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1.1 Background 

Porous asphalt (PA) mixture, which typically has a design air voids content of at least 

20%, is often used as a wearing course. In the Netherlands, more than 90% of the 

highways are surfaced by PA mixes (Zhang et al., 2016), primarily due to their 

effectiveness in reducing traffic noise. PA mixes also offer other benefits such as the 

improvement of wet skid resistance, the reduction of hydroplaning risks, and the 

reduction in splashing and spraying during wet weather driving (Anupam et al., 2016). 

Due to the open structure, PA mix pavements easily suffer from a certain type of 

damage named ravelling (Zhang et al., 2016). Ravelling is defined as the loss of 

individual aggregates due to abrasion caused by traffic load and/or weather conditions 

(Mo et al., 2010). After the initial ravelling, the damage can rapidly progress. Ultimately, 

ravelling can lead to the formation of potholes which can significantly reduce the 

driving safety of the road (Kringos and Scarpas, 2008). 

In order to characterize the susceptibility of a given PA mix to ravelling, various 

experimental methods have been developed. The commonly used tests include among 

others Rotating Surface Abrasion Test (RSAT) (Kelie, 2009), Aachener Ravelling Tester 

(ARTe) (Qiu et al., 2016), and Skid Resistance & Smart Ravelling-Interface Testing 

Device (SR-ITD) (Khedoe et al., 2016). In these tests, the movement of wheels generates 

shear forces which introduce the loss of the stones from the surface of the specimen. 

The ravelling resistance is indicated by the loss of the specimen’s mass. Although these 

tests provide a quick and simple way to compare the ravelling resistance of PA mixes, 

they do not give any fundamental insight into the physical mechanisms related to 

ravelling. 

  
a. Cohesive damage b. Adhesive damage 

Figure 1.1 Two damage modes of ravelling distress 

In recent studies, researchers pointed out that ravelling can be considered as a 

type of fatigue failure that occurs within the stone-on-stone contact regions (Huurman, 

2007, Mo et al., 2009). On the microscale, two types of damage modes can occur, the 

cohesive damage and the adhesive damage (Mo et al., 2010). Cohesive damage is the 

failure of the mortar bridges that bond two particles, while adhesive damage is the 

failure of the mortar-aggregate interface, see Figure 1.1. Based on this ravelling 
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mechanism, the problem of analysing the ravelling distress of a PA mix pavement can 

be converted to the problem of analysing the fatigue characteristics of the mortar and 

those of the mortar-aggregate interface. The susceptibility of the given mix to ravelling 

can be assessed on the basis of the information about the predominant damage mode 

and the number of tire passages required to cause this damage (fatigue life). 

In order to determine the number of tire passages required to cause fatigue 

damage to the mortar and the mortar-aggregate interface, the stresses/strains of these 

two components when tire loads are subjected to PA pavements are needed. This 

indicates that when the propensity of a given mix to ravelling is analysed, it is required 

to get into the component level of the mix to capture the local stress/strain field of each 

phase.  

Currently, the most commonly used method to obtain the local stress and strain 

fields at the component level is the computational technique based on finite element 

methods (FEM) and/or discrete element methods (DEM)  (Kringos and Scarpas, 2005, 

Mo et al., 2008, Anupam et al., 2014, Anupam et al., 2016, Manrique-Sanchez et al., 

2018). In FEM/DEM-based micromechanical models, a PA mix is modelled as a 

heterogeneous material with different phases (mortar/mastic, aggregates, and air 

voids), and each phase is composed of a huge number of FEM/DEM elements. Although 

FEM/DEM-based models can handle complex compositions and almost realistic mix 

components, the modelling of different phases requires large FEM meshes (usually on 

the basis of CT scans) and very large-scale computational facilities (Anupam et al., 

2016). Such extensive computational tools and facilities are not typically available in 

engineering practice, so this approach is only feasible in research.  

Table 1.1 Different types of micromechanical models 

Micromechanical models Examples 

Semi-empirical micromechanical models 

(SEMM) 

Christensen’s model (Christensen et al., 2003) 

Continuum-based micromechanical 

models (CBMM) 

the Dilute model (Eshelby, 1957), the Mori-

Tanaka (MT) model (Mori and Tanaka, 1973), 

the Self-consistent (SC) model (Hill, 1965), the 

generalized self-consistent (GSC) model 

(Christensen and Lo, 1979), the Differential 

model (Norris, 1985) 

Discrete particles-based micromechanical 

models (DBMM) 

Dvorkin’s model (Dvorkin et al., 1994), Walton’s 

model (Walton, 1987) 

 

As an alternative to complex tools, the homogenization technique can be used to 

obtain the stress and strain field of each phase without the need for much computation 
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power. Essentially, the homogenization technique provides an analytical way to derive 

a relationship between the effective properties of a heterogeneous material on the 

macroscale and the properties of its individual phases on the microscale 

(Charalambakis, 2010). Based upon the homogenization technique, different types of 

micromechanical models have been developed. Examples include Semi-empirical 

micromechanical models (SEMM), Continuum-based micromechanical models 

(CBMM), and Discrete particles-based micromechanical models (DBMM), see Table 1.1. 

Since the homogenization technique connects the macroscale properties to those 

at the microscale, micromechanical models developed based on this technique (called 

as micromechanical models for short) can be used in both forward and inverse ways: 

In a forward way, the properties of each phase in the microscale can be transferred 

into the macroscale to obtain the effective modulus of a composite. In fact, research 

endeavours using micromechanical models in a forward way are not new in the 

pavement community. Christensen’s model, the MT model, the GSC model, etc. have 

been widely used to predict the mechanical properties of asphalt composites (Aigner et 

al., 2009, Shu and Huang, 2009, Kim and Buttlar, 2011, Underwood and Kim, 2013). The 

advantage of using micromechanical models is that it eliminates (or at least reduces) 

the need of conducting time-consuming laboratory tests whenever 1) it is required to 

alter the mix design 2) a mix design is prepared using new materials 3) it is impossible 

to obtain mix samples for testing 4) mixes testing facilities are not available in the 

laboratory. Besides, micromechanical modelling helps understand the fundamental 

mechanisms behind the mechanical behaviour of asphalt mixtures. 

In an inverse way, the stress and strain of the composite in the macroscale can be 

transferred back to the microscale to obtain the local stress and strain of each phase. 

Although many researchers have realized the advantage of using micromechanical 

models in a forward way, little attention has been paid to the benefits of using this 

technique in an inverse way. As highlighted above, analysing the local stress/strain 

directly at the component level requires very powerful computational facilities. On the 

contrary, using micromechanical models in an inverse way, the local stress/strain of 

each phase can be obtained from the stress/strain of the mix. Since the stress/strain of 

the mix can be analysed on the macroscale by considering the mix as a homogenized 

material, much less computational power is required.  

Taking advantage of the two different ways of using micromechanical models, one 

possible solution to analyse the ravelling distress of a PA mix can be given, see Figure 

1.2. At first, the properties of individual components are measured in the laboratory 

and the stiffness of a PA mix is predicted using micromechanical models. Then, the 

strains in the PA mix layer are calculated by means of any available pavement analysis 

tool (i.e. 3D-MOVE) on the basis of the predicted mix’s stiffness. Lastly, the local 

stresses/strains in the individual phases are calculated. Based on the fatigue 
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characteristics of each phase under these stresses/strains conditions, the propensity of 

a given PA mix for ravelling can be evaluated. 

 

 

 

 

 

 

Figure 1.2 A possible solution to ravelling analysis using micromechanical models  

1.2 Problem statement and research objectives 

Based upon the above introductions, it can be concluded that although FEM/DEM-

based micromechanical models have been developed to analyse the propensity of a 

given PA mix for ravelling, not many of them have been used in daily engineering 

applications since these models typically require very expensive computational 

facilities. Therefore, for pavement practitioners today, there are still no readily 

available and accessible tools to assist them in mitigating ravelling distress or making 

accurate ravelling distress predictions.  

On the other hand, the utilization of homogenization-based micromechanical 

models is a promising method to effectively analyse the ravelling distress of PA mixes. 

It is, therefore, crucial for pavement researchers to carry out relevant studies. Following 

the proposed possible solution to ravelling analysis (see Figure 1.2), this thesis aims to 

Cmor is the stiffness tensor of mortar; 
Cagg is the stiffness tensor of the aggregates; 
Cmix is the effective stiffness tensor of the mix; 
εmix is the strain tensor of the mix; 
εi and Ai are the strain tensor and the strain localization tensor of phase i respectively. 

Ravelling 

morC

aggC
mixC

mixε

mix:i i=ε A ε
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achieve the first step of accurately predicting the stiffness of a PA mix using 

micromechanical models. An accurate stiffness is required for the accurate calculation 

of the response of the pavement system. Moreover, the ability of the model to accurately 

predict the stiffness of the mix supports the reliability and the validity of the predicted 

stresses and strains of each phase. 

Up to now, pavement researchers have made many efforts to evaluate the 

performance of different types of micromechanical models (i.e. SEMM, CBMM, and 

DBMM) for predicting the stiffness of asphalt materials. However, there are still a few 

limitations existing in these research studies: 

• Calibration factors are always required in SEMM for accurately predicting the 

stiffness of asphalt mixtures. In literature, these factors were typically 

determined based upon laboratory tests performed on dense asphalt (DA) 

mixes. Due to the significant differences between PA mixes and DA mixes, it is 

not expected that these calibration factors can be directly used for PA mixes.  

• The utilization of CBMM is always stuck in their poor performances at high 

concentrations and high temperatures/low frequencies. Although researchers 

have generally realized that the poor performance of CBMM is related to their 

limitation in describing the stiffening effect coming from the direct contacts of 

aggregate particles, no effective mechanics-based models have been developed 

to adequately account for this stiffening effect.  

• Researchers’ attention has been mainly paid to the utilization of SEMM and 

CBMM while limited experience has been provided regarding the utilization of 

DBMM. 

Based on the above realizations, the key objective of this research is to figure out 

a methodology for accurately predicting the stiffness of PA mixes. For this purpose, the 

proposed scope of this study includes the following: 

• to evaluate the performances of commonly used SEMM and CBMM in 

predicting the mechanical properties of PA mixes.  

• to achieve the implementation of DBMM in predicting the mechanical 

properties of PA mixes.  

• to modify the existing micromechanical models or to develop a new 

micromechanical model for accurately predicting the stiffness of PA mixes. 

The first two parts of the scope provide a thorough investigation into both the 

advantages and the limitations of different micromechanical models. The obtained 

evaluation results can help understand the mechanisms behind the behaviour of PA 

mixes, and more importantly, they can provide guidance to further either modify the 
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existing micromechanical models or develop a new micromechanical model in order to 

accurately predict the mechanical properties of the mix. 

1.3 Thesis outline 

This dissertation consists of seven chapters that cover the utilization of different types 

of micromechanical models for predicting the mechanical properties of PA mixes. A 

brief summary of each chapter is given below. 

• Chapter 1: introduces the background of this thesis, highlights the benefit of 

using micromechanical models, and describes the application of 

micromechanical models for PA mixes. This chapter also provides the 

objectives of this research work and the outline of this thesis. This chapter does 

not contain a literature review, instead, a literature review is provided in each 

chapter, addressing the corresponding topic.  

• Chapter 2: describes the materials, specimen preparation methods, and 

laboratory tests that have been used in this study. Moreover, experimental 

results are presented and discussed. 

• Chapter 3: develops a SEMM by revising the arrangement of individual phases 

in the Christensen modified Hirsch model. An aggregate organization factor, 

which describes the contribution from the aggregate phase to the modulus of 

PA mixes, is proposed. A function for calculating the values of the aggregate 

organization factor is determined and verified against test results. 

Furthermore, the contributions made by each phase to the modulus of PA 

mixes are analysed. 

• Chapter 4: focuses on comprehensively evaluating the capability of commonly 

used CBMM (the Dilute model, the MT model, the SC model, and the GSC model) 

for predicting the modulus of asphalt materials. In order to assess the 

performance of CBMM at different inclusion concentrations, the upscaling of 

the moduli of both mastic and mix is implemented. In the context of predicting 

a mix’s modulus, the effects of (1) the scale of the matrix phase (asphalt binder, 

mastic, and mortar), (2) the differential scheme (DS) (the constituents are 

included in steps rather than concurrently), and (3) the Poisson’s ratio of the 

matrix phase on the accuracies of the predictions are investigated. On the basis 

of the obtained results, the limitation of CBMM is discussed.  

• Chapter 5: explores the utilization of Dvorkin’s model (one of DBMM) to predict 

the modulus of PA mixes. A framework for the implementation of Dvorkin’s 

model is proposed. This framework includes (1) a proposed PA mix 

microstructure where an assembly of spherical particles covered by mortar 

materials is bonded together; (2) developed methods that are used to 



Introduction Chapter 1 

 

Page | 8  

determine the geometrical parameters in the microstructure; and (3) proposed 

procedures that are used to predict the modulus of PA mixes. Predicted results 

using Dvorkin’s model are compared against both the experimental results and 

the predictions using CBMM. Moreover, sensitivity analyses are carried out to 

investigate the effect of the geometrical characteristics and the Poisson’s ratio 

of mortar on the accuracy of the predictions. In the end, the advantages, as well 

as the limitations of Dvorkin’s model, are highlighted.  

• Chapter 6:  describes the development of a hybrid micromechanical model for 

accurately predicting the modulus of PA mixes in a wide frequency range. This 

model combines the advantage of Dvorkin’s model for predicting the modulus 

of PA mixes at higher frequencies and the advantage of Walton’s model for 

describing the characteristics of packing aggregates at lower frequencies. 

Elaborations are given about how to determine the confinement for the 

packing aggregates in the mix. At the end of this chapter, the validation of the 

developed model and the discussions of the obtained results are presented.  

• Chapter 7: summarizes the obtained results and conclusions of this thesis. This 

chapter also gives an outlook on the potential use and further development of 

the proposed methodology.  
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2.1 Introduction 

As introduced in the previous chapter, micromechanical models predict the mechanical 

properties of a mix on the basis of the properties of individual constituents (i.e. 

mechanical, geometric, and volumetric properties). In order to utilize these models for 

PA mixes, laboratory tests need to be conducted to measure (1) the properties of 

individual constituents as inputs and (2) the mechanical properties of PA mixes for 

evaluating the accuracy of the predictions.  

As a viscoelastic material, the mechanical properties of an asphalt mixture, 

without the consideration of damage, are generally characterized using the creep 

compliance or the relaxation modulus in the time domain or the complex modulus in 

the frequency domain. For the sake of testing time, the complex modulus of PA mixes 

was used in this study. Therefore, temperature and frequency sweep tests, which are 

typically used to measure the complex modulus of an asphalt mixture, were conducted 

in the laboratory. Accordingly, in order to predict the complex modulus of a PA mix, the 

complex moduli of the mix’s viscoelastic constituents, i.e. asphalt binder, mastic and 

mortar, are required. Hence, temperature and frequency sweep tests were carried out 

for asphalt binder, mastic and mortar as well.  

In this chapter, detailed procedures to prepare PA mastic, PA mortar and PA mixes 

specimens and to conduct temperature and frequency sweep tests are introduced. 

Furthermore, the measured results of the properties of each constituent and the 

mechanical properties of the mix are presented and discussed.  

2.2 Materials 

The aggregates that were used for making PA mixes specimens consisted of crushed 

Norwegian BESTONE aggregates (2mm-16mm) and crushed sand (0-2mm). The filler 

was Wigro 60K filler (25%-35% lime), produced by Ankerpoort NV. The densities of 

each size of aggregates and filler were measured according to the AASHTO standard 

methods (AASHTO, 2009b, AASHTO, 2009c). The asphalt binder, provided by Q8/ 

Kuwait Petroleum B.V., had a penetration grade of 70/100 and an assumed density of 

1032 kg/m3. 

Table 2.1 Gradation and density of aggregates 

Size (mm) 16 11.2 8 5.6 2 0.5 0.18 0.125 0.063 Filler 

% Passing 98 77 44 22 15 14 9 6 4 0 

Density 

(kg/m3) 
2686 2686 2678 2670 2673 2658 2658 2658 2658 2638 
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The recipe for making PA mix specimens conformed to the Dutch standards 

specifications (CROW, 2015). The content of the asphalt binder was 4.3% by the total 

weight of the mix. The aggregates gradation is shown in Table 2.1. 

2.3 Specimens preparation 

2.3.1 Specimens preparation for PA mixes 

PA mixes specimens were prepared according to the ASSHTO standard method 

(AASHTO, 2015). PA mix materials were compacted using a gyratory compactor to 

obtain initial specimens with a size of 170 mm in height and 150 mm in diameter. Some 

of the specimens (termed as “PA mix-1”) were performed reference compaction effort 

to target the designed air voids content of 20%. In order to investigate the applicability 

of micromechanical models for mixes with different microstructures, more compaction 

effort was deliberately applied to the remaining specimens (termed as “PA mix-2”) to 

create a denser aggregates pack. All the specimens obtained from the gyratory 

compactor were further cored and cut to the test specimens with a height of 150 mm 

and a diameter of 100 mm. 

2.3.2 Specimens preparation for mortar 

In this study, mortar specimens contained sand particles smaller than 0.5 mm, filler, 

and asphalt binder. The proportioning of the fine aggregates in the mortar was kept the 

same as that in the full mixture, but it was normalized with respect to the largest sieve 

in the mortar (0.5 mm), see Table 2.2. The content of the asphalt binder was calculated 

as 23% by the total weight of the mortar specimen.  

Table 2.2 Gradation of aggregates in mortar 

Size (mm) 0.5 0.18 0.125 0.063 Filler 

Gradation (% Passing) 100 62 39 29 0 

 

A brief overview of the preparation of mortar specimens is presented as follows. 

A specially designed mould was used to make mortar specimens, Figure 2.1a. At first, 

the preheated asphalt binder, filler, and sand particles were mixed by hand to obtain 

the mortar material, Figure 2.1b. In order to make mortar flow smoothly, the material 

and the mould were preheated up in the oven at 160°C for 30 minutes. The mortar was 

slowly poured into the mould to prevent the formation of air voids. Then, the filled 

mould was placed back in the oven at 160°C for 10 minutes to remove air bubbles in 

the mortar. After cooling down the mould for 10 minutes at room temperature and 

around 24 hours in the freezer, the specimens were removed from the mould. The size 

of the obtained specimens is 6 mm in diameter and 12 mm in height, see Figure 2.1c. In 

order to clamp specimens on the Dynamic Shear Rheology (DSR) device, steel rings of 
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1 mm in thickness and 4 mm in height were attached at the top and bottom (Huurman, 

2007). 

It is highlighted here that the mortar materials in this study can smoothly flow like 

a liquid at high temperatures, and thus no compaction effort was performed during the 

fabrication. This behaviour may be different from the observation in other research 

studies (Sousa et al., 2013) that mortar had a solid-like behaviour and thus can be 

compacted. However, the properties of mortar are highly dependent on its composition 

and the properties of each component. Until now, there is no widely accepted method 

to determine the composition of the mortar material (i.e., the maximum aggregate size, 

the aggregate gradation, the asphalt binder content, the air voids content, etc.) in a 

mixture (Suresha and Ningappa, 2018). According to the mortar’s definition used in this 

study, the binder content was much higher than the values used in other studies (Sousa 

et al., 2013, Suresha and Ningappa, 2018); therefore, it is reasonable that the mortar in 

this study was more viscous. Moreover, this viscous behaviour was obtained by other 

researchers as well (Zhang and Leng, 2017). 

 

 

 

a. Mortar mould b. Mortar material 
c. Size of mortar 

specimen 

Figure 2.1 Preparation of mortar specimens  

2.3.3 Specimens preparation for mastic 

As defined earlier, mastic specimens consisted of asphalt binder and filler size particles 

(<0.063 mm). The proportioning of binder and filler was consistent with that in the 

whole mix. The content of the asphalt binder was calculated as 52.3% by the total 

weight of the mastic specimen. 

 The preparation method of mastic specimens for DSR tests was quite similar to 

that of the asphalt binder. The preheated binder and filler were mixed by hand for 

around 2 minutes to obtain well blended and homogeneous mastic material. The mastic 

material was then poured into silicone moulds of 8 mm in diameter for testing.  
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2.4 Test methods 

In this study, temperature and frequency sweep tests were used to determine the 

viscoelastic properties of asphalt materials. In this test, a specimen is subjected to a 

fixed level of sinusoidal or haver-sinusoidal force/displacement at a fixed frequency 

and temperature for a fixed number of cycles. Testing is performed at different 

temperatures and frequencies to obtain a set of complex moduli (represented in terms 

of dynamic moduli and phase angles). Furthermore, according to the time-temperature 

corresponding principle, the modulus and phase angle curves at different temperatures 

can be shifted to those at a reference temperature to obtain master curves. The master 

curves of modulus and phase angle can reflect the behaviour of a material in a broad 

frequency/temperature range.  

Temperature and frequency sweep tests can be conducted in either stress-

controlled mode or strain-controlled mode. In the stress-controlled mode, the 

amplitude of the stress remains constant during the measurement, while in the strain-

controlled mode, the amplitude of the strain keeps unchanged. In this study, the strain-

controlled mode was used, considering that under the stress-controlled mode, it is 

difficult to limit the resultant strain within the desired range. As a result, the measured 

modulus may be significantly affected by other physical mechanisms such as damage, 

visco-plasticity, etc. Since micromechanical models in this study were evaluated for 

predicting the un-damaged viscoelastic properties of a mix, the introduction of other 

physical mechanisms would affect the evaluation of the models. 

2.4.1 Temperature and frequency sweep test of PA mixes 

PA mix specimens were tested by using the Universal Testing Machine (UTM), see 

Figure 2.2. Specimens were glued on the steel plate and mounted to the fixtures. Forces 

were applied from the bottom of the specimens, and the force level was measured via 

the load cell on the top. Vertical displacement was measured using three linear variable 

differential transformers (LVDT), which were equally distributed around the 

specimens. The distance between the two end positions of each displacement sensor 

was 100mm.  

