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Acronym Definition
aCBF adaptive Control Barrier Function
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DCBF Discrete Control Barrier Function
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Glossary

Glossary of thesis paper

Symbol Description
Lf Directional derivative of f
α(·) Extended class κ∞ function
x⃗ State vector
u⃗ Input vector

pi(t) Penalty function
π⃗i Auxiliary system state vector for pi
ν(t) Virtual controller
z(t) Distance between ego vehicle and preceding vehicle
v(t) Velocity of ego vehicle
vp Constant velocity of preceding vehicle
lp Constant describing the minimum allowed value of z(t)
a A failure constant related to the change of the control bounds
γ A failure constant related to the change of the system dynamics parameters
ζ Used as an integration variable

V (t) The velocity of the Dubin’s Car vehicle
θ(t) Angle of the Dubin’s Car vehicle
[·]0 Value of the variable at t0
[·]s Starting value of variable during ftCBF computation
u∗(t) Recovery function
C1 Predefined safe set
S Set for which the recovery function is defined

I(x0) Interval of existence
χi0 HOCBF for penalty function pi

u∗(x⃗, λ⃗) Recovery function
t∗ Time after which ψm ≥ 0,∀t ≥ t∗, when u∗ = u(t) is used
umin lower control bound
umax upper control bound

λ⃗ System parameters vector

Glossary of preliminary report

Symbol Description
L Backwards reachable set
x⃗ State vector
χ System state space
γ Class κ function
V (·) Lyapunov function
h(x) Control barrier function
Lf Directional derivative of f
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General Introduction

This document is a summary of the thesis work done from December 2022 to December 2023.
Control Barrier Functions (CBFs) are a powerful tool in the control theory community that

provide a systematic way to ensure safety in dynamical systems. CBFs enable the design of
control laws that guarantee the system trajectories remain within predefined safe sets, which
is also called set invariance [1]. The range of applications for CBFs are vast, ranging from
autonomous vehicles, industrial processes, safer manually controlled vehicles and in general for
safety critical systems.

The main objective of the research was to contribute to this field of safety critical control,
where the main focus was on using control barrier functions to provide set invariance to a
predefined safe set, for changing control bounds and changing system dynamics. This would
allow the CBFs to be used for fault tolerant purposes, as an anticipated failure could be described
by its corresponding changes in the system dynamics and changes in the control bounds. The
formal main research question was thus formulated as follows:

Main Research Question:
How can a predefined safe set be made invariant for changing control bounds and changing system
dynamics?

This research question has been answered by the introduction of a novel CBF, called the fault
tolerant Control Barrier Function (ftCBF), which has the necessary properties to guarantee set
invariance of a predefined safe set with changing control bounds, and changing system dynamics,
defined by a lipschitz continuous failure function describing these changes in system dynamics and
control bounds for an anticipated failure. In addition to answering the main research question,
the following research questions were also answered.

Research Question 1. Is the adaptive Control Barrier Function (aCBF) [2] able to guarantee
set invariance for changing control bounds, and changing system dynamics?

In the thesis paper (Part I), it has been shown that the aCBF is not able to guarantee set
invariance for constant control bounds, and thus would not be able to do so for changing control
bounds. Furthermore, it has been shown that the relaxation of the constraint for the input, will
eventually result in a singularity for the virtual control input, thus it would also not be suitable
for changing system dynamics, as the same effect would occur, and the system would leave the
predefined safe set.

Research Question 2. What effect does preventing anticipated failures with the ftCBF have on
the performance of the vehicle in nominal conditions?

This has been partially answered in the thesis paper (Part I), where an analysis has been made
for different anticipated failure scenarios, and in general it could be said that the more aggressive
the anticipated failure is, for which the ftCBF has to account for, the more the performance of
the vehicle will suffer as a result. Thus a trade-off between safety risks and performance should
be made, as to not limit the nominal performance unnecessarily.

Research Question 3. How will the invariant part of the predefined safe set change when a
sudden or very aggressive failure happens to the system?

This question has been answered in the context of the definition of the recovery function
(Part I Definition 10), for which a recovery function is only defined if there exists a finite time
t∗ for which the derivative of the left hand side of a HOCBF constraint ψm ≥ 0 (Part I (9)) is
always larger or equal than zero, after this time t∗. In this context, as the invariant part of the
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predefined safe set is the intersection of the set S, for which the recovery function is defined, and
the original defined safe set C1 (Part I (4)), if the recovery function is not defined for all x⃗ ∈ C1
due to a sudden or very aggressive failure, then the invariant part of the set C1 will be smaller
than C1 itself.

This document contains as the main deliverable the thesis paper, which is presented in Part
I. The thesis paper is a stand-alone document, and contains the main result of the research.

The preliminary report is presented in Part II. The preliminary report contains an Intro-
duction, a Literature Review, Research Questions, Methodology, Set-up of the research, Results
and Outcomes planning, Project planning and finally a conclusion of the preliminary report. It
should be noted that the preliminary report was made before the actual research began, and
thus contains outdated information e.g. the project planning and the research questions.

The final part of this document are the Appendices, presented in Part III. Herein extra work
and details are contained, which were not presented within the thesis paper.
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Conclusions & Recommendations

In this chapter the main results of the research and the recommendations of the research will be
summarized.

Main Results of Research

This main research question has been answered by the introduction of the novel CBF constraint,
with the name fault tolerant Control Barrier Function (ftCBF), which has the necessary proper-
ties to keep a predefined safe set invariant in the event of changing control bounds and changing
system dynamics parameters. The main property that allows the ftCBF to guarantee set invari-
ance, is that it is dependent on the changing control bounds and changing system parameters,
as opposed to the current state of the art CBF constraints.

The ftCBF can be used on general non-linear systems, and has been tested on the (non-linear)
Dubin’s Car model, for which it was clearly shown that it is capable of providing set invariance,
even in the event of a failure.

Recommendations

For future work it is recommended that system dynamics parameter uncertainties as well as
measurement noise from the sensors are incorporated into the ftCBF. This will allow the ftCBF
to be even more generally applicable to systems with measurement noise and system dynamic
parameter uncertainties.

The mitigation of the curse of dimensionality is another topic that may be researched in the
future. Due to the curse of dimensionality it takes exponentially more computational time to
compute the ftCBF constraint for higher dimensional systems.

Furthermore, additional research may be done on finding an optimal recovery function for
general systems. This optimum could be in terms of least required energy or could be defined in
terms of least time required for recovery.

