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H. Peter Hofstee
IBM, Delft University of Technology

Abstract—Streaming dataflow designs describe hardware by connecting components through
streams that transport data structures. We introduce a stream-oriented specification and type
system that provides a clear and intuitive way to map complex, dynamically-sized data
structures onto hardware streams. This helps designers to lift the abstraction of streaming
dataflow designs, reducing the design effort. The type system allows complex data structures to
be as easy to use in streaming dataflow designs as in modern software languages today.

EXCHANGING DATA between components of
a computing system is a major topic in computer
architecture. When components interact, a well-
specified representation of the data should exist
in whatever medium used for communication to
allow the data to be interpreted correctly and
enable reusable and extensible designs. Clear
format specifications are especially useful for an
open-source community, where it enables more
efficient collaboration.

Agile development of hardware-oriented so-
lutions is driven by many excellent open-source
projects that increase the level of abstraction at
which hardware is described. Some experts even
argue that we are in “A Golden Age of Hardware
Description Languages” [1] — more advanced
designs can be automatically synthesized from

fewer lines of code.
However, we observe a lack of standardized

exchange formats and abstract views for complex
data structures at the level of digital circuits. As
a result, developers often manually design their
custom representations of more advanced com-
posite and aggregate data structures (e.g. strings,
nested lists, etc.), that need to be exchanged
between components over streams.

We propose Tydi; an open specification
(found freely online [2]) that allows developers
to map composite and dynamically-sized data
structures onto hardware streams. It furthermore
provides an abstract, but still hardware-oriented
view of these data structures, as to not lose the
opportunity to make common trade-offs in the
design phase. An overview of the context of Tydi
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Figure 1. Tydi context. To implement a data structure, programmers choose some types and containers, helped
by language constructs and libraries (a), run-time engines and compilers take care of the mapping to RAM (b).
The same for contemporary HDLs (c) is prevented because dynamically-sized structures are not inherently
supported. When mapping to hardware streams (d) designers customize solutions to transport data structures
over multiple stream transfers. Tydi is a specification that clearly and intuitively provides a mapping (e) and
pre-defined containers for common types.

is seen in Figure 1.
At the core of the specification lies a type sys-

tem. It provides an intuitive and clear definition of
how complex data structures are transported over
hardware streams. We discuss additional parame-
ters that can be used to make an area/throughput
trade-off for component interfaces, and provide a
precise specification at the hardware level. This
specification can be used by developers that de-
sign components, or that combine components
into larger designs, either manually or by auto-
mated tools.

BACKGROUND
Designing digital circuits from a dataflow-

oriented perspective involves selecting appropri-
ate transformations and connections between the
transformations through directed channels. When
data starts flowing from external sources, the spe-
cific configuration of transformations and chan-
nels allow an algorithm to be executed, producing
output that can flow back to an external sink. For
digital circuits, channels are often implemented as
streams; point-to-point connections, where a sink
receives data elements from a source in FIFO-
order. Transformations are typically implemented
as streamlets: components with streaming inter-
faces.

When data structures flow over streams be-
tween streamlets, it is favorable to reason about
them at a high level of abstraction, rather than
at a low level (bits and clocks), especially when
the data structures are dynamic and complex. An
example data structure that we will use through-
out this article, is a chat message consisting of
a (64-bit POSIX-time encoded) timestamp and
a sentence (Extended-ASCII encoded string). To
create more context, envision an application with
an unbounded stream of messages, where one
would like to apply a transformation that filters
the message by some time range, then splits the
sentence into separate words.

A more formal view of data types and
structures is presented in Table 1. Using that
view, we can describe the aforementioned chat
message as: Tm = STRUCT〈PRIM〈64〉, SEQ〈PRIM〈8〉〉〉,
and the filtered message as: Tf =

STRUCT〈PRIM〈64〉, SEQ〈SEQ〈PRIM〈8〉〉〉〉.

In the software domain, instantiated data
structures of these types are typically material-
ized as bytes in a RAM. How this is done de-
pends on the software framework used, as shown
in Figure 1. The exact byte-level representation is
left to compilers, run-time engines and standard
libraries. Especially for aggregate types, program-
mers typically select pre-defined containers from
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Table 1. Conceptual view of data types and data structures used throughout this article.
Data type Data structure (or instance) Description
EMPTY (∅) Empty set, singleton value.
PRIM〈B〉 (bB−1, bB−2, ..., b0) Primitive element containing B bits of information.
STRUCT
〈T1, T2, ..., Tn〉

(I(T1, p1), I(T2, p2), ..., I(Tn, p3)) Composite type. An instance is a set with one instance of every type
argument T1, T2, ..., Tn.