Seven different test temperatures, -10°C, 4°C, 21°C, 37°C, 45°C, 54°C and 60°C, 

were used to measure the complex moduli of PA mixes in a wide temperature range. At 

each temperature, six frequencies of 20 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz, and 0.1 Hz were 

performed. The number of the loading cycles for each frequency, according to the 

ASSHTO Standard method (AASHTO, 2015), was 200 for 20 Hz, 200 for 10 Hz, 100 for 

5 Hz, 20 for 1 Hz, 15 for 0.5 Hz and 15 for 0.1 Hz. 
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Figure 2.2 Setup for the temperature and frequency sweep test of PA mixes 

In order to investigate the difference of a mix’s behaviour in tension and in 

compression, both a tensile strain and s compressive strain (with the same amplitudes) 

were subjected to the specimens, see Figure 2.3. The amplitude of the applied strains at 

all the temperatures and frequencies was chosen as 10 με. The selection of this strain 

level was on the basis of the consideration that the strain level has to be small enough 

to minimize the nonlinearity and damage of the mix. Apart from that, it is impossible 

with the available equipment to reliably measure the modulus of the mix at further 

small strain levels. 

  

a. Tension b. Compression 

Figure 2.3 Tensile and compressive strains 

2.4.2 Temperature and frequency sweep test of asphalt binder, mastic and 

mortar 

Temperature and frequency sweep tests were conducted using a DSR device to measure 

the shear moduli of asphalt binder, mastic, and mortar. The Parallel-Plate Configuration 
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was applied to test asphalt binder and mastic specimens, while mortar specimens were 

tested using the so-called “Column Configuration”, as shown in Figure 2.4. The test 

frequency ranged from 20 Hz to 0.1 Hz, at five different temperatures of -10°C, 4°C, 21°C, 

37°C, and 54°C. At each temperature, constant small strains were applied to ensure the 

linear viscoelastic behaviour of the material, Table 2.3.  

  

a. Fixture b. Configuration 

Figure 2.4 DSR setup for mortar tests 

Table 2.3 Amplitudes of the applied strains for binder, mastic and mortar 

Temperature (°C) -10 4 21 37 54 

Amplitude (με) 10 50 100 200 200 

2.5 Discussion and analysis of test results 

2.5.1 Volumetric properties of each phase 

The air voids content of PA mixes was measured using a CoreLok device according to 

the standard test method of ASTM D6752 (ASTM, 2018). The measured results for PA 

mix-1 and PA mix-2 were 18% and 13%, respectively. It is noted here that the designed 

air voids contents of the PA mix specimens were higher than the measured values (20% 

for PA mix-1). One of the possible reasons is that the plastic bags were sucked into the 

air voids on the surface of the specimens, see Figure 2.5. In this case, the air voids on 

the surface were not included in the measured total volume of the air voids. However, 

considering that this measurement error did not significantly affect the predicted 

modulus, the measured values of air voids contents were still used in all the further 

analyses.  
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Figure 2.5 Plastic bags sucked into the air voids  

In this study, the upscaling of a PA mix’s properties was conducted from different 

scales (asphalt binder, mastic, and mortar). In all the cases, the volume fraction of each 

phase was calculated, see Table 2.4. Upscaling from asphalt binder to mastic was also 

conducted. Therefore, the volume fraction of asphalt binder and filler in mastic was 

calculated, see Table 2.5. Since mastic could flow smoothly, its air voids content was 

assumed as 0%. 

Table 2.4 Volume fraction of each phase 

a. Volume fractions of asphalt binder, aggregates and air voids 

PA mixes Asphalt binder Aggregate Air voids 

PA mix-1 0.085 0.735 0.18 

PA mix-2 0.092 0.778 0.13 

b. Volume fractions of mastic, aggregates (excluded filler) and air voids 

PA mixes Mastic Aggregate (excluded filler) Air voids 

PA mix-1 0.116 0.704 0.18 

PA mix-2 0.124 0.746 0.13 

c. Volume fractions of mortar, aggregates (excluded filler and sand (<0.5 mm)) and air 

voids 

PA mixes Mortar Aggregate (excluded filler and sand) Air voids 

PA mix-1 0.20 0.62 0.18 

PA mix-2 0.21 0.66 0.13 
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Table 2.5 Volume fraction of each phase in mastic 

Mastic Asphalt binder filler 

PA mix-1 & PA mix-2 0.737 0.263 

2.5.2 Modulus of PA mixes in tension and compression 

The measured force and displacement of PA mixes were analysed to calculate the 

dynamic Young’s modulus (|Emix*|) and the phase angle (δmix) using the standard 

procedure provided in the AASHTO norm (AASHTO, 2015). The master curves of |Emix*| 

and δmix at a reference temperature of 21°C in both tension and compression are shown 

in Figure 2.6.  

  
a. Dynamic Young’s modulus of PA mix-1 b. Phase angle of PA mix-1 

  
c. Dynamic Young’s modulus of PA mix-2 d. Phase angle of PA mix-2 

Figure 2.6 Comparison of complex modulus in tension and compression 

It can be seen that the measured values of |Emix*| and δmix in tension are almost the 

same as those in compression. This indicates that under a small strain loading 

condition, the stiffness of a mix is not significantly sensitive to the direction of the load. 
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2.5.3 Modulus of asphalt materials at different scales 

The master curves of the shear moduli of asphalt binder (|Gb*| and δb), mastic (|Gmas*| 

and δmas) and mortar (|Gmor*| and δmor) at a reference temperature of 21°C are plotted in 

Figure 2.7. In the same figure, the values of |Emix*| and δmix are also presented. 

Comparing the modulus and the phase angle of asphalt materials at different scales, it 

can be found that: 

 

a. Modulus 

 

b. Phase angle 

Figure 2.7 Test results of asphalt materials at different scales 

• the magnitudes of |Gmas*| and |Gmor*| are higher than those of |Gb*|; while the 

shapes of the |Gb*|-f curve (or δb-f curve), the |Gmas*|-f curve (or δmas-f curve), 

and the |Gmor*|-f curve (or δmor-f curve) are quite similar to each other.  This 

indicates that the addition of filler and sand particles makes asphalt binder 

stiffer; however, it does not significantly change the sensitivity of the material 
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to the frequency and temperature. This can be interpreted by the fact that 

mastic and mortar in this study do not contain a large number of filler and sand 

particles. Therefore, there is no solid body (filler, sand, etc.) packing in these 

materials, and thus their behaviours are mainly dominated by the asphalt 

binder phase.  

• the magnitudes of |Emix*| are higher than the moduli of asphalt binder, mastic, 

and mortar. In the high-frequency range (around >10-1 Hz), the shape of the 

|Emix*|-f curve (or the δmix-f curve) shows a similar trend as those of the 

materials at lower scales. However, with the decrease of frequencies, the 

shapes of the master curves of the modulus and phase angle of the materials at 

different scales start to become different. While the moduli of asphalt binder, 

mastic, and mortar keep decreasing, |Emix*| reaches a lower bound of the 

asymptotic value. The phase angles of asphalt binder, mastic, and mortar 

remain increasing, whereas δmix starts to decrease after reaching a peak value. 

The above observations indicate that further addition of a large number of coarse 

aggregate not only produces a higher stiffness but also changes the viscoelastic 

behaviour of the matrix phase (asphalt binder, mastic or mortar), especially at lower 

frequencies/high temperatures. This can be attributed to the fact that at higher 

frequencies, the effect of aggregate contacts is less pronounced, and the behaviour of 

the matrix phase governs the behaviour of the PA mix. On the contrary, at lower 

frequencies, since there is no solid body packing in asphalt binder, mastic, and mortar, 

they are easy to be deformed, while due to the formation of the stone-on-stone skeleton 

framework, the deformation of the mix is limited. It is highlighted that, as will be 

discussed later in the paper, these different behaviours between a mix and the matrix 

phase are important in assessing the performance of micromechanical models. 

2.6 Other properties of each phase 

2.6.1 Poisson’s ratio of asphalt binder, mastic, and mortar 

In addition to the shear modulus, the Poisson’s ratio of asphalt binder, mastic or mortar 

is generally used as another input to predict the stiffness of a mix. The Poisson’s ratio 

of a viscoelastic material is supposed to be temperature- and frequency-dependent. 

However, until now, there have been almost no studies concerning experimentally 

determining the Poisson’s ratio of asphalt binder, mastic, or mortar. The only well-

known literature is the research work from Di Benedetto et al where the Poisson’s 

ratios of asphalt binder and mastic were measured via laboratory tests (Di Benedetto 

et al., 2007). However, these tests were only conducted at lower temperatures from -

30°C to 0°C, and there was no available data at higher temperatures. In fact, it is quite 

difficult to measure the Poisson’s ratio of a liquid-like viscoelastic material at higher 

temperatures because of its possible permanent deformation. Therefore, in practice, 
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researchers generally assumed the Poisson’s ratio of asphalt binder, mastic, or mortar 

as a constant between 0.35 and 0.5 (Underwood and Kim, 2014).  

In this study, when asphalt binder, mastic or mortar was used as the matrix phase, 

their Poisson’s ratios were initially assumed as a constant value of 0.4 to evaluate the 

performance of different micromechanical models. Furthermore, sensitivity analyses 

were conducted to investigate the effect of different values of the Poisson’s ratio of the 

matrix on the predicted results.  

2.6.2 Mechanical properties of aggregates 

The shear modulus Ga and Poisson’s ratio νa of aggregates (including filler, sand, and 

coarse aggregates) were used as inputs for upscaling. The values of Ga and νa were 

obtained from the literature (Kim and Buttlar, 2011, Underwood and Kim, 2014) as 20.8 

GPa and 0.27, respectively. 
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3.1 Introduction 

The laboratory tests used for evaluating micromechanical models have been introduced 

in the previous chapter. Based on these experimental results, the application of 

different types of micromechanical models (i.e. SEMM, CBMM and DBMM) in predicting 

the mechanical properties of PA mixes will be investigated. The current chapter focuses 

on the evaluation of SEMM. As compared to CBMM and DBMM, SEMM are much easier 

to be implemented, and moreover, these models have been shown to be able to 

accurately predict the mechanical properties of asphalt mixtures (Christensen et al., 

2003b, Al-Khateeb et al., 2006). Therefore, the evaluation of SEMM, as a preliminary 

study, can help understand the basic concept behind micromechanical models as well 

as the fundamental mechanisms that affect the behaviour of PA mixes.  

In SEMM, in order to relate the mechanical properties of a mix to the properties of 

its individual phases, individual phases are assumed to be arranged in parallel or series 

or a combination of them, see Figure 3.1. Different SEMM include the Voigt model, the 

Reuss model, the Hirsch model, etc. Among all these models, Hirsch model (Hirsch, 

1962) is one of the most commonly used SEMM for asphalt mixtures. It was originally 

developed by Hirsch to investigate the modulus of concrete as determined by the 

moduli of the cement and the aggregate particles. In Hirsch model, different phases are 

assumed to be in a combination of parallel and series arrangements. The modulus of 

the composite is controlled by the volume fractions and the moduli of all its phases. 

Further, Christensen et al. (Christensen et al., 2003a) modified the original Hirsch 

model, which is referred to as Christensen’s model in this study, to make it applicable 

for asphalt mixes. 

   

a. Series arrangement b. Parallel arrangement 
c. Combination of series 

and parallel arrangement 
Figure 3.1 Different arrangements in SEMM 

SEMM have been widely used to estimate the dynamic modulus of asphalt mixes 

(Dongre et al., 2005, Pellinen et al., 2007). In general, it was found that the performance 

of the model varies with many different factors, such as the type of mix, the volumetric 
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properties, the testing temperatures, etc. For example, Dongre, et al. (Dongre et al., 

2005) found that Christensen’s model provided reasonable predictions of dynamic 

modulus for asphalt mixtures from five pavement construction sites across the United 

States. Whereas, the research work from Bari and Witczak (Bari and Witczak, 2006), 

Kim, et al. (King et al., 2005) and Ceylan (Ceylan et al., 2008) showed that Christensen’s 

model underpredicted the dynamic modulus of their studied mixes. Singh, et al. (Singh 

et al., 2011) concluded that Christensen’s performed with good accuracy at low 

temperatures for the commonly used asphalt mixes in Oklahoma, while Yousefdoost, et 

al. (Yousefdoost et al., 2015) found that this model performed well only at 50°C for 

typical Australian asphalt mixes.  

The reason that SEMM perform differently from different mixes is that several 

parameters, i.e. P0, P1 and P2 in Christensen’s model, are required to be calibrated in the 

laboratory. Therefore, although these models are developed based upon the law of 

mixture, they are still semi-empirical methods of predicting asphalt mixture’s modulus, 

and their applications are limited to the type of mix that they were calibrated for. 

Currently, SEMM have been calibrated mainly on the basis of laboratory tests 

performed on DA mixes. They cannot be directly used for PA mixes, and thus, 

recalibrations are required in order to accurately predict the modulus of PA mixes. 

Based on the above realizations, the objective of this chapter is to implement 

Christensen’s model for estimating the mechanical properties of PA mixes. At the 

beginning of this chapter, a thorough investigation into the development of this model 

was conducted in order to capture the basic approach used by SEMM for relating the 

mechanical properties of a mix to the properties of its individual phases. Furthermore, 

recalibration of the parameters in Christensen’s model was carried out using the test 

data in Chapter two. Additionally, in order to figure out the effect of different phases on 

the mechanical properties of PA mixes, this chapter also compared the contributions of 

different phases as quantified by Christensen’s model.  

3.2 Christensen’s model 

In the early research of Christensen et al. (Christensen et al., 2003b), various phase 

arrangements were proposed to modify the original Hirsch model to make it applicable 

for asphalt mixes. After thorough investigations of the several proposed versions of the 

modified Hirsh model, they came to a conclusion that the version in which the parallel 

and series sub-units composed of asphalt binder, aggregates, and air voids are arranged 

in parallel provided better prediction results of the modulus of asphalt concrete, Figure 

3.2a. 
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a. Original arrangement b. Simplified arrangement 

Figure 3.2 Arrangement of Christensen’s model for asphalt mixes 

In this version, the dynamic Young’s modulus of asphalt mix |Emix*| is obtained 

from the volume fractions and moduli of asphalt binder, aggregates, and air voids, 

Equation (3.1).  

  
    



−

 +
= + + + + + 

 

12
* * 2 as bs vs
mix ap a bp b as bs vs *

a bs b

( )
| |( ) 3 | |( ) ( )

3 | |( )
E f E G f

E G f
 (3.1)  

where the subscripts p and s represent the parallel portion and the series portion, 

respectively; ϕa and Ea are the volume fraction and Young’s modulus of the aggregate 

phase, respectively, ϕb and |Gb*| are the volume fraction and the dynamic shear modulus 

of the asphalt binder phase, respectively, and ϕv is the volume fraction of the air voids 

phase. 

Further studies by the researchers (Christensen and Bonaquist, 2015) showed 

that the effects of the series sub-unit on the estimated modulus of asphalt mix are much 

less significant than the effects of the parallel sub-unit, which indicates that the 

characteristics of asphalt mix are similar to a parallel arrangement of individual phases, 

Figure 3.2b. Under this realization, the authors (Christensen and Bonaquist, 2015) 

simplified the original model to a simple parallel arrangement, as shown in Equation 

(3.2). 

 = +* *
mix ap a bp b| |( ) 3 | |( )E f E G f  (3.2)  

Equation (3.2) has two unknown parameters, ϕap and ϕbp, which makes it difficult 

to be determined by using laboratory/field tests. Researchers (Christensen et al., 

2003b) have proposed further simplification to solve this issue by introducing factors 

such as contact factor Pc. Pc is the share of the parallel component of the total volume of 

the composite and therefore varies between 0 and 1. As can be seen from Equation 

(3.2), if the parallel part occupies the same proportion in each phase, Equation (3.2) can 

be further reduced to Equation (3.3). 

ϕap ϕbp ϕvp 

ϕas 

ϕbs ϕvs 

ϕap ϕbp ϕvp 
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( ) = +* *
mix c a a b b| |( ) ( ) 3 | |( )E f P f E G f  (3.3)  

3.2.1 Contact factor Pc 

In Equation (3.3), it is obvious that Pc is one of the critical parameters in the calculation 

of |Emix*|. Since the behaviour of asphalt concrete depends on frequency/temperature, 

the relative proportions of the series part and parallel part are also 

frequency/temperature-dependent. As proposed by the researchers (Christensen et al., 

2003b), the values of Pc can be calibrated from laboratory tests. The researchers 

concluded that the proposed factor “Pc” is frequency/temperature sensitive, as 

expected. 

  

a. High frequency/Low temperature b. Low frequency/High temperature 

Figure 3.3 Aggregate contacts at different frequencies/temperatures 

In line with the above research work, researchers (Dongre et al., 2005, Pellinen et 

al., 2007, Christensen and Bonaquist, 2015) showed that generally, a good agreement 

exists between the predicted results of Christensen’s model and the laboratory tests. 

However, it can be stated that the physical representation of Pc is difficult. In their 

pioneering studies, researchers (Christensen et al., 2003b) hypothesized that Pc 

represented the aggregate contact factor and interpreted it as the contribution from the 

portion of aggregate particles in intimate contact with each other. They also noted that 

high values of Pc at high frequencies/low temperatures indicate more contact among 

aggregate particles. However, this interpretation does not comply with the physical 

situation where fewer aggregate particles are expected to be in intimate contact at high 

frequencies/low temperatures, Figure 3.3a. This behaviour is expected because of the 

existence of stiff asphalt binder at high frequencies/low temperatures. Similarly, at low 

frequencies/high temperatures when the modulus of asphalt binder is soft, it is 

expected that the aggregate would find it easier to move, which will result in more 

pronounced contact, Figure 3.3b.  



Semi-empirical micromechanical models Chapter 3 

 

Page | 28  

Based on the above analysis, it can be concluded that the interpretation of Pc does 

not consider the aggregate contact interaction aptly. Thus, in the following section, a 

modified expression for Christensen’s model will be proposed. 

3.3 Modified expression of Christensen’s model 

As mentioned above, the effects of the series element in Christensen’s model on the 

estimated modulus of asphalt concrete are negligible as compared to the effects of the 

parallel element. Therefore, in the revised arrangement, it is proposed that the total 

volume of asphalt binder, aggregates, and air voids are arranged in parallel, Figure 3.4. 

This arrangement is the same as the arrangement proposed by the original researcher 

(Christensen and Bonaquist, 2015) except that in the revised arrangement, the part of 

the volume is replaced by the total volume. The relationship between |Emix*| and the 

properties of individual phases is shown in Equation (3.4). 

 = +* *
mix a a b b| |( ) 3 | |( )E f E G f  (3.4)  

 

Figure 3.4 Revised arrangement of Christensen’s model 

This study proposed to modify Equation (3.4) by introducing a factor Pa which 

describes the contribution to |Emix*| from the arrangement of aggregate particles at 

different frequency/temperature conditions, see Equation (3.5). A detailed description 

of Pa will be presented in the following subsection.  

  = +* *
mix a a a b b| |( ) ( ) 3 | |( )E f P f E G f  (3.5)  

3.3.1 Aggregate organization factor, Pa 

An Asphalt mix has a higher volume fraction of the aggregate phase than the binder and 

the air void phase. Moreover, the modulus of the aggregate phase is also much higher 

than that of the other two phases. Therefore, the contributions made by the aggregate 

phase to the modulus of the asphalt mix are expected to be higher than those made by 

other phases. If a non-frequency/temperature-dependent factor were introduced for 

ϕa ϕb ϕv 
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evaluating the contribution from the aggregate phase to the overall response of the mix, 

|Emix*| would also be primarily frequency/temperature independent. This can be clearly 

deduced from Equation (3.5), where the aggregate phase contribution (PaϕaEa) 

becomes temperature/ frequency-independent due to the temperature/ frequency-

independent value of Pa.  

In order to physically understand the concept of Pa, if hypothetically two extreme 

conditions of low temperatures (or high frequencies) and high temperatures (or low 

frequencies) are considered, then in the case of low temperatures the asphalt binder 

would be stiff, and it would be able to bond the particles well together, Figure 3.5a. 

Whereas, at high temperatures, the binder would be too soft to bind the particles, Figure 

3.5b. In the prior case, the whole structure will act together in the load-bearing capacity, 

on the contrary, in the other case, the asphalt binder will not take part in the load-

bearing capacity, and the mix would slowly collapse. 

 

 

a. High frequency/Low temperature b. Low frequency/High temperature 

Figure 3.5 Organization of aggregates at different frequencies/temperatures 

From the above discussions, it can be stated that the introduction of the factor, Pa, 

is logical and meaningful. It is also expected to capture the frequency/temperature-

dependent contribution of the aggregate phase in predicting |Emix*|. Pa, which is termed 

as the “aggregate organization factor”, has been determined and validated by the 

laboratory tests in this research study. 

3.4 Results and discussions 

3.4.1 Determination of Pa using laboratory tests 

Equation (3.5) can be rearranged in the form of the following equation, Equation (3.6): 

 

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The values of Pa can be calculated with the mix properties using Equation (3.6). A 

typical curve, as obtained for PA mix-1 at 21°C, is shown in Figure 3.6. The shape of the 

plot shows that Pa is indeed a frequency-dependent factor, as discussed before. It can 

also be observed that Pa increases with the increase in frequency, and more or less 

follows a sigmoidal curve for the tested specimen. This, in terms of physical meaning, 

implies that the contribution made by the aggregate phase to the modulus of the mix 

increases with the frequencies. 

 

Figure 3.6 Calculation results of Pa 

By assuming Pa to follow a sigmoidal curve, Equation (3.7) can be used to fit the 

value of Pa. It is noted here that Equation (3.7) is similar in nature to the Pc function as 

described by the researcher (Christensen and Bonaquist, 2015). After fitting the test 

results using Equation (3.7), constant parameters in the equation can be obtained, as 

shown in Table 3.1.  

