the expectation cannot be determined since the data generating distribution D is unknown.
The solution is to use a Monte Carlo integral to approximate the expectation, namely for M Shapley values [1]

ER∼D

[
f (xS ;RN \S )

]≈ K∑
k=1

f
(
xS ;Rk

N \S

)
with Rk ∼D′

X ,

and for C Shapley values

EX ′∼D

[
f (X ′)|x′

S = xS
]≈ K∑

k=1
f
(
xS ;Rk

N \S

)
with Rk

N \S ∼D′
X |xS

.

where D′
X is an approximation of the distribution DX and D′

X |xS
is an approximation of the conditional distribution

DX |xs . Now the next problem arrives, namely how to approximate the distributions to sample from. It turns out that
there are several possibilities.

The Input distribution D Inp , where you use a background data set to sample from. Sampling from D Inp is drawing
samples independently from the background data set. A drawback of this method is that a big background data set is
needed if one is using many features. In theory, it should also be possible to sample conditional from D Inp . However, in
practice, this is often very hard, especially when continuous features are included. For instance, when conditioned on a
continuous feature, there is (almost no) sample in the background data set with the specific continuous feature value.

The Joint Marginal distribution D J M is the composition of univariate marginal distributions. Sampling for D J M is
sampling every feature independently from their marginal distribution. The correlation between features is completely
ignored. It is possible to sample from the conditional distribution D J M

X |xS
but is the same as sampling from the uncondi-

tioned D J M . Therefore, the approximated C and M Shapley values are exactly the same for D J M .

The Multivariate Gaussian distribution DMG is a multivariate Gaussian distribution that is fitted on D. This method
is invented by Aas et al. [1]. The mean and variance of the fit will be respectively the sample mean and the sample co-
variance matrix of the background data set. It is easy to sample from a Gaussian distribution. Besides, it is possible to
sample from the conditional multivariate Gaussian distribution, see for instance [1]. The conditional distribution DMG

X |xS

is different from the unconditional distribution DMG
X , therefore the approximated C and M Shapley values will be differ-

ent. Namely, this distribution also takes into account the correlation between features. A drawback of this distribution
is that it does not handle discrete and categorical features well. Discrete and categorical features do not fit in a Gaussian
distribution.

The Gaussian copula distribution DGC is a fitted Gaussian copula with fitted marginals on the background data set.
The mean and covariance of the fit will be respectively the zero vector and the sample spearman correlation matrix of the
background data set. The marginals of the copula will be the empirical density function of the background data set. One
can sample from the unconditional distribution and the conditional distribution DGC

X |xS
[16]. This distribution takes into

account the dependence between the marginals. Therefore, the approximated C and M Shapley values will be different
for the Gaussian copula distribution. Aas et al. [1] invented this method for continuous variables. It turns out that it can
be extended to discrete variables by fitting certain marginals. This is an advantage of DGC compared to DMG . Therefore
this distribution seems to be the most promising for the real estate valuation problem.

There are many more distributions possible. Any distribution that fits the data well, could be a good candidate. For
instance, it is possible to fit another copula than the Gaussian copula. However, for this research, these are the distri-
butions that are chosen to investigate. One reason is that for the Multivariate Gaussian and the Gaussian Copula it is
easy to determine the conditional expectation. Then experiments can be done where the samples are drawn from these
distributions and the analytic Shapley values can be determined, such that the approximated and the analytical Shapley
values can be compared.
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4.3. Likelihood Weighted Approximation
As described above, the Monte Carlo integration method depends on approximating D and sampling from that distri-
bution. To determine the C Shapley values even the conditional distribution needs to be determined. Determining the
conditional distribution is even more difficult than determining the unconditional distribution. The likelihood weighted
method overcomes this problem by not depending on sampling from a conditional distribution but weighting the Monte
Carlo sum to its likelihood. That looks as follows

EX ′∼D

[
f (X ′)|x′

S = xS
]≈ K∑

k=1
w

(
xS ;RN \S

)
f
(
xS ;Rk

N \S

)
with Rk ∼D Inp ,

where Rk are just sampled from the background set. The weights are defined as follows,

w
(
xS ;Rk

N \S

)
=

PD′
(
xS ;Rk

N \S

)
∑K

i=1PD′
(
xS ;Ri

N \S

) .

In this method, it is less important from which distribution you sample Rk , since the samples are weighted to their likeli-
hood with respect to D′. For example, it could be that (xS ;Rk

N \S ) is a very unlikely instance, then the weight w(xS ;Rk
N \K )

corrects for that and gives the instance low weight. Therefore it is less important from which distribution the samples are
drawn, and it could just be D Inp . The method is inspired by Aas et al. [1], where they use a certain multivariate empirical
distribution for D′. It was not possible to use the empirical distribution in the Monte Carlo method, however, it could be
used in the likelihood weighted method. The likelihood weighted method opens the door for many more distributions
than the Monte Carlo method since you do not need to sample from that distribution. Any distribution that fits the data
well could be used, even non-parametric distribution, as long as one can determine the likelihood for an instance.





5
Experiments

There are two questions that need to be answered by performing experiments. Remember that the main problem was
which of the three Shapley definitions is most suitable for the real estate valuation problem? This lead to a sub-question
which approximation method determines the C Shapley values most accurately? First, the experiments for the sub-
question will be performed and after the experiments for the main question follows.

The experiments for the sub-question will be explained in Section 5.1. Then the step is made towards the real estate
valuation problem, namely which method approximates the C Shapley value the most accurate for house transaction
data, which will be explained in Section 5.2. Finally, the comparison between the three Shapley values can be made as
described in Section 5.3.

5.1. Simulated Environment
To test which method approximates the C Shapley values most accurately, experiments are performed. The first exper-
iments are done with simulated data, where the simulated data is from a predefined data generating distribution D.
Furthermore, the value function f is also predefined and known. In this synthetic environment, the conditional expec-
tation can be calculated, hence the theoretic C Shapley values are known. Therefore the approximated C Shapley values
can be compared to the theoretic C Shapley values and the best approximation method can be determined.

Simulated data
The data can be simulated from any distribution, however, there needs to be an analytical expression for the conditional
expectation such that the theoretic Shapley values can be determined. Besides, it is useful to use a distribution with
discrete and continuous variables combined, because the house transaction data contains mixed features too. One dis-
tribution that satisfies both conditions is a d-dimensional Gaussian copula with continuous and discrete marginals. The
Gaussian copulas is defined as

CGauss
Σ (u) =ΦΣ

(
F−1

1 (u1), ...,F−1
d (ud )

)
,

where ΦΣ(x) = Nd
(
0,Σd (ρ

)
). The inverse cumulative distribution of the marginals are F−1

i . The marginals are predeter-
mined and such that the variables are continuous and discrete. The variance matrix Σd (ρ) will be chosen as follows

Σd (ρ) =


1 ρ · · · ρ

ρ 1 ρ

...
. . .

...
ρ ρ · · · 1

 ,

such that ρ is a metric for the correlation between the variables. By increasing ρ, the correlation between the features will
increase. During the experiments, ρ will be varied between 0 and 0.95. For every experiment, the Shapley values of 200
samples are calculated. A background data set of 1,000 is used. Each setup will run 10 simulations and the results will be
the average over the 10 runs.

