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Abstract

According to literature, MIMO radars often use orthogonal waveforms on their different channels to
achieve a wide angular beam and so-called colored transmission. The generation of orthogonal signals
is very difficult and true orthogonality cannot be achieved in practice. The Circulating Codes provide
a simplified alternative to orthogonal signals, by transmitting the same waveform, but slightly shifted in
time from channel to channel. By applying digital beamforming on transmit through signal processing
on receive, a performance similar to orthogonal signals can be achieved. The Circulating Codes can
also be used with a spatial code along the antenna elements, to improve the auto-correlation properties
of the signal and thus the range resolution of the radar. These codes are called Hybrid or Delft Codes.

In this thesis, the Circulating Codes, as well as Hybrid Codes are revisited and analyzed again. An
implementation for simulations has been created in Matlab to examine their behavior in more detail.
To improve the range resolution of the Hybrid Codes, this thesis proposes the use of so-called Golay
pairs as spatial codes. Each Golay pair consists of two codes, which have the property that the sum
of their auto-correlation functions produces one strong peak and zero sidelobes. Since the application
of these codes requires the transmission of two pulses, the phase shift due to the displacement of a
moving target in between of the pulses has an impact on the result. This thesis focuses on themitigation
or correction of this phase shift, by the use of different methods and presents two possible solutions
which perform well in simulations.

Finally, some of the techniques are applied in practical measurements with an available radar system.
The results of these measurements show that the single-pulse techniques of the Circulating and Hybrid
Codes perform well with the system, while the multi-pulse techniques with Golay pairs suffer frommuch
higher sidelobes than expected from the simulations. First of all, this shows that the system has certain
issues that need to be improved. Secondly, it shows that Hybrid Codes with Golay pairs are sensitive
to disturbances and phase shifts. Therefore, very clean signals are required that might be difficult to
generate in practice.
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1
Introduction

The word radar is an acronym that stands for Radio Detection And Ranging. This expression dates
back to World War II, when the first working radar systems were being developed for military purposes
[1, 2]. Modern radar systems are much more complex and include measurements and processing
techniques that go far beyond the classical detection and ranging applications.

This introduction gives a short overview of general radar systems and concepts, as well as the modern
approach including multiple-input and multiple-output (MIMO) radars. In addition to that, the scope of
this thesis is defined and an outline of the chapters is given.

1.1. General radar background
Radar systems can usually be categorized by two characteristics: the antenna configuration and the
transmitted signal.

Concerning the antennas, radar systems usually fall into the categories of mono-static or multi-static
(mostly bi-static) radars (see figure 1.1). Mono-static means that the position of the transmit antenna is
(almost) identical with the receive antenna. Therefore, only one single antenna is used for transmission
and reception or both antennas are very close to each other. Bi-static or multi-static radar systems on
the other hand, consist of several separate antennas that are placed in a considerable distance to each
other [3].

Multi-static radars can also be used as so-called passive radars [4] that do not actively transmit a signal
themselves, but receive the reflection coming from an unrelated transmitter, for instance a radio station.
As in normal multi-static radar, the position of the transmitter needs to be known exactly. Since this
type of radar is only receiving, it is completely invisible to electromagnetic detection systems and has
a very low power consumption, because no signal has to be radiated.
Both, the mono-static and the multi-static concept, have their advantages and disadvantages, which
will not be further addressed here.

The transmit signals of radar systems can be divided into two categories as well: continuous wave-
form (CW) and pulsed waveforms. Continuous waveform radars use the same signal (for example a
linear frequency modulated (LFM) sweep) and constantly transmit it without interruption. Pulse radars
transmit pulses of the signal with pauses in between, in which they listen for reflected signals [3].

In this thesis, only active mono-static pulse radars are being considered.

1.1.1. Basic single antenna radar
The basic radar uses a single antenna, physically rotating in azimuth, for both transmission and recep-
tion. It can only operate in the direction the antenna is pointing at the moment of the measurement.
Most radar concepts can be explained with this simple example. For the following considerations, only

1
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1.5 Basic Radar Configurations and Waveforms 19

Transmitter

Receiver

(a)

FIGURE 1-19
Basic radar
configurations:
(a) Bistatic.
(b) Monostatic.

T/R

Transmitter

Receiver

(b)

Use of two antennas alone does not determine whether a system is monostatic or
bistatic. If the two antennas are very close together, say, on the same structure, then the
system is considered to be monostatic. The system is considered to be bistatic only if there
is sufficient separation between the two antennas such that “. . . the angles or ranges to the
target are sufficiently different. . . ” [2].

The transmitter is often a high-power device that can transmit EM waves with power
levels in the range of hundreds of kilowatts (103 watts) or even megawatts (106 watts).
The receiver, on the other hand, is a power-sensitive device that can respond to EM waves
in the range of milliwatts to nanowatts (10−3 to 10−9 watts) or less. In fact, it is not
uncommon for a radar receiver to detect signals as low as −90 dBm (dB relative to a
milliwatt). High-power EM waves from the transmitter, if introduced directly into the
receiver, would prevent the detection of targets (self-jamming) and could severely damage
the receiver’s sensitive components. Therefore, the receiver must be isolated from the
transmitter to protect it from the transmitter’s high-power EM waves. The bistatic radar
configuration can provide significant isolation by physically separating the transmitter
and receiver antennas.

There are some applications for which the bistatic system has a significant separa-
tion between the transmitter and receiver. For example, a semiactive missile has only the
receiver portion on board. The transmitter is on another platform. The transmitter “illu-
minates” the target while the missile “homes” in on the signal reflected from the target.

The bistatic radar can also be employed to enhance the radar’s capability of detecting
stealth targets. Recall that a target’s RCS is a measure of the strength of the EM waves
that are reflected from the target back toward the radar receive antenna. Stealthy targets
are designed to have a low RCS, thereby reducing the distance at which they can be seen.
In addition to other techniques, RCS reduction is achieved by shaping the target in a
particular way. This shaping may reduce the RCS when looking at the front of a target
using monostatic radar; however, it is often the case that the RF wave will scatter in a
different direction, providing a large RCS in some “bistatic” direction. When the bistatic

Figure 1.1: Difference between mono-static and bi-static radar systems. (a): bi-static radar system with separated transmitter
and receiver, (b): mono-static radar system with the same antennas for transmit and receive (or very close to each other). Figure
taken from [3].

the line of sight (LOS) between the radar antenna and the target is considered when distances are
mentioned.

The radar equation

The basic equation for all radar systems is the so-called radar equation. It describes the relationship of
signal power, signal frequency, antennas, the scattering of the wave due to the target and its distance
to the antenna. In the following, it is briefly derived, following [3].

The power density 𝑄 in Watts per square meter at the target can be calculated by multiplying the
transmit power by the gain in the direction of the target, divided by the surface of a sphere, because
the wave spreads out spherically from the antenna. The power density is therefore given as

𝑄 = 𝑃 𝐺
4𝜋𝑅 , (1.1)

where 𝑃 is the transmit power, 𝐺 the gain of the transmit antenna in the target direction and 𝑅 the
distance between transmit antenna and target.

The amount of reflected power is determined by the so-called radar cross section (RCS), which is the
ratio of the scattered power back to the radar and the intercepted power density at the target. The RCS
in square meters is therefore defined as

𝜎 =
𝑃
𝑄 , (1.2)

where 𝑃 is the reflected power from the target in the direction of the receive antenna.
The reflected power from the target is hence
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𝑃 = 𝑄 ⋅ 𝜎 = 𝑃 𝐺 𝜎
4𝜋𝑅 . (1.3)

The power density 𝑄 of the reflected signal back at the receive antenna can now be calculated by

𝑄 =
𝑃
4𝜋𝑅 = 𝑃 𝐺 𝜎

(4𝜋) 𝑅 . (1.4)

The received power is then given by the power density at the receive antenna multiplied with the effec-
tive area 𝐴 of the antenna:

𝑃 = 𝑄 ⋅ 𝐴 = 𝑃 𝐺 𝜎
(4𝜋) 𝑅 ⋅ 𝐴 . (1.5)

Since the gain is generally related to the effective area of the antenna and the wavelength of the signal
as

𝐺 = 4𝜋𝐴
𝜆 , (1.6)

where 𝜆 is the wavelength of the transmit signal carrier, the final equation for the received power is
defined as

𝑃 = 𝑃 𝐺 𝐺 𝜆 𝜎
(4𝜋) 𝑅 , (1.7)

as presented in [3] and [2], where 𝐺 is the gain of the receive antenna. Thus, the received signal
power can be calculated if the radar system, the target properties and its distance is known. All further
concepts are based on the relationships described with this equation.

Range measurements

A pulse radar sends a pulse, which can consist of any kind of signal, depending on the purpose of the
system. After transmitting a pulse, it listens for reflections to arrive at its antenna. Since the speed of
light is known, the range of an object can be determined from the delay of the reflected signal. It has to
be taken into account that the electromagnetic wave travels double the distance of the target [4]. The
range of a target is then being calculated by

𝑅 = 𝑐 ⋅ Δ𝑡
2 , (1.8)

where 𝑐 is the speed of light and Δ𝑡 the delay of the signal with respect to the moment of transmission.
Pulses are sent with a so-called pulse repetition frequency (PRF). It defines themaximum unambiguous
range of the radar system, when a single pulse is considered. The time between each pulse is called
pulse repetition time (PRT), which is the inverse of the PRF. The smaller the PRF (or the longer the
PRT), the longer the radar can wait for reflections. This means that the maximum delay of the target
reflection has to be smaller than the time between two pulses. The principle is shown in figure 1.2. The
maximum unambiguous range is thus defined as

𝑅 = 𝑐
2 ⋅ 𝑃𝑅𝐹 =

𝑐 ⋅ 𝑃𝑅𝑇
2 . (1.9)
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Pulsed radar
waveform.

measured in pulses per second (PPS) but is often expressed in hertz (cycles per second).
The PRF and PRI are related according to

PRF = 1

PRI
(1.10)

Pulse Width and Duty Cycle The fraction of time the transmitter is transmitting during
one radar cycle is called the transmit duty factor (or duty cycle), dt , and from Figure 1-20
is given by

dt = τ

PRI
= τ · PRF (1.11)

The average power, Pavg, of the transmitted EM wave is given by the product of the peak
transmitted power, Pt , and the transmit duty factor:

Pavg = Pt · dt = Pt · τ · PRF (1.12)

Range Sampling Figure 1-21 depicts a sequence of two transmit pulses and adds a
hypothetical target echo signal. Because the time scale is continuous, a target signal can
arrive at the radar receiver at any arbitrary time, with infinitesimal time resolution. In a
modern radar system, the received signal is normally sampled at discrete time intervals,
using an ADC, which quantizes the signal in time and amplitude. The time quantization
corresponds to the ADC sample times, and the amplitude quantization depends on the
number of ADC “bits” and the full-scale voltage. To achieve detection, the time between
samples must be no more than a pulse width; for example, for a 1 μs transmit pulse, the
received signal must be sampled at intervals of no more than a microsecond. Usually,
to achieve improved detection, oversampling is used; for example, there would be two
samples for a given pulse width. A 1 μs pulse width would suggest a 0.5 μs sample period,

Time

Pulse #1 return
from target 

Tx Tx

#1 #2

A/D Converter
Clock Pulses

Pulse #2 return
from target 

FIGURE 1-21
Pulsed radar
waveform showing
ADC clock pulses.

Figure 1.2: Basic priciple of a pulse radar. The radar transmits consecutive pulses with a distance of PRT (also called pulse
repetition interval, PRI). In between the pulses, reflected signals can be received. Figure taken from [3].

Velocity measurements and Doppler effect

A pulse radar can also measure the velocity radial to the antenna, which means in the direction of
propagation of the received signal, by making use of the Doppler effect. The faster a target moves,
the more the frequency of the reflected signals differs from the original one, as shown in figure 1.3. By
doing a Doppler analysis, the speed of the target can be determined from this frequency. This can be
done by applying a frequency analysis with a Fast Fourier Transform (FFT), for instance. The sign of
the measured velocity depends on the direction of the target with respect to the antenna.
By separating moving from static targets, a distinction can also be made between targets and unwanted
detections, so-called clutter. A big part of available radar systems is only interested in detecting and
tracking targets that are moving within certain velocity ranges, like airplanes or ships [3]. Clutter might
cover real target detections and these systems thus remove a big part of the clutter by discarding static
detections. This is called moving target indication (MTI).

Figure 1.3: Simple explanation of the Doppler effect. The reflected signal from a moving target is shifted in frequency, because
the movement in the propagation direction changes the wavelength of the signal. Figure taken from [5].

The PRF also defines the maximum unambiguous velocity (positive and negative), if a single pulse
is used. This leads to the so-called Doppler dilemma: the lower the PRF, the higher the maximum
unambiguous range, but the lower the maximum unambiguous velocity. Thus, a compromise between
properly detectable range and properly detectable velocity without ambiguities has to be found. This
compromise depends strongly on the purpose of the radar. If a long range of the radar is more important
than the velocity measurements, the PRT will be set to a high value. But if a wide range of detectable
velocities is needed, the PRT needs to be shorter. There is not one single solution for this Doppler
dilemma.

If the direction of the target regarding the antenna and thus the sign of its velocity is unknown, the
maximum unambiguous velocity for one transmit pulse is given by
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𝑣 = 𝜆 ⋅ 𝑃𝑅𝐹
4 = 𝑐 ⋅ 𝑃𝑅𝐹

4 ⋅ 𝑓 , (1.10)

according to [2] and [4], where 𝑓 is the carrier frequency of the transmit signal.

If several pulses are transmitted (in so-called bursts), varying PRTs can be applied in between of the
pulses. In the processing of the received signals, the different PRTs can be used to increase the
maximum unambiguous Doppler velocity while keeping the range ambiguity at the desired level or
vice versa. This is called range or Doppler unfolding and can for instance be applied by using so-called
staggered PRTs or PRFs (see for example [3]). It is a possible technique to avoid the Doppler dilemma.

Range, Angle and Doppler resolution

The following equations hold for a standard radar with a focused pencil beam.

The range resolution of a simple non-modulated signal (e.g. a sine wave) is depending on the length
of the transmit pulse. The shorter the pulse, the better the range resolution. In [2] and [3] the range
resolution is described as

Δ𝑅 = 𝑐𝜏
2 , (1.11)

where 𝜏 is the length of the pulse. Thus, the radar can resolve two targets that are further away from
each other than Δ𝑅, because otherwise the reflected pulses overlap and both targets will appear as a
single detection. This only applies for the LOS direction.

The angular resolution depends on the width (for azimuth) and height (for elevation) of the antenna. If
this dimension is called 𝐿 in the considered direction, the angular resolutions can be calculated with

Δ𝜃 = 𝑐
2𝐿 , (1.12)

as presented in [6].

The Doppler resolution depends on the observation time and the sampling frequency. The longer the
target is observed, the higher the number of points in the FFT for the Doppler analysis. As a result, the
steps between neighboring frequencies in the FFT plot are smaller. It can be described as

Δ𝑓 = 𝑓
𝑁 , (1.13)

where 𝑓 is the sampling frequency and 𝑁 is the number of samples recorded. Thus, the length of the
pulse needs to be increased, or alternatively a bigger number of pulses needs to be transmitted.

LFM radar waveform

There are many waveforms that can be used for radar systems. From the simplest sine wave to com-
plicated frequency or phase modulated signals. In this thesis, the focus lies on LFM waveforms. In
baseband, this kind of signal can be described as

𝑥(𝑡) = 𝐴 cos (𝜋𝐵𝜏 𝑡 ) − 𝜏
2 ≤ 𝑡 ≤

𝜏
2 , (1.14)

following [3], where 𝐴 is the amplitude, 𝐵 is the bandwidth, 𝜏 is the pulse length and 𝑡 is the time instant.
When transmitted, the signal is centered at a certain radio frequency (RF) 𝑓 . In [3] this is expressed
as
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𝑥 (𝑡) = 𝐴 cos (2𝜋𝑓 𝑡 + 𝜋𝐵𝜏 𝑡 ) − 𝜏
2 ≤ 𝑡 ≤

𝜏
2 . (1.15)

Inmost systems, the received signal at RFwill bemixed to baseband and a complex waveform is formed
from the received signal, consisting of an in-phase (I) and quadrature (Q) part [3]. This complex signal
is

𝑥(𝑡) = 𝐴 exp (𝑗𝜋𝐵𝜏 𝑡 ) − 𝜏
2 ≤ 𝑡 ≤

𝜏
2 . (1.16)

A time domain representation of a typical LFM sweep as well as its instantaneous frequency are pre-
sented in figure 1.4.
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Figure 1.4: LFM baseband waveform in time and frequency domain. (a) time representation of an LFM signal, (b) instantaneous
frequency of an LFM signal.

Pulse compression and matched filter

When using pulse compression, the signal inside the pulse is modulated, for example in phase or fre-
quency. In combination with a matched filter, this technique makes the detection much easier, because
the filter is matched to the transmit signal and thus gives the highest signal to noise ratio (SNR) when
transmit and receive signal are exactly the same and aligned perfectly. The filtering operation can be
represented as

𝑦(𝑡) = ∫ 𝑥 (𝑢)ℎ(𝑡 − 𝑢)𝑑𝑢 , (1.17)

where 𝑦(𝑡) is the output of the matched filter at time t, 𝑥 is the input signal and ℎ is the filter as shown
in for instance [1], [2], [3] and [7]. It turns out that the SNR is maximized when ℎ = 𝑥∗ and this leads to

𝑦(𝑡) = ∫ 𝑥 (𝑢)𝑥∗ (𝑡 − 𝑢)𝑑𝑢 , (1.18)

which corresponds to the auto-correlation function.

If pulse compression is used, the equation for the range resolution is different to equation 1.11. The
signal inside the pulse is modulated, which allows to use a long pulse with high energy but still achieve
the resolution of a short pulse. Thus, even close reflections can be separated when applying a matched
filter. In this case, the range resolution is defined by the bandwidth of themodulated signal, as explained
in [3, 6]:

Δ𝑅 = 𝑐
2𝐵 , (1.19)

where B is the bandwidth of the pulse.
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In modern pulse radar systems, pulse compression is commonly used and matched filtering is one of
the most important processing steps. Figure 1.5 shows the concept of pulse compression for an LFM
signal.

Basic Principle of Pulse Compression 239                                                                                                                                                                                                                                                                         

remains unchanged, the SNR is also unchanged regardless of the signal bandwidth. More pre-

cisely, when pulse compression is used, the detection range is maintained while the range reso-

lution is drastically improved by keeping the pulse width unchanged and by increasing the

bandwidth. Remember that range resolution is proportional to the inverse of the signal band-

width:

. Eq. (7.8)

7.3. Basic Principle of Pulse Compression 

For this purpose, consider a long pulse with LFM modulation and assume a matched filter

receiver. The output of the matched filter (along the delay axis, i.e., range) is an order of mag-

nitude narrower than that at its input. More precisely, the matched filter output is compressed

by a factor , where  is the pulse width and  is the bandwidth. Thus, by using long

pulses and wideband LFM modulation, large compression ratios can be achieved. 