It is important that the proposed model is validated. In order to judge the 

suitability of the aggregate organization factor, a two-step validation approach was 

adopted. In the first step, the overall response of PA mix-1 was compared against the 

predicted results, and in the second step, predictions were made for PA mix-2 on the 

basis of parameters obtained in Table 3.1. 
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Table 3.1 Fitting results of constant parameters 

Parameters a b c d 

Values 0.00022 -0.0055 0.8 -0.15 

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E-5 1.0E-2 1.0E+1 1.0E+4

P
a

Reduced f (Hz)



Semi-empirical micromechanical models Chapter 3 

 

Page | 31 

3.4.2 Validation of the modified expression of Christensen’s model 

Figure 3.7a and Figure 3.7b show the predicted results of |Emix*| for PA mix-1 and PA 

mix-2, respectively. It can be observed that the predicted results of |Emix*| for PA mix-1 

are in good agreement with the laboratory tests, which provides a good check for the 

calibration procedure. 

 

a. PA mix-1 

 

b. PA mix-2 

Figure 3.7 Comparison between predicted results of |Emix*| to laboratory tests 

The predicted results of |Emix*| for PA mix-2 on the basis of the parameters 

obtained from PA mix-1 fit with reasonable accuracy. These differences were already 

expected because the parameters used for both PA mixes in Equation (3.7), although 

with different properties, are the same. Despite these differences, the predicted and the 

test results for practical purposes match quite well for PA mixes. 
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3.4.3 Contribution of each phase in the |Emix
*| prediction 

According to Equation (3.5), the contribution of the aggregate phase to the total mix 

modulus is obtained as PaϕaEa, whereas the contribution of the asphalt binder phase is 

obtained as 3ϕb|Gb*|. Figure 3.8a and Figure 3.8b show the plots of the relative 

contribution of each phase in the overall response of PA mixes. It can be seen that both 

phases are frequency-dependent, as explained earlier. 

  
a. PA mix-1 

  
b. PA mix-2 

Figure 3.8 Modulus provided by aggregates and asphalt binder in PA mix 

When the moduli of each phase are compared, it is found that the aggregate phase 

makes a more significant contribution to the modulus of PA mixes, as expected. It can 

be further deduced that in PA mixes, the aggregate phase provides the load-bearing 

capacity while the role of the asphalt binder phase is to bind the aggregate particles 

together, ensuring the structural organization of the composite material. 
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3.5 Summary 

SEMM, which have shown their capabilities of accurately predicting the mechanical 

properties of DA mixes, were evaluated for PA mixes in this chapter. Christensen’s 

model, as one of the most commonly used SEMM, was expected to be able to estimate 

the modulus of PA mixes. However, a following thorough investigation into the 

development of this model showed that it does not consider the aggregate contact 

interaction aptly. Therefore, a modified expression for Christensen’s model, with the 

addition of a temperature/frequency-dependent aggregate organization factor, was 

proposed. Furthermore, a function for calculating the aggregate organization factor was 

determined and verified against test results. In the end, based upon the proposed 

modified Christensen’s model, the contributions made by each phase to the modulus of 

PA mixes were analysed. The following conclusions can be drawn: 

• By means of the aggregates organization factor, the effects of the 

frequency/temperature-dependent contribution of the aggregate phase on the 

overall mix response can be accounted for, and the modified expression of 

Christensen’s model can produce the shape and values of the 

frequency/temperature-dependent modulus of asphalt mixes. 

• A sigmoidal curve function can be used to describe the characteristics of the 

aggregate organization factor in the whole frequency range. 

• In the whole range of frequencies/temperatures, the contributions made by the 

aggregate phase to the overall modulus of PA mixes are much more significant 

than the contribution of the asphalt binder. 
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4.1 Introduction 

The application of SEMM for predicting the mechanical properties of PA mixes has been 

discussed in the previous chapter. Although SEMM can provide fairly accurate 

predictions, the calibration of the aggregate organization factor is always required for 

a different type of asphalt mixes. This limitation of SEMM is probably due to the fact 

that in this type of micromechanical models, individual phases are simply arranged in 

parallel or series. In that case, the stress/strain field in the macroscale and that in the 

microscale can only have a relationship of either a uniform stress or a uniform strain. 

However, considering the complicated microstructure of a mix, it is expected that the 

assumption of a uniform stress or strain field is not accurate enough with respect to 

predicting the mechanical properties of the mix.  

In comparison to Christensen’s model, CBMM provide more rigorous relationships 

of the stress/strain fields between macroscale and microscale. The development of 

these models is on the basis of Eshelby’s solution (Eshelby, 1957) for the inhomogeneity 

problem where an ellipsoid inclusion is embedded into an infinite matrix, see Figure 

4.1. The strain in the macroscale and that in the microscale is related via the strain 

localization tensor which is a function of the mechanical and geometrical properties of 

the inclusion and the matrix. Depending on different assumptions about the strain 

localization tensor, various CBMM, i.e. the Dilute model, the SC model (Hill, 1965, 

Walpole, 1969), the GSC model (Christensen and Lo, 1979), the MT model (Mori and 

Tanaka, 1973, Benveniste, 1987), etc., have been developed. 

 

Figure 4.1 Illustration of a mix in CBMM 

CBMM were initially developed for elastic composites. In the past few decades, 

these models have drawn the attention of researchers in the pavement community with 

the attempt to accurately predict the mechanical properties of asphalt materials 

without the need for calibrations. Up to now, the evaluation of different CBMM has been 

conducted in a large number of research studies (Buttlar et al., 1999, Kim and Little, 

Matrix 

Inclusions 
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2004, Abbas et al., 2005, Shu and Huang, 2008, Yin et al., 2008, Pichler et al., 2012, 

Underwood and Kim, 2014). The performance of these models at different volume 

concentrations and test temperatures can be summarized as follows.  

• At very low concentrations, most of the models can obtain good predictions 

(Buttlar et al., 1999, Kim and Little, 2004, Abbas et al., 2005). This is because 

all these models are developed on the basis of Eshelby’s solution which is 

suitable for a composite with a low concentration of inclusions.  

• At high concentrations and low temperatures, the accuracy of the predicted 

results varies from one model to the other (Underwood and Kim, 2014, Yin et 

al., 2008, Pichler and Lackner, 2009, Pichler et al., 2012). The Dilute model and 

the MT model have been generally found to under-predict the moduli (or over-

predict the creep compliances) of an asphalt material (Pichler and Lackner, 

2009, Underwood and Kim, 2013). On the contrary, the SC model and the GSC 

model have been found to be more suitable for high concentrations of asphalt 

materials (Pichler and Lackner, 2009, Underwood and Kim, 2013, Zhang et al., 

2018). 

• At high concentrations and high temperatures, none of these models have been 

found to provide accurate predictions, and in general, the predicted moduli are 

much lower than the measured values (Buttlar et al., 1999, Kim and Little, 

2004, Underwood and Kim, 2014). 

Although many efforts have been made on evaluating CBMM for asphalt materials, 

the above observations may not be directly used for PA mixes since these observations 

were typically obtained based upon laboratory tests performed on DA mixes. It is 

known that PA mixes and DA mixes are quite different from each other. In comparison 

to DA mixes, PA mixes have much higher contents of air voids and coarse aggregates 

but a lower content of fine aggregates. As a result, the microstructure of PA mixes may 

significantly differ from that of DA mixes. For example, the mortar phase is generally 

considered as continuous in a DA mix. In contrast, in a PA mix, the mortar may not 

wholly form a continuum medium due to the higher volume of air voids and the lower 

volume of fine aggregates. Besides, since a large number of coarse aggregates form a 

stone-on-stone skeleton in PA mixes, it is expected that these connected stone particles 

would play a more significant role in the behaviour of the mix.  

Considering the significantly different microstructures between PA mixes and DA 

mixes, it is not expected that the performances of CBMM for different mixes are the 

same. Models that perform well in predicting the mechanical properties of DA mixes 

may not be suitable for PA mixes, and methods to improve the accuracy of predictions 

can also be different. Therefore, although the performance of various CBMM has been 
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widely evaluated for DA mixes, it is still necessary to carry out studies to investigate the 

performance of these models for PA mixes. 

In light of the above discussions, the current chapter aims to provide a 

comprehensive investigation into the performances of the commonly used CBMM for 

predicting the modulus of PA materials. The focus of this chapter can be subdivided into 

three parts. The first and the second part show the performances of CBMM in predicting 

the moduli of PA mastic and PA mixes, respectively. Moreover, in the second part, 

comprehensive analyses are carried out aiming to explore the sensitivity of the 

predictions’ accuracy to (1) the scale of the matrix phase (i.e. asphalt binder, mastic, 

and mortar); (2) the utilization of different micromechanical models; (3) the utilization 

of the DS approach; and (4) the Poisson’s ratio of the matrix phase. Based on the 

analysis results, the limitations of CBMM are further discussed at the end of this chapter.  

4.2 Introduction of commonly used CBMM 

4.2.1 Stiffness tensor  

In linear elasticity, the constitutive law of a material is generally given as: 

= :σ C ε  (4.1)  

where σ is the second-order stress tenser; ε is the second-order stain tenser; C is the 

fourth-order stiffness tensor; the symbol ‘:’ means the double dot product between two 

tensors. 

For isotropic elastic materials, five material constants, i.e. Young’s modulus E, 

shear modulus G, bulk modulus K, Lame constant λ, and Poisson’s ratio ν, are commonly 

used. However, only two of them are required to describe the characteristic of C 

completely (Huiming Yin, 2018). For example, by using the values of K and G, C can be 

represented as:  

= +v d3 2K GC I I  (4.2)  

and the value of E can be calculated as 

=
+

9

3

KG
E

K G
 (4.3)  

In Equation (4.2), Iv and Id denote the volumetric part and the deviatoric part of a 

four-order tensor, respectively; and they are defined as 

       =  = + −v d1 1 1
; ( )

3 2 3
ijkl ij kl ijkl ik jl il jk ij klI I  (4.4)  

where δ is the Kronecker’s delta. From these definitions, the following relations 

between Iv and Id can be derived: 
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=  =  =  =   + =v v v d d d v d d v v d: ; : ; : ; : ;andI I I I I I I I 0 I I 0 I I I  (4.5)  

where I is the unit fourth-order tensor, which is written as 

   = +
1

( )
2

ijkl ik jl il jkI  (4.6)  

On the basis of the relations in Equation (4.5), it can be found that if two fourth-

order tensors B1 and B2 are represented as 

= +v v d d
1 1 1B BB I I  (4.7)  

= +v v d d
2 2 2B BB I I  (4.8) 

the double dot product of B1 and B2 can be directly given by 

= +v v v d d d
1 2 1 2 1 2: B B B BB B I I  (4.9)  

4.2.2 Homogenization process of CBMM 

The effective stiffness of an N-phase composite Ceff is defined using the average stress 
<σ>c and the average strain <ε>c: 

  =  c eff c:σ C ε  (4.10)  

The values of <σ>c and <ε>c for a given volume V of a representative volume element 
(RVE) can be described by Equation (4.11). 

  =    = c c

1 1
,

V V

dV dV
V V

σ σ ε ε  (4.11)  

At the component level, the average stress <σ>r and average strain <ε>r of phase r over 

the volume of this phase (Vr) are given as Equation (4.12).  

  =    = 
1 1

,
r r

r r r r

r rV V

dV dV
V V

σ σ ε ε  (4.12)  

Substituting Equation (4.12) into Equation (4.11), <σ>c and <ε>c are rearranged 

as 


=

  =  c
1

N

r r
r

σ σ  (4.13)  


=

  =  c
1

N

r r
r

ε ε  (4.14)  

where 𝜙𝑟 is the volume fraction of phase r in the RVE, which is defined as 
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 = r
r

V

V
 (4.15)  

For each phase, it is also known that <σ>r and <ε>r satisfy the constitutive law: 

  =  :r r rσ C ε  (4.16)  

where Cr is the stiffness tensor of phase r. By substituting Equations (4.10) and (4.16) 
into Equation (4.13), the value of Ceff can be related to the values of Cr: 


=

  =  eff c
1

: :
N

r r r
r

C ε C ε  (4.17)  

Equation (4.18) shows a typical relationship between <ε>r  and  <ε>c, which is used 

in CBMM (Eshelby, 1957): 

  =  c:r rε A ε  (4.18)  

where Ar is called the strain localization tensor of phase r. By combining Equations 

(4.17)-(4.18), the value of Ceff is further expressed as: 


=

= eff
1

:
N

r r r
r

C C A  (4.19)  

Equation (4.20) can be easily derived once Equation (4.18) is substituted into 

Equation (4.14). 


=

=
1

N

r r
r

A I  (4.20)  

 Equations (4.19)-(4.20) show that the values of 𝜙𝑟 , Cr and Ar must be determined 

or estimated to obtain the value of Ceff. In general, the constituents of a composite are 

known which means the values of 𝜙𝑟 and Cr can be either determined in the laboratory 

or readily available in the literature. It is highlighted here that although the value of Ar 

to a certain extent can also be measured by sophisticated technologies such as digital 

image processing, smart sensors, etc., they are not frequently available to pavement 

engineers and researchers. The central idea behind CBMM is primarily to calculate the 

value of Ar. 

4.2.3 Localization tensors of different CBMM 

4.2.3.1 Eshelby’s solution 

In Eshelby’s solution (see Figure 4.2), the strain of the inclusion <ε>2 and the strain at 

infinity <ε>0 are related using Equation (4.21). 
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   =  2 0:ε T ε  (4.21)  

with 

 − −= + −1 1
1 1 2 1[ :( ) :( )]T I S C C C  (4.22)  

where C1 and C2 are the stiffness tensors of the matrix and the inclusion, respectively; 

and S1 is known as Eshelby’s fourth-order tensor.    

 

 

Figure 4.2 Eshelby’s inhomogeneity problem 

The value of S1 is a function of the matrix’s mechanical properties and the 

inclusion’s mechanical and geometrical properties (Wu, 1966, Walpole, 1969, Tandon 

and Weng, 1984, Mura, 1982). When the matrix and the inclusion are isotropic 

materials and the inclusion is a sphere, S1 is calculated as 

  = +v d
1 1 1S I I  (4.23)  

with 

  
+

= =
+ +

1 1 1
1 1

1 1 1 1

3 6( 2 )
,

3 4 5(3 4 )

K K G

K G K G
 (4.24)  

where K1 denotes the matrix’s bulk modulus, and G1 denotes the matrix’s shear 

modulus. 

4.2.3.2 The Dilute model 

The Dilute model is developed directly from Eshelby’s solution. For an N-phase 

composite, the value of Ar for each inclusion phase (from phase 2 to phase N) is identical 

to T by replacing C2 in Equation (4.22) with Cr, see Equation (4.25). The value of A1 is 

further obtained by using Equation (4.20). 

Matrix 

Inclusion 
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 − −= + −  =1 1
1 1 1[ :( ) :( )] , 2,3,...,r r r NA I S C C C  (4.25)  

When all the phases are isotropic, and the inclusions are spherical, the effective 

bulk modulus Keff and effective shear modulus Geff of the composite are calculated using 

Equations (4.26) and (4.27), respectively.  

 


=

− +
= +

+
 1 1 1

eff 1
2 1

( )(3 4 )

3 4

N
r r

r r

K K K G
K K

K G
 (4.26)  



=

− +
= +

+ + +
 1 1 1 1

eff 1
2 1 1 1 1

5 ( )(3 4 )

3 (3 2 ) 4 (2 3 )

N
r r

r r r

G G G K G
G G

K G G G G G
 (4.27)  

4.2.3.3 SC model 

In the SC model, the inclusion itself is embedded into an infinite medium with the same 

properties as the composite itself, see Figure 4.3. The value of Ar for each inclusion 

phase is obtained by replacing the mechanical properties of the matrix in Equation 

(4.22) with the unknown mechanical properties of the composite (Ceff), see Equation 

(4.28). The value of A1 can still be obtained from Equation (4.20). 

− −= + −  =1 1
eff eff eff[ :( ) :( )] , 2,3,...,r r r NA I S C C C  (4.28)  

 

  

Figure 4.3 Illustration for the SC model 

Keff and Geff for isotropic and spherical inclusions can be calculated using Equations 

(4.29)-(4.30). The expressions of Keff and Geff are not explicit, and thus numerical 

techniques should be used to solve these equations. 

Infinite medium 

Inclusion 
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

=

− +
= +

+
 1 eff eff

eff 1
2 eff

( )(3 4 )

3 4

N
r r

r r

K K K G
K K

K G
 (4.29)  



=

− +
= +

+ + +
 eff 1 eff eff

eff 1
2 eff eff eff eff

5 ( )(3 4 )

3 (3 2 ) 4 (2 3 )

N
r r

r r r

G G G K G
G G

K G G G G G
 (4.30)  

4.2.3.4 GSC model/Three-phase model 

The geometrical description of a composite in the GSC model (or three-phase model) is 

similar to that in the SC model, while the only difference is that the inclusion is 

surrounded by a matrix layer, see Figure 4.4. It is noted here that although it seems that 

the model contains three phases, in reality, it is only suitable for a two-phase composite 

as the infinite medium is the composite itself.  

 

Figure 4.4 Illustration for the GSC model 

Regarding an isotropic and spherical inclusion, the solutions for the values of Keff 

and Geff of a two-phase composite are given as Equations (4.31) and (4.32), respectively. 





− +
= +

+ + −

2 2 1 1 1
eff 1

1 1 1 2 1

( )(3 4 )

3 4 3 ( )

K K K G
K K

K G K K
 (4.31)  

   
+ + =   

   

2

eff eff

1 1

0
G G

A B C
G G

 (4.32)  

Coefficients of A, B and C can be obtained using the following equations:  

Infinite medium 

Inclusion 

Matrix 
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 

 

        

      

        

= − − − − + + −

− − − + + −

= − − − + − + − −

+

10/3 7/3 5/3
2 1 1 1 2 2 1 2 1 3 2 2 1 2 2

2
2 1 1 1 2 2 1 2 3

10/3 7/3 5/3
2 1 1 1 2 2 1 2 1 3 2 2 1 2 2

2 1

8( / 1)(4 5 ) 2 63( / 1) 2 252( / 1)

25( / 1)(7 12 8 ) 4(7 10 )

4( / 1)(1 5 ) 4 63( / 1) 2 504( / 1)

150( /

A G G G G G G

G G

B G G G G G G

G G

 

      

        

     

− − + −

= − − − − + + −

+ − − − +

1 1 2 2 1 2 3

10/3 7/3 5/3
2 1 1 1 2 2 1 2 1 3 2 2 1 2 2

2
2 1 1 2 2 1 2 3

1)(3 ) 3(15 7)

4( / 1)(5 7) 2 63( / 1) 2 252( / 1)

25( / 1)( 7) (7 5 )

C G G G G G G

G G

where 

( )

( )

      

 

  

= − − + − + −

= − + + +

= − + −

1 2 1 1 2 2 1 2 1 2 1

2 2 2 1 1 2

3 2 1 1 1

( / 1)(49 50 ) 35( / ) 2 35(2 )

5 ( / 8) 7( 4)

( / )(8 10 ) 7 5

G G G G

G G G G

G G

 

G1 and G2 = the shear moduli of the matrix and the inclusion, respectively; 

ν1 and ν2 = the Poisson’s ratios of the matrix and the inclusion, respectively;  

ϕ2 = the volume fraction of the inclusion.  

4.2.3.5 MT model 

The MT model assumes that inclusions are included into a finite matrix, Figure 4.5, and 

it is assumed that the value of <ε>r for each inclusion phase is calculated from Equation 

(4.33). 

   =    =1: , 2,3,...,r r r Nε T ε  (4.33)  

where Tr is identical to T by replacing C2 with Cr in Equation (4.22). By substituting 

Equation (4.33) into Equation (4.14), <ε>1 is related to <ε>c via Equation (4.34). From 

Equation (4.34), the value of A1 is directly obtained as Equation (4.35); whereas the 

value of Ar for each inclusion phase is obtained by combining Equations (4.33) and 

(4.34), see Equation (4.36). 

 

−

=

 
  = +   

 


1

1 1 c
2

:
N

r r
r

ε I T ε  (4.34)  

 

−

=

 
= + 

 


1

1 1
2

N

r r
r

A I T  (4.35)  

 

−

=

 
= +  = 

 


1

1
2

: , 2,3,...,
N

r r r r
r

r NA T I T  (4.36)  
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Figure 4.5 Illustration for the MT model 

 The values of Keff and Geff for isotropic and spherical inclusions can be calculated 

from Equations (4.37) and (4.38), respectively. It is highlighted that when N=2 the 

solution for Keff in Equation (4.37) is the same as that in Equation (4.31). 

 

( )



 =

=

− +
= +

+ +
+ +

+




1 1 1
eff 1

2 1 1 1
1 1

2 1

( )(3 4 )

(3 4 )(3 4 )
3 4

(3 4 )

N
r r

N
r r

r s
s s

K K K G
K K

K G K G
K G

K G

 
(4.37)  



 =

=

− +
= +

+
+

= + + + −




1 1 1 1
eff 1

2 1 1 1
1

2

1 1 1 1 1 1

5 ( )(3 4 )

5 (3 4 )

5 (3 4 ) 6( 2 )( )

N
r r

N
r r

r s
s s

r r

G G G K G
G G

G K G B
B

B

B G K G K G G G

 (4.38)  

4.2.3.6 Differential scheme 

The DS approach is another method to deal with the inter-particle interaction in a high 

concentrated composite. The idea behind this model is to develop a process where the 

inclusions are added in steps, and thus the interactions can be neglected (McLaughlin, 

1977, Norris, 1985), see Figure 4.6. 

For a three-phase composite, the value of Ceff can be expressed using the following 

equation:  

( ) ( )


   

 
= − + − 

−  

(c)(c)
eff 32

2 eff 2 eff 3 eff 3 eff(c) (c)

1
: ( ) : ( )

1

d

d

C
C C A C C C A C  (4.39)  

where ϕ is the sum of the inclusion phases’ volume fractions, ϕ2+ϕ3; the superscript “c” 

indicates the final composite; the value of A can be obtained through any of the above 

models (Yin and Zhao, 2016). 