Copulas are not unique when the marginals are discrete. Also, if F is a discrete CDF and u is a uniform random vari-
able, then F (F−1(u)) 6= u. Therefore, the discrete random variables X j are transformed to continuous variable via the
transformation [17]

Y j = X j +V j −1

23
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where V j are independent uniform (0,1) random variables. Y j are now continuous variables and

{Y j ≤ x j } = {X j ≤ x j }.

A two-dimensional copula of this transformation is called a checkerboard copula.

Prediction Function
The prediction function is also predetermined. In this experiment, the prediction function is a simple linear model,
namely

f (X ) = x1 + ...+xd +ε,

where ε∼ N (0,0.01) is the noise term. A linear model will be fit on the background data, which looks like

f̂ (X ) =β1x1 + ...+βd xd + ε̂.

This setup is comparable to the setup of Aas et. al. [1], such that the results can be compared.

Theoretic C Shapley value
Since the data generating distribution and the prediction function are known, the theoretic C Shapley values can be deter-
mined. For that, one needs to calculate the value function, so the conditional expectation. The conditional distribution
of a Gaussian copula is known. For that, the steps of Kaarik et al. [16] can be used. Let X1, ..., Xd be the (discrete or
continuous) random variable with cumulative density functions F1, ...,Fd . Suppose without loss of generality that Xk+1
is the unobserved variable and that X ′

i s with i ∈ {0, ...,k} are the observed variables.

1. Use the normalizing transformation Z j =Φ−1
(
F j

(
X j

))
for all j = 1, ...,k +1, such that Z1, ..., Zk+1 ∼ (0,Σk+1).

2. Define

Σk+1 =
[
Σk σk
σT

k 1

]
and let σk = 1−σT

k Σ
−1
k σk The conditional probability density function of Zk+1 given Z1, ...Zk is

fZk+1|Z1,...Zk

(
zk+1|z1, ..., zk ;Σd

)= 1

σk+1
ϕ

(
zk −σT

k R−1
k zk

σk+1

)

where ϕ is the pdf of a standard normal variable. This means that Zk+1|Z1, ...Zk ∼ N
(
σT

k R−1
k zk ,1−σT

k R−1
k σk

)
,

such that

E
[

Zk+1|Z1, ..., Zk
]=σT

k R−1
k zk .

3. Transform back the conditional expectation of Zk+1 via the inverse transformationE
[

Xk+1|X1, ...Xk
]= F−1

k+1

(
Φ(E

[
Zk+1|Z1, ..., Zk

]
)
)
.

The theoretic value function for instance x and arbitrary coalition S is stated in Equation 3.2, where the conditional
expectation can be calculated via the above steps.

Approximation method
Six different approximation methods have been chosen to be used for the experiments, which are

1. mc copula exact is a Monte Carlo approximation method where the samples are from a conditional copula. The
marginals are determined by the empirical cumulative density function of the background data. The copula is
determined by setting µ = 0 and approximate Σ with the spearman correlation matrix. The exact method is used
to calculate the Shapley values sum, not the kernel approximation method. This is possible for small dimensions
since it takes 2d calculations.

2. mc copula kernel is the same as mc copula exact except that Shapley values sum is approximated with the kernel
method.

3. mc gaussian is a Monte Carlo method where the samples are drawn from a multivariate Gaussian. The MG dis-
tribution is fitted on the training data by approximating µ by the sample mean and Σ by the sample covariance.
Furthermore, the sum is approximated with the kernel method. This is the same method as proposed by Aas et.
al. [1].
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4. mc independent is a Monte Carlo method where the variables in S and N \ S are drawn independently. The sum is
approximated with the kernel method. This is the original kernel method from Lundberg et. al. [10] and essentially
calculated the M Shapley values.

5. lw gaussian is a likelihood weighted method where the likelihood is a fitted multivariate Gaussian distribution
with the sample mean and sample covariance. The sum is approximated with the kernel method.

6. lw gaussian mixture is also a likelihood weighted method but instead, the fitted distribution is a Gaussian Mixture
with 2 components. The sum is approximated with the kernel method.

All approximation methods are implemented in Python. The implementation makes use of the shap package. The pack-
age is extended if necessary for the approximation method.

Comparison metric
To compare the approximated and theoretic Shapley values, the mean absolute percentage error is used

MAE = 1

md

m∑
i=1

d∑
j=1

∣∣∣φ j (i )theor eti c −φ j (i )appr oxi mate
∣∣∣

where d is the number of features and m is the number of samples used for the experiment. The errors for the largest
Shapley values are the most interesting since the largest Shapley values will be the most explaining factors. Therefore this
metric is chosen instead of, for instance, the mean absolute percentage error, which puts relatively more emphasis on the
small Shapley values.

5.2. Approximated Environment
If the experiments in the simulated environment are good enough, the step to are more realistic environment can be
made. Suppose that a fit on the real-world data is perfect, so the real data generating distribution is known. Then one can
check how the methods perform. For that, a copula is fit on real-world house transaction data. More information on the
house transaction data set can be found in Appendix C. Then it is assumed that this fitted is the true copula and the same
experiment as above can be done.

The choice of the copula is the Gaussian copula, which is fitted on a part of the house transaction data. The choice
of the Gaussian copula is because it is the most standard copula and more importantly it is easy to determine the con-
ditional expectation for a Gaussian copula. The included features are in table 5.1. The choice is such that any type of
variables is included, but the number of variables is low enough to keep the computation time reasonable.

feature type
construction year discrete
transaction date discrete
storage dummy (y/n) discrete
garage dummy (y/n) discrete
surface area (log) continuous
house type categorical
province categorical

Table 5.1: Features of house transaction data that are included in the Gaussian copula fit.

There are 1,332,458 house transactions in the data set. The continuous surface area marginal is just fitted as the em-
pirical density function, which is reasonable for this many samples. Next, the storage and garage dummy marginals are
fitted as a Bernoulli variable with p equal to the sample mean. For simplicity, the construction year and transaction date
marginals are fitted as discrete random variables within the observed range and with probabilities corresponding to the
sample frequencies. Note that the transaction date is on a monthly level. It is not possible to fit a density function on
the categorical house type variable, therefore the variable is ordinally encoded such that a discrete density can be fitted.
This is not the most elegant way, but if the samples look plausible, it might not be too bad. The categorical feature could
also be one-hot encoded, but that gives troubles with sampling. Namely, samples occur with 1’s for different house types,
while a house can only be of one type. Also, during the calculation of the Shapley values, permutations are made on an
instance. If the house type is one-hot encoded, then the instance can be permuted such that is has a 0 for all house types,
which is a troublesome situation, especially when working with the HTM model. The mean of the Gaussian copula is set
as the zero vector and the correlation matrix is the approximated spearman correlation matrix.
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The C Shapley values will be approximated for 200 samples from this fitted copula. A background data set of 1,000 sam-
ples from the copula will be used for the approximation method. This simulation will be repeated 10 times and the results
will be the average over all 10 runs.

5.3. Real-World Environment
The above two experiments try to show that the C Shapley values can be calculated appropriately. Then a comparison can
be made between the three different Shapley values. The B and M Shapley values have been implemented already in the
shap package in python. The implementation is checked by comparing the theoretic Shapley values of the HTM model
(see Appendix B) and the result of the implementation. If the theoretic Shapley values and the approximated Shapley
values are close enough, the conclusion that the implementation is good can be made. Then an approximation method
for the B, C and M Shapley values are working and can be applied to real-world problems.

