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A B S T R A C T

The increasing availability of sensor monitoring data has stimulated the development of Remaining-Useful-Life
(RUL) prognostics and maintenance planning models. However, existing studies focus either on RUL prognostics
only, or propose maintenance planning based on simple assumptions about degradation trends. We propose
a framework to integrate data-driven probabilistic RUL prognostics into predictive maintenance planning.
We estimate the distribution of RUL using Convolutional Neural Networks with Monte Carlo dropout. These
prognostics are updated over time, as more measurements become available. We further pose the maintenance
planning problem as a Deep Reinforcement Learning (DRL) problem where maintenance actions are triggered
based on the estimates of the RUL distribution. We illustrate our framework for the maintenance of aircraft
turbofan engines. Using our DRL approach, the total maintenance cost is reduced by 29.3% compared to the
case when engines are replaced at the mean-estimated-RUL. In addition, 95.6% of unscheduled maintenance
is prevented, and the wasted life of the engines is limited to only 12.81 cycles. Overall, we propose a
roadmap for predictive maintenance from sensor measurements to data-driven probabilistic RUL prognostics,
to maintenance planning.
1. Introduction

Modern aircraft are equipped with multiple sensors that generate
large volumes of health monitoring measurements for aircraft systems
and components. For example, for a Boeing 787, approximately 1000
parameters are continuously monitored for the engine, amounting to
a total of 20 terabytes of data per flight hour [1]. Such data are the
basis for Remaining-Useful-Life (RUL) estimation [2] and predictive
aircraft maintenance planning [3]. In this paper, we are interested in
integrating RUL prognostics into predictive aircraft maintenance. Below
we discuss relevant, recent studies on RUL prognostics and maintenance
planning.

Relevant studies on RUL prognostics
Many studies have focused in the last years on developing RUL

prognostics for aircraft components and systems [4]. For example,
RUL prognostics for aircraft landing gear brakes are developed using
stochastic regression models in [5]. The RUL of aircraft cooling units
is estimated using particle filtering in [6]. RUL prognostics for electro-
mechanical actuators are obtained using a Gaussian process regression
in [7]. RUL prognostics have been developed also for components such
as batteries [8,9], and fuel cells [10]. Several studies have developed
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RUL prognostics for turbofan engines using the C-MAPSS data set [11].
Because the degradation of a turbofan engine is non-linear, many such
RUL prognostics models are based on deep learning models, such as
convolutional neural networks (CNNs) [12], deep convolutional neural
network (DCNN) [13], multi-scale DCNN [14], and CNN with pooling
[15,16]. Recently, deep learning models have been improved further
by using a hybrid approach of deep learning models and physics-based
models [17]. All these studies, however, predict RUL as a point esti-
mate, i.e., a single value of RUL. For predictive maintenance planning,
quantifying the uncertainty associated with the estimated RUL is a
prerequisite [18].

In this paper, we develop RUL prognostics for the turbofan engines
of the C-MAPSS data set [11] using neural networks, together with
quantifying the uncertainty of the estimated RUL. In general, Bayesian
learning, Gaussian process, deep ensembles, and Monte Carlo dropout
are approaches used to estimate the uncertainty of the output of neural
networks [19]. In [20], Bayesian learning is applied to quantify the
uncertainty of the model parameters of the RUL prognostics. In [21],
deep ensemble models are applied to quantify the uncertainty of RUL
prediction. However, both deep ensembles and the Bayesian learning
are computationally intensive, especially for deep neural networks with
vailable online 22 October 2022
951-8320/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.ress.2022.108908
Received 10 June 2022; Received in revised form 5 September 2022; Accepted 18
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2022

http://www.elsevier.com/locate/ress
http://www.elsevier.com/locate/ress
mailto:J.Lee-2@tudelft.nl
https://doi.org/10.1016/j.ress.2022.108908
https://doi.org/10.1016/j.ress.2022.108908
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2022.108908&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Reliability Engineering and System Safety 230 (2023) 108908J. Lee and M. Mitici
significantly many parameters [19]. Another uncertainty quantification
approach is deep Gaussian process learning, which estimates the con-
fidence interval of RUL predictions [22]. Finally, Monte Carlo dropout
is an efficient approach for uncertainty quantification [23]. Moreover,
Monte Carlo dropout approximates Bayesian learning at a much lower
computational cost [24]. Thus, in this paper, we use neural networks
with Monte Carlo dropout to estimate the probability distribution of
RUL.

Relevant studies on maintenance planning
Maintenance planning optimisation has been extensively studied

for various assets [25]. However, most these studies propose ad-
vanced maintenance planning models with simple assumptions about
the degradation of systems/components [26]. For instance, the degra-
dation process of components is often assumed to follow a Gamma
process [5,27], a Wiener process [28], a non-homogeneous Poisson
process [29], or a Markov process [30,31].

Only a few studies integrate data-driven RUL prognostics into main-
tenance planning [32]. In [33], for example, the replacement of aircraft
brakes is scheduled taking into account data-driven RUL prognostics.
In [12], data-driven RUL prognostics for aircraft engines are obtained.
Based on these prognostics, alarms are triggered and maintenance
actions are specified. In [34], component inspections are scheduled
based on the epistemic uncertainty of the estimated RUL. In [35],
the replacement of airframe panels is scheduled based on the crack
size predicted by the extended Kalman filter. Even when these studies
consider RUL prognostics for maintenance planning, planning is done
using fixed degradation thresholds for the degradation of components.
For instance, in [12], all engines are replaced as soon as their RUL is
estimated to be 44 days or less. In [35], the replacement of airframe
panels is triggered by a fixed threshold of 47.4 mm crack size.

Recently, studies have proposed deep reinforcement learning (DRL)
for adaptive maintenance planning [32], where no fixed thresholds are
needed to schedule maintenance. In [36], DRL is used to schedule the
replacement of a component whose degradation is represented by 4
discrete states. In [37], the maintenance of multi-component systems
is optimised using DRL, where they assume that the degradation fol-
lows a compound Poisson process and a Gamma process. In [38], a
DRL approach is applied to the case study on railways maintenance.
These studies apply DRL for the cases where the system degradation
is modelled as a discrete set of states, or the degradation process is
modelled as a stochastic process. In contrast with these studies, we
develop a threshold-free DRL approach for maintenance planning that
considers the distribution of RUL. Thus, our DRL adaptively considers
the uncertainty associated with the degradation level of the assets.

In this paper, we propose a deep reinforcement learning (DRL)
approach for predictive maintenance that adaptively schedules mainte-
nance considering probabilistic RUL prognostics. The overview of the
proposed framework is shown in Fig. 1. Based on sensor measurements,
the probability distribution of RUL is estimated using Convolutional
Neural Networks (CNNs) with Monte Carlo dropout. We further develop
a DRL approach that uses these probabilistic RUL prognostics to plan
maintenance. The estimated distribution of RUL directly specifies the
states of the DRL. Using DRL, maintenance actions are planned adap-
tively, without relying on fixed thresholds for the degradation level of
the components. We illustrate our approach for maintenance planning
of aircraft turbofan engines.

The main contributions of this paper are as follows:

• An integrated framework for predictive maintenance is proposed,
where probabilistic Remaining-Useful-Life (RUL) prognostics and
deep reinforcement learning (DRL) are used to plan the main-
tenance of aircraft engines. Here, probabilistic RUL prognostics
(the estimated RUL distribution) are directly used to construct the
states of the DRL.
2

Fig. 1. Overview of the proposed predictive maintenance framework using probabilistic
RUL prognostics and DRL.

• Probabilistic RUL prognostics are obtained using Convolutional
Neural Networks (CNNs) and Monte Carlo dropout. Using proba-
bilistic RUL prognostics, we show that the number of unscheduled
maintenance is lower than when using point-RUL estimates. This
shows the benefit of quantifying the uncertainty of RUL estimates
for maintenance planning.