Matrix 

Inclusion 
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Figure 4.6 Illustration of the DS approach 

Equation (4.39) can be solved numerically by discretizing it as Equation (4.40): 

( ) ( )


 

− − − − −

− −


= + − + −

− −

( )( )
( ) ( 1) ( 1) ( 1) ( 1) ( 1)32

eff eff 2 eff 2 3 eff 3( 1) ( 1)
: :

1 1

ii
i i i i i i

i i
C C C C A C C A  (4.40)  

where the superscripts “i” and “i-1” represent step i and step i-1, respectively; Δϕ2 and 

Δϕ3 are the increments of the volume fractions of the inclusion phases. In this research 

work, after the sensitivity analysis of the effect of different calculation steps on the 

predicted results, a total of 50 steps were finally conducted to calculate the value of Ceff. 

The initial condition for Ceff was that when ϕ=0, Ceff=C1. For each step, the values of Δϕ2 

and Δϕ3 were identical to ϕ2/50 and ϕ3/50, respectively. 

4.2.4 General solution procedure for viscoelastic composites 

All the CBMM described above are originally developed for elastic composites; 

however, asphalt materials are mostly treated as viscoelastic composites. This means 

that these models may not be directly applicable to asphalt materials. Therefore, this 

section describes a typical procedure that can be adapted to utilize the above models 

for viscoelastic composites. 

According to the research work of Hashin (Hashin, 1965, Hashin, 1970), 

micromechanical models can be utilized for viscoelastic materials via the elastic-

viscoelastic correspondence principle (Bland, 1960). Since the viscoelastic properties 

of asphalt materials in this study were measured in the frequency domain, the general 

V2

(1)
 

Matrix 

Effective medium i 

V2

(2)
 

V2

(i)
 

Effective medium i-1 

Effective medium 1 Effective medium 2 
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solution procedure in the frequency domain will be described here. In the following 

part, a two-phase composite is taken as an example, and it is assumed that the matrix 

(phase 1) is a viscoelastic material while the inclusion (phase 2) is an elastic material. 

The equations of the Dilute model (Equations (4.26)-(4.27)) for calculating the moduli 

of a composite are taken as examples to show the change of the formulas with the 

consideration of viscoelasticity. 

In the frequency domain, the complex bulk modulus K1*(ω) and the complex shear 

modulus G1*(ω) of phase 1 can directly replace K1 and G1, respectively. Since phase 2 is 

an elastic material, the moduli of this phase (K2 and G2) are left unchanged, see 

Equations (4.41) and (4.42). 

   
 



− +
= +

+

* * *
* * 2 2 1 1 1
eff 1 *

2 1

( ( ))(3 ( ) 4 ( ))
( ) ( )

3 4 ( )

K K K G
K K

K G
 (4.41)  

    
 

   

− +
= +

+ + +

* * * *
* * 2 1 2 1 1 1
eff 1 * * * *

1 1 2 1 1 2

5 ( )( ( ))(3 ( ) 4 ( ))
( ) ( )

3 ( )(3 ( ) 2 ) 4 ( )(2 ( ) 3 )

G G G K G
G G

K G G G G G
 (4.42)  

where Keff* and Geff* are the complex bulk and shear moduli of the composite, 

respectively. 

The calculated values of Keff* and Geff* can be further represented in terms of 

dynamic moduli (the absolute values of complex moduli) and phase angle. It is noted 

here that in some research studies, dynamic moduli are taken as the corresponding 

elastic moduli to be used in the formulas of micromechanical models (Buttlar, 1996, 

Shashidhar and Shenoy, 2002, Kim and Little, 2004). However, this method can only 

obtain the effective dynamic moduli but not the phase angle of the composite.  

Using the introduced CBMM above, both the upscaling of mastic’s properties and 

the upscaling of a mix’s properties were implemented in this study. Since the volume 

fraction of the inclusions in mastic (the volume fraction of filler is 26.3%) is much lower 

than that in a mix (the volume fraction of coarse aggregates in PA mix-1 is 62%), the 

comparison of the upscaling results between these two materials can be used to 

evaluate the performance of CBMM at different inclusion concentrations. 

4.3 Upscaling of mastic’s properties  

Figure 4.7a and Figure 4.7b show the comparison of the predicted shear modulus |Gmas*| 

and phase angle δmas of mastic against the experimental results (labelled as “Mastic”), 

respectively. In general, it can be observed that the predicted |Gmas*|-f curve and δmas-f 

curve follow the same shapes as those from laboratory tests. To clearly look into the 

performance of each model, the values of |Gmas*|/|Gb| and δmas/δb were calculated, see 

Figure 4.7c and Figure 4.7d. 
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a. Dynamic shear modulus of mastic b. Phase angle of mastic 

  

c. Ratio of mastic’s modulus to binder’s 
modulus 

d. Ratio of mastic’s phase angle to 
binder’s phase angle 

Figure 4.7 Upscaling from asphalt binder to mastic using different CBMM 

It can be seen that the SC model performs better over other models, while the 

Dilute model provides the worst predictions. The poor performance of the Dilute model 

can be accounted for by the fact that its strain localization tensor is obtained directly 

from Eshelby’s solution in which the matrix phase is considered as infinite. Therefore, 

the Dilute model is only suitable for composites where the volume fractions of 

inclusions are low enough to neglect the interaction of the stress/strain fields disturbed 

by different inclusions (known as the “inter-particle interaction”). 

4.4 Upscaling of a mix’s properties 

This section shows the performance of CBMM in predicting the mechanical properties 

of PA mixes. The analyses of the sensitivity of the predictions’ accuracy to the (1) the 

scale of the matrix phase (i.e. asphalt binder, mastic, and mortar); (2) the use of 

different micromechanical models; (3) the utilization of the DS approach; and (4) the 

Poisson’s ratio of the matrix phase were presented as follows. 
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4.4.1 Sensitivity to the matrix phase 

Asphalt binder, mastic, and mortar can all be used as the matrix phase to predict the 

properties of a mix. In this study, the effect of the scale of the matrix phase on the 

accuracy of the predictions was investigated. This investigation can help understand 

the relations of a mix’s behaviour to the behaviour of its different scale constituents. 

Furthermore, based on the obtained results, the most suitable matrix can be selected to 

predict the properties of PA mixes. 

The Dilute model was used as an example for this analysis. The calculated results 

of |Emix*| and δmix of PA mix-1 were compared to the experimental results in Figure 4.8. 

It can be seen that both for |Emix*| and δmix, upscaling from a higher scale matrix provides 

more accurate predictions than that from a lower scale matrix. This can be explained 

by the following two facts: 

• In comparison to a lower scale matrix, more aggregate particles are included in a 

higher scale matrix. Therefore, the concentration of inclusions decreases, and thus 

the accuracy of the predictions improves. 

• When a higher scale matrix is used for upscaling, the inaccuracy in the prediction 

from the lower scale matrix to the higher scale matrix is avoided because the 

properties of the higher scale matrix are accurately measured from laboratory 

tests. 

  

a. Dynamic Young’s modulus b. Phase angle 

Figure 4.8 Predicted Young’s modulus of PA mix-1 from materials at different scales 

Since upscaling from mortar provides the most accurate predictions, it was chosen 

as the matrix phase for further analyses.  
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4.4.2 Sensitivity to different CBMM 

A comparison of |Emix*| and δmix between the predicted results and the experimental 

values (labelled as “Mix”) is shown in Figure 4.9. It is noted that for the GSC model, the 

solutions to the moduli of a three-phase mix are too cumbersome to be solved 

analytically (Benveniste, 2008). Therefore, In order to employ the classical two-phase 

GSC model for a three-phase mix, researchers (Pichler et al., 2012) typically divide the 

prediction procedure into two steps: 1) either the aggregate phase or the air void phase 

is added into the matrix phase; 2) the other phase is added into the composite obtained 

from the previous step. In this research study, both orders of phase additions were 

considered. In Figure 4.9, “GSC 1” represents the case where aggregates were added 

first while “GSC 2” represents the case in which air voids were added first. 

  

a. Dynamic Young’s modulus of PA mix-1 b. Phase angle of PA mix-1 

  

c. Dynamic Young’s modulus of PA mix-2 d. Phase angle of PA mix-2 

Figure 4.9 Upscaling from mortar to PA mix using different CBMM 

Among all the models, the SC model performs the worst since its predictions are 

almost independent of frequencies. This is quite different from the former case where 

this model provided the most accurate predictions for mastic. These different 

performances of the SC model can be explained by the fact that in the SC model, the 
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predictions are always controlled by the phase with the highest concentration. 

Therefore, for the mastic with a low concentration of filler particles, the predicted 

results are controlled by the frequency-dependent properties of asphalt binder, while 

for the mix with a high concentration of aggregate particles, the frequency-independent 

properties of aggregates control the predictions. 

Except for the SC model, all the other models still just provide matrix-like 

properties of a mix that the predicted |Emix*|-f and δmix-f curves follow the same shapes 

as those of the matrix phase. At high frequencies, the behaviour of the matrix phase is 

similar to that of the mix, and thus all the models perform well in terms of the shapes of 

the predictions. In terms of the magnitude of the predictions, the Dilute model results 

in the lowest values of |Emix*| while the GSC1 model produces the highest. However, it 

can also be observed that the predicted values from the GSC2 model are much lower 

than those from the GSC1 model. This indicates that when the two-phase GSC model is 

used for a three-phase composite, the predictions depend on the order of adding 

different phases.  

Further investigation of the figures shows that CBMM perform better in predicting 

the modulus of PA mix-1 than their performances for PA mix-2. For example, at higher 

frequencies, the predicted values of |Emix*| and δmix from the GSC1 model almost match 

the experimental results of PA mix-1, while for PA mix-2, the predictions show notable 

differences (lower values of |Emix*| and higher values of δmix) over the experimental 

values. From Chapter 2, it was known that more compaction effort was performed on 

PA mix-2 than that performed on PA mix-1. As a consequence, a denser aggregates pack 

formed in PA mix-2. Therefore, the better performance of CBMM for PA mix-1 over PA 

mix-2 indicates that CBMM is more suitable for mixes with less densely packing 

aggregate particles. 

It can also be observed that the performances of all the models at low frequencies 

are much worse than their performances at high frequencies. The experimental results 

of |Emix*| show an asymptotic behaviour while the predicted values show a continuous 

decrease. The measured values of δmix decrease after reaching a peak value, whereas 

the predictions keep increasing. Furthermore, except for the SC model, all the models 

significantly underestimate |Emix*| and overestimate δmix.  

Overall, comparing the performances of CBMM in predicting the properties of 

mastic to their performances for a mix, better performance for mastic against a mix is 

found. This can be associated with the fact that these models were primarily developed 

to account for the stiffening effect caused by the embedded inclusions in a mix with 

minimal particle interactions. In other words, these models tend to be applicable for 

dispersed suspensions, the behaviour of which is dominated by the matrix phase. Since 

mortar is expected to be a dispersed suspension while for PA mixes, particularly at 

lower frequencies, a dispersed suspension is not expected because of the packing 
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aggregates, the predicted results by these models are acceptable for mastic, but for 

mixes, they are inaccurate.  

In order to address the above issue, micromechanical modelling based upon the 

DS approach was further conducted. It is expected that this method can avoid the 

interactions between aggregate particles, and thus it can provide better predictions. In 

the following section, the applicability of this scheme will be judged in the context of PA 

mixes. 

4.4.3 Effect of the DS approach 

The predicted results of |Emix*| and δmix of PA mix-1 on the basis of the DS approach are 

shown in Figure 4.10a-e. In order to understand the difference between the DS 

approach and the Non-DS approach, the plots from the Non-DS approach (Figure 4.9) 

are plotted against predictions by the DS approach in the same figures. 

  

a. Dilute model 

  

b. MT model 
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c. GSC-1 model 

  

d. GSC-2 model 

  

e. SC model 

Figure 4.10 Effect of the DS approach on the performance of micromechanical models 

It can be observed that with the exception of the GSC 2 model, the performance of 

all the models improves significantly, especially at higher frequencies. However, it is 

also observed that the DS approach does not change the shape of the curve, but more 

or less has a scaling effect. At lower frequencies, even the DS approach fails to predict 
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|Emix*| and δmix accurately. The failure of the DS can be attributed to the fact that it does 

not change the fundamental theory of the micromechanical models. 

Furthermore, the performances of different CBMM after the introduction of the DS 

approach were compared, see Figure 4.11. It can be seen that with the utilization of the 

DS approach, the predictions from the Dilute model, the MT model, and the SC model 

are quite similar to each other. This can be explained by the fact that all these models 

are originally developed on the basis of the same fundamental theory, Eshelby’s 

solution. When the volume fractions of the inclusions are quite small, and thus the inter-

particle interactions can be ignored, the predicted properties of a composite using 

different micromechanical models all have the same limits as the values given by 

Eshelby’s solution.  

  

a. Dynamic modulus of PA mix-1 b. Phase angle of PA mix-1 

  

c. Dynamic modulus of PA mix-2 d. Phase angle of PA mix-2 

Figure 4.11 Comparison of the performance of CBMM using the DS approach 

Figure 4.11 also shows that the utilization of the DS approach does not affect the 

difference in the predictions resulting from the order of adding different inclusion 
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is added first are still significantly higher than those using the GSC-2 model where the 

air voids phase is the first phase to add. 

Apart from the introduction of the DS approach, further investigation was also 

conducted regarding the Poisson’s ratio of the mortar to examine if the accuracy of the 

predictions can be improved. 

4.4.4 Sensitivity of predicted modulus to mortar’s Poisson’s ratio 

The Poisson’s ratio of an asphalt matrix (asphalt binder, mastic, and mortar) used in the 

literature typically ranges from 0.35 to 0.5 (Underwood and Kim, 2014). Thus, three 

different values of the mortar’s Poisson’s ratio νmor, 0.3, 0.4, and 0.49999, were used in 

the sensitivity analysis. It is noted that the bulk modulus of mortar Kmor is calculated as 

infinity when νmor is equal to 0.5. Thus, to avoid dealing with an infinite value in the 

calculation, a value of νmor that approaches 0.5 was used. 

  

a. Dilute model 

  

b. MT model 
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c. GSC 1 model 

  

d. GSC 2 model 

  

e. SC model 
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f. Dilute model using the DS approach 

Figure 4.12 Sensitivity of predicted modulus to mortar’s Poisson’s ratio 

The predicted results of |Emix*| and δmix for PA mix-1 are shown in Figure 4.12. 

Except for the GSC 1 model, the change of νmor does not significantly affect the 

predictions. For the GSC 1 model, although the values of |Emix*| and δmix change 

substantially when the value of νmor increases from 0.4 to 0.5, the predictions still 

cannot match the experimental results. 

On the basis of all the above discussions, it can be concluded that regardless of the 

scale of the matrix phase, the utilization of the DS approach, or the change of the 

matrix’s Poisson’s ratio, CBMM are not capable of accurately predicting the mechanical 

properties of PA mixes, especially at lower frequencies. This observation may be 

different from the result obtained by other researchers (Underwood and Kim, 2013) 

that when mortar was used as the matrix phase, accurate predictions could be obtained 

from CBMM in a wide frequency range (even at high temperatures). In the author’s 

opinion, depending on the properties of the mortar, both observations can be valid. In 

this study, the mortar contained a high content of asphalt binder, and thus it showed 

liquid-like behaviour which was quite different from the behaviour of the mix. Since 

most CBMM can only shift the matrix modulus curves without changing their shapes, it 

is not expected that the predicted properties of the mix can agree with the experimental 

results. On the other hand, in the study of other researchers (Underwood and Kim, 

2013), since mortar behaved quite similar to the mix, it was not surprising that using 

mortar as the matrix phase, accurate predictions were obtained. 

Realizing the limitations of CBMM, it is important to further understand the 

reasons behind these limitations since it benefits the development of a new 

micromechanical model for accurately predicting the mechanical properties of PA 

mixes. Therefore, in the following section, explanations for the limitations of CBMM are 

discussed.  
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4.5 Explanations for the limitations of CBMM 

In order to explain the limitations of CBMM, it is necessary to understand the 

mechanisms behind the stiffening of an asphalt material due to the addition of 

inclusions (known as “stiffening mechanisms”). In this section, the stiffening 

mechanisms of asphalt materials are discussed, on the basis of which, the limitations of 

the models are explained. 

4.5.1 Stiffening mechanisms of asphalt materials 

There are three generally accepted stiffening mechanisms for asphalt materials (Buttlar 

et al., 1999): the volume-filling stiffening effect, the physiochemical stiffening effect, and 

the stiffening effect of the particle-to-particle direct contact. The physical explanations 

of these mechanisms are presented as follows.  

4.5.1.1 Volume-filling stiffening effect 

The volume-filling stiffening effect can be explained as the stiffening due to the 

disturbance of the stress/strain fields in the soft matrix caused by the addition of stiff 

inclusion particles (Underwood, 2011). When the particles’ concentration is very low, 

the disturbed area caused by each particle does not interact with each other, Figure 

4.13a; while as the concentration increases, the disturbed areas caused by different 

particles may overlap and interact with each other, which is called as the “inter-particle 

interaction” as mentioned in the previous sections, Figure 4.13b. 

  

a. Low concentration b. High concentration 

Figure 4.13 Disturbed areas caused by different inclusion particles 

According to the above definition, it is obvious that the volume-filling stiffening 

effect is dependent on the volume fraction of the particles. In addition, the geometrical 

properties of the particles (i.e. the size, the shape, the angularity, etc.) make a major 

contribution as well. 
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4.5.1.2 Physiochemical stiffening effect 

 

Figure 4.14 Illustration of the physiochemical stiffening effect 

The physiochemical stiffening effect is defined as the stiffening because of the 

physicochemical interactions (i.e. absorption, adsorption, etc.) at the interface between 

the matrix and inclusion particles (Buttlar et al., 1999). These interactions yield coating 

layers around the inclusion particles, which increase the composite’s stiffness (D.G., 

1962), Figure 4.14. 

The physiochemical stiffening effect is mainly affected by the geometrical and 

mineral characteristics of the inclusions. High surface area, rough surface texture, and 

high surface activity contribute to the increase of the composite’s stiffness (Rigden, 

1947, Anderson D. A., 1973, Little and Petersen, 2005, Faheem and Bahia, 2010, Craus 

et al., 1978). 

4.5.1.3 Stiffening effect of the particle-to-particle direct contacts 

The stiffening effect of the particle-to-particle direct contacts refers to the stiffening 

resulting from the contacts among different particles (Shashidhar and Shenoy, 2002, 

Buttlar et al., 1999). When the concentration of particles is low, the particles are 

randomly distributed within the matrix and do not contact each other, Figure 4.15a. 

Whereas, with the increase of the particles’ concentration, a group of particles start 

touching each other and gradually form a skeleton framework (Underwood, 2011, 

Shashidhar and Shenoy, 2002), see Figure 4.15b. Due to the formation of the skeleton 

framework, the stiffness of the composite becomes much higher than the bulk matrix. 

It is obvious that the stiffening effect of the particle-to-particle direct contacts 

depends on the particles’ concentration. Apart from that, it also depends on the loading 

condition, the temperature/frequency of the material, the geometrical properties of the 

particles, etc. 
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a. Low concentration b. High concentration 

Figure 4.15 Particles’ contacts at different concentrations 

Overall, three different mechanisms result in the stiffening of asphalt material. It 

is highlighted here that at a certain condition, it is possible that all of these mechanisms 

simultaneously play important roles in the stiffening of the material. It is also possible 

that the material’s overall behaviour is dominated by only one mechanism or two 

mechanisms, and the stiffening effects of the other(s) can be neglected. Therefore, in 

order to effectively predict an asphalt material’s properties, it is important to figure out 

the dominant stiffening mechanism(s) beforehand. 

4.5.2 Explanations for the poor performance of CBMM  

Based upon the stiffening mechanisms of an asphalt mixture, the poor performance of 

CBMM in predicting the stiffness of a PA mix can be explained as follows.  

• Concerning the upscaling from mortar to PA mixes, the physicochemical 

stiffening effect due to the addition of coarse aggregates can be neglected 

because it is generally considered that physicochemical interactions mainly 

occur between asphalt binder and filler particles. Therefore, the dominant 

stiffening mechanisms from mortar to mixes are the volume-filling stiffening 

effect and the stiffening effect of the particle-to-particle direct contacts. 

• CBMM can only take into account the volume-filling stiffening effect to a certain 

extent (Yin et al., 2008, Underwood, 2011). These models only consider few 

factors that impact the stress and strain distributions, i.e. the shape of the 

inclusions (either spheres or ellipsoids). Other factors, such as the particles’ 

locations or their relative configurations, the particles’ size, irregular shape, 

angularity, etc., are not taken into consideration in the predictions.  
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• There are no particle contacts considered in CBMM, and thus, they cannot 

capture the stiffening effect of the particle-to-particle direct contacts at all (Yin 

et al., 2008). 

4.6 Summary 

This chapter comprehensively evaluated the performance of commonly used CBMM for 

predicting the modulus of mastic and PA mixes. More attention was given to the 

upscaling of a mix’s properties where the sensitivities of the predictions’ accuracy to 

(1) the scale of the matrix phase, (2) the utilization of the DS approach, and (3) the value 

of the matrix’s Poisson’s ratio were analysed. In order to explain the inaccuracy of the 

predicted results, the stiffening mechanisms of an asphalt material due to the addition 

of aggregate particles were described. On the basis of that, possible explanations for the 

limitations of CBMM were further discussed. Based on all the discussions, the following 

general conclusions can be made: 

• CBMM performed better in predicting the modulus of a composite with a low 

concentration of inclusions (i.e. mastic) than their performances for a highly 

concentrated composite (i.e. mixes). This can be associated with the fact that 

these models were primarily developed to account for the stiffening effect 

caused by the embedded inclusions in a mix with minimal particle interactions.  