The different Shapley Values are calculated for different models. An HTM model is fitted with a local linear trend and
the time-invariant features as a linear regression model. Furthermore, two different ML models will be used. A Multi-
layer Perceptron model, neural network method, and a Light Gradient Boosting Machine model, a tree-based method,
will be used, such that the two most important types of ML models are included. The MLP model will have two hidden
layers with 20 neurons. The LGBM model will have 1,000 trees. Both ML models will be used twice, once fitted on the
real transaction prices and once on samples from the HTM model. The details of the sample generation can be found
in Appendix A. The reason for this is that if the ML model is fitted on samples from HTM, then the underlying model is
known. So one can check whether the ML picks up the real structure of the data, or that it finds different relations that
are good for prediction but are not close to the underlying model. The Shapley values are a tool to check this because
the Shapley values indicate how important the feature values are to come to the prediction. If a certain instance gets the
same prediction from two different models, but the Shapley values of both models are very different, then the models are
using different relations to come to a prediction.

model fitted on abbreviation
Hierarchical Trend Model real transaction prices HTM
Light Gradient Boosting Machine samples from HTM LGBMsample

Light Gradient Boosting Machine real transaction prices LGBMy

Multi-layer Perceptron samples from HTM MLPsample

Multi-layer Perceptron real transaction prices MLPy

Table 5.2: The models that are fitted and for which the different Shapley values are approximated.

The different Shapley values can be calculated for the five models, which will be done for 100 sampled transactions. For
the M Shapley values a background data set of 1,000 samples from the original data set will be used. For the C Shapley
values, the kernel copula method will be used where there are 1,000 samples drawn from the fitted Gaussian Copula to
compute the C Shapley values. The B Shapley values will be calculated to a baseline instance. The baseline instance is
chosen to be an average house transaction, such that it is not an outlier. The baseline instance that is chosen is in Ta-
ble 5.3. The baseline house transaction is a house in Alkmaar, a midsize city in the Netherlands. The house lies in the
province Noord-Holland, one of the provinces with the most transactions. All the other feature values of the house are
also close to the sample mean.

feature value
province Noord-Holland
municipality Alkmaar
house type attached
transaction date 2018-02-01
construction year 1973
surface area 115 m2

transaction price e250.000

Table 5.3: The feature values of the baseline house transaction used to calculate the B Shapley values.
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Results

This chapter will present the results of the experiments that are explained in Chapter 5. First, the experiments in the
simulated environment will be handled in Section 6.1. Then the results of the fitted copula on the house transaction data
will be treated in Section 6.2. Finally, the comparison between the B, C and M Shapley values will be made for the five
different models in Section 6.3

6.1. Simulated Environment
The first experiment is with two standard normal marginals and one Bernoulli marginal with p = 0.5. Remember that
the Shapley values are calculated for 200 samples with 1,000 background samples. The correlation ρ is varied between
0 and 0.95 with steps of size 0.1 and the last step of size 0.05. For every correlation, the experiment is repeated 10 times
and the results are averaged. These results are in Figure 6.1. On the x-axis stands ρ. Remember that ρ is the value of the
off-diagonal elements of the Gaussian Copula where the samples are drawn from. This is a measure of the correlation
between the features. On the y-axis stand the mean absolute error of the approximated C Shapley values compared to
the true C Shapley values. The different approximation methods have different colours. From the 10 runs also a 95%-
confidence interval of the MAE can be determined, which is included in the plot.

The second experiment is with two standard normal marginals, one Bernoulli marginals with p = 0.01, one Bernoulli
with marginal p = 0.5, one random discrete marginal {−1,0,1,2} with probabilities (0.25; 0.25; 0.25; 0.25) and one ran-
dom discrete marginal {−1,0,1,2} with probabilities (0.49; 0.01; 0.01; 0.49). The choice is such that all different types of
marginals are included and some extreme situations are included.

Figure 6.1: The results of different C Shapley value approximation methods. The marginals of this experiment are two standard normal
marginals and one Bernoulli marginal with p = 0.5.
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Figure 6.2: The results of different C Shapley value approximation methods. The marginals of this experiment are two standard normal
marginals, one Bernoulli marginal with p = 0.5, one Bernoulli marginal with p = 0.99, one random discrete marginal {−1,0,1,2} with
probabilities (0.25; 0.25; 0.25; 0.25) and one random discrete marginal {−1,0,1,2} with probabilities (0.49; 0.01; 0.01; 0.49).

Both experiments show that for higher correlation the copula methods are better than the other methods for the two data
generating Gaussian copulas. The difference between the methods is bigger for the second experiment. Maybe this is due
to the higher number of variables that is used. The second experiment shows that the mc independent method already
performs significantly worse than the other methods from a correlation of 0.1. The copula methods are significantly
better than the other methods from a correlation of 0.3, where the exact copula method is better than the kernel copula
method as expected. Also, the likelihood weighted method with a Gaussian Mixture distribution performs almost as good
as the copula methods. The results of these experiments suggest that the copula methods can be used for estimating the
C Shapley values for the house transaction data. But before that, a copula is fit on (a part of) the house transaction data,
which is the subject of Section 6.2.



6.2. Approximated Environment 29

6.2. Approximated Environment
A Gaussian copula is fitted on a part of the house transaction data. The data consists of 1,332,458 house transactions in
the Netherlands, more details about the data set are in Appendix C. The features that are used for the fit are the surface
area (logarithmic), the construction year, the transaction month, the house type, the province and whether the house
contains a storage and/or garage. Note that the province and house type are ordinally encoded. That means that a cer-
tain ordering is applied to the categories. That is an undesired effect because there is not an ordering in house type or
province. The downside is that the correlation does not represent the real correlation. But if the samples from the fitted
copulas resemble the real examples, then this effect might not be too dominant.

Figure 6.3 shows the Spearman correlation matrix between the features. The diagonal is contains only ones. Further,
there is a negative correlation between having a storage and having a garage. One could expect that since a storage and a
garage are interchangeable for many people. Besides, having a garage is highly correlated with the surface area, which is
expected since often only big houses have a garage. Furthermore, the house type has two significant negative correlations,
namely with the garage and with the surface area. It depends on the ordering of the house type, but it is understandable
that certain house types have more often a garage and have often a bigger surface area.

Figure 6.3: The spearman correlation matrix of the house transaction data used for fitting a Gaussian copula.

It is possible to draw samples from a Gaussian Copula. Samples drawn from the fitted copula are compared to the real
data instance to check whether the fit of the copula is good. The histogram density plots of the real data and the samples
are in Figure 6.4. The true data points are the blue bars. The orange bars are samples from the fitted Gaussian copula.
The density histograms of the feature of the samples are very close to the density histograms of the real data points. The
surface area, house type, storage and garage seems to fit almost perfectly. The construction year, transaction month and
province show some differences, but this is probably due to limited sample size in combination with many different cat-
egory types.