Figure 7.2 illustrates the ideal LFM pulse compression process. Part (a) shows the envelope

of a pulse, part (b) shows the frequency modulation (in this case it is an upchirp LFM) with

bandwidth . Part (c) shows the matched filter time-delay characteristic while part

(d) shows the compressed pulse envelope. Finally, part (e) shows the matched filter input/out-

put waveforms.
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 Figure 7.2. Ideal LFM pulse compression.

f1

Figure 1.5: The basic principle of pulse compression. (a) the envelope of the transmit pulse of length , (b) modulation of the
pulse (LFM), (c) matched filter time-delay characteristic, (d) the compressed pulse with new length , (e) the whole process is
achieved by using a matched filter. Figure taken from [1].

1.1.2. Phased-array radar
To improve the performance of the basic radar, modern radars usually use antenna arrays made out of
several antenna elements. These arrays mostly have a linear, planar or circular element pattern. By
this means, the radiation pattern of the antenna can be adjusted to create the desired beampattern.
For instance, this can be a narrow beam that can be steered electronically without moving the antenna.
Such a beam is a combination of the wide element pattern and the array pattern resulting from the
usage of several elements, as can be seen in figure 1.6.

The steering of the beam is done by using the same signal in all elements and then adding small phase
shifts between the elements according to the desired angle. For a pencil beam, the correct phase shifts
can be calculated by the use of equation 1.20 from [8]. Hereby, a linear antenna array can theoretically
be steered from −90∘ to 90∘.

Φ = 𝑘𝑑 cos 𝜃 + 𝛽 , (1.20)

where 𝑘 = 2𝜋/𝜆 is the wavenumber, 𝑑 is the distance between two elements in meters, 𝜃 is the steering
angle and 𝛽 is an additional phase shift (usually set to 0).
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FIGURE 8-48
Array Radiation
Pattern

(Array factor) × (Elemental pattern)         =         (Array pattern)

arrays (hundreds of elements or more) but tends to result in degradations to the beam
patterns for small arrays of a modest number of elements (e.g., 20) as the illumination
function is inadequately sampled by such few elements.

Applying a tapered illumination function to an array results in a broadened beamwidth
and consequent loss of gain, which affects both the transmitting and receiving arrays. This
reduction is quantified in Table 7-1 and Table 8-1 for various tapered weighting functions.
The loss in the gain can be calculated by evaluating the ratio of the coherent to incoherent
combination of the weighted signals of each element for the tapered and uniform arrays.
This is given by
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where N is the number of elements in the array, and wi is the weighting of the i th element.
However, the reduction in element weightings also causes a reduction in the trans-

mitted power. Hence, the transmitting array suffers a double hit as a result of tapering—a
reduction in gain and power—whereas the receiving array suffers the reduction only in
gain. For example, a uniform weighting function can be applied by setting the magnitude
response of all elements to 1. If, however, the magnitude response of all elements is set
to 0.5, then the array is still uniformly weighted and its gain is unaffected; however, the
transmitted power reduces accordingly.

The array analysis considered so far does not take into account several practical
details, such as the mutual coupling between elements and the edge effects encountered
by elements near or on the periphery of an array. These can significantly affect the radiation
pattern.

8.5.3.5 Conformal Arrays
In conformal arrays, elements are arranged on the surface of the vehicle that carries them.
They are distributed in a geometry that conforms to the profile of the vehicle. This may
be a non-Euclidean curved surface such as a sphere or a tangent ogive, which is the shape
of the nose cone of many (supersonic) airborne vehicles. Such arrays possess the obvious
advantage that the array can be accommodated on the outer surface of the vehicle and
does not need to occupy space within a radome. For many airborne radars, the shape of
the radome is dictated by aerodynamic considerations and the resulting radome shapes
are not ideally suited to maintain the best antenna performance, particularly with respect
to sidelobe level and the purity of polarization. Conformal arrays can dispense with the
radome altogether, but the analysis of these arrays is far from trivial.

Figure 1.6: Explanation of the array pattern: the array factor (which is only depending on the number of elements) is multiplied by
the element beam patterns and produces a narrow beam. With other array factors or element patterns, different array patterns
can be achieved. Figure taken from [2].

1.1.3. MIMO radar
As mentioned above, when the same signal is used in every element of an antenna array, it interferes
constructively and destructively and as a result, a narrow beam or other patterns can be steered in
the desired directions. When arbitrary signals are used in each channel, a radar system is called a
MIMO radar [9]. This concept is explained in figure 1.7. The different signals give this kind of radar
an advantage over common phased array radars. In the following, it is assumed that each antenna
element is connected to one channel of the radar system, which generates and transmits exactly one
of the transmit signals.
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an effective antenna taper. This is evident from the nondistinct 

phase centers, which admit a triangular coarray.

and receive elements are spaced so that the virtual phase centers 

form a ULA of M  N 

has been called a Nyquist array [22] because it is critically sam-

pled in the spatial sense. This will be M times longer than the 

virtual array generated by a phased array of N receive elements, 

suggesting an M-fold improvement in angular resolution. This 

are presented in Figure 2.

-

thogonal waveforms come at a cost. The phased array forms a 

high-gain beam on transmit that improves SNR by a factor of M. 

This is not the case when orthogonal waveforms are transmitted.

-

forms or perfectly correlated waveforms can be best under-

stood by considering an approach to spatial beamforming. 

This will also allow us to consider cases in between these two 

extremes. A signal model and beamforming approach will be 

developed. This is followed by an extension of standard an-

tenna metrics to the MIMO case, which will elucidate the rela-

set of waveforms.

B. MIMO RADAR SIGNAL MODEL

Consider a MIMO radar that transmits M (generally) indepen-

dent waveforms. Each signal may be emitted by a separate ra-

Alternatively, an array divided into a number of subarrays (pos-

sibly overlapped) could be used where each subarray acts as 

an independent radiating element. The only requirement is that 

each signal be emitted from a distinct phase center. The signals 

will be observed by N receive elements. The elements used on 

receive may or may not be the same as those used on transmit. 

The operation of a MIMO radar is illustrated in Figure 3.

radar that is due to a single point scatterer. This can be extended 

to more complex scenarios because of linearity. Without loss of 

generality, assume that the return is observed with zero delay; 

equivalently, we consider the output of the radar signal proces-

sor in the center of the range bin containing a target. We revisit 

this assumption in Section V and investigate its impact. For 

clarity, we also assume that the signal is narrowband relative to 

the size of the array. Consequently, the data observed by each 

array element will be identical up to a phase shift.

Let x
m
(t) be the waveform emitted by element m of the trans-

mit array. The signal observed by element n of the receive array 

from a target at an angle 
0
 with a (complex-valued) backscatter 

 may be written as

 (8)

where v
n
(t) is the observation noise, a

m
(

0
) and b

n
(

0
) are the 

phase shifts on transmit and receive, respectively, which cor-

respond to the target angle 
0
. If, for example, the array used 

on transmit is a ULA with interelement spacing d, the transmit 

phase shifts corresponding to an angle  would be

 (9)

for m = 1, …, M, where c is the speed of waveform propagation. 

 (10)

where R
m
 is the range to the target from element m.

These phase shifts may be arranged into the transmit and receive 

steering vectors a( ) and b( ). Note that  and  are 

considered to be column vectors. While (8) is the data observed 

by a single receiver, we may use this steering-vector notation to 

compactly write the data observed by the MIMO radar, again 

corresponding to a single target at angle 
0
, as

 (11)

Figure 3. 
MIMO radar signal model. In this illustration, M = N = 3.

Figure 1.7: The basic concept of MIMO radar: different waveforms are transmitted in each channel of the MIMO radar. They
are reflected by the target and are then received by the receiver channels. Since the transmitted signal looks different in every
azimuth angle, the received signal can be associated with exactly one direction. Figure taken from [10].

Assuming a radar systemwith𝑁 transmit and𝑁 receive antennas that transmits narrowband signals
in each channel, the overall transmit signal 𝑠 to an assumed target can be described by the following
equations 1.21 to 1.26 as derived in [9].

𝑠 (𝑚) = ∑𝑒 ( )𝑥 (𝑚) ≜ �⃗�∗(𝜃)�⃗�(𝑚), 𝑚 = 1, ..., 𝑀 , (1.21)

where 𝑓 is the carrier frequency of the radar, 𝜃 is the transmit angle, 𝑥 is the signal in channel 𝑛, 𝜏 (𝜃)
is the time needed for the signal from the 𝑛th transmit antenna to reach the target, �⃗� are the complex
amplitudes due to the phase shifts caused by the transmit antennas at angle 𝜃, (⋅)∗ is the conjugate
transpose, �⃗� are the transmit signals in each channel and 𝑀 is the number of samples of the transmit
signal pulse in each channel.

The vector of the transmit signals in all channels is

�⃗�(𝑚) = [𝑥 (𝑚) 𝑥 (𝑚) ... 𝑥 (𝑚)] (1.22)

and its complex amplitude vector can be described as
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�⃗�(𝜃) = [𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )] . (1.23)

Let 𝑦 (𝑚) now be the reflected signal from the target received by the 𝑛th receive antenna. The vector
for all receive channels is

𝑠 (𝑚) = [𝑠 , (𝑚) 𝑠 , (𝑚) ... 𝑠 , (𝑚)] (1.24)

and the according complex amplitudes vector due to the receive antenna positions is

�⃗�(𝜃) = [𝑒 ̃ ( ) 𝑒 ̃ ( ) ... 𝑒 ̃ ( )] , (1.25)

where 𝜏 (𝜃) is the time for the signal to be reflected from the target at 𝜃 and to reach the 𝑛th antenna.
When a single point target is assumed, the received signal can be described by

𝑠 (𝑚) = ∑𝛽 �⃗� (𝜃 )𝑠 (𝑚) + 𝜖(𝑚), 𝑚 = 1, ..., 𝑀 , (1.26)

where 𝐾 is the number of targets, 𝛽 are complex amplitudes related to the target reflection, 𝜖 is noise
and interference and (⋅) is the complex conjugate.

Since all transmit signals are received by each receive antenna, the performance of such radar cor-
responds to a phased array radar with more elements than it actually uses. This concept is called
antenna diversity and improves the performance, because the reflected signal is received at different
positions and thus, each channel adds extra information to the measurement.
This bigger array is called a virtual array [10, 11] and leads to a better angular resolution. When 𝑁
orthogonal signals are transmitted through the same number of transmit antenna elements and the
reflection from a target is then received with 𝑁 receive antenna elements, the resulting virtual array
is longer than the physical one (see figure 1.8). It can even have a length of up to 𝑁 ⋅ 𝑁 , if transmit
and receive antenna are configured in a way that the virtual phase centers align without overlapping
(see figure 1.9). This kind of array configuration is then called a Nyquist array [10, 11].

AUGUST 2014, Part II of II IEEE A&E SYSTEMS MAGAZINE  79

Davis ,  Showman, and Lanterman

the phased array case, where the waveforms are perfectly cor-

related from element to element, only data corresponding to a 

single transmit phase center can be processed, providing only N 

virtual phase centers. This is illustrated in Figure 1.

The MIMO virtual array is an extension of the concept of 

the coarray for coherent imaging described in [21], which con-

siders an imaging system that scans a transmit and receive beam 

of transmit-receive events. The MIMO virtual array, however, 

corresponds to a single transmit pulse or dwell.

A well-known result of antenna theory is that the aperture il-

lumination function g(x) and the antenna beampattern are Fou-

rier duals of one another. For example, if {x
T/m

} is the set of 

locations of the elements in the transmit array, then the aperture 

illumination function for the (unweighted) transmit array is

 (4)

We can similarly construct the aperture illumination function 

for the receive array:

 (5)

where {x
R/n

} is the set of element locations for the receive array.

The Fourier transform of the aperture illumination functions 

(4) and (5) are the array transmit and receive beampatterns, re-

spectively. If the array elements are uniformly spaced, then the 

beampattern is the familiar Dirichlet kernel of Fourier analysis, 

which is also called the “aliased” or “periodic” sinc function:

 (6)

The virtual array is obtained by convolving the transmit and 

receive aperture functions:

 (7)

The virtual array consists of elements located at {x
T/m

 + x
R/n

: m 

= 1, …, M; n = 1, …, N}. The virtual array is the convolution 

of the aperture illumination functions, so the two-way beampat-

tern of a MIMO radar with orthogonal waveforms is the Fourier 

transform of its virtual array. The length of the virtual array dic-

tates the angular resolution, and any taper applied by repeated 

elements can improve sidelobe performance.

We now consider the MIMO virtual array for a couple of 

physical arrays and show how they lead to an improved beam-

pattern or can improve angular resolution. First, consider the 

case shown in Figure 1, where a critically sampled, uniform 

linear array (ULA) is assumed. While the orthogonal waveform 

case has a slightly longer virtual array, which predicts slightly 

improved angular resolution, the dominant effect is to provide 

Figure 1. 

Figure 2. 
Virtual arrays corresponding to MIMO Nyquist array.

Figure 1.8: Physical arrays compared with their corresponding virtual arrays (filled colored circles). Left: A phased array radar
with leads to a virtual array of length 3. Right: A MIMO radar with leads to a virtual array of length
5. Figure taken from [10].

In theory, one would prefer using orthogonal transmit signals, so that the transmit signals do not interfere
constructively or destructively. Then, the different channels would be fully independent and the MIMO
radar would radiate with a very wide beam. This means that its beam has the same strength in all
directions simultaneously. Figure 1.10 shows this principle in comparison to a classical phased array
radar. It is obvious that the MIMO radar transmits equally in all directions while the phased array radar
produces beams that are very strong in some directions and very weak in others.
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the phased array case, where the waveforms are perfectly cor-

related from element to element, only data corresponding to a 

single transmit phase center can be processed, providing only N 

virtual phase centers. This is illustrated in Figure 1.

The MIMO virtual array is an extension of the concept of 

the coarray for coherent imaging described in [21], which con-

siders an imaging system that scans a transmit and receive beam 

of transmit-receive events. The MIMO virtual array, however, 

corresponds to a single transmit pulse or dwell.

A well-known result of antenna theory is that the aperture il-

lumination function g(x) and the antenna beampattern are Fou-

rier duals of one another. For example, if {x
T/m

} is the set of 

locations of the elements in the transmit array, then the aperture 

illumination function for the (unweighted) transmit array is

 (4)

We can similarly construct the aperture illumination function 

for the receive array:

 (5)

where {x
R/n

} is the set of element locations for the receive array.

The Fourier transform of the aperture illumination functions 

(4) and (5) are the array transmit and receive beampatterns, re-

spectively. If the array elements are uniformly spaced, then the 

beampattern is the familiar Dirichlet kernel of Fourier analysis, 

which is also called the “aliased” or “periodic” sinc function:

 (6)

The virtual array is obtained by convolving the transmit and 

receive aperture functions:

 (7)

The virtual array consists of elements located at {x
T/m

 + x
R/n

: m 

= 1, …, M; n = 1, …, N}. The virtual array is the convolution 

of the aperture illumination functions, so the two-way beampat-

tern of a MIMO radar with orthogonal waveforms is the Fourier 

transform of its virtual array. The length of the virtual array dic-

tates the angular resolution, and any taper applied by repeated 

elements can improve sidelobe performance.

We now consider the MIMO virtual array for a couple of 

physical arrays and show how they lead to an improved beam-

pattern or can improve angular resolution. First, consider the 

case shown in Figure 1, where a critically sampled, uniform 

linear array (ULA) is assumed. While the orthogonal waveform 

case has a slightly longer virtual array, which predicts slightly 

improved angular resolution, the dominant effect is to provide 

Figure 1. 

Figure 2. 
Virtual arrays corresponding to MIMO Nyquist array.

Figure 1.9: Nyquist array and its virtual array. When the transmit and receive elements are spaced properly, the virtual phase
centers align without overlapping and the virtual array (filled colored circles) reaches its maximum length. Figure taken from [10].
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FIGURE 4-5
MIMO array factor
on transmit. This
example
corresponds to an
array with 10
subarrays where
each subarray has
20 λ/2 spaced
elements.
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Recall that θ0 is the angle to which the beam is digitally steered and that θ̃0 is the direction
to which the phased array steered the beam on transmit. The receiver is free to vary θ0

with digital processing, but θ̃0 is fixed.
As should be expected, the receive gains are identical between the phased array and

orthogonal waveforms, but there are two key differences between the transmit gain terms.
First, since the phased array transmits a concentrated beam in the direction θ̃0, it is unable
to apply any digital steering of the transmit beam; the phased array has already decided
in which direction to send energy. On the other hand, the radar that employs orthogonal
signals is able to resteer the transmit beam to any angle (so long as the subarray pattern
permitted energy to be radiated in that direction).

However, the cost of doing this is evident. The phased array realizes a transmit beam-
forming gain that provides an increase in SNR by a factor of M , the number of transmitting
subarrays. This benefit is lost by the radar that uses orthogonal signals.

These differences are illustrated in Figure 4-5, where the array factors of a MIMO
radar employing orthogonal waveforms as well as a traditional phased array are presented.

The performance of an array antenna for use in a radar system is well quantified
by considering three gain patterns: the steered response, the beampattern, and the point
spread function. These describe the ability of the data collected by the system to be used
to digitally form beams in desired directions with desired properties.

The steered response and the beampattern quantify the degree to which the antenna
can be digitally steered to an angle of interest as well as the ability to reject returns from
undesired angles. Given an angle of interest, the steered response describes the ability
of the array to observe signals arriving from that direction when the array is steered to
that direction of interest, while the beampattern describes the ability of the array to reject
targets from other angles [14]. The distinctions between these patterns are summarized in
Table 4-1.

Let GRX (θ ; θ0) be the gain of the receive array in the direction θ when it is digitally
steered to the angle θ0. The steered response evaluates this gain for the case when θ = θ0,
that is, the gain is evaluated in the direction that the array has been digitally steered. If the
array is steered to the angle θ0, then the beampattern evaluated at θ describes how much

Figure 1.10: Transmit array factor for phased array radar and a MIMO radar using orthogonal waveforms. Figure taken from
[11].

Therefore, MIMO radars radiate in all directions simultaneously, while transmitting a different signal in
each azimuth direction, which makes it possible to sort out the transmitted signals from the received
signals on the receiver side. More detailed examinations of the advantages of MIMO radar to phased-
array radar have been conducted both in [9] and [11] and will not be discussed in this thesis. In chapter
2, the concept of colored space-time processing will be explained, which is based on general MIMO
radar.