• Upscaling from a higher scale matrix phase (i.e. mortar) provided more 

accurate predictions of a PA mix’s properties than upscaling from a lower scale 

matrix phase (i.e. asphalt binder and mastic). This is because upscaling from a 

higher scale matrix phase means the addition of a lower volume fraction of 

inclusions, and it avoids the inaccuracy resulting from the prediction of the 

properties of the higher scale matrix phase.  

• At higher frequencies, the predicted dynamic modulus and phase angle of a PA 

mix using different CBMM all followed the same shapes as those measured 

from laboratory tests. The predictions using the GSC model when the aggregate 

phase was added before the addition of the air voids phase were in the best 

agreement with the experimental values. Furthermore, at higher frequencies, 

better performances of CBMM were found in predicting the modulus of a mix 

with less densely packing aggregate particles (i.e. PA mix-1).  

• The performance of CBMM at lower frequencies was much worse than that at 

high frequencies. None of the applied micromechanical models could 

adequately predict the mechanical properties of PA mixes. The shapes of the 

predicted dynamic modulus and phase angle were not consistent with 

experimental results, and moreover, in general, all the models significantly 
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underestimate the values of dynamic modulus and overestimate the values of 

phase angle. 

• After the introduction of the DS approach, the accuracy of the predictions 

improved at higher frequencies, whereas at lower frequencies, it did not. This 

can be attributed to the fact that this scheme does not change the fundamental 

theory of the micromechanical models. Also, the accuracy of the predictions did 

not show a considerable increase by adjusting the Poisson’s ratio of the matrix 

phase.  

• The poor performance of CBMM in predicting the mechanical properties of a 

PA mix can be related to the facts that (1) CBMM cannot explicitly account for 

the volume-filling stiffening effect, and (2) they cannot capture the stiffening 

effect of the particle-to-particle direct contacts at all. 
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5.1 Introduction 

The previous chapter showed that CBMM failed to produce accurate predictions, 

especially for densely compacted PA mixes or at lower test frequencies. The inaccuracy 

of the predictions is attributed to the fact that CBMM cannot explicitly account for the 

volume-filling stiffening effect and stiffening effect of the particle-to-particle direct 

contacts. In order to address these limitations, researchers (Li et al., 1999, Shashidhar 

and Shenoy, 2002) have tried to make modifications on the basis of the currently used 

CBMM. 

For example, Li et al. (Li et al., 1999) have developed a modified version of the GSC 

model (termed as “Li’s model”) to take the effect of the aggregates’ size into account. 

Unlike the GSC model, where the ratio of the inclusion’s radius to that of the matrix is 

only related to the volume fraction of the inclusion particles, in Li’s model, this ratio is 

also dependent on the size and the gradation of the particles. Using Li’s model, 

researchers (Shu and Huang, 2008) observed that the predicted modulus increased by 

around 20% when the maximum aggregate size increased from 4.75 mm to 19 mm. 

However, this limited increase of modulus was not enough to account for the significant 

difference between the predictions and the experimental results at lower frequencies. 

 

Figure 5.1 Illustration of the percolated and non-percolated matrix 

Furthermore, in order to consider the stiffening effect of the particle-to-particle 

direct contacts, researchers (Shashidhar and Shenoy, 2002) introduced the percolation 

theory into the GSC model. Percolation theory considers the non-percolated matrix 

within the clusters of connected particles, see Figure 5.1. Using this theory, a modified 

GSC model (termed as “the percolation-introduced GSC model”) where the non-

percolated matrix was assumed as part of the inclusion phase was constructed. It was 

observed that the percolation-introduced GSC model could provide more accurate 

predictions than the GSC model. However, the accuracy could only improve up to a 

Non-percolated 
matrix 

Percolated 
matrix 



Discrete particles-based micromechanical models Chapter 5 

 

Page | 67 

concentration of around 40%, beyond which it significantly decreased (Underwood and 

Kim, 2014). 

Further failure of modified CBMM indicates that all the CBMM have an intrinsic 

drawback, and because of that, it is impossible for these models, even if they are 

modified, to explicitly account for the volume-filling stiffening effect and the stiffening 

effect of the particle-to-particle direct contacts. In fact, researchers (Marcadon et al., 

2007) have pointed out that one of the main reasons for the failure of CBMM is that in 

such models, the set of all the individual particles is simply represented as one inclusion 

phase. In this case, it is impossible to consider any characteristics of individual particles, 

not to mention their interactions and direct contacts.   

 

Figure 5.2 Illustration of the physical interaction model 

In light of the above discussions, it can be deduced that in order to improve the 

accuracy of the predictions, one potential solution is to use models that are capable of 

taking into account the characteristics of individual particles. Micromechanical models 

where specific characteristics of individual particles in an asphalt composite can be 

defined have been developed by researchers. For example, in the physical interaction 

model (Underwood, 2011), different sizes of individual particles are embedded into a 

continuous matrix, see Figure 5.2. On the basis of the distribution of the particles and 

their different sizes, the stiffness of the composite can be estimated by quantifying the 

stiffening effects of individual particles and their interactions. 

Although the physical interaction model provides a way to consider the 

characteristics of individual particles, it is only suitable for composites without or with 

few air voids, such as mastic and dense asphalt mixtures. This is because the matrix in 

the model is considered to be continuous. However, in PA mixes, since there is a high 

content of air voids, the matrix phase is expected to be discontinuously located between 

adjacent particles. Therefore, in order to reasonably describe the microstructure of PA 

mixes, a different micromechanical model is required. 
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Apart from the physical interaction model, DBMM can also take into account the 

characteristics of individual particles (Dvorkin et al., 1994, Zhu and Nodes, 2000, Chang 

and Liao, 1994). In DBMM, a bonded granular material, such as concrete, asphalt 

mixture, etc., is described as an assembly of packing individual particles that are bonded 

by elastic/viscoelastic binders (Dvorkin et al., 1994, Zhu et al., 1996, Chang et al., 1999), 

see Figure 5.3. Based upon such geometric configuration, different researchers have 

derived equations for calculating the mechanical properties of bonded granular 

materials. In this study, the equations derived by Dvorkin et al (Dvorkin et al., 1994) 

were adopted, and thus, DBMM for bonded granular materials is referred to as 

Dvorkin’s model in the following sections. 

 

Figure 5.3 Illustration of DBMM for bonded granular materials 

Comparing the illustrated geometries in Figure 5.2 and Figure 5.3, it can be clearly 

seen that the arrangement described by Dvorkin’s model is naturally a more reasonable 

and realistic microstructure for PA type mixes. Moreover, Dvorkin’s model includes 

several geometric parameters to describe the characteristics of individual particles, 

such as the radius of the particles, the average number of contacts per particle, the 

radius and the thickness of the binders (which determines the distance between 

adjacent particles). With these various geometric parameters, it is expected that the 

inter-particle interactions can be characterized by Dvorkin’s model in a more explicit 

way.   

The application of Dvorkin’s model on granular materials such as glass beads 

packs, frozen sand, etc. has been investigated (Chang and Liao, 1994, Dvorkin et al., 

1994, Chang and Gao, 1997, Zhu and Nodes, 2000); however, limited research work has 

been conducted to use this model for asphalt materials. Relevant studies can be found 

in the work of Cheung et al. (Cheung et al., 1999), Zhu and Nodes (Zhu and Nodes, 2000), 

etc., where Dvorkin’s model was used to simulate the creep characteristics of asphalt 
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mixtures. However, these studies did not provide a rigorous way to implement the 

model for asphalt materials, especially in terms of the determination of the geometric 

parameters. Therefore, more efforts are required to investigate the implementation and 

the evaluation of Dvorkin’s model for asphalt materials. 

Based upon the above discussions, the main aim of this chapter is to investigate 

the implementation and the performance of Dvorkin’s model in predicting the modulus 

of PA mixes. To achieve this, a framework that describes how to use Dvorkin’s model 

for predicting the stiffness of PA mixes is firstly proposed. On the basis of that, the 

performance of Dvorkin’s model is evaluated and in the end, both the advantages and 

the limitations of the model are highlighted.  

5.2 Introduction of Dvorkin’s model 

In DBMM, the overall effective moduli of a granular material are derived by 

homogenizing the stiffness of an assembly of two-particle systems that orient in 

different directions. This section firstly describes the contact law of a two-bonded 

particle system (i.e. the relationship between the applied force and the corresponding 

displacement), on the basis of which, a homogenization technique is introduced to 

obtain the effective (homogenized) moduli of a bonded granular material. 

5.2.1 Contact law of a two-bonded particles system  

A two-bonded particle system consisting of two equal-sized spheres and the binder 

material (which was considered as mortar in this study) between the particles is 

illustrated in Figure 5.4a. The spherical particles are assumed to have an arbitrary 

radius R, with the mortar’s radius of a and a minimum height of 2h0. It is noted here that 

generally, particles in a granular material have different sizes and irregular shapes. 

Since it is a big challenge to derive closed-form solutions for the contact law of adjacent 

particles with irregular shapes and different sizes, most studies have simplified all the 

particles as identical spheres (Dvorkin et al., 1994, Chang and Liao, 1994). 

The stiffness of a two-bonded particles system, denoted as S, can be generally 

defined as: 

    =  =,n n nF S F S  (5.1)  

where F is the applied force on the system; δ is the displacement of the centre of one 

particle relative to the median plane (the x-axis); and the subscripts n and τ denote the 

normal and the tangential direction, respectively. 
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a. Two bonded particles b. Stress distribution at the interface 

Figure 5.4 A two-bonded particle system 

The value of δ is related to the displacement of the mortar’s surface (represented 

as V and U in the normal direction and the tangential direction, respectively) as well as 

the displacement of the sphere’s surface (represented as v and u in the normal direction 

and the tangential direction, respectively), see Equations (5.2) and (5.3). 

 = −( ) ( )n v x V x  (5.2)  

 = −( ) ( )u x U x  (5.3)  

In order to calculate the displacement of the mortar, researchers (Dvorkin et al., 

1994) proposed a solution for a similar problem assuming the thin mortar as an elastic 

base. In this solution, V(x) and U(x) were related to the stress along the interface σ via 

Equations (5.4) and (5.5), respectively. Furthermore, for a case where a is much smaller 

than R, v(x) and u(x) can be approximated by the surface’s displacement of an elastic 

half-space, see Equations (5.6) and (5.7), respectively. 
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( )
 

   


= − 
2

a0 0
a

1
( ) (1 sin )

2
u x d r ds

G
 (5.7)  

where 

  = + −2 2 2cos sinx a x   

= + −2 2 2 cosr x s xs   

νmor and Gmor are the Poisson’s ratio and the shear modulus of the mortar, respectively; 

νa and Ga are the Poisson’s ratio and the shear modulus of the particles, respectively; 

h(x) is the half-thickness of the mortar, which can be approximated as  

= +
2

0( )
2

x
h x h

R
 (5.8)  

By combining Equations (5.2), (5.4) and (5.6), or Equations (5.3), (5.5) and (5.7), 

the displacement of the mortar’s surface can be obtained by giving a non-zero constant 

value of δ, see Equations (5.9) and (5.10). These two equations are known as the 

Volterra integral equations of the second kind. Since this type of integral equation is too 

complicated to be solved analytically, a numerical technique was used, see Appendix A.  
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 
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Once the displacement of the mortar’s surface is known, the value of σ can be 

calculated using Equations (5.4) and (5.5). The value of F is determined by integrating 

σ on the whole area of the interface, see Equations (5.11) and (5.12). Dividing the value 

of F by the given constant value of δ, the values of Sn and Sτ are finally obtained. 

 =  0
( ) 2

a

n nF x x dx  (5.11)  

  =  0
( ) 2

a

F x x dx  (5.12)  
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It is noted that the above solutions were developed for particles bonded by elastic 

binders. The utilization of these solutions for asphalt mixtures can be achieved 

according to the elastic-viscoelastic corresponding principle, which is the same as the 

method used for CBMM (see Chapter 4 Section 4.2.4).  

5.2.2 Homogenization technique 

In order to upscale the mechanical properties of a two-bonded particle system to the 

effective moduli of a granular material, a homogenization technique is needed. As the 

first step, an assembly of bonded particles, as illustrated in Figure 5.5, is considered as 

a representative volume element (RVE) of a bonded granular material.  

 

Figure 5.5 A pack of bonded spherical particles with uniform sizes 

Two adjacent spheres r and s have the position vectors of X(r) and X(s) in the global 

coordinate system, respectively. Under a deformation u subjected to the boundary of 

the system, the centres of r and s also undergo displacements, represented as u(r) and 

u(s), respectively. By using the kinematic hypothesis that the strains throughout the 

pack are uniform, the values of u(r) and u(s) can be calculated via Equation (5.13). 

 =  =( ) ( ) ( ) ( ): , :r r s s
i ij j i ij ju X u X  (5.13)  

where <εij> is the average strain applied to the pack. 

By symmetry, it can be obtained that the centre of the median plane between the 

sth and the rth particles undergoes a displacement of (u(r)+u(s))/2. Thus, relative to the 

median plane’s centre point, the displacement of the rth sphere centre is (u(r)-u(s))/2. 

This relative displacement can be separated into a normal component δn (Equation 

(5.14)) and a shear component δτ (Equation (5.15)). The total force F on the sth sphere 
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due to its connection with the rth sphere is given as the sum of the force in the normal 

direction and that in the tangential direction, see Equation (5.16). By substituting 

Equation (5.13) into Equation (5.16), the value of F can be further given as Equation 

(5.17). 

( )
 

= = −  
 

( ) ( ) ( ) ( ) ( )1

2
sr r s sr sr

n nδ I u u I I  (5.14)  

( ) = − −( ) ( )1

2
r s

nδ u u δ  (5.15)  

( ) ( ) ( ) 

   
= − −  + −   

   

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

2 2
sr r s sr sr r s

nS S SF u u I I u u  (5.16)  

( ) ( ) ( )( ) ( )( )  = − − + + − +( ) ( ) ( ) ( )
0 0

sr sr sr sr sr
i n k l i jkl ij

F S S R h I I I S R h I  (5.17)  

where I is the unit vector along the line of centres of two particles: 

( )
−

=
+

( ) ( )
( )

02

s r
sr

R h

X X
I  (5.18)  

The average stress filed <σ> of the granular material with a total volume V is 

related to the stresses within individual particles by using the following equation: 

 = 
( )1

s
a

s
ijij V

N

dV
V

 (5.19)  

where σij(s) is the stress within the sth particle; Vs represents the volume of the sphere; 

Na is the number of all the aggregate particles within V.  

By using the divergence theorem, the value of σij(s) can be calculated from the 

traction on the surface of the particle: 

( )  = + 
( ) ' ( ) ' ( )1

2s s

s s s
ij i j j iV S

dV x x dS  (5.20)  

where Ss is the surface of the sth particle; x’ denotes the position vector of a point on Ss 

relative to the center of the particle; τ(s) denotes the traction across Ss. From Figure 5.5, 

it can be seen that the value of τ(s) is non-zero only at the position where the particle 

connects with other particles. Therefore, Equation (5.20) can be further written as 

( ) = +
( ) ' ( ) ' ( )1

2s

s sr sr
ij i j j iV

n

dV x F x F  (5.21)  

where n is the average number of the particles that connect to one particle.  
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When the connection area between the sth and the rth particle is small, the value of 

x’ can be approximated by the position vector of the centre of the connection area 

relative to the centre of the sth particle: 

( ) ( )
 

= − + − 
 


( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 2 2s

s r s sr r s sr
ij i i j j j iV

n

dV X X F X X F  (5.22)  

By substituting Equation (5.22) into Equation (5.19), the value of <σ> can be 

written as 

( ) ( )
 

= − + − 
 


a

( ) ( ) ( ) ( ) ( ) ( )1 1 1

2 2 2
r s sr r s sr

i i j j j iij
N n

X X F X X F
V

 (5.23)  

This value can be further expressed as Equation (5.24) by substituting Equation (5.17) 

and Equation (5.18) into Equation (5.23). 
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k i k jjk ik

S S I I I IR h

V S I I I I
 (5.24)  

Assuming that the geometry of the pack is statistically isotropic and the 

distribution probability of the contact points over the surface of a sphere is uniform, the 

summation in Equation (5.24) can be represented in terms of averages: 

( )
( )     

+
 = − + +
 

2

0 a 2
2

n k l i j k i k jij kl jk ik

R h nN
S S I I I I S I I S I I

V
 (5.25)  

where the brackets <·> denote the average over all uniformly distributed unit vector I.  

In Equation (5.25), the total volume of the system V can be given as 


= a

a

V
V  (5.26)  

where Va and ϕa denote the volume and the volume fraction of the aggregate particles 

in the RVE, respectively. When all the particles are spheres with uniform sizes, the value 

of Va is given as 

= 3
a a

4

3
V R N  (5.27)  

Combining Equations (5.26)-(5.27), the value of Na/V can be expressed as 




=a a

3

3

4

N

V R
 (5.28)  

Therefore, Equation (5.25) can be further written as 
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( )
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n R h
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R
 (5.29)  

According to the definition of the stiffness tensor: 

 = :ijklij kl
C  (5.30)  

the general expression for the effective stiffness tensor of a granular material can be 

written as: 

( )
( ) ( ) 

  



   

 − + ++
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2

a 0

eff 3

43

16

n i j k l k i jl

ijkl

k j il l i jk l j ik

S S I I I I S I In R h
C

R S I I S I I S I I
 (5.31)  

In Equation (5.31), the stiffness tensor of a granular material on the macroscale is 

related to the properties of a two-particle system on the microscale. Therefore, once the 

properties of a two-particle system are known, the effective moduli of the granular 

material can be obtained. 

5.2.3 Effective moduli of a bonded granular material  

Since it is generally considered a bonded granular material as an isotropic material, the 

expression for the effective stiffness tensor Ceff in Equation (5.31) can be rewritten as:  

( )
( ) ( )

( )






    

 − ++
 =
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2

a 0

eff 3

43

16

n i j k l

ijkl

k i jl k j il l i jk l j ik

S S I I I In R h
C

R S I I I I I I I I
 (5.32)  

where Sn and Sτ are taken out from the average brackets over different directions. 

According to the relationships in Equation (5.33) and the definition of the stiffness 

tensor for an isotropic material in Equation (5.34), the bulk modulus K and the shear 

modulus G of a bonded granular material can be calculated using Equation (5.35). 

( )      = = + +
1 1

,
3 15

i j ij i j k l ij kl ik jl ik jkI I I I I I  (5.33)  

( ) ( )     
 
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5.3 A proposed framework to predict the stiffness of PA mixes  

The proposed framework for predicting the stiffness of PA mixes contained three main 

steps, see Figure 5.6. A microstructure for PA mixes was assumed to consist of randomly 

packing spherical particles, mortar, and air voids. The total volume of mortar was 

categorized into two functional groups. Some mortar that locates between adjacent 

particles plays a major role in binding particles together, and thus they were defined as 

the “binding mortar”. Whereas the remaining parts only play a role in coating individual 

particles, and thus they were defined as the “coating mortar”.   

 

Figure 5.6 Flowchart of the proposed framework 

To predict the stiffness of PA mixes, the mechanical, volumetric, and geometric 

properties of each phase are required. Generally, the mechanical and the volumetric 

properties can be directly measured from laboratory tests. Additionally, five geometric 

parameters need to be determined: 1) the radius of the spherical particles, 2) the 

thickness of the coating mortar, 3) the minimum thickness of the binding mortar, 4) the 

average coordination number, and 5) the radius of the binding mortar. These geometric 
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properties may also be measured using sophisticated technologies such as digital image 

processing. However, this method is difficult to be implemented since the values of all 

these geometric parameters vary with different locations. Thus, in this study, a different 

method that can be used to determine the geometric parameters of the proposed 

microstructure in a much easier but reasonable way was proposed. 

In the proposed microstructure, the properties of both the binding mortar and the 

coating mortar affect the stiffness of a PA mix. However, Dvorkin’s model can only 

predict the stiffness of a skeleton framework consisting of particles, air voids and the 

binding mortar. Therefore, in the last step, a procedure was developed to take into 

account the effect of the coating mortar. 

5.3.1 Proposed microstructure model for PA mixes  

A microstructure model for PA mixes, as illustrated in Figure 5.7, was proposed 

according to the literature (Chang and Meegoda, 1997). Individual particles (modelled 

as identical spheres with a uniform radius of R) are initially covered by mortar with a 

uniform thickness of t. When the mortar-covered aggregate particles pack together, the 

minimum distance between adjacent particles, represented as 2h0, has an initial value 

of 2t, see Figure 5.7a. It was assumed that during the compaction process, the value of 

h0 decreases, and depending on the amount of the compaction work, the value of h0 

ranges from t (without any compaction effort) to 0 (two particles contact each other), 

see Figure 5.7b. 

  

a. Before compaction b. After compaction 

Figure 5.7 Proposed microstructure model for PA mixes 

The volume of the binding mortar between two adjacent particles is illustrated in 

Figure 5.8a. The binding mortar, with a radius of a, was assumed to be composed of two 

R 

R+t 

2t 2h0 



Discrete particles-based micromechanical models Chapter 5 

 

Page | 78  

parts, see Figure 5.8b. When two particles are compacted closer, their coating mortar 

overlaps each other to form one part of the binding mortar with a radius of a1. Due to 

the overlap of the coating mortar, some mortar is squeezed out and forms the other part 

of the binding mortar with a radius of a2. 

  

a. A pair of adjacent particles 
b. Two components of the binding 

mortar 

Figure 5.8 Illustration of binding mortar 

5.3.2 Method to determine geometric parameters 

In the proposed microstructure in Figure 5.7b, five geometric parameters, i.e. R, t, h0, n 

and a, are required to predict the effective modulus of the mix. In this section, the 

proposed methods to determine these parameters are presented. Once the geometric 

parameters are known, the volume fractions of the binding mortar ϕb_b and the coating 

mortar ϕb_c can be further determined. The proposed method to determine ϕb_b and ϕb_c 

is introduced in this section as well. 

