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Quantum phase estimation is a corner-
stone in quantum algorithm design, al-
lowing for the inference of eigenvalues of
exponentially-large sparse matrices. The
maximum rate at which these eigenvalues
may be learned, –known as the Heisen-
berg limit–, is constrained by bounds on
the circuit complexity required to simulate
an arbitrary Hamiltonian. Single-control
qubit variants of quantum phase estima-
tion that do not require coherence between
experiments have garnered interest in re-
cent years due to lower circuit depth and
minimal qubit overhead. In this work we
show that these methods can achieve the
Heisenberg limit, also when one is un-
able to prepare eigenstates of the system.
Given a quantum subroutine which pro-
vides samples of a ‘phase function’ g(k) =∑
j Aje

iφjk with unknown eigenphases φj
and overlaps Aj at quantum cost O(k), we
show how to estimate the phases {φj} with
(root-mean-square) error δ for total quan-
tum cost T = O(δ−1). Our scheme com-
bines the idea of Heisenberg-limited multi-
order quantum phase estimation for a sin-
gle eigenvalue phase [1, 2] with subroutines
with so-called dense quantum phase esti-
mation which uses classical processing via
time-series analysis for the QEEP prob-
lem [3] or the matrix pencil method. For
our algorithm which adaptively fixes the
choice for k in g(k) we prove Heisenberg-
limited scaling when we use the time-
series/QEEP subroutine. We present nu-
merical evidence that using the matrix
pencil technique the algorithm can achieve
Heisenberg-limited scaling as well.
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C Range of shifted phase estimates 29

1 Introduction

For quantum computers to overcome the 50+

year head start in research and development en-
joyed by their classical competition, quantum al-
gorithms must eke out every inch of quantum
speedup over their classical counterparts. Quan-
tum phase estimation (QPE) of a unitary oper-
ator U , –a BQP-complete problem [4]–, plays a
central or support role in many promising quan-
tum applications [5–7].

However, not all flavours of quantum phase es-
timation are equally powerful. To perform QPE
with accuracy (root-mean-square) error δ, ini-
tial implementations of quantum phase estima-
tion [8, 9] used a O(log(δ−1))-qubit control reg-
ister, and required computation time scaling as
T = O(δ−2), known as the Sampling Noise Limit,
when contributions from outlying (unlikely) data
are taken into account [1]. Much work has been
undertaken over the succeeding years to improve
QPE estimation rates to the theoretically optimal
Heisenberg limit T = O(δ−1) [10–12] and reduce
the control overhead.

The requirement to perform applications of U
conditional on a large entangled control register
is technically challenging and has strong coher-
ence requirements. It has been known for a long
time [13] that the control register in QPE can
be replaced by a single qubit using classical feed-
back and re-preparation of the control qubit, also
known as iterative QPE [14]. For estimating the
phase of a single eigenstate, –assuming the prepa-
ration of this eigenstate–, the sampling noise limit
can thus simply be achieved using a single con-
trol qubit. In [1] iterative-QPE was extended to
achieve the Heisenberg limit T = O(δ−1). This
Heisenberg limit can be shown, via Cramer-Rao
bounds [1], to be a lower bound on the cost
of phase estimation, assuming one cannot fast-
forward the unitary U [15]. This type of esti-
mation have additionally demonstrated a relative
robustness to error [2, 16], which is of interest to
NISQ applications. Other analyses of QPE use
maximum-likelihood [17], or Bayesian [16, 18] in-
ference.

The requirement to prepare eigenstates of the
unitary U is not possible for most applications.
It is well known that the ‘textbook’ QPE al-

gorithm succeeds for any initial state, i.e. the
output is always an accurate estimate of one of
the eigenphases of U [8]. However, the perfor-
mance of few-ancilla QPE on starting states that
are not eigenstates has only been examined re-
cently. In [19] it was demonstrated numerically
that one may infer single eigenvalues from mixed
or superposed initial eigenstates using standard
classical signal processing techniques [20]. Un-
der some additional constraints on the system, it
was recently found that these techniques could be
performed in the absence of any control qubits
or the need to apply controlled unitary opera-
tions [21, 22], a further significant saving. Due to
the need to ‘densely sample’ the phase function
g(k) = ∑

j Aje
iφjk, and a lack of optimization of

the classical post-processing techniques, Ref. [19]
only achieved sampling-noise-limited scaling, but
not Heisenberg-limited scaling. By dense sam-
pling we mean that we draw samples from g(k)
with k a sequence of integers, k = 0, 1, . . . ,K (as
opposed to, say, choosing k = 2d, i.e. exponen-
tially increasing which is used in textbook QPE
and iterative QPE). By a clever adjustment of the
quantum phase estimation problem to target es-
timation of the spectral function, Eq. (3), of the
input state, Ref. [3] was able to prove rigorous
results, with bounds that were subsequently im-
proved in Ref. [23]. Still, these results fall short of
reaching “the Heisenberg limit for the problem of
estimating multiple phases", however that should
be defined.

In this work, we demonstrate single-control
qubit quantum phase estimation at a so-called
Heisenberg limit. We extend the methods used in
Refs. [1, 2] that obtain Heisenberg-limited scal-
ing for single eigenphases to the multiple-phase
setting by the use of a multi-order scheme and
phase matching subroutines between different or-
ders. We show that to make this phase match-
ing unambiguous requires the sampling scheme
to be adaptive, i.e. the next choice for k of
g(k) depends on the current phase estimates. At
each order the multi-order algorithm requires in-
put from a dense phase estimation method: for
a given order k we use samples from g(kk) with
k = 0, 1, . . . ,K. As we require the freedom to
choose k a real number, to be applicable to a
completely general U we must invoke the quan-
tum singular value transformation of Ref. [24],
which requires O(1) additional control bits. Us-
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ing the time-series or QEEP analysis of Ref. [3] as
classical processing subroutine, we are able to ob-
tain a rigorous proof of Heisenberg-limited scal-
ing of our multi-order scheme. Using the matrix
pencil method analysed in Ref. [19], as such a
dense subroutine, we are able to show numerical
results consistent with the Heisenberg limit, with
a performance improvement over the time-series
analysis results.

In essence, our paper is concerned with what
choices of k in g(k) and what classical processing
are needed to enable Heisenberg-limited scaling,
i.e. scaling which minimizes the total number of
applications T of (controlled) U (which we refer
to as the quantum cost) given a targeted error δ
with which to estimate multiple eigenvalue phases
of U present in some input state |Ψ〉. It can thus
be viewed as purely solving a problem of classi-
cal signal processing. This does not mean that
such questions are trivial: for example, the ques-
tion of how to estimate phases if one is allowed
to only get single samples from g(k) for a set of
randomly chosen k relates to the dihedral hidden
subgroup problem in quantum information theory
[25]. We note that other work, based on a Monte
Carlo extension of [3], achieving Heisenberg scal-
ing (up to polylog factors) was recently presented
in [26]. Another recent work also demonstrated
numerical evidence for Heisenberg-limited phase
estimation using Bayesian methods [27]. We also
note that the information-theoretically optimal
method in [17] which picks random k in g(k)
has a classical processing cost which is linear in
the quantum cost T , and Theorem 1 in [17] can
be converted to bound the mean-squared-error
in estimating a single phase, see comments be-
low Theorem 2.5 in Section 2.2. In principle this
information-theoretic method can be extended to
the case of nφ eigenvalue phases, but the classical
processing cost will be exponential in nφ as one
iterates over the possible values of the phases,
while our Algorithm 4.1 has a polynomial (but
superlinear) quantum and classical cost in terms
of the number of phases nφ.

1.1 Outline

We begin in Sec. 2 by defining a few mathemat-
ical objects. We separate the quantum part of
a phase estimation problem, namely sampling of
the phase (or signal) function g(k) in Eq. (2)
given an input unitary U and input state |Ψ〉

in Definition 2.2 through running some quantum
circuits, and the classical processing of samples
from g(k) to extract the eigenvalue data of U . In
Sec. 2.1 we state and prove some needed proper-
ties of the distance between phases. In Sec. 2.2
we prove several Cramer-Rao bounds on the scal-
ing of the error versus the total quantum cost for
the estimation of a single eigenvalue phase, The-
orem 2.5. We state the previous result on getting
Heisenberg-limited scaling for a single eigenvalue
phase in Algorithm 2.6. Table 1 contains a glos-
sary of the symbols used in this paper.

In Sec. 3 we properly define a multi-eigenvalue
phase estimation problem (Def. 3.1). We dis-
cuss algorithms that can be used to extract mul-
tiple phases from densely-sampled signal g(k).
We state error bounds satisfied by the output of
Alg. A.3 (Lemma 3.2) that is used as the fixed-
order subroutine in our final Algorithm 4.1 which
achieves Heisenberg scaling.

In Section 4 we present our Heisenberg-limited
algorithm. We discuss a critical aliasing prob-
lem to be solved which occurs when estimating
multiple eigenvalues. We show that an adaptive
choice for k in g(k) can solve this issue and we
prove that such adaptive choice always exists in
Lemma 4.2. In Lemma 4.3 and Lemma 4.4 we
prove some properties about Algorithm 4.1 which
will be helpful in proving the final Theorem 4.5.

Thus in Theorem 4.5 we prove Algorithm 4.1
achieves Heisenberg-limited scaling, which is the
main result of this work. In Sec. 5 we numeri-
cally compare this rigorous implementation to an
implementation using the matrix pencil method,
used in Ref. [19], for which we are unable to find
a rigorous proof of Heisenberg scaling. We finish
the paper with a discussion, Section 6.

2 The classical and quantum tasks of
phase estimation

One may separate quantum phase estimation into
the extraction of a signal which consists of oscilla-
tions at eigenvalue frequencies φj at a chosen time
k, and the processing of this signal to resolve the
frequencies. Let us first define the following:

Definition 2.1 (Signal or Phase Function, and
Spectral Function). Let U ∈ U(2N ) be an N -
qubit unitary operator, and |Ψ〉 ∈ C2N an N -qubit
state. We label the eigenstates |φj〉 of U by their
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Symbol Term Description
U Unitary The unitary whose eigenphases we wish to estimate.
T Quantum cost The total number of applications of controlled U over the course

of the phase estimation algorithm.
φj Phase A number φj ∈ [0, 2π) such that the jth eigenvalue of U is eiφj .
Aj Overlap The overlap of the input state and the jth eigenstate of U ; see

Def. 2.1.
g(k) Signal / Phase function See Def. 2.1.
d Order Running index for the order of estimation. At each order we con-

struct new phase estimates φ̃(d)
j using new data and the previous

estimates φ̃(d−1)
j .

φ̃
(d)
j Estimate Estimate of φj obtained at the dth order; see step 4d of Alg. 4.1.
kd Exponent At order d we perform the QEEP subroutine for V = Ukd .
κd Multiplier Defines kd = κdkd−1.
θ

(d)
j Phase Eigenphase of Ukd .
θ̃

(d)
j Estimate Estimate of θ(d)

j ; see step 4b of Alg. 4.1.
ε Single order error Error parameter used for the QEEP subroutine at each order; see

Alg. A.3.
δ Final error A bound for standard deviation of the final estimates; see Def. 3.1.
pd Confidence bound The probability with which the QEEP subroutine at order d suc-

ceeds; see Eq. (28).
A Overlap bound We wish to estimate the phases for which the overlap is Aj > A;

see Def. 3.1.

Table 1: Glossary of symbols used in the main text.

phase — U |φj〉 = eiφj |φj〉. We can decompose
|Ψ〉 in terms of these eigenstates,

|Ψ〉 =
∑
j

aj |φj〉, (1)

and write the overlap Aj := |aj |2,
∑
j Aj = 1.

We define the phase function, – also called the
signal–, g(k) for k ∈ R of a state |Ψ〉 under U as

g(k) =
∑
j

Aje
ikφj . (2)

The spectral function A(φ) is defined as

A(φ) =
∑
j

Ajδ(φ− φj). (3)

Note that
∫ 2π

0 dφA(φ) = 1, and g(k) =∫ 2π
0 dφeikφA(φ); i.e. the phase function sets the
Fourier coefficients of the spectral function.

Note that one may change seamlessly between
the description of a unitary U and its eigenvalues
and a Hermitian operator H and its eigenvalues
using the transform U = eiHt for an appropriate

choice of t. Note that since g(−k) = g∗(k) we can
restrict ourselves to k ≥ 0.

One may consider algorithms estimating g(k)
at integer k ∈ Z+, which require the quantum cir-
cuits using controlled-Uk in Fig. 1 with k ∈ Z+.
In our final Alg. 4.1 we will however use k ∈ R+

(in practice k ∈ Q+). In order to implement Uk,
we can write k = bkc + α, and we can simulate
Uk in time O(k) if we can simulate Uα in time
independent of k. The accuracy of this fractional
query to Uα can be independent of the final er-
ror in our phase estimation (as long as it is suf-
ficiently small). Simulating Uα is not a signif-
icant issue for Hamiltonian simulation methods
such as Trotter decompositions [28], which allow
simulation of eiHt for arbitrary t ∈ R. If we in-
stead have access to a circuit implementation of
a unitary U , or a block-encoding of a Hamilto-
nian H, we can implement a fractional query of
Uα via the quantum singular value transform [24,
Corollary 34]. The circuit to implement Uα to er-
ror ε requires O(1) additional ancilla qubits, and
O(∆−1

max log(1/ε)) implementations of controlled-
U (where ∆max is the largest gap in the spectrum
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of U) 1. We will assume in this work that our
states have support on at most nφ phases, and
so we can bound ∆ ≥ π/nφ. The cost of imple-
menting Uα will thus not be a significant part of
the cost to implement Uk under the assumption
k >> A−1

0 log(1/ε). To simplify our remaining
analysis, we assume herein that we can implement
Uk at a total quantum cost k for all k ∈ R+.