Additionally, research may be done on optimizing the trade off between safety and perfor-
mance.

vii
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Fault Tolerant Control Barrier Functions
Quinten van Hilten, MSc Student TU Delft
supervisor: Dr. ir. C.C. de Visser, TU Delft

Abstract—In this article a novel Control Barrier Function
(CBF) named the fault tolerant Control Barrier Function (ftCBF)
is introduced. The ftCBF is able to keep a vehicle within a prede-
fined safe set with changing control bounds and changing system
dynamics. The ftCBF is shown to be feasible in fault tolerant
control applications, as opposed to existing CBF methods. This
novel constraint is tested on a double integrator system, and on
a non-linear Dubin’s Car system with changing system dynamics
and changing control bounds. In the simulations it is shown
that the ftCBF is able to keep the vehicle in the safe set with
failure events occurring at any place in the timeline. The ftCBF
contains design parameters that allow a trade-off between safety
and performance.

Index Terms—Control Barrier Function, Fault Tolerant Con-
trol, Safety Critical Control.

I. INTRODUCTION

CONTROL Barrier Functions (CBFs) are a powerful tool
in the control theory community that provide a sys-

tematic way to ensure safety in dynamical systems. CBFs
enable the design of control laws that guarantee the system
trajectories remain within predefined sets, which is also called
set invariance[4]. CBFs have many applications in the field
of robotics (e.g. Agrawal et al.[1]) and are able to be used
in conjunction with other control techniques, such as Model
Predictive Control (MPC) [12], to provide robust and safe
control strategies for dynamical systems. There exist multiple
definitions of a CBF, but for this research the definition given
in A.D. Ames et al. [2] will be used.

The state of the art CBF methods[9][10][11] do not provide
a way to ensure set invariance with changing system dynamics
and changing control bounds. In this article the adaptive CBF
(aCBF) is shown to be ineffective for fault tolerant control, as
in this paper it is shown that set invariance is not guaranteed
for constant control bounds, let alone changing control bounds.
The application of the aCBF as of now is only done on a
simple linear system, and has not been implemented on more
general non-linear systems.

The main result of this research is the development of a new
CBF method that is able to maintain set invariance in case of
changing control bounds and changing system dynamics, and
is thus able to guarantee safety during a failure event. This
novel CBF constraint has been applied to both a linear and a
non-linear system, and is generally applicable to any control
affine system.

This article will first go over the necessary background that
is needed to understand this article in Section II. In Section III,
the adaptive Control Barrier Function will be briefly explained,
and it will be shown that it is ineffective for fault tolerant
control purposes, because set invariance of a predefined safe
set is not guaranteed for changing control bounds and changing

system dynamics. Section IV will introduce the novel CBF
method, and an application of this method on a non-linear
system will be shown in Section V. Finally this article will be
concluded in Section VI.

II. BACKGROUND

A. General Definitions

Definition 1 (Class κ∞ function[5]). A continuous function
α : [0,∞) → [0,∞), that is strictly increasing, and is such
that α(0) = 0 and limr→∞ α(r) = ∞.

Definition 2 (Extended class κ∞ function [2]). A class κ∞
function for which the domain is extended to the entire real
line R = (−∞,∞).

Definition 3 (Lipschitz continuity). A function f : R → R is
Lipschitz continuous if there exists a positive real number L
such that the equation below holds:

|f(x)− f(y)| ≤ L|x− y| (1)

Definition 4 (Interval of existence[2]). The interval for which
a differential equation has a unique solution x(t) on I(x0) =
[t0, τmax).

Definition 5 (Forward completeness[3]). A system is said to
be forward complete if the interval of existence is equal to
I(x0) = [t0,∞).

Definition 6 (Invariance and safety[2]). Considering a system
with feedback controller u = k(x)

˙⃗x = f(x⃗) + g(x⃗)k(x⃗) (2)

a set C is forward invariant if for every x0 ∈ C, x(t) ∈ C
for x(t0) = x0 and ∀t ∈ I(x0), where I(x0) is the interval
of existence I(x0) = [t0, τmax) such that x(t) is a unique
solution for (2) on I(x0). The set C provides safety for its
related system, if set C is forward invariant.

Definition 7 (Relative Degree[11]). the relative degree of a
function is the amount of times a function d : Rn → R has to
be differentiated with respect to (3) along its dynamics in order
for the input u⃗ of the system (3) to explicitly show up in the
derivative. Provided that the function d can be differentiated
sufficiently many times.

B. Control Barrier Functions

Definition 8 (Control Barrier Function[2]). Consider a gen-
eral control affine system of the form

˙⃗x = f(x⃗) + g(x⃗)u⃗ (3)



TECHNICAL UNIVERSITY OF DELFT, JANUARY 2024 3

with x⃗ ∈ X ⊂ Rn and u⃗ ∈ U ⊂ Rm. Then consider a set C1
defined by a continuously differentiable function ψ0 : Rn →
R:

C1 := {x⃗ ∈ Rn|ψ0(x⃗) ≥ 0} (4)

The function ψ0 is a Control Barrier Function (CBF), if
there exists an extended class κ∞ function α1 for which the
following holds for all x ∈ X ⊂ Rn:

sup
u∈U

[Lfψ0(x⃗) + Lgψ0(x⃗)u⃗+ α1(ψ0(x⃗))] ≥ 0 (5)

In the above equation (5) the symbols Lf and Lg denote
the directional derivatives of the system in the direction of the
functions f and g respectively.

Theorem 1 (from [2]). Let C1 be defined as in (4), if ψ0 is
a Control Barrier Function and ∂ψ0

∂x⃗ ̸= 0 for all x⃗ on the
boundary of C1, then any lipschitz continuous controller that
satisfies (5), renders the set C1 invariant and thus safe (by
Definition 6).

C. Higher Order Control Barrier Functions

When the relative degree of the system is higher than one,
(5) will not contain the input u⃗ explicitly as the term Lgψ0(x⃗)
will be zero by Definition 7. To still come up with a constraint
explicit in the input, the Higher Order Control Barrier Function
(HOCBF)[10] can be used.

To come up with a constraint that is explicit in u⃗, first (5)
is made to define a new set

C2 := {x⃗ ∈ Rn|ψ1 ≥ 0} (6)

where ψ1 is defined as the left hand side of (5)

ψ1 := [Lfψ0(x⃗) + Lgψ0(x⃗)u⃗+ α1(ψ0(x⃗))] (7)

In order for ψ1 to be a control barrier function for the set C2
it should by Definition 8 adhere to

sup
u∈U

[Lfψ1(x⃗) + Lgψ1(x⃗)u⃗+ α2(ψ1(x⃗))] ≥ 0 (8)

for all x ∈ X ⊂ Rn, where α2 in the above equation is again
an extended class κ∞ function (Definition 2) that may or may
not be distinct from α1. The set C2 is invariant, if there exists
a lipschitz continuous controller that satisfies (8) and ∂ψ1

∂x ̸= 0
for all x on the boundary (Theorem 1) . The invariance of the
set C2 leads to the invariance of set C1, because the invariance
of C2 by the definition of C2 (6) means that ψ1 ≥ 0, which is
by the definition of ψ1 (7) the same as satisfying (5), and thus
in turn provides set invariance for C1 provided that ∂ψ0

∂x ̸= 0
for all x⃗ on the boundary of C1.