VARIANT
〈T1, T2, ..., Tn〉

I(t ∈ (T1, T2, ..., Tn), pt) A variant type. An instance is one of either type T1 or T2, etc. t is known
when instantiated, by some tag.

TUP〈n, T 〉 (I(T, p1), I(T, p2), ..., I(T, pn)) A fixed-length aggregate type. An instance is a sequence with n ∈ N+

instances of the same type T . n is part of the type.
SEQ〈T 〉 (I(T, p1), I(T, p2), ..., I(T, pn)) A variable-length aggregate type. An instance is a sequence with n ∈ N0

instances of the same T . n is only known when instantiated.
I(T, p) is an instance of type T , where p parametrizes the instance, if necessary.

standard libraries (e.g. the C++ std::vector)
that help mapping tuples and sequences based on
their basic notion of the architecture of their de-
vice (typically a load-store architecture) and prop-
erties of their algorithm/workload (e.g. whether
to store a sequence as a linked-list or in a hash-
table). This greatly abstracts the details of how the
data structure is mapped onto (typically) a RAM
— a one-dimensional sequence of bytes, under
some constraints (the total number of bytes avail-
able), but programmers retain some control over
the performance characteristics of the mapping.

While attempting to map complex and
dynamically-sized data structures onto a single
streamed element, one quickly finds it impractical
to allow the streamed element to be as wide as the
amount of information in bits. This impracticality
exists for at least two reasons. First, some aggre-
gate types, such as the sequence, are dynamically-
sized. Accommodating an interface at design-time
based on some initial guess for its length would
rule out support for potentially larger sequences.
Second, data structures described by aggregate
types that are statically-sized, such as tuples, can
grow arbitrarily large. Streamlets may not be able
to absorb all data from a large element at once.
Consequently, one would be under-utilizing the
resources used for the streaming interface.

Thus, designers often choose to split the in-
formation over multiple stream transfers, such
that over time, the whole data structure is trans-
ported between the sourcing and sinking stream-
let. Therefore, a hardware developer does not
map a data structure merely onto space (e.g. a
one-dimensional bit-vector), but also onto time,
or more specifically, stream transfers. From this
description, a two-dimensional plane emerges that
we will call streamspace — the plane consisting
of both a spatial resource (bits) and a resource of

temporal nature (transfers).
To the best of our knowledge, while there

is an enormous body of work in the software
domain about mapping complex data structures
onto byte-addressed RAM, little literature exists
that discusses methods of mapping composite,
potentially dynamically-sized and nested aggre-
gate types onto streamspace from an abstract
point of view. This causes the tedious need for
hardware designers to create custom formats for
their designs and data structures (often on top
of existing standards), which is a problem we
address through Tydi.

RELATED WORK
One widely-used streaming protocol specifi-

cation is the AXI4-Stream protocol [3]. Users
can transport anywhere between zero and N
bytes per transfer, with an (optional) last bit
that denotes the end of a one-dimensional se-
quence of bytes. It therefore specifies how to
transport either PRIM〈8〉 or SEQ〈PRIM〈8〉〉. It
does not specify how structures that are not byte-
oriented or that have deeper levels of nesting, e.g.
SEQ〈SEQ〈PRIM〈7〉〉〉, should be communicated.
Avalon Streaming [4] is similar to AXI, but
slightly less restrictive, because elements can be
arbitrarily sized.

CoRAM++ [5], where DMA engines are
generated based on a set of specific C-style
data structures, such as multidimensional arrays,
linked lists, and trees, allows streamlets to interact
with more advanced data structures in memory,
but does not focus on communication between
streamlets or on how to mix the above data
structures.