The following task summarizes the quantum
subroutine for phase estimation which is to be
executed with the quantum circuits in Fig. 1:

Definition 2.2 (Phase Function Estimation,
PFE). Let U be an N -qubit unitary operator and
|Ψ〉 an N -qubit quantum state. Assume

1. A quantum circuit implementation of U
(conditional on a control qubit) and,

2. A quantum circuit that prepares |Ψ〉.

Given a k ∈ Z+, error ε > 0, and confidence
0 < p ≤ 1 ∈ R, PFE outputs an estimate
g̃(k) of the phase function g(k) of |Ψ〉 under U ,
with P(|g̃(k) − g(k)| ≤ ε) ≥ 1 − p with quan-
tum cost T = M |k| where M is the number
of repetitions of both experiments in Fig. 1 and
M = Θ(| ln(1 − p)|ε−2) via a Chernoff bound.
Our assumption2 that the cost of implementing
Uk for k ∈ R+ scales as O(k) implies that the
above scaling for the cost of phase function esti-
mation holds when k ∈ R+.

Note that estimating the quantum cost of the
subroutine in Def. 2.2 as linear in k is consistent
with general no-fast forwarding statements [15]
which state that for general Hamiltonians one

1The ∆max dependence in our circuit comes from the
requirement in [24, Corollary 34] that our unitary have
spectrum on [−π+∆max, π−∆max]. Though this will not
immediately be the case, we are free to rotate the spec-
trum of our unitary to satisfy this requirement, as long
as the spectral gap exists. We also only require to con-
sider those eigenstates with support on our initial state
in this algorithm; eigenstates with zero weight can be ad-
justed as part of implementing the quantum singular value
transformation without affecting the phase function g(k).

2In practice, the cost of phase function estimation for
k ∈ R+ will scale as M(bkc + O(nφ log(1/ε)) when using
quantum signal processing techniques. One can confirm
that the effect this has on our result is to effectively in-
crease the cost of calling the QEEP subroutine, Alg. A.3,
from O(ε−6) to O(ε−6 log(1/ε)). This will only change the
prefactor of our Heisenberg-limited phase estimation al-
gorithm (Alg. 4.1), and does not prevent it achieving the
Heisenberg limit.

cannot implement U t = exp(itH) in time sub-
linear in t. It is expected that phase function
estimation is hard to do efficiently on a classi-
cal computer as it allows one, via classical post-
processing, to sample from the eigenvalue distri-
bution from the input state which can be refor-
mulated as a BQP-complete problem [4].

|+〉 •
X

Uk|Ψ〉
...

...

|+〉 •
Y

Uk|Ψ〉
...

...

Figure 1: For an input state |Ψ〉 =
∑
j aj |φj〉 and

initial ancilla state |+〉 = 1√
2 (|0〉 + |1〉) the probabil-

ity for the ancilla measurement outcome to be ±1 is
P(±1) = 1

2
∑
j Aj [1± cos(kφj)] (left circuit measuring

in the X-basis) and P(±1) = 1
2
∑
j Aj [1 ∓ sin(kφj)]

(right circuit measuring in the Y -basis).

The quantum subroutine for PFE proceeds by
executing the circuits in Fig. 1 for the given k.
The control qubit is prepared in the 1√

2(|0〉+ |1〉)
state, and is used to control k applications of the
unitary U on the system register prepared in |Ψ〉.
The reduced density matrix of the control qubit
then takes the form

ρ = 1
2

(
1 g(k)

g∗(k) 1

)
. (4)

The phase function g(k) is extracted by state
tomography of the control qubit: one estimates
the real and imaginary parts of g(k) = g(r)(k) +
ig(i)(k) by M repetitions of the circuit in Fig. 1
and measurements of the control qubit in the X-
or Y-basis respectively. We will ignore any de-
pendence of phase function estimation on N .

2.1 Phase distance on the circle
Quantum phase estimation describes a series of
protocols to estimate the eigenphases φj . As
these eigenvalues are defined on the circle [0, 2π),
we need a notion of distance which respects this
periodicity:

Definition 2.3. For x ∈ R we define the distance
| · |T ∈ [0, π] as

|x|T := min
m∈Z

(|∆|), with x = ∆ + 2πm,

with ∆ ∈ [−π, π). (5)
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Clearly, the distance obeys the triangle inequality:
for x1, x2 ∈ R

|x1 + x2|T ≤ |x1|T + |x2|T . (6)

The following Lemma addresses a technical is-
sue in the proof of performance of Algorithm
4.1. For integer k ∈ Z+, we have |kx|T =
minm∈Z |k∆ + 2πm| = kminm∈Z |∆ + 2πm

k |T ,
implying Eq. (8) below directly. However, for
k ∈ R+ (or rational numbers k ∈ Q+) we need to
specify a range of x for which such a statement
holds, that is:

Lemma 2.4. Suppose k > 1 and θ, φ ∈ [0, 2π).
If

π

k
≤ φ ≤ π(2bkc − 1)

k
, (7)

we have for any θ

min
n∈{0,...,bkc−1}

∣∣∣∣φ− θ

k
− 2πn

k

∣∣∣∣
T

= 1
k
|kφ− θ|T . (8)

Proof. Let x = φ− θ
k , then Eq. (7) and θ ∈ [0, 2π)

imply that

−π ≤ kx ≤ 2πbkc − π. (9)

and thus kx = ∆+2πm with m ∈ {0, . . . bkc−1}
and ∆ ∈ [−π, π) and |kφ − θ|T = |∆|. Hence
x = ∆

k + 2πm
k with m ∈ {0, . . . bkc − 1}, implying

Eq. (8) where the minimum can be achieved by
m = n.

2.2 Limits for single-eigenvalue phase estima-
tion

For the special case of estimating a single eigen-
value phase, the Cramér-Rao theorem can be
used to lower bound the quantum cost T to learn
the phase with accuracy δ, known as the Heisen-
berg limit. The problem of estimating multiple
phases φj , in the presence of unknown overlaps
Aj , is not easily amenable to such Fisher infor-
mation analysis as it is a multi-parameter estima-
tion problem. However, it can be expected that
the cost T of this task is at least as high as that
of single phase estimation, hence it is of interest
to review these bounds here. The following theo-
rem also proves a dense signal limit which sits in
between Heisenberg and sampling noise scaling:

Theorem 2.5 (The Heisenberg, Dense Signal
and Sampling Limits). The (root-mean-square)
error δ of an estimator φ̃ of the eigenvalue phase
φ employing the circuits in Fig. 1 on a eigenstate
of U is always lower bounded as

Heisenberg Limit : δ ≥ cT−1, (10)

where T is the quantum cost of implementing the
circuits. If we choose to use only quantum cir-
cuits with k = 1, the sampling noise limit holds:

Sampling Noise Limit : δ ≥ T−1/2. (11)

If we choose circuits with k = 0, 1, . . . ,K with a
fixed number of repetitions M for each circuit we
are bound by a so-called ‘dense signal’ limit:

Dense Signal Limit : δ ≥ cT−3/4. (12)

In these statements c is some constant.

Proof. Let φ̃ be an estimator of φ which is in-
ferred from the data x. Here the data x is the
string of outcomes of the ancilla qubit measure-
ments for all the experiments using the left and
right circuits in Fig. 1. We have

δ2 =
∑

x
P(x|φ)(φ− φ̃(x))2 ≥ I−1(φ), (13)

by the Cramér-Rao theorem [29, 30] where the
Fisher information is defined as

I(φ) =
∑

x
P(x|φ)

{
∂

∂φ
ln [P(x|φ)]

}2
. (14)

Thus I(φ) limits the information we may learn
about φ given a dataset x drawn from P(x|φ)
and we can calculate I(φ). Let M r

k be the num-
ber of experiments, using the circuit with the X
measurement, and M i

k be the number of experi-
ments using the circuit with the Y measurement
with a certain chosen k. The Fisher information
for all independent experiments together is addi-
tive, i.e. I(φ) = ∑

k[M r
kI(φ|k, r) + M i

kI(φ|k, i)]
with I(φ|k, r) and I(φ|k, i) the Fisher informa-
tion of a single experiment and ∑k is the sum
over the chosen set of ks. For a single experi-
ment we can calculate, using Eq. (14) and the
probability for the output bit given in Fig. 1, that
I(φ|k, r) = I(φ|k, i) = k2 and thus

I(φ) =
∑
k

k2(M r
k +M i

k). (15)
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At the same time the total quantum cost of all
experiments is

T =
∑
k

k(M r
k +M i

k). (16)

The key insight here is that the relative depen-
dence on k is different between T and I and this
implies that the trend of the number of experi-
mental runsM r/i

k as a function of k will affect the
maximum rate of estimation. If we choose only
k = 1 we see that δ2 ≥ 1

T which is the sampling
noise limit.

The biggest value for I(φ) for a given T is ob-
tained when we choose a single largest possible
k = K so that T = KMK and I(φ) = K2MK =
T 2/MK with MK = M r

K + M i
K . This implies a

Heisenberg limit, i.e. δ ≥ cT−1 where c is some
constant depending on MK . If we however make
the ‘dense signal’ choice, that is, M r

k = M i
k = M

for k = 1, 2 . . .K, then

I(φ) = M

3 K(K + 1)(1 + 2K), (17)

while the total quantum cost is T = MK(K+1).
Increasing K with M fixed, we have to leading
order in K that δ ≥ I(φ)− 1

2 =
√

3
2M

− 1
2K−

3
2 =√

3
2M

1
4T−

3
4 , which is the dense signal limit.

Remark: We note that a randomized version
of the dense signal choice can potentially scale in
near-Heisenberg-limited fashion. In this method,
one would draw k at random from 1, . . . ,K and
repeat this S times to generate random variables
k1, . . . , kS and repeat experiments with fixed M
for each such ki. With the right choice of S×M =
polylog(K), one can argue, using the Cramer-Rao
lower bound analysis above, that the expected
error E(δ) ≥ polylog(E(T ))

E(T ) where E(T ) is the ex-
pected quantum cost. The algorithm in [17] uses
such strategy with M = 1. Clearly, the sampling
noise limit can be achieved by choosing k = 1
in the circuits of Fig. 1. However, one can ask
whether the dense signal limit or the Heisenberg
limit can also be achieved, in particular when we
demand that the classical post-processing is com-
putationally efficient, meaning that this process-
ing is polynomial in the quantum cost T . For the
dense signal limit one needs a classical method
to process the estimates of g(k) at k = 1, . . . ,K
to estimate φ̃. Using perturbation theory in the

noise, the matrix pencil method has been claimed
to achieve this for a single eigenvalue [31].

Achieving the Heisenberg limit is non-trivial
due to phase aliasing: the phase function g(k)
obtained by the experiments using Uk remains
invariant if the phase φ is shifted by 2π

k . This im-
plies that a strategy of estimating φ from a single
point g(k) at large k will fail unless φ is already
known to sit within a window of width 2π

k . This
issue is circumvented by sampling g(k) at multi-
ple orders k = 2d to ‘gradually zoom in’ on φ.
To get Heisenberg scaling, one lets the number
of samples M and thus the confidence, to depend
on the order, so that the most significant bits
of φ are determined with the highest confidence.
Methods for doing this were first introduced in
Ref. [1], and improved in Ref. [2] for the purpose
of gate calibration. Here we state the result:

Algorithm 2.6 (Heisenberg Algorithm For Sin-
gle Eigenvalue Phase [1, 2]). Given an targeted
error δ > 0, and numbers α, γ ∈ Z+. The
Heisenberg algorithm which outputs an estimate
φ̃ for φ proceeds as follows:

1. Fix df = dlog2(1/δ)e.

2. For d = 0, 1 . . . , df :

(a) Use the PFE subroutine, Def. 2.2, cir-
cuits in Fig. 1, to obtain an estimate
g̃(k) of g(k) for k = 2d using Md =
α+γ(df + 1−d) repetitions of both ex-
periments.

(b) Compute θ̃(d) = Arg[g̃(2d)] ∈ [0, 2π)
(c) If d = 0, set φ̃(0) = θ̃(0).
(d) Else, set φ̃(d) to be the unique value in

the interval [φ̃(d−1) − π
2d , φ̃

(d−1) + π
2d )

(with periodic boundaries) such that

2dφ̃(d) = θ̃(d) mod 2π. (18)

3. Return φ̃ = φ̃(df ) as an estimate for φ.

It was proven in [2] that for some choices of α
and γ the root-mean-square error δ on the final
estimate φ(df ) is at most cT−1 for a constant c
and total cost T = 2∑df

d=0 2dMd, thus reaching
the Heisenberg limit.

One might consider the effect of experimental
noise on these limits. The algorithm given in [2]
was proven to be robust against noise that af-
fected the estimation of any g(k) by no more than
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1√
8 . However, realistic noise tends to scale with

the circuit depth, eventually breaking this bound.
In the presence of a uniform depolarizing channel,
it is possible to extend the above calculation of
Fisher information to optimize the recovery of a
single phase φ, however in the limit that δ → 0
only the sampling-noise limit can be obtained:

Lemma 2.7. The (root-mean-square) error δ of
an estimator φ̃ of the eigenvalue phase φ employ-
ing the circuits in Fig. 1 on an eigenstate of U in
the presence of a pure depolarizing channel with
a fixed failure probability p = e−1/τ per iteration
of U is bounded as

δ ≥ τ−
1
2T−

1
2

2e . (19)

Proof. A pure depolarizing channel sends the off-
diagonal element of the reduced density matrix in
Eq. (4) to pkg(k). This adjustment can be propa-
gated directly through to the Fisher information
(Eq. (15)), which becomes

I(φ) =
∑
k

e−2k/τk2(M r
k +M i

k), (20)

while the total quantum cost (Eq. 16) remains the
same. Let us consider the relative contribution to
I versus the contribution to T of a single choice
of k; if we write I(φ) = ∑

k Ik and T = ∑
k Tk,

we have Ik/Tk = ke−2k/τ . Differentiating w.r.t.
k and setting equal to zero yields

d

dk

Ik
Tk

= e−2k/τ − 2k
τ
e−2k/τ = 0 (21)

→ k = τ

2 . (22)

Optimizing I(φ) with respect to T thus requires
setting k = τ

2 and increasing Mk = M r
k + M i

k,
which yields

I(φ) = τ2

4eMk, T = τ

2Mk. (23)

Substituting this into the Cramér-Rao bound δ ≥
I(φ)− 1

2 yields the desired result.