• We pose the problem of predictive maintenance planning as a DRL
problem. This approach adaptively proposes maintenance actions
based on the trends of the estimated RUL prognostics.

The remainder of this paper is organised as follows. In Section 2,
we propose probabilistic RUL prognostics using CNN with Monte Carlo
dropout, and validate this proposed model for turbofan engines. In
Section 3, we formulate a DRL problem for predictive maintenance
planning taking into account probabilistic RUL prognostics. In Sec-
tion 4, we illustrate our DRL approach for the maintenance planning
of turbofan engines. In Section 5, we compare our DRL approach
against other maintenance strategies. Finally, we provide conclusions
in Section 6.

2. Estimating the distribution of RUL using CNN with Monte Carlo
dropout

In this section, we propose a multi-channel convolutional neu-
ral networks (CNNs) and Monte Carlo dropout for probabilistic RUL
prognostics. We validate our model for aircraft engines. These RUL
prognostics are updated after every flight cycle as new degradation data
become available.

2.1. Data description and pre-processing

We consider the degradation data of aircraft turbofan engines ob-
tained by NASA using the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) [11]. This data set consists of data subsets
FD001, FD002, FD003, and FD004, each considering a specific number
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Fig. 2. Proposed multi-channel CNN architecture. The blue lines visualise how multiple channels are convoluted into the next layer (see Eq. (3)). The red lines visualise a forward
pass of a linear layer (see Eq. (4)).
Table 1
C-MAPSS data sets for turbofan engines [39].

FD001 FD002 FD003 FD004

Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault mode 1 1 2 2

of fault modes and operating conditions (see Table 1) [39]. The training
instances of the subsets have run-to-failure data of sensor measure-
ments, while the testing instances have sensor measurements up to
some moment prior to failure. Each instance consists of time-series of
21 sensor measurements per flight cycle. Following [12,13], we select
for our analysis 14 non-constant sensor measurements. We discard the
remaining 7 constant sensor measurements.

We pre-process the raw data as follows. First, using the clustering
of operational settings proposed by [40], 6 operating conditions are
identified. Let 𝑜𝑘 denote the operating condition of an engine during
𝑘th flight cycle, 𝑜𝑘 ∈ {1,… , 6}.

We also consider the history of the operating conditions. Let ℎ𝑜,𝑘
denote the number of cycles that an engine has been operated for under
operating condition 𝑜, up to 𝑘th flight cycle.

Next, the measurements of sensor 𝑠 ∈ {1,… , 14} are normalised
with respect to operating condition 𝑜 as follows [12,15]:

𝑚𝑠,𝑘 =
2(𝑚𝑜𝑠,𝑘 − 𝑚

𝑜
𝑠,min)

𝑚𝑜𝑠,max − 𝑚
𝑜
𝑠,min

− 1, (1)

where 𝑚𝑠,𝑘 is the normalised measurement of sensor 𝑠 at 𝑘th flight
cycle, 𝑚𝑜𝑠,𝑘 is the raw measurement generated by sensor 𝑠 at 𝑘th flight
cycle. This 𝑘th flight cycle is performed under operating condition 𝑜.
Also, 𝑚𝑜𝑠,min and 𝑚𝑜𝑠,max are the minimum and maximum measurement
of sensor 𝑠 under operating condition 𝑜, respectively. In total, 𝑛𝐹 = 21
features are considered (the current operating conditions 𝑜𝑘, the history
of the 6 operation conditions ℎ𝑜,𝑘, and 14 types of sensor measurements
𝑚𝑠,𝑘).

Finally, 𝑛𝐹 features for a time window of 𝑛𝑊 flight cycles are
considered as the input 𝑥 of the CNN, i.e.,

𝑥 =
⎡

⎢

⎢

⎣

𝑜1 ℎ1,1 ... ℎ6,1 𝑚1,1 ... 𝑚14,1
⋮ ⋮ ⋮ ⋮ ⋮
𝑜𝑛𝑊 ℎ1,𝑛𝑊 ... ℎ6,𝑛𝑊 𝑚1,𝑛𝑊 ... 𝑚14,𝑛𝑊 ,

⎤

⎥

⎥

⎦

. (2)

Here, 𝑛𝑊 is selected based on the number of cycles available for the
shortest testing instance in each data subset [12]. We use 𝑛𝑊 = 30
cycles for FD001 and FD003, 𝑛𝑊 = 21 for FD002, and 𝑛𝑊 = 19 for
FD004.
3

Table 2
Architecture of the proposed CNN, where 𝑛𝐶 and 𝑛𝐾 are the number of output channels
and the length of the kernel of Conv1D layers, respectively, and 𝑛𝑁 is the number of
output neurons of Linear layers. A dropout rate 𝜌 = 0.5 is used for all layers .

Layer Type Layer parameters

1 Conv1D 𝑛𝐶 = 128, 𝑛𝐾 = 10
2 Conv1D 𝑛𝐶 = 64, 𝑛𝐾 = 10
3 Conv1D 𝑛𝐶 = 32, 𝑛𝐾 = 10
4 Conv1D 𝑛𝐶 = 16, 𝑛𝐾 = 5
5 Conv1D 𝑛𝐶 = 8, 𝑛𝐾 = 5
6 Linear 𝑛𝑁 = 256
7 Linear 𝑛𝑁 = 128
8 Linear 𝑛𝑁 = 1

2.2. Architecture of the multi-channel CNN with Monte Carlo dropout

To obtain probabilistic RUL prognostics, we propose a neural net-
work architecture combining multi-channel convolutional layers, linear
layers, and Monte Carlo dropout (see Fig. 2 and Table 2).

In contrast to [12], where a common 1D kernel is applied for all
features, we apply one 1D kernel per each time-series of a feature,
i.e., each column of the input 𝑥 is convoluted with different 1D kernels.
Such multi-channel 1D convolutional layers are shown to be effective
for multi-variate time-series [41], which is also the case of the C-MAPSS
data set. Since an independent kernel is used for the time-series of each
feature, the convolutional layers are able to learn the patterns of each
feature.

A multi-channel 1D convolutional layer is defined by the size
(length) 𝑛𝐾 of the kernel, and the number of output channels 𝑛𝐶 . The
𝑙th convolutional layer gets input 𝑥(𝑙−1) from (𝑙−1)th layer, where 𝑥(𝑙−1)
has 𝑛(𝑙−1)𝐶 channels. Then, the output of channel 𝑐 of 𝑙th convolutional
layer is obtained as follows:

𝑥𝑙𝑐 = 𝑔𝑙
⎛

⎜

⎜

⎜

⎝

𝑏𝑙𝑐 +
𝑛(𝑙−1)𝐶
∑

𝑐′=1
𝜅𝑙𝑐,𝑐′ ∗ 𝑥

(𝑙−1)
𝑐′

⎞

⎟

⎟

⎟

⎠

for 𝑐 ∈ 1,… , 𝑛𝑙𝐶 , (3)

where ∗ is the convolutional operator, 𝜅𝑙𝑐,𝑐′ is the kernel for input
channel 𝑐′ and output channel 𝑐, 𝑏𝑙𝑐 is the bias of output channel 𝑐,
and 𝑔𝑙(⋅) is the activation function of the convolutional layer. Here we
use the rectified linear unit (ReLU) activation function.

We use 5 convolutional layers. For the first convolutional layer, the
input 𝑥0 is 𝑥 defined in Eq. (2), and the number of input channels
𝑛0𝐶 is equal to the number of features 𝑛𝐹 = 21. Table 2 shows the
number of output channels (𝑛𝐶 ) and the size of the kernels (𝑛𝐾 ) for all
convolutional layers. For all convolutional layers we use zero padding
to ensure the same size of the output. These hyper-parameters are
selected based on a grid-search, where the hyper-parameters suggested
in [12,13] are used as a starting point.
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Table 3
RMSE of the RUL predictions of the C-MAPSS data subsets using the proposed architecture of multi-channel CNN with Monte Carlo dropout
and the other studies. STD: Standard deviation, where N/A implies that STD is not available in the original papers.