1.2. Thesis topic summary
The main advantage of MIMO radar over conventional single-input single-output (SISO) radar is the
fact that it observes the whole space simultaneously. Since a SISO radar scans the different angles,
small targets that only appear very briefly and are surrounded by strong clutter might be missed. This
could be the periscope of a submarine for example, as suggested in [12]. MIMO radar could help detect
this kind of targets and track many of them in parallel. In addition to that, MIMO radars could improve
the Doppler resolution by providing a longer integration time. Because the radar is transmitting in all
directions at the same time, a target will constantly be illuminated.
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As already mentioned above, the optimal signals for a MIMO radar would be orthogonal to each other.
In practice, orthogonality and perfect cross-correlation properties are very difficult to achieve or even
impossible [13].
Firstly, there is only a limited number of signals that are theoretically orthogonal to each other. Not
every kind of signal can thus be used for MIMO radar in general. Therefore, if all channel signals have
to be orthogonal to each other, this restricts the choice of the used signal tremendously.
Secondly, it will never be possible to actually use orthogonal signals in practice because of the imper-
fections of a real system. There will always be noise and distortions, like clock leakages, which can
lead to constant tone signals on top of the transmit signal. In addition to that, there is also always a
certain amount cross-talk between the different channels. Finally, if an antenna array with a huge num-
ber of antenna elements N is being used, the effort for storing and generating these N signals might be
challenging.

In order to tackle these problems, new techniques have been developed by Galina Babur et al. in [13]
and [14]. These so-called Circulating Codes and their successors, the Hybrid Codes, also called Delft
Codes, use only one waveform, which is transmitted in every channel, but with a small time delay.
These techniques are described in detail in chapter 2.

1.2.1. Problem definition
This thesis is trying to improve these theories by using new waveforms with multi-pulse processing in-
stead of single pulse processing as described in the original papers. The focus lies on the improvement
of the range resolution.
In addition to the improvements, this thesis will also investigate how well these theories perform on a
real system. The radar group of TU Delft has developed a radar system with 8 transmit and 1 receive
channel to examine the theories mentioned in [13] and [14], which will be used for a series of mea-
surements. Previous measurements showed that the system sufferes from constant tones, harmonics,
cross-talk and some sort of unwanted frequency modulation that produces a ripple on the received
signal. Despite these results, the systems performance was rated good enough to produce acceptable
waveforms for the Circulating and Hybrid Codes.

1.3. Outline of this thesis
This chapter 1 gives an introduction and necessary background information. Chapter 2 describes the
theories studied during literature review and the above mentioned codes in detail. In addition to that,
the ASTAP radar system is briefly introduced. In chapter 3, the new approach for Hybrid Codes will be
discussed and explained. Chapter 4 deals with the implementation of the new methods in Matlab and
the analysis of the simulations and measurements. The last chapter 5 discusses the results mentioned
in chapter 4 and draws conclusions. In addition, an outlook and recommendations are given for future
work.





2
Theory in literature

This chapter explains already available theory that is the basis for this thesis. These concepts are all
based on MIMO radar. All considerations are purely theoretical.

2.1. Digital beamforming (DBF)
Digital beamforming is a concept to form beams during signal processing, after the signal has been
received. The idea is, to transmit the signal with a very wide beam (for example by only using one of
the elements of an antenna array or by using an appropriate phase function between the elements) and
then use all elements on receive. Since the same signal will be received in all receive antennas, but
with a different phase, beams can be formed digitally in certain directions. The concept is explained in
figure 2.1.

500 C H A P T E R 11 Space-Time Coding for Active Antenna Systems

The purpose of this chapter is to outline the main possibilities and to show that
the simultaneous requirement for wideband and multiple channels opens the way to new
beamforming techniques and waveforms, where different signals are simultaneously trans-
mitted in different directions, for jointly coding space and time, and coherently processed
in parallel on receive. Such concepts, first proposed and demonstrated by S. Drabowitch
and J. Dorey [1, 2], should now be considered as mature techniques to be implemented in
operational systems.

Basically, the main advantages to be gained are a better extraction of targets –
especially slow targets – from clutter, multi-path, and noise, and a better identification of
targets, obtained through longer observation times and wider bandwidths.

Colored space-time exploration (Section 11.2), interleaved scanning (Section 11.3),
taking into account the important issues of target coherence and diversity gain will be
considered in the following sections. Special consideration of grating lobes issues will then
give orientations for code selection (Section 11.4), and wideband MTI will be examined
(Section 11.5). The conclusion will summarize the benefits of an optimized space-time
management on transmit and receive, for surveillance MTI modes.

11.2 COLORED SPACE-TIME EXPLORATION

11.2.1 Digital Beamforming (DBF)

11.2.1.1 Principle and objectives
Standard digital beamforming is a procedure depicted in Figure 11-1, where a wide angular
sector instantaneous coverage is obtained with a wide beam illumination on transmit
(transmission through one sub-array), at least in one dimension – elevation or azimuth, and
directive beams are formed on receive through coherent summations of signals received
on different sub-arrays, in parallel for each direction.

Digital beamforming generally does not essentially change the power budget, com-
pared to standard focused exploration, since the lower gain on transmit (due to wider
illumination) is traded against a longer integration time (made possible by the simulta-
neous observation of different directions). Though precise performances depend on the
fluctuation laws of targets and the requirements on detection and false alarms probabilities,
one can take as a rule the global equivalence in power budget.

FIGURE 11-1
Digital beamforming.
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θ

Figure 2.1: Digital beamforming: one signal is transmitted with a wide beam, by only using part of the existing antenna array.
The reflected signal is then received in all channels. Since the different elements receive the signal with different phase shifts,
beams can be formed digitally on receive in every direction after reception. Figure taken from [15].

The advantages of a widened beam on transmit are better visibility of short events, like so-called RCS
flashes, when a target appears only for a very short moment and a higher Doppler resolution [15]. One
disadvantage for airborne radars is that there is clutter spreading in Doppler because a bigger surface
is illuminated. Ground objects will appear at various Doppler frequencies depending on their angle to

13
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the antenna. For surface radars, a wide beam with the same transmit signal in every direction might
be problematic, if clutter mostly appears at certain angles [15]. For instance, if one is interested in
observing a certain part of airspace but not another, it would not be possible to easily suppress the
reflections from that area. If an adjusted signal would be transmitted in that specific direction, clutter
could be more easily suppressed. In general, DBF does not change the power budget with respect
to a normal focused beam, because the lack in gain is compensated with a longer integration time
[6, 15, 16].

To sum up, in certain situations it can be useful to transmit different signals in each direction. Therefore,
in order to be able to use a wide beam but still be able to perform proper clutter rejection, the concept
of colored transmission, also called colored space, has been introduced.

2.2. Colored Space-Time Processing
The idea of colored space-time processing is to transmit different transmit signals in each channel,
preferably orthogonal, so that the different channels do not add up coherently and the overall transmit
signal is different in every direction. This leads to a wide beam on transmit. But instead of only applying
digital beamforming on receive, digital beamforming is also applied on transmit but by means of signal
processing on receive [13]. This is done by taking into account the phase shifts due to the transmit
antenna element positions and the known transmitted signal. The process is explained in figure 2.2
and equations 2.1 to 2.3. The result of this processing is a widened beam while still having a good
clutter rejection.
In [6], François Le Chevalier summarizes the advantages of Colored Space-Time processing (also
called Coherent Collocated MIMO processing) as a better target extraction of slow targets from clut-
ter, noise and multipath, as well as a better identification due to longer observation times and larger
bandwidths.

Digital beamforming on transmit by means of signal processing on receive is realized by forming
”beams” in all directions, on transmit as well as on receive. In order to do that, the transmitted sig-
nal, as well as the received signal in a certain direction 𝜃 are used as input signals for the matched
filter. A sweep over the angles in all directions of the observed half-space is conducted. Therefore,
180∘ are being digitally scanned. The transmit signal can be described as

𝑦 (𝑡) = [𝑒 ⋅ ⋅ ( ) 𝑒 ⋅ ⋅ ( ) ⋯ 𝑒 ⋅ ⋅ ( )] ⋅
⎡
⎢
⎢
⎣

𝑠 (𝑡)
𝑠 (𝑡)
⋮

𝑠 (𝑡)

⎤
⎥
⎥
⎦
, (2.1)

while the received signal is

𝑦 (𝑡) = [𝑒 ⋅ ⋅ ( ) 𝑒 ⋅ ⋅ ( ) ⋯ 𝑒 ⋅ ⋅ ( )] ⋅
⎡
⎢
⎢
⎣

𝑠 (𝑡)
𝑠 (𝑡)
⋮

𝑠 (𝑡)

⎤
⎥
⎥
⎦
, (2.2)

where 𝑘 is the wavenumber of the carrier frequency, 𝑥 and 𝑥 are the positions of the 𝑛th transmit
and 𝑚th receive antenna elements respectively, 𝜃 is the instantaneous transmit and receive angle,
𝑁 and 𝑁 are the numbers of transmit and receive antenna elements respectively, 𝑠 is the signal
transmitted on the 𝑛th transmit antenna element and 𝑠 is the signal received on the 𝑚th receive
antenna element.

Finally, the matched filter is applied on these transmit and receive signals. If the target is assumed to
be stationary, this leads to the so called ambiguity function

|𝜒(𝜏)| = |∫ 𝑦 (𝑡)𝑦∗(𝑡 − 𝜏)𝑑𝑡| , (2.3)



2.2. Colored Space-Time Processing 15

similar to the one presented in [7], where |𝜒(𝜏)| is the ambiguity function when the received signal is
displaced in time by 𝜏. As shown in equation 2.3, the ambiguity function is mostly given as its magnitude
squared [1, 2].

There was a test fire alarm today and some other small interruptions. Not the most productive day. 

But it is slowly going forward… 

I am not sure if my description of the beamforming is correct. Apparently there is only one 

beamforming, which exists of two parts in my case. I am going to ask Hans about that. 

 

I am going to stop for today and go to Bouwpub. Tomorrow I need to continue with Le Chevalier: 

Wideband Wide Beam Motion Sensing. Hopefully, I will be able to finish the literature rereview 

tomorrow, so that I can start finalizing my figures on Thursday. 

 

 

13-09-2017 

 

Went to the doctor today, my knee seems to be OK, but I should maybe get some physiotherapy. 

Anyway, I continued my literature rereview. 

 

I think that I need to understand the virtual array stuff in more detail so that I am able to explain it if 

there will be a question. Maybe Hans also knows more? 

 

I am done for today. I didn’t manage to finish all references, but almost. Tomorrow I have to 

continue with Pereira2011. From there it should not take long to finish. Afterwards, I am going to 

focus on the figures. 

 

14-09-2017 

 

Finished going through the literature again. In the next step, I will start preparing some of the final 

figures. 

 

I started putting the final figures… this takes longer than I thought. So I am going to continue with 

this tomorrow and when it is done, I will do the final simulations (which parameters?). I should also 

find a good color scheme for the simulation figures. 

 

 

15-09-2017 

 

New version: 

 

 

Transmit 

signal at 

angle θ 

st
1
 

st
2
 

st
Ntx

 

sr
1
 

sr
2
 

sr
Nrx

 

Matched 

filter 

yt 

yr 

Χ(τ) 

Receive 

signal at 

angle θ 

Figure 2.2: Simplified colored space-time processing. The beamforming is done by taking into account the antenna positions
and the transmitted and received signal. Input for the matched filter are the transmitted and received signal in the assumed
target direction θ.

The technique of colored space allows to monitor an unlimited number of beams [13] by applying the
above signal processing on the received signal. This means that theoretically, an unlimited amount of
targets can be detected and tracked simultaneously.

2.2.1. Circulating Codes
The usage of true orthogonal signals is impossible in reality, as has been stated above. This is why
researchers at TU Delft developed an alternative that is more easily realizable and still gives the pos-
sibility to perform colored space-time signal processing. The concept is called Circulating Codes and
is only based on one waveform.

The concept is very simple: there is only one waveform used, which is shifted in time between the
different channels of the radar system. The signal in the 𝑛th channel can be described as

𝑠 (𝑡) = 𝑎 ⋅ 𝑠(𝑡 − (𝑛 − 1) ⋅ Δ𝑡) , (2.4)

according to [13], where 𝑎 is the amplitude in the 𝑛th channel and Δ𝑡 is the relative time shift between
two channels. The overall concept is also shown in figure 2.3.
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the circulating codes presented in this paper, themultidimen-
sional ambiguity function should be employed [8, 9].

Iis paper describes a solution for the proposed wave-
forms based on the use of a novel and technically simple
solution of transmitting only one waveform circulating from
one antenna element to another (or from one subarray to
another) with a very small relative time shiN. In this way
the radiated signals have exactly the same coding complex
envelope, highly overlapping both in the time and frequency
domains.

Iepaper is organized as follows. In Section 2 the concept
of the circulating space-time codes, which applies to all
possible waveforms having good autocorrelation proper-
ties, is introduced. Section 3 describes the multidimensional
ambiguity function used for the space-time signals analysis.
Section 4 gives the examples of the ambiguity functions for
a number of circulating codes examples. Ie capabilities of
the waveforms for the beam-forming on transmit and pulse
compression are shown. Section 5 contains the conclusions.

2. Circulating Codes Concept

Ie transmitted waveforms are assumed to be encoded by
the same waveform �(�) circulating with a relative time shiN
through  MIMO transmitter channels (see Figure 1). Ie
waveform ��(�) circulating through the !th channel can be
written as

�� (�) = "� ⋅ � (� − (! − 1) ⋅ Δ�) , (1)

where the index ! represents both the number of the
transmitting channels and the number of the transmitted
waveforms. Ie relative time shiN Δ� between the circulating
signals is equal to 1-sample time, Δ� = 1/Δ&, where Δ&
is the signal bandwidth. For waveforms with a large BT-
product (compression ratio), the relative time shiN is very
small compared to the pulse duration ' because, in fact,
BT = ' /Δ�. For the sake of simplicity, the amplitudes "� are
assumed to be the same and equal to one and will be omitted
further.

Ie simplicity of implementation of the circulating codes
should be emphasized. Because of the use of only one wave-
form, only one complex signal with a large BT product should
be generated; and then it circulates in all the transmitter
channels with a small relative oZset.
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Figure 2: Circulating signals.

Figure 2 shows the circulating signals ��(�), ! = 1 ⋅ ⋅ ⋅  .
Ie total radiated signal �!(�) has the following properties. It
has the same duration' as the signal �(�).Iis is explained by
the fact that the envelope of the sum signal has a trapezium
shape with duration ' at −3 dB level. Ie relative time delay
of the signal �!(�) compared to �(�) is equal to the half of the
relative time shiN between the [rst and the last circulating
signals. Iis time delay is constant and it is equal to ( −
1) ⋅ Δ�/2. It can be compensated at the signal generation stage
in the MIMO radar transmitter by the equal shiN of all the
radiated signals or by compensation of this known time delay
at the signal processing stage in the MIMO radar receiver.

Ie time oZset used in the circulating signal can be
looked at as a time-delay beam-steering (see, e.g., [10]). Ie
time-delay steering of array antennas is used to steer the
narrowmain beam of the antenna array physically. When the
circulating signals are used for sounding, the radiated beam
is not steered, and the signals are radiated within the wide
angle. Ie time shiNs within the circulating codes are used
not to steer the beam but to keep it as wide as possible. Ie
beam-forming on transmit (narrowing of the main beam) is
implemented by the signal processing means on receive.

Array theory tends to discuss things in phase rather
than delay, so we can convert the delay experienced by the
circulating signal into a phase shiN, between adjacent antenna
elements, at a given frequency:

Δ* = 2+ ⋅ - ⋅ Δ� = 2+ ⋅ -Δ& , (2)

where - is the radiated signal’s frequency. Since the radiated
signal bandwidth Δ& is not equal to zero, the phase shiN is
not [xed.Ie phase shiN is a function of the frequencyΔ*(-)
where the radiated signal’s frequency belongs to the following
interval: - ∈ [(-0 − Δ&/2) ⋅ ⋅ ⋅ (-0 + Δ&/2)], where -0 is the
radiated signal’s central frequency.Ierefore, the range of the
phase shiN described by (2) can be written as

(Δ*min ⋅ ⋅ ⋅ Δ*max) = ((Δ*0 − +) ⋅ ⋅ ⋅ (Δ*0 + +)) , (3)

where Δ*0 is the phase shiN provided by the central radiated
frequency. Equation (3) shows that the phase shiN within the
radiated signal’s bandwidth changes by 2+, which character-
izes the full angular coverage.
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-
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is the radiated signal’s frequency. Since the radiatedwhere -

Figure 2.3: The concept of the Circulating Codes, as also described in equation 2.4. The signal ( ) in each channel is shifted
by another in time. Figure taken from [13].
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The Circulating Codes achieve a very wide beam when Δ𝑡 = 1/𝐵, according to [13]. This can be
shown by looking at the phase between two neighboring channels. Under the assumption that the
instantaneous frequencies 𝑓 of two neighboring channels are identical at a given moment in time, the
phase shift between them can be expressed as

𝜙(𝑓) = 𝜙 + 2𝜋𝑓 ⋅ Δ𝑡 , (2.5)

which is equivalent to the phase of a sine wave at frequency 𝑓. When the bandwidth is taken into
account and we assume that 𝜙 = 0, the results are

𝜙(𝑓 ) = 2𝜋 ⋅ (−𝐵2 ) ⋅ Δ𝑡 (2.6)

and

𝜙(𝑓 ) = 2𝜋 ⋅ (+𝐵2 ) ⋅ Δ𝑡 . (2.7)

Since in theory, a wide beam of 180∘ is desired, the time shift is set to Δ𝑡 = 1/𝐵 because then the result
of equations 2.6 and 2.7 is −𝜋 and 𝜋, which is equivalent to the full angular coverage of 180∘ [13]. In
other words, depending on the instantaneous frequency, the antenna array will illuminate the angles in
between of -90∘ and 90∘. Figure 2.4 shows how the beam direction changes within a Circulating Codes
pulse. Obviously, the Circulating Codes do not constantly illuminate the whole 180∘ as is expected
from a real MIMO system with orthogonal signals, but rather cover the whole angular area with a beam
sweep during one pulse. Thus, if only part of the signal is used, the Circulating Codes could be used
to only illuminate certain areas of the half-space.
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Figure 2.4: Change of the direction of the main beam during one Circulating Codes pulse with length . It is obvious that the
beam does not illuminate all directions at the same time but moves along the half-space.