Remark: Note that as we fix T ∼ τ in the
above, we in effect have Heisenberg-limited scal-
ing in τ . However, if we treat τ as a constant this
is only the sampling noise limit as defined above.
This result holds only for the simplest-possible
noise case; more complicated noise is difficult to

analyse, but numerical results show it may pre-
vent estimation beyond some minimum value us-
ing standard techniques [19]. We assume herein
that all circuits are noiseless (and will not use
Lemma 2.7 in the rest of this work).

3 Defining the task of multiple-
eigenvalue phase estimation

In this section we define the goal of estimating
multiple eigenvalue phases of some unitary U .
When the input state |Ψ〉 is supported on multi-
ple eigenstates, choosing a single k does not suf-
fice, simply since knowing Eq. (2) at a single point
k does not give a unique solution {Aj , φj} [19].
A simple way to circumvent this problem is thus
to estimate ‘densely’: estimating g(k) for all in-
tegers 0 ≤ k ≤ K would allow us to fit up to
O(K) (φj , Aj) pairs. However, this does not sat-
urate the Heisenberg limit as shown in Theorem
2.5, hence we need to come up with a different
method.

Separate from this, the full eigenspectrum of an
arbitrary N -qubit unitary U has up to 2N unique
values, making it impossible to describe in poly-
nomial time in N . In addition, the spectral con-
tent of the input state |Ψ〉 could be very dense,
with many eigenvalues clustered together instead
of separated by gaps, and the overlap for these
eigenvalues, Aj , could be sharply concentrated
or uniformly spread. To deal with general in-
put states, Ref. [3] thus formulated the quantum
eigenvalue estimation problem (QEEP): instead
of estimating individual phases, the focus is on
estimating the spectral function A(φ) in Eq. (3)
with some resolution. We recall the precise defi-
nition of this problem in App. A, Def. A.1. In our
case, we focus on the case where the initial state
only has a non-zero overlap with a small num-
ber nφ of eigenvectors of U , and we want to esti-
mate eigenphases corresponding to each of them.
Here is our precise definition of the problem to be
solved:

Definition 3.1 (Multiple eigenvalue estimation
problem). Fix an error bound δ > 0, an overlap
bound A > 0. For a unitary U and state |Ψ〉, we
assume that Aj > A for exactly nφ phases φj and
Aj = 0 for all other phases so that nφ ≤ A−1.
Let g(k) = ∑

j Aje
ikφj be the phase function in

Def. 2.1 and assume access to the PFE quantum

Accepted in Quantum 2022-06-13, click title to verify. Published under CC-BY 4.0. 8



subroutine in Def. 2.2 for any k ∈ R+, generating
data x. The task is to output a set {φ̃l} of nφ or
fewer estimates of the phases {φj} such that, if
we take the closest estimate φ̃(closest)

j (x) of each
phase φj given the data x,

φ̃
(closest)
j (x) = arg min

φ̃l

(|φ̃l(x)− φj |T ), (24)

the accuracy error

δj =
√∑

x
P (x|{φl, Al})

∣∣∣φ̃(closest)
j (x)− φj

∣∣∣2
T
, (25)

is bounded by δj ≤ δ for all j = 1, . . . , nφ.

Remark: Def. 3.1 allows us the freedom to as-
sign a single estimate to multiple phases when
calculating the final mean-squared-error.

3.1 Methods of dense signal phase estimation
Achieving the Heisenberg limit for multiple eigen-
values requires solving the problem considered in
Def. 3.1 with a total quantum cost T = O(δ−1).
We intend to accomplish that goal with a multi-
order estimation scheme. At each order d, we will
use a data processing method to estimate multi-
ple eigenphases θ(d)

j of Ukd to within some er-
ror ε, from data generated by PFE (analogous to
step 2b of Alg. 2.6). (We will stitch the estimates
of the phases θ(d)

j together to give Heisenberg-
limited estimates of the corresponding φj in a
manner similar to step 2d of Alg. 2.6.) We can
offload the estimation of θ(d)

j to a subroutine; we
will show later that we can afford a subroutine
with superlinear scaling in ε as the final error δ
in our multi-order scheme can be made arbitrarily
small even at fixed ε. In this section we discuss
the two subroutines that we will consider in this
work: the matrix pencil method (Alg. 5.1) first
studied for QPE in Ref. [19], and the ‘time series
analysis’ proposed in Ref. [3] to solve the QEEP
problem mentioned above.

We detail our implementation of the matrix
pencil method in Alg. 5.1; this is a well-known
algorithm in signal processing, that is known
to achieve the dense-sampling limit for a single
eigenvalue [30, 31]. However, bounding the error
of the matrix pencil method in estimating many
phases typically requires a minimal gap ∆ be-
tween these phases, ∆ = mini 6=j |φi − φj |T , and
that we query the PFE to obtain estimates of g(k)

at k > 1
∆ . This is a proven necessary condition

to estimate multiple φj to error ε ≤ c∆ [32] for
some constant c. In our case, we need to allow for
the case where we are estimating two phases θ(d)

0 ,
θ

(d)
1 to an error ε ≥ |θ(d)

0 − θ
(d)
1 |. In principle this

is not forbidden by the result of [32] (and numer-
ical simulation confirms that this indeed works),
but we do not know of a formal statement about
the scaling of the matrix pencil method in this
situation. Instead, we opt for a different method
for the purposes of forming a rigorous proof of
the Heisenberg limit, and test the matrix pencil
method in numerics only.

Ref. [3] proved rigorously the QEEP can be
solved from the densely sampled signal g(k) gen-
erated with the PFE in Def. 2.2 using a ‘time-
series analysis’ algorithm. We review the re-
sults of Ref. [3] in detail in App. A. However,
the solution to the QEEP is an estimation Ã(φ)
of a discretization of the spectral function A(φ)
(Eq. (3)) rather than a set of estimates {θ̃(d)

j }. To
use the time-series analysis algorithm as a sub-
routine in our multi-order phase estimation al-
gorithm then requires converting from one form
to the other. This is achieved by Alg. A.3, the
Conservative QEEP Eigenvalue Extraction algo-
rithm. This algorithm is designed so that its out-
put fulfills the following guarantees whenever the
time-series analysis algorithm succeeds (defined
as ‖Ã(φ)−A(φ)‖1 ≤ ε)

Lemma 3.2. Fix a confidence bound 0 < p < 1,
an overlap bound A, a number of phases nθ < 1

A ,
and an error bound 0 < ε < A

3 . Let g(k) =∑
j Aje

ikθj be the phase function for a unitary
V , with Aj > A for exactly nθ phases θj, and
Aj = 0 for all other phases. Let {θ̃l} be a set
of estimates of {θj} generated by Alg. A.3 with
error ε and confidence bound p. With probability
at least p, the following statements are true:

1. For each phase θj with Aj > 0, there exists
at least one estimate θ̃l such that

|θj − θ̃l|T ≤ 2ε.

2. For each estimate θ̃l there exists at least one
phase θj with Aj > 0 such that

|θj − θ̃l|T ≤ 2ε.

3. The number of estimates |{θ̃l}| ≤ nθ.
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See App A for a proof. The total quantum
cost of Alg. A.3 is inherited directly from the
cost of the time series analysis algorithm (as it
involves no additional quantum circuitry), which
is O(ε−6| log(1− p)|).

4 Multiple eigenvalues: multi-order es-
timation and the phase matching prob-
lem
To achieve Heisenberg-limited scaling for multiple
phases, we combine the dense signal algorithms
which can resolve multiple phases in the previous
section with the single-phase Heisenberg limited
algorithm, Algorithm 2.6, which achieves the cor-
rect scaling.

A natural way to achieve such combination is
to estimate phases {θ(d)

j } of V = U2d for multiple
orders d = 0, 1 . . . , df via a dense signal method
(e.g. Alg. A.3), and then combine them in the
same manner as in Algorithm 2.6.

If we would manage to get an estimate of
θ

(d)
j = φj2d at each order d with error ε and be
able to combine these estimates in an unequiv-
ocal manner, then reaching the Heisenberg limit
for multiple phases may be feasible. Note that
the error in the final dth

f estimate in this case
would be δ ∼ ε/2df with ε in Algorithm A.3. One
could thus achieve arbitrarily small δ for fixed ε
by making df arbitrarily large. This allows us to
use (possibly non-optimal) routines such as the
QEEP algorithm since the scaling with ε does
not propagate to a scaling in δ for a sufficiently
small ε.

However, the combination of phase information
at different orders in the case of multiple phases
may not be feasible when we use V = U2d for in-
creasing d as in Algorithm 2.6. The reason is that
if we have multiple phases, the previous order es-
timates provide sets of ‘ballpark’ intervals and it
may not clear or unambiguous which interval to
choose in order to convert a new estimate θ̃(d)

j

to an updated φ̃
(d)
j (as in step 2d of Algorithm

2.6). We would like the choice of the next order
to be such that this ‘matching with a previous
estimate’ can be done unambiguously.

For this, we will estimate the multiple eigen-
phases of V = Ukd for kd = ∏d

d′=1 κd′ with κd ≥ 2
a, possibly non-integer, multiplier. For this algo-
rithm to have a means of associating each dth

order estimate θ̃(d)
j with a single previous-order

estimates φ̃(d−1)
j , we use an adaptive strategy for

choosing the next multiplier κd in Alg. 4.1. That
is, the algorithm will determine a κd based on the
estimates φ̃(d−1)

j from the previous round. Al-
though this scheme requires some classical pro-
cessing of the experimental data before the ex-
periment is finished, it is not an adaptive scheme
in the same sense as iterative QPE [14], as we do
not require feedback within the coherent lifetime
of a single experiment.

The generalization from using U2d to Ukd for
kd ∈ R+ presents one small additional complica-
tion. In order to prove bounds on the estimation
at each order we will require invoking Lemma 2.4.
However, this requires that our phases φj satisfy
Eq. (7) (unless kd ∈ Z+ ). If a phase φj does
not satisfy Eq. (7), one can construct a situa-
tion where two corresponding estimates φ̃(d)

j are
found on either side of the branch cut at 2π, and
where we cannot guarantee that our algorithm
would choose the ‘correct’ one (without knowl-
edge of the hidden φj). To solve this issue, we
note that one may shift the phases of U by a con-
stant χ by performing phase estimation on Ue−iχ

instead of U . This need not even be done on
the quantum device, as one simply multiplies es-
timates of g(k) by e−ikχ. As we assume the exis-
tence of only nφ phases, we can always find some
Ueiχ with phases in some window [φmin, φmax)
with φmin ≥ π

k , φmax ≤ π(2bkc−1)
k when k ≥ 3nφ.

This will allow us to invoke Lem. 2.4 to match
estimates of eigenphases of Ueiχ and estimates
of eigenphases of (Ueiχ)k as we require. We also
note that the above issue can be circumvented
when U = eiHt by a suitable choice of t.

4.1 Heisenberg-limited algorithm for multiple
phases
We now describe our Heisenberg-limited phase es-
timation algorithm. This algorithm targets a fi-
nal error δ = O(δc), where δc is a fixed input to
the algorithm itself (We will calculate the con-
stant of proportionality in the proof of Theorem
4.5). The Heisenberg limit will be achieved by
making this δc smaller while keeping the error
ε of the phase extraction subroutine, Alg. A.3,
constant.

Algorithm 4.1. [Adaptive multi-order phase es-
timation algorithm] We assume access to the con-
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servative QEEP eigenvalue extraction algorithm,
Alg. A.3 for a unitary V = Uk (for arbitrary
k ∈ R+), and an initial state |Ψ〉. Fix a final er-
ror δc, an overlap bound A, a number of phases
nφ ≤ A−1, and error parameters ε0 and ε bounded
as

ε0 ≤ εcrit,0 ≡
2π

300n4
φ

(26)

and
ε ≤ εcrit ≡

2π
300n2

φ

. (27)

Let the confidence parameter pd be

pd = 1− e−α
(
kdδc
π

)γ
, (28)

given some real numbers α > 0, γ > 2 and kd
to be chosen below. The algorithm proceeds as
follows:

1. Let d = 0 and kd=0 = 1. Use Alg. A.3 to find
a set of first estimates {φ̃(0)

j } of eigenvalues
of U with error parameter ε0 in Eq. (26),
overlap bound A, and confidence pd=0 in Eq.
(28). If this set is empty or has more than nφ
elements, return {0} (this is a failure mode).

2. Find the point ζ ∈ [0, 2π) defined by

ζ = arg max
ζ′∈[0,2π]

min
j

∣∣∣φ̃(0)
j − ζ

′
∣∣∣
T
, (29)

i.e. ζ is the midway point in the largest gap
between the phase estimates φ̃(0)

j . Let

dζ = min
j

∣∣∣φ̃(0)
j − ζ

∣∣∣
T
, (30)

i.e. dζ is half the size of the largest gap. Shift
the unitary U → Ue−i(ζ+

1
2dζ−8ε0), φ̃(0)

j →
φ̃

(0)
j − ζ − dζ/2 + 8ε0 mod 2π.

3. Choose κ1 = k1 with k1 ∈ [3nφ, 3nφ+1] such
that for all φ̃(0)

j 6= φ̃
(0)
l , either

|φ̃(0)
j k1 − φ̃(0)

l k1|T > 4ε0(1 + k1). (31)

or
|φ̃(0)
j − φ̃

(0)
l |T <

π

k1
. (32)

4. While kd < 2ε
δc

:

(a) Set d→ d+ 1.