The marginal densities of the real data and sampled data can be alike, but that is not enough. There might be samples
with an unlikely combination of feature values. To check that these kinds of problems are not occurring, a pair plot of
densities is created. That is a grid where every combination of features is represented. This plot is shown in Figure 6.5.
The lines represent the density of points, the higher the density of lines the higher the density of points. The choice of
this kind of plot is made because a scatter plot would have a lot of overlapping points, such that it is not clear what is
underneath certain points. The blue lines represent the true data points and the yellow lines the sampled data points. For
every combination of features, the blue and yellow lines make up almost the same domain. The density of blue and yellow
lines is almost everywhere comparable. That means that the true data points and the sampled data points have almost
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Figure 6.4: The density histograms of the house transaction features. The blue bars are the true data points and the orange bars are the
data points sampled from the fitted Gaussian copula.

the same densities for each combination of features. Therefore, the fitted Gaussian copula is a good approximation of the
house transaction data.

Now the assumption is that the fitted copula is the true copula. Then the same experiment can be done as before, namely,
calculate the theoretic Shapley values and compare the approximation methods. To achieve that, also the prediction
function is necessary, so a linear regression model is fitted on the logarithmic house prices. The coefficients of the linear
regression are in Table 6.1a. The logarithmic has the biggest coefficient, which is expected because this is also the case
with a fitted HTM model.
The results of the experiment are in Table 6.1b. The exact copula method is the most accurate. Then the kernel copula

feature β-coefficients
construction year −3.73 ·10−4

transaction date 2.66 ·10−3

storage dummy (y/n) 2.67 ·10−2

garage dummy (y/n) 6.43 ·10−2

logarithmic surface area 8.55 ·10−1

house type −6.69 ·10−3

province 1.94 ·10−2

intercept 8.73 ·10−0

(a) The coefficient of the linear regression model fitted on the house transac-
tion data.

method MAE
mc copula exact 0.426±0.050
mc copula kernel 1.658±0.195
lw gaussian 2.243±0.319
lw gaussian mixture 1.992±0.292
mc independent 4.352±0.327
mc gaussian 2.224±0.229

(b) The results of the experiment where the copula is the fitted copula on the
transaction data.

method is the most accurate, but the gap between the exact and kernel approximation is significant. The kernel method
seems to be an accurate approximation method, which will turn out in Table 6.3. However, when using the copula method
there is a significant difference between the exact Shapley values and the kernel approximated Shapley values.

The exact copula method is the most accurate but is often not possible because the computation time of the exact method
scales exponentially with the number of features. Then one could use the copula kernel method because this method is
the best of all other methods. However, it is noticeable that the copula kernel method is not much better than the lw
gaussian mixture or mc gaussian method.
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Figure 6.5: Density plots of real data points and sampled data points drawn from the fitted Gaussian copula.
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6.3. Real-World Environment
The results from Section 6.2 show that the most practical and accurate method is the kernel copula method to approxi-
mated the C Shapley values. The same house transaction data set is used as in Section 6.2. 10 per cent of the data set is
split off to create a test data set, so 90 per cent of the data is used to fit the models. There are five different models fitted,
an HTM model, an LGBM model on samples, an LGBM model on real data, an MLP model on samples and an MLP on real
data. The samples are created from the fitted HTM model, more details about this are in Appendix A The performance of
the models is presented in Table 6.2.

For all models, the in-sample and out-sample performance is almost equal, which is an indication that none of the mod-
els is significantly over-fitted. Moreover, it is expected that the ML models fitted on the sample from the HTM model do
not perform better than the HTM model itself, which is indeed the case. From the three models fitted on the real trans-
action price, the LGBMy performs the best. The MLPy performs worse than the HTM model. However, not much time
has been spent on tuning the hyperparameters during this research, since it is not the goal to create the best possible ML
model. Nevertheless, the performance of all models is reasonable and good enough to use for comparing the different
Shapley values.

model MAPE in sample MAPE out sample
HTMy 0.1624 0.1624
LGBMsample 0.1821 0.1823
LGBMy 0.1505 0.1512
MLPsample 0.2067 0.2072
MLPy 0.2141 0.2180

Table 6.2: The in and out sample performance of the fitted models. The LGBMsample and MLPsample are fitted on samples from the fitted
HTM model. All other models are fitted on the real transaction prices.

The B and M Shapley values can be theoretically determined for the HTM model (see Appendix B) but can also be ap-
proximated with the kernel method and sampling from D Inp . The approximated Shapley values can be compared to
the theoretical Shapley values following from the HTM model. This comparison is made for all models and presented in
Table 6.3.

The approximation of the Shapley values for the HTM model is good since this is the performance of the kernel ap-
proximation method versus the exact method. So the kernel approximation method is a good method to determine the B
and M Shapley values.

The results for the LGBMsample and MLPsample are also interesting because they are fitted on the samples from the HTM
model. This means that the underlying model is known. So one expects that if the ML model performs well on the sam-
ples, then it has picked up the structure of the HTM model. Then the Shapley values of the ML model should be close to
the Shapley values of the HTM model because the Shapley values give an indication of how important a feature is for the
prediction. If the Shapley values differ between models then the prediction is coming from different key features. The
results in Table 6.3 show that the B and M Shapley values of the LGBMsample and MLPsample differ much from the theo-
retic Shapley values of HTM. So LGBMsample and MLPsample are picking up other patterns than the HTM model, which
is the true underlying model. That means that these models are good at making predictions, but not based on the true
underlying structure.

The Shapley values from LGBMy and MLPy differ even more from HTM. But this can be explained since the underly-
ing model is the real-world data. So these models might pick up different relations than the HTM model. From the results
in Table 6.3, it is clear that it is indeed the case that the ML models pick up different patterns than the HTM model. That
means that for the ML models different features are important to come to the prediction.

It takes a reasonable time to compute the Shapley values. The computation times for 100 Shapley values are presented
in Table 6.4. The experiments are performed on an Intel i7-5600U 2.60GHz core processor. Another depending factor is
which Shapley value is approximated. The B Shapley values take by far the least computation time since a specific in-
stance is only compared to the baseline. The M Shapley values take significantly more computation time because there
one instance is compared to 1,000 background instances. Finally, the C Shapley values take the most time, due to that
here one instance is compared to 1,000 samples that need to be sampled from a Gaussian copula.

Moreover, the computation time depends on how fast the implementation of the prediction function is of a specific
model. For instance, the prediction function of the HTM model is not fast, since there is not much time spent to op-
timize the code. The implementation uses the shap package in Python. Furthermore, the speed of the predicting with an
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model MAE B Shapley MAE M Shapley MAPE B Shapley MAPE M Shapley
HTMy 7.4 ·10−3 1.2 ·10−2 4.9 ·10−2 3.0 ·10−1

LGBMsample 1.4 ·10−1 1.2 ·10−1 4.6 ·10−1 9.4 ·10−1

LGBMy 1.5 ·10−1 1.3 ·10−1 6.3 ·10−1 1.2 ·100

MLPsample 2.6 ·10−1 2.0 ·10−1 1.1 ·100 3.2 ·100

MLPy 3.1 ·10−1 3.4 ·10−1 2.8 ·100 7.8 ·100

Table 6.3: The error of the approximated B and M Shapley values compared to the theoretic B and M Shapley values of the HTM model
as described in Appendix B.

ML model depends on which model you are using and the hyperparameters of the model.

model Shapley type computation time (s)

HTMy Baseline 19
Marginal 6756
Conditional 21595

LGBMsample Baseline 5
Marginal 1028
Conditional 4711

LGBMy Baseline 6
Marginal 980
Conditional 4864

MLPsample Baseline 5
Marginal 374
Conditional 1973

MLPy Baseline 6
Marginal 409
Conditional 2298

Table 6.4: The computation time to calculate 100 Shapley values with 1,000 background samples.