FD001 FD002 FD003 FD004

Mean STD Mean STD Mean STD Mean STD

Multi-channel CNN with MC dropout 11.81 0.29 14.49 0.10 11.69 0.26 17.73 0.21
(proposed in this study)

Single-channel CNN with MC dropout [12] 12.22 N/A 15.07 N/A 12.47 N/A 18.10 N/A
DCNN [13] 12.61 0.19 22.36 0.32 12.64 0.14 23.31 0.39
MS-DCNN [14] 11.44 0.07 19.35 0.08 11.67 0.06 22.22 0.14
CNN with pooling [15] 18.45 N/A 30.29 N/A 19.82 N/A 29.16 N/A
CNN with pyramid pooling [16] 12.64 N/A 25.92 N/A 12.39 N/A 26.84 N/A
After the convolutional layers, we apply two intermediate linear lay-
ers, and one output linear layer with a single neuron without activation
(see Fig. 2). The 𝑙th linear layer gets the (flattened) input 𝑥(𝑙−1). Then,
its output is obtained as follows:

𝑥𝑙 = 𝑔𝑙
(

𝑏𝑙 +𝑤𝑙𝑥(𝑙−1)
)

, (4)

where 𝑤𝑙 is the weight matrix, 𝑏𝑙 is the bias, and 𝑔(⋅) is the ReLU
activation function. We denote the number of output neurons of the
linear layers as 𝑛𝑁 (see Table 2).

Using the Adam optimiser [42], we optimise the kernels 𝜅𝑙𝑐,𝑐′ and
the bias 𝑏𝑙𝑐 of the convolutional layers, as well as the weights 𝑤𝑙 and
the bias 𝑏𝑙 of the linear layers. The loss function considered here is the
mean-squared-error. We train the network using a fixed learning rate
of 0.001, a mini-batch of 256 samples, and a maximum of 103 training
epochs.

Monte Carlo dropout
Typically, Monte Carlo dropout is used only during training to

prevent overfitting [23]. In this paper, we use Monte Carlo dropout
(i) during training to prevent overfitting of the model, and (ii) during
testing to obtain the probability distribution of the RUL [24]. We apply
Monte Carlo dropout after each layer. The dropout rate is set to be 0.5
after a grid-search to minimise the test loss of data subset FD002 [12].

2.3. Probabilistic RUL prognostics for turbofan engines - Validation

We validate our CNN with Monte Carlo dropout for probabilistic
RUL prognostics using the C-MAPSS data set for turbofan engines [11].

Comparing the RMSE of our estimated RUL against other RUL prognostics
models

Our prognostics estimate the distribution of the RUL. We determine
the Root Mean Squared Error (RMSE) of our prognostics based on
the mean of the estimated distribution of RUL and the true RUL of
the testing instances of the C-MAPSS data sets (see Table 3). We
compare these results against the RUL prognostics models in [12–16].
Since these models estimate RUL as a point estimate, the RMSE of the
prognostics in [12–16] is determined based on the estimated point RUL
and the true RUL (see Table 3). For all prognostics models, the RMSE
of subset FD002 and FD004 are higher than that of FD001. This is due
to the multiple operating conditions considered in FD002 and FD004
(see Table 1). Also, FD002 and FD004 have the shortest time window
of the input data compared to FD001 and FD003 (𝑛𝑊 = 21 for FD002
and 𝑛𝑊 = 19 for FD004)

Table 3 shows that our multi-channel CNN with Monte Carlo
dropout outperforms several other studies that employ CNNs for RUL
prognostics. In fact, we obtain the lowest RMSE for subsets FD002
and FD004. For subsets FD001 and FD003, only MS-DCNN achieves a
slightly smaller RMSE compared to our approach [14]. In general, the
accuracy of our prognostics is higher or comparable to other existing
studies.
4

Fig. 3. Evolution of the RUL distribution over time. (a) The mean-estimated RUL gets
closer to the true RUL, and the variance decreases. (b) The mean-estimated RUL gets
closer to the true RUL, and the variance decreases though it is skewed. (c) Neither the
error of the mean-estimated RUL nor the variance decrease.
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Fig. 4. Probabilistic RUL prognostics. (a) The error between the mean-estimated RUL
and the true RUL is small, and the standard deviation of RUL distribution is small. (b)
The mean-estimated RUL is slightly larger than the true RUL, and the RUL distribution
is right-skewed. (c) The error between the mean-estimated RUL and the true RUL is
large, and the standard deviation of RUL distribution is large.

Estimating the distribution of the RUL
We illustrate the probabilistic RUL prognostics for three turbofan

engines in testing instances of subset FD002. Fig. 3 shows the evolution
of the estimated RUL distribution over time, as more sensor measure-
ments become available. Fig. 4 shows the estimated RUL distribution
of the three engines after they are operated for 136, 96, and 107 flight
cycles, respectively. For Engine 148 (Fig. 3(a)), the standard deviation
of RUL distribution decreases after 126th cycle. After 136th flight cycle
(Fig. 4(a)), the error between the mean-estimated RUL and the true RUL
5

is small (1.00 cycles), and the RUL distribution is concentrated around
the true RUL (the standard deviation is 6.31 cycles).

For Engine 173 (Fig. 4(b)), the RUL distribution is right-skewed
and the error between the mean-estimated RUL and the true RUL is
small (2.87 cycles). Although the error of the estimated point (mean)
of RUL is small, having the distribution of the RUL provides additional
support for maintenance planning. Should we consider only the mean
prediction of RUL (16.87 cycles) for Engine 173 to schedule a replace-
ment, then we would be inclined to schedule a replacement at 16th
cycle from now. However, this maintenance decision would lead to an
engine failure since the true RUL of Engine 173 is 14 cycles. Should we
consider the estimated distribution of RUL for Engine 173 (Fig. 4(b)),
then we would observe the high probability (more than 45%) that
Engine 173 fails in less than 14 cycles. In fact, the probability that
Engine 173 fails at 12th cycle is highest (8.0%). Observing the RUL
distribution we would be inclined to replace the engine at 12th cycle
from now, avoiding an engine failure.

For Engine 021 (Fig. 4(c)), the error between the mean RUL predic-
tion and the true RUL is large (26.93 cycles), and the standard deviation
of RUL distribution is large (11.44). This is also informative for main-
tenance decision making, i.e., the accuracy of the RUL prognostic is
low. In fact, the variance of RUL distribution is large across a sequence
of flight cycles (see Fig. 3(c)), leaving maintenance decision making
conservative about the moment of engine replacement.

As shown in Figs. 3 and 4, the distribution of RUL prognostics pro-
vides valuable information that can lead to more efficient maintenance
decisions. In the next section, we propose a deep reinforcement learning
approach to specify the moment of engine replacement based on the
estimated distribution of RUL.

Quality of the estimated RUL distribution
We analyse the quality of the estimated RUL distributions using

calibration plots [43]. Let 𝐹 (𝑅|𝑥) be the cumulative distribution func-
tion (CDF) of the estimated RUL 𝑅, given sensor measurements 𝑥. Let
𝐹−1(𝜁 |𝑥) be the quantile function of 𝑅 such that 𝐹−1(𝜁 |𝑥) = inf{𝑅 ∶
𝜁 ≤ 𝐹 (𝑅|𝑥)}. We say that the probabilistic RUL prognostics model is
perfectly calibrated if

𝑃 (𝜌 ≤ 𝐹−1(𝜁 |𝑥)) = 𝜁 for all 𝜁 ∈ [0, 1], (5)

where 𝜌 is the true RUL. For a perfectly calibrated model, the proba-
bility that the true RUL is less than or equal to the 𝜁% quantile of the
estimated distribution is 𝜁%.