If the constraint (8) still does not contain the input explicitly
(i.e. Lgψ1(x⃗) = 0), the above approach can be repeated until
it does and the following will then be achieved with a relative
degree of m:

ψ0 := b(x⃗)

ψ1 := ψ̇0 + α1(ψ0)

...

ψm := ψ̇m−1 + αm(ψm−1) ≥ 0

(9)

When x⃗0 ∈ C1∩· · ·∩Cm and ψm ≥ 0 holds for ∀t ∈ I(x0),
the trajectories of the system (3) will remain in the set
C1 (Theorem 2). In (9), ψm is actually not a CBF, but is
used for ease of communication and denotes the constraint
which is explicit in the input and is used to provide set
invariance of the original predefined safe set C1 (4). In (9)
the directional derivatives are replaced by the full derivatives
(e.g. Lfψ0(x⃗)+Lgψ0(x⃗)u⃗ = ψ̇0) for ease of communication.
The function b(x⃗) in (9) denotes an arbitrary continuously
differentiable function of x⃗ that defines the safe set C1 (4).

The more formal definition of the HOCBF and the cor-
responding theorem can be seen below, but first the formal
definition of the sets Ci, i{1, . . . ,m} is given in (10).

C1 := {x⃗ ∈ Rn|ψ0 ≥ 0}
C2 := {x⃗ ∈ Rn|ψ1 ≥ 0}

...
Cm := {x⃗ ∈ Rn|ψm−1 ≥ 0}

(10)

Definition 9 (Higher order control barrier function[10]). Let
Ci, i ∈ {1, . . . ,m} be defined in (10) and ψi, i ∈ {1, . . . ,m}
be defined in (9). A function b : Rn × I(x0) → R is a higher
order control barrier function of relative degree m for system
(3) if there exist extended κ∞ functions α1, . . . , αm such that
ψm ≥ 0 (9) holds for all ∀t ∈ I(x0) and for ∀x⃗ ∈ C1∩· · ·∩Cm.

Theorem 2 (from [10]). Given a HOCBF (from Definition 9)
with the sets Ci, i ∈ {1, . . . ,m} (defined in (10)), if x0 ∈ C1∩
· · · ∩ Cm, then any Lipschitz continuous controller u(t) ∈ U
that satisfies ψm ≥ 0 (from (9)) for all t ∈ I(x0), renders the
set C1 ∩ · · · ∩ Cm forwards invariant for system (3).

III. ADAPTIVE CONTROL BARRIER FUNCTIONS

A. The workings of the aCBF

The Adaptive Control Barrier Function (aCBF) was orig-
inally designed to guarantee feasibility for Quadratic Pro-
gramming (QP) problems[11]. In such problems, apart from
satisfying the HOCBF constraint ψ2 ≥ 0 (9), also for instance∫ T
0
u2(t)dt needs to be minimized. However, with the presence

of constant control boundaries umin ≤ u ≤ umax, this could
lead to in-feasibility of the QP problems. In Xiao et al. [11] it
is also stated that the aCBF is validated for adaptivity for time
varying control bounds and noisy system dynamics, however
later in this section it will be shown that the aCBF does
not even provide set invariance for constant control bounds
and only provides very limited adaptivity. For this research
the QP problems are not particularly of interest and thus
will not be addressed further in this article. The adaptivity
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properties however are interesting for this research, as they
might have provided necessary fault tolerant control properties.
In Xiao et al. [11] two different types of aCBF controllers are
introduced, for which both are very similar in concept. For this
research only the Parameter Adaptive Control Barrier Function
(PACBF) will be used.

The main idea of the aCBF is to multiply the extended
class κ∞ functions with penalty functions pi(t) ≥ 0,∀t > 0
in order to make the constraints adaptive, and thus be able to
relax the constraints when they would otherwise fail for an
input within the control bounds umin ≤ u(t) ≤ umax. These
penalty functions are themselves designed to be HOCBF’s
for their own auxiliary systems and are controlled by virtual
controllers νi to ensure that they will not reach below zero.
These penalty functions have to be above zero as to not conflict
with the definition of a CBF (Definition 8), because a function
with a negative value multiplied by an extended class κ∞
function does not belong to the extended class κ∞ functions
(e.g. −α(·) /∈ κ∞, α(·) ∈ κ∞), as the function would not
be strictly increasing (Definition 1). The auxiliary system is
augmented with the original system (3) which results in the
following HOCBF:

ψ0 := b(x⃗)

ψi := ψ̇i−1 + pi(t)αi(ψi−1) ≥ 0, i ∈ {1, . . . ,m}
(11)

The auxiliary systems can be designed in multiple ways,
but an easy way is to make each state of the auxiliary state
vector πi, a derivative of the penalty function pi. Below is an
example of how an auxiliary system could be designed[11]:

π⃗i := [pi, . . . , p
(m−i−1)
i ]T , i ∈ {1, . . . ,m− 2}

πm−1 := [pm−1]

νi := π̇i,m−i, i ∈ {1, . . . ,m− 1}
(12)

In (12) p(m−i−1)
i is the (m-i-1)th derivative of pi(t) and

πi,j ∈ R, j ∈ {1, . . . ,m− i} are the auxiliary state variables.
The amount of states in the auxiliary state vector π⃗i, is equal
to the amount of times the penalty function pi(t) needs to be
differentiated in obtaining ψm, and thus π⃗i has m-i states. The
derivative of the (m-i)th state of the auxiliary state vector π⃗i is
made equal to the virtual controller νi (as can be seen in the
last line of (12)), such that the final constraint ψm is explicit
for the virtual controllers ν⃗. The penalty function pm(t) can
directly be controlled with its own virtual controller (νm =
pm(t)), which always must be made greater than zero. Below
the general form of the auxiliary system is given

⃗̇πi = F (π⃗i) +G(π⃗i)νi, i ∈ {1, . . . ,m− 1} (13)

which for the auxiliary system design of (12) for e.g. i = 1
and m = 3 would be:

⃗̇π1 =

[
0 1
0 0

] [
p1(t)
ṗ1(t)

]
+

[
0
1

]
ν1(t) (14)

The HOCBF constraints for the penalty functions pi, i ∈
{1, . . . ,m− 1} are given below:

z(t) 
lp 

Ego vehicle Preceding vehicle
v(t) vp 

Safe Set C1 

Fig. 1. This figure gives a visualisation of the simple double integrator system
given in (16), with safe set C1 (4), defined by ψ0 := z(t)− lp ≥ 0.