(b) Use Alg. A.3 to find a set of estimates
{θ̃(d)
l } of eigenvalues of V = Ukd with

error parameter ε in Eq. (27), overlap
bound A, and confidence pd in Eq. (28).

(c) If there exists some φ̃(d−1)
j such that

min
l
|kdφ̃(d−1)

j − θ̃(d)
l |T > 2ε(1 + κd), (33)

or there exists some θ̃(d)
l such that

min
j
|kdφ̃(d−1)

j − θ̃(d)
l |T > 2ε(1 + κd), (34)

or the number of estimates |{θ̃(d)
l }| >

nφ, return {φ̃(d−1)
j + ζ + dζ/2 − 8ε0

mod 2π}. This is a failure mode.
(d) If not, for each θ̃(d)

l , find the estimate
φ̃

(d−1)
j and an integer n ∈ [0, kd) which

minimizes

|φ̃(d−1)
j − (θ̃(d)

l + 2πn)/kd|T , (35)

and set {φ̃(d)
l } = {(θ̃(d)

l + 2πn)/kd}.

(e) If any φ̃
(d)
j ∈ [0, πkd ) ∪ (π(2bkdc−1)

kd
, 2π],

return {φ̃(d−1)
j + ζ + dζ/2 − 8ε0

mod 2π}. This is a failure mode.
(f) Choose the multiplier κd+1 ∈ [2, 3] such

that for all φ̃(d)
j 6= φ̃

(d)
l , either

|φ̃(d)
j kdκd+1 − φ̃

(d)
l kdκd+1|T

> 4ε(1 + κd+1). (36)

or

|φ̃(d)
j − φ̃

(d)
l |T <

π − 2ε(1 + κd+1)
kdκd+1

, (37)

and set kd+1 = kdκd+1.

5. Return {φ̃(d)
j + ζ + dζ/2− 8ε0 mod 2π}.

In principle the first few orders d could be
skipped given accurate prior knowledge of our
phases φj . However, as the largest circuits are ex-
ecuted at the latter d values, this will only change
the constant factor of the algorithm, rather than
the asymptotic scaling with δ.

In the rest of this section, we prove that
Alg. 4.1 can achieve the Heisenberg limit. The
first use of the QEEP subroutine requires a po-
tentially smaller error parameter (ε0, bounded by
Eq. (26)) than subsequent uses (where ε needs to
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be only bounded by Eq. (27)). (Invoking Alg. A.3
requires that the error parameters ε and ε0 are at
most A/3 ≤ 1/(3nφ), which is fulfilled by both
bounds.) This relates to a technical issue: we
require k1 ≥ 3nφ in order for Lemma C.1 in Ap-
pendix C and thus Lemma 2.4 to apply. For later
rounds kd ≥ 3nφ automatically, and the multi-
plier κd is no longer constrained, which indirectly
allows us to relax the region of valid choices for ε.
The first step in proving the performance of Al-
gorithm 4.1 is to show that the multipliers can be
chosen in the first (step 3 in Alg. 4.1), and subse-
quent rounds (step 4f in Alg. 4.1), which obey the
desired conditions. This is accomplished by the
following Lemma which is proved in Appendix B.

Lemma 4.2. Let {φ̃(0)
j } ∈ [0, 2π) be a set of at

most nφ phases. Assuming Eq. (26), for a ran-
domly chosen k1 ∈ [3nφ, 3nφ + 1] with probability
at least 1/2, either Eq. (31) or Eq. (32) holds for
all φ̃(0)

j 6= φ̃
(0)
l . Fix a kd. Let {φ̃(d)

j } ∈ [0, 2π) be a
set of at most nφ phases. Assuming Eq. (27), for
a randomly chosen κd+1 ∈ [2, 3] with probability
at least 3/4, either Eq. (36) or Eq. (37) holds for
all φ̃(d)

l 6= φ̃
(d)
j .

Remarks: The probability with which a multi-
plier can be found which obeys the desired prop-
erty is rather arbitrary in this Lemma and can
be increased by choosing a smaller ε. Note that
it is easy to verify whether for a randomly cho-
sen multiplier the desired conditions hold or not.
The validity of this Lemma importantly does not
depend on whether the phase estimates are ac-
tually accurate, it only depends on the number
of phases nφ. In practice, we do not generate
a random multiplier κd+1 through this Lemma,
but simply exhaustively search for a valid κd+1
starting at the maximal value, see Section 5.

The reason to adaptively choose the multiplier
κd+1 for d = 0, 1, . . . is that two (estimated)
phases in principle need to lead to separate es-
timates at the next order: this is expressed in
Eq. (36). An exception to this occurs when the
(estimated) phases are still close enough, as in
Eq. (37), so that their next-order refined esti-
mates could merge at the next order, see Fig. 2.
Phase estimates can thus split and merge over
the multiple orders. They split when sufficient
accuracy is available at the next order to distin-
guish them, they can stay or are allowed to merge
when such accuracy is not yet needed at the given

order.
In what follows below we will assume, just for

simplicity of the proof, that the error parameter
ε is bounded by εcrit,0 in Eq. (26) for all rounds,
and ε is the same for all rounds, including the
first one.

4.2 Bounding the error with and without fail-
ures

In this section we state and prove the two key in-
termediate lemmas, Lemma 4.3 and Lemma 4.4
on our way towards proving that Alg. 4.1 reaches
the Heisenberg-limit. Together, these lemmas al-
low us to bound the error in Alg. 4.1, –assuming
that the phase extraction subroutine succeeds for
the first d rounds–, to within O(ε/kd).

These Lemmas deal with the issue of ‘aliasing’
or the correct matching of new estimates with
older estimates which is solved by the specific
choice of κd+1 in step 4f of Alg. 4.1, see also
Fig. 2. It is important to note that there is no 1-1
relation between these estimates and the actual
phases since the number of estimates is at most
the number of phases.

Let df be the last order executed in Alg. 4.1,
i.e. the last order for which we go through step
4b, construct the estimates {θ̃(df )

l } and pass the
tests at step 4c and 4e and output {φ̃(df )

l }. When
none of the failure modes is encountered, df is set
by the first kd such that kd ≥ ε

δc
(since the next

kd+1 ≥ 2ε/δc as κd+1 ≥ 2). Since κd ≥ 2, we
observe that

df ≤ log2

(2ε
δc

)
. (38)

In Corollary 4.3.1 we argue that when the QEEP
subroutines, Alg. A.3, succeed up to order df , we
indeed never exit via these failure modes.

Lemma 4.3. If each invocation of the QEEP
subroutine, Alg. A.3, succeeds in Alg. 4.1 up to
order df , then in this last round df in step 4d it
holds that

• (Property 1a) For every phase φj there exists
an estimate φ̃(df )

l such that

|φj − φ̃
(df )
l |T ≤ 2ε/kdf .
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Figure 2: Schematic of the execution of Alg. 4.1 to estimate three hidden phases, φ0, φ1 and φ2 (dashed lines). The
algorithm progresses from bottom to top as the estimation order d increases. At each order d, the phase extraction
subroutine (Alg. A.3) promises to return an estimate θ̃(d)

→j of each θ
(d)
j = kdφj mod 2π that corresponds to an

estimate φ̃(d)
→j (solid lines) lying within the promised estimate region about φj (coloured boxes). By matching phases

at subsequent orders (arrows), the algorithm is able to converge to an ever-more accurate estimate of each φj . The
phase extraction subroutine only promises that each region will contain at least one phase (and that the total number
of estimates at each order is bounded by nφ) - when two regions overlap, the subroutine may merge the phases to
give a single estimate (green and purple lines). Estimates at subsequent orders may continue to separate and even
re-merge until the regions separate, at which point the algorithm promises with high confidence a precise estimate
for each hidden phase. The estimate φ̃(d)

→j at each order is only known mod (2π)/kd, leading to a set of potential
aliases (dotted lines at d = 4) for each phase. We do not know a priori which alias is correct, and must rely on the
fact that the true estimate φ̃(d)

→j needs to be close to a previous estimate φ̃(d−1)
→j . By carefully choosing each kd, we

can guarantee that no alias will satisfy this condition (so long as Alg. A.3 succeeds), and our phase matching will be
unambiguous.

• (Property 1b) For every estimate φ̃(df )
l there

exists a phase φj such that

|φj − φ̃
(df )
l |T ≤ 2ε/kdf .

Proof. We prove this Lemma by induction. Con-
sider the first round d = 0 (kd=0 = 1), i.e. step
1 of Alg. 4.1. If the QEEP subroutine, Alg. A.3,
succeeds (with probability p0) then Lemma 3.2
holds, namely for each φj there exists an esti-
mate φ̃(0)

l such that

|φj − φ̃(0)
l |T ≤ 2ε. (39)

and for each estimate φ̃(0)
l there exists at least

one φj such that

|φj − φ̃(0)
l |T ≤ 2ε. (40)

Hence the statement to be proven holds at d = 0.
Now consider step 2 of Alg. 4.1 and invoke
Lemma C.1 for which the assumptions are ful-
filled by Eqs. (39),(40). This implies that with
the choice of k1 ≥ 3nφ in step 3 in Alg. 4.1 the
shifted phases and their 0th-order estimates obey
the technical condition in Lemma 2.4 and we can
use Eq. (8). In the next steps we work with these
shifted phases but for simplicity we don’t use any
new notation and refer to them as φj and esti-
mates φ̃(d)

j etc.
Now assume the statement to be proven holds

Accepted in Quantum 2022-06-13, click title to verify. Published under CC-BY 4.0. 13



at order d i.e. let {φ̃(d)
l } be a set of at most nφ

estimates of the phases {φj} with

• (Assumption 1a) For every phase φj there
exists an estimate φ̃(d)

l such that

|φj − φ̃(d)
l |T ≤ 2ε/kd.

• (Assumption 1b) For every estimate φ̃
(d)
l

there exists a phase φj such that

|φj − φ̃(d)
l |T ≤ 2ε/kd.

Note that these assumptions certainly imply that
one can apply Lemma 2.4 to the estimates φ̃(d)

l .
That is, given that the real phases φj are 2ε/kd
close to these estimates and that the (shifted)
φj obey Eq. (110), it implies that Eq. (8) can
be used with k ≥ 3nφ (which is the case for all
rounds d ≥ 1).

We consider the QEEP subroutine, Alg. A.3,
with a given choice of κd obeying the conditions
in step 3 (for d = 1) and step 4f (for higher
d), executed in step 4b with confidence pd. In
the math below we refer to conditions on κd>1,
namely Eq. (36) and Eq. (37), but the conditions
on κ1 in Eq. (31) and Eq. (32) are of identical
form (so we don’t make a separate argument for
the d = 0→ d = 1 induction step).
Let thus {θ̃(d+1)

l } be a set of estimates of the
eigenphases {θ(d+1)

j } of Ukd+1 corresponding to
the set {φj}, that is,

θ
(d+1)
j = kd+1φj mod 2π. (41)

and kd+1 = kdκd+1. By assuming that Alg. A.3
succeeds we can invoke Lemma 3.2, namely

• (Assumption 2a) For every phase θ
(d+1)
j

there exists an estimate θ̃(d+1)
l such that

|θ(d+1)
j − θ̃(d+1)

l |T ≤ 2ε.

• (Assumption 2b) For every estimate θ̃(d+1)
l

there exists a phase θ(d+1)
j such that

|θ(d+1)
j − θ̃(d+1)

l |T ≤ 2ε.

To prove the induction step, we thus need to
show that the set φ̃(d+1)

j generated by step 4d
of Alg. 4.1 satisfies the following two properties

• (Property 1a) For every phase φj there exists
an estimate φ̃(d+1)

l such that

|φj − φ̃(d+1)
l |T ≤ 2ε/kd+1.

• (Property 1b) For every estimate φ̃
(d+1)
l

there exists a phase φj such that

|φj − φ̃(d+1)
l |T ≤ 2ε/kd+1.

First consider Assumption 2a. Assumption 2a
implies that for every phase φj there exists a
θ̃

(d+1)
l such that

|kd+1φj − θ̃
(d+1)
l |T ≤ 2ε. (42)

In this proof we will use the label l =→ j for
this θ̃(d+1)

l associated with φj . Thus, also using
Eq. (8), Eq. (42) is equivalent to

min
n∈{0,...,bkd+1c−1}

|φj − (θ̃(d+1)
→j +2πn)/kd+1|T

≤ 2ε
kd+1

, (43)

with nideal
j,→j the integer which achieves the mini-

mum, i.e.

nideal
j,→j = arg min

n∈{0,...,bkd+1c−1}

{
|φj − (θ̃(d+1)

→j + 2πn)/kd+1|T
}
. (44)

Similarly, by Assumption 1a, there is some φ̃(d)
l=→j

which is 2ε/kd-close to φj , again using a label
which shows this association.
Consider the optimization in Eq. (35) at step

4d in Alg. 4.1. We define

ξl = min
j
ξj,l, (45)

ξj,l ≡
∣∣∣φ̃(d)
j − (θ̃(d+1)

l + 2πnj,l)/kd+1
∣∣∣
T

(46)

with

nj,l = arg min
n∈{0,...,bkd+1c−1}

{
∣∣∣φ̃(d)
j − (θ̃(d+1)

l + 2πn)/kd+1
∣∣∣
T

}
, (47)

nl = arg min
nj,l

ξj,l. (48)

The goal is thus to prove that for each φj , using
the corresponding θ̃(d+1)

→j , we have n→j = nideal
j,→j

which directly implies Property 1a.
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We can bound using Eq. (6) and then Eq. (8),
Assumptions 1a and 2a and the optimality of
n→j,→j ,

ξ→j,→j

=
∣∣∣φ̃(d)
→j − (θ̃(d+1)

→j + 2πn→j,→j)/kd+1
∣∣∣
T

≤
∣∣∣φ̃(d)
→j − φj

∣∣∣
T

+
∣∣∣φj − (θ̃(d+1)

→j + 2πnideal
j,→j)/kd+1

∣∣∣
T

≤ 2ε
kd

+ 1
kd+1

∣∣∣kd+1φj − θ̃
(d+1)
→j

∣∣∣
T

= 2ε
kd

+ 1
kd+1

∣∣∣θ(d+1)
j − θ̃(d+1)

→j

∣∣∣
T

≤ 2ε(1 + κd+1)
kd+1

. (49)

Now if Eq. (36) holds for some other m 6=→ j,
we claim on the other hand that

ξm,→j >
2ε(1 + κd+1)

kd+1
, (50)

hence matching θ
(d+1)
→j with such φ̃

(d)
m , with

m 6=→ j is non-optimal and will not be chosen
in the Algorithm. To indeed see that Eq. (36)
implies Eq. (50), we can calculate

4ε(1 + κd+1)
kd+1

<
1

kd+1

∣∣∣kd+1φ̃
(d)
→j − kd+1φ̃

(d)
m

∣∣∣
T

≤ 1
kd+1

∣∣∣kd+1φ̃
(d)
→j − θ̃

(d+1)
→j

∣∣∣
T

+ 1
kd+1

∣∣∣θ̃(d+1)
→j − kd+1φ̃

(d)
m

∣∣∣
T

≤ 2ε(1 + κd+1)
kd+1

+ min
n∈{0,...,bkd+1c−1}

{
∣∣∣φ̃(d)
m − (θ̃(d+1)

→j + 2πn)/kd+1

∣∣∣
T

}
(51)

⇒ 2ε(1 + κd+1)
kd+1

<

min
n∈{0,...,bkd+1c−1}

∣∣∣φ̃(d)
m − (θ̃(d+1)

→j + 2πn)/kd+1

∣∣∣
T

= ξm,→j . (52)

Here we have used that Eq. (8) holds for the
estimate φ̃(d)

m .
Alternatively, for those m 6=→ j for which

Eq. (37) holds, we claim that

nm,→j = n→j,→j , (53)

hence for those φ̃(d)
m 6= φ̃

(d)
→j the algorithm pro-

duces a single new estimate equal to (θ̃(d+1)
→j +

2πn→j,→j)/kd+1.