The M, C and B Shapley values for the 100 house transactions for the five different models are summarized in Figures 6.6
till 6.10. Note that all models are trained on the logarithmic transaction price, but for determining these Shapley values
the exponent of the prediction is taken such that the normal transaction prices are returned. That results in more natural
Shapley values that are represented in euros. The y-axis is labelled according to the features of the house. The x-axis
represents the value of the Shapley values. The colour of the dots indicates the feature value according to the Shapley
value. Pink means a high feature value and blue is a low feature value. Remember that the categorical features are or-
dinally encoded, so the colour has no meaning except that a different colour means a different category. Note that the
multiplicative factor of the x-axis could differ per Shapley value. The vertical displacement of the dots within one feature
is to illustrate that there are multiple instances with that specific Shapley value.

First, observe the results for the HTM model in Figure 6.6. All Shapley values seem to have the most variation in the
surface area and surface extras features. Remarkable is that the M and B Shapley values of the surface area monotonic
increase, where a small surface area has low Shapley values and a big surface area high Shapley values. That is a natural
explanation since it is commonly known that houses with a bigger surface area are more expensive. This is in contrast to
the C Shapley values, where the Shapley values have mixed surface area values.

Further, the C Shapley values of the surface area are all negative. Again this is likely caused by a correlation with other
features, such as the surface extras features. A negative effect of the surface area is an unnatural explanation since the
surface area has the highest coefficients in the HTM model. So an explanation that tells that the surface area lowers the
predicted house price is unlikely to be accepted by the explainee. Only for this reason, the C Shapley values seem to be
unsuitable in this case to apply to the HTM model.

Also, an interesting feature to note is the house type EGWO. This feature has small M and B Shapley values, but significant
C Shapley values. The coefficients of the HTM model have low values for the house type EGWO feature. That means that
the high C Shapley values are likely due to correlated other features, for instance, surface area. The same holds proba-
bly for the garage feature, which has a small coefficient and therefore small M and B Shapley values, nevertheless it has
sometimes high C Shapley values.
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Furthermore, if the M and B Shapley values of the surface extras features are observed, then something interesting can
be noticed. The M Shapley values of the surface extras features are never 0, while the B Shapley values of the surface
extras features are very often 0. The reason is probably that the surface extras features for most instances have value 0,
so comparing two instances with both feature value 0 will give a B Shapley value of 0. On the other hand, the M Shapley
values refer to the whole group, where on average the surface extras feature values are not 0, therefore a difference with
the surface extras value of the specific instance occur and the M Shapley values are not 0.

Figure 6.6: Summary plots of the Shapley values for the HTM model.

Now observe the summarized Shapley values for both LGBM models in Figures 6.7 and 6.8. Interesting is that the Shapley
values of both LGBM models are similar. That probably means that both models are internally very similar, even though
they are trained on different data.

Again the C Shapley values of the surface area are all negative, but the surface extras C Shapley values are all positive.
Probably is the effect of the surface distributed over those features, because the surface area and surface extra feature are
highly correlated. But the fact that this is happening, makes the C Shapley values not very useful in practice.

The surface extras B and M Shapley values have lower values than in the HTM model. On the other side, the surface
area B and M Shapley values seem to be bigger than in the HTM model. So the LGBM models are putting more emphasis
on the surface area than the surface extras features when making a prediction.
Finally, observe the results for the MLP models in Figures 6.9 and 6.10. Here the C Shapley values for the surface area and
surface extras features are again respectively all negative and all positive. Also notice the multiplication factor of the C
Shapley values, which makes that the C Shapley values are 100 to 1,000 times bigger than the M and B Shapley values,
such that the C Shapley value of one feature could be bigger than the predicted house price. For those reasons, the C
Shapley values are not useful as an explanation.

Another noticeable thing is that the B and M Shapley values seem to be very small for most instances with only a few
outliers. It is at least clear that the MLP models are predicting completely different from the LGBM models. If the Shapley
values are compared between both MLP models, then they are significantly different, for instance for the surface area or
the surface extras 3 features.
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Figure 6.7: Summary plots of the Shapley values for the LGBM model fitted on samples of the HTM model.

Figure 6.8: Summary plots of the Shapley values for the LGBM model fitted on the real transaction prices.
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Figure 6.9: Summary plots of the Shapley values for the MLP model fitted on samples of the HTM model.

Figure 6.10: Summary plots of the Shapley values for the MLP model fitted on the real transaction prices.
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Conclusion

Many real-world problems ask for a prediction together with an explanation. The real estate valuation problem is an
example of that. When ML models are applied, an explanation can be extracted via multiple explanatory methods. The
Shapley values method seems to be the most suitable method because this method has a strong theoretic base with de-
sirable properties. However, there are still some problems with the Shapley values to overcome.

There are different definitions of the value function, which result in a different Shapley value. The most used value func-
tions are the function evaluation (B Shapley values), the marginal expectation (M Shapley values) and the conditional
expectation (C Shapley values). The difference between the M and C Shapley values is that for the C Shapley values the
correlation between features is taken into account. Methods that assume independence to calculate the C Shapley values
are basically calculating the M Shapley values. When the approximated C Shapley values of these methods are compared
to the theoretical C Shapley values, then these methods make a significant error.

A solution is to assume that the data is not independent but of a certain shape, then fit a distribution of that shape on the
data and (conditionally) sample from the fitted distribution. Previous research has shown these methods approximate
the C Shapley values more accurately than the methods that assume independence. This research extended these results
to distributions with continuous and discrete variables by making use of copulas, especially the Gaussian copula. The
result is that fitting a copula and conditionally sample from this copula gives a better approximation of the true C Shapley
values than methods that assume another distribution shape or methods that assume independence.

The M, C and B Shapley values are determined for a Hierarchical Trend Model model, a Light Gradient Boosting Ma-
chine and a Multi-layer Perceptron. From the comparison could be concluded that the C Shapley values are not useful as
explanations in this case, because they return unnatural explanations.

Both M and B Shapley values had reasonable outcomes for the HTM and LGBM models. It seems that the M and B
Shapley method can be applied to those models. The MLP model should be handled with more care, but it holds in gen-
eral that these kinds of ML models are more difficult to build.

The M Shapley values describe the contribution of the feature value to the sample average. This could be sometimes
difficult to interpret, especially for laymen. The B Shapley values describe how much the features contribute to the dif-
ference between two predictions. This is easier to interpret because it is a comparison between two instances. Moreover,
the B Shapley values can be approximated faster and more accurately. So in practice, the B Shapley values seem to be the
most suitable to extract an explanation from an ML model used for real estate valuation.
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Discussion

This research is limited to the real estate valuation problem. A recommendation for further research is to apply the dif-
ferent definitions of Shapley values to other problems. For instance, apply the Shapley values to problems that are not
similar to the real estate valuation problem, for instance, image recognition. It is interesting to check if the C Shapley
values in other problems also give unnatural explanations.

Another limitation of this research is the choice of models. Here one statistical model (HTM) and two Machine Learning
models (LGBM and MLP) are used. There are many more statistical and Machine Learning models. It would be interest-
ing to apply the different Shapley values to those different models. That could give more insight into the Shapley values
but might also give interesting results on how these models behave.