χi0 := pi(t)

...

χim−i := χ̇im−i−1 + αi,m−i(χ
i
m−i−1) ≥ 0

(15)

In (15), χi0 is the HOCBF for the general auxiliary system
(13) belonging to pi(t), which describes the set Bi1 := {π⃗i ∈
Rm−i|χi0 ≥ 0}. By satisfying the constraint χim−i ≥ 0, which
is explicit in νi, the set Bi1 will be invariant (Theorem 2) and
thus pi(t) will remain above zero if pi0(t) ≥ 0.

Hereafter, the constraint ψm ≥ 0 (11) of the augmented
system can be satisfied, and because ψm will be a function of
the input u⃗ and the virtual controllers ν⃗, the constraint can be
relaxed for u⃗ by controlling the virtual controls of ν⃗.

B. Application of aCBF

1) Dynamic System: The aCBF will be applied on a sim-
ple double integrator system to illustrate its operation. The
augmented system that will be used can be seen below:

ż(t) = vp − v(t)

v̇(t) = u(t)

ṗ1(t) = ν1(t)

(16)

In the above equation, p1(t) is the penalty function that will
be used in the HOCBF constraint, vp is the constant velocity
of a preceding vehicle and v(t) is the velocity of the ego
vehicle and u(t) is the input of the ego vehicle, which has
the control boundary constraints −2 ≤ u(t) ≤ 5. The safe set
(4) will be defined by the function ψ0 := z(t) − lp, where
lp is some positive constant and z(t) describes the distance
between the ego vehicle and the vehicle in front of the ego
vehicle. A visualisation of the system is given in Figure 1. The
derivation of the HOCBF constraint ψ2 ≥ 0 resulting from the
definition of HOCBF ψ0 and (16) can be seen below:

ψ0 := z(t)− lp

ψ1 := (vp − v(t)) + p1(z(t)− lp)

ψ2 := p1(t)(vp − v(t)) + ν1(t)(z(t)− lp)

−u(t) + (vp − v(t)) + p1(z(t)− lp) ≥ 0

(17)

In (17) the penalty function p2(t) = ν2(t) for the constraint
ψ2 is made to be constant and equal to one. As can be seen in
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HOCBF Constraint
For u(t)

aCBF
Changing ν1(t) 

Lyapunov Controller
For ν1(t)  

System

ν(t) 

νlya 

ujoy u(t) 

Fig. 2. This figure shows the general schematics of the implementation. The
user provides a joystick input ujoy to the HOCBF constraint ψ2 ≥ 0 (17),
which is only passed on to the system if it does not conflict with ψ2 ≥ 0
(17), otherwise it will provide an input to the system that does satisfy the
constraint. If the HOCBF constraint is not able to be satisfied with an input
within the control bounds umin ≤ u(t) ≤ umax, the aCBF increases ν(t)
to relax the HOCBF constraint for u(t). If the aCBF is not active, the lyapunov
controller controls ν(t) to achieve a preferred value for the penalty function.

the constraint ψ2 ≥ 0 (17), the input u(t) can be relaxed by
increasing ν1(t). In order to provide invariance for the defined
safe set C1 (4), in this case defined by ψ0 := z(t) − lp ≥ 0,
the constraint ψ2 ≥ 0 (17) should be satisfied (Theorem 2).
The class κ∞ functions α1(·) and α2(·) in (17) are defined as
α1(ψ0) := ψ0 and α2(ψ1) := ψ1 respectively.

The HOCBF constraint χ1
1 ≥ 0 that should be satisfied for

the penalty function p1(t) can be seen below:

χ1
0 = p1(t)

χ1
1 = ν1(t) + p1(t) ≥ 0

(18)

2) Implementation schematics: An overview of the imple-
mentation of the aCBF on the double integrator system can be
seen in Figure 2. The constraint ψ2 ≥ 0 (17) with input u(t)
and virtual input ν1(t) is implemented by first trying to satisfy
the constraint by changing u(t) within its control bounds. If
the control bounds for u(t) prevents the satisfaction of the
constraint, the constraint will then be satisfied by changing
the virtual control input ν1(t). This will start to increase the
penalty function p1(t). To keep p1(t) from ever increasing and
close to a desired value after the constraint has turned off, a
lyapunov controller for ν1 is active when the aCBF constraint
is not active and returns the penalty function to a predefined
value.

3) Simulation Results: The simulation results can be seen
in Figure 3 and Figure 4 and the parameter values used in
the simulation are given in Table I. As can bee seen in Figure
4, the aCBF is not able to prevent a failure from occurring
with constant control bounds, as the virtual control ν1(t)
reaches a singularity. This is because the aCBF does not
contain the control bounds explicitly in the constraints and
the constraint activates too late in order to prevent the failure
from happening, even with infinite relaxation of the HOCBF
constraint ψ2 ≥ 0 (17). In section IV a novel approach will
be discussed that does contain the control bounds explicitly in
the constraints.

TABLE I
SIMULATION PARAMETERS ACBF

p0 z0 v0 lp vp a umin umax

0.4 10 11 2 8 1 -2 5

Fig. 3. In this figure a simulation of the aCBF is shown. For this simulation
a human controller was used to demonstrate the workings of the aCBF. The
function ψ0 := z(t) − lp ≥ 0 describes the predefined safe set C1 (4), and
physically describes the distance between the ego vehicle and the preceding
vehicle minus a safety constant lp (as can also be seen in Figure 1). The other
CBF ψ1 and the final constraint ψ2 ≥ 0 (17) are also shown and if ψ2 ≥ 0
(17) both ψ0 and ψ1 are as a result above zero, which guarantees that the safe
set C1 stays invariant. In this simulation the distance between both vehicles
(z(t) = ψ0+ lp), was first increased by providing a negative controller input
ujoy for about 10 seconds. After around 10 seconds, the controller input
ujoy provided a positive input, which accelerated the ego vehicle towards the
preceding vehicle, until around 18 seconds, where the HOCBF constraint first
activates. Quickly thereafter, the aCBF increases ν1(t) to relax the HOCBF
constraint for u(t). The effects of the lyapunov controller can be seen after
around 23 seconds where ν1(t) briefly turns negative, to lower the penalty
function p1(t) to its base value again.

IV. FAULT TOLERANT CONTROL BARRIER FUNCTIONS

The Fault Tolerant Control Barrier Function (ftCBF) is
a novel type of control barrier function and is the main
contribution of this research. It guarantees set invariance for a
predefined safe set C1 (4) for a system (3) that has changing
control bounds and changing system dynamics. This makes it
well suited for fault tolerant control, as a type of failure can
be anticipated by describing how the failure would change the
control bounds and system dynamics, in what will be hereafter
called failure functions, describing these changes. The ftCBF
can then with those failure functions provide invariance of the
predefined safe set C1 (4).