The total transmit signal is the sum of the signals coming from each channel. It changes depending on
the transmit angle. According to [13], when a certain target angle 𝜃 is given, the total transmit signal
in this direction can be described as

𝑠 (𝑡, 𝜃 ) = ∑ 𝑒 ⃗ ( )⋅ ⃗ ( ) ⋅ 𝑠 (𝑡) , (2.8)

where 𝑁 is the number of transmit antennas, �⃗� is the vector of the transmit antennas positions and
�⃗� is the wavenumber vector and 𝑠 (𝑡) is the signal transmitted in channel n.
In [13], only one receive antenna is assumed because the authors wanted to focus on the DBF on
transmit rather than on receive. Thus, the received signal can be written as
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𝑠 (𝑡, 𝜃 ) = 𝑒 ⃗ ( )⋅ ⃗ ( ) ⋅ �̇� ⋅ 𝑠 (𝑡 − 𝜏 , 𝜃 ) + 𝑒(𝑡) , (2.9)

where r is the number of the element of the antenna array used for reception, 𝑥 is the vector of the
receive antenna positions, �̇� is the complex scattering coefficient of the target, 𝜏 is the time delay of
the received signal due to the traveling of the wave and 𝑒(𝑡) is noise at time 𝑡.
Applying the matched filter leads to the multi-dimensional ambiguity function

|𝜒(𝜏, 𝜃’, 𝜃 )| = |∫ 𝑠 (𝑡 − 𝜏, 𝜃 ) ⋅ (𝑠 (𝑡, 𝜃 ))∗𝑑𝑡| , (2.10)

where 𝜏 is the displacement between 𝑠 and 𝑠 and 𝜃 is the hypothesis about the target direction. In
the end, the final simplified result of the matched filter output found by Babur et al. in [13] is

|𝜒(𝜏 , 𝜃 , 𝜃 )| = {
|𝐴𝐶𝐹 (𝜏 ) ⋅ ∑ ∑ 𝑒 (⃗ ( )⋅ ⃗( ) ⃗ ( )⋅ ⃗( )| 𝑓𝑜𝑟 |𝜏 | ≤ ⋅ ,

0 𝑓𝑜𝑟 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 𝜏 .
, (2.11)

where 𝜏 = (𝜏 − 𝜏), 𝐴𝐶𝐹 is the auto-correlation function of a rectangular pulse, 𝑛 is the index of
the transmitted signal and 𝑛 is the index of the replica or received signal. The conclusion drawn from
this result is that the peak resulting from the Circulating Codes method is 𝑁 times wider than for a
phased array system. Thus, this simple MIMO technique comes with the disadvantage of less range
resolution.

In their simulations in [13], Babur et al. showed that LFM sweeps show the best properties and results
for this kind of processing. Some of the according simulation results are shown in figure 2.5. As a
consequence, only LFM sweeps are considered in this thesis. It should be noted that the performance
will improve when more than one receive antenna elements are used. In addition to that, there is also
the possibility to add weighting in time and over the antennas to improve the results, especially in angle.
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Figure 4: Range-angle cuts of the ambiguity function |�0
�0 ( 

 , ! )|2 at !0 = 0∘ in dB.

cuts, namely, by eight antenna patterns, presented for the
considered signals in two possible aiming angular directions,
!0 = 0∘, 30∘ in Figure 3.He angle-angle cuts demonstrate the
uniform radiation for all the considered angular directions
! for the circulating quadratic Alltop signal, M-sequence,
and LFM-signal.Here are no Muctuations along the diagonal,
which means that the antenna array gain is constant with
respect to the aiming angle. His is a clear demonstration
of the fact that by circulating one waveform through the
transmitting radar channels, the orthogonality of the radiated
signals can be achieved.

As for the circulating NLFM signal, the beam-formed
patterns have maximal amplitude, the main beam-width
increases in the zero angular direction, and the gradual
amplitude degrades for farther angles. He amplitude degra-
dation is in order of 14 dB, which is certainly not negligible.
He amplitude degradation is explained by the reduced
equivalent bandwidth of the NLFM signal compared to the
total occupied bandwidth and, therefore, by the inappropri-
ate deSnition of the bandwidth dependent oTset Δ#. His
problem can be solved by recalculation of the relative time
shiU Δ# between the circulating signals $"(#) according to
the reduced equivalent bandwidth of the NLFM signal. He
reduced angular coverage for the circulating NLFM signal
means also that the angular coverage of the antenna can
be adapted by reducing the time shiU between adjacent
transmitters; this is also a valuable property of circulating
codes, for use in diTerent operational uses, requiring diTerent

angular coverages. In this work, for fair comparison, the
relative time shiUs are preserved equal.

We note that the results presented in Figure 3 indicate
the inherent properties of the considered signals for beam-
forming because they have been obtained with the assump-
tion of omnidirectional radiation patterns of the antenna
array elements.

One of the important properties of transmitted circulat-
ing signals is the ability to detect weak (with small radar
cross-sections) targets against strong targets or clutter. His
property is normally illustrated by the range side lobes of
the ambiguity function. Figures 4 and 5 demonstrate, as an
example, this property for two aiming directions, while not
changing the transmitted waveforms or array geometry.

Figure 4 presents four range-angle cuts of the ambiguity
function. Hey are angle versus range taken at the aiming
(beam-formed) angle !0 = 0∘. He zoomed Sgures display
the main lobe of the ambiguity functions for four analysed
signals. In turn, the vertical slices demonstrate the obtained
main lobe and range side lobes for one chosen observed angu-
lar direction ! = 0∘. In this way these vertical slices received
for the space-time radar waveforms can be considered as an
analogue of the traditional autocorrelation function obtained,
however, for each observed angular direction.

He range side lobes are maximal for the observed direc-
tionwhich is equal to the aiming direction.He side-lobe level
between the considered signals is maximal, about −15 dB, for
the circulating M-sequence; and it is rather homogeneous

Figure 2.5: Simulation results for Circulating Codes by Babur et al. For each waveform, the range-angle ambiguity function is
shown, including a zoom into the center, as well as the range cut at hypothesis angle ∘. The different waveforms are
quadratic Alltop (top left), M-sequence (top right) LFM (bottom left) and non-linear frequency modulation (NLFM, bottom right).
LFM signals were found to produce the best results in range. Figure taken from [13].

2.2.2. Hybrid Codes
To improve the performance, a variation of the Circulating Codes has been proposed, the so-called
Hybrid Codes [14]. The idea is to add a spatial code over the transmit antenna elements to influence
the auto-correlation function. In contrast to the Circulating Codes, all transmit antenna elements are
also used on receive in the equations, thus 𝑁 = 𝑁 = 𝑁 and �⃗� = �⃗� = �⃗� .

The basic signal can therefore be written as in equation 2.12 from [14]:

𝑠 (𝑡) = 𝑐 ⋅ 𝑠 (𝑡 − (𝑛 − 1) ⋅ Δ𝑡) , (2.12)

where 𝑐 is the spatial code along the antenna elements.

The proof of the illumination of the whole angular domain is the same, as for the Circulating Codes. But
since an extra spatial code is used that multiplies the channels signals with +1 or -1, the beampattern
during one pulse looks different. In fact, the difference between +1 and -1 corresponds to a phase shift
of 180∘ which produces more than one beam at a time. Figure 2.6 shows the beampattern over one
pulse for a length 7 spatial Barker code. Several moving beams are visible. Still, the Hybrid Codes
manage to illuminate the whole 180∘ area during one pulse.

Naturally, it is also possible to use code elements different to -1 and +1. To be able to decrease the side-
lobes around the peak, it was proposed to apply a so-called mismatched filtering instead of matched
filtering [17]. The basic principle is to select a new mismatched phase code for the reception of Hybrid
Codes, which is longer than the original spatial code, usually by factor 3. The replica stays the same.
Since this processing method has been analyzed in detail (see [17–20]), this thesis does not focus fur-
ther on mismatched filtering. Thus, no corresponding simulations or measurements will be presented.
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Figure 2.6: Change of the direction of the main beam during one Hybrid Codes pulse. Similar to the Circulating Codes, the beam
pattern changes over time.

A matched filter can now be applied similar to equation 2.10. The result according to [14] is

|𝜒(𝜏, 𝜃 , 𝜃 )| = |∫(∑𝑒 ⋅ ⃗ ( )⋅ ⃗( ) ⋅ 𝑐 ⋅ 𝑠(𝑡 + 𝜏 − 𝑛 ⋅ Δ𝑡 + Δ𝑡)) ⋅ (∑ 𝑒 ⋅ ⃗ ( )⋅ ⃗( ) ⋅ 𝑐 ⋅ 𝑠(𝑡 − 𝑚 ⋅ Δ𝑡 + Δ𝑡))

∗

𝑑𝑡| ,

(2.13)
where 𝜃 is again the hypothesis about the target direction and 𝜃 is the direction of the digital beam-
forming on receive. When the ambiguity function is only considered in the direction of the receive
beamforming, the exponential factors can be omitted and the equation simplifies to

|𝜒 (𝑖)| = |∑ ∑ 𝑐 ⋅ 𝑐∗ ⋅ 𝐴𝐶𝐹 (𝑖 − 𝑛 +𝑚)| , (2.14)

according to [14]. By assuming that the signal 𝑠(𝑡) has a very large time-bandwidth (BT) product (>100),
the discrete ACF of the signal can be replaced by a Dirac delta function [14] which leads to the following
equations:

|𝜒 (𝑖)| ≅ {
|∑ 𝑐 ⋅ ∑ 𝑐∗ ⋅ 𝛿(𝑖 − 𝑛 +𝑚)| 𝑓𝑜𝑟 |𝑖| < 𝑁

0 𝑓𝑜𝑟 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 𝑖
(2.15)

≅ {
|∑ 𝑐 ⋅ 𝑐 | 𝑓𝑜𝑟 |𝑖| < 𝑁

0 𝑓𝑜𝑟 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 𝑖
(2.16)

≅ {
|𝐴𝐶𝐹 (𝑖)| 𝑓𝑜𝑟 |𝑖| < 𝑁

0 𝑓𝑜𝑟 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 𝑖
. (2.17)

This means that the main ”corridor” of width 2𝑁 − 1 in the ambiguity function is defined by the spatial
code. So, if a code with a good ACF is chosen, the resulting peak should be as narrow as for a phased
array signal with single waveform [14].
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The problem is that this spatial code only defines the narrow peak, but the sidelobes around can still
be quite high. Figure 2.7 shows some of the simulation results from the paper. Barker codes have
excellent auto-correlation properties, since the produced sidelobes are minimized. As a result, they
were used by Babur et al. as spatial codes in their simulations. As already mentioned above, the
performance of the Hybrid Codes can be improved by using more receive antennas and weightings.

can use any combinations of two codes: one in time domain and one in
space domain. This example (hybrid code 1) employs only one
M-sequence 255, as the time domain signal, and a Barker code 7 as a
pure spatial code c. One M-sequence is being radiated by seven
antenna elements with a small relative offset δt = Tp/BT = 0.4 μs (i.e.
one-time sample). Each element of the Barker code (phase shift) is
imposed on the signal in the corresponding transmitting channel.

The fourth example of the compound sounding signal (hybrid
code 2) employs an LFM-signal 255 radiated by seven antenna
elements with a small relative offset 0.4 μs (i.e. one-time sample).
The radiated signals are highly overlapped in time, as well as in
the third example A pure spatial code remains a Barker code 7.

Fig. 1 shows the angle–angle cuts of the AFs for four specified
types of a complex sounding signal. The physical meaning of
these figures is as follows. Each of its horizontal cuts (rows) is the
transmit antenna pattern obtained by the signal processing means
(digital beamforming – DBF), for each beamformed direction θ0.
Cutting the angle–angle representation of the AF, shown in Fig. 1,
along the beamformed direction θ0 = 0 results in the array patterns
(Fig. 2) as functions of the observed angles θ. Any fluctuation of
the level obtained along the main diagonal means a variation of
the antenna gain with respect to the illumination angle.

The same waveforms radiated by all the array elements (Fig. 1a)
are summed coherently in free space in angular direction,
providing the maximal antenna gain in this direction and
physically limiting the angular coverage (pencil beam). The AF in
Fig. 1a proves that the standard phased array radar operation
cannot provide wide angular coverage and preform digital transmit
beamforming, correspondingly. In the case of the orthogonal
signals – 7 M-sequences (Fig. 1b), the fluctuations along the
diagonal are in the order of 6 dB, which is certainly not negligible.
In turn, the angle–angle cuts of the AF for both hybrid codes
(Figs. 1c and d ) are basically a set of array factors for all aiming
directions θ0. The flat gain along the main diagonal means that the
level of the physically radiated signal remains uniform for all the
observed angular directions. The diagonal structure of the AFs
presented in Figs. 1c and d proves that hybrid codes are suitable
for digital transmit beamforming by the signal processing means.
They provide the wide angular coverage physically radiated by the
antenna array, just like well-known orthogonal signals.

We would like to note here, that the patterns for this transmit
diversity technique, presented in Figs. 1c and d, do not show the

Fig. 4 On slice (θ= θ0) of the range–angle AF xu0 (t, u)
∣

∣

∣

∣

∣

∣

2

at θ0 = 0°, in dB for

a Same signal

b Orthogonal signals

c Hybrid code 1

d Hybrid code 2
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can use any combinations of two codes: one in time domain and one in
space domain. This example (hybrid code 1) employs only one
M-sequence 255, as the time domain signal, and a Barker code 7 as a
pure spatial code c. One M-sequence is being radiated by seven. One M-sequence is being radiated by seven
antenna elements with a small relative offset δtδδ == TpTT /BT = 0.4/BT = 0.4 μs (i.e.p

one-time sample). Each element of the Barker code (phase shift) is
imposed on the signal in the corresponding transmitting channel.

Figure 2.7: Simulation results for Hybrid Codes by Babur et al. Like for the Circulating Codes, different waveforms have been
examined (see figure 2.5). For each case, the range cut at ∘ is shown. Figure taken from [14].

2.3. The ASTAP system
In order to apply the theories in practice and do measurements, the radar group of TU Delft built a
small radar system, the so-called ASTAP (Advanced Space-Time Adaptive Processing). It consists of
an arbitrary waveform generator (AWG) with 8 independent transmit channels and one receive channel,
as well as an up- and down-converter for X-band with the same amount of channels.

The AWG consists of a National Instruments FlexRIO field-programmable gate array (FPGA) module
with a Timing and Synchronization module and 4 Analog Output Adapter Modules with 2 output chan-
nels each. Each output channel consists of a positive and negative output, so that the system can be
used in single-ended or balanced mode. The system is controlled by a LabVIEW interface on a com-
puter. The waveform is being generated in Matlab or similar software and then imported as a text file.
After it has been downloaded onto the FPGA, the trigger can be started and the transmission of the
signal starts periodically. The AWG outputs the signals with a carrier frequency of 300MHz. With an
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oscilloscope, the output of the AWG, as well as the received signal from the RF stage can be examined.
At the time of this thesis, an antenna was not yet available. A block diagram of the system is shown in
figure 2.8 while a photo of it can be found in figure 2.9.
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Figure 2.8: Block scheme of the ASTAP system.

Figure 2.9: The ASTAP system with all of its parts. On the screen on the left, the LabVIEW interface is visible. The three devices
in the middle are the AWG (left), the RF stage (top right) and an extra signal generator for synchronization (bottom right). The
output of the AWG and the output of the receiver channel are connected to the oscilloscope on the right of the photo.

As already mentioned, previous measurements showed that the system has some issues like constant
tones, harmonics and cross-talk between the channels, as well as some kind of unwanted frequency
modulation. This thesis investigates how suited the system is for Circulating Codes and Hybrid Codes.
In addition to that, measurements with the new improved techniques are being performed.





3
New techniques for Hybrid Codes

The beam pattern of an antenna array is mostly depending on its structure and the radiation pattern of
the elements used. The more antenna elements are available in a certain dimension, the narrower the
beam in this dimension. On the other hand, a lot of elements in the antenna lead to a very wide peak
in range when Circulating Codes are used, as can be seen from equation 2.11. This equation explains
the relation of the number of antenna elements to the width of the peak in range.
The used signal has only a very small impact on the beampattern in angle. Thus, improving the Cir-
culating or Hybrid Codes in angle is not useful and is not examined in this thesis. This work focuses
on improving the range resolution. First steps have already been taken, like using a spatial coding in
the Hybrid Codes or applying mismatched filtering (see section 2.2.2). The new method involves using
complementary sequences, also called Golay sequences.

3.1. Complementary Golay sequences
The Golay sequences were first introduced by Marcel Golay in 1961 in [21] and have the property that
the sum of the auto-correlation functions of a pair add up constructively and cancel out the sidelobes.
Taking a Golay pair 𝑎 and 𝑏 which both have length 𝑛, their auto-correlation functions are given as

𝑐 , =∑𝑎 𝑎 (3.1)

and

𝑐 , =∑𝑏 𝑏 , (3.2)

as stated in [21], where 𝑖 is the lag or shift of the codes to each other and 𝑗 is the index of the output
function. If these two auto-correlation functions are added up, the result is

𝑐 , + 𝑐 , = {
0 𝑓𝑜𝑟 𝑗 ≠ 0
2𝑛 𝑓𝑜𝑟 𝑗 = 0 . (3.3)

Thus, the result of this calculation is 0 for all indexes that are unequal 0. Obviously, this code pair has
excellent properties for a radar application, because in theory, the code produces no sidelobes at all.
Figure 3.1 shows an example calculation with a Golay pair. In this chapter it is examined, how Golay
pairs can be used in combination with Hybrid Codes to improve the resolution of the resulting peak in
range.

23
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Figure 3.1: Golay principle with pair of length 8. The x-axis is samples in time, while the y-axis is amplitude.

3.2. Transmitting Golay sequences consecutively and processing
them individually

The easiest way to make use of Golay pairs in Hybrid Codes, is to send two consecutive pulses, each
containing one of the two codes. A matched filter is applied to the received reflected signal from each
pulse individually. This means that the first pulse has to be received before the second one will be sent,
so the PRT has to be adjusted accordingly. Afterwards, the results from both matched filter operations
are coherently added up to remove the sidelobes. The use of this technique with moving targets is
difficult since both the Doppler effect, as well as the phase shift due to the displacement influence the
signals if the pulses are transmitted at different times.

3.2.1. Stationary targets
At first, the simple case of static targets is examined. Since the target has no speed, no Doppler effect
can be observed. Also there is no phase difference between the two pulses due to a displacement, so
the processing operation can be described as

𝑦(𝜏) = ∫ 𝑥 (𝑡)�̃�∗(𝑡 − 𝜏)𝑑𝑡 + ∫ 𝑥 (𝑡)�̃�∗(𝑡 − 𝜏)𝑑𝑡 , (3.4)

where 𝑦 is the processed matched filter output of the Golay pair, 𝜏 is the displacement of the received
signal in time, 𝑥 and 𝑥 are the originally transmitted signals with Golay code 1 and 2 respectively and
�̃� and �̃� are the received waveforms. Since the object is not moving, the result is the same, no matter
how much time is between the two pulses.