We have explored active (open-source) hard-
ware frameworks, including classical HDLs
(VHDL, Verilog, SystemVerilog) and contempo-
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rary ones ( Cλash [6], Chisel [7], and Spatial [8]).
All these HDLs support compound types that map
onto bit-vectors (e.g. VHDL’s record, Chisel’s
Bundle, etc.), and statically-sized aggregate
types, but lack inherit support for dynamically-
sized aggregate types mapped onto streamspace.
This is unsurprising; the type systems of these
frameworks reason only about space, but not
about stream transfers — the latter being typ-
ically left to the designer — as the goal is to
describe hardware just above the register-transfer
level. In libraries of some of the languages,
abstractions for streaming dataflow designs are
provided, e.g. Chisel’s DecoupledIO, Spatial’s
StreamIn/Out and Cλash’s DataFlow. The
abstractions move towards the level we envi-
sion when composing designs out of streams
and streamlets, but only abstract the handshake
mechanism for otherwise completely user-defined
signals, lacking inherent support for throughput
scaling of streams that is available in AXI/Avalon.

Commercial high-level-synthesis frameworks
(including Vivado HLS and SDAccel) support
streams as parameters for functions, creating a
streaming interface for kernels. These streams
provide an abstraction for the handshake protocol
of a single unbounded stream for statically-sized
composite types. Information about the size of
dynamically-sized aggregate types traveling over
the stream still requires a custom mapping onto
the streamed elements.

ENTERING STREAMSPACE
As mentioned in the previous sections, our

goal is to find a suitable mapping of the data
structures shown in Table 1 into streamspace.
We propose a mapping, where we define logical
streams; streams that transport a top-level data
structure (that may consist of nested data struc-
tures). Depending on the data structure, a logical
stream can consist of multiple physical streams;
streams with their own handshake/transfer inter-
face.

To facilitate a clear definition of the physical
streams emerging from a logical stream, we in-
troduce a streamspace-oriented type system. The
type system exposes the direction of physical
streams, and how two of their properties E and D
are derived. E is the number of bits of an element
that the stream transports in every transfer, and

D is the number of bits used to signal the end
of some (nested) sequence. The physical streams
have more properties that are explained in the
next section.

At least three use-cases for this type system
exist. First, it can be used in tools that automati-
cally generate streamlet interfaces for traditional
hardware description languages (e.g. VHDL or
(System)Verilog). In a later section, we briefly
discuss two implementations of such generators;
the reference implementation utility of Tydi, and
Fletcher, a hardware acceleration framework for
FPGAs. Second, the type system can be used in
hardware description frameworks, such as Chisel.
Chisel has highly generative capabilities through
its host language Scala. The type system and
generative code can reside in a Scala library.
Third, we envision tight integration within hard-
ware description languages that use a functional
programming paradigm, such as Cλash, as they
are highly suitable to express dataflow designs.

A STREAM-ORIENTED TYPE SYSTEM
We define six types that help to construct a

streamspace representation of the data structures,
also shown in Table 2. These types abstract
indivisible properties of data structures being
exchanged in streamspace. More advanced ab-
stractions can be constructed by combining these
types, as shown in Figure 2 (discussed later).

The first three types in the table manipu-
late the size E of the element that a physical
stream transports. As such, they could ‘live’
outside streamspace (i.e. they map only to a
one-dimensional bit vector). The other types
are used to create separate physical streams in
streamspace.

Of the element-manipulating types, the first,
BITS〈B〉 will add B bits to that element, and
could be seen as simply adding a field of a
primitive type to the streamed element. This is the
streamspace representation of a PRIM〈B〉. The
second, GROUP〈S1, S2, ..., Sn〉, concatenates el-
ements of its child types (where S denotes a
streamspace type parameter). This causes the el-
ement size E to be the sum of all child element
sizes, as long as these children reside in the
same physical stream. GROUP therefore allows
to represent STRUCT, but can also help to com-
bine multiple physical streams, as the type ar-
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Table 2. Overview of streamspace types in Tydi
Type Description Dchild

BITS〈B〉 Defines a B-bits primitive element, where B ∈ N0. n/a
GROUP〈S1, S2, ..., Sn〉 Concatenates elements of types S1, S2, ..., Sn into one physical stream element. Dp

UNION〈S1, S2, ..., Sn〉 Defines a B-bits element, where B is the max. element width of S1, ..., SN Dp

DIM〈S〉 Creates a streamspace of elements of type S in the next dimension w.r.t. its parent. Dp + 1
REV〈S〉 Creates a new physical stream of S that flows in reverse direction w.r.t. its parent. Dp

NEW〈S〉 Creates a new physical stream in the parent space Dp with elements of type S. Dp

D0 is the first streamspace dimension, Dp is the dimension of the parent type, if applicable.