5.3.2.1 Calculation of R 

In Dvorkin’s model, aggregate particles are modelled as identical spheres. However, in 

an asphalt mix, the size of the aggregate particles is generally not uniform but graded. 

Therefore, in order to specify the value of R, it is necessary to obtain a representative 

size of the aggregate particles in the mix. For this purpose, a commonly used 

mathematical method of averaging different sizes of graded aggregate particles was 

utilized (Li et al., 1999), see Equation (5.36): 
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where Pi+1 and Pi are the percentages passing the sieve i+1 and sieve i by the total weight 

of aggregates, respectively; ρi is the density of aggregates retained on sieve i; ϕi is the 

volume fraction of aggregate particles retained on sieve i; N is the total grades of 

aggregates by sieving, i.e., 0.063mm, 2mm, 5.6mm, etc.; and di+1 and di are the diameters 

of sieve i+1 and sieve i, respectively. 

5.3.2.2 Calculation of t 

The value of t can be determined according to the binder content β in the mix, which is 

defined as 




 
= =

+ +

mor mor

mor a a mor

V

V V
 (5.38)  

where Vmor and ϕmor denote the total volume and the volume fraction of the mortar, 

respectively. 

Assuming that individual particles are surrounded by mortar with identical 

thicknesses, the value of Vmor can be calculated using Equation (5.39).  

( )  =  + −
 

33
mor a

4
1 1

3
V N R  (5.39)  

where τ=t/R. By substituting Equations (5.27) and (5.39) into Equation (5.38), the 

value of β can be written as 

( )



= −

+
3

1
1

1
 (5.40)  

Since the value of β is known from the values of ϕmor and ϕa, the value of t can be 

computed from Equation (5.40). 

5.3.2.3 Calculation of h0 

As mentioned earlier, the value of h0 is related to the compaction effort. Since the 

compaction effort can be reflected by the air voids content, the value of h0 can be 

determined according to the air voids content of the mix. 

Figure 5.9 shows the relationship between the air voids content of the mix ϕv_c and 

the number of compaction cycles N during the compaction process. The value of ϕv_c is 

calculated according to the height of the specimens H, Equations (5.41)-(5.43).  
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Figure 5.9 Relationship between air voids content and number of compaction cycles 


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max

W
V  (5.43)  

where Vtotal denotes the total volume of the specimen; Vmass and Wmass denote the volume 

and the weight of the real mass of the specimen; and ρmax is the maximum density of the 

mix, which can be obtained from the density of each constituent.  

 
Figure 5.10 Relationship between h0/t and air voids content 
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increase of the compaction effort, the value of h0 decreases, and thus the value of ϕv_c 

decreases as well. After conducting a certain amount of compaction effort, h0 is expected 

to be gradually close to 0, and meanwhile, ϕv_c gradually stabilizes at a value of 0.13.  

Using the values of h0 and ϕv_c in the above two extreme cases, the relationship 

between h0/t and ϕv_c was assumed to be expressed as a simple linear function, see 

Figure 5.10. From this relationship, once the air voids content of the PA mix specimen 

is known, the value of h0/t can be obtained. 

5.3.2.4 Calculation of n 

For a PA mix system in Figure 5.7b where spherical particles are covered by mortar, it 

is difficult to directly determine its average coordination number n. However, for a 

“dry” packing system consisting of only identical spheres, researchers (Chang et al., 

1999) have proposed that the coordination number nd can be estimated on the basis of 

the air voids content of the system ϕd, see Figure 5.11. The relationship between nd and 

ϕd can be developed by plotting their values in different regular packings, i.e. a simple 

cubic packing (nd=6, ϕd=0.4764), a tetragonal sphenoidal packing (nd=8, ϕd=0.3954), a 

pyramidal packing (nd=10, ϕd=0.3019) and a tetrahedral packing (nd=12, ϕd=0.2595). 

As shown in Figure 5.11, the value of nd shows an almost linear increase with the 

decrease of ϕd. Therefore, a regressed linear equation, see Equation (5.44), can be given 

to describe the relationship between nd and ϕd. 

 
Figure 5.11 Relationship between the coordination number and the air voids content in a 

packing system of identical spheres 
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In order to determine the value of n, a reference packing system is introduced, see 

Figure 5.12. In the reference system, individual particles have the same configurations 

as those in the PA mix in Figure 5.7b. This indicates that the coordination number in the 

reference system remains the same as n. However, particles in the reference system are 

covered by mortar with a thickness of h0 instead of a thickness of t. Due to the change 

of the mortar’s thickness, the air voids content in the reference system changes to a 

value of ϕ0. 

Since the minimum distance between adjacent particles in the PA mix system is 

2h0, particles covered with mortar with a thickness of h0 in the reference system are 

supposed to just touch each other. Therefore, the arrangement of the mortar-coated 

particles in the reference system can be considered the same as a dry packing system 

consisting of spheres with a uniform radius of (R+h0). Accordingly, the relationship 

between n and ϕ0 can be described using the relationship in Equation (5.44). 

 

Figure 5.12 A reference packing system 

Total volumes of the particles and the mortar Va’ in the reference system can be 

calculated using Equation (5.45), and thus the total volume of the reference system can 

be given as Va’/(1- ϕ0). It is further assumed that more mortar materials are located 

around the particles in Figure 5.12 to form the PA mix system in Figure 5.7b. Since the 

total volume of the system cannot change, the relationship in Equation (5.46) must 

satisfy. 
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where ϕv is the air voids content of the PA mix.  

By substituting Equations (5.27), (5.39), and (5.45) into Equation (5.46), the value 

of ϕv can be expressed as 
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 (5.47)  

where γ=h0/R. By combining Equations (5.44) and (5.47), the value of n can be 

determined for a given value of ϕv. 

5.3.2.5 Calculation of a 

It was mentioned in Figure 5.8 that the binding mortar is composed of two parts. One 

part (with a radius of a1) is formed because two mortar-coated particles overlap each 

other, and the other part (with a radius of a2) comes from the mortar that is squeezed 

out, see Figure 5.13a. On the basis of this assumption, a relationship that the volume of 

the cylinder V1 (bounded by the red line in Figure 5.13b) is identical to that of the 

spherical cap V2 (bounded by the green line) can be obtained: 

( )


   =   + − 
2 2

1 2 23
3

H a H R t H  (5.48)  

where H1 and H2 are the heights of the cylinder and the spherical cap, respectively, and 

their values can be computed using Equations (5.49) and (5.50), respectively.  

( ) ( )= + − + −
2 2

1 0H R h R t a  (5.49)  

( ) ( )= + − + −
2 2

2H R t R t a  (5.50)  

By substituting Equations (5.49) and (5.50) into Equation (5.48), the following 

relationship can be obtained: 
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 (5.51)  

where γ=h0/R, and α=a/R. With the calculated values of t and h0 from the previous steps, 

the value of a can be determined from Equation (5.51). 
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a. squeezed out mortar b. Relationship between V1 and V2 

Figure 5.13 Illustration for the calculation of a 

5.3.2.6 Calculation of ϕb_b and ϕb_c 

As illustrated in Figure 5.14, the volume of half of the binding mortar between two 

adjacent particles vm_b can be calculated by subtracting the volume of a spherical cap 

from the volume of a cylinder, see Equation (5.52). The total volume of the binding 

mortar in a PA mix Vm_b is equal to the value of vm_b multiplied by the average 

coordination number n and the total number of the particles Na, see Equation (5.53). 

Once the value of Vm_b is known, the value of ϕm_b and ϕm_c can be easily obtained on the 

basis of the total volume and the volume fraction of the mortar, see Equations (5.54) 

and (5.55). 

 

Figure 5.14 Illustration of the volume of the binding mortar 
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 (5.54)  

 = −m_c m_b1  (5.55)  

where Vmor can be obtained from Equation (5.39). 

5.3.3 Method to calculate the stiffness of PA mixes 

According to the literature (Dvorkin et al., 1999), contributions to the stiffness of a mix 

made by the binding mortar and the coating mortar are different. The binding mortar 

plays a major role in providing the stiffness of the mix because they enable the discrete 

particles to work together as a skeleton framework. By contrast, the coating mortar 

contributes to the stiffness of the mix by filling the air voids in the skeleton framework. 

 

a. Skeleton framework equivalent as a two-phase composite 

 

b. PA mix equivalent as a three-phase composite 

Figure 5.15 Procedures to calculate the stiffness of PA mixes 

In light of the above realization, the following procedure was proposed to 

calculate the stiffness of PA mixes. At first, the stiffness of the skeleton framework 

consisting of aggregate particles and the binding mortar is predicted using Dvorkin’s 

model, see Figure 5.15a. This skeleton framework is further assumed to be equivalent 

to a two-phase composite that consists of air voids embedded into a continuous matrix. 
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The stiffness of the two-phase composite is the same as the skeleton framework. The 

volume fraction of the air voids in the two-phase composite is equal to the sum of the 

volume fractions of the air voids and the coating mortar in the PA mix. Based on the 

stiffness of the composite and the volume fraction of each phase, the matrix’s stiffness 

can be back-calculated. 

At last, the covering mortar materials are added into the skeleton framework to 

form the PA mix. This is equivalent to the process that the same volume of mortar is 

embedded into the matrix of the two-phase composite. As a result, a three-phase 

composite consisting of the matrix, the coating mortar and air voids, is formed, see 

Figure 5.15b. The volume fractions of the coating mortar and the air voids in this three-

phase composite are the same as those in the PA mix. Based on the stiffness and the 

volume fraction of each phase, the stiffness of the three-phase composite can be 

calculated. Therefore, the stiffness of the PA mix, which is equal to the stiffness of the 

three-phase composite, is obtained as well.  

Since the matrix in the two-phase composite and the three-phase composite is 

continuous, the back-calculation of the matrix’s stiffness and the calculation of the 

stiffness of the three-phase composite can be achieved using CBMM.  In this study, the 

SC model was preferred over others due to the facts that: (a) it can provide more 

accurate predictions when the volume fraction of inclusions is lower than 50%, as 

demonstrated in Chapter 4 Section 4.3; and (b) it can be easily solved to back-calculate 

the stiffness of the matrix. 

Implementing the above proposed framework for the materials of this study, the 

values of the geometric parameters in the PA mix microstructure model were quantified 

and the stiffnesses of PA mix-1 and PA mix-2 were estimated. In the following section, 

the obtained results are presented.  

5.4 Results and discussions 

5.4.1 Results of calculated geometric parameters 

Using the proposed method in Section 5.3.2, the geometric parameters of the proposed 

microstructure of PA mixes were determined on the basis of the properties of each 

phase given in Chapter 2. 

Since PA mix-1 and PA mix-2 contain the same aggregate gradations and the same 

asphalt binder contents, the values of R and t are identical for both mixes. The value of 

R was calculated as 4 mm using Equations (5.36) and (5.37). The value of β was 

calculated as 0.24 from the values of ϕb and ϕa using Equation (5.38). Once the value of 

β was known, the value of τ in Equation (5.40) was computed as 0.097, and thus the 

value of t was equal to 0.39 mm. 
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As can be seen in Figure 5.10, when the air voids contents are 18% and 13%, the 

values of h0/t are approximately equal to 0.58 and 0, respectively. Therefore, the values 

of h0 were estimated as 0.22 mm and 0 mm for PA mix-1 and PA mix-2, respectively. 

Using the values of ϕv, R, t and h0, the values of ϕ0 were calculated as 0.268 and 0.340 

from Equation (5.47) for PA mix-1 and PA mix-2, respectively. The values of n were 

further calculated as 11.5 and 9.5 for PA mix-1 and PA mix-2, respectively. On the basis 

of the obtained values of R, t and h0, the values of a were computed as 1.67 mm and 2.53 

mm using Equation (5.51) for PA mix-1 and PA mix-2, respectively. Furthermore, using 

the values of ϕmor, R, t, h0, n and a, the values of ϕm_b were computed from Equations 

(5.52)-(5.54) as 9.4% and 20.3% for PA mix-1 and PA mix-2, respectively. The values of 

ϕm_c were further obtained using Equation (5.55) as 10.6% and 0.7% for PA mix-1 and 

PA mix-2, respectively. The calculated results of all the parameters are summarized in 

Table 5.1. 

Table 5.1 Values of volumetric and geometric parameters 

Parameters ϕmor ϕa ϕv R t h0 n a ϕm_b ϕm_c 

PA mix-1 20% 62% 18% 
4 

mm 

0.39 

mm 

0.22 

mm 
11.5 

1.67 

mm 
9.4% 10.6% 

PA mix-2 21% 66% 13% 
4 

mm 

0.39 

mm 
0 mm 9.5 

2.53 

mm 
20.3% 0.7% 

 

Comparing the values of the geometric parameters between PA mix-1 and PA mix-

2, it can be found that different compaction effort affects individual phases in terms of 

not only their volumetric properties on the macroscale but also their geometric 

properties on the microscale. A larger amount of compaction effort decreases the 

average distance between adjacent particles (or the average thickness of the binding 

mortar). When two particles become closer, a higher proportion of the coating mortar 

overlaps each other to form the binding mortar. Therefore, with the decrease of the 

distance between adjacent particles, the radius, as well as the total volume of the 

binding mortar, increases. On the other hand, more compaction effort decreases the 

average coordination number. This can be explained by the fact that when the particles 

become closer, less space around one particle is provided for other particles to 

surround it. 

5.4.2 Predicted results of PA mixes’ modulus 

Figure 5.16 shows the predicted results of |Emix*| and δmix for both PA mix-1 and PA mix-

2. It is noted that in the calculation of |Emix*| and δmix for PA mix-2, instead of using 0, a 

value of h0 that approaches 0 (i.e. 10-8 mm) was used. This is because when h0 is equal 

to 0, the stresses of the mortar σn and στ at the centre (see (5.4) and (5.5)) are equal to 

infinity, which is difficult to be dealt with during the integration of (5.6) and (5.7). On 
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top of that, using a value that is slightly different from 0 is not expected to significantly 

change the final results on the basis of the fact that the values of |Emix*| and δmix converge 

when h0 approaches 0. 

In order to compare the performance of Dvorkin’s model against CBMM, predicted 

results from CBMM are also presented in the same figures. The predictions from the 

Dilute model with the utilization of the DS approach were taken as examples because in 

Chapter 4 it was shown that these predictions were more accurate than others.  

As can be seen in Figure 5.16, at higher frequencies, for a loosely compacted PA 

mix (i.e. PA mix-1), the predicted results of |Emix*| and δmix do not show significant 

differences between CBMM and Dvorkin’s models. Whereas, for a densely compacted 

PA mix (PA mix-2), Dvorkin’s model provides better predictions. This can be related to 

the fact that Dvorkin’s model is developed particularly for densely packing granular 

materials (Dvorkin et al., 1999). Apart from the volumetric properties of each phase, 

Dvorkin’s model also takes into account the geometric characteristics of the individual 

particles and the mortar. Therefore, compared to CBMM, Dvorkin’s model can account 

for the volume-filling stiffening effect more accurately.  

  
a. Dynamic modulus of PA mix-1 b. Phase angle of PA mix-1 

  

c. Dynamic modulus of PA mix-2 d. Phase angle of PA mix-2 

Figure 5.16 Predicted results of PA mixes’ modulus using Dvorkin’s model 
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Figure 5.16 also shows that Dvorkin’s model has the same limitation as CBMM that 

at lower frequencies, predicted values of |Emix*| are significantly lower than the 

experimental results. Moreover, the predicted results of δmix do not show a decreasing 

trend. One of the possible reasons could be that the values of some input parameters, 

i.e. h0, n, a, and νmor, should change with frequencies/temperatures rather than being 

constants over the whole frequency range. With this realization, in order to further 

understand the limitation of Dvorkin’s model, the sensitivity of the predicted modulus 

on these parameters was conducted. In the following section, the results of the 

sensitivity analysis are presented. 

5.4.3 Sensitivity analysis of predicted results to input parameters 

In the previous analysis, the geometric characteristics of the proposed PA mix’s 

microstructure were considered to remain unchanged. However, this assumption may 

not be valid because the external loads, i.e. the gravity and the applied load, may change 

the values of geometric parameters (i.e. h0, n and a). With the increase of temperatures 

and the decrease of frequencies, the mortar becomes softer and easier to deform. 

Consequently, the distance between adjacent particles, i.e. the value of h0, is expected 

to decrease. Meanwhile, the change of h0 also induces the change of n and a, which can 

be easily derived from Equations (5.44)-(5.47) and Equation (5.51). 

The above discussion indicates that the use of constant values of h0, n and a in the 

whole frequency range can be one reason for the poor performance of Dvorkin’s model 

in Figure 5.16. Additionally, a constant value of νmor was assumed in the predictions. As 

mentioned earlier, the value of νmor is frequency- and temperature-dependent. 

Therefore, it is also possible that the inaccuracy of the predictions results from the 

assumption of a constant value of νmor. With these realizations, in this section, the values 

of h0 and νmor are varied to check if the performance of the model can be improved. It is 

noted that sensitivity analysis was conducted by taking PA mix-1 as an example.  

5.4.3.1 Sensitivity of predicted Emix* on h0 

As discussed above, the value of h0 is expected to decrease with the decrease of 

frequencies, therefore, three lower values of h0 (h0<0.22 mm or h0/t<0.58) were used 

to predict Emix* in the sensitivity analysis. Table 5.2 shows the calculated results of n, a, 

ϕm_b and ϕm_c for different values of h0 using Equations (5.44)-(5.47) and Equation 

(5.51), respectively. It can be seen that with the decrease of h0, the values of n and ϕm_c 

decrease while the values of a and ϕm_b increase. The reasons for the changes of n, a, 

ϕm_b and ϕm_c with the value of h0 have been explained in the previous section (see 

Section 5.4.1).  

Figure 5.17 presents the predicted |Emix*|-f and δmix-f curves using different values 

of h0, n and a. It can be observed that with the decrease of h0, PA mixes become stiffer, 
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which is reflected by an increase of predicted |Emix*| and a decrease of predicted δmix. 

This can be explained by the fact that with the decrease of the distance between two 

particles, the total volume of the binding mortar, which makes the main contribution to 

the load-bearing capacity of the mix, increases. Meanwhile, when two particles become 

closer, their interactions become stronger. As can be derived from Equations (5.4) and 

(5.5), the stresses at the mortar-particle interface increase with the decrease of h0. 

When the interactions between adjacent particles become stronger, their stiffening 

effect on the mix becomes more significant.  

Further investigations of the plots in Figure 5.17 show that the shapes of the 

predicted |Emix*|-f and δmix-f curves do not significantly change with different values of 

h0. At very low frequencies, even when h0 is close to 0, the predicted values of |Emix*| are 

still much lower than the experimental results. Moreover, the predicted values of δmix 

do not show a significant decrease. These observations indicate that the predictions are 

not likely to be accurate even if the values of the geometric parameters change. 

Therefore, it can be concluded that the possible inaccurate assumption about the 

geometric parameters is not the main reason to explain the poor performance of the 

model at high temperatures/low frequencies. 

Table 5.2 Values of input parameters with the change of h0 

Parameters h0/t n a (mm) ϕm_b ϕm_c 

Values 

0.58 11.5 1.67 9.4% 10.6% 

0.25 9.1 2.2 13.5% 6.5% 

0.125 8.8 2.35 14.9% 5.1% 

0 8.5 2.53 17.3% 2.7% 

  
a. |Emix*|-f curve for PA mix-1 b. |δmix|-f curve for PA mix-1 

Figure 5.17 Sensitivity of predicted modulus on mortar’s thickness 
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5.4.3.2 Sensitivity of predicted Emix* on vmor 

The predicted results of Emix* using different values of vmor are shown in Figure 5.18. 

With the increase of νmor, the predicted values of |Emix*| increase, whereas the predicted 

values of δmix decrease. When the value of νmor approaches 0.5, the predicted values of 

|Emix*| become much higher than the experimental values, whereas the values of δmix are 

far below. It can be postulated that if higher values of υmor are used at lower frequencies, 

the predicted values of |Emix*| and δmix may match with the experimental results. 

Therefore, in order to understand the effect of υmor on the predicted results of Emix*, and 

to figure out if increasing the value of υmor is a logical way to improve the accuracy of 

the predictions, the effect of υmor on the behaviour of the mortar was investigated.  

  
a. |Emix*|-f curve for PA mix-1 b. |δmix|-f curve for PA mix-1 

Figure 5.18 Sensitivity of predicted modulus on mortar’s Poisson’s ratio 
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predicted properties of the mix (see Figure 5.18) tend to be stiff (high value of |Emix*|) 

and elastic (low values of δmix) as well. 

 
Figure 5.19 Sensitivity of mortar’s normal stiffness on Poisson’s ratio 
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suitable at low temperatures/high frequencies because, under these conditions, the 

mortar between two particles is stiff enough to transfer a high level of load from one 

particle to the other. Even if a particle-to-particle direct contact area forms at the same 

time, since the total particle-mortar contact area is expected to dominate over the 

particle-to-particle contact area, the overall stiffness of the mix is governed by the 

behaviour of the mortar.  

On the contrary, at high temperatures/low frequencies, the mortar is too soft to 

effectively transfer loads among adjacent particles. Compared to the soft mortar, 

particle-to-particle direct contacts are supposed to play a leading role in providing the 

load transfer capacity for the mix. In this case, the assumption in Dvorkin’s model is not 

applicable anymore, and thus the predictions start to differ from the experimental 

results.  

5.5 Conclusions 

This chapter presented a methodology to use Dvorkin’s model to predict the stiffness 

of PA mixes. The predicted results were compared to those from CBMM and the 

experimental values. In order to improve the accuracy of the predictions at lower 

frequencies, the sensitivities of the predicted results on geometric input parameters 

and the Poisson’s ratio of the mortar were analysed. In the end, the limitation of 

Dvorkin’s model was highlighted. Based on the obtained results, the following 

conclusions can be drawn: 

• In the proposed microstructure model, a PA mix was simulated as an assembly 

of identical spherical particles that are covered and bonded by mortar 

materials with uniform thicknesses.  