Fig. 5 shows the calibration plots of the four C-MAPSS data subsets
(FD001, FD002, FD003, FD004). The dashed, black line in Fig. 5 shows
a perfectly calibrated model. Fig. 5 shows that our probabilistic RUL
prognostics models are well calibrated, i.e., the deviation from the
perfectly calibrated model is small. For the case of FD002 (Fig. 5(b)),
the probability that the true RUL is less than or equal to the 10%,
50%, and 90% quantiles of the estimated RUL distributions using our
prognostics models are 14%, 43%, and 86%, respectively.

3. Planning predictive maintenance using DRL and probabilistic
RUL prognostics

In this section, we propose a deep reinforcement learning (DRL)
approach for predictive maintenance of turbofan engines taking into
account probabilistic RUL prognostics (estimated RUL distribution).
These probabilistic RUL prognostics are updated periodically, as more
measurements become available.
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Fig. 5. Calibration plot of the estimated CDF of RUL for four test data sets.

3.1. Scheduling engine replacements taking into account updated probabilis-
tic RUL prognostics

The maintenance schedule of the engines is updated every 𝐷 flight
cycles. In other words, every 𝐷 cycles, we need to decide whether
to replace an engine during the next 𝐷 cycles (a decision step). Some
existing studies assume that maintenance schedules can be updated
every 1 cycle/day (𝐷 = 1) [30]. However, this assumption would be
unrealistic for the maintenance of aircraft engines. In practice, several
days are needed to prepare the required equipment before replacing an
engine [12]. Thus, we assume 𝐷 > 1 and make a maintenance plan for
the next 𝐷 cycles.

Our aim is to minimise the total maintenance cost while avoiding
engine failures and minimising the wasted life of the engines. If an
engine is replaced too late and as a result this engine fails before the
scheduled replacement, then we have to perform a very costly unsched-
uled replacement [33]. On the other hand, if we schedule a replacement
too early, we waste the life of this engine. The long-run maintenance
cost also increases when engines are replaced too often. Our goal
is to propose an approach to optimally schedule engine replacement
taking into account probabilistic RUL prognostics (estimates of the RUL
distribution).

Fig. 6 illustrates the maintenance planning at decision step 𝑡. At
the start of decision step 𝑡, we use sensor measurements 𝑥𝑡, i.e., the
measurements available up to decision step 𝑡. Using 𝑥𝑡, we estimate
the distribution of the RUL using a CNN with Monte Carlo dropout (see
Section 2). Let 𝑝𝑘,𝑡 denote the estimated cumulative probability that the
RUL of the engine is less than or equal to 𝑘 cycles, given 𝑥𝑡. Formally,

𝑝𝑘,𝑡 = 𝑃 (𝑅𝑡 ≤ 𝑘 | 𝑥𝑡), for 𝑘 ∈ {1,… , 𝐷} (6)

where 𝑅𝑡 is the predicted RUL at the start of decision step 𝑡. By the
definition of RUL, the engine fails at 𝑘th cycle if (𝑘 − 1) < 𝜌𝑡 ≤ 𝑘 when
𝜌𝑡 denotes the true RUL. Since 𝑅𝑡 in Eq. (6) is an estimate of 𝜌𝑡, we can
interpret 𝑝𝑘,𝑡 as the estimated probability that the engine fails within 𝑘
cycles, given 𝑥 . Based on 𝑝 at decision step 𝑡, we decide whether
6

𝑡 𝑘,𝑡
Fig. 6. Maintenance planning at 𝑡th decision step.

Fig. 7. Estimated cumulative probability 𝑝𝑘,𝑡 for FD002 Testing Engine 148 after it is
operated for 136 cycles.

to schedule an engine replacement after 𝑘 cycles (𝑘 ∈ {1,… , 𝐷}),
or do nothing within the next 𝐷 cycles. If we do not schedule any
replacement in the next 𝐷 cycles, then we only collect further sensor
measurements during these cycles. At the beginning of the (𝑡 + 1)th
decision step, these measurements are used, together with a CNN, to
update the estimated distribution of RUL, 𝑝𝑘,(𝑡+1).

For example, at the start of decision step 𝑡, we have the estimated
𝑝𝑘,𝑡 given in Fig. 7. We need to decide when to schedule an engine
replacement based on this estimate. Fig. 7 shows the estimated RUL
distribution for FD002 Testing Engine 148 of the C-MAPSS data set.
This cumulative probability 𝑝𝑘,𝑡 is estimated after the engine has al-
ready been used for 136 cycles. Our prognostics model predicts that this
engine fails within 10 and 15 cycles with probability 37% and 82%,
respectively. In fact, the true RUL of this engine at this moment is 11
cycles. In the next section, we propose a deep reinforcement learning
approach to optimally replace the engine based on this estimated
distribution of RUL.

3.2. Predictive maintenance planning as a deep reinforcement learning
problem

We formulate the predictive maintenance planning of an engine as
a deep reinforcement learning (DRL) problem (see Fig. 8). The hidden
state 𝜌𝑡 denotes the true RUL of the engine at decision step 𝑡. The
observed state 𝑠𝑡 denotes the RUL distribution estimated based on sensor
measurements and CNN. Given 𝑠𝑡, an agent (decision-maker) takes an
action 𝑎𝑡 ∈  based on a policy 𝜋. Then, reward 𝑟𝑡 is obtained based
on the hidden state 𝜌𝑡 and action 𝑎𝑡. Finally, the system transits from
state 𝑠𝑡 to 𝑠𝑡+1 at the next decision step (𝑡 + 1). We formalise our DRL
problem as follows.
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Fig. 8. Illustration of states, actions, rewards and transitions of the DRL problem for predictive maintenance planning.
The observed state 𝑠𝑡 is the estimated distribution of the RUL 𝑝𝑘,𝑡
for the next 𝐷 cycles, i.e., 𝑘 ∈ {1,… , 𝐷}. Formally,

𝑠𝑡 =
[

𝑝1,𝑡 , ... , 𝑝𝐷,𝑡
]

, (7)

where 𝑝𝑘,𝑡 is the probability that the RUL is less than 𝑘 cycles (see
Eq. (6)).

Given state 𝑠𝑡, the agent choose an action 𝑎𝑡: either schedule a
replacement of the engine at cycle 𝑘 (𝑘 ∈ {1,… , 𝐷}), or Do nothing.
Formally,

𝑎𝑡 =

{

𝑘, 0 < 𝑘 ≤ 𝐷 Schedule replacement at cycle 𝑘,
𝑀, 𝑀 > 𝐷 Do nothing.

(8)

If 𝑎𝑡 = 𝑀 > 𝐷, we do not schedule an engine replacement in the next
𝐷 cycles and postpone the engine replacement to the next decision step
(𝑡 + 1).

The reward 𝑟𝑡 obtained at decision step 𝑡 is defined for 4 cases
considering action 𝑎𝑡 and the hidden state 𝜌𝑡: (1) a replacement is
scheduled earlier than the engine failure; (2) a replacement is sched-
uled later than the engine failure; (3) we decide to do nothing in the
next 𝐷 cycles, but the engine fails within the next 𝐷 cycles; and (4) we
decide to do nothing, and the engine does not fail in the next 𝐷 cycles.
Formally,

𝑟𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑐sch(𝑘) if (𝑘 − 1) < 𝑎𝑡 ≤ 𝑘 and 𝜌𝑡 > 𝑘
−𝑐uns if (𝑘 − 1) < 𝑎𝑡 ≤ 𝑘 and 𝜌𝑡 ≤ 𝑘
−𝑐uns if 𝑎𝑡 > 𝐷 and 𝜌𝑡 ≤ 𝐷
0 if 𝑎𝑡 > 𝐷 and 𝜌𝑡 > 𝐷.