(a) A streamspace mapping of a structure with a seven-bit field and a sixteen-bit field: STRUCT〈PRIM〈7〉, PRIM〈16〉〉. In the mapping
GROUP〈BITS〈7〉, BITS〈16〉〉, GROUP concatenates the BITS elements together into a single element, resulting in a single physical
stream transporting twenty-three-bit elements (E = 23) with dimensionality D = 0.

(b) The type Tm of our chat message example. A simple mapping of Tm into streamspace is: GROUP〈BITS〈64〉, DIM〈BITS〈8〉〉〉
creating two physical streams; one for the timestamp field, and another, logically nested in the first, for the sequence of 8-bit
elements. For every transfer on the first stream, there must be at least one (possibly empty) transfer on the second stream.

(c) Output Tf of the streamlet transforming Tm. The second field is now a sequence of sequences, requiring a nested DIM. Although
the outer DIM defines a new physical stream, it is discarded because its element size is zero. The stream transporting the nested
sequence has D = 2 dimensionality bits to encode the three possibilities for every element transported: it is the last element
of the inner sequence but not the outer, or it is the last element of both sequences, or it is the last element of neither sequence.

(d) A type allowing random access to an element from a sequence SEQ〈BITS〈8〉〉. We map this to streamspace as:
GROUP〈BITS〈L〉, DIM〈REV〈GROUP〈REV〈BITS〈L〉〉, BITS〈8〉〉〉〉〉 where L is the number of bits used to represent sequence lengths.
The streamlet sourcing the random element first provides the length of the sequence on the outermost physical stream, so that
the sink knows how large the sequence is (to prevent requesting out of bounds). Then, for every sequence length, the sink
may send multiple (hence DIM) requests through a reversed (hence REV) physical stream. For every request, an element is
provided (hence the GROUP of the BITS and REV). This describes a streamed RAM interface. The arguments of GROUP are
strictly ordered. To prevent deadlocks, a source may not assume that the sink accepts transfers on streams out of the order of
appearance as type arguments.

(e) An example of a mapping of the type VARIANT〈PRIM〈32〉, PRIM〈64〉, SEQ〈PRIM〈8〉〉〉. The first field of the group contains the
variant type tag to let the sink know what type of instance is contained in the variant. Because the first two potential types are
bit fields, they can fit into the outermost stream through the UNION type, causing the element size to be the maximum of the
size of the BITS fields, in this case E = 64. Since the third type has a higher dimensionality (D = 1), its instances flow over
their own physical stream. Whenever the tag exposes that the element is of the third type, the sink must read the rest of the
instance from the innermost stream.

(f) A use for NEW. Instead of mapping the length of a sequence by increasing D, we may choose to map the sequence length as
a separate stream. This can be seen as another way of mapping an instance of a SEQ into streamspace.

Figure 2. Examples of streamspace types.

guments are not limited to element-manipulating
types. The final element-manipulating type is
UNION〈S1, S2, ..., Sn〉, that selects the element
size to be the largest element size of its children.
This is useful in representing the VARIANT type.

Of the physical stream creating types, DIM〈S〉
increases the dimensionality of its child type S,
and therefore increases the parameter D. In phys-
ical streams, D bits are reserved that signal an
element is the last element in a (nested) sequence
(rather than e.g. the single ‘last’ bit of AXI4-
Stream). A separate physical stream is created

over which zero or more instances travel for every
single element of its parent. This makes DIM〈S〉
suitable to represent (nested) sequences. REV〈S〉
is used to create a physical stream that flows
in the reverse direction respective to its parent.
This stream remains in the same dimension as its
parent; for every element that the parent transfers,
also one instance of REV〈S〉 will be transferred.
REV〈S〉 can be used for interfaces between
streamlets that work on a request-response basis.

NEW〈S〉 is used to create a new physical
stream that has the same dimensionality as its par-
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ent, and is implicitly at the root of all streamspace
types.

In Figure 2, we demonstrate by example how
data structures can be mapped into streamspace.

STANDARD CONTAINER LIBRARY
As described in the Background section, soft-

ware projects provide programmers with pre-
defined containers to map data structures to mem-
ory. Containers are aliases for combinations of
types from the programming language’s type sys-
tem, with some specific access behavior, typically
implemented in a standard library. Similarly, Tydi
proposes ‘containers’ for streamspace to represent
common data structures. These ‘containers’ have
access behavior associated with them as described
by the streamspace type system. Some of these
proposed mappings can be found in Table 3. The
reader is encouraged to draw out some of these
similar to the graphs of Figure 2, to verify the
intuitive hardware-oriented view on data types of
the streamspace type system.