3.2.2. Moving targets
Since many applications involve the observation of moving targets, the influence of their movement
on the measurements is going to be analyzed now. The problem is that the Doppler effect, as well as
the phase shift due to the displacement of the object during the PRT, influence the processing result.
For the following considerations, it is assumed that the target is not changing its velocity during the
transmission and reception of one Golay pulse pair.
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Doppler effect

The general Doppler effect has already been explained in chapter 1. The movement of a target leads
to a reflected signal that is slightly shifted in frequency. Since LFM pulses are used in this study, this
means that the whole LFM pulse is shifted in frequency, which corresponds to a shift in time of the
same. Thus, after applying a matched filter, the target appears to be slightly closer or further than it
actually is, according to the moving direction of the target.
If an X-band radar is assumed, one can expect maximum frequency shifts of a few tens of kilohertz
when fast air targets are assumed. Since the bandwidth of the used LFM sweep is most likely in the
order of several megahertz, its frequency slope is not very steep and a frequency shift of the mentioned
extend is only leading to a relatively small offset in the delay. Therefore, the main focus here lies on
the phase shift. The Doppler effect is included in the equations, but usually has a very small impact on
the result.

Phase shift

Since the Golay pair has to be transmitted in two pulses at different times, the target is going to move
in the meantime. This leads to a phase shift, because the signals have different travelling distances to
the target and back. This phase shift influences the signal and the result of the matched filter. Thus,
the results can not simply be added up coherently. In [3], it is emphasized that it is very important to
consider the phase shift when doing coherent signal processing since a change in range of a fourth of
the wavelength (𝜆/4) will shift the phase by 𝜋, because the phase shift can be written as

Δ𝜙 = −4𝜋𝑅
𝜆 , (3.5)

where Δ𝜙 is the phase shift, 𝑅 is the target distance and 𝜆 is the wavelength of the carrier signal.
When equation 3.5 and the Doppler frequency shift are included into equation 3.4 and a constant target
velocity is assumed, this leads to

𝑦(𝜏) = ∫ 𝑥 (𝑡) ⋅ 𝑒 / ⋅ �̃�∗(𝑡 − 𝜏)𝑒 𝑑𝑡 + ∫ 𝑥 (𝑡) ⋅ 𝑒 / ⋅ �̃�∗(𝑡 − 𝜏)𝑒 𝑑𝑡 (3.6)

= 𝑒 / ⋅ ∫ 𝑥 (𝑡)�̃�∗(𝑡 − 𝜏)𝑒 𝑑𝑡 + 𝑒 / ⋅ ∫ 𝑥 (𝑡)�̃�∗(𝑡 − 𝜏)𝑒 𝑑𝑡, (3.7)

where 𝑅 and 𝑅 are the distances of the target, when it is illuminated by Golay pulse 1 and 2 respec-
tively and 𝑓 is the Doppler frequency shift.

For these considerations, it is not important to look at the overall phase shift due to the target distance.
It will thus be focused on the phase difference between the received reflection of the two Golay pulses.
As a result, 𝑅 can be set to 0 and 𝑅 will be exchanged with the change in distance due to the speed
within the PRT. The resulting equation is

𝑦(𝜏) = ∫ 𝑥 (𝑡)�̃�∗(𝑡 − 𝜏)𝑒 𝑑𝑡 + 𝑒 ( ⋅ )/ ⋅ ∫ 𝑥 (𝑡)�̃�∗(𝑡 − 𝜏)𝑒 𝑑𝑡 , (3.8)

where 𝑣 is the velocity of the target and 𝑃𝑅𝑇 is the time between the two Golay pulses. If the velocity
of the target is known precisely, the phase shift can be removed by multiplying the processed matched
filter result of the second pulse by the factor 𝑒 ( ⋅ )/ . When the phase shift is removed, a clear
peak is found at the target velocity. If the velocity of the target is not known exactly, the phase shift
compensation can be done for a limited number of assumed velocities. Since there is a limited un-
ambiguous velocity interval (see chapter 1), there can also be peaks found at other velocities than the
actual one. This is explained in figure 3.2. As a result, the velocity of the target must be roughly known,
in order for the radar to correctly detect it. Changing the PRT between the Golay pulses, changes the
sidelobes due to the velocity ambiguity, as can be seen from equation 1.10.
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v [ ]

0𝑣 − 𝑣 𝑣 𝑣 + 𝑣

Figure 3.2: When the phase shift is compensated for a limited number of velocities, peaks appear at the actual velocity and at the
actual velocity plus minus multiples of the maximum unambiguous velocity, so: and ± ⋅ with , , , ....
The velocity measurement is only unambiguous up to a certain maximum velocity, as has been explained in chapter 1.

3.3. Transmitting more than one Golay pair consecutively and pro-
cess them individually

The Golay code pair is only useful at the correctly compensated velocity. There are still sidelobes at
other velocities that are a result of the phase shift. By transmitting several consecutive Golay pulse
pairs and adding up the processing results, these sidelobes can be reduced. The reason for this is
that for every new Golay pair, the target will be at a new position and the phase of the reflected signal
will thus be different. Due to these different phases of the received signal, the correction will lead to
sidelobes that are positioned at slightly different velocities for each Golay pair while the main peak at
the correctly compensated velocity stays the same for all of them. Thus, the main peak gets stronger
with every Golay pair while the sidelobes do not grow much, because they spread over all velocities.
The sidelobes due to the velocity ambiguity still exist and need to be taken into account.

3.4. Transmitting Golay pair in parallel on different elements
Another concept examined in this thesis, is the transmission of both Golay codes at the same time
through different elements of the antenna array. If both codes were transmitted at the same moment in
time and within the same pulse, there would not be any phase shift and the resulting peak would be as
narrow as for stationary targets. Since the Golay pair is transmitted at the same moment, the double
amount of transmit antenna elements needs to be used.
The problem with this technique is that since we are transmitting simultaneously, we have to use sepa-
rate elements that will also be separated physically to a certain extend. Unfortunately, this leads again
to the introduction of a phase shift due to slightly different distances from the different elements to the
target and might ruin the expected narrow peak produced by the Golay pair.

There are different ways to implement this. One possibility is to change the spatial code to a code of
the double length which consists of both Golay codes. This corresponds to equation 2.13. Another
possibility is to transmit two Hybrid Codes in parallel on different elements. This means that two chan-
nels always transmit exactly in parallel (without the time shift Δ𝑡 between them). This can be described
with a signal 𝑥 that consists of two sub-signals 𝑥 and 𝑥 , which leads to the matched filter result

𝑦(𝜏) = ∫ (𝑥 (𝑡) + 𝑥 (𝑡)) (�̃� (𝑡 − 𝜏) + �̃� (𝑡 − 𝜏))∗ 𝑑𝑡 . (3.9)

3.5. Transmitting Golay pair in parallel at different frequencies
The idea to submit the signals simultaneously but at different carrier frequencies, could also solve the
problem of the phase shift due to displacement. For example, the first Golay code can be transmitted
by using an LFM sweep with a center frequency below the carrier frequency while the other one has
a center frequency above the carrier frequency. But the same problem occurs, since the two codes
are being transmitted at different frequencies, also their wavelengths differ and thus the phases due to
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𝜏 [s]

Figure 3.3: Matched filter output for two close Golay pulses consisting of two consecutive up-chirps. When the replica and
received signal are aligned perfectly, the auto-correlation function shows one big peak. But when the left pulse aligns with the
right one and vice versa, there are additional strong sidelobes in the auto-correlation function.

the distance to the target do not match. This might also negatively influence the results. In this case,
equation 3.9 also holds.

3.6. Transmitting Golay pair very closely in time
Alternatively, the two Golay pulses could also be transmitted right after each other, with no or only a
very short pause in between. Like this, there will still be a phase shift, but its effect will be minimized.
This technique is actually very similar to the technique described in section 3.2, but in this case, the
matched filter is not applied on each pulse individually, but as a whole on both pulses. The question is,
how high the sidelobes are, since two similar signals are used close to each other which will lead to one
strong peak and two strong sidelobes as shown in figure 3.3. Most likely, this effect can be reduced by
using an LFM up-chirp in combination with an LFM down-chirp.





4
Analysis

This chapter deals with the implementation of the aforementioned methods in Matlab, in order to run
simulations. In addition to that, the measurements done with the ASTAP system are being presented.

4.1. Implementation of techniques
It was decided to create three different Matlab scripts (see appendix C). The first one is generating a
circulating LFM signal (generate_lfm.m) that can be used in the second script, which does the process-
ing of the received signal (af_normalized.m). These two scripts are mainly used to verify the already
existing theories of circulating and Hybrid Codes, since only one single pulse can be generated and
processed. The third script runs the signals generation and the processing for a defined number of Go-
lay pairs for a possibly moving target (af_normalized_golay.m) to verify the new methods as described
in sections 3.2 and 3.3. The purpose of the mentioned Matlab scripts is explained hereafter.

4.1.1. generate_lfm.m
The purpose of this script is to generate a complex LFM sweep that can be used in further scripts. It
has the following adjustable input parameters:

• Number of antenna elements (N)

• Sampling frequency (Fs)

• Carrier frequency (Fc)

• Bandwidth (B)

• Pulse length (T)

• Spatial code along the antennas (code)

The output of the script is a matrix that contains the signals of each channel. Note that the signal is
generated in baseband with a center frequency of 0Hz. The carrier frequency input parameter is used
to add the phase shifts introduced by the antenna and possibly the Doppler effect.

29
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4.1.2. af_normalized.m
This script can be run consecutively to generate_lfm.m. It takes the LFM signal and uses it for a
simulation of the processing result for a defined static target by adding the according phase shifts due
to the antenna positions, performing digital beamforming and then applying the matched filter. It has
the following input parameters:

• Range (r) and angle (ra) of the target

• Transmit antenna positions (x_tx)

• Receive antenna positions (x_rx)

The output of the script is a 2-dimensional ambiguity function (range and angle) that is the basis for
several figures.

4.1.3. af_normalized_golay.m
This script is basically a combination of the two above mentioned scripts. It both generates the circu-
lating LFM signal and applies the processing for a defined number of Golay pairs. It has the following
input parameters:

• Number of antenna elements (N)

• Sampling frequency (Fs)

• Carrier frequency (Fc)

• Bandwidth (B)

• Pulse length (T)

• Spatial code along the antennas (code)

• Number of Golay pulses (np_max)

• Range (r) and angle (ra) of the target

• Doppler frequency caused by the target movement (fD)

• Assumed Doppler frequencies (fD_assumed)

• Pulse repetition time within a Golay pair (PRT)

• Golay pair repetition time (GRT)

• Transmit antenna positions (x_tx)

• Receive antenna positions (x_rx)

The assumed Doppler frequencies vector defines the Doppler area for which the phase shift due to
displacement is corrected (see chapter 3). For a correctly corrected phase shift, the matched filter
produces a strong and narrow peak. The number of Golay pulses should be a multiple of two, since
one Golay pair consists of two Golay pulses. The output of the script is a 3-dimensional ambiguity
function which is the sum of the processing results of every pulse. Its three dimensions are angle,
range and Doppler. This script is the basis for several figures.
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4.2. Simulation results
Several simulations have been conducted to verify the theoretical approaches mentioned in chapter
3. First, the well-known Circulating and Hybrid Codes, as well as the phased array case have been
examined again, before implementing the new methods.

The general simulation setup is an assumed radar antenna that uses its elements for transmit, as well
as receive. One single point target is assumed to reflect the transmit signal, which is then received
again by the radar antenna and processed. Since this is a purely mathematical examination of the
techniques, no noise or losses are included in the simulations. In addition to that, it is assumed that
the target reflects the whole transmit signal. Therefore, the amplitudes of the transmitted and received
signal are the same. If not mentioned otherwise, the simulations are conducted for static targets.

The simulation parameters for each simulation are summarized in each subsection. In general, the
parameters are based on the ones that were used in [13] and [14], to make the simulation results
comparable to the existing studies. The target is situated at 0m and 0∘ in azimuth. The elements of
the antenna are spaced 𝜆 /2 from each other where 𝜆 is the wavelength of the carrier signal. For
receiving, only one element is used in the figures discussed here, which matches with the simulations
done in the papers. Finally, it is assumed that all antenna elements have an isotropic radiation pattern
and the targets are single point objects that reflect the incoming wave entirely. To show the potential of
these techniques, figures can be found in the appendix that were generated with the use of all antenna
elements on receive, in combination with a hamming weighting in time and a 30dB Taylor weighting
over the antenna elements to decrease sidelobes.

4.2.1. Phased array
As stated in section 2.2.1, the Circulating Codes produce a peak in range that is 𝑁 times wider than
for a phased array. In section 2.2.2, it is shown that the Hybrid Codes manage to recover the range
resolution of a phased array with a single waveform. To verify this, the ambiguity function in range and
angle of a phased array has been simulated. It is used for comparison in the following sections. The
simulation parameters are summarized in table 4.1 and the result is shown in figure 4.1. The highest
sidelobes in range can be found at -13.5dB, while the sidelobes in angle are at about -12.8dB. The
peak in range has a width of about 120m.

Table 4.1: Parameters used for phased array simulation.

Parameter Value
Number of antennas (N): 8
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
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Range-angle ambiguity function (zoomed in range)
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Figure 4.1: Simulation results for one phased array pulse with single waveform in Matlab. The parameters used in this simulation
are shown in table 4.1. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom
right: angle cut at range 0km.



4.2. Simulation results 33

4.2.2. Circulating Codes
As can be seen from figure 4.2, the figures from the Matlab simulation match the results from [13] as
shown in chapter 2. A peak is visible at 0∘ and 0m, which has a width of about 950m. This corresponds
to the results of Babur et al., since it is about𝑁 times wider in range than the phased array peak in figure
4.1. Also, the sidelobe level of about -35dB is the same. The angle cut looks like the one presented in
the paper, with the highest sidelobes at about -12.8dB. Interestingly, the results of the paper and the
simulation slighty differ in the shape of the range sidelobes at -7.5km and 7.5km. The reason might be
a different way of generating the LFM pulse.
In the appendix, additional figures of Circulating Codes simulations can be found. An angle-angle cut
of the ambiguity function that has also been presented in [13] can be found in figure A.1, while the
results for different target angles are shown in figures A.2 and A.3.
By adding weightings and the usage of all elements on receive, the performance of the Circulating
Codes can be drastically improved, as can be seen in figure A.4 in the appendix, where the high-
est range sidelobes are found at about -39.3dB and and the highest angle sidelobes at -36.2dB. The
parameters used for this simulation are summarized in table 4.2.

Table 4.2: Parameters used for Circulating Codes simulation.

Parameter Value
Number of antennas (N): 8
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
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Figure 4.2: Simulation results for one Circulating Codes pulse in Matlab. The parameters used in this simulation are shown in
table 4.2. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom right: angle
cut at range 0km.
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4.2.3. Hybrid Codes
As already mentioned in chapter 2, Barker codes have optimal auto-correlation properties. They are
thus used as spatial codes in these simulations. Figure 4.3 shows the Matlab simulation results for
Hybrid Codes with Barker 7 code. These match the results from [14], which were also briefly presented
in chapter 2. A narrow peak is visible at 0∘ and 0m, surrounded by a sidelobe plateau with sidelobes
between -16.5db and -10.4dB. The peak has the same width in range as the one for a phased array
in figure 4.1. The sidelobe pattern in angle looks almost the same as for the Circulating Codes, with
a slightly wider main lobe. The highest sidelobes in angle are at about -12.7dB. The results generally
match the ones Babur et al. presented in their work.
By adding weightings and the usage of all elements on receive, the performance can be drastically
improved, as can be seen in figure A.5 in the appendix. In that simulation, the sidelobes plateau in
range is below -16.4dB, while the other sidelobes are even below -47dB. In angle, the sidelobes are
as low as -41dB, but only at exactly 0km. The parameters used are summarized in table 4.3.

Table 4.3: Parameters used for Hybrid Codes simulation.

Parameter Value
Number of antennas (N): 7
Spatial code: Barker 7
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
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Figure 4.3: Simulation results for one Hybrid Codes pulse with Barker 7 code in Matlab. The parameters used in this simulation
are shown in table 4.3. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom
right: angle cut at range 0km.
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4.2.4. Hybrid Codes with Golay sequences
In this section, the new ideas for improvement of Hybrid Codes by the use of Golay pairs are examined in
Matlab simulations. The same basic settings are used as for the simulations of the Circulating Codes
and the Hybrid Codes above. The antennas are placed at the same positions and again only one
receive antenna is used.

Transmitting Golay sequences consecutively and processing them individually

In this simulation, two Hybrid Code pulses are assumed to be transmitted, each one with one Golay
code of a pair as spatial code. As can be observed in figure 4.4, a very narrow peak in range is formed
at 0∘, corresponding to the phased array result in figure 4.1. Generally, the resulting range cut looks
almost identical to the phased array simulation result. The sidelobes in range are at about -13.3dB,
which is lower than in the Hybrid Code case. In addition to that, there is a smaller number of sidelobes
in range. It is obvious that the sidelobe corridor in azimuth, has a width of about 0.5 kilometers. This
is half as for the Circulating or Hybrid Codes. The angular pattern is still very similar, due to the usage
of the same antenna configuration. The highest angular sidelobes are at -11.8dB.
Figure 4.5 shows the impact of the Doppler frequency shift and especially the phase shift due to the dis-
placement of the object. It shows the range cut, when the phase shift is corrected for different assumed
velocities of the object. Only when the phase shift is properly corrected according to the target velocity,
the sidelobes are removed and the result corresponds to the one for a static target, as presented in
figure 4.4.
By adding weightings and the usage of all elements on receive, the performance can again be drasti-
cally improved, as can be seen in figure A.6 in the appendix. The range sidelobes there are located at
-35.7dB, while the sidelobes in angle have a magnitude of -20.4dB. The used parameters are summa-
rized in table 4.4.

Table 4.4: Parameters used for Hybrid Codes pulses with Golay sequences simulation.

Parameter Value
Number of antennas (N): 8
Spatial code: Golay pair
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
Time between pulses (PRT) 200µs
Corrected Doppler frequencies -4kHz to +4kHz
Corrected velocities -60 to +60
Doppler frequency of target 1kHz
Velocity of target 15
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Range-angle ambiguity function (zoomed in range)
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Figure 4.4: Simulation results for individually processed Hybrid Codes pulses with Golay sequences in Matlab. The parameters
used in this simulation are shown in table 4.4. Top: two-dimensional ambiguity function in range and angle. Bottom left: range
cut at angle ∘. Bottom right: angle cut at range 0km.
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Figure 4.5: Simulation results for individually processed Hybrid Codes pulses with Golay sequences in Matlab involving a moving
target. The parameters used in this simulation are shown in table 4.4. The figure shows the range cut at angle ∘ for different
corrected Doppler frequencies. At the Doppler frequency of the target, a narrow peak in range can be observed.
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Transmitting more than one Golay pair consecutively and process them individually

To improve the sidelobe levels in Doppler, several Golay pairs are transmitted after each other and
each pulse is processed individually in this simulation. Since the phase shift due to displacement of the
target is slightly different for each Golay pulse, this extra information can now be used to reduce the
sidelobes as explained in section 3.3. This can be observed in figure 4.6. It is obvious that the peak at
range 0m is very narrow, but that there are still a lot of very high sidelobes (up to -11dB) at other Doppler
frequencies. The strongest of these sidelobes are located exactly in the middle of the main peak and
its ambiguity. They are caused by the fact that each identical pulse is repeated after a time that is
equivalent to the sum of PRT and GRT. Therefore, these sidelobes are ambiguities produced by both
pulses, but related to a PRT of 0.4ms, instead of 0.2ms. Transmitting more pulses is narrowing these
sidelobes further, but not removing them entirely. The used simulation parameters are summarized in
table 4.5.