Furthermore, the C Shapley approximation methods can be investigated further. This research was limited to a spe-
cific choice of methods and fitted distributions. It might be that fitting other distributions gives different results. One
could think of fitting non-parametric distributions or other copulas than the Gaussian one.

Another suggestion for a research direction is to try to define a Shapley value that is in between the B and M Shapley
values. The B Shapley values compare one instance to another and the M Shapley values compare one instance to the
whole group. It should be possible to define a Shapley value that lies in between, so it compares one instance to a sub-
set or cluster. That could be for instance a set of comparable instances or instances from the same neighbourhood or
cluster. There is a lot of freedom in the choice of the background data set when defining the Shapley values. Tuning that
background data set might give interesting results.
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A
Hierarchical Trend Model (HTM)

An econometrical model that is often used in practice for real estate valuation is the Hierarchical Trend Model (HTM) de-
signed by Francke et al.[18–20]. This is also the model used by Ortec Finance for the real estate valuation used for taxation
purposes. It is a state-space model designed to predict the value Y of a house based on its features X .

The regression of the model is done with data of transactions of houses done in the past. The logarithm of the trans-
action price is put into a state vector yt . The length of yt is nt which depends on time due to the fact that the number
of transactions is not the same in every time period. The corresponding house characteristics are in the Xt matrix of size
nt ×m.

In a qualitative manner, the HTM model can be summarized as

The log selling price of house i in province j of type k in neighbourhood l at time t =
the general trend level at time t +
the province j trend level at time t +
the house type k trend level at time t +
the neighbourhood l effect +
the effect of the individual characteristics of house i +
an error term.

A quantitative description of the individual effects follows in the next sections.

Time-independent variables
Many characteristics of a house are time-independent, or at least for the time span of about a decade, for instance, the
house size, lot size, year of construction, whether it has a garage or the distance to the nearest grocery store. These vari-
ables come together in a function f (X ,β) and can have many forms. The easiest choice is to define it as a linear model,
e.g. f (X ,β) = X Tβ, where X are the time-independent variables. The choice of f (X ) is such that the computations for
the HTM model become easy. In practice, f (X ) is a more sophisticated function where some assumptions can be put in
the model. For instance, the assumption that the surface area of a house is decreasingly contributing to the house price,
so the first square metres are weighing heavier than the latter square metres. An example is the function of Francke et.
al. [20]. The linear regression model f (X ) = X Tβ tries to replicate this effect by adding some extra time-independent
features to f (X ). Some extra surface features are added as spline transformation of the original surface feature.

Time-dependent variables
The model distinguishes different types of trends that are time-variant. First, there is the general trend µt level that
influences all houses prices. The general trend is specified as local linear trend model,

µt+1 =µt +κt +ηt ,

κt+1 = κt +ζt ,

ηt ∼ N (0,σ2
η),

ζt ∼ N (0,σ2
ζ).

Next, there are different cluster trends that only affect the prices in the specific cluster. The different clusters are province
trends θt and house type trends λt . The length of θt is the number of distinct provinces nd and for λt it is the number of
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42 A. Hierarchical Trend Model (HTM)

different house types nh . Both cluster trends are modeled as a random walk,

θt+1 = θt +ωt ,

λt+1 =λt +ςt ,

ωt ∼ N (0,σ2
ωInd ),

ςt ∼ N (0,σ2
ςInh ).

Furthermore, the model takes into consideration a neighbourhood effectφ. A neighbourhood is like a province but on an
even smaller scale (there are multiple neighbourhoods in one province). The length of φ is the number of distinct neigh-
bourhoods nn . The neighbourhood effect is just a random variable drawn from a normal distribution, φ ∼ N (0,σ2

φ
Inn ).

Also, there is a noise term εt ∼ N (0,σ2
ε Int ).

The time-invariant characteristics of the house are captured in the f (Xt ,β) term. To put it in a clear equation, there
are selection matrices D defined to select the appropriate cluster. This means that the entries in the D matrices are either
0 or 1. Also, the D matrices change over time because we have different observations every time period. The size of the D
matrices is the number of observations yt times the number of different clusters, for instance, the number of provinces
nd .

All together this gives the following set of equations,

yt =1ntµt +Dθ,tθt +Dλ,tλt +Dφ,tφ+ f (Xt ,β)+εt ,

εt ∼ N (0,σ2
ε Int ),

µt+1 =µt +κt +ηt , ηt ∼ N (0,σ2
η),

κt+1 = κt +ζt , ζt ∼ N (0,σ2
ζ),

θt+1 = θt +ωt , ωt ∼ N (0,σ2
ωInd ),

λt+1 =λt +ςt , ςt ∼ N (0,σ2
ςInh ),

φ∼ N (0,σ2
φInn ). (A.1)

Estimate HTM
To solve system A.1, it is convenient to put it in a state-space format.

yt = Ztαt + f (Xt ,β)+εt

αt+1 = Ttαt +ξt (A.2)

where we defined a few new variables

Zt =
[
1nt 0 Dθ,t Dλ,t Dφ,t

]
,

αT
t =

[
µT

t κT
t θT

t λT
t φT

]
,

Tt =


1 1 0 · · · 0
0 1 0 0
0 0 1 0
...

. . . 0
0 0 0 0 1

 .

Also we defined a random variable which is just the combination of single random variables,

ξt ∼ N (0,Σ) ,

Diag(Σ) =

σ2
η σ2

ζ σ2
ω . . .σ2

ω︸ ︷︷ ︸
×nd

σ2
ς . . .σ2

ς︸ ︷︷ ︸
×nh

0. . .0︸ ︷︷ ︸
×nn

 ,

where the off-diagonal entries of Σ are 0. Solving equation A.2 is done via the following steps designed by Francke et
al. [18]

1. Calculate the means per cluster ȳ1, ..., ȳT and the deviation from the means ỹ1, ..., ỹT . So the length of ȳt is the
number of clusters and the length of ỹt is the number of observations of that time.

2. Solve f (Xt , β̂) = ŷt . If f is a linear regression model, then this could be done with Ordinary Least Squares.

3. Use β̂ as priors to solve equation A.2 with a Kalman filter on the means ȳt .
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Properties HTM
The prediction interval for a house i , σi , can be calculated via the formula

σ2
i = [

Zi Xi
] ·V · [Zi Xi

]T +σ2
ε,

where Zi is the vector with the trend values, Xi is the vector with the time-invariant data, V is the matrix of covariances
between all trends and coefficients and σ2

ε is the variance of the noise term.

The interpretation of the general trend level mut is very natural, it describes the average price development on the whole
market. The cluster trend levels θt and λt describe the development of the house prices in a specific cluster. But the in-
terpretation of the β coefficients can be more difficult and depends on the definition of f (X ,β). If f is a linear regression
model, as will be in this report, then the interpretation is clear. If a time-invariant variable x j , for instance, surface area,
increases by 1%, then the house price will increase with a fraction β j . If f is not a linear regression model, but of another
type then the interpretation can be less obvious.

Sampling from HTM
For the experiments it was necessary to draw samples from the HTM model to train the ML models. The samples are
drawn in the following way. The input data X is kept the same as the real-world data. The samples only apply to the
transaction prices. In the samples, the real transaction prices y will be replaced by predictions from the HTM model ŷ .
The samples are created as follows

ŷ = e f (X )+ε

where X is the input data, f prediction function of the HTM model that predicts the logarithmic transaction prices and
ε∼ N (0,σε) is a normal random variable with mean of 0 and variance equal to the noise term of the HTM model.