PHYSICAL STREAMS
We discussed the streamspace types, and how

it determines two properties of physical streams;
E, the number of element bits, and D, the number
of dimensionality bits to signal the end of a
(nested) sequence. We now introduce the bit-level
layout of a physical stream and show additional
properties of physical streams that are relevant in
the context of connecting two streamlet interfaces
producing and consuming data. When all proper-
ties are known, a concrete circuit-level interface
can be synthesized.

Physical streams have three additional proper-
ties; N , U and C. N is the number of elements
per transfer. Communicating multiple elements
per transfer can be used to scale up the bandwidth
of a physical stream at the cost off additional
wires. When N > 1, the stream has multiple
lanes over which elements are transported. U is
the number of arbitrary user bits piggybacking
transfers, for whatever purpose. C is the com-
plexity level of a stream, that describes the guar-
antees about the packing of elements into (mainly
the temporal dimension of) streamspace. The
complexity level can be used to make additional
trade-offs about the complexity of the control
logic of the interface on both ends of the stream,

with minor nuances in area and throughput. Fi-
nally, physical streams use the same valid/ready-
handshaking mechanism as AXI4-Stream for flow
control.

Using these properties, the layout of a physi-
cal stream can be seen in Figure 3a. The signals
fall into the following five categories.

• Flow control; the valid/ready signals for an
AXI-like handshake.
• Elementary data; the N elements of size E

to be transported in a single transfer, each
over their own lane.
• Transfer metadata; used when N > 1 to deal

with sub-normal transfers (i.e. when not all
lanes contain valid data, explained below).
• Dimensional data; last, the D-bits to sig-

nal the elements are last in some dimension,
and empty, to signal empty sequences.
• User data; user, an arbitrary-size field for

custom per-transfer information.

In Figure 3b, we also find how the complexity
parameter affects the guarantees that may be
dropped when increasing the complexity level, ef-
fectively changing the number of required signals.

At the lowest complexity level C = 1, the
source provides the strictest guarantees about the
packing of the elements into streamspace. When
N > 1, a transfer may contain less than N ele-
ments (e.g. at the end of a sequence). Requiring
elements to be aligned to the least significant
lane, the end index field signals which lane
holds the last valid element. At C >= 5, the
alignment requirement is relaxed, allowing also
a consecutive number of least significant lanes
to be invalid, requiring the start index as
well. At C >= 6, any lane may contain valid
or invalid elements, introducing the need for a
strobe. Note that tools using Tydi can automat-
ically insert small combinatorial conversion units
in case a sink supports a higher complexity level
than a source, to convert the end and start index
to strobes. Note that the choice between C = 5
and C = 6 is rather significant, since when
elements are very small but a high throughput
is required, strobes require N signals rather than
only 2 · dlog2Ne signals for the end and start
index. Finally, at C >= 7, it is furthermore
allowed that every element is the last element
of a sequence. In other words, a transfer may
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Table 3. Overview of Tydi ‘container’ types.
Data type Tydi container Definition
EMPTY NULL BITS〈0〉 (this is useful increase the tag size for VARIANT with an EMPTY type)
PRIM〈B〉 BITS〈B〉 BITS〈B〉
STRUCT〈T1,
T2, ..., Tn〉

CONCATSTRUCT〈S1, S2, ..., Sn〉 GROUP〈S1, S2, ..., Sn〉
DESYNCSTRUCT〈S1, S2, ..., Sn〉 GROUP〈NEW〈S1〉, NEW〈S2〉, ..., NEW〈Sn〉〉

VARIANT〈T1,
T2, ..., Tn〉

PACKEDVARIANT〈S1, S2, ..., Sn〉 GROUP〈BITS〈dlog2 ne〉, UNION〈S1, S2, ..., Sn〉〉
CONCATVARIANT〈S1, S2, ..., Sn〉 GROUP〈BITS〈dlog2 ne〉, GROUP〈S1, S2, ..., Sn〉〉
DESYNCVARIANT〈S1, S2, ..., Sn〉 GROUP〈BITS〈dlog2 ne〉, NEW〈S1〉, NEW〈S2〉, ..., NEW〈Sn〉〉