Table 4.5: Parameters used for simulation of several individually processed Hybrid Codes pulses with Golay sequences.

Parameter Value
Number of antennas (N): 8
Spatial code: Golay pair
Number of Golay pairs: 8
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
Time between pulses (PRT) 200µs
Time between Golay pairs (GRT) 200µs
Corrected Doppler frequencies -4kHz to +4kHz
Corrected velocities -60 to +60
Doppler frequency of target 1kHz
Velocity of target 15
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Figure 4.6: Simulation results for several individually processed Hybrid Codes pulses with Golay sequences in Matlab. The
figure shows the range cut at angle ∘ for different corrected Doppler frequencies. At the Doppler frequency of the target, a
narrow peak in range can be observed. The parameter for this simulation are shown in 4.5.
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Transmitting Golay pair in parallel on different elements

In order to avoid the effect of the phase shift due to the displacement of the target, which leads to the
effects shown in figures 4.5 and 4.6, it was tried to combine both parts of a Golay pair in one pulse.
This was done in this simulation by transmitting them on different antenna elements. A typical example
is shown in figure 4.7, where 16 elements are used. The first 8 elements are transmitting Golay Code
1, while the second 8 elements are transmitting Golay Code 2. Each element starts at another time
according to the time shift for Circulating and Hybrid Codes. It is thus one Hybrid Code pulse with 16
elements. Although the main peak recovers the range resolution of a phased array, a lot of sidelobes
are visible at -12.3dB and the resulting sidelobe plateau is very wide. The parameters used for this
simulation are summarized in table 4.6.

Table 4.6: Parameters used for Hybrid Codes pulses with Golay sequences simulation on different antenna elements.

Parameter Value
Number of antennas (N): 16
Spatial code: Golay pair
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
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Figure 4.7: Simulation results for Hybrid Codes pulses with Golay sequences on different antenna elements in Matlab. The
parameters used in this simulation are shown in table 4.6. Top: two-dimensional ambiguity function in range and angle. Bottom
left: range cut at angle ∘. Bottom right: angle cut at range 0km.
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Transmitting Golay pair in parallel at different frequencies

To combine the whole Golay pair in one pulse, it was also investigated if they can be transmitted in
parallel at different frequencies. The result of the corresponding simulation is shown in figure 4.8. In
this case, the two codes are transmitted on 9.99GHz and 10.01GHz respectively. It can be observed
that there is a very narrow peak at range 0 kilometers. There is also a sidelobe plateau similar to the
processing results of the Hybrid Codes including Barker code with a magnitude of up to -11.4dB. In
general, the sidelobes are similar to the Hybrid Codes with Barker 7 spatial code. Different carrier
frequencies of the two signals deliver similar results. The parameters used for the simulation is shown
in table 4.7.

Table 4.7: Parameters used for Hybrid Codes pulses with Golay sequences simulation at different frequencies.

Parameter Value
Number of antennas (N): 8
Spatial code: Golay pair
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 9.99GHz and 10.01GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs

Range-angle ambiguity function (zoomed in range)

Receive angle [°]
-90 -60 -30 0 30 60 90

R
an

ge
 [k

m
]

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 [d

B
]

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Range [km]
-15 -10 -5 0 5 10 15

A
m

bi
gu

ity
 fu

nc
tio

n 
[d

B
]

-50

-40

-30

-20

-10

0
Ambiguity range cut at receive angle 0°

Receive angle [°]
-90 -45 0 45 90

A
m

bi
gu

ity
 fu

nc
tio

n 
[d

B
]

-50

-40

-30

-20

-10

0
Ambiguity angle cut at distance 0km

-0.5 0 0.5
-20

-10

0

Figure 4.8: Simulation results for Hybrid Codes pulses with Golay sequences at different frequencies in Matlab. The parameters
used in this simulation are shown in table 4.7. Top: two-dimensional ambiguity function in range and angle. Bottom left: range
cut at angle ∘. Bottom right: angle cut at range 0km.
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Transmitting Golay pair very closely in time

Another idea in order to remove, or at least decrease the effect of the phase shift due to the displace-
ment of the target, is to transmit the two Golay Codes right after each other with only a small delay.
Figure 4.9 shows the result when two consecutive up-chirp LFM signals are used. This simulation does
not involve a moving target, because its performance for static targets is the most important aspect.
The influence of the Doppler effect and the according phase shift due to displacement are assumed to
be almost negligible in this case.
The sidelobe corridor is almost identical to the one in figure 4.4. One strong peak at range 0m is visible,
but also two strong -13.8dB sidelobes at about -16km and +16km. This corresponds to the expecta-
tions explained in section 3.6. By using both an up- and down-chirp LFM signal, the sidelobes can be
decreased, as can be seen in figure 4.10. The highest sidelobes in range are then at -13.3dB, which
corresponds to the result in figure 4.4. The angular sidelobes can be found at -12.7dB.
The parameters for the simulation are shown in table 4.8. By adding weightings and the usage of all
elements on receive, the performance can be slightly improved, as can be seen in figure A.7 in the
appendix.

Table 4.8: Parameters used for Hybrid Codes pulses with Golay sequences simulation when both codes are transmitted very
closely in time to each other.

Parameter Value
Number of antennas (N): 8
Spatial code: Golay pair
Sampling frequency (Fs) 1.25GHz
Carrier frequency (Fc) 10GHz
Bandwidth (B) 2.55MHz
Length of each LFM sweep (T) 100µs
Distance of Golay Code pulses 1000 samples (0.8µs)
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Figure 4.9: Simulation results for Hybrid Codes pulses with Golay sequences transmitted very close in time in Matlab with two
LFM up-chirps. The parameters used in this simulation are shown in table 4.8. Top: two-dimensional ambiguity function in range
and angle. Bottom left: range cut at angle ∘. Bottom right: angle cut at range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure 4.10: Simulation results for Hybrid Codes pulse with Golay sequences transmitted very close in time in Matlab with
one LFM up- and one LFM down-chirp. The parameters used in this simulation are shown in table 4.8. Top: two-dimensional
ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom right: angle cut at range 0km.



42 4. Analysis

4.3. Measurement results
The measurements have been conducted with the same parameters as the simulations that have been
presented in the last section. Since the system consists of several parts, as can be seen in figures 2.8
and 2.9, the focus here lies on the AWG. Conducting proper measurements with the whole system was
too time consuming and would have exceeded the extent of this thesis. In addition to that, no antenna
or combiner for X-band was available at that time.

The signals have not been generated in baseband like in the simulations, but at a carrier frequency
of 300MHz. To properly examine the capabilities of the AWG, the outputs of all of its 8 channels
were combined with an 8-channel combiner. Its datasheet can be found in figure B.1 in the appendix.
Although this combiner is not designed for frequencies around 300MHz, a measurement of the trans-
mission losses showed that its behavior is almost linear in the frequency area of interest. The results
are very close to the results obtained without combiner, when the channels are measured individually
and summed in Matlab. These results can be found in figures B.3 to B.6 in the appendix.
Simply adding the signals up corresponds to a transmit direction of 0∘. In addition to that, only static
targets are assumed in the measurements, because the antenna of the ASTAP system was not yet
available. Hence, the same results as in the simulations are expected.

4.3.1. Circulating Codes
The measurement of the Circulating Codes has been conducted with the same signal as in the simu-
lation. The parameters can be found in table 4.2. Figure 4.11 shows a result that is very close to the
simulation (see figure 4.2). The peak has the same width and position as in the simulations. There are
range sidelobes at -7.5km and 7.5km with a magnitude of up to -32.4dB. The sidelobes in angle are at
about -11.8dB. Both the angle cut, as well as the range cut, are not symmetrical anymore.
When no combiner is used and the channels of the system are added up in Matlab, the result looks
very similar (see figure B.3).
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Figure 4.11: Measurement results for one Circulating Codes pulse. The parameters used in this simulation are the same as for
the corresponding simulation and shown in table 4.2. Top: two-dimensional ambiguity function in range and angle. Bottom left:
range cut at angle ∘. Bottom right: angle cut at range 0km.
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4.3.2. Hybrid Codes
The signal used in the measurement is the same as in the simulation (see table 4.3). As for the Cir-
culating Codes, the result for the Hybrid Codes in figure 4.12 is very similar to the simulation result
(see figure 4.3). Both the range cut, as well as the angle cut, are not symmetrical. The sidelobes in
range are at about -7.1dB and there are additional ones at 12 to 15 kilometers with a magnitude of less
than -45dB. The highest sidelobes in angle are at about -11.7dB. When no combiner is used and the
channels of the system are added up in Matlab, the result looks very similar (see figure B.4).
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Figure 4.12: Measurement results for one Hybrid Codes pulse with Barker 7 code. The parameters used in this simulation are
shown in table 4.3. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom right:
angle cut at range 0km.

4.3.3. Hybrid Codes with Golay sequences
This measurement examines, if the output of the AWG can be used in combination with Hybrid Codes
and a Golay pair. Two separately processed and summed Hybrid Code pulses with Golay sequences
and two pulses transmitted very closely in time to each other are examined (see sections 3.2 and 3.6).
As before, the same parameters are used as in the simulations (see table 4.4), although the AWG will
generate signals at a carrier frequency of 300MHz. The results are shown in figures 4.13 and 4.14.
The results look very different from each other, although the corresponding simulations are almost the
same. Again, the angle cut and the range cut of the ambiguity function are not symmetrical for both
figures.
For the individually processed pulses, the sidelobes in range are at about -8.5dB and there is an addi-
tional sidelobe of less than -40dB at 15km. The sidelobes in angle are at -12.3dB.
For the pulses transmitted closely in time, the figure shows very high sidelobes in the whole corridor in
azimuth. The range sidelobes can be found at -5.2dB, while the highest sidelobes in angle are even at
-3.1dB. Apart from that, for ranges of less than -0.5km or more than 0.5km, the sidelobe level is always
below -23dB. When no combiner is used and the channels of the system are added up in Matlab, the
result improves slightly for both cases (see figures B.5 and B.6).
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Range-angle ambiguity function (zoomed in range)
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Figure 4.13: Measurement results for individually processed Hybrid Codes pulses with Golay sequences. The parameters used
in this simulation are shown in table 4.4. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at
angle ∘. Bottom right: angle cut at range 0km.
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Figure 4.14: Measurement results for Hybrid Codes pulses with Golay sequences with its pulses transmitted closely in time. The
parameters used in this simulation are shown in table 4.8. Top: two-dimensional ambiguity function in range and angle. Bottom
left: range cut at angle ∘. Bottom right: angle cut at range 0km.



5
Discussion

This last chapter deals with the discussion of the simulation and measurement results. It tries to make
a statement about the applicability of the examined waveforms and give advice for future work.

5.1. Discussion of simulation and measurement results
The Matlab simulation of the waveforms, discussed in chapters 2 and 3, is the most powerful tool to
verify their theoretical performance. Since it is not considering any losses or distortions (like interfering
signals fromwithin the radar system or from the environment), the simulation can only give an indication,
if the examined waveforms can deliver reasonable results in practice.

To rate its performance, each simulation result can be compared with the simulation results for a stan-
dard phased array radar. This has been done in chapter 4, as well as in [13] and [14]. From the
techniques mentioned in chapter 3, only the ones that are able to deliver a comparable performance
to a phased array radar are considered for further investigation and measurements. Since the ASTAP
system is not completely operational, the measurements could only be conducted with the AWG. The
radar system consists of additional parts, as can be seen from figure 2.8. Therefore, these measure-
ments can only give an indication and verify, if the generated signals are clean enough, to be used in
such a radar system. The up-conversion to X-band, the transmission through antennas, the scattering
of the waves due to targets and the environment, as well as the down-conversion will introduce more
effects that cannot be discussed within this thesis.

5.1.1. Circulating Codes
The simulation results from the new implementation of the Circulating Codes shown in figure 4.2 match
the results that were presented in [13]. The shape of the sidelobes are different, but the position, as
well as the height are the same. The reason for this might be a differently generated transmit signal in
combination with a different sampling frequency. Note that the figure shows the processing result for
the use with a single receive antenna. Only the case of one target at a range of 0m and 0∘ from the
radar antenna was assumed in these simulations. Further simulation results that also include different
target angles, can be found in appendix A.
The measurement result, presented in figure 4.11, is very close to the simulation results. The highest
sidelobes in range are only about 2.6dB higher than in the simulations, while the sidelobes in angle are
only 1dB higher. What strikes, is the fact that both the range, as well as the angle cut, are by far not as
symmetrical as in the simulation results. The result without combiner in figure B.3 matches the theory
as well.

To put it in a nutshell, the simulation confirms the results presented by Babur et al., except for the shape
of the sidelobes. The measurement results look very similar to the simulations, with slightly higher
sidelobes. In addition, it strikes that both the range and angle cuts are not symmetrical anymore.

45
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5.1.2. Hybrid Codes
The simulation results from the new implementation of the Hybrid Codes in combination with a Barker
7 code in figure 4.3 match the results that were presented in [14]. Just like for the Circulating Codes,
both figures show the processing result for the use with a single receive antenna. Again, only the case
of one target at a range of 0m and 0∘ from the radar antenna was assumed in this simulations. Further
simulation results can be found in appendix A.
The measurement result, presented in figure 4.12, is also very close to the simulation results, but the
system produces higher sidelobes with Hybrid Codes. The highest sidelobes in range are about 3.3dB
higher, while the sidelobes in angle are about 1dB higher than in the simulations. The result without
combiner, in figure B.4, is very similar.

Like for the Circulating Codes, the simulations confirm the results in the paper by Babur et al. Also the
measurement result looks as expected, with slightly higher sidelobes. Apart from that, there is no clear
symmetry anymore in range or angle.

5.1.3. Hybrid Codes with Golay sequences
The five techniques using Hybrid Codes with Golay pairs led to different results, which are discussed
individually in the following paragraphs. Like for the Circulating and Hybrid Codes before, one target
at 0km and 0∘ is assumed, as well as one receive antenna.

Transmitting Golay sequences consecutively and processing them individually

As can be seen from the simulation result in figure 4.4, this technique shows an extremely good range
performance for static targets. At least in the range cut at 0 degrees, this technique seems to recover
the performance of standard phased array radar. The sidelobes in range are about 2.9dB lower than
for the single-pulse Hybrid Codes with Barker 7 code. The angular performance is similar, but the
main lobe is a few degrees more narrow and the sidelobes at higher angles are much lower. The main
reason for the changed angular pattern is that 7 antenna elements are used for the Hybrid Codes with
Barker 7 code, while 8 antenna elements are used for the Hybrid Codes with Golay sequences, which
leads to a narrower main lobe. The angular performance can easily be improved by adding weightings
in time and space and by using more antennas for reception (see figure A.6 in appendix A).
Figure 4.5 shows the results of the simulation involving the phase shift due to the displacement. The
phase shift of the ambiguity function is corrected for a range of values. It is obvious that this technique
only delivers good results, when the phase shift is properly corrected. When this is done, the result is
as good as for static targets, otherwise there are sidelobes of up to -11dB. In addition to that, the target
peak is very wide in Doppler.

A problem of this combination of processing and waveform is that it only works properly for one target or
several targets with the same velocity. If several targets with different velocities are observed, only one
target displacement phase shift can be corrected at a time. The other targets still have high sidelobes
and can also cover other targets. Generally, not knowing the exact velocity of the target, means a big
effort for the processing and a huge amount of data, because a 3-dimensional matrix (range, angle,
velocity) needs to be filled. If the velocity interval of the targets is well known, this amount of data can
be considerably reduced. Still, the processing is costly.

The measurement with the AWG of the ASTAP system for an assumed static target does look similar,
but the sidelobes are considerably higher. In range, they are about 4.8dB higher, while in angle only
1dB higher than in the simulations. In general, the sidelobe corridor in azimuth is wider than expected.
In the simulations, this corridor is about 0.5km wide, but the measurements it has a width of almost
1km, which is comparable to the Circulating or Hybrid Codes. When no combiner is used, the overall
result looks a little bit different, which is shown in figure B.5 in the appendix. There, the sidelobes in
range are 5.1dB higher than in the simulations and the angle sidelobes are now about 3.6dB higher.
The width of the sidelobe corridor is smaller than with combiner. A reason might be that the different
channels of the combiner are not completely isolated from each other and a manual summing produces
cleaner results.
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Transmitting more than one Golay pair consecutively and process them individually

As explained in chapter 3, the sidelobes in Doppler can be reduced by processing more than one
Golay pair and adding up the results coherently. Figure 4.6 shows that this technique is indeed a big
improvement. The target peak is now very narrow in Doppler, which facilitates the detection. There are
still sidelobes at other Doppler frequencies with a magnitude of -11dB, but they become more narrow,
the more Golay pairs are being used, although they cannot be completely removed. The reason for
these sidelobes has been explained in section 4.2.4 and is related to the fact that due to the use of PRT
and GRT, a second PRT is formed, which is the sum of PRT and GRT. This new PRT is responsible for
new ambiguities, which become visible in the sidelobes.
A difficulty is that several consecutive Golay pulse pairs need to be transmitted and received. This
means that the target will be illuminated for a long time and the target might move quite much in that
time. Depending on the application, this could again lead to a decreased range resolution, because
the target peak would widen in range. No measurements have been conducted for this technique.

Transmitting Golay pair in parallel on different elements

As can be seen from figure 4.7, this technique delivers no good results. Several variants of different
antenna setups have been examined, but the results were all similar. Although the target peak is very
narrow and the sidelobes in range are comparable to the ones from the individual processing of the
pulses, the sidelobe corridor is much wider in range than for the other techniques. In addition to that,
the double amount of antenna elements is necessary, which makes this technique more expensive.
Since the simulation results of this technique were not satisfying, no measurements have been con-
ducted.

Transmitting Golay pair in parallel at different frequencies

This technique does not deliver good results either. Figure 4.8 shows a typical result. Although the
peak is again very narrow and the sidelobes at about -11.4dB, there is no big improvement visible
from Hybrid Codes with Barker 7 code. Therefore, no measurements have been conducted with this
technique.