(9)

Here, 𝑐sch(𝑘) denotes the cost of a scheduled replacement at cycle 𝑘
(𝑘 ∈ {1,… , 𝐷}), which is defined as follows:

𝑐sch(𝑘) = 𝑐0 − 𝑐1𝑘, (10)

where 𝑐0 is a fixed cost of replacement (𝑐0 > 0), and 𝑐1 is a penalty for
an early replacement (𝑐1 > 0). We assume that a too early replacement
is expensive because we have less time to prepare the required equip-
ment [33]. Also, we assume 𝑐sch(𝑘) is positive for all 𝑘, i.e., 𝑐0−𝑐1𝐷 > 0.
In Eq. (9), 𝑐uns denotes the cost of an unscheduled replacement. We
assume 𝑐uns > 𝑐0 since an unscheduled replacement is generally more
expensive [33]. Fig. 9 shows the cost model of a scheduled and an
unscheduled engine replacement for 𝑐0 = 1, 𝑐1 = 0.01, and 𝑐uns = 2.

The goal of the DRL agent is to choose an optimal moment to sched-
ule a replacement such that the expected reward is maximised (or the
7

Fig. 9. Cost model of a scheduled and an unscheduled replacement. In this paper, we
assume 𝑐0 = 1, 𝑐1 = 0.01, 𝑐uns = 2, and 𝐷 = 30.

expected cost is minimised). When scheduling an engine replacement,
the DRL agent considers only the observed state 𝑠𝑡 defined in Eq. (7).
The training of the DRL agent is based on the observed state 𝑠𝑡, the
action taken 𝑎𝑡, the obtained reward 𝑟𝑡, and the observed next state
𝑠𝑡+1. Although the reward 𝑟𝑡 is calculated using the true RUL (hidden
state 𝜌𝑡) in Eq. (9), the DRL agent does not observe the true RUL 𝜌𝑡
directly.

In general, it is not trivial to choose an optimal moment to replace
an engine, given the estimated RUL distribution (Fig. 7) and the cost
model (Fig. 9). As an example, let us consider the cost in Fig. 9 and
engine 148 with the estimated RUL distribution shown in Fig. 7. Should
we decide to replace engine 148 at 25th cycle, and this engine does
not fail by 25th cycle, then the cost of this replacement would be
0.75. Should we decide to replace engine 148 at 25th cycle, but this
engine fails before 25th cycle, then an unscheduled replacement would
be performed at cost 2.0. For Engine 148, there is a 97% estimated
probability that this engine fails before 25th cycle (see Fig. 7). Should
we decide to replace the engine at 5th cycle, then the cost would be
0.95. Although a cost of 0.95 is higher than the cost of scheduled
replacement at 25th cycle (0.75), this maintenance action reduces the
risk of an expensive unscheduled maintenance. For Engine 148, there
is a 7% estimated failure probability at 5th cycle, so a low risk of
unscheduled maintenance. Overall, deciding at which cycle should
engine 148 be performed is non-trivial.
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Once the DRL agent chooses an action, the hidden state 𝜌𝑡+1 and the
observed state 𝑠𝑡+1 are updated accordingly. If the engine is replaced
at decision step 𝑡, then the next decision step considers a new engine
from the C-MAPSS data set. Otherwise, we further obtain sensor mea-
surements 𝑥𝑡+1 during the next 𝐷 cycles and update the distribution of
the RUL (the next state 𝑠𝑡+1) by generating new RUL prognostics using
a CNN with Monte Carlo dropout.

3.3. Training the DRL agent for predictive maintenance

The DRL agent chooses action 𝑎𝑡 (maintenance decision) for a given
state 𝑠𝑡 (estimated distribution of RUL) based on a policy 𝜋(𝑎𝑡|𝑠𝑡) ∶
× → [0, 1], which is the probability to choose action 𝑎𝑡 for a given

tate 𝑠𝑡. The optimal policy 𝜋∗ is defined as a policy that maximises the
xpected reward defined as follows:

(𝜋) =
∑

𝑡
E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋

[

𝛾 𝑡𝑟𝑡(𝑠𝑡, 𝑎𝑡)
]

, (11)

where 𝛾 is a discount factor, and 𝜌𝜋 (𝑠𝑡, 𝑎𝑡) is the state–action trajectory
distribution induced by a policy 𝜋 [44].

Soft–actor–critic algorithm to train the DRL agent for predictive mainte-
nance planning

We train the DRL agent using a Soft–Actor–Critic (SAC) algorithm
[44]. The SAC algorithm is an actor–critic algorithm where a policy
(actor) is trained to choose actions that maximises the estimated state–
action value (critic). Compared to traditional actor–critic algorithms,
the SAC uses a stochastic policy and maximises a soft objective to
explore new policies.

We consider a stochastic policy 𝜋𝜙(𝑎𝑡|𝑠𝑡) to determine the mean
𝑓𝜇𝜙 (𝑠𝑡) and the standard deviation 𝑓𝜎𝜙 (𝑠𝑡) of an action for a given state
𝑠𝑡, where 𝜙 is the trainable parameters of 𝑓𝜇𝜙 and 𝑓𝜎𝜙 . Then, action 𝑎𝑡 is
chosen as follows:

𝑎𝑡 = 𝑓𝜇𝜙 (𝑠𝑡) + 𝜖𝑡 ⋅ 𝑓
𝜎
𝜙 (𝑠𝑡), (12)

where 𝜖𝑡 is sampled from a standard Gaussian distribution.
The considered soft objective includes the expected entropy of the

policy 𝜋𝜙. Formally,

𝐽 (𝜋) =
∑

𝑡
E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋 𝛾

𝑡 [𝑟𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼
(

𝜋(⋅|𝑠𝑡)
)]

, (13)

where 𝛼 is the temperature parameter determining the relative im-
portance between the entropy term and the reward term. Thus, the
SAC algorithm simultaneously maximises the expected reward and the
entropy of the policy, allowing the exploration of new policies.

Considering the soft objective in Eq. (13), the state–action value (Q
function) is modified as the soft Q function 𝑄 ∶  × → R. This soft Q
function is then obtained by iteratively applying the following modified
Bellman backup operator  𝜋 [44] :

 𝜋𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑝[𝑉 (𝑠𝑡+1)], (14)

where 𝑝 is the distribution of 𝑠𝑡+1, given 𝑠𝑡 and 𝑎𝑡, and 𝑉 (𝑠𝑡) is the soft
state value function 𝑉 ∶  → R defined as follows:

𝑉 (𝑠𝑡) = E𝑎𝑡∼𝜋
[

𝑄(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋(𝑎𝑡|𝑠𝑡)
]

. (15)

For the SAC algorithm, we train three functions: the policy (𝜋), the
soft Q function (𝑄), and the soft value function (𝑉 ). We model these
functions by means of three deep neural networks, 𝜋𝜙, 𝑄𝜃 , and 𝑉𝜓 ,
where 𝜙, 𝜃, and 𝜓 are the trainable parameters of each neural network.
During training, we collect the replay buffer  = {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)} based
on the current policy 𝜋𝜙. Then, we update the trainable parameters to
minimise the following loss functions.
8

i

Algorithm 1 Soft-Actor-Critic algorithm for predictive maintenance
planning.
1: Initialise parameters 𝜙, 𝜓 , 𝜓̄ , 𝜃1, 𝜃2.
2: for each episode do
3: Initialise observation 𝑠0.
4: for each decision step 𝑡 do
5: Choose action 𝑎𝑡 (Eq. (12))
6: Get reward 𝑟𝑡 (Eq. (9))
7: Get next state 𝑠𝑡+1 (Eq. (7))
8: Update replay buffer  ←  ∪ {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)}
9: for each learning step do
0: Sample mini-batch ̂ from replay buffer 
1: 𝜓 ← 𝜓 − 𝜆𝑉 ∇𝜓𝐽𝑉 (𝜓)
2: 𝜃𝑞 ← 𝜃𝑞 − 𝜆𝑄∇𝜃𝑞𝐽𝑄(𝜃𝑞) for 𝑞 ∈ {1, 2}
3: 𝜙 ← 𝜙 − 𝜆𝜋∇𝜙𝐽𝜋 (𝜙)
4: 𝜓̄ ← 𝜏𝜓 + (1 − 𝜏)𝜓̄
5: end for
6: Update 𝑠𝑡
7: end for
8: end for

The policy net 𝜋𝜙 is updated using the Kullback–Leibler (KL) diver-
ence, which guarantees the improvement of the policy in terms of its
oft value [44]. We minimise the expected KL divergence as follows:

𝜋 (𝜙) = E𝑠𝑡∼
⎡

⎢

⎢

⎣

𝐷𝐾𝐿

⎛

⎜

⎜

⎝

𝜋𝜙(⋅|𝑠𝑡)
‖

‖

‖

‖

‖

exp( 1𝛼𝑄𝜃(𝑠𝑡, ⋅))

𝑍𝜃(𝑠𝑡)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= E𝑠𝑡∼,𝑎𝑡∼𝜋𝜙
[

log𝜋𝜙(𝑎𝑡|𝑠𝑡) −
1
𝛼
𝑄𝜃(𝑠𝑡, 𝑎𝑡) + log𝑍𝜃(𝑠𝑡)

]

,

(16)

here 𝑍𝜃(𝑠𝑡) is the partition function that does not contribute to the
radient with respect to 𝜙, and 𝑎𝑡 is sampled from the current policy
𝜙 using Eq. (12).