First to explain the general concept, consider a system (3),
with ψm := ψ̇m−1 + αm(ψm−1) ≥ 0 from (9) being the
constraint that needs to be satisfied in order to guarantee
safety for the system. Then a control function u∗(t), within
the changing control bounds umin(t) ≤ u∗(t) ≤ umax(t), can
be defined as a recovery function of the system that eventually
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Fig. 4. This figure shows a simulation of the aCBF, where the vehicle is made
to go outside of the predefined safe set C1 (4), defined by ψ0 := z(t)−lp ≥ 0,
and thus shows that the aCBF fails to guarantee set invariance with constant
control bounds umin ≤ u(t) ≤ umax. The maneuver performed by the
human controller was quite similar as the maneuver performed in Figure 3,
however the distance (z(t) = ψ0 + lp) was increased even further, such that
the ego vehicle was able to accelerate towards the preceding vehicle for a
longer amount of time before the constraint ψ2 ≥ 0 (17) was activated. As
can be seen in the figure at around 29 seconds the virtual controller tries to
relax the constraint ψ2 ≥ 0 for the input, but reaches a singularity and the
vehicle leaves the safe set, because ψ0 < 0.

at a time t∗ is able to stop a system from moving closer to the
boundary of the predefined safe set C1 (4) for ∀x0 ∈ S ⊂ X .
Where S is the set for which the recovery function is defined.
The recovery function is made to be a function of the system
states x⃗(t) and the changing system parameters λ⃗ ∈ Λ ⊂ Rp,
which includes the changing control boundaries umin(t) and
umax(t). As the failure functions describe the changes of
λ⃗, the recovery function will also be defined for anticipated
failure events. The formal definition of a recovery function, as
well as the theorem that states when the set C1 ∩ · · · ∩ Cm ∩S
will be invariant can be found below.

Definition 10 (Recovery function). A lipschitz continuous
control function u∗(x⃗, λ⃗) : Rn ×Rp → Rm within the chang-
ing control bounds umin(t) ≤ u∗(t) ≤ umax(t) such that
∀x⃗0 ∈ S ⊂ X , ∃t∗ ∈ I(x0) such that for ∀t ∈ I(x0)|t ≥ t∗

the derivative ψ̇m ≥ 0.

Theorem 3. If there exists a recovery function (Definition
10) for a system (3) with a HOCBF ψ0 and a corresponding
HOCBF constraint ψm ≥ 0, such that

min
t∈I(x0)|t0≤t≤t∗

ψm(u∗(x⃗(t), λ⃗(t)), x⃗(t), λ⃗(t)) ≥ 0 (19)

and x⃗0 ∈ C1 ∩ · · · ∩ Cm ∩S, then the set C1 ∩ · · · ∩ Cm ∩S is
forward invariant.

Proof. By Theorem 2, the set C1 ∩ · · · ∩ Cm is invariant if for
x⃗0 ∈ C1 ∩ · · · ∩ Cm, any lipschitz continuous controller u(t)
ensures that ψm(u(t), x⃗(t), λ⃗(t)) ≥ 0 (9) for ∀t ∈ I(x0). If

for u(t) the recovery function u∗(x⃗(t), λ⃗(t)) (Definition 10) is
used, and the minimum value of ψm(u∗(x⃗(t), λ⃗(t)), x⃗(t), λ⃗(t))
is greater then zero for t ∈ I(x0)|t0 ≤ t ≤ t∗, the HOCBF
constraint ψm ≥ 0 (9) will be satisfied for ∀t ∈ I(x0),
because for t ∈ I(x0)|t ≥ t∗ the derivative of the HOCBF
constraint ψ̇m ≥ 0 (by Definition 10), while the recovery
function is used. However, because the recovery function u∗

is only defined for x0 ∈ S, only the intersection of the set
C1 ∩ · · · ∩ Cm and S is made invariant.

Definition 11 (fault tolerant Control Barrier Function
(ftCBF)). A HOCBF ψ0 : Rn → R is a ftCBF if there exists
a recovery function u∗ (Definition 10) such that (19) holds
∀t ∈ I(x0) and ∀x⃗ ∈ C1 ∩ · · · ∩ Cm ∩ S .

For the practical application of the ftCBF, the system is
simulated offline for various different starting conditions (de-
noted with subscript [·]s), of the system states x⃗s and different
starting system parameters λ⃗s through time to compute the
minimum of the HOCBF constraint through time. This is done
because the constraint can typically not be found analytically.
The obtained constraint (20) which is a function of the starting
parameters, is then interpolated in real time with current values
for the system states and current system parameters substituted
as starting values.

min
t∈I(xs)|ts≤t≤t∗

ψm(u∗(x⃗s, λ⃗s, t), x⃗(t), λ⃗(t)) ≥ 0 (20)

A. Example on Double Integrator System

For this example the system (16) will be used, without the
penalty functions:

ż(t) = vp − v(t)

v̇(t) = u(t)
(21)

The HOCBF of the system (21) that needs to be satisfied to
guarantee set invariance then results in the below equation:

ψ2(t) = −u(t) + 2(vp − v(t)) + (z(t)− lp) ≥ 0 (22)

In this relatively simple system, a good recovery function
would be the smallest input u(t), which is by definition the
lower control bound umin(t), and thus u(t) = umin(t). To
simulate a failure in the control effectiveness, umin is modeled
to change over time during a failure by the following failure
function

u(t) = umin(t) = umin0 · at (23)

where a is a parameter between zero and one. To prove that
u(t) = umin0

· at is a recovery function of the system (16),
the derivative of (22) should be greater than zero after some
time t∗ (Definition 10). The derivative of (22) is given below.