Transmitting Golay pair very closely in time

Here, only an up- and down-chirp is considered as transmit signal, because it achieves the best per-
formance. The result of this technique is quite similar to processing each pulse individually. But since
the pulses are transmitted very close to each other in time, the effect of the phase shift due to the dis-
placement of the target would be very small. The simulation result (which does not include any moving
target) is shown in figure 4.10. The sidelobes corridor in azimuth around 0m is almost identical to the
one that is shown in figure 4.4, the magnitude of the highest sidelobes is the same. The difference
between both techniques is the sidelobe level at ranges further away from the target. While the indi-
vidually processed pulses achieve sidelobe levels of less than -40dB at a range of ±1.5km and more,
transmitting the pulses close to each other in time leads to a general sidelobe level of slightly under
-30dB for all ranges of more than ±1.5km. In angle, the sidelobes generated by this technique are
even about 1dB lower.
The measurement presented in figure 4.14 shows that the sidelobes are generally much higher over
the whole azimuth sidelobe corridor than in the simulations. In range, they are about 8.1dB higher,
while in angle even 9.6dB. The result without combiner looks similar.

5.2. Summary and conclusions
This thesis studied the MIMO radar techniques of the Circulating Codes and the Hybrid Codes. After
a general radar introduction in chapter 1 and an introduction to the mentioned techniques in chapter
2, a new method has been presented to improve the performance of the Hybrid Codes. This method
involves the usage of Golay sequences as spatial codes. Since the sum of the auto-correlation functions
of a so-called Golay pair theoretically produces one narrow peak and zero sidelobes, they have perfect
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properties for use in combination with radar.
In chapter 4, the implementation of the Matlab simulations is explained. In addition to that, the results
of the simulations and measurements are presented. The simulations of the Circulating and Hybrid
Codes confirm the results of Babur et al. presented in [13] and [14]. Hence, the implementation in
Matlab is correct.

The simulations of the Hybrid Codes in combination with Golay pairs showed a very narrow peak in
range for static targets, as expected from the theory. Since this technique is adding the processing
results for two pulses coherently, small phase shifts have a big influence on the final result.
A moving target introduces a phase shift due to its displacement in between of the two pulses. There-
fore, the biggest challenge is to deal with this phase shift. Several ways of avoiding or at least minimiz-
ing this phase shift have been presented in chapter 3 and examined in chapter 4. The most promising
techniques are firstly, transmitting, receiving and processing two or more pulses individually and then
correcting the phase shift due to a range of assumed velocities, before adding up the ambiguity func-
tions and secondly, transmitting the two Golay pulses very closely in time to each other and applying
one matched filter on the reflected signal.
Both these techniques deliver good results in the simulations. Processing the pulses individually gives
the lowest sidelobes in range, but the velocity of the targets needs to be roughly known already. Fur-
thermore, the detection of several targets with different velocities is difficult, because the sidelobes due
to an incorrectly removed phase shift can lead to false alarms or cover other targets. Often, these
sidelobes will only disturb the measurements for a short time, but it might also be possible to reduce
these problems by applying some kind of multi-target processing. In addition to that, a 3-dimensional
ambiguity function (range, angle, Doppler) is produced with this technique, which makes it computa-
tionally expensive. Transmitting the pulses very close to each other still involves a phase shift, but for
most targets, it will be small enough to omit it. The average level of sidelobes in range is higher than
for the individual processing.
To conclude, the usage of Hybrid Codes with Golay pairs for detecting moving targets is complicated.
This thesis showed that it is theoretically possible to remove or avoid the phase shift effect due to the
displacement of the target.

The measurements with the ASTAP system show that already the AWG introduces a lot of extra side-
lobes in the processing results. For single pulse applications like Circulating or Hybrid Codes, its perfor-
mance seems to be sufficiently good, since the differences between the measurement and simulation
results are not very big, as has been discussed in sections 5.1.1 and 5.1.2. But it is questionable, if this
system can produce signals that are clean enough for a multi-pulse waveform processing approach.
As has already been discussed in section 5.1.3, the results produced with the ASTAP system have
much more sidelobes than expected and the symmetry of the figures gets lost.
Firstly, this means that the techniques applied in this thesis are more sensitive to distortions and phase
shifts than the Circulating or Hybrid Codes. Secondly, the results show that the ASTAP system might
not be reliable enough for these kinds of multi-pulse waveforms. The measurements did not produce
the expected outcome. Especially the measurement involving two Hybrid Code pulses with Golay se-
quences transmitted closely in time shows that the results provided by the system are very different
from the expectations.

5.3. Possible applications
Here, two techniques are considered for possible applications: the Hybrid Codes with Golay sequences
that are individually transmitted and processed and the ones that are transmitted closely in time and
then processed jointly. In the first case, the biggest problem is the PRT. Since two individually processed
pulses are used to produce the narrow peak, the PRT plays an important role here and the Doppler
dilemma (see chapter 1) comes into play.
To avoid a bad Doppler performance when the targets are at a big distance from the antenna, this
technique should be used for comparatively slow or static targets, or targets that usually have velocities
within a well known interval, for example ships, cars or even pedestrians. For fast moving targets or
targets with fast changing velocities, this technique does not seem suited, because of the necessary
phase shift compensation that can only be done for a limited amount of velocities. In addition to that, the
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technique should only be used, if all targets have a similar velocity (like cars on a highway, for instance)
or if only one or very few targets are observed. Since the phase shift can only be compensated for one
velocity at a time, targets with different velocities create high sidelobes.
For example, when both the PRT and the GRT are 300µs, this leads to a maximally observable distance
of 45km and a maximal unambiguous velocity of 25𝑚/𝑠 according to equations 1.9 and 1.10 with a
carrier frequency of 10GHz. Therefore, this radar could detect targets with velocities of -25𝑚/𝑠 and
+25𝑚/𝑠. Alternatively, any other velocity interval of width 2 ⋅ 25𝑚/𝑠 = 50𝑚/𝑠 can be observed, if one
can be certain that the target velocities stay in this area.
For the second case of the pulses being processed jointly, neither the phase shift due to displacement,
nor the PRT play a role in theory. Since the signal is transmitted as one piece, it can be used for
almost all known radar application and the phase shift due to the displacement of the target should be
negligible. As the measurements delivered bad results for this technique, it has to be examined more
carefully before making propositions about possible applications.

5.4. Outlook and recommendations
This thesis showed that it is theoretically possible to decrease the range sidelobes of Hybrid Codes by
doing multi-pulse processing in combination with Golay pairs. Future work should focus on the phase
shift, when applying multi-pulse processing on moving targets. If the effect of this phase shift on the
final ambiguity function of Hybrid Codes with Golay sequences is understood better, the processing
could be improved.

In addition to that, the whole ASTAP system should be examined experimentally. In a first try, the same
measurements, as presented in chapter 4, could be conducted, while using all parts of the ASTAP
system as shown in figure 2.8, in combination with a combiner for X-band instead of the antenna. In
a next step, the measurements could be repeated with an antenna in an open field environment. In
general, it might be useful to examine the local oscillator of the AWG and closely compare the outputs
of each channel. If the ASTAP system does not fulfill the expectations, it might be necessary to improve
the AWG or replace it with more stable equipment.
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Figure A.1: Angle-angle cuts of ambiguity function for Circulating Codes. is the beamforming angle, while is the direction
of the target from the antenna. The parameters used in this simulation are shown in table 4.2.
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Range-angle ambiguity function (zoomed in range)
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Figure A.2: Simulation results for one Circulating Codes pulse with an assumed target at 30∘. The parameters used in this
simulation are shown in table 4.2. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle
∘. Bottom right: angle cut at range 0km.
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Figure A.3: Simulation results for one Circulating Codes pulse with an assumed target at 60∘. The parameters used in this
simulation are shown in table 4.2. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle
∘. Bottom right: angle cut at range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure A.4: Simulation results for one Circulating Codes pulse with improved processing. All antenna elements are used for
receiving the reflected signal. In addition to that, hamming weights are applied on the replica in time and 30dB Taylors weightings
are applied in space over the antenna elements. The parameters used in this simulation are shown in table 4.2. Top: two-
dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom right: angle cut at range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure A.5: Simulation results for one Hybrid Codes pulse with Barker 7 code with improved processing. All antenna elements
are used for receiving the reflected signal. In addition to that, hamming weights are applied on the replica in time and 30dB
Taylors weightings are applied in space over the antenna elements. The parameters used in this simulation are shown in table
4.3. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom right: angle cut at
range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure A.6: Simulation results for individually processed Hybrid Codes pulses with Golay sequences with improved processing.
All antenna elements are used for receiving the reflected signal. In addition to that, hamming weights are applied on the replica
in time and 30dB Taylors weightings are applied in space over the antenna elements. The parameters used in this simulation
are shown in table 4.4. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom
right: angle cut at range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure A.7: Simulation results for Hybrid Codes pulses with Golay sequences transmitted very closely in time in Matlab with one
LFM up- and one LFM down-chirp with improved processing. All antenna elements are used for receiving the reflected signal.
In addition to that, hamming weights are applied on the replica in time and 30dB Taylors weightings are applied in space over
the antenna elements. The parameters used in this simulation are shown in table 4.8. Top: two-dimensional ambiguity function
in range and angle. Bottom left: range cut at angle ∘. Bottom right: angle cut at range 0km.
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DESCRIPTION :

MODEL NO. :

DIMENSIONS ARE IN INCHES
DECIMAL TOLERANCE:

2 PLACE ± .02
  3 PLACE ± .010

SIZE CAGE CODE : REV CODE :

SCALE : N / A SHEET       1  OF 1ALL SPECIFICATIONS ARE SUBJECT TO
CHANGE WITHOUT NOTICE AT ANY TIME

PULSAR MICROWAVE CORPORATION
48 INDUSTRIAL WEST, CLIFTON NJ 07012
TEL: 973-779-6262   FAX: 973-779-2727
WWW.PULSARMICROWAVE.COM

0HR85A

8-Way Power Divider - 0°

PS8-03-454/1S

SPECIFICATIONS

Frequency Range:  1.0 - 2.0 GHz
Insertion Loss:  0.8 dB Max
Isolation:   20 dB Min
Amplitude Balance:  0.4 dB Max
Phase Balance:  5.0° Max
VSWR:   1.35:1 Max

Notes: Power rating is 30 watts max. for load VSWR better   
    than 1.20:1

PORT CONFIGURATION

Input:  x

Figure B.1: Datasheet of the 8-way combiner that was used for the measurements. Figure taken from [22].
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Figure B.2: Measurement result of the loss between one input and the output for the combiner. Around 300MHz, the loss is
linear enough for the measurements.
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Figure B.3: Measurement results for one Circulating Codes pulse, without combiner. The parameters used in this simulation
are the same as for the corresponding simulation and shown in table 4.2. Each channel was measured independently and then
combined in Matlab. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘. Bottom
right: angle cut at range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure B.4: Measurement results for one Hybrid Codes with Barker 7 code pulse, without combiner. The parameters used in this
simulation are the same as for the corresponding simulation and shown in table 4.3. Each channel was measured independently
and then combined in Matlab. Top: two-dimensional ambiguity function in range and angle. Bottom left: range cut at angle ∘.
Bottom right: angle cut at range 0km.
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Figure B.5: Measurement results for individually processed Hybrid Codes pulses with Golay sequences, without combiner. The
parameters used in this simulation are the same as for the corresponding simulation and shown in table 4.4. Each channel was
measured independently and then combined in Matlab. Top: two-dimensional ambiguity function in range and angle. Bottom
left: range cut at angle ∘. Bottom right: angle cut at range 0km.
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Range-angle ambiguity function (zoomed in range)
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Figure B.6: Measurement results for Hybrid Codes pulses with Golay sequences transmitted very closely in time in Matlab with
one LFM up- and one LFM down-chirp, without combiner. The parameters used in this simulation are shown in table 4.8. Each
channel was measured independently and then combined in Matlab. Top: two-dimensional ambiguity function in range and
angle. Bottom left: range cut at angle ∘. Bottom right: angle cut at range 0km.



C
Matlab code

C.1. generate_lfm.m
% Generate LFM t ransm i t s i gna l

clear a l l
close a l l

% Inpu t parameters
N = 8; % Number o f elements
Fs = 1.25e9 ; % Sampling frequency
phi0 = 0; % Extra phase s h i f t
Fc = 10e9 ; % Car r i e r f requency
B = 2.55e6 ; % Bandwidth
dt = 1 /B ; % Ci r cu l a r t ime s h i f t ( used to s tee r beam)
T = 100e 6; % LFM sweep leng th i n t ime

% Choice o f s p a t i a l code
% code = [1 1 1 1 1 1 1 1 ] ’ ; % Golay 8 (1 )
% code = [1 1 1 1 1 1 1 1] ’ ; % Golay 8 (2 )
% code = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ’ ; % Golay 8 (1+2)
% code = [1 1 1 1 1 1 1] ’ ; % Barker 7
code = ones (1 ,N) ’ ; % A l l ones

Ts = 1/Fs ; % Sampling t ime
s h i f t = round ( d t / Ts ) ; % Ci r cu l a r t ime s h i f t i n number o f samples

% Generate LFM sweep
t2 = l inspace ( T /2 ,T /2 , round (T / Ts ) ) ;
s i gna l = exp (1 i *pi * (B / T ) . * t2 . ^ 2 ) ;

% Generate C i r c u l a t i n g Codes
o r i g i na l _s imou t = gen_c i rc_s ig ( s igna l ,N, s h i f t ) ; % C i r c u l a t i n g s i gna l
simout = diag ( code ) * o r i g i na l _s imou t ; % Apply s p a t i a l code

% New time vec to r according to new s igna l leng th
t = 0 : Ts : ( length ( simout ) 1)*Ts ;

% Funct ion to generate a C i r c u l a t i n g Code s i gna l according to sec t ion
% 2 . 2 . 1 . i n t hes i s
function y = gen_c i rc_s ig ( s igna l ,N, s h i f t )

r e f _ s i g na l = zeros (N, length ( s i gna l ) +(N 1)*round ( s h i f t ) ) ;
for i =1:N

r e f _ s i gna l ( i , : ) = c i r c s h i f t ( [ s i gna l zeros ( 1 , (N 1)*round ( s h i f t ) ) ] , [ 1 ( i 1)*round ( s h i f t ) ] ) ;
end

y = r e f _ s i gna l ;

end

C.2. af_normalized.m
% Plo t ambigu i ty f unc t i on o f measurement

% Speed of l i g h t
c = 3e8 ;

% Range [km] and angle o f t a r ge t
r1 = 0 ;
ra1 = 0;

%%%%% Inpu t parameters f o r ambigu i ty f unc t i on %%%%%
t he ta_ r = ( 90:1:90) *pi / 180 ; % Observat ion d i r e c t i o n on rece ive i n rad ian
t he t a_ t = the ta_ r ; % Di rec t i on o f t r ansm i t t ed s i gna l i n rad ian
angle_r1 = the ta_ r==deg2rad ( ra1 ) ; % Angular pos i t i o n o f t a r ge t i n rad ian vec to r

%%%%% Other parameters f o r waveforms %%%%%
Nth_r = length ( t he ta_ r ) ; % Length o f rece ive angle vec to r
Nth_t = length ( t he t a_ t ) ; % Length o f t r ansm i t angle vec to r
lbd0 = c / Fc ; % Wavelength a t c a r r i e r f requency
k0 = 2*pi / lbd0 ; % Wavenumber a t c a r r i e r f requency
d = lbd0 / 2 ; % Antenna separa t ion i n meter ( lambda / 2 )
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x_tx = ( (N 1) / 2 : (N 1) / 2 ) *d ; % Tx antenna pos i t i ons
x_rx = x_tx ; % Rx antenna pos i t i o ns

% Weight ings over antennas
a_win = ones ( length ( x_rx ) ,1 ) ;
% a_win = tay l o rw i n ( leng th ( x_rx ) ) ;

% Received s i gna l w i th phase s h i f t s due to rece ive and t ransm i t antenna
% element pos i t i ons
rece ived = [ zeros ( length ( x_rx ) ,2* round ( ( ( r1 *1000) / c ) / Ts ) ) diag ( a_win ) * (exp (1 i *k0* x_rx ’ * ( sin ( t he ta_ r ( angle_r1 ) ) ) ) * (exp (1 i *k0* x_tx ’ * ( sin ( t he ta_ r (

angle_r1 ) ) ) ) . ’ . * ( ones (1 ,N) ) ) * simout ) ] ;

% New time vec to r f o r rece ived s i gna l
t _ r = 0 : Ts : ( length ( rece ived ) 1)*Ts ;

% Apply t ime weight ings to re ference s i gna l
% window = hamming ( leng th ( simout ) ) . ’ ;
window = ones (1 , length ( simout ) ) ;

%%%%% Ambigui ty f unc t i on f o r r ece i v i ng angle %%%%%
d i sp lay ( ’ Ca l cu l a t i ng ␣ambigu i ty␣ f unc t i on . . . ’ ) ;
w = wai tbar (0 , ’ Ca l cu l a t i ng ␣ambigu i ty␣ f unc t i on . . . ’ ) ;
Chi = zeros ( Nth_r , length ( rece ived ) *2 1) ; % Define s ize o f Chi
i i = 0 ;
for th = 1 : Nth_t

i i = i i +1;
DBF1 = exp (1 i *k0* x_tx ( 1 :end ) *sin ( t he t a_ t ( th ) ) ) * ( simout ( 1 :end , : ) ) ; % Beamforming pa r t 1 ( t r ansm i t s i gna l i n d i r e c t i o n the ta )
DBF2 = exp (1 i *k0* f l i p l r ( x_rx ) *sin ( t he t a_ t ( th ) ) ) * ( rece ived ) ; % Beamforming pa r t 2 ( rece ive s i gna l i n d i r e c t i o n the ta )
Chi ( th , : ) = xco r r (DBF2,DBF1. *window ) ; % Apply matched f i l t e r
wai tbar ( i i / Nth_t ) ;

end
close (w)

[ XCorLFMCirc , lags ] = xco r r (DBF2,DBF1) ; % Calcu la te lags f o r proper range vec to r

Range = ( lags *1/ Fs*c / 2 ) /1000; % Range vec to r [km]
[M, d i s t _ r 1 ] = min (abs (Range r1 ) ) ; % Range bin c loses t to the pos i t i o n o f t a r ge t

Chi_norm = abs ( squeeze ( Chi ) ) /max(abs ( squeeze ( Chi ( : ) ) ) ) ; % Absolute value and normal ize ambigu i ty f unc t i on