For the value net 𝑉𝜓 , we minimise the residual of the value function
alculated based on the critic net 𝑄𝜃 :

𝑉 (𝜓) = E𝑠𝑡∼
[ 1
2
(

𝑉𝜓 (𝑠𝑡) − 𝑉 (𝑠𝑡)
)2] , (17)

with

𝑉 (𝑠𝑡) = E𝑎𝑡∼𝜋𝜙
[

𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋𝜙(𝑎𝑡|𝑠𝑡)
]

. (18)

For the critic net 𝑄𝜃 , we minimise the modified Bellman residual:

𝑄(𝜃) = E(𝑠𝑡 ,𝑎𝑡)∼

[ 1
2
(

𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝑄̂(𝑠𝑡, 𝑎𝑡)
)

]

, (19)

ith

̂ (𝑠𝑡, 𝑎𝑡) = 𝑟𝑡(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑝[𝑉𝜓̄ (𝑠𝑡+1)]. (20)

ere, we use the target value net 𝑉𝜓̄ , where 𝜓̄ is an exponentially
oving average of the value net parameters [45]. Also, we adopt the
ouble Q-learning approach: we simultaneously train two critic nets
𝑄𝜃1 and 𝑄𝜃2 ), and we use 𝑄𝜃(𝑠𝑡, 𝑎𝑡) = min{𝑄𝜃1 (𝑠𝑡, 𝑎𝑡), 𝑄𝜃2 (𝑠𝑡, 𝑎𝑡)} [46].
oth the target value net and double Q-learning approach are known
o stabilise the training process [45,46]

The gradients of the loss functions in Eqs. (16), (17), and (19)
re obtained by backward propagation. Given the gradients of the
orresponding objectives, the parameters 𝜙, 𝜓 , and 𝜃 are updated using
he Adam optimiser with learning rates 𝜆𝜋 , 𝜆𝑉 , and 𝜆𝑄, respectively.

We train the DRL agent for predictive maintenance for aircraft
ngines using the SAC algorithm (see Algorithm 1). We first initialise
he parameters of the neural network models, 𝜙, 𝜓 , 𝜓̄ , 𝜃, 𝜃1, and 𝜃2
line 1). We train these networks for 𝑛𝐸 episodes (line 2). An episode
s initialised with observation 𝑠 , which is the initial distribution of
0
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Table 4
Architecture of the deep neural network models for policy net 𝜋𝜙, value net 𝑉𝜓 , and
critic net 𝑄𝜃 (see also Fig. 10) .

Policy net 𝜋𝜙
Layer Type Number of neurons 𝑛𝑁
Input (State 𝑠𝑡) – 𝐷
Shared hidden layer 1 Linear 𝑛𝑁 = 256
Shared hidden layer 2 Linear 𝑛𝑁 = 128
Hidden layer 1 for 𝜇 Linear 𝑛𝑁 = 64
Hidden layer 2 for 𝜇 Linear 𝑛𝑁 = 32
Output 𝜇 (𝑓𝜇𝜙 (𝑠𝑡)) Linear 1
Hidden layer 1 for 𝜎 Linear 𝑛𝑁 = 64
Hidden layer 2 for 𝜎 Linear 𝑛𝑁 = 32
Output 𝜎 (𝑓 𝜎𝜙 (𝑠𝑡)) Linear 1

Value net 𝑉𝜓
Layer Type Number of neurons 𝑛𝑁
Input (State 𝑠𝑡) – 𝐷
Hidden layer 1 Linear 𝑛𝑁 = 256
Hidden layer 2 Linear 𝑛𝑁 = 128
Output (State value 𝑉 (𝑠𝑡)) Linear 1

Critic net 𝑄𝜃

Layer Type Number of neurons 𝑛𝑁
Input (State 𝑠𝑡, action 𝑎𝑡) – 𝐷 + 1
Hidden layer 1 Linear 𝑛𝑁 = 256
Hidden layer 2 Linear 𝑛𝑁 = 128
Output (Q value 𝑄(𝑠𝑡 , 𝑎𝑡)) Linear 1

the engine’s RUL sampled from a DRL episode data set (line 3). Here,
the RUL distribution is estimated using the CNN that is already trained
based on an independent training data set. The episode continues for
𝑛𝑇 decision steps (line 4). At each decision step 𝑡, for the observed state
𝑠𝑡, we sample the action 𝑎𝑡 using the policy net 𝜋𝜙(𝑎𝑡|𝑠𝑡) (line 5). Based
on this action, we obtain a reward 𝑟𝑡 and the next state 𝑠𝑡+1 (line 6–
7). We add (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into the replay buffer  (line 8). Then, for
each learning step, we sample mini-batch ̂ from replay buffer  (line
9–10), and use this to calculate the loss functions in Eqs. (16), (17),
and (19). We next update the policy net, the value net, and the critic
nets such that the corresponding objectives are minimised (line 11–13).
Here 𝜆𝜋 , 𝜆𝑉 , and 𝜆𝑄 are the learning rates of each network. Also, the
parameters of the target value net 𝜓̄ is updated with an exponential
moving average of 𝜓 , where 𝜏 is a smoothing factor (line 14). For the
next decision step, we update the current state (line 16).

Design of the architecture of the neural networks

We design the architectures of the policy net 𝜋𝜙, the value net 𝑉𝜓 ,
and the critic net 𝑄𝜃 as shown in Fig. 10 and Table 4.

The policy net 𝜋𝜙 has input 𝑠𝑡, which is a vector of size 𝐷, and
returns two scalar values corresponding to the mean of action 𝑓𝜇𝜙 (𝑠𝑡)
and the standard deviation of action 𝑓𝜎𝜙 (𝑠𝑡). These two outputs 𝑓𝜇𝜙 (𝑠𝑡)
and 𝑓𝜎𝜙 (𝑠𝑡) are used to sample action 𝑎𝑡 for given state 𝑠𝑡 (see Eq. (12)).
We consider hidden layers shared by 𝑓𝜇𝜙 (𝑠𝑡) and 𝑓𝜇𝜙 (𝑠𝑡) to facilitate
learning from the shared features (see Fig. 10(a)). Following these
shared hidden layers, we consider separated hidden layers for each of
𝑓𝜇𝜙 (𝑠𝑡) and 𝑓𝜎𝜙 (𝑠𝑡).

The value net 𝑉𝜓 has input 𝑠𝑡 and returns a scalar value 𝑉𝜓 (𝑠𝑡). We
consider two hidden, fully-connected layers. The same architecture is
used also for the target value net 𝑉𝜓̄ .