TUP〈n, T 〉

CONCATARRAY〈n, S〉 GROUP〈U1, U2, ..., Un〉, ∀u ∈ U, u : S
ARRAY〈n, S〉 NEW〈S〉
RATELEM〈n, S〉 GROUP〈REV〈BITS〈dlog2ne〉〉, S〉
RATSLICE〈n, S〉 GROUP〈REV〈GROUP〈BITS〈dlog2ne〉, BITS〈dlog2ne〉〉〉, NEW〈S〉〉

SEQ〈T 〉

LIST〈S〉 DIM〈S〉
VECTOR〈S〉 GROUP〈BITS〈L〉, NEW〈S〉〉
RASELEM〈S〉 GROUP〈BITS〈L〉, REV〈GROUP〈BITS〈I〉〉, S〉〉
RASSLICE〈S〉 GROUP〈BITS〈L〉, REV〈GROUP〈BITS〈dlog2ne〉, BITS〈dlog2ne〉〉〉, NEW〈S〉〉

L is a system-wide constant representing the number of bits to represent indices. RAS stands for random-access-sequence, and RAT
for random-access-tuple.

Figure 3. Bit-level layout of a physical stream (a) and examples for various complexity levels (b).

signal multiple ends of data in some dimensions,
and signal multiple empty sequences. Therefore,
the last and empty fields are duplicated for
all lanes, linearly increasing the number of wires
required for the dimensional data with respect to
the number of lanes.

For a detailed discussion, we refer the reader
to the Tydi website where the specification is
freely available [2].

FEATURE COMPARISON
We compare the features of Tydi and existing

streaming interface specifications and language
abstractions mentioned in the background section.
The comparison is shown in Table 4. We focus

on those features that are novel through this work
or common among multiple specifications.

The main difference between Tydi and AX-
I/Avalon is that Tydi also provides a type system
for compound types (e.g. structs and variants) and
describes how streams nested within streams must
behave, while AXI and Avalon only describe the
Tydi equivalent of a single physical stream of
primitives or sequences of one dimension. While
the Tydi type, and the knowledge that group
and union fields adhere strict ordering clearly
specifies the interaction, any logical interface with
multiple physical streams using AXI or Avalon
requires additional specifications.

Transferring higher dimensional information
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Table 4. Feature comparison of Tydi with existing stream-
ing interface specifications and language constructs

Feature Specification / language construct
Tydi AXI

[3]
Avalon
[4]

HDLs
[6][7][8]

Intended for Complex
datastr.

Byte
packets

Packets,
DSP

Handshake
only

Elem. size (bits) {1,∞} 8 {1, 512} {1,∞}
Structs Yes n.d. n.d. Yes
Variants Yes n.d. n.d. Yes
Stream nesting Yes n.d. n.d. n.d.
Max. dimensions ∞ 1 1 n.d.
Max. data bits
per transfer

∞ 1024 4096 ∞

Container library Yes n.d. n.d. n.d.
Multiple elem.
per transfer

Yes Yes Yes n.d.

Lane control Aligned,
Strobes

Strobes Aligned n.d.

Null elements Yes Yes Yes n.d.
Positional
elements

n.d.† Yes n.d. n.d.

Back-pressure Optional Optional Optional Mandatory
Multiplexing n.d.‡ Yes Yes n.d.
Credit-based
flow control

n.d.‡ n.d. Yes n.d.

User data; per ... Transfer Transfer Element,
Packet

n.d.

Yes: possible, by specification. No: not possible, by specification.
n.d.: not described by specification or documentation.

† Can be supported by using GROUP with a ”don’t care” bit field.
‡ Can be supported with the user field.

is also undescribed, requiring custom design ef-
fort. AXI has a unique feature, called positional
bytes that a consumer should not replace in an
implied byte-addressable memory being overwrit-
ten. This is an implication that is explicitly not
used in Tydi, but could simply be supported by
wrapping the element in a GROUP with an addi-
tional positional flag bit. AXI and Avalon contain
different specific features for element packing,
that are both supported through the complexity
parameter of physical streams in Tydi. Avalon and
AXI contain additional flow control and routing
features not described in Tydi, but they can be
mapped onto the user field.

The comparison between Tydi and the HDL
constructs is rather simple, since in all HDLs that
we compare, the only thing that is described and
abstracted is the valid/ready handshake mecha-
nism. Every other signal of the interface is com-
pletely user-defined. While this results in a lot of
undescribed features, it provides a starting point
for implementations of Tydi in the respective
languages.