ψ̇2 = −u̇(t)− 2u(t) + (vp − v(t)) ≥ 0 (24)

In above equation the derivative of the input is

u̇(t) = umin0
· atln(a) (25)
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and the velocity of the ego vehicle v(t) can be written as

v(t) =

∫ t

0

v̇(ζ)dζ + v0

=

∫ t

0

umin0
· aζdζ + v0

= umin0(
at

ln(a)
− 1

ln(a)
) + v0

(26)

Then by substituting (23),(25) and (26) into (24), the
following inequality will be obtained:

−umin0
(atln(a)+2at+(

at

ln(a)
− 1

ln(a)
)) ≥ −(vp−v0) (27)

The system (21) is assumed to be forward complete (Def-
inition 5), which makes the interval of existence I(x0) equal
to the interval [t0,∞), and thus to find the set S ⊂ X for
which (23) is a recovery function (Definition 10), the limit of
t→ ∞ can be taken of (27), which results in the following:

lim
t→∞

−umin0(a
tln(a) + at + (

at

ln(a)
− 1

ln(a)
)) =

umin0

ln(a)
umin0

ln(a)
≥ −(vp − v0)

(28)

From the above equation it can be deduced that (23) is a
recovery function (by Definition 10) for v0 ≤ umin0

ln(a) + vp.
Then to provide set invariance for ∀x⃗0 ∈ C1 ∩ · · · ∩ Cm ∩S

by Theorem 3, (19) should be satisfied. Which for the system
(21) and recovery function (23) would be

min
t∈I(x0)|t0≤t≤t∗

−(umin0
· at)

+2(vp − v0 − umin0
(
at

ln(a)
− 1

ln(a)
))

+(z0 +

∫ t

0

ż(ζ)dζ − lp) ≥ 0

(29)

where in the above equation z0 +
∫ t
0
ż(ζ)dζ = z(t).

A simulation of system (21) with the constraint (29) can
be seen in Figure 5. The parameters used for the simulation
are given in Table I, where it can be seen that a = 1. This is
to keep the control bounds constant (as can be seen in the
failure function (23)), such that Figure 5 (with the ftCBF
implementation) can be more easily compared to Figure 4
(aCBF implementation), with the exact same parameters and
maneuver.

A more in depth application of the ftCBF on a non-linear
system with changing system dynamics and changing control
bounds will be shown in the next section.

V. FTCBF APPLICATION: DUBIN’S CAR

A. System Dynamics

The Dubin’s Car system can be visualized as a car that has
a constant velocity and has the ability to change direction. In
this variation of a Dubin’s car system, the velocity will not be

Fig. 5. In this figure the implementation of the ftCBF is shown on the same
system as Figure 4, with the same parameters and maneuver being used for
better comparison between this simulation and the simulation of Figure 4
(thus no failure is induced in this simulation). As can be seen the ftCBF
ensures that the vehicle remains in the safe set C1 (ψ0 ≥ 0 (4)), with control
boundaries −2 ≤ u(t) ≤ 5, as opposed to the aCBF for which the system
failed (Figure 4). For this simulation the constant a in the failure function
(23) was set to 1, thus umin remained constant.

constant, but will be allowed to change as to demonstrate that
the ftCBF is able to handle changing system dynamics as well
as changing control bounds. Below the equations of motion of
the system that will be used in this application are shown:

ẋ = V (t) cos(θ(t))

ẏ = V (t) sin(θ(t))

θ̇ = u(t)

umin(t) ≤ u(t) ≤ umax(t)

(30)

In the above equations u(t) is the input that is able to change
the angle θ at which the vehicle is driving. The speed will be
a simple function of time:

V (t) = V0 + γt (31)

where gamma is some positive design constant. A visualization
of the system (30), can be seen in Figure 6, where also a
visualisation of the safe set C1 (4) is given. The safe set for
this application will be defined by ψ0 := x(t) ≥ 0

B. HOCBF & ftCBF constraints

For ψ0 := x(t) the system (30) will result in the the
following HOCBF:

ψ0 := x(t)

ψ1 = V (t) cos(θ(t)) + x(t)

ψ2 = γ cos(θ(t))− V (t) sin(θ(t))u(t)

+2V (t) cos(θ(t)) + x(t) ≥ 0

(32)

where α1(ψ0) := ψ0 and α2(ψ1) := ψ1.
For the system (30) a recovery function is defined below:

u∗(t) := umin(t) = umin0
· at, π

2
≤ θ(t) ≤ π

u∗(t) := umax(t) = umax0 · at, π < θ(t) ≤ 3π

2
u∗(t) := 0,−π/2 < θ(t) < π/2

(33)
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θ(t) 

V(t) 

x 

y 

Safe set C1 

Fig. 6. This figure gives a visualisation of the Dubin’s Car system (30), with
safe set C1 (4), where ψ0 := x(t) ≥ 0.

As the system behaves very similar in both domain π
2 ≤

θ(t) ≤ π and the domain π < θ(t) ≤ 3π
2 (only the direction

of rotation will be different), only the domain 0 ≤ θ(t) ≤ π
will be considered for simplicity.

To prove that

u∗ = umin0 · at,
π

2
≤ θ(t) ≤ π

u∗(t) := 0, 0 ≤ θ(t) < π/2
(34)

is a recovery function for 0 ≤ θ(t) ≤ π, the derivative of
ψ2 in (32) must be greater or equal to zero after a time t∗

(Definition 10). The derivative of ψ2 (9) is given below

ψ̇2 = −2γ sin θ(t)u(t)

−V (t) cos θ(t)u2(t)− V (t) sin θ(t)u̇(t)

+2γ cos θ(t)− 2V (t) sin θ(t)u(t)

+V (t) cos θ(t)

(35)

and for 0 ≤ θ(t) ≤ π/2 it can be shown that ψ̇2 ≥ 0, by
substituting u∗ = 0 (34) into (35).

ψ̇2 = 2γ cos θ(t) + V (t) cos θ(t) (36)

In the above equation γ and V (t) are always positive or
zero, and cos θ(t) is also always positive or zero in the domain
0 ≤ θ(t) ≤ π/2, thus if the control function (34) is able to get
the vehicle into the domain 0 ≤ θ(t) ≤ π/2, (34) is a recovery
function as ψ̇m ≥ 0 after a time t∗. The angle of the vehicle
θ(t) can be made into a function of the control function u∗

(34) as can be seen below

θ(t) = θ0 +

∫ t

0

θ̇(ζ)dζ

= θ0 +

∫ t

0

u(ζ)dζ

= θ0 + umin0
(
at

ln(a)
− 1

ln(a)
)

(37)

When assuming a negative lower control bound, and if θ0
is not in the domain 0 ≤ θ(t) ≤ π/2, the angle θ(t) will enter
the domain 0 ≤ θ(t) ≤ π/2 at θ(t∗) = π

2 . Then by finding
the limit of (37) for t approaching infinity (assuming that the
system (30) is forward complete (Definition 5)), and setting
this limit smaller or equal to π

2 , the set S can be found, for
which (34) is defined as a recovery function (Definition 10).

lim
t→∞

θ0 + umin0
(
at

ln(a)
− 1

ln(a)
) ≤ π

2

θ0 −
umin0

ln(a)
≤ π

2

(38)

From the equation above it can thus be deduced that (34)
is a recovery function (by Definition 10) for θ0 ≤ π

2 +
umin0

ln(a)
(38).