The input of critic net 𝑄𝜃 is a vector of size (𝐷 + 1), which is
the augmentation of state 𝑠𝑡 and action 𝑎𝑡. Its output is a scalar
value 𝑄𝜃(𝑠𝑡, 𝑎𝑡). We consider two hidden, fully connected layers (see
Table 4). Since we use a double Q-learning approach, we consider two
critic networks 𝑄𝜃1 and 𝑄𝜃2 having the same architecture but different
parameters 𝜃 and 𝜃 .
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1 2
Fig. 10. Architecture of neural network models for DRL. (see also Table 4).

4. Case study: DRL for predictive maintenance of turbofan engines
with probabilistic RUL prognostics

This section shows how probabilistic RUL prognostics (Section 2)
for turbofan engines are integrated into maintenance planning, i.e., the
DRL approach discussed in Section 3.

4.1. Training the probabilistic RUL prognostics

We consider the maintenance of a turbofan engine whose sensor
measurements are given in subset FD002 of the C-MAPSS data set (see
Table 1) [11]. From the 260 training instances of FD002, we randomly
sample 130 engines to obtain data subset FD002-Prog, which is used
to train the probabilistic RUL prognostics model (CNN with Monte
Carlo dropout, Section 2). The remaining 130 engines, referred to as
FD002-DRL, are used to generate episodes of the DRL problem.
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Fig. 11. Learning curve of the DRL approach during 5000 episodes. The thin grey lines
are 5 learning curves, and the solid lines are the moving average of 100 episodes of
each learning curve.

4.2. Training the DRL agent

The DRL agent considers the maintenance episodes generated based
on the data set FD002-DRL. At each episode, we sample engines from
FD002-DRL. Using measurements 𝑥𝑡 and the trained RUL prognostics
model, we generate the RUL distribution (𝑝𝑘,𝑡) of the sampled engine.
This estimated RUL distribution is state 𝑠𝑡 observed by the DRL agent.
If the DRL agent decides to do nothing, the sensor measurements of the
sampled engine are updated at the next decision step 𝑡 + 1. If the DRL
agent decides to replace the engine, a new engine from FD002-DRL is
sampled.

We train the DRL agent for 𝑛𝐸 = 5000 episodes using Algorithm 1.
Each episode consists of maximum 𝑛𝑇 = 100 decision steps, and each
decision step considers 𝐷 = 30 flight cycles (see Fig. 6 for the definition
of a decision step). As a reward (cost) model, we assume 𝑐uns = 2, 𝑐0 = 1,
and 𝑐1 = 0.01 for the cost parameters defined in Eqs. (9)–(10) (see also
Fig. 9 for the cost model). The hyper-parameters of the SAC algorithms
are as follows: discount factor 𝛾 = 0.9, temperature parameter 𝛼 = 0.01,
learning rates 𝜆𝜙 = 10−5, 𝜆𝜓 = 10−4, 𝜆𝜃 = 10−4, smoothing factor of
target value net 𝜏 = 10−3, the maximum size of replay buffer || = 106,
and the size of the mini-batch |̂| = 4096.

Fig. 11 shows the learning curve of the DRL agent, illustrating the
total reward per episode. The total reward rapidly increases during the
first 500 episodes and converges to around −18 after 1000 episodes.
After 1000 episodes, the total reward of each episode varies because
the considered DRL problem is stochastic. However, the moving av-
erage of the total reward stabilises after 1000 episodes. Moreover, 5
independent training curves show the same trends. Thus, the training
is stopped after 5000 episodes.

4.3. Evaluation of the DRL agent: Predictive maintenance using DRL

Following training, we evaluate the trained DRL agent for 1000
episodes generated by our CNN model and data set FD002-DRL. During
evaluation, the DRL agent chooses an action 𝑎𝑡 for a given state 𝑠𝑡 from
the mean action 𝑓𝜇𝜙 of the trained policy 𝜋𝜙 [44]. Formally,

𝑎𝑡 = 𝑓𝜇𝜙 (𝑠𝑡). (21)

Below we discuss the benefits of our DRL approach for predictive
maintenance, by presenting some decision steps (the estimated RUL
distributions and the associated maintenance actions made by the DRL
agent).
10
Maintenance decision based on updated RUL distribution
The estimated RUL distributions are updated at every decision step

𝑡 (𝐷 cycles), as more sensor measurements become available. This
ensures that the maintenance decision is always based on the most
recent RUL prognostics. Fig. 12 shows 2 consecutive decisions steps
(𝑡 = 80 and 81) for the maintenance of Engine 247, FD002 of the C-
MAPSS data set. At decision step 𝑡 = 80, the engine has been operated
for 149 cycles. Our CNN model predicts the probability that the engine
will fail within 30 cycles to be 𝑝30,80 = 0.005. The entire distribution
𝑝𝑘,80 for 𝑘 ∈ {0,… , 30} is given in Fig. 12(a). Such a distribution
quantifies the uncertainty of the RUL prognostics, and provides basis
for maintenance decisions of the DRL agent. The DRL agent observes
the RUL distribution and decides to do nothing, i.e., do not schedule
replacement in this decision step 𝑡 = 80. Since no replacement is sched-
uled for the next 𝐷 = 30 cycles, the engine is operated continuously
until the next decision step 𝑡 = 81, and more sensor measurements
are collected. Based on the new sensor measurement, we update the
distribution of the RUL again using the CNN with Monte Carlo dropout
(see Fig. 12(b)). At decision step 𝑡 = 81, the probability that the engine
will fail within 30 cycles is estimated to be 𝑝30,81 = 0.807. Given the
updated distribution of the RUL, the DRL agent schedule a replacement
after 7 cycles (see the blue vertical line in Fig. 12(b)). The probability
that the engine will fail within 7 cycles is 𝑝7,80 = 0.091. In fact, the
(hidden) true RUL is 18 cycles at decision step 𝑡 = 81, i.e., the DRL
agent schedules a replacement 11 cycles before the engine fails.

Adaptive maintenance decision using deep neural network
Using a deep neural network model (policy net), our DRL agent

adaptively considers the updated RUL distribution of individual engine,
instead of relying on one fixed threshold for all engines. As a result,
our DRL agent can identify optimal moment of engine replacement
taking into account different trends of RUL distributions. For example,
Fig. 13 shows distinctive RUL distributions of three engines, estimated
during different episodes. In Fig. 13(a), there is a very high chance that
the engine will fail within the next 30 cycles (𝑝30,𝑡 = 0.896). In this
case, the DRL agent schedules a replacement after 5 cycles when the
probability that the engine will fail within 5 cycles is estimated to be
𝑝5,𝑡 = 0.113. In Fig. 13(b), the estimated 𝑝𝑘,𝑡 increases from 𝑝1,𝑡 = 0.011
to 𝑝30,𝑡 = 0.748, and the DRL agent schedules a replacement after 9
cycles when 𝑝9,𝑡 = 0.073. In the last case in Fig. 13(c), the probability
that the engine will fail within 30 cycles is smaller compared to the
two previous cases (𝑝30,𝑡 < 0.15), but the trend rapidly increases. In
this case, the DRL agent schedules a replacement after 18 cycles when
𝑝18,𝑡 = 0.011, effectively preventing the engine failure.

In contrast to our DRL approach, existing predictive maintenance
approaches often consider fixed thresholds for all same-type of com-
ponents to trigger maintenance. For example, in [12], an alarm is
triggered when the estimated RULs of engines are below a threshold
(44 days). Similarly, in [35], airframe panels are replaced when the
predicted crack size is larger than a threshold (47.4 mm). Since a
fixed threshold value is applied for all components, differences between
individual RUL prognostics results may not be considered in these
traditional approaches.