B
Analytic Shapley Value HTM

The Hierarchical Trend Model (HTM) model can be rewritten in the following way

f (x) =µ(xt )+θ(xθ , xt )+λ(xλ, xt )+φ(xφ)+x0β+ε

where x is a specific house transaction with the features xt (time), xθ (province), xλ (house type), xφ (neighbourhood)
and x0 (time-invariant features). Also, the functions of the global trend µ(xt ), the province trend θ(xλ, xt ), the neighbour-
hood trend φ(xφ). The other features are modelled in a Linear Regression model with coefficients β.

If S is an arbitrary coalition without feature i . Then the B Shapley value of feature i depends on the difference in value
function with and without feature i .

Analytic B Shapley Value
The exact B Shapley values can be determined for all features. For the time variable it , the value function becomes

vB
x,r (S ∪ {it })− vB

x,r (S) = f
(
xS∪{it };rN \(S∪{it })

)− f
(
xS ;rN \S

)
= f

(
xS ;rN \(S∪{it }); xit

)− f
(
xS ;rN \(S∪{it });rit

)
=µ(xit )−µ(rit )+

{
θ(xiθ , xit )−θ(xiθ ,rit ) if iθ ∈ S,

θ(riθ , xit )−θ(riθ ,rit ) if iθ ∉ S.
+

{
λ(xiλ , xit )−λ(xiλ ,rit ) if iλ ∈ S,

λ(riλ , xit )−λ(riλ ,rit ) if iλ ∉ S.

Note that summed over all possible coalitions S, then half of the times iθ ∈ S and half of the times iθ ∉ S and the same
holds for iλ. This results in the B Shapley value of the time variable it ,

ϕB
it

(x,r ) =µ(xit )−µ(rit )+ 1

2

[
θ(xiθ , xit )−θ(xiθ ,rit )

]+ 1

2

[
θ(riθ , xit )−θ(riθ ,rit )

]+ 1

2

[
λ(xiλ , xit )−λ(xiλ ,rit )

]+ 1

2

[
λ(riλ , xit )−λ(riλ ,rit )

]
.

For the province variable iθ the value function becomes,

vB
x,r (S ∪ {iθ})− vB

x,r (S) = f
(
xS∪{iθ};rN \(S∪{iθ})

)
− f

(
xS ;rN \S

)
= f

(
xS ;rN \(S∪{iθ}); xiθ

)
− f

(
xS ;rN \(S∪{iθ});riθ

)
=

{
θ(xiθ , xit )−θ(riθ , xit ) if it ∈ S,

θ(xiθ ,rit )−θ(riθ ,rit ) if it ∉ S.

This results in the B Shapley value of the province feature iθ ,

ϕB
iθ

(x,r ) = 1

2

[
θ(xiθ , xit )−θ(riθ , xit )

]+ 1

2

[
θ(xiθ ,rit )−θ(riθ ,rit )

]
.

The same calculation leads to the B Shapley value of the house type feature iλ,

ϕB
iλ

(x,r ) = 1

2

[
λ(xiλ , xit )−λ(riλ , xit )

]+ 1

2

[
λ(xiλ ,rit )−λ(riλ ,rit )

]
.
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46 B. Analytic Shapley Value HTM

The value function of the B Shapley values of the neighbourhood variable iφ,

vB
x,r (S ∪ {iφ})− vB

x,r (S) = f
(
xS∪{iφ};rN \

(
S∪{iφ}

))− f
(
xS ;rN \S

)
= f

(
xS ;rN \

(
S∪{iφ}

); xiφ

)
− f

(
xS ;rN \

(
S∪{iφ}

);riφ

)
=φ(xiφ )−φ(riφ ).

This translates directly to the B Shapley value of the neighbourhood variable,

ϕB
iφ

(x,r ) =φ(xiφ )−φ(riφ ).

Finally, the value function for any time-invariant variable i0 becomes,

vB
x,r (S ∪ {i0})− vB

x,r (S) = f
(
xS∪{i0};rN \(S∪{i0})

)− f
(
xS ;rN \S

)
= f

(
xS ;rN \(S∪{i0}); xi0

)− f
(
xS ;rN \(S∪{i0});ri0

)
=β j

(
xi0 − ri0

)
.

That gives the B Shapley value of any time-invariant feature,

ϕB
i0

(x,r ) =βi0

(
xi0 − ri0

)
.

Analytic M Shapley Value
The same can be done for the M Shapley values. Suppose there is a background data set N of size |N | = N used to
approximate the expectation. For the time variable it the value function becomes,

v M
x (S ∪ {it })− v M

x (S) =ER∼D

[
vB

x,R (S ∪ {iλ})
]
−ER∼D

[
vB

x,R (S)
]

=ER∼D

[
vB

x,R (S ∪ {iλ})− vB
x,R (S)

]
=ER∼D

[
µ(xit )−µ(Rit )+

{
θ(xiθ , xit )−θ(xiθ ,Rit ) if iθ ∈ S,

θ(Riθ , xit )−θ(Riθ ,Rit ) if iθ ∉ S.
+

{
λ(xiλ , xit )−λ(xiλ ,Rit ) if iλ ∈ S,

λ(Riλ , xit )−λ(Riλ ,Rit ) if iλ ∉ S.

]

=µ(xit )−ER∼D

[
µ(Rit )

]+{
θ(xiθ , xit )−ER∼D

[
θ(xiθ ,Rit )

]
if iθ ∈ S,

ER∼D

[
θ(Riθ , xit )

]−ER∼D

[
θ(Riθ ,Rit )

]
if iθ ∉ S.

+
{
λ(xiλ , xit )−ER∼D

[
λ(xiλ ,Rit )

]
if iλ ∈ S,

ER∼D

[
λ(Riλ , xit )

]−ER∼D

[
λ(Riλ ,Rit )

]
if iλ ∉ S.

Then the theoretic M Shapley value of the time variable can be approximated as,

ϕM
it

(x) =µ(xit )− 1

N

∑
r∈N

µ(rit )+ 1

2
θ(xiθ , xit )+ 1

2
λ(xiλ , xit )

− 1

2N

∑
r∈N

[
θ(xiθ ,rit )−θ(riθ , xit )−θ(riθ ,rit )−λ(xiλ ,rit )+λ(riλ , xit )−λ(riλ ,rit )

]
.

The value function of the province variable iθ becomes,

v M
x (S ∪ {iθ})− v M

x (S) =ER∼D

[
vB

x,R (S ∪ {iθ})
]
−ER∼D

[
vB

x,R (S)
]

=ER∼D

[
vB

x,R (S ∪ {iθ})− vB
x,R (S)

]
=ER∼D

[{
θ(xiθ , xit )−θ(Riθ , xit ) if it ∈ S,

θ(xiθ ,Rit )−θ(Riθ ,Rit ) if it ∉ S.

]

=
{
θ(xiθ , xit )−ER∼D

[
θ(Riθ , xit )

]
if it ∈ S,

ER∼D

[
θ(xiθ ,Rit )

]−ER∼D

[
θ(Riθ ,Rit )

]
if it ∉ S.