To see that Eq. (37) implies Eq. (53) indeed,
note that it is sufficient to prove that∣∣∣φ̃(d)

m − (θ̃(d+1)
→j + 2πn→j,→j)/kd+1

∣∣∣
T
<

π

kd+1
, (54)

as one can then show that for n′ 6= n→j,→j ∈
{0, . . . , bkd+1c − 1} that

2π
kd+1

≤
∣∣∣∣ 2π
kd+1

(n→j,→j − n′)
∣∣∣∣
T

= |(θ̃(d+1)
→j + 2πn→j,→j)/kd+1

− (θ̃(d+1)
→j + 2πn′)/kd+1|T

≤
∣∣∣(θ̃(d+1)
→j + 2πn→j,→j)/kd+1 − φ̃(d)

m

∣∣∣
T

+
∣∣∣φ̃(d)
m − (θ̃(d+1)

→j + 2πn′)/kd+1

∣∣∣
T

<
π

kd+1
+
∣∣∣φ̃(d)
m − (θ̃(d+1)

→j + 2πn′)/kd+1

∣∣∣
T

(55)

⇒ π

kd+1
<
∣∣∣φ̃(d)
m − (θ̃(d+1)

→j + 2πn′)/kd+1

∣∣∣
T
, (56)

so n→j,→j is optimal. Using Eq. (6), Eq. (37)
and Eq. (60), we can prove Eq. (54) since∣∣∣φ̃(d)

m − (θ̃(d+1)
→j + 2πn→j,→j)/kd+1

∣∣∣
T

≤
∣∣∣φ̃(d)
m − φ̃

(d)
→j

∣∣∣
+
∣∣∣φ̃(d)
→j − (θ̃(d+1)

→j + 2πn→j,→j)/kd+1
∣∣∣
T

<
π − 2ε(1 + κd+1)

kd+1
+ 2ε(1 + κd+1)

kd+1

= π

kd+1
. (57)

We have thus shown that for each φj , there is
a θ̃(d+1)
→j , such that step 4d will output (θ̃(d+1)

→j +
2πn→j,→j)/kd+1 with n→j,→j defined in Eq. (48),
related to the previous order estimate φ(d)

→j which
was already close to φ(d)

j . The last step is to show
that n→j,→j = nideal

j,→j using Property 1a. It holds
that

|φj − (θ̃(d+1)
→j + 2πn→j,→j)/kd+1|T

≤ |φj − φ̃(d)
→j |T

+ |φ̃(d)
→j − (θ̃(d+1)

→j + 2πn→j,→j)/kd+1|T

≤ 2ε
kd

+ 2ε(1 + κd+1)
kd+1

<
π

kd+1
, (58)

where we used that 4ε(κd+1 + 1) < π. Indeed
for d > 1, ε < π

16 (κd+1 ≤ 3) and for d = 0,
ε < π

4(3nφ+2) (κ1 ≤ 3nφ + 1) given the upper
bounds on ε in Eqs. (27) and (26). This implies
through the same argument as in Eq. (56) that
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nideal
j,→j achieving the minimum in Eq. (43) equals
n→j,→j and hence we obtain Property 1a.
Now let’s prove Property 1b. Given a θ̃(d+1)

l ,
let φj=→l be the real phase for which, by As-
sumption 2b, it holds that

|kd+1φ→l − θ̃
(d+1)
l |T

= kd+1|φ→l − (θ̃(d+1)
l + 2πnideal

→l,l )/kd+1|T
≤ 2ε. (59)

To prove Property 1b, we need to show that
nl = nideal

→l,l with nl defined in Eq. (48). Let also
φ̃

(d)
→j be the previous order 2ε/kd-close estimate

to φj=→l by Assumption 1a. The idea is that
φ̃

(d)
→j = φ̃

(d)
→(→l) is matched to θ̃(d+1)

l in the opti-
mization step of the algorithm, so that this leads
to a better estimate for the phase φj=→l.
Given a θ̃(d+1)

l we can deduce, as before, that

ξ→j,l =
∣∣∣φ̃(d)
→j − (θ̃(d+1)

l + 2πn→j,l)/kd+1
∣∣∣
T

≤
∣∣∣φ̃(d)
→j − φ→l

∣∣∣
T

+
∣∣∣φ→l − (θ̃(d+1)

l + 2πnideal
→l,l )/kd+1

∣∣∣
T

≤ 2ε
kd

+ 1
kd+1

∣∣∣kd+1φ→l − θ̃
(d+1)
l

∣∣∣
T

= 2ε
kd

+ 1
kd+1

∣∣∣θ(d+1)
→l − θ̃(d+1)

l

∣∣∣
T

≤ 2ε(1 + κd+1)
kd+1

. (60)

Using previous arguments, all other ξm,l are ei-
ther larger or give the same integer n→j,l and thus
nl = n→j,l. In addition, we can bound, using this
equality and Assumption 1a

|φ→l − (θ̃(d+1)
l + 2πn→j,l)/kd+1|T

≤ |φ→l−φ̃
(d)
→j |T+|φ̃(d)

→j−(θ̃(d+1)
l +2πn→j,l)/kd+1|T

≤ 2ε
kd

+ 2ε(1 + κd+1)
kd+1

<
π

kd+1
, (61)

implying that nl = n→j,l = nideal
→l,l as desired.

Algorithm 4.1 has a few failure modes, namely
steps 1, 4c and 4e where we exit and return an
estimate of lower order. Arguments in Lemma
4.3 show that these failure modes are only en-
countered when the QEEP subroutine, Alg. A.3,
fails at some order. ‘Failure’ here is not complete

failure; regardless of whether the algorithm fails,
it will return a set of estimates φ̃j , and the er-
ror in these estimates will contribute to Eq. 25.
To achieve the Heisenberg limit we must make
sure that both the probability of failure is small,
and that the estimates φ̃j from a failed instance
of the algorithm still lie close to the true values
φj to minimize their contribution to Eq. (25).
The probability pd with which the QEEP sub-
routine succeeds at the dth order is bounded by
the parameters α, γ, given as an input to Alg. 4.1
(Eq. 28). The probability that this achieves for
up to and including the dth order is bounded
by

∏d
d′=0 pd′ . It is crucial for the success of

our algorithm that we do not encounter any exit
modes other than those mentioned above, which
we can now prove given the machinery developed
in Lem. 4.3.

Corollary 4.3.1. If each invocation of the
QEEP subroutine, Alg. A.3, succeeds in Alg. 4.1,
we never exit at step 1, 4c or 4e.
Proof. Consider step 1 of Alg. 4.1 applying
Alg. A.3 which obeys Lemma 3.2, showing that
success of Alg. A.3 implies that the number of
phases is at most nφ. By assumption there is at
least one phase with Aj > 0, and hence success
means that Alg. A.3 cannot return the empty
set due to statement 1. of Lemma 3.2. Hence
if Alg. A.3 succeeds we do not exit at step 1 of
Alg. 4.1. Now consider step 4c of Alg. 4.1: again
success of Alg. A.3 implies that the number of
estimates does not exceed nφ. Consider Eq. (33)
and Eq. (34); we wish to show that these will not
hold if Alg. A.3 succeeds up to order d − 1. If
Alg. A.3 succeeds up to order d − 1, the phase
estimates φ̃(d−1)

j obey Eq. (8) for kd, hence the
condition in Eq. (34) equals, for each θ̃(d)

l

min
j

min
n
|φ̃(d−1)
j − (θ̃(d)

l + 2πn)/kd|T

>
2ε(1 + κd)

kd
, (62)

and we argued previously, via induction, that this
does not happen when Alg. A.3 succeeds up to or-
der d, as minj ξj,l is upper-bounded as in Eq. (60)
for all d′ ≤ d. Similarly, Eq. (33) implies the ex-
istence of a φ̃(d−1)

j with

min
l

min
n
|φ̃(d−1)
j − (θ̃(d)

l + 2πn)/kd|T

>
2ε(1 + κd)

kd
. (63)
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which can not happen due to the success of
Alg. A.3 which implies the bound in Eq. (49).
Consider lastly step 4e which exits if the current
dth order estimates do not lie in the region for
which Eq. (7) holds with given kd. We have ar-
gued in Lemma 4.3 that, assuming success of the
subroutines implementing Alg. A.3, that Eq. (7)
holds for the phase estimates at all orders.

Now let us consider failures of the QEEP sub-
routine, Alg. A.3, which do not lead to exiting.
Let’s imagine that the first failure occurs at some
order d0. Now we want to make sure that con-
tinuing with higher orders after such failure still
leads to an error of order ∼ ε/kd0−1, even though
the failure (or any subsequent failure) is not de-
tected.

To show this, we check that if Alg. 4.1 exits at
some later round, namely during d = df + 1 and
outputs estimates φ̃(df )

j that these will be suffi-
ciently close to the estimates right before failure,
that is, the set of phases φ̃(d0−1)

j .
Then, by Lem. 4.3, these estimates will also be

sufficiently close to the true phases φj .

Lemma 4.4. Let Alg. 4.1 exit at order d = df+1
and let the QEEP subroutine, Alg. A.3, of step 4b
first fail at d = d0 ≤ df + 1. For each φj, there
will be an estimate φ̃(df )

l , produced at step 4d in
Alg. 4.1 which satisfies∣∣∣φj − φ̃(df )

l

∣∣∣
T
≤ 14ε
kd0−1

. (64)

Vice-versa, for each estimate φ̃(df )
l there exists a

phase φj such that∣∣∣φj − φ̃(df )
l

∣∣∣
T
≤ 14ε
kd0−1

. (65)

Proof. Since each QEEP subroutine, Alg. A.3,
in Alg. 4.1 succeeds up to order d0 − 1, Lemma
4.3 guarantees that

• (Property 1a) For every phase φj there exists
an estimate φ̃(d0−1)

l such that

|φj − φ̃(d0−1)
l |T ≤

2ε
kd0−1

.

• (Property 1b) For every estimate φ̃
(d0−1)
l

there exists a phase φj such that

|φj − φ̃(d0−1)
l |T ≤

2ε
kd0−1

.

Then, since the algorithm does not exit at step
4c through Eqs. (33) or step 4e for any order
d = d0, . . . df , for each estimate φ̃(d−1)

l we can
associate some θ̃(d)

ml that satisfies

1
kd

∣∣∣kdφ̃(d−1)
l − θ̃(d)

ml

∣∣∣
T

=

min
n∈{0,...,bkd+1c−1}

∣∣∣φ̃(d−1)
l − (θ̃(d)

ml
+ 2πn)/kd

∣∣∣
T

≤ 2ε(1 + κd)
kd

, (66)

where the second equality follows from being al-
lowed to apply Eq. (8) (which is validated by
passing the test at step 4e). This implies that in
step 4d of Alg. 4.1 at round d, for a given θ̃(d)

ml , the
optimization of ξn,ml over n will pick the integer
nl,ml , i.e. the integer associated with matching
θ̃

(d)
ml with φ̃

(d−1)
l . Next, similar as in the proof

of Lemma 4.3, we can consider the possibility
of matching to other estimates φ̃(d−1)

k 6= φ̃
(d−1)
l .

Since κd is chosen in step 4f of Alg. 4.1, we claim
that either Eq. (36) holds, in which case

min
n∈{0,...,bkdc−1}

∣∣∣∣∣φ̃(d−1)
k − 2πn+ θ̃

(d)
ml

kd

∣∣∣∣∣
T

>
2ε
kd

(1 + κd), (67)

hence this ξk,ml is not optimal, or that Eq. (37)
holds, in which case

nl,ml =

arg min
n∈{0,...,bkdc−1}

∣∣∣∣∣φ̃(d−1)
k − 2πn+ θ̃

(d)
ml

kd

∣∣∣∣∣
T

= nk,ml . (68)

The proofs of these claims are exactly the same
as in the proof of Lemma 4.3, i.e. using Eqs. (54),
(56),(57).