%%%%% Plo t r e s u l t %%%%%
d i sp lay ( ’ P l o t t i n g ␣ambigu i ty␣ f unc t i on . . . ’ ) ;

f igure
subplot ( 6 , 2 , [ 1 , 2 , 3 , 4 , 5 , 6 ] )
imagesc ( rad2deg ( the ta_ r ) ,Range,20* log10 ( squeeze ( Chi_norm ( : , : ) ) ’ ) )
colormap ( j e t )
c = colorbar ;
t i t l e ( ’Range angle␣ambigu i ty␣ f unc t i on ␣ ( zoomed␣ i n ␣ range ) ’ )
xlabel ( ’ Receive␣angle␣ [ ° ] ’ )
ylabel ( ’Range␣ [km] ’ )
ylabel ( c , ’ Ampl i tude␣ [ dB ] ’ )
% yl im ( [ min (Range ) max(Range ) ] )
x l im ([ 90 90 ] )
y l im ([ 1 1 ] )
caxis ([ 50 0 ] )
axis xy

ax = gca ;
ax . XTick = [ 90 60 30 0 30 60 90 ] ;

subplot ( 6 , 2 , [ 9 , 11 ] )
plot (Range,20* log10 ( squeeze ( Chi_norm ( angle_r1 , : ) ) ) ’ , ’ k ’ , ’ L ineWidth ’ , 1 . 5 )
xlabel ( ’Range␣ [km] ’ )
ylabel ( ’ Ambigui ty␣ f unc t i on ␣ [ dB ] ’ )
x l im ( [min (Range ) max(Range ) ] )
% xl im ([ 15 15 ] )
y l im ([ 50 0 ] )
% xl im ([ 20 20 ] )
s t r = spr in t f ( ’ Ambigui ty␣ range␣ cut␣at␣ rece ive␣angle␣%i ° ’ , ra1 ) ;
t i t l e ( s t r )
grid on
grid minor

% ax = gca ;
% ax . XTick = [ 15 10 5 0 5 10 15 ] ;

subplot ( 6 , 2 , [ 10 ,12 ] )
plot ( rad2deg ( the ta_ r ) ,20* log10 ( squeeze ( Chi_norm ( : , d i s t _ r 1 ) ) ) ’ , ’ k ’ , ’ L ineWidth ’ , 1 . 5 )
xlabel ( ’ Receive␣angle␣ [ ° ] ’ )
ylabel ( ’ Ambigui ty␣ f unc t i on ␣ [ dB ] ’ )
x l im ([ 90 90 ] )
y l im ([ 50 0 ] )
s t r = spr in t f ( ’ Ambigui ty␣angle␣ cut␣at␣d is tance␣%ikm ’ , r1 ) ;
t i t l e ( s t r )
grid on
grid minor

ax = gca ;
ax . XTick = [ 90 45 0 45 90 ] ;

set ( gcf , ’ u n i t s ’ , ’ po in t s ’ , ’ p o s i t i o n ’ , [50 ,50 ,750 ,500] , ’ PaperOr ien ta t ion ’ , ’ landscape ’ , ’ Renderer ’ , ’ pa i n te r s ’ )

C.3. af_normalized_golay.m
% Calcu la te ambigu i ty f unc t i on w i th two complementary codes

clear a l l
close a l l

t i c

%%%%% Waveform parameters %%%%%
N = 8; % Number o f elements
phi0 = 0; % Extra phase s h i f t
Fs = 10e6 ; % Sampling frequency
Fc = 10e9 ; % Car r i e r f requency
B = 2.55e6 ; % Bandwidth
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T = 100e 6; % LFM sweep leng th i n t ime

%%%%% Number o f Golay pulses (must be a mu l t i p l e o f 2) %%%%%
np_max = 2;

%%%%% Target parameters %%%%%
r = 0 ; % Range of t a r ge t
ra = 0 ; % Angle o f t a r ge t
R0 = 0; % Range at s t a r t o f measurement
PRT = 2e 4; % Pulse r e p e t i t i o n t ime ( w i t h i n Golay pa i r )
GRT = 2e 4; % Golay pa i r r e p e t i t i o n t ime
fD = 1e3 ; % Doppler frequency o f t a r ge t i n d i r e c t i o n o f the radar
fD_assumed = 4e3 :0 . 5 e2 :4e3 ; % Assumed Doppler f requenc ies

%%%%% Speed of l i g h t %%%%%
c = 3e8 ;
Ts = 1/Fs ; % Sampling t ime

%%%%% Inpu t parameters f o r ambigu i ty f unc t i on %%%%%
t he ta_ r = ( 90:1:90) *pi / 180 ; % Observat ion d i r e c t i o n on rece ive i n rad ian
t he t a_ t = the ta_ r ; % Di rec t i on o f t r ansm i t t ed s i gna l i n rad ian
angle_r = the ta_ r==deg2rad ( ra ) ; % Angular pos i t i o n o f t a r ge t i n rad ian vec to r
fD_ ta rge t = fD_assumed == fD ; % Doppler frequency o f t a r ge t i n assumed Doppler frequency vec to r

% Ve loc i t y vec to rs
v = ( fD * ( c / Fc ) ) . / 2 ; % Ve loc i t y o f t a r ge t [m/ s ]
v_assumed = ( fD_assumed . * ( c / Fc ) ) . / 2 ; % Assumed v e l o c i t i e s [m/ s ]

%%%%% Other parameters f o r waveforms %%%%%
Nth_r = length ( t he ta_ r ) ; % Length o f rece ive angle vec to r
Nth_t = length ( t he t a_ t ) ; % Length o f t r ansm i t angle vec to r
lbd0 = c / Fc ; % Wavelength a t c a r r i e r f requency
k0 = 2*pi / lbd0 ; % Wavenumber a t c a r r i e r f requency
d = lbd0 / 2 ; % Antenna separa t ion i n meter ( lambda / 2 )
x_tx = ( (N 1) / 2 : (N 1) / 2 ) *d ; % Tx antenna pos i t i ons
x_rx = x_tx ; % Rx antenna pos i t i o ns

%%%%% LFM s igna l generat ion %%%%%
dt = 1 /B ; % Ci r cu l a r t ime s h i f t ( used to s tee r beam)
s h i f t = round ( d t / Ts ) ; % Ci r cu l a r t ime s h i f t i n number o f samples

% Generate LFM sweep
t2 = l inspace ( T /2 ,T /2 , round (T / Ts ) ) ;
s i gna l = exp (1 i *pi * (B / T ) . * t2 . ^ 2 ) ;

%%%%% Define leng th o f rece ived s i gna l and s ize o f ambigu i ty f unc t i on %%%%%
l en_ r = length ( s i gna l ) +(N 1)* s h i f t +2*round ( ( ( ( r +v * ( np_max 1)*PRT*1e 3)*1000) / c ) / Ts ) ;
Chi = zeros ( Nth_r , length ( fD_assumed ) ,2* len_r 1) ;

%%%%% Sta r t loop of pulses %%%%%
for puls = 1 : round ( np_max / 2 ) ;

% Spa t i a l code
code = [1 1 1 1 1 1 1 1 ] ’ ; % Golay 8 (1 )

% C i r c u l a t i n g codes generat ion
o r i g i na l _s imou t = gen_c i rc_s ig ( s igna l ,N, s h i f t ) ; % C i r c u l a t i n g s i gna l
simout = diag ( code ) * o r i g i na l _s imou t ; % Apply s p a t i a l code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Pulse delay due to PRT and GRT
delay1 = ( puls 1) * (PRT+( puls 1)*0.01e 4) + ( puls 1)*GRT;

% Weight ings over antennas
a_win = ones ( length ( x_rx ) ,1 ) ;

% a_win = tay l o rw i n ( leng th ( x_rx ) ) ;

% Ref lec ted s igna l s from both ta rge ts , i n vo l v i n g phase s h i f t s due to
% t ransm i t and rece ive antenna element pos i t i ons
rece ived = [ zeros (N,2* round ( ( ( ( r +v*delay1 *1e 3)*1000) / c ) / Ts ) ) diag ( a_win ) * (exp (1 i *k0* x_rx ’ * ( sin ( t he ta_ r ( angle_r ) ) ) ) * (exp (1 i *k0* x_tx ’ * ( sin ( t he ta_ r

( angle_r ) ) ) ) . ’ . * ( ones (1 ,N) ) ) * simout ) ] ;

% Received s i gna l t ime vec to r
t _ r = 0 : Ts : ( length ( rece ived ) 1)*Ts ;

% Apply weight ings i n t ime to re ference s i gna l
% window = hamming ( leng th ( simout ) ) . ’ ;

window = ones (1 , length ( simout ) ) ;

%%%%% Ambigui ty f unc t i on f o r r ece i v i ng angle %%%%%
d i sp lay ( [ ’ Ca l cu l a t i ng ␣ambigu i ty␣ f unc t i on ␣ ’ ,num2str (1+( puls 1) *2) , ’ . . . ’ ] ) ;
w = wa i tbar ( 0 , [ ’ Ca l cu l a t i ng ␣ambigu i ty␣ f unc t i on ␣ ’ ,num2str (1+( puls 1) *2) , ’ . . . ’ ] ) ;
Chi1 = zeros ( Nth_r , length ( fD_assumed ) , length ( rece ived ) *2 1) ; % Define s ize o f Chi1
i i = 0 ;
for th = 1 : Nth_t

i i = i i +1;
for m = 1: length ( fD_assumed )

DBF1 = exp (1 i *k0* x_tx ( 1 :end ) *sin ( t he t a_ t ( th ) ) ) * ( simout ( 1 :end , : ) ) ; % Beamforming pa r t 1 ( t r ansm i t s i gna l i n d i r e c t i o n the ta )
DBF2 = exp( 1 i *2*pi *Fc *2* (R0+v*delay1 ) / c ) . * ( exp (1 i *2*pi * fD . * t _ r ) . * ( exp (1 i *k0* f l i p l r ( x_rx ) *sin ( t he t a_ t ( th ) ) ) * rece ived ) ) ; % Beamforming

pa r t 2 ( rece ive s i gna l i n d i r e c t i o n theta , i n c l ud i ng phase s h i f t due to displacement )
Chi1 ( th ,m, : ) = xco r r (DBF2,DBF1. *window ) ; % Apply matched f i l t e r

end
wai tbar ( i i / Nth_t ) ;

end
close (w)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spa t i a l code
code = [1 1 1 1 1 1 1 1] ’ ; % Golay 8 (2 )

% C i r c u l a t i n g codes generat ion
o r i g i na l _s imou t = gen_c i rc_s ig ( s igna l ,N, s h i f t ) ; % C i r c u l a t i n g s i gna l
simout = diag ( code ) * o r i g i na l _s imou t ; % Apply s p a t i a l code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Pulse delay due to PRT and GRT
delay2 = puls * (PRT+( puls 1)*0.01e 4) + ( puls 1)*GRT;

% Weight ings over antennas
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a_win = ones ( length ( x_rx ) ,1 ) ;
% a_win = tay l o rw i n ( leng th ( x_rx ) ) ;

rece ived = [ zeros (N,2* round ( ( ( ( r +v*delay2 *1e 3)*1000) / c ) / Ts ) ) diag ( a_win ) * (exp (1 i *k0* x_rx ’ * ( sin ( t he ta_ r ( angle_r ) ) ) ) * (exp (1 i *k0* x_tx ’ * ( sin ( t he ta_ r
( angle_r ) ) ) ) . ’ . * ( ones (1 ,N) ) ) * simout ) ] ;

% Time vec to r
t _ r = 0 : Ts : ( length ( rece ived ) 1)*Ts ;

% Apply window to re ference s i gna l
% window = hamming ( leng th ( simout ) ) . ’ ;

window = ones (1 , length ( simout ) ) ;

%%%%% Ambigui ty f unc t i on f o r r ece i v i ng angle %%%%%
d i sp lay ( [ ’ Ca l cu l a t i ng ␣ambigu i ty␣ f unc t i on ␣ ’ ,num2str (2+( puls 1) *2) , ’ . . . ’ ] ) ;
w = wai tbar ( 0 , [ ’ Ca l cu l a t i ng ␣ambigu i ty␣ f unc t i on ␣ ’ ,num2str (2+( puls 1) *2) , ’ . . . ’ ] ) ;
Chi2 = zeros ( Nth_r , length ( fD_assumed ) , length ( rece ived ) *2 1) ; % Define s ize o f Chi2
i i = 0 ;
for th = 1 : Nth_t

i i = i i +1;
for m = 1: length ( fD_assumed )

DBF1 = exp (1 i *k0* x_tx ( 1 :end ) *sin ( t he t a_ t ( th ) ) ) * ( simout ( 1 :end , : ) ) ; % Beamforming pa r t 1 ( t r ansm i t s i gna l i n d i r e c t i o n the ta )
DBF2 = exp( 1 i *2*pi *Fc *2* (R0+v*delay2 ) / c ) . * ( exp (1 i *2*pi * fD . * t _ r ) . * ( exp (1 i *k0* f l i p l r ( x_rx ) *sin ( t he t a_ t ( th ) ) ) * rece ived ) ) ; % Beamforming

pa r t 2 ( rece ive s i gna l i n d i r e c t i o n theta , i n c l ud i ng phase s h i f t due to displacement )
Chi2 ( th ,m, : ) = xco r r (DBF2,DBF1. *window ) ; %Apply matched f i l t e r

end
wai tbar ( i i / Nth_t ) ;

end
close (w)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[ XCorLFMCirc , lags ] = xco r r (DBF2,DBF1) ; % Calcu la te lags f o r proper range vec to r

Range = ( lags *1/ Fs*c / 2 ) /1000; % Range vec to r [km]
[M, d i s t _ r ] = min (abs (Range r ) ) ; % Range bin c loses t to the pos i t i o n o f t a r ge t

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Remove phase s h i f t e f f e c t due to t a r ge t displacement f o r both pulses
for m = 1 :1 : length ( v_assumed )

Chi1 ( : ,m, : ) = exp (1 i *2*pi *Fc *2* (R0+(v_assumed (m) ) *delay1 ) / c ) . * Chi1 ( : ,m, : ) ;
Chi2 ( : ,m, : ) = exp (1 i *2*pi *Fc *2* (R0+(v_assumed (m) ) *delay2 ) / c ) . * Chi2 ( : ,m, : ) ;

end

% Coherent ly add up a l l ambigu i ty f unc t i ons
Chi = Chi + Chi1 + Chi2 ;

end

% Normalize ambigu i ty f unc t i on r e s u l t
Chi_norm = abs ( squeeze ( Chi ) ) /max(abs ( squeeze ( Chi ( : ) ) ) ) ; % Absolute value and normal ize ambigu i ty f unc t i on

%%%%% Plo t r e s u l t %%%%%
d i sp lay ( ’ P l o t t i n g ␣ambigu i ty␣ f unc t i on . . . ’ ) ;

f igure
subplot ( 6 , 2 , [ 1 , 2 , 3 , 4 , 5 , 6 ] )
imagesc ( rad2deg ( the ta_ r ) ,Range,20* log10 ( squeeze ( Chi_norm ( : , fD_target , : ) ) ’ ) )
colormap ( j e t )
c = colorbar ;
t i t l e ( ’Range angle␣ambigu i ty␣ f unc t i on ␣ ( zoomed␣ i n ␣ range ) ’ )
xlabel ( ’ Receive␣angle␣� [ ] ’ )
ylabel ( ’Range␣ [km] ’ )
ylabel ( c , ’ Ampl i tude␣ [ dB ] ’ )
% yl im ( [ min (Range ) max(Range ) ] )
x l im ([ 90 90 ] )
y l im ([ 1 1 ] )
caxis ([ 50 0 ] )
axis xy

ax = gca ;
ax . XTick = [ 90 60 30 0 30 60 90 ] ;

subplot ( 6 , 2 , [ 9 , 11 ] )
plot (Range,20* log10 ( squeeze ( Chi_norm ( angle_r , fD_target , : ) ) ) ’ , ’ k ’ , ’ L ineWidth ’ , 1 . 5 )
xlabel ( ’Range␣ [km] ’ )
ylabel ( ’ Ambigui ty␣ f unc t i on ␣ [ dB ] ’ )
x l im ( [min (Range ) max(Range ) ] )
x l im ([ 15 15 ] )
y l im ([ 50 0 ] )
% xl im ([ 20 20 ] )
s t r = spr in t f ( ’ Ambigui ty␣ range␣ cut␣at␣ rece ive␣angle␣%� i ’ , ra ) ;
t i t l e ( s t r )
grid on
grid minor

ax = gca ;
ax . XTick = [ 15 10 5 0 5 10 15 ] ;

subplot ( 6 , 2 , [ 10 ,12 ] )
plot ( rad2deg ( the ta_ r ) ,20* log10 ( squeeze ( Chi_norm ( : , fD_target , d i s t _ r ) ) ) ’ , ’ k ’ , ’ L ineWidth ’ , 1 . 5 )
xlabel ( ’ Receive␣angle␣� [ ] ’ )
ylabel ( ’ Ambigui ty␣ f unc t i on ␣ [ dB ] ’ )
x l im ([ 90 90 ] )
y l im ([ 50 0 ] )
s t r = spr in t f ( ’ Ambigui ty␣angle␣ cut␣at␣d is tance␣%ikm ’ , r ) ;
t i t l e ( s t r )
grid on
grid minor

ax = gca ;
ax . XTick = [ 90 45 0 45 90 ] ;

set ( gcf , ’ u n i t s ’ , ’ po in t s ’ , ’ p o s i t i o n ’ , [50 ,50 ,750 ,500] , ’ PaperOr ien ta t ion ’ , ’ landscape ’ )

f igure
imagesc ( v_assumed ,Range,20* log10 ( squeeze ( Chi_norm ( angle_r , : , : ) ) ’ ) )
colormap ( j e t )
c = colorbar ;
t i t l e ( ’Range Doppler␣ambigu i ty␣ f unc t i on ␣at␣�0␣ ( zoomed␣ i n ␣ range ) ’ )
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xlabel ( ’Assumed␣ v e l o c i t y ␣ [m/ s ] ’ )
ylabel ( ’Range␣ [km] ’ )
ylabel ( c , ’ Ampl i tude␣ [ dB ] ’ )
x l im ( [ v_assumed (1 ) v_assumed (end ) ] )
caxis ([ 50 0 ] )
axis xy

set ( gcf , ’ u n i t s ’ , ’ po in t s ’ , ’ p o s i t i o n ’ , [50 ,50 ,700 ,400] , ’ PaperOr ien ta t ion ’ , ’ landscape ’ )

toc

% Funct ion to generate a C i r c u l a t i n g Code s i gna l according to sec t ion
% 2 . 2 . 1 . i n t hes i s
function y = gen_c i rc_s ig ( s igna l ,N, s h i f t )

r e f _ s i g na l = zeros (N, length ( s i gna l ) +(N 1)*round ( s h i f t ) ) ;
for i =1:N

r e f _ s i gna l ( i , : ) = c i r c s h i f t ( [ s i gna l zeros ( 1 , (N 1)*round ( s h i f t ) ) ] , [ 1 ( i 1)*round ( s h i f t ) ] ) ;
end

y = r e f _ s i gna l ;

end
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