• Geometric parameters were determined in a way that: the radius of the 

spherical particles was determined from the aggregate gradation; the 

thickness of the coating mortar was determined from the mortar content; the 

minimum distance between two adjacent particles and the coordination 

number were determined from air voids content, and the radius of the binding 

mortar was finally determined on the basis of the values of other parameters. 

• Based on the proposed microstructure model, the stiffness of PA mixes was 

calculated in three steps. At first, the stiffness of the skeleton framework 

consisting of aggregate particles and the binding mortar was predicted using 

Dvorkin’s model. Then the matrix’s stiffness of an equivalent two-phase 

composite, whose stiffness was identical to that of the skeleton framework, 

was back-calculated using CBMM. At last, by adding the coating mortar to the 

matrix, the stiffness of PA mixes was calculated using CBMM again.  
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• At higher frequencies, better predictions were obtained using Dvorkin’s model, 

especially for a densely compacted PA mix. However, Dvorkin’s model showed 

the same limitation as CBMM that at lower frequencies, the predicted dynamic 

moduli were significantly lower than the experimental results, and moreover, 

the predicted phase angle did not show a decreasing trend. 

• The performance of Dvorkin’s model cannot be significantly improved by 

varying the values of the geometric parameters. By varying the Poisson’s ratio 

of the mortar, the predictions may match the experimental results numerically. 

However, the physical mechanism behind these predictions that the mortar 

behaves like a rigid body does not seem to be realistic.  

• The limitation of Dvorkin’s model is related to the assumption that in a bonded 

granular material, a load is always transferred through the mortar between 

adjacent particles. This assumption is valid at higher frequencies, while at 

lower frequencies, the load is supposed to be mainly transferred through the 

particle-to-particle direct contacts.  
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6.1 Introduction 

Previous chapters have shown that further improvement in the accuracy of asphalt 

concrete response predictions at the lower frequencies range requires considering the 

stiffening effect of the particle-to-particle direct contacts. In fact, the role of the particle-

to-particle contacts in the response of asphalt materials has been widely realized by 

researchers (Buttlar et al., 1999, Underwood and Kim, 2013, Shu and Huang, 2008). 

However, the challenge is to quantitatively evaluate its stiffening effect on the 

mechanical properties of asphalt materials.   

Until now, in the pavement field, very few approaches have been developed to 

account for the stiffening effect of the particle-to-particle direct contacts. The 

percolation theory, as introduced in the previous chapter, is one of these approaches. 

However, it does not further improve the accuracy of the predictions when the 

concentration of particles is higher than 40%. The main reason for the failure of the 

percolation theory is that it simply treats the connected particles as an entire phase 

while it never directly considers the contacts among different particles (Underwood 

and Kim, 2014). 

Underwood & Kim (2013) developed a microstructural association model where 

the stiffening effect of the particle-to-particle contact is quantified using a 

structuralization index (SI). The value of SI can be calculated from the measured 

packing properties of the aggregates in a mix. It was further pointed out that the SR 

(stiffening ratio)-SI relationship developed at a lower scale can be used to obtain the 

stiffening ratio of materials at higher scales. Therefore, the prediction of the modulus of 

an asphalt mixture can be achieved by using the SR-SI relationship that was developed 

in the mastic scale. The advantage of doing this is that performing laboratory tests on 

the mastic scale is much less time-consuming than that on the mixture scale.  

In comparison with the percolation theory, the use of SI in the microstructural 

association model is a more reasonable approach for capturing the particle-to-particle 

direct contact effect in a composite. Underwood & Kim (2013) showed that the SR-SI 

relationship could be well established in the mastic scale and using this relationship the 

modulus of asphalt mixtures in a wide temperature range (from 20°C to 54°C) could be 

well predicted. However, the establishment of all the equations in the model requires a 

large number of laboratory tests. In addition, in the model, there are many parameters 

required to be back-calculated. Overall, the implementation of the microstructural 

association model is tedious and complicated. 

Apart from the percolation theory and the microstructural association model, 

calibration factors were also used to account for the stiffening effect of the particle-to-

particle direct contacts (Sun et al., 2017, Cai et al., 2020). Since calibration methods do 
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not give any fundamental insight into the particle direct contacts, a more logical and 

reasonable method needs to be developed. 

Although the characteristics of the particle direct contacts have not been 

thoroughly studied in the field of pavement engineering, a large amount of relevant 

research work has been conducted in other engineering fields like granular solids. In 

the field of granular solids, the phenomenon that two solids form a finite contact area 

when they are compressed together is usually referred to as “Hertzian contact”. The 

work of Hertz (1882) provides the relationship between the radius of the contact area, 

the applied normal force, the radii of the solids in contact and the elastic properties of 

the materials (HERTZ, 1882, Fischer-Cripps, 1999). Further research studies extended 

Hertz’s work from normal contact to a more general case of oblique contact where not 

only a normal contact force but also tangential contact forces exist at the contact surface 

(Mindlin, 1949, Walton, 1978). 

Based upon the contact law between two contacting particles, researchers (Digby, 

1981, Walton, 1987, Chang and Liao, 1994) have further developed DBMM to estimate 

the effective moduli of un-bonded granular materials, see Figure 6.1. In these models, 

an un-bonded granular material is described as a pack of aggregate particles with 

uniform sizes. Based upon such geometric configuration, equations for calculating the 

effective moduli of un-bonded granular materials have been derived by different 

researchers (Digby, 1981, Walton, 1987, Chang and Liao, 1994). In this study, equations 

derived by Walton (Walton, 1987) were used and thus DBMM for un-bonded granular 

materials is referred to as Walton’s model in the following sections.  

 

Figure 6.1 Illustration of DBMM for un-bonded granular materials 

Walton’s model has been widely used in the field of granular solids (Chang et al., 

1989); however, it has never been used to account for the stiffening effect of the 

particle-to-particle direct contacts in asphalt materials. Therefore, the aim of this 
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chapter is to develop a way of using Walton’s model for determining the stiffening effect 

of the particle-to-particle direct contacts in a PA mix. Furthermore, in order to achieve 

the main objective of this study, a hybrid micromechanical model that combines the 

volume-filling stiffening effect and the stiffening effect of the particle-to-particle direct 

contacts is developed. In the end, the performance of the developed model in predicting 

the total stiffness of PA mixes is assessed.  

6.2 Introduction of Walton’s model 

The way that Walton’s model uses to predict the stiffness of an un-bonded granular 

material is similar to that used by Dvorkin’s model. The homogenization technique 

introduced in Section 5.2.2 is also applicable to un-bonded granular materials, while the 

contact laws are different. Therefore, in this section, the introduction of Walton’s model 

mainly focuses on the contact law between two contacting particles. Furthermore, using 

the same homogenization technique, the effective moduli of an un-bonded granular 

material can be derived. 

6.2.1 Contact law of a two-contacting particles system 

In Walton’s model, two identical spheres are compressed together in such a manner 

that the centre of the upper sphere undergoes a displacement of δn in the normal 

direction and δτ in the tangential direction; and the lower sphere undergoes an equal 

but opposite displacement, see Figure 6.2. Under the given compression, a circular 

contact area between two spheres is formed and the radius of the area a is given by: 

 =2
na R  (6.1)  

where R is the radius of the spheres.  

In the case of infinitely rough spheres (no relative slip between two spheres), the 

stresses acting on the contact area, σz (normal stress) and στ (tangential stress), are 

given as: 
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where λa and Ga denote the Lame moduli of the spheres; Ea and νa are Young’s modulus 

and Poisson’s ratio of the spheres, respectively; and r=(x2+y2)1/2. By integrating σz and 

στ across the contact area, the forces acting on the contact surface can be obtained as: 
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Figure 6.2 A two-contacting particles system 

According to the definition of the stiffness of a two-particle system in Equation 

(5.1) (see Chapter 5), the values of Sn and Sτ for a two-contacting particles system can 

be derived from Equations (6.5) and (6.6) as: 
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6.2.2 Effective moduli of an un-bonded granular material 

Substituting the expression of δn in the global coordinate system in Equation (5.14) into 

Equations (6.7) and (6.8), the values of Sn and Sτ can be related to the average strain of 

the granular material as 
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Substituting (6.9) and (6.10) into the general expression for the average stress of 

a granular material in Equation (5.29), the average stress <σ> for an un-bonded 

granular material can be given as (Walton, 1987): 
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where nd is the average number of the particles that are in direct contact with one 

particle; ϕa is the volume fraction of the particles. 

When a hydrostatic strain <ε>ij=εδij is applied on the un-bonded granular material, 

the corresponding confining pressure can be computed using Equation (6.12) as: 
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Furthermore, Young’s modulus of the system, denoted as Eeff, can be related to the 

confining pressure using Equation (6.13). 
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6.3 Structuralization of aggregate particles in a PA mix 

As mentioned earlier, aggregate particles are structuralized, and direct particle-to-

particle contacts form in an asphalt mixture. Researchers (Underwood and Kim, 2013) 

have widely realized the important role played by the structuralization of aggregate 

particles in the mechanical properties of the mix. However, up to now, a reasonable 

explanation about how the aggregate particles in a mix are structuralized has not been 

provided, and because of that, an effective methodology for quantifying their 

contributions has not been developed. Therefore, in this study, before the development 

of such a methodology, the structuralization of aggregate particles in a PA mix was 

investigated.  

In order to easily figure out how the particle-to-particle direct contacts form, a 

simplified microstructure of a PA mix, which consists of aggregate particles packing 
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together and mortar bridges randomly distributing around adjacent particles, was used, 

see Figure 6.3a. In this microstructure, particle A was taken as an example and the 

interactions between particle A and its surrounding particles (i.e. particles B, C, and D) 

were analysed.  

Figure 6.3b shows the loading condition performed in this study (as described in 

Chapter 2) where a compressive strain is applied to a PA mix specimen in the vertical 

direction. In such a case, it is expected that the particle-to-particle direct contacts form 

between particle A with particle B and particle D. As a result, two compressive forces 

FABC and FADC are subjected to particle A. However, with these two compressive forces, 

particle A cannot be in balance and it tends to move in the lateral direction. In this case, 

in order to keep the whole structure of the mix stable, a tensile force is needed to suck 

particle A back. When there is no confinement applied to the mix in the lateral direction, 

the only way to provide a tensile force is the sucking effect of the mortar bridge between 

particle A with particle C. In other words, as a result of the outward motion of particle 

A due to the forces FABC  and FADC , for equilibrium, a tensile force FACT needs to be 

generated by the sucking effect of the mortar bridge which restrains the uncontrolled 

lateral displacement of the aggregate, enhancing thus the contacts between particle A 

with particle B and D. Implicitly, the mortar bridge acts as an additional lateral 

confinement mechanism. 

 
 

 

 

 

 

 

 

 

a. An aggregates pack b. Compressive load c. Tensile load 

Figure 6.3 Illustration of the aggregates structuralization in PA mixes 

The important role played by the mortar bridges in the generation of particle 

direct contacts can be seen under the tensile loading condition as well. As can be seen 

in Figure 6.3c, the sucking effect of the mortar bridges between particle A with particles 

B and D (i.e. tensile forces FABT and FADT) enables the tensile response of the material 

and, in a manner equivalent to Poisson’s effect, enhances the particle contact between 

particle A with particle C (i.e. compressive force FACC) in the lateral direction.  
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From the above discussions, it can be concluded that what prevents an unconfined 

PA mix from collapsing into a pile of rocks is the sucking action of the mortar bridges 

between aggregate particles, which encourages particle-to-particle interactions and, as 

such, enhances the stiffness of the system of aggregate particles. In light of these 

realizations, a methodology that can quantify the contribution from the 

structuralization of aggregate particles to the total stiffness of a mix was further 

developed.  

6.4 Contribution of particles structuralization to PA mix’s stiffness 

Based on the discussions in the above section, it is known that both in tension and 

compression, the generation of the contact forces between adjacent particles is 

supported by the sucking effect of the mortar bridges. This effect of the mortar bridges 

on the structuralization of aggregate particles in a PA mix is quite similar to the effect 

of the confinement on the structuralization of granular materials since both of them 

serve as a precondition for the formation of particle-to-particle direct contacts. 

Therefore, when Walton’s model is used to describe the structuralization of aggregate 

particles in a PA mix, the value of p in Equation (6.13) can be considered as the sucking 

effect of the mortar bridges. From Figure 6.3, it is known that the sucking effect of 

mortar bridges is related to the stresses in the mortar phase. With this realization, the 

following equation was proposed to calculate the value of p: 

  + +
= 11 22 33

3
p  (6.14)  

where <σ>ii (i=1, 2, 3) is the stress in the mortar bridges in three different directions. 

In Chapter 5, it was explained that mortar bridges exist among aggregate particles, 

and the three-dimensional confinement provided to the mortar by the presence of the 

surrounding particles makes the mortar’s response stiffer than that in a typical DSR test 

and, as such, improves its capability to resist deformation. Therefore, the estimation of 

the load-bearing capability of the mortar bridges should take into account the stiffening 

effect on the mortar due to the presence of the particles. With this realization, it was 

further proposed that the value of <σ>ii in Equation (6.14) was calculated using 

Dvorkin’s model which describes the load-bearing capability of a mortar-particle 

system, see Equation (5.29).  

Since a uniaxial strain <ε>3 was applied to the mix in the laboratory tests, the value 

of <ε>ij in Equation (5.29) was written as 

   = 3 33 i jij
 (6.15)  

Substituting Equation (6.15) into Equation (5.29), the value of <σ>ii was calculated as 
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where the values of Sn and Sτ can still be determined using the method as introduced in 

Section 5.2.  

Once the value of p is known, the stiffness due to the particle-to-particle contacts 

can be further calculated using Equation (6.13). It is worth highlighting here that: 

• ns refers to the number of mortar bridges that surround one particle and provide 

sucking effects for this particle.  

• since the mortar bridges that surround one particle (the number of which is n as 

described in Chapter 5) are either stretched to provide the sucking effect (the 

number of which is ns) or compressed along with the formation of the particle-to-

particle direct contacts (the number of which is nd), the sum of ns and nd is identical 

to the value of n.  

• theoretically, the values of ns and nd can be determined according to the stress 

states of the mortar bridges. However, since the stresses of the mortar bridges are 

material responses on the microscale, it is difficult to determine the values of these 

stresses and thus the values of ns and nd in an analytical way. Therefore, in this 

research, a simple method in which the values of ns and nd were determined in the 

case when the stiffness of the mix was the maximum was proposed. The underlying 

assumption was that a mix always adjusted itself to be the strongest in order to 

sustain an external load. Following the proposed method, the values of ns and nd 

were calculated as 6 and 5.5 for PA mix-1, respectively, while for PA mix-2, the 

values of ns and nd were 3 and 6.5, respectively.  

In this section, a methodology for determining the stiffening effect of the particle-

to-particle contacts in a PA mix was introduced. Furthermore, a hybrid 

micromechanical model, which combines the volume-filling stiffening effect and the 

stiffening effect of the particle-to-particle contacts, was developed to predict the total 

stiffness of the mix. In the following section, this hybrid micromechanical model will be 

introduced.  
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6.5 A hybrid micromechanical model to predict the stiffness of PA 

mixes 

As explained earlier, the stiffness to resist the overall deformation of a mix comes from 

the volume-filling stiffening effect together with the stiffening effect of the particle-to-

particle direct contacts. Following this thought, a parallel arrangement of these two 

mechanisms was proposed in order to calculate the total stiffness of the mix Emix*, see 

Figure 6.4.  

 

Figure 6.4 The proposed hybrid micromechanical model 

In order to further physically understand how the proposed hybrid 

micromechanical model works, a simple constitutive model, known as the standard 

solid model, was used to simulate the mechanical response of each stiffening 

mechanism and the behaviour of their combined effects, see Figure 6.5. According to 

the previous chapters, it was known that the volume-filling stiffening effect provided a 

liquid-like behaviour of a mix. Therefore, in Figure 6.5 a Maxwell model was used to 

describe the mechanical response of the volume-filling stiffening effect. On the other 

hand, since the mechanical response of a mix due to the particle-to-particle direct 

contacts is elastic, a spring was used for the simulation.  
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Figure 6.5 Standard solid model 

Figure 6.6 illustrates the mechanical response (dynamic modulus and phase 

angle) of a Maxwell model. Various curves were plotted by setting the modulus of the 

spring and the viscosity of the dashpot as different values. The similarity of these 

curves’ shapes indicates that a mix always shows a liquid-like behaviour if only the 

volume-filling stiffening effect is considered. 

  

Figure 6.6 Mechanical responses of a Maxwell model 

By contrast, with the addition of a spring in parallel, the total model shows a PA 

mix-like behaviour that the dynamic modulus reaches an asymptotic value at very low 

frequencies and a peak value appears in the phase angle curve, see Figure 6.7. This 

observation verifies the necessity of considering the particle-to-particle direct contacts 

in order to accurately predict the mechanical properties of PA mixes. In addition, it also 

proves the validity of arranging the volume-filling stiffening effect and the stiffening 

effect of the particle-to-particle direct contacts in parallel in the proposed hybrid 

micromechanical model.  
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Figure 6.7 Mechanical responses of the standard solid model 

In a parallel arrangement, the overall stiffness of a composite is the sum of the 

stiffnesses of individual components. Thus, the value of Emix* can be calculated by 

summing up the stiffness due to the volume-filling stiffening effect, represented as 

Emixm, and the stiffness resulting from the particle-to-particle contacts, denoted as Emixc, 

see Equation (6.19). Since the values of Emixm and Emixc are frequency/temperature-

dependent, they are both represented as complex numbers in the frequency domain. 

Therefore, the calculated result of Emix* is also a complex number, which indicates that 

both the dynamic modulus |Emix*| (the magnitude of Emix*) and the phase angle δmix of 

the mix can be obtained using Equation (6.19).  

( ) = +* m c
mix mix mix( ) ( )E f E f E f  (6.19)  

It is noted here that according to the previous chapters (Chapter 4 and Chapter 5), 

the value of Emixm can be estimated using either CBMM (i.e. the MT model, the SC model, 

the GSC model, etc.) or DBMM (i.e. Dvorkin’s model). The comparison among different 

micromechanical models showed that Dvorkin’s model predicts the volume-filling 

stiffening effect more accurately. Therefore, Dvorkin’s model was used in this study to 

estimate the value of Emixm. 

6.6 Results and discussion 

6.6.1 Predicted results of |Emix*| 

Using the proposed hybrid micromechanical model, the predicted results of |Emix*| were 

obtained, see Figure 6.8. In order to compare the contribution from the volume-filling 

stiffening effect with that from the particle-to-particle contacts, the values of |Emixm| and 

|Emixc| are also plotted in the same figures.  

Comparing the predicted results of |Emixm| and |Emixc|, it can be seen that both the 

volume-filling stiffening effect and the stiffening effect of the particle-to-particle 

contacts make contributions to the stiffness of the mix in the whole frequency range. 
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However, the dominant mechanism changes at different frequencies. At higher 

frequencies, the values of |Emixm| are much higher than |Emixc|, and the values of |Emixm| 

match quite well with the experimental results. These observations indicate that at 

higher frequencies, the volume-filling stiffening effect dominates the behavior of the 

mix.  

With the decrease of frequencies, the value of |Emixm| decreases sharply, while the 

decrease of |Emixc| is much less significant than that of |Emixm|. From a certain frequency, 

the value of |Emixc| starts to be higher than |Emixm|. When the frequency is very low, the 

value of |Emixc| is significantly dominant over the value of |Emixm|, and in this case, the 

measured value of |Emix*| closely follows the change of |Emixc|. These observations clearly 

show that at very lower frequencies, the stiffening effect of the particle-to-particle 

contact plays a leading role in the overall behaviour of the mix.  

  

a. Dynamic Young’s modulus of PA mix-1 b. Dynamic Young’s modulus of PA mix-2 

Figure 6.8 Predicted results of dynamic Young’s modulus using the proposed 

methodology 

The change of the dominant mechanism at different frequencies can be explained 

by considering the properties of the mortar materials. At higher frequencies, the 

stiffness of the mortar is quite high.  Beyond that, the mortar-particle contact area is 

much bigger than the direct contact area between two particles. Therefore, compared 

to the particles’ direct contacts, the mortar can provide a much stronger resistance to 

prevent the overall deformation of the mix. By contrast, at lower frequencies, the 

mortar is too soft, and thus the resistance provided by mortar can be almost neglected. 

In this case, the resistance provided by the particles’ direct contacts becomes relatively 

significant.  

By summing the values of |Emixm| and |Emixc| up, the predicted results of |Emix*| were 

obtained. It can be seen that the proposed model performs quite well in the whole 

frequency range. The predicted values of |Emix*|, showing asymptotic behaviours at both 

very high frequencies and very low frequencies, match well with the experimental 
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results. The agreement between the predictions and the experimental results justifies 

the proposed methodology for predicting the modulus of PA mixes. 

6.6.2 Predicted results of δmix 

The predicted results of δmix are shown in Figure 6.9. Additionally, in order to clearly 

show the change of the predicted phase angle after the consideration of the particle-to-

particle contacts, the phase angle with only the consideration of the volume-filling 

stiffing effect δmixm (predicted from Dvorkin’s model) is also plotted in the figures.  

  

a. Phase angle of PA mix-1 b. Phase angle of PA mix-2 

Figure 6.9 Predicted results of phase angle using the proposed methodology 

It can be seen that at high frequencies, both the proposed hybrid model and 

Dvorkin’s model provide accurate predictions. This observation further verifies the 

domination of the volume-filling stiffening effect at higher frequencies. With the 

decrease of frequencies, the predicted values of δmixm keep increasing, whereas, because 

of the consideration of particles’ direct contacts, the predicted values of δmix using the 

proposed model show a decrease after a peak point. 

Overall, in the whole frequency range, it can be claimed that the proposed model 

provides acceptable predicted results of δmix. The good agreement between the 

predicted δmix and the experimental results further demonstrates the robustness of the 

proposed micromechanical model. 