Now let us prove Eq. (64). Given a phase
φj , we can use Property (1a) to find an asso-
ciated estimate φ̃(d0−1)

→j within 2ε/kd0−1. Then
for this estimate let θ(d0)

m→j be the matched es-
timate in the next round for which Eq. (66)
holds, so that the round produces a new esti-

mate φ̃(d0)
→j =

θ̃
(d0)
m→j+2πn→j,m→j

kd0
(which we label

with → j again) for which

|φ̃(d0−1)
→j − φ̃(d0)

→j |T ≤
2ε
kd0

(1 + κd0). (69)
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Then again for φ̃(d0)
→j there exists some matching

θ
(d0+1)
m→j etc. and this generates a series of esti-
mates φ̃(d)

→j up to order df . For a given φj we can
then bound, using this series of estimates and
κd ≥ 2 for all d,∣∣∣φ̃(df )

j − φj
∣∣∣
T
≤
∣∣∣φ̃(d0−1)
→j − φj

∣∣∣
T

+
df∑
d=d0

∣∣∣φ̃(d−1)
→j − φ̃(d)

→j

∣∣∣
T

≤ 2ε
kd0−1

+
df∑
d=d0

2ε(1 + κd)
kd

= 2ε
kd0−1

1 +
df∑
d=d0

1 + κd
κd0κd0+1 . . . κd


≤ 2ε
kd0−1

(
1 +

∞∑
n=0

3
2n

)

= 14ε
kd0−1

. (70)

Now let’s prove Eq. (65) and start with an esti-
mate φ̃(df )

l which was obtained from some θ̃(df )
l

matched with a previous estimate φ̃(df−1)
l (just

for convenience we again use the same label) such
that |φ̃(df )

l − φ̃(df−1)
l |T ≤ 2ε

kdf
(1 +κdf ), using that

we do not exit through Eq. (34). Then again for
this previous estimate φ̃(df−1)

l we can repeat the
argument and create a sequence of estimates up
to φ̃(d0−1)

l . For the last estimate, we invoke Prop-
erty (1b), namely that there is a nearby φj . Then
we can upperbound for this φj : |φ̃

(df )
l − φj |T ≤

|φ̃(d0−1)
l − φj |T +∑df

d=d0
|φ̃(d)
l − φ̃

(d−1)
l |T etc., ex-

actly as in Eq. (70), leading to Eq. (65).

4.3 Algorithm 4.1 achieves the Heisenberg
limit

We have seen that the success of the QEEP
subroutines in Alg. 4.1 leads to an error scal-
ing as ε/kdf ∼ δc. Now we must choose the
success probability pd of these subroutines in
Eq. (28), depending on α, γ so that the total
mean-squared-error is bounded by some δ2 =
O(δ2

c ) while the quantum cost T = O(δ−1). We
note that the next theorem contains no logarith-
mic factors in δ−1, as in [26], but achieves pure
Heisenberg scaling.

Theorem 4.5. Algorithm 4.1 solves the mul-
tiple eigenvalue estimation problem in Def. 3.1
with accuracy error δ and total quantum cost
T = O(δ−1), given A,nφ and a fixed ε0 and ε
obeying Eqs. (27) and (26), and some choice for
the constants α > 0 and γ > 2.

Remarks: Note that the dependence on the
number of phases nφ is not made explicit in the
statement of this Theorem, but this dependence
will be polynomial in nφ, not necessarily a very
low-order polynomial. This dependence comes
through the choice for ε0 (and ε) via Eq. (26)
(resp. Eq. (27)) which sets the error and thus the
running time of the QEEP Algorithm A.2.

Proof. Our proof is motivated by the analysis in
[2] for a single phase φ leading to Theorem 2.6.
The idea is to bound the mean-squared-error in
the final estimation of φ by summing over error
contributions at each order d at which the phase
extraction subroutine may fail (with probability
1− pd).
In our case the multipliers κd (and kd) at each

order are not fixed (as in Theorem 2.6) but de-
pend on phase estimates at previous orders and
thus measurement data at previous orders. Our
confidence parameter pd in Eq. (28), which deter-
mines the number of repeats of experiments, and
hence the cost, in Alg. A.3, depends on kd and
is thus a random variable depending on previous
measurement data. All measurement data are
denoted by x and thus we have random variables
kd({κd′(x)}dd′=1) and pd({κd′(x)}dd′=1).

Consider the mean-squared-error δ2
j for the

jth phase φj in Eq. (25) in Definition 3.1. We
have three error contributions to consider given
a choice for the random variable kd.

1. With probability 1 − p0 the subroutine
Alg. A.3 in Alg. 4.1 fails at step 1 (d = 0). In
this case, as we always return some estimate,
δj is bounded for all j by π.

2. With probability at most (1 −
pd0)∏d0−1

d=0 pd ≤ 1 − pd0 = e−α
(
kd0δc
π

)γ
,

the subroutine Alg. A.3 in Alg. 4.1 fails for
the first time at some order 1 ≤ d0 ≤ df ,
and the algorithm proceeds in any way
afterwards (by possibly exiting or not). In
this case, Lemma 4.4 bounds δj for all j by

14ε
kd0−1

or Lemma 4.3 bounds δj for all j by
2ε

kd0−1
≤ 14ε

kd0−1
.
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3. With probability less than ∏df
d=0 pd < 1 the

subroutine Alg. A.3 in Alg. 4.1 succeeds up
to the final round df , and Lemma 4.3 implies
that δj ≤ 2ε/kdf ≤ 2δc for all j as kdf ≥

ε/δc.

We can now bound the mean-squared-error
as a sum over the above three contributions
weighted by their relevant overlaps:

δ2
j ≤ (1− p0)π2 +

∑
x

P(x)

df−1∑
d0=1

P(κ1, . . . , κd0 |x)(1− pd0({κ′d}d0
d′=1))

[
14ε

kd0−1({κ′d}
d0−1
d′=1 )

]2
+ 4δ2

c

= π2e−α
(
δc
π

)γ
+
∑

x
P(x)

df−1∑
d0=1

P(κ1, . . . , κd0 |x)e−α
(
kd0δc
π

)γ 196ε2
k2
d0−1

+ 4δ2
c

≤ πe−α
(
δc
π

)γ
+ 0.15× δ2

c

∑
x

P(x)P(κ1, . . . , κd0 |x)
df−1∑
d0=1

(
kd0δc
π

)γ−2
+ 4δ2

c . (71)

Here we have removed the dependency of kd0 and
kd0−1 on the previous multipliers for notational
simplicity. For d = 1 we have e−ακ2

d0
196(ε/π)2 =

e−αk2
1196(ε0/π)2 ≤ 196×16×4

(300)2 ≤ 0.15 due to
Eq. (26). For d > 1, e−ακ2

d0
196(ε/π)2 ≤

9×196×4
(300)2 = 0.08, due to Eq. (27).
To evaluate the middle term, we write kd0 =

kdf
kd0
kdf

, and note that as kd = ∏d
d′=1 κd′ , we have

kd0
kdf
≤ 2d0−df as the multiplier κd ≥ 2. As kdf ≤

2ε
δc
< π

2δc , we have

df−1∑
d0=1

(
kd0δc
π

)γ−2
≤ 1

2γ−2

df−1∑
d0=1

(2γ−2)(d0−df )

≤ 24−γ

2γ − 4 , (72)

where the last inequality holds since γ > 2.
By letting the upper bound be independent of
the κds, we can remove the dependence on x in
Eq. (71), using that ∑x P(x)P(κ1, . . . , κd0 |x) =
1. This yields a final bound on δj of

δ2
j ≤ δ2

c

[
π1−γe−αδγ−2

c + 0.15× 24−γ

2γ − 4 + 4]
]
. (73)

As γ > 2, this scales as δ2
c as δc → 0.

Let us now calculate the cost of executing
Alg. 4.1 in terms of the number of unitary ap-
plications. Again this depends on the choice
of multiplier κd at each step. Let us fix a se-
quences of kds, and let df be the final round of
estimation in this algorithm, i.e. the final round
for which we invoked the quantum subroutine in

Alg. A.3. At each order d we use V k = Ukdk,
where k = 0, 1, . . . ,K, with 2Md samples where
K is a function of ε as in Theorem A.2. The cost
of each experiment is kdk.
We can calculate

T =
df∑
d=0

K∑
k=1

(2Mdkdk)

=
df∑
d=0

MdkdK(K + 1). (74)

The QEEP algorithm in Theorem A.2 requires
Md = Õ(| ln(1− pd)|ε−4) with pd in Eq. (28) and
K = Õ(ε−1).

We may bound

T ≤ Õ(ε−6)
df∑
d=0

kd

∣∣∣∣−α+ γ ln
(
kdδc
π

)∣∣∣∣
= Õ(ε−6)

df∑
d=0

kd

[
α− γ ln

(
kdδc
π

)]
. (75)

We again bound kd = kd
kdf

kdf ≤ 2d−df π
2δc , which

yields

T ≤ δ−1
c Õ(ε−6)

[
π

2

×
df∑
d=0

2d−df
[
α− γ(d− df − 1) ln(2)

]]
≤ δ−1

c Õ(ε−6)(α+ 2γ ln(2)). (76)
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Combining our bounds then yields

δ ≤ δc

[
e−απ1−γ + 4 + 0.15× 24−γ

2γ − 4

] 1
2

(77)

≤ T−1
[
e−απ1−γ + 4 + 0.15× 24−γ

2γ − 4

] 1
2

× Õ(ε−6)[α+ 2γ ln(2)]
= O(T−1), (78)

which is the Heisenberg limit. Note that a de-
pendence on the number of phase nφ enters the
scaling of δ via ε which needs to be bounded as
in Eqs. (26) and (27).

5 Numerical implementation
Thm. 4.5 requires using the QEEP algorithm
(Theorem A.2 and Algorithm A.3) in order to ob-
tain provable bounds. Instead of analytic bounds,
we now turn to a numerical demonstration, giv-
ing the opportunity to implement and test Al-
gorithm 4.1 with a few modifications. We test
the algorithm using two different sub-routines,
one based on the matrix pencil method [31], and
one based on the QEEP time-series analysis of
Theorem A.2, as described in Algorithm A.3.
Code to implement all simulations can be found
at https://github.com/alicjadut/qpe.

To improve the practical performance of
Alg. 4.1, we make the following two small
changes. Firstly, instead of choosing κd+1 in
step 4f in the ranges declared in Lem. 4.2, we
choose the largest κd+1 consistent with Eq. (36)
and Eq. (37) for all φ̃(d)

j , φ̃
(d)
l . We note that

the maximum such κd+1 is bounded above by
π
2ε−1, as the left-hand side of Eq. (36) is bounded
above by 2π and the left-hand side of Eq. (37) is
bounded below by 0. (In practice, tighter bounds
can be found by checking the boundaries of the
regions R(n)

jl defined in Eq. (92), and we find
the largest possible κd+1 by iterating backwards
through these boundaries till a gap is found.) Sec-
ondly, as the bounds for ε and ε0 in Lem. 4.2 are
rather loose, and our performance scales rather
badly in both, we choose the largest ε = ε0 that
allows all simulations to find a value of κd+1 > 2
at each order.

When using the matrix pencil processing sub-
routine, we follow the implementation described
in Ref. [19]:

Algorithm 5.1. The matrix pencil method takes
as input estimates of the phase function g(k) =∑
j Aje

ikθj for a unitary V at points k =
0, 1, . . .K and an overlap bound A, and proceeds
as follows:

1. Construct the LK × (2K − LK + 1) Han-
kel matrices G(0), G(1), where G(a)

i,j = g(i +
j + a − K) for i ∈ {0, 1, ...LK − 1}, j ∈
{0, 1, ..., 2K − LK}, a = 0, 1, with LK =
b(K + 1)/2c, and using g(−k) = g∗(k).

2. Construct the LK × LK shift matrix T by
least-squares minimization of the matrix 2-
norm ‖TG(0) −G(1)‖.

3. Calculate the eigenvalues of T , λj = |λj |eiθ̃j
and from there the phase estimates θ̃j.

4. Calculate the overlap estimates Ãj by least-
squares minimization of the vector 2-norm
‖BA − g‖, where B is the (K + 1) × LK
matrix

Bk,j = λk
j , (79)

and g = [g(0), ...g(K)]T .

5. Return the phase estimates θ̃j for which the
corresponding overlap estimate Ãj ≥ A.

To use this algorithm as a subroutine in
Alg. 4.1 (in place of Alg. A.3), we implement it
on the matrix V = Ukd , which requires imple-
menting V k = Ukkd for a range of integer k on a
quantum device.

To isolate the performance of the estimation
routine from the generation of the signal itself,
we do not test our protocols on data generated
from simulating or approximating a particular
unitary. Instead, we test the ability of the pro-
tocols to estimate nφ = 2 and nφ = 4 randomly-
chosen phases φj ∈ [0, 2π] when sampling from
the true phase function g(k). We take all phases
with equal weight — Aj = 1/nφ. We simulate
the sampling from g(k) in Algorithm 5.1 or Al-
gorithm A.2 for some V = Ukd by simulating the
readout of a control qubit with the reduced den-
sity matrix of Eq. (4). (In practice this would
be generated by the quantum circuit in Fig. 1.)
We first draw Md i.i.d. samples from the two
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Bernoulli distributions

Prk(+1) = 1
2

nφ∑
j=1

Aj(1 + cos(θjk)), (80)

Pik(+1) = 1
2

nφ∑
j=1

Aj(1− sin(θjk)), (81)

where θj = kdφj mod 2π are the eigenvalues of
V . Then, we return the fraction of +1s drawn
as estimates for the real and imaginary parts of
g(k) respectively. This is then repeated at all
points k = kdk for k = 0, 1, . . . ,K. Following
the discussion in Sec. 2.2 and using the notation
from Eq. (74), we sum the total quantum cost
for the algorithm over all requested g(k) queries;
T = 2∑d

∑K
k=1 kkdMd. (We ignore the sub-

leading correction from the final term in Eq. (74)
as this will not affect the scaling of our result.)
For the signal length K and number of points
Md to sample each g(k) at, we follow the bounds
given in Ref. [3] (both when using the QEEP and
matrix pencil subroutines):

• signal length: K = d0.1L ln2 Le, with L =
d2π
ε e the number of bins used in the QEEP

subroutine (Def. A.1).