Then the M Shapley value of the province variable becomes,

ϕM
iθ

(x) ≈ 1

2
θ(xiθ , xit )− 1

2N

∑
r∈N

θ(riθ , xit )+ 1

2N

∑
r∈N

θ(xiθ ,rit )− 1

2N

∑
r∈N

θ(riθ ,rit ).

Via the same calculation the M Shapley value of the house type variable iλ becomes,

ϕM
iλ

(x) ≈ 1

2
λ(xiλ , xit )− 1

2N

∑
r∈N

λ(riλ , xit )+ 1

2N

∑
r∈N

λ(xiλ ,rit )− 1

2N

∑
r∈N

λ(riλ ,rit ).
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The value function of the neighbourhood variable iφ is,

v M
x (S ∪ {iφ})− v M

x (S) =ER∼D

[
vB

x,R (S ∪ {iφ})
]
−ER∼D

[
vB

x,R (S)
]

=ER∼D

[
vB

x,R (S ∪ {iφ})− vB
x,R (S)

]
=ER∼D

[
φ(xiφ )−φ(Riφ )

]
=φ(xiϕ )−ER∼D

[
φ(Riφ )

]
.

Then the M Shapley value of the neighbourhood variable is,

ϕM
iφ

(x) ≈φ(xiφ )− 1

N

∑
r∈N

φ(riφ ).

The value function of any time-invariant variable i0 becomes,

v M
x (S ∪ {i0})− v M

x (S) =ER∼D

[
vB

x,R (S ∪ {i0})
]
−ER∼D

[
vB

x,R (S)
]

=ER∼D

[
vB

x,R (S ∪ {i0})− vB
x,R (S)

]
=ER∼D

[
β

(
xi0 −Ri0

)]
=βi0

(
xi0 −ER∼D

[
Ri0

])
.

Then the M Shapley values for any time-invariant variable i0 can be approximated

ϕM
i0

(x) ≈βi0

(
xi0 −

1

N

∑
r∈N

ri0

)
.





C
House Transaction Data

The data that is used is house transaction data of houses in the Netherlands that are sold between January 2009 and
January 2021. The features that are included in the data set are listed in Table C.1. The histograms of the data are in Fig-
ures C.1 and C.2a. Note that the municipality histogram is somewhat different from the others. A histogram of the house
transaction prices is in Figure C.2b. A summary of the numerical features in the data set is in Table C.2. The top three and
bottom three of the number of transactions in a municipality are in Table C.3.

Some feature engineering is performed before the data is used in the models. All categorical features are one-hot en-
coded. That there are columns added for every different category. If an instance is of a specific category, then it has a 1 in
the column of that category and a 0 in the columns of all other categories. The transaction date is made discrete by taking
the month of the transaction. A lot of feature engineering is performed on the surface area. The surface area is split up
into 2 different columns, one column when the house type is an apartment and the other column for all other types. Fur-
thermore, there are 4 more columns that contain information about the surface, such as lot surface area etcetera. These
columns are called surface extras 1 till 4. Besides, these surface extras features are such that the first square metres of
surface area weigh heavier to the house price than the last square metres. The construction year is split up into splines
from 1910 till 2000 in steps of 10 and 2008 where the spline function is max(0,construction year−base year). There is also
a dummy variable for houses with a construction year before 1900. The storage, garage and monumental features are
dummy variables that are 1 if the house has the specification and 0 otherwise.

feature type
transaction date discrete
province categorical
municipality categorical
house type kad categorical
house type EGWO categorical
house type STWO categorical
house type soc categorical
surface area continuous
surface extras continuous
construction year discrete
storage dummy
garage dummy
monumental dummy

Table C.1: Features in the house transaction data set.

feature min 0.25-quantile mean median 0.75-quantile max standard deviation
transaction date 2009-01-02 2013-08-23 2016-03-02 2016-10-14 2019-01-09 2021-01-29
surface area 15 90 117 112 135 1021 43.5
construction year 1900 1955 1970 1974 1994 2021 29.3

Table C.2: Summary of the numerical features in the house transaction data set.
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Figure C.1: Histograms of features of the house transaction data set.
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top 3 municipality number of transactions
1. Amsterdam 57,023
2. ’s-Gravenhage 44,691
3. Rotterdam 42,804

bottom 3 municipality number of transactions
1. Vlieland 29
2. Schiermonnikoog 110
3. Rozendaal 177

Table C.3: The top three and bottom three of the number of transactions per municipality in the house transaction data set.

(a) Histograms of the surface extras features of the house transaction
data set.

(b) Histogram of the house transactions prices.





D
HTM Coefficients

The Hierarchical Trend Model (HTM) model from Appendix A is fitted on the house transaction data of Appendix C. The
most important coefficients of the fit will be summarized, to a better understanding of the model. The β̂-coefficients
of the linear regression fit on the time-invariant part are in Table D.1. Only the municipality coefficients are too many
to put in a table, so they are shown in a histogram in Figure D.1. The top three and bottom three β̂-coefficients of the
municipalities are in Table D.2. These results are not surprising, since very desired municipalities have high coefficients
and less desired municipalities have low coefficients. Remember that the HTM model uses trends of clusters. For this fit,
the province and house type are used as clusters. The development of these trends is in Figures D.2 and D.3. The trends
are all set to 100 at January 2008. Note that the trends have the expected shape since this is how the housing market
developed in the Netherlands during this period.

feature β̂

house type terraced semi-detached (EGWO) 0.003173072
house type terraced (EGWO) 0.107246457
house type semi-detached (EGWO) -0.012320248
house type corner house (EGWO) 0.019966976
house type end house (EGWO) 0.009996303
house type gallery apartment (STWO) 0.020000000
house type porch apartment (STWO) 0.049779011
house type corridor apartment (STWO) 0.113889307
house type maisonette (STWO) -0.043082343
house type ground floor apartment (STWO) 0.122561914
house type upstairs apartment (STWO) 0.070330908
house type porch house (STWO) -0.027440450
house type penthouse (STWO) 0.293649257
house type holiday home (soc) -0.089998182
house type group home (soc) -0.022780572
surface area non apartment log 0.879971803
surface area apartment log 0.832443062
surface area extras 1 0.200000027

feature β̂

surface area extras 2 0.224999231
surface area extras 3 0.200173825
surface area extras 4 0.224807930
construction year dummy 1900 -0.021647426
construction year spline 1910 -0.008036799
construction year spline 1920 0.008299518
construction year spline 1930 -0.003442507
construction year spline 1940 0.000940951
construction year spline 1950 -0.006960054
construction year spline 1960 0.004051666
construction year spline 1970 0.010186315
construction year spline 1980 0.003409437
construction year spline 1990 -0.007069120
construction year spline 2000 0.005342239
construction year spline 2008 -0.007977338
storage 0.008091202
garage 0.031182263
monumental 0.135580554

Table D.1: The β̂-coefficients of the fitted HTM model.

top 3 municipality β̂

1. Terschelling 0.528
2. Groningen 0.483
3. Amsterdam 0.459

bottom 3 municipality β̂

1. Den Helder −0.464
2. Hollands Kroon −0.405
3. Medemblik −0.367

Table D.2: The top three and bottom three of the β̂-coefficients of the fitted HTM model.
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Figure D.1: A histogram of the β̂-coefficients of all municipalities.

Figure D.2: The house type trends from 2008 to 2021 where 2008 is the base year.

Figure D.3: The province trends from 2008 to 2021 where 2008 is the base year.
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