IMPLEMENTATIONS
We implemented a software utility, found

alongside the specification, that serves as a ref-

1 10 100 1000

Lines of Code (log scale)

Example A

Example B

Example C

Example D

Example E

Example F

Bits

ConcatStruct

DesyncStruct

PackedVariant

ConcatVariant

DesyncVariant

ConcatArray

Array

RATElem

RATSlice

List

Vector

RASElem

RASSlice

AXI4-Stream

Avalon-ST

AXI4

Tydi VHDL Types VHDL Boilerplate

Figure 4. Comparison of hardware description effort

erence implementation. The utility parses files
containing declarations of Tydi types as well
as streamlets with Tydi interfaces and generates
HDL code templates.

Using the templates, users can build libraries
of reusable components that have interfaces ad-
hering to the specification. The back-end of the
utility is modular, currently generating VHDL,
but can be easily extended to other hardware
description languages. The generated code con-
sists of a package that contains user-friendly,
human-readable VHDL record type hierarchies
and readable boilerplate procedures derived from
the Tydi types, subjectively not different from
how an experienced hardware developer would
write them. The generated code can be used to
e.g. perform handshakes and decode unions with
a single line of VHDL.

To indicate the amount of effort saved by
this utility and the Tydi specification and type
system, Figure 4 compares the size of the input
of our utility to its output . A minimum amount
of VHDL required are the record type hierarchies,
shown in the figure as “VHDL Types” whereas
additional boilerplate code is listed as “VHDL
Boilerplate”. It is design-dependent how much
of this boilerplate code will be used, depending
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on the procedures and functions used, so this
measure gives an upper bound.

We generate code for all types presented in the
examples and the container library. Only the BITS

generic type parameter is used, only two fields
for the containers for STRUCT and VARIANT are
provided. As Table 4 shows, all the other known
specifications can be implemented as a Tydi type,
which we also did for the whole AXI4 (memory)
interface specification. The Tydi equivalent to the
HDL constructs is the Tydi BITS type.

Because the code size depends on the physical
stream parameters, we generate for E = 1,
E > 1 and all possible values for C, and report
the average lines of code for each type. From
Figure 4, we find that Tydi decreases the required
lines of code of all types by an order of magnitude
and potentially by another order of magnitude
depending on how much of the boilerplate code
is used.

We expect to implement additional back-ends
for more modern HDLs, such as Chisel and
Cλash in the near term. Longer term, the utility
can be grown into an HDL of its own to support
structural composition of streamlets, followed by
behavioral constructs, where the specific rules
related to the streamspace type system may be
statically or dynamically checked by automated
tools. Such a language could borrow from well-
studied dataflow languages [10] and from recent
implementations of this paradigm [11].

A subset of Tydi is also implemented in the
Fletcher FPGA accelerator framework. Fletcher
provides a hardware/software interface between
data structures in memory and hardware acceler-
ators. Fletcher is built on Apache Arrow, a project
that provides a common in-memory data layer for
over eleven software languages, preventing the
need to serialize/deserialize information between
heterogeneous (software) processes, which can
incur significant bottlenecks in accelerator sys-
tems [9]. Because the data structures that can be
expressed in Arrow include nested sequences and
variants, existing streaming specifications are not
adequate to support all Arrow data types, hence
the need for the more advanced streaming spec-
ification and infrastructure that Tydi provides.
Fletcher translates Arrow types into a subset of
Tydi types, and generates the appropriate bus
infrastructure and control logic to stream in Ar-

row data, bridging the gap between hardware and
software for any of the languages supported by
Arrow.

CONCLUSION
While hardware accelerators are becoming

increasingly popular, we observed a lack of clear
specifications and methods that allow developers
to work with complex, dynamically-sized data
structures in hardware description languages. We
have introduced the Tydi specification, that allows
to rapidly express how such structures can be
exchanged between components using stream-
ing interfaces, based on an intuitive, hardware-
oriented type system. We have shown that by
describing components with interfaces based on
the type system, the hardware description effort
can be reduced by orders of magnitude. Our work
enables future integration of the type system into
modern existing, or new, hardware description
languages, such that the exchange of complex,
dynamically-sized data structures between com-
ponents is as easy to describe for hardware as
they are for software today.
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