Then to provide set invariance for ∀x0 ∈ C1 ∩ · · · ∩ Cm ∩S
by Theorem 3, (19) should be satisfied. Which for the system
(30) and recovery function (34) would be

min
t∈I(x0)|t0≤t≤t∗

γ cos θ(t)− V (t) sin θ(t)(umin0
· at)

+2V (t) cos θ(t)

+x(t) ≥ 0

(39)

for which x(t) can be described as

x(t) = x0 +

∫ t

0

ẋ(ζ)dζ

= x0 +

∫ t

0

ẋ(ζ)dζ

(40)

Substituting (40), (31) and (37) in (39) results in the
equation below.

min
t∈I(x0)|t0≤t≤t∗

γ cos(θ0 + umin0(
at

ln(a)
− 1

ln(a)
))

−(V0 + γt)(umin0 · at) sin(θ0 + umin0(
at

ln(a)
− 1

ln(a)
))

+2(V0 + γt) cos(θ0 + umin0(
at

ln(a)
− 1

ln(a)
))

+

∫ t

0

(V0 + γζ) cos(θ0 + umin0(
aζ

ln(a)
− 1

ln(a)
))dζ

+x0 ≥ 0
(41)

For practical reasons the above ftCBF constraint is com-
puted offline and then interpolated online during a simulation.

To make the computation a bit less computationally ex-
pensive and the constraint a bit more intuitive, x0 in (41) is
subtracted from both sides of the inequality sign and then both
sides are multiplied with −1, which results in the following
constraint

− min
t∈I(x0)|t0≤t≤t∗

(ψ2(u
∗)− x0) ≤ x0 (42)

which is easier to compute, as the constraint now does not
have to be calculated offline for different starting conditions
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Fig. 7. This figure gives a slice of left hand side of the constraint of (42) for
umin0 = −0.5 [rad/s]. The color-bar on the right indicates the value of the
left hand side of (42) and physically represents the required x-distance from
the boundary the satisfy the constraint (42), which in turn is required to ensure
safety for the system (30). For the computation of the constraint, a = 0.9 and
γ = 2 were used. The lines that can be seen throughout the figure indicate
different height levels of the function for visualization purposes.

Fig. 8. This figure gives the function −mint∈I(x0)|t0≤t≤t∗ (ψ2(u∗)−x0)
(left hand side of (42)) for umins = −0.5 [rad/s] and Vs = 0.5 [m/s], and
physically represents the required x-distance from the boundary to satisfy the
constraint (42).

x0, as the current value for x(t) can be substituted for x0
during the simulation to check if it satisfies the constraint.
The new form of the constraint is also a bit more intuitive, as
the value of the left hand side of (42) represents the required
distance from the x-axis in order for (41) to be satisfied, and
thus has a more physical meaning.

In Figure 7 and Figure 8 visualizations of the left hand side
of the constraint (42) can be seen.

C. Simulation Setup

The simulation was set-up in Matlab and Simulink[7]. In
Figure 9 the general layout of the setup that was used can
be seen. The setup works with a joystick controller and gives

TABLE II
SIMULATION PARAMETERS FTCBF

x0 y0 θ0 umin0 umax0 Vc γ a
20 1 π -0.5 0.5 0.5 2 0.9

Fig. 9. General setup of the ftCBF implementation on the Dubin’s Car system

input ujoy to the system if both the HOCBF and the ftCBF
constraint are not active. If the ftCBF constraint is active the
output that is given by the HOCBF constraint is overruled
and the ftCBF provides the final input u(t) to the system.
The ftCBF thus has the highest hierarchy in the system, and
always provides the input once it is activated, ensuring that the
system will always remain in the safe set. The ftCBF constraint
and the HOCBF constraint get state updates from the system.
The HOCBF constraint is not necessary for safety, but in
practice does provide a bit smoother behavior in approaching
the boundary.

The parameters that are used in the simulation will be
displayed in Table II.

D. Results

The main results of the simulation can be seen in Figure 11
and Figure 12, which uses xy-plots to show that the system
(30) does not leave the safe set C1 (4), defined by ψ0 := x(t) ≥
0. The defined safe set and the top down view of the system
used in Figure 11 and Figure 12, can be visualized in Figure
6 for more clarity. The effect of the induced failure on V (t),
umin(t) and umax(t), can be seen in Figure 10. The Figures 11
and 12 show that the ftCBF controller is capable of providing
safety for a vehicle in the case of a failure as the vehicle does
not leave the safe set C1, defined by ψ0 := x(t) ≥ 0, during
the simulation, regardless of when the failure occurs. This can
be seen in Figure 11 where it shows a failure that happens well
before the constraint would normally activate and in Figure 12
which shows an induced failure after the ftCBF constraint (42)
has been activated.

The effect the ftCBF parameters γ and a on the maneu-
verability of the vehicle in nominal conditions (thus with no
induced failure), is shown in Figure 13 and Figure 14. The
effect of γ on the maneuverability is quite significant (Figure
13) as the ftCBF does not allow the system to go near to
boundary x = 0 as much for higher values of γ. Therefore, a
trade-off between safety and maneuverability has to be made
as the higher the value for γ, the more prepared the system is
for possible rapid changes in the system dynamics, but the less
maneuverability it has. The effect of a on the maneuverability
(Figure 14) in nominal conditions (thus without an induced
failure) is not very significant in the range of 0.8 ≤ a ≤ 0.9,
as the boundary x = 0 is almost equally well approachable for
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Fig. 10. This figure indicates what happens during an induced failure
described by (31) and umin(t) = umin0 · at. In the figure the failure is
induced at around t=10. As can be seen the velocity V (t) increases quickly
and the control effectiveness decreases exponentially. The failure parameters
used for this figure are a = 0.9 and γ = 2.

ftCBF
activated

Failure 
induced

Simulation
start

t 

Fig. 11. This figure shows a xy-plot of the system (30). In the figure it can
be seen that the ftCBF is able to keep the vehicle in the safe set C1, defined
by ψ0 := x(t) ≥ 0 (Figure 6), with a failure resulting in changed system
dynamics and changed control bounds (as can be seen in Figure 10). In this
simulation there was no joystick input given and the failure was induced
before the ftCBF constraint (42) was activated. The parameters used for the
simulation can be found in Table II.

0.8 ≤ a ≤ 0.9 . It should be noted however that if the value of
a becomes too small the recovery function (34) is not defined
for all 0 ≤ θ ≤ π, as can be seen from (38). From (38) it can
be deduced that if the recovery function is to be defined for all
0 ≤ θ ≤ π, then e

−0.5
0.5π ≤ a ≤ 1 for umin0

= −0.5 and more
generally e

umin0
0.5π ≤ a ≤ 1. However, if 0 ≤ a ≤ e

umin0
0.5π the

vehicle can still be made safe (provided that θ0 ≤ π
2 +

umin0

ln(a) ),
but the maneuverability will be significantly impaired as θ(t)
cannot reach the whole domain 0 ≤ θ(t) ≤ π.