The benefit of our adaptive maintenance planning using deep neural
network is evident when trying, unsuccessfully, to find one fixed thresh-
old that is optimal for all three cases in Fig. 13. Let us assume that we
use a fixed threshold 0.11 and always schedule an engine replacement
after 𝑘 cycles if 𝑝𝑘,𝑡 > 0.11, irrespective of the RUL distribution. Using
such a fixed threshold of 0.11 will effectively prevent the failure for
the first case (Fig. 13(a)). Using the same threshold for Figs. 13(b)
and 13(c), engine replacements are scheduled after 12 and 28 cycles,
respectively. However, in both cases, the engine replacements are
later than the true RUL (11 and 21 cycles, respectively), leading to
unscheduled replacements at higher cost. In the same line, let us assume
that we set a much lower fixed threshold of 0.01, i.e., we always

schedule an engine replacement after 𝑘 cycles if 𝑝𝑘,𝑡 > 0.01. Using this
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Fig. 12. Estimated RUL distributions and replacement schedules for Engine 247 during 2 consecutive decisions steps (𝑡 = 80 and 81).
Fig. 13. Three different RUL distributions and adaptive maintenance decisions of the
DRL agent.
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Fig. 14. Wasted life of engines at the moment of replacements under our DRL
approach.

threshold will avoid an unscheduled engine replacements in the last
case (Fig. 13(c)). However, with such a low threshold, replacements
are scheduled too early for the other two cases in Figs. 13(a) and
13(b), wasting the useful life of the engines. This example shows that
finding one fixed threshold that is optimal for all cases is challenging. In
contrast, our DRL agent adaptively considers the different trends of RUL
distributions, without using fixed thresholds. As a result, our approach
leads to less unscheduled maintenance.

Scheduling replacements with small wasted life of engines
Using updated RUL distributions and adaptive maintenance deci-

sion, our DRL agent schedules engine replacements without wasting
useful lives of engines. Fig. 14 shows the distribution of the wasted
life of engines at the moment of replacement, when using our DRL
approach. Replacements are scheduled when the true RUL of an engine
is 12.81 cycles on average. This is only 6% of the average life of
the engines in subset FD002. Also, more than 82% of the engines are
replaced when their wasted life is less than 20 cycles.

5. Predictive maintenance using DRL vs other maintenance strate-
gies

In this section, we compare the performance of our DRL approach
for predictive maintenance against three other traditional maintenance
strategies:

(1) Predictive maintenance at mean-estimated-RUL: This strategy
schedules engine replacements at the mean RUL predicted by the CNN
model in Section 2. This strategy uses a point estimate of the RUL,
while our DRL approach uses a distribution of the RUL. Considering
this strategy, we aim to evaluate the impact of using the distribution
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Table 5
Comparison of the proposed DRL approach using RUL distribution, and other maintenance strategies. Percentage in parenthesis indicates the
relative ratio to the corrective maintenance .

Total cost Number of unscheduled replacements Total number of replacements

DRL approach using distribution of RUL 17.84 (−36.3%) 0.62 (−95.6%) 14.89 (+6.4%)
Predictive maintenance at mean-estimated-RUL 25.23 (−9.8%) 10.87 (−22.3%) 14.00 (0.0%)
Corrective maintenance 27.99 (0.0%) 13.99 (0.0%) 13.99 (0.0%)
Ideal maintenance at true RUL 16.10 (−42.5%) 0.0 (−100.0%) 13.95 (−0.3%)
of RUL for maintenance planning, rather than just a point estimate of
the RUL.

(2) Corrective maintenance: This strategy replaces engines as soon as
they fail. Under this strategy, we always perform unscheduled replace-
ments, which is the most undesirable case.

(3) Ideal maintenance at true RUL: This strategy assumes that the
true RUL is known in advance by an Oracle, and engines replacements
are scheduled exactly at this true RUL. Under this strategy, there are
no unscheduled maintenance tasks and the wasted lives of engines are
always zero, i.e., an ideal maintenance strategy.

Table 5 shows the performance of these traditional maintenance
strategies vs our DRL approach, using three following performance
indicators:

(i) The total cost: this is the cost of both scheduled and unsched-
uled replacements during 3000 cycles of engine operations (i.e., 100
decision steps). The cost (reward) model is given in Eqs. (9)–(10).

(ii) The number of unscheduled replacements: this is a direct met-
ric for maintenance reliability. We aim to minimise the number of
unscheduled engine replacements.

(iii) The total number of replacements: this is the number of both
scheduled and unscheduled replacements during 3000 cycles of engine
operations. Since we consider a fixed period of cycles, a lower number
of total replacements implies that we utilise the engines for a longer
duration.

Table 5 shows that our DRL approach using RUL distributions out-
performs the other maintenance strategies, especially in terms of the to-
tal maintenance cost and the number of unscheduled replacements. Our
DRL approach saves 36.3% of the total costs compared to corrective
maintenance. Moreover, it also achieves a more reliable maintenance
planning by preventing 95.6% of unscheduled replacements. The total
number of replacements (both scheduled and unscheduled) is slightly
(6.4%) larger for our DRL approach since engines are replaced earlier
than their end-of-life to prevent unscheduled replacements. However,
this slight increase in the total number of engine replacements is
balanced out by a large economic efficiency (large cost savings) and
maintenance reliability (lower number of unscheduled replacements)
that our DRL approach achieves.

The benefit of using probabilistic RUL prognostics instead of a point
estimate of RUL is evident when comparing our DRL approach against
predictive maintenance at mean-estimated-RUL (see Table 5). Both
strategies make use of RUL prognostics obtained using a CNN (see
Section 2). But our DRL approach uses probabilistic RUL prognostics
(estimated RUL distribution) to plan engine maintenance. As a result,
predictive maintenance based on the mean-estimated-RUL reduces only
9.8% of total costs and 22.3% of unscheduled replacements, while our
DRL approach further reduces the total cost (36.3%) and unscheduled
replacements (95.6%).

The cost savings obtained by our DRL approach are further ex-
plained in Fig. 15. Since we assume 2 times higher costs for unsched-
uled replacements (see the cost model in Fig. 9), even a small number of
unscheduled replacements can take a large portion of the total cost. Due
to this reason, all maintenance strategies performed a similar number
of total replacements, but the total maintenance costs are significantly
different. In the case of predictive maintenance at the mean-estimated-
RUL, 85% of the total cost is associated with unscheduled replacements.
In contrast, for our DRL approach, only 7% of the total cost is associated
with unscheduled replacements.
12
Fig. 15. Cost of scheduled/unscheduled replacements of the proposed DRL approach
and other maintenance strategies.

6. Conclusions

In this paper, we propose a deep reinforcement learning (DRL)
approach to plan predictive maintenance for aircraft engines. This
maintenance planning takes into account the estimated distribution of
the engines’ Remaining-Useful-Life (RUL).

We first estimate the RUL distribution of engines using Convolu-
tional Neural Networks with Monte Carlo dropout. These estimates are
periodically updated, as more sensor measurements become available.
Such estimates of the RUL distribution provide useful information about
the uncertainty associated with the RUL prognostics and enables more
effective maintenance planning.

With the estimated RUL distribution, we schedule maintenance
for turbofan engines using DRL. Maintenance actions are specified
adaptively, based on the trends of the RUL prognostics. In contrast
to existing studies, we do not use fixed thresholds to trigger mainte-
nance actions. Thus, our DRL approach enables adaptive and flexible,
threshold-free maintenance planning.

The results show that our DRL approach with probabilistic RUL
prognostics leads to lower maintenance costs and fewer unscheduled
maintenance events, when compared to several other maintenance
strategies. Compared to maintenance planning at mean-estimated-RUL,
our DRL approach reduces the total maintenance cost by 29.3%. More-
over, it prevents 95.6% of unscheduled engine replacements. The en-
gines are replaced just before their end-of-life, with an average wasted
lives of only 12.8 cycles. Overall, our DRL approach outperforms the
several other traditional maintenance strategies in terms of the cost and
reliability indicators.

Overall, this study proposes a generic framework to integrate data-
driven, probabilistic RUL prognostics into predictive maintenance. This
framework is readily applicable for other aircraft components whose
health is continuously monitored.

As future works, we plan to expand the proposed DRL approach
for predictive maintenance of multiple components. In addition, we
consider more realistic inputs and constraints of aircraft maintenance
such as limited space of hangar, logistics of spare parts, and dynamic
flight conditions.
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