6.6.3 Effect of compaction effort on the behaviour of PA mixes 

In this study, two types of PA mixes which were performed different compaction efforts 

were investigated. According to the test results, a more compacted mix (i.e. PA mix-2) 

is stiffer than a mix with less compaction effort. From the macroscopic perspective, the 

effect of the compaction effort on the behaviour of PA mixes can be attributed to the 

changes of the volume fractions of individual phases. However, on the basis of previous 
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analyses, it can be known that from the microscopic perspective, the influence of the 

compaction effort is much more than just changing the volume fraction of each phase. 

Therefore, in this part, from the microscopic perspective, a more detailed explanation 

about the influence of the compaction effort is given.  

  

a. Volume-filling stiffening effect 
b. Stiffening effect of particle-to-particle 

contact 

Figure 6.10 Effect of compaction effort on the behaviour of PA mixes 

Figure 6.10 shows the comparison of the volume-filling stiffening effect and the 

stiffening effect of the particle-to-particle contacts between PA mix-1 and PA mix-2. It 

can be seen that compaction effort can impact the stiffening effects of both mechanisms. 

From Chapter 5, it was known that the compaction effort affects the volume-filling 

stiffening effect by changing the microstructural configuration of the mix, i.e. the 

average distance between connecting particles, the coordination number, and the 

radius of the bonding mortar. 

The influence of the compaction effort on the stiffening effect of the particle-to-

particle contacts can be explained from two aspects. Since the compaction effort 

improves the volume-filling stiffening effect, the confinement for the aggregates pack is 

enhanced. On top of that, more compaction effort produces a more densely packing 

stone-on-stone framework, which can be reflected by the increase of the number of 

particles that are in direct contacts. 

6.7 Summary 

This chapter interpreted the physical mechanism behind the structuralization of the 

aggregate particles in PA mixes. On the basis of that, a method to determine the stiffness 

due to the particles’ direct contacts was proposed. Furthermore, a hybrid 

micromechanical model which combines the volume-filling stiffening effect and the 

stiffening effect of the particle-to-particle contacts was developed to predict the overall 

stiffness of a PA mix. In the end, the performance of the proposed model was evaluated 
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on the basis of experimental results. Based on all the discussions and the obtained 

results, the following conclusions can be made: 

• The sucking action of the mortar bridges between the aggregate particles 

prevents an unconfined PA mix from collapsing into a pile of rocks, which 

encourages particle-to-particle interactions and, as such, enhances the 

stiffness of the system of aggregate particles. 

• When Walton’s model is used to describe the stiffening effect due to the 

particle-to-particle contacts in a PA mix, the value of the confinement in the 

model can be related to the stresses in the mortar phase.  

• The stresses in the mortar phase can be estimated using Dvorkin’s model since 

this model takes into account the stiffening effect on the mortar due to the 

presence of the particles.  

• A parallel arrangement of the volume-filling stiffening effect and the stiffening 

effect of the particle-to-particle contacts can accurately predict both the 

dynamic modulus and the phase angle of PA mixes in the whole frequency 

range. 

• In the whole frequency range, both the volume-filling stiffening effect and the 

stiffening effect of the particle-to-particle contacts make contributions to the 

stiffness of the mix. At higher frequencies, the volume-filling stiffening effect 

governs the behaviour of the mix, while at lower frequencies, the stiffening 

effect of the particle-to-particle contacts plays a leading role.  

• Compaction effort impacts both the volume-filling stiffening effect and the 

stiffening effect of the particle-to-particle contacts. Compaction effort affects 

the volume-filling stiffening effect by changing the microstructural 

configuration of the mix; while the influence of the compaction effort on the 

stiffening effect of the particle-to-particle contacts is attributed to the 

enhancement of the confinement and the generation of more direct particle-to-

particle contacts.   
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Up to now, there are still no readily available and accessible tools to assist pavement 

practitioners in mitigating ravelling distress of PA mix pavements or making accurate 

ravelling distress predictions. For this reason, this study proposed a homogenization-

based approach which is expected to be able to effectively analyse the propensity of a 

given PA mix for ravelling without the need for expensive computational facilities. In 

order to finally implement the proposed approach, this thesis attempted to firstly 

achieve the approach’s first step of accurately estimating the stiffness of a PA mix based 

on the properties of the mix’s individual constituents.  

The whole research work was carried out in two steps. The first step mainly 

focused on the evaluation of commonly used micromechanical models, i.e. SEMM, 

CBMM and DBMM, for their performances in accurately predicting the mechanical 

properties of PA mixes. In this step, both the advantages and the limitations of different 

types of micromechanical models were investigated; and moreover, the fundamental 

mechanisms that affect the behaviour of PA mixes were analysed. Furthermore, a 

methodology for accurately predicting the mechanical properties of PA mixes was 

developed. Based on all the analyses and discussions, the main findings and the 

recommendations for further research will be summarized in this chapter. 

7.1 Conclusions 

7.1.1 Evaluation of commonly used micromechanical models 

7.1.1.1 Evaluation of SEMM 

As the first step of this research work, SEMM were evaluated for their capability of 

accurately predicting the stiffness of PA mixes. As compared to CBMM and DBMM, 

SEMM are much easier to be implemented. Thus, starting with the evaluation of SEMM 

is beneficial to easily capture the basic concepts behind the development of different 

micromechanical models.   

Christensen’s model, one of the most commonly used SEMM, was investigated. In 

Christensen’s model, one of the critical parameters in the calculation of a mix’s stiffness 

is the so-called contact factor. This factor describes the important role played by the 

interactions among aggregate particles in the behaviour of the mix. However, the 

interpretation of the contact factor does not comply with the physical situation where 

fewer aggregate particles are expected to be in intimate contact at high frequencies/low 

temperatures. Therefore, a modified expression for Christensen’s model, with the 

introduction of an aggregate organization factor, was proposed. By means of the 

aggregate organization factor, the frequency/temperature-dependent contribution 

from the aggregate phase to the total stiffness of a mix can be accounted for. 

Furthermore, a sigmoidal curve function was proposed to describe the characteristics 

of the aggregate organization factor in the whole frequency range.  
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The modified version of Christensen’s model is easy to implement and it was 

verified that this model is capable of accurately predicting the stiffness of PA mixes. 

However, the limitation of Christensen’s model is that laboratory tests are required for 

calibrating the parameters in the model, and moreover, recalibration is always required 

when the model is used for a different type of mix.  

The limitation of SEMM is related to their assumptions of simply arranging 

individual phases in parallel or in series. In that case, the stress/strain field in the 

macroscale and that in the microscale can only have a relationship of either a uniform 

stress or a uniform strain. However, considering the complicated microstructure of a 

mix, it is not expected that those relationships are accurate. Therefore, in order to avoid 

the need for calibrations, further attention was paid to CBMM which can provide more 

rigorous stress/strain relationships. 

7.1.1.2 Evaluation of CBMM 

CBMM were developed on the basis of Eshelby’s solution for the inhomogeneity 

problem where an ellipsoid inclusion is embedded into an infinite matrix. In 

comparison to SEMM, CBMM can provide more rigorous relationships of the 

stress/strain fields between macroscale and microscale; thus, calibration parameters 

are typically not required in these models. Therefore, in the attempt to find out a 

methodology that can accurately predict the mechanical properties of PA mixes without 

the need for calibrations, CBMM were studied.  

A comprehensive investigation into the performance of commonly used CBMM in 

predicting the stiffness of PA materials was conducted. It was found that CBMM 

performed better in predicting the modulus of a composite with a low concentration of 

inclusions (i.e. mastic) than their performances for a highly concentrated composite (i.e. 

mixes). This can be associated with the fact that CBMM were primarily developed to 

account for the stiffening effect caused by the embedded inclusions in a mix with 

minimal particle interactions. 

The results showed that the performance of CBMM at higher frequencies is much 

better than that at lower frequencies. At higher frequencies, the predicted dynamic 

modulus and phase angle followed the same shapes as those measured from laboratory 

tests. Different CBMM provided different predictions of the stiffness’s magnitudes. The 

predictions using the GSC model when the aggregate phase was added before the 

addition of the air voids phase were in the best agreement with the experimental values. 

On the other hand, at lower frequencies, none of the evaluated micromechanical models 

could adequately predict the mechanical properties of PA mixes. The shapes of the 

predicted dynamic modulus and phase angle were not consistent with experimental 

results, and moreover, in general, all the models significantly underestimated the values 

of dynamic modulus and overestimate the values of phase angle. 
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In order to find out possible approaches to improve the accuracy of the 

predictions. Further attention was given to the sensitivities of the predictions’ accuracy 

to (1) the scale of the matrix phase, (2) the utilization of the differential scheme, and (3) 

the value of the matrix’s Poisson’s ratio. The results showed that (1) upscaling from a 

higher scale matrix phase (i.e. mortar) provided more accurate predictions than 

upscaling from a lower scale matrix phase (i.e. asphalt binder and mastic); (2) After the 

introduction of the differential scheme, the accuracy of the predictions improved at 

higher frequencies, whereas at lower frequencies, it did not; (3) the accuracy of the 

predictions did not show a considerable increase by adjusting the Poisson’s ratio of the 

matrix phase. 

Overall, CBMM failed to accurately predict the mechanical properties of a 

composite with a high concentration of inclusions, especially at lower frequencies (high 

temperatures). A discussion about the reasons behind the failure of CBMM was further 

given. It was pointed out that CBMM have the limitations that (1) these models cannot 

explicitly account for the inter-particle interactions (the volume-filling stiffening 

effect), and (2) they cannot capture the stiffening effect due to the particle-to-particle 

direct contacts. 

The limitations of CBMM are related to the fact that in such models, the set of all 

the individual particles is simply represented as one inclusion phase. In this case, it is 

impossible to consider any characteristics of individual particles, not to mention their 

interactions and direct contacts. Therefore, in order to improve the accuracy of the 

predictions, efforts were further made to study DBMM which are capable of taking into 

account the characteristics of individual particles. 

7.1.1.3 Implementation and evaluation of DBMM 

In Dvorkin’s model (one of DBMM), a PA mix is described as an assembly of packing 

individual particles that are bonded by mortar materials. This model includes several 

geometric parameters to describe the characteristics of individual particles, i.e. the 

radius of the particles, the average number of contacts per particle, and the distance 

between adjacent particles. Studying Dvorkin’s model aimed to investigate if the 

accuracy of the predictions at lower frequencies can be improved with the 

consideration of these particles’ characteristics.  

A framework was proposed in order to achieve the implementation of Dvorkin’s 

model for predicting the stiffness of PA mixes. This framework included the following 

procedures:  

(1) a microstructure model where a PA mix was simulated as an assembly of 

identical spherical particles covered and bound together by mortar materials 

was developed.  
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(2) the geometric parameters in the microstructure model were determined from 

the volumetric properties of the mix. The radius of the spherical particles was 

determined from the aggregate gradation; the thickness of the coating mortar 

was determined from the mortar content; the minimum distance between two 

adjacent particles and the coordination number were determined from air 

voids content; and the radius of the binding mortar was finally determined on 

the basis of the values of other parameters. 

(3) the stiffness of PA mixes was calculated in three steps. At first, the stiffness of 

the skeleton framework consisting of aggregate particles and the binding 

mortar was predicted using Dvorkin’s model. Then the matrix’s stiffness of an 

equivalent two-phase composite, whose stiffness was identical to that of the 

skeleton framework, was back-calculated using CBMM. At last, by adding the 

coating mortar to the matrix, the stiffness of PA mixes was calculated using 

CBMM again. 

The evaluation results showed that Dvorkin’s model provided accurate 

predictions at high frequencies. However, this model showed similar limitations as 

CBMM: at low frequencies the predicted dynamic moduli were significantly lower than 

the experimental results, and moreover, the predicted phase angle did not show a 

decreasing trend. Further investigation into the sensitivity of the predictions’ accuracy 

to the geometric parameters and the Poisson’s ratio of the mortar showed that the 

performance of Dvorkin’s model cannot be significantly improved by varying the values 

of these parameters.  

Overall, it can be concluded that in comparison to SEMM and CBMM, Dvorkin’s 

model has the advantage of considering the characteristics of individual particles, and 

thus, Dvorkin’s model can account for the volume-filling stiffening effect in a more 

explicit way. Nevertheless, Dvorkin’s model has a similar limitation as CBMM that it 

cannot capture the stiffening effect due to the particle-to-particle direct contacts for 

studied PA mixes.  

Based on all the above findings, it can be finally concluded that accurately 

predicting the stiffness of a PA mix, the first step towards analysing the ravelling 

distress, cannot be achieved by using the commonly used micromechanical models 

without any calibrations. Therefore, to achieve the objective of this thesis, a new 

micromechanical model was further developed.  

7.1.2 Development of a hybrid micromechanical model 

The first part of this thesis showed that commonly used micromechanical models are 

not capable of accurately predicting the stiffness of PA mixes at lower frequencies 

mainly because these models cannot capture the stiffening effect of the particle-to-

particle direct contacts. Therefore, before the development of a new micromechanical 
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model, a methodology was first developed to quantify the contribution of the particle-

to-particle direct contacts to the total stiffness of a PA mix. 

An explanation about the structuralization of the aggregate particles in a PA mix 

was at first proposed. It was pointed out that the sucking action of the mortar bridges 

between the aggregate particles prevents an unconfined PA mix from collapsing into a 

pile of rocks, which encourages particle-to-particle interactions and, as such, enhances 

the stiffness of the system of aggregate particles.  

Based on the understanding of the particles’ structuralization, Walton’s model 

was used to estimate the stiffening effect of the particle-to-particle direct contacts. The 

confinement for the formation of the particles’ direct contacts was considered as the 

stresses in the mortar phase. These stresses were calculated using Dvorkin’s model 

where the stiffening effect on the mortar’s stresses due to the presence of the 

surrounding particles was considered.  

A hybrid micromechanical model which combined the volume-filling stiffening 

effect and the stiffening effect of the particle-to-particle direct contacts was further 

developed. It was assumed that the volume-filling stiffening effect and the stiffening 

effect of the particle-to-particle direct contacts are in a parallel arrangement. Therefore, 

the total stiffness of the mix was computed by summing up the stiffnesses coming from 

these two mechanisms. In the end, the capability of the model in accurately predicting 

the stiffness (both dynamic modulus and phase angle) of PA mixes was verified.  

In summary, this study successfully developed a micromechanics-based model 

which is able to predict the stiffness of a PA mix based on the stiffnesses on the 

microscale. This thesis helps deepen our understanding of the behaviour of PA mixes 

and the characteristics of different types of micromechanical models. More importantly, 

as the first step of the proposed homogenization-based approach, this study enables us 

to further the implementation of the proposed approach in analysing the propensity of 

a given PA mix for ravelling.   

7.2 Recommendations for future research  

On the basis of the obtained results in this thesis, recommendations are made for future 

research in order to further explore the utilization of micromechanical models in the 

field of pavement engineering.  

In the current study, two types of PA mixes used for verification were prepared 

with the same asphalt binder contents and the same aggregate gradations. In future 

research, more laboratory tests performed on PA mixes with different gradations and 

different asphalt binder contents can be used to further verify the proposed model.  
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In this research, the developed hybrid micromechanical model was implemented 

to estimate the stiffness of PA mixes. The utilization of this model can be further 

extended to DA mixes.  

This thesis focused on the development of a micromechanical model for accurately 

predicting the stiffness of PA mixes. However, as mentioned at the beginning, the final 

objective of this research is to analyse the ravelling distress of PA pavements, and the 

prediction of a mix’s stiffness is only the first step for this purpose. Therefore, in future 

research, the developed model will be used to conduct other steps, i.e. estimating the 

stress and strain fields of individual phases, and to finally achieve the analysis of the 

ravelling distress of PA mixes.  
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Appendix A 

Numerical solutions to mortar’s displacements in Dvorkin’s model  

In this study, a numerical method was used to calculate the displacements of the mortar, 

V(x) (see Equation (5.9)) and U(x) (see Equation (5.10)). In the following paragraphs, 

the steps for solving V(x) in Equation (5.9) are presented, and the same method can be 

used to solve U(x) in Equation (5.10). It is noted that the method used in this study was 

developed on the basis of the basic approaches for solving the Volterra integral 

equations of the second kind (Golberg, 1990). 

The calculation of V(x) can be made in three steps: 

• Step1: choose the points where the value of V(x) is calculated. In the range from 

0 to a, N+1 discrete points of x with an identical distance between neighbouring 

points, x0, x1,…,xN, are chosen. By substituting these points into Equation (5.9), 

N+1 equations are obtained, see Equation (A.1). The following steps aim to 

solve these N+1 equations to obtain the values of V(x) at different points of x.  
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• Step 2: discretize the variables. The variable φ is identically discretized into N+1 

discrete points in the range from 0 to π, φ0, φ1,…, φN. The discretization of s is 

dependent on the value of xi. In order to solve the N+1 unknowns of V(xi) in 

Equation (A.1), it is required that no other unknowns are introduced. This 

means that for a certain value of xi, the discretized values of s, s0, s1,…, sni, should 

satisfy Equation (A.2). Thus, the values of sj can be calculated by using Equation 

(A.3). Equation (A.3) is a quadratic equation, and the roots are given as 

Equation (A.4). It is noted here that since the upper boundary of s is a function 

of xi, the number of the discretized points of s (represented by ni in Equations 

(A.3)-(A.4)) is dependent on the value of xi. 

+ − = =2 2( 2 cos ) ( ),  0,  1,  ...,  i j i j k jV x s x s V x i N  (A.2)  

+ − = =2 2 22 cos ,  0,  1,  ...,  i j i j k j ix s x s x j n  (A.3)  

 =  − =2 2 2cos sin ,  0,  1,  ...,  j i k j i k is x x x j n  (A.4)  

• Step 3: solve the integral equation. By substituting all the discretized points of 

φ and s into Equation (A.1), the discretized form is written as Equation (A.5). 

The values of V(xi) can be obtained by solving these N+1 equations. In Equation 
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(A.5), ωkφ and wjs are the weights of the discrete points of φk and sj, respectively. 

If the trapezoidal rule is used for approximating the integral values, the values 

of ωkφ and wjs are equal to 1 for the middle points while they are equal to 0.5 

for the points at the boundaries. hφ is the distance between two neighbouring 

points for φ, which is equal to π/N. hijs is the distance between two 

neighbouring points for s, which can be automatically known once the values 

of sj are obtained. 

   
= =

+ =  =

+

  2
0 0

0

( )
( ) ,  0,  1,  ...,  

2

inN
js s

n i n k ij j
k j j

V x
V x h h i N

x
h

R

 
(A.5)  

Reference 

GOLBERG, M. A. 1990. Numerical Solution of Integral Equations. 
 



 

Page | 125 

Summary 
With the attempt to reduce traffic noise, porous asphalt (PA) mixture is widely used as 

a wearing course on the highways in the Netherlands. However, due to the open 

structure, PA mix pavement easily suffers from the loss of individual aggregates from 

its surface, which is named as ravelling. After the initial ravelling, the damage can 

rapidly develop into potholes which can significantly reduce the driving safety of the 

pavement.  

In order to develop an accessible tool to assist pavement practitioners in 

mitigating ravelling distress or making accurate ravelling distress predictions, this 

thesis proposed one possible solution based on the homogenization technique. At first, 

the properties of individual components are measured in the laboratory and the 

stiffness of a PA mix is predicted using micromechanical models. Then, the strains in 

the PA mix layer are calculated by means of any available pavement analysis tool (i.e. 

3D-MOVE) on the basis of the predicted mix’s stiffness. Lastly, the local stresses/strains 

in the individual phases are calculated. Based on the fatigue characteristics of each 

phase under these stresses/strains conditions, the propensity of a given PA mix for 

ravelling can be evaluated.  

Following the proposed solution, this thesis focused on the first step of accurately 

predicting the stiffness of a PA mix using micromechanical models. Two types of PA 

mixes, with different air voids contents, were used for the evaluation of different 

models. Both the dynamic modulus and the phase angle of the mixes were measured 

under the uniaxial loading condition at different frequencies and temperatures. Based 

on these experimental data, three types of commonly used micromechanical models, 

including the Semi-empirical micromechanical models (SEMM), Continuum based 

micromechanical models (CBMM), and Discrete particles-based micromechanical 

models (DBMM), were assessed on their ability of accurately predicting the stiffness of 

a PA mix.  

The results showed that when an aggregate organization factor was used, SEMM 

provided accurate predictions. However, the values of this factor needed to be 

calibrated from laboratory tests. On the other hand, CBMM and DBMM do not include 

any calibration factor, and they can provide accurate predictions at high 

frequencies/low temperatures. However, the predictions at low frequencies/high 

temperatures did not match with the experimental results, and generally, the 

predictions were much lower. Therefore, it can be concluded that without any 

calibration, commonly used micromechanical models are incapable of accurately 

predicting the stiffness of a PA mix in a wide frequency/temperature range.  

The assessment of different types of micromechanical models also revealed that 

the limitation of these models is related to the fact that they can only account for the 
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volume-filling stiffening effect due to the addition of aggregates into mortar, but they 

do not take into account the stiffening effect due to the particle-to-particle direct 

contacts. Based on this realization, a new micromechanical model was further 

developed in this thesis. The structuralization of the aggregate particles in a PA mix was 

explained based on the concept of the sucking action of the mortar bridges between the 

aggregate particles. Furthermore, Walton’s model was used to estimate the stiffening 

effect of the particle-to-particle direct contacts. A hybrid micromechanical model which 

combined the volume-filling stiffening effect and the stiffening effect of the particle-to-

particle direct contacts was further developed. In the end, the capability of the 

developed model in accurately predicting the stiffness (both dynamic modulus and 

phase angle) of PA mixes was verified.  

In summary, this study successfully developed a micromechanics-based model 

which is able to predict the stiffness of a PA mix based on the stiffnesses on the 

microscale. This thesis helps deepen our understanding of the behaviour of PA mixes 

and the characteristics of different types of micromechanical models. More importantly, 

as the first step of the proposed homogenization-based approach, this study enables us 

to further the development of an accessible tool to assist pavement practitioners in 

ravelling analysis.   
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