• number of measurements of each circuit:
Md =

⌈
|ln (1− pd)| ε−4⌉.

Here, pd is given in Eq. (28) for a given kd.
This equation requires fixing a choice of α and
γ — across all experiments we take α = 2 and
γ = 2.1.

To demonstrate that our methods achieve the
Heisenberg limit, in Fig. 3 we plot the error as
a function of the total quantum cost for a set of
simulations using the methods described above.
Each simulation draws a different set of nφ ran-
dom phases, and a final error δc ∈ [10−5, 10−2]
(for each choice of δc we use the same 50 sets
of phases). We plot the error for each phase es-
timate separately in Fig. 3 (i.e. each simulation
corresponds to nφ points in the plot). As both the
total quantum cost and the error is different be-
tween simulations, we bin all experiments within
a range of T values, and calculate the root mean
square error and root mean square total quantum
cost. This gives a good approximation to the ac-
curacy error defined in Def. 3.1 for the restricted
data set used.

For the QEEP subroutine, we observe a clear
fit of the data (blue points) to a δ ∼ T−1 trend, as

expected from Thm. 4.5, but with a rather large
constant factor; we find T ∼ 1010δ−1 for estimat-
ing 2 phases and T ∼ 1015δ−1 for estimating 4.
Further optimization of the QEEP algorithm for
these purposes may yet improve this constant fac-
tor. However, as the methods of Ref. [3] were not
designed for estimating individual phases, it may
be expected that this method performs somewhat
badly for this purpose, so we have not pursued
this further.

Simulations using the matrix pencil subroutine
outperform simulations using the QEEP subrou-
tine by a factor of 104 − 106, and clearly demon-
strate Heisenberg-limited scaling δ ∼ T−1 as well.
We take this result instead of an analytic proof as
strong numerical evidence for Heisenberg-limited
scaling when a version of Alg. 4.1 is constructed
using the matrix pencil method as a subroutine.
We notice that the error in two phase estimates
in the first bin of the matrix pencil method for
nφ = 2 is significantly above the remainder of
the population (by about a factor 100×), which
blows up our error bars for this bin. Further in-
vestigation shows that the two phases in ques-
tion are from the same simulation, and separated
by only 1.5 × 10−4. By contrast, for the simu-
lation in question (at d = 1) our algorithm sets
k1K ∼ 3 × 103 < (1.5 × 10−4)−1 (where k1K is
the largest value of the phase function g(k) sam-
pled during this simulation). This implies that
our signal lies within the region where improving
our estimation accuracy by increasing the number
of shots Md is exponentially hard [32]. In latter
simulations with these two phases we see that our
estimation error regresses to similar results as all
other estimates.

6 Conclusion

In this work we studied Heisenberg-limited quan-
tum phase estimation using a single control qubit.
In this form of phase estimation, we rely on clas-
sical signal processing to extract eigenvalue data
from the phase function g(k) in Eq. (2).

It has been an open question whether these
methods can achieve the Heisenberg limit in the
case of multiple phases: Ref. [26] answered this
question up to log factors with a Heisenberg-
limited Monte Carlo algorithm, providing a sam-
pling of the spectral function A(φ) in Eq. (3) from
which to estimate the phases. In this work we

Accepted in Quantum 2022-06-13, click title to verify. Published under CC-BY 4.0. 21



1013 1015 1017

Total quantum cost T

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1
E

st
im

at
or

 e
rr

or
 

n = 2, = 0.05

1018 1020 1022

n = 4, = 0.01
QEEP
Matrix pencil

T 1

Data points
Binned means

Figure 3: Convergence of the algorithm with total quantum cost T . Phase estimates were obtained with either
QEEP (blue) or matrix pencil (green) subroutines with parameters described in the text. Individual points show the
error δ = |φ̃j − φj |T on individual phases in each simulation. This data is binned in the x-axis, and for each bin a
root-mean-square error and standard deviation (error bars) are plotted in the x- and y-direction. Dotted lines show
a fit of these means to δ ∼ T−1.

also answered this question in the affirmative ex-
actly with a new adaptive multi-order phase es-
timation algorithm, for which we prove Heisen-
berg scaling if the algorithm uses a QEEP phase
extraction subroutine. We numerically show the
performance of this algorithm, also when instead
of using a QEEP subroutine, one uses the matrix
pencil method to extract phase estimates from
the phase function g(k). This result complements
the previous work discussed in the introduction
by closing the question of whether there exists
a gap between classical post-processing of phase
function data and fully quantum phase estima-
tion.

In obtaining our results we encountered at least
two details of quantum phase estimation that we
have not seen discussed in the literature. The first
is the dense signal limit, Eq. (12) in Thm. 2.5:
sampling g(k) at all integer point k = 1, . . . ,K is
sub-optimal regardless of what method is used to
process the data. However, we also briefly argued
that by picking points among k = 1, . . . ,K at
random one may go beyond this, and one could
interpret this as allowing the results obtained in
[26] in which such randomized choices for k are
taken.

The second is the need for adaptive choices of

kd to solve the phase matching problem. It is un-
clear to us how far this problem extends; although
Lemma 4.2 provides a practical solution, others
may still exist. Another open question with re-
spect to Algorithm 4.1 is whether one can remove
the need to choose real-valued multipliers κd and
restrict to integer choices. Restricting κd ∈ N
would significantly simplify some technical issues,
i.e. the applicability of Lemma 2.4 and the need
for shifting phases in step 2 of Alg. 4.1, but we
don’t know how to prove a version of Lemma 4.2
for κd ∈ N. In fact, we don’t know whether there
is a fundamental difference in performance be-
tween only using data obtained with integer k
in g(k) versus data obtain with real-valued, –in
practice rational–, k in g(k).

We have assumed in our problem description,
Def. 3.1, that the spectrum in the input state is
discrete consisting of nφ phases with amplitudes
above some cut-off. In practice this condition
may not be fulfilled and thus studying the perfor-
mance of the algorithms on more typical spectra
induced by many-body Hamiltonians and easy-
to-prepare input states will be of interest. The
scaling of our (provable) Heisenberg-limited al-
gorithm in nφ is also rather poor [O(n24

φ ) as de-
scribed], as we have not attempted to optimize
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this aspect. This should in principle be immedi-
ately reducible to O(n3

φδ
−1 + n6

φ) under the as-
sumption that the matrix pencil method contin-
ues to achieves the dense sampling limit when es-
timating multiple eigenvalue, however we do not
know a proof of this. In principle linear scaling
with nφ should be achievable (or even sub-linear
if the methods of [33] could be applied in this set-
ting); optimizing this is a clear target for future
work.

A direction for future research is to make
this algorithm efficient in practice (i.e. improve
the parameter dependence and the practical run
time) or devise yet-different Heisenberg-scaling
algorithms and examine their performance in the
presence of experimentally-noisy signals g(k).
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A Phase extraction subroutine

For our Heisenberg-limited algorithm, at each or-
der d we need to extract eigenphases of V = Ukd

from the signal generated by PFE. We require

that the phase estimates satisfy the promises of
Lem. 3.2. This is achieved by Alg. A.3, which is
based on the solution to QEEP of Ref. [3].

In this appendix, we first summarize the re-
sults of Ref. [3] by giving a precise definition of
the QEEP (Def. A.1) and performance guarantees
of the time-series analysis (Def. A.2). Then we
describe the Conservative QEEP Eigenvalue Ex-
traction algorithm (Alg. A.3) and give the proof
of Lem. 3.2.

A.1 The Quantum Eigenvalue Estimation
Problem
Definition A.1 (Quantum Eigenvalue Estima-
tion Problem, QEEP). Let A(φ) be the spectral
function defined in Eq. (3) for a unitary U and
|Ψ〉. Given is an error parameter ε > 0, a con-
fidence parameter 1 ≥ p > 0, and a set of non-
negative (approximate indicator) functions f l(φ)
for φ ∈ [0, 2π) for l = 0, . . . , L − 1, L = d2π

ε e,
where f l(.) has support on only the interval bin

Vl = [(l − 1)ε, (l + 1)ε]T , (82)

and f l(φ) + f (l−1)(φ) = 1 for all φ ∈ Vl ∩ Vl−1.
Assuming access to the PFE subroutine, Def. 2.2,
the goal is to output an approximation b̃l for l =
0, . . . , L− 1 to the integral

bl =
∫ 2π

0
dφA(φ)f l(φ), (83)

which satisfies

L−1∑
l=0
|b̃l − bl| ≤ ε, (84)

with probability at least p.

Note that the bins Vl have width 2ε and overlap
on a region of width ε and

∑L−1
l=0 bl = 1.

Theorem A.2 (QEEP Algorithm [3]). One can
solve the QEEP problem in Definition A.1 with
{f l(.)} a set of ‘bump’ functions

f l(φ) =2a
ε

∫ lε+ ε
2

lε− ε2
dφ′

× exp
{
−
[
1− 4

ε2
(φ− φ′)2

]−1
}
, (85)

with normalization constant a ≈ 2.252, using
PFE in Def. 2.2 with k = 0, 1, . . . ,K with K =
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O
(
ε−1 ln2(ε−1)

)
and M = Õ(| ln(1 − p)|ε−4) for

each k = 1, 2 . . . ,K. The total quantum cost for
U is then bounded as T = O(MK2) = Õ(| ln(1−
p)|ε−6).

We note that the approximate indicator
functions f l(.) in Eq. (85) are designed to
have a quickly decaying Fourier series, which
is required to achieve polynomial-time scaling.
We also refer the reader to Ref. [23], which
has extended the result by relaxing the re-
quirement that f l(φ) + f (l−1)(φ) = 1 on the
interval Vl ∩ Vl−1. The idea of this QEEP
algorithm is as follows. Since bl = ∑

j Ajf
l(φj),

using Eq. (3), periodically extending f l(φ)
beyond [0, 2π) and Fourier decomposing gives
bl = ∑

j Aj
∑
k∈Z e

ikφj f̃ l(k) = ∑
k∈Z g(k)f̃ l(k).

At the same time, the fact that f l(.) is an indi-
cator function ensures that bl ≈

∑
φj∈Vl Al. Thus

knowledge of g(k) and the Fourier coefficients
f̃ l(k) for a range of k allows one to estimate
the weights bl. The requirement to estimate the
spectral function to within a 1-norm ε, Eq. (84),
is very stringent, hence the scaling of T with
error ε is quite costly, T = O(ε−6). It is possible
that one can improve the scaling by re-examining
the analysis in [3].

A.2 Conservative QEEP Eigenvalue Extraction

Algorithm A.3 (Conservative QEEP Eigen-
value Extraction). Fix an overlap bound A, an
error bound 0 < ε < A

3 , and a confidence bound
0 < p < 1. Assume access to a QEEP Algorithm
A.2 for a unitary V . The algorithm proceeds as
follows:

1. Use the QEEP subroutine with error ε,
Alg. A.2, and confidence p to generate an
estimate b̃l for bl as defined in Eq. (83).

2. Construct the set

S = {l ∈ {0, . . . , L− 1}|b̃l ≥ A/3}. (86)

3. Find the smallest l ∈ {0, . . . , L} with l 6∈ S
and call it lmin.

4. For l′ = lmin, . . . , (lmin + L− 1) mod L:

(a) if l′ ∈ S and (l′−1) mod L ∈ S, remove
l′ from S.

5. Return the set {θ̃l = lε}l∈S as a set of esti-
mates of eigenphases of V .

Let us now motivate Algorithm A.3. One may
identify phases with sufficient probability in the
output of the QEEP algorithm as the bins l with
bl > bcutoff with bl in Eq. (83). Then to convert
this into an estimate of a phase θj , for each such
bin above cut-off we could output the estimate εl,
i.e. in the middle of the corresponding bin Vl.

We calculate appropriate values of bcutoff and
the QEEP error ε to guarantee that we output
an estimate for each θj with Aj > A with a prov-
able confidence, and to guarantee no estimate in
the absence of any θj . Def. A.1 states that when
there exists such a θj ∈ Vl ∩ Vl−1, we are guar-
anteed with confidence p that b̃l + b̃l−1 + ε > A
(as bl+ bl−1 > A). To guarantee that at least one
of b̃l or b̃l−1 is larger than bcutoff with the same
confidence, we thus require bcutoff ≤ (A− ε)/2.

Similarly, Def. A.1 states that when there exists
no θj ∈ Vl with Aj > 0, we are guaranteed with
confidence p that bl < ε. To prevent a spurious
estimate in this case, we require bcutoff ≥ ε. Solv-
ing this to maximise ε (which minimizes the cost
of the QEEP routine) yields bcutoff = ε = A/3
which is what we use in Alg. A.3.

A further small complication exists in solving
the problem posed in Def. 3.1: we require that
one outputs at most nφ phases. This will be sat-
isfied if we can guarantee at most one phase es-
timate per θj with Aj > A, as we know there
are nθ = nφ such estimates. As the bins Vl
(Def. (82)) overlap, a phase θj may participate
in up to two neighbouring bins — correspond-
ing to amplitudes bl, bl+1 > A/3. To ensure
that this does not result in two estimates be-
ing generated, one could take all contiguous sets
bl1 , bl1+1, . . . , bl2 > A/3 and prune away every
second index l. In doing this we need to re-
spect the periodicity of the Vl: VL−1 ∩ V0 6= ∅,
so these contiguous sets may wrap around the
circle. Pruning every second index when start-
ing from the middle of one of these contiguous
sets may result in two neighbouring l, l+ 1 being
removed, which is not what we desire. Instead,
in the following pseudocode, after generating the
set of all l with sufficient bl, we find the first gap
(in l) between these regions (corresponding to the
first bl < A/3). We then iterate (from this point
lmin to L− 1 and then from 0 to lmin) over the bl,
and remove each l from our set if bl−1 > A/3 and
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l − 1 was not itself removed.

A.3 Proof of Lemma 3.2

Lemma 3.2 relates the performance of Alg. A.3
to the performance of the QEEP subroutine. We
now prove this Lemma. Note that {θj} is an
ordered list of nφ phases, while {θ̃l} is an or-
dered list (that we will show contains at most
nφ phases).

Proof of Lemma 3.2 Our proof follows by show-
ing that the output from Alg. A.3 satisfies these
statements whenever Eq. (84) holds. This yields
our confidence bound as Eq. (84) holds with prob-
ability p by Def. A.1.

To see that statement 2 holds when Eq. (84)
is satisfied, note that if Vl contains no phases
θj with Aj > A and Eq. (84) is satisfied, b̃l <
ε < A/3, and l will not be added to the set S in
Alg. A.3. This implies that when Eq. (84) holds,
if l ∈ S there exists some θj ∈ Vl with Aj > A,
in which case |θj − θ̃l|T = |θj − εl|T ≤ 2ε.

To see that statement 3 holds when Eq. (84) is
satisfied, note that θj ∈ Vl ∩ V(l+1) mod L for ex-
actly one l (and θj /∈ Vm form 6= l, (l+1) mod L).
Then, when Eq. (84) holds, b̃l + b̃(l+1) mod L >

2A/3, so max(b̃l, b̃(l+1) mod L) > A/3, and either
l, (l + 1) mod L or l and (l + 1) mod L will be
added to the set S during step 2 of Alg. A.3 for
each phase θj . Then, step 4 of Alg. A.3 will re-
move (l + 1) mod L if l remains in S, so each
phase θj can contribute to only one final estimate
θ̃l = lε, and the number of estimates is bounded
from above by the number of phases.

To see that statement 1 holds, we use the point
in the previous paragraph that, when Eq. (84) is
satisfied, each phase θj with Aj > A adds either
l, (l+ 1) mod L, or l and (l+ 1) mod L to the set
S during step 2. of Alg. A.3. Then in step 4. of
Alg. A.3, l is removed from S only if (l−1) mod L
remains in S, and (l+ 1) mod L is removed from
S only if l remains in S. This implies that the
distance from θj to an estimate is bounded by

max
θj∈Vl∩V(l+1)

max
l′=l−1,l,l+1 mod L

|θj − εl′|T =

= ε(l + 1) mod L− ε(l − 1)) mod L = 2ε, (87)

as required.

B Proof of Lemma 4.2
Let us first prove the existence of κd+1 ∈ [2, κmax]
with κmax = 3 that satisfies our conditions (the
proof for k1 is similar), for small enough ε in
Eq. (27). Note that Eq. (27) implies

ε ≤ π

300 ≈ 0.01. (88)

Given some pair φ̃(d)
j 6= φ̃

(d)
l , j < l, let ∆j,l =

|φ̃(d)
j − φ̃

(d)
l | and let Rj,l be a set of κd+1 such

that neither Eq. (37) nor Eq. (36) holds for the
chosen phases, that is,

Rj,l =
{
κd+1 ∈ [2, κmax] :

|∆j,l|T ≥
π − 2ε(1 + κd+1)

kdκd+1

∧|kdκd+1∆j,l|T ≤ 4ε(1 + κd+1)
}
. (89)

We call ∪j,lRj,l the forbidden region and want
to show that we can choose a value for κd+1 ∈
[2, 3] outside this forbidden region if ε is suffi-
ciently small. We do this by bounding the size of
the forbidden region above and showing that this
is smaller than the region [2, 3], leaving room to
choose κd+1.

Note that Rj,l is nonempty only if

kd∆j,l ≥ kd|∆j,l|T

≥ π − 2ε(1 + κd+1)
κd+1

≥ π − 2ε(1 + κmax)
κmax

>
73π
225 , (90)

using Eq. (88).
We may write the set Rj,l as

Rj,l =
[
max

(
2, π − 2ε
kd|∆j,l|T + 2ε

)
, κmax

]
∩
⋃
n∈N

R
(n)
j,l , (91)

where R(n)
j,l is the set of κd+1 for which

|kdκd+1∆j,l|T =
∣∣∣∣kdκd+1∆j,l − 2πn

∣∣∣∣
≤ 4ε(1 + κd+1), (92)
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for some n ∈ N.
Solving this equation for κd+1 yields

R
(n)
j,l =

[
2πn− 4ε
kd∆j,l + 4ε ,

2πn+ 4ε
kd∆j,l − 4ε

]
. (93)

The size of each interval R(n)
j,l can then be calcu-

lated ∣∣∣R(n)
j,l

∣∣∣ = 8ε(2nπ + kd∆j,l)
k2
d∆2

j,l − 16ε2 . (94)

We can bound

|Rj,l| ≤
∣∣∣∣∣
nmax⋃
n=1

R
(n)
j,l

∣∣∣∣∣ ≤
nmax∑
n=1

∣∣∣R(n)
j,l

∣∣∣
= 8ε
k2
d∆2

j,l − 16ε2
(
πnmax(nmax + 1)

+ kd∆j,lnmax

)
. (95)

Here, nmax = nmax(j, l) is the largest index of a
set R(n)

j,l in Eq. (92) for which κd+1 ∈ [2, κmax].
Since κd+1 ≤ 3, Eq. (92) implies that

nmax ≤
3(kd∆j,l + 4ε) + 4ε

2π , (96)

Now using Eq. (90) and Eq. (88) gives

∣∣Rj,l∣∣ ≤ 1
1− (4ε/kd∆j,l)2

× 30ε(864000ε2 + 248160επ + 11899π2)
5329π3

≤ 3ε(864000ε2 + 248160επ + 11899π2)
532π3

≤ 0.24, (97)

where the last inequality used Eq. (88). As there
are nφ ≥ 2 phases the length of the total for-
bidden region ∪j,lRj,l is bounded from above by
n2
φ

2 |Rj,l|. We want to this interval to be, say, at
most 1/4, so that by choosing κd+1 randomly we
have a 75% change of not landing in the forbid-
den interval. For larger nφ we thus should use

ε ≤ εcrit = 2π
300n2

φ

, (98)

leading to Eq. (27).
We now repeat the above approach for the spe-

cial case of finding the multiplier in the first round
κ1 = k1. Consider thus k1 ∈ [3nφ, κmax] with
κmax = 3nφ + 1. The key difference here is that
there is a stricter lower bound on this multiplier

κmax so that ε needs to be chosen smaller, de-
pending on nφ, namely we choose

ε0 ≤ εcrit,0 = 2π
300n4

φ

, (99)

as expressed in Eq. (26).
Given some pair φ̃(0)

j 6= φ̃
(0)
l , j < l, and again

let ∆j,l = |φ̃(0)
j − φ̃

(0)
l |. Then, let Rj,l be the set of

k1 such that neither Eq. (37) nor Eq. (36) holds
for the chosen phases. That is,

Rj,l =
{
k1 ∈ [3nφ, κmax] :

|∆j,l|T ≥
π − 2ε0(1 + k1)

k1

∧|k1∆j,l|T ≤ 4ε0(1 + k1)
}
. (100)

We again call ∪j,lRj,l the forbidden region and
want to show that we can choose a value for
k1 ∈ [3nφ, 3nφ + 1] outside this forbidden region,
assuming that ε0 is small enough. Note that the
logic of the first few inequalities in Eq. (90) still
holds in this new calculation, leading to

∆j,l ≥
π − 2ε0(1 + κmax)

κmax

≥
π(1− 2+3nφ

75n4
φ

)

1 + 3nφ
, (101)

where the second inequality used Eq. (99) and the
value for κmax. Note that for large nφ this allows
∆j,l to decrease like ∼ 1/nφ, while previously ∆j,l

was lowerbounded by a constant, Eq. (90).
This time, we may write the set Rj,l as

Rj,l =
[
max

(
3nφ,

π − 2ε0
|∆j,l|T + 2ε0

)
, κmax

]
∩
⋃
n∈N

R
(n)
j,l , (102)

where R(n)
j,l is the set of k1 satisfying∣∣∣∣k1∆j,l − 2πn

∣∣∣∣ ≤ 4ε0(1 + k1), (103)

for some n ∈ N. Solving this equation for k1
yields

R
(n)
j,l =

[
2πn− 4ε0
∆j,l + 4ε0

,
2πn+ 4ε0
∆j,l − 4ε0

]
. (104)
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with length ∣∣∣R(n)
j,l

∣∣∣ = 8ε0(2nπ + ∆j,l)
∆2
j,l − 16ε20

. (105)

We can then bound

|Rj,l| ≤
∣∣∣∣∣
nmax⋃
n=nmin

R
(n)
j,l

∣∣∣∣∣ ≤
nmax∑
n=nmin

∣∣∣R(n)
j,l

∣∣∣
= 8ε0

∆2
j,l − 16ε20

[
π(n2

max − n2
min)

+ (∆j,l + π)(nmax − nmin)

+ 2πnmin + ∆j,l

]
. (106)

Here, nmax = nmax(j, l) and nmin = nmin(j, l) are

the largest and smallest indices of sets R(n)
j,l in

Eq. (103) for which k1 ∈ [3nφ, 3nφ + 1]. Find-
ing the minimal and the maximal value for n in
Eq. (103) given the bounds on k1 gives

3nφ(∆j,l − 4ε0)− 4ε0
2π ≤ nmin ≤ nmax

≤ (3nφ + 1)(∆j,l + 4ε0) + 4ε0
2π . (107)

As there are nφ phases, the length of the total for-
bidden region ∪j,lRj,l is bounded from above by
n2
φ

2 |Rj,l|. By plugging the bound for ε0 in Eq. (99)
and the bound for ∆j,l in Eq. (101) together into
Eq. (106), one can verify that

|Rj,l|
n2
φ

2
≤
−16− 168nφ − 621n2

φ + 552n4
φ + 14400n5

φ + 44550n6
φ + 40500n7

φ + 73125n8
φ + 270000n9

φ + 202500n10
φ

450n3
φ

(−4− 9nφ − 100n3
φ
− 150n4

φ
+ 1875n7

φ
)

, (108)

which can be verified to be less than 0.5 for all
nφ. Hence a random choice for k1 in the interval
[3nφ, 3nφ + 1] gives at least a 50% chance to not
land in the forbidden region.

C Range of shifted phase estimates

In this Appendix we prove that when the uni-
tary U is shifted as in step 2 of Alg. 4.1, and as
long as the output of the phase extraction sub-
routine (Alg. A.3) meets the promises given in
Lem. 3.2, all phase estimates of Ukd will lie in
the region for which Lem. 2.4 holds. This allows
us to invoke Lem. 2.4 as required during Lem. 4.3
and Lem. 4.4. Note that if we were to shift the
spectrum such that the middle of the largest gap
would sit at 0, we would do U → Ue−iζ . However,
the ‘stay-away-from-the-boundary’ condition of
Lem. 2.4 is not symmetric, hence we shift by a
different amount which also depends on the error
ε0 in the phase estimates.

Lemma C.1. Let {φj} be the list of eigenphases
of unitary U , and let nφ, {φ̃(0)

l }, ζ, dζ be as de-
fined in steps 1 and 2 of Alg. 4.1. Assume:

• (Assumption 1a) For every phase φj, there
exists an estimate φ̃

(0)
l such that |φj −

φ̃
(0)
l |T ≤ 2ε0.

• (Assumption 1b) For every estimate φ̃
(0)
l ,

there exists a phase φj such that |φj −
φ̃

(0)
l |T ≤ 2ε0.

Then for all k ≥ 3nφ, for the estimated shifted
eigenphases {ϕ̃(0)

l } it holds that

π

k
+ 16ε0 ≤ ϕ̃(0)

l ≤
π(2bkc − 1)

k
− 16ε0. (109)

which implies Eq. (8) for ϕ̃(0)
l = φ. In addi-

tion, the eigenphases {ϕj} of the shifted unitary
Ue−i(ζ+dζ/2−8ε0) satisfy

π

k
+ 14ε0 ≤ ϕj ≤

π(2bkc − 1)
k

− 14ε0. (110)

which again implies Eq. (8) for ϕj = φ.

Proof. Let

ϕ̃
(0)
l =

(
φ̃

(0)
l − ζ −

dζ
2 + 8ε0

)
mod 2π. (111)

Let us first show that

ϕ̃
(0)
l ∈

[
π

2nφ
+ 8ε0, 2π −

3π
2nφ

+ 8ε0
]
. (112)

By definition of ζ (as the midway point in the
largest gap) and dζ (as half the largest gap) we
have(

φ̃
(0)
l − ζ −

dζ
2

)
mod 2π ∈

[
dζ
2 , 2π −

3dζ
2

]
. (113)
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We have dζ ≥ π/nφ (with equality correspond-
ing to nφ uniformly distributed estimates). By
Eq. (26) it follows that

ε0 ≤
π

48nφ
, (114)

and thus ε0 < dζ
16 , leading to Eq. (112). By the

assumptions the shifted phases ϕj lie within 2ε0
from the estimates ϕ̃(0)

l . Thus for each ϕj there
exists a ϕ̃(0)

l such that

ϕj − 14ε0 ≥ ϕ̃(0)
l − 16ε0

≥ π

2nφ
− 8ε0

≥ π

2nφ
− 8π

48nφ
= π

3nφ
≥ π

k
. (115)

and

ϕj + 14ε0 ≤ ϕ̃(0)
l + 16ε0

≤ 2π − 3
(

π

2nφ
− 8ε0

)

≤ 2π − 3π
k

≤ π(2bkc − 1)
k

. (116)

where we have used Eq. (112), Eq. (114), k ≥ 3nφ
and bkc > k− 1. This implies Eq. (110) and also
Eq. (109).
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