E. Discussion

The results have shown that the ftCBF constraint is able
to keep systems within their safe set, even when a failure is
induced.

As can be seen in Figure 13, choosing higher values for
γ has an effect on maneuverability, thus a trade-off can be
made between safety and performance, where higher values
of γ are more in favour of safety, and lower values of γ more
favourable for performance.

Another point that should be mentioned, is that the com-
putational time required to calculate the constraint will go

Failure
induced

ftCBF
activated

Simulation
start

t 

Fig. 12. This figure shows a xy-plot of the system (30). In this figure it can
be seen that if the failure is induced after the ftCBF has been activated, the
constraint is also able to make sure that the vehicle remains in the safe set
C1 (4), defined by ψ0 := x(t) ≥ 0 (Figure 6). In this simulation there was
no joystick input given. The parameters used in the simulation can be found
in Table II.

Fig. 13. This figure shows the effect of higher values of γ for (31) in the
constraint (42) on vehicle maneuverability when no failure is induced. As can
be seen, the faster the system dynamics are thought to be able to change (by
setting a higher value for γ), the less maneuverability the vehicle has, as can
be seen in the figure by the fact that the vehicle is not allowed to go near to
boundary (x = 0) as much, as lower values of γ will allow. Setting the value
for γ is thus a trade off between safety and maneuverability of the vehicle.
For this figure no joystick input was given and a = 0.9 was used.

up exponentially for higher dimensional systems. For the
Dubin’s Car model only three dimensions had to be considered
for the constraint, however for more complex systems like
for instance full state drone models, the amount of states
required are much higher than three, which would very likely
require very long computational times. This phenomenon,
called curse of dimensionality, also occurs in the related field
of Reachability[6], for which reachable sets are solved from
the Hamilton Jacobi PDE’s with the level-set methods[8].

VI. CONCLUSION

In this work it has been shown that the adaptive Control
Barrier Function[11] is not suitable for fault tolerant control,
as it does not guarantee safety for changing system dynamics
and changing control bounds. This paper has presented a new
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Fig. 14. This figure shows the effect of the value of a used in the failure
function umin(t) = umin0 ·at, on the maneuverability of the vehicle. As can
be seen in this figure, the changes in a do not effect the maneuverability of the
vehicle in nominal conditions (where no failures are induced), thus it seems
that a lower value of a would be most suitable, as this would mitigate more

aggressive failures. However, a value of a that is lower then a ≤ e
umin0
0.5π

(deduced from (38)), will result in the recovery function (34) to be not defined
for all θ(t) on the domain 0 ≤ θ(t)π, which will have a large impact on the
maneuverability of the vehicle.

type of control barrier function called the fault tolerant Control
Barrier Function (ftCBF), that is able to keep a system within
its safe set C1 (4), with a failure event happening at any time
during the simulation.

The failure function, used in the ftCBF, have design param-
eters that should be tuned according to a trade-off between
safety and performance of the system.

For future work it is recommended to incorporate mea-
surement noise and system dynamic parameters uncertainties
within the ftCBF, to further increase the safety critical behavior
of the ftCBF. Further work should also be done on mitigating
the curse of dimensionality, such that the ftCBF could also be
used practically for higher dimensional systems.
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Chapter 1

Introduction

This document is a deliverable for the course AE4010 Research Methodologies, given at the
faculty of Aerospace Engineering of the Technical University of Delft. The deliverable of this
course is a thesis proposal that serves as a preparation for the AE Control & Simulation MSc
Thesis.

Control Barrier Functions (CBFs) are a powerful tool in the control theory community that
provide a systematic way to ensure safety in dynamical systems. CBFs enable the design of
control laws that guarantee the system trajectories remain within predefined safe sets, which
is also called set invariance [1]. CBFs have also been used in conjunction with other control
techniques, such as Model Predictive Control (MPC) [3], to provide robust and safe control
strategies for dynamical systems.There exist multiple definitions of a CBF, but throughout this
document and in the research the definition given in A.D. Ames et al. [4] will be used. The main
goal of the proposed thesis is to investigate the behavior of CBFs on a subclass of time varying
systems that have undergone event based changes (e.g. systems that are suddenly damaged).

The largest challenge in the study and application of the field of reachability is the so called
curse of dimensionality. This hurdle makes it intractable to calculate the safe set for more than
four dimensions[5]. This unfortunately also impacts the CBFs as they are based upon the safe
set, which is calculated from reachability calculation methods. Contributing in reducing the
computational complexity within the field of reachability is unfortunately not within the scope
of this proposed thesis. Thus, to still be able to contribute to the field, smaller dimensional
dynamical systems are chosen that are more tractable for calculations and simulation.

This document will go over a literature review in chapter 2, after which the research question
of the proposed thesis is discussed in chapter 3. The proposed methodology will be discussed in
chapter 4, and in chapter 5 the set-up of the simulations will be presented. In chapter 6 the data
management and the verification & validation process of the project will be given. Hereafter, in
chapter 7 the project planning will be discussed, and finally in chapter 8 the conclusions of this
proposal will be presented.

13



Chapter 2

Literature Review

In this section the current literature that is relevant for the proposed thesis topic will be reviewed.
This section will first go over the field of reachability and the calculation of the so called ”safe
set”, as this will provide the necessary background for Control Barrier Functions (CBFs). The
literature study was done mostly in the context of airplanes and therefore reachability was also
researched mostly in this context. However, the methods described below are also applicable for
dynamical systems in general. In the context of air vehicles the set of safe states is called the
safe flight envelope, and for dynamic systems in general it is often called the safe set. There
are many calculation methods available and also more being researched, but because of limited
space, only the level set method will be discussed, as this is currently the most used method to
calculate the safe set. After reachability has been discussed, the control barrier functions will be
discussed.

2.1 Safe Flight Envelope/Safe Set Estimation

There are several techniques for the estimation of Safe Flight Envelopes. Most of the literature
on this topic is primarily focused on the flight envelope estimation of aircraft. However, the
techniques could also be applied to other vehicles as well. This section will briefly go over
the most used method for calculating the Safe Flight Envelope, and briefly go over the field of
reachability.

2.1.1 Reachability - Level Set Methods

Reachability can be solved as a minimal optimal control problem[6], which transforms the prob-
lem into the Hamilton Jacobi Bellman equations which can be solved numerically by the level
set method[7]. A visualization of the forward and backward reachable set, and the intersection
thereof, The Safe Flight Envelope, is given in Figure 2.1. The forward reachable set is defined as
the set of states that can be reached from an initial set in t seconds. The backwards reachable
set in this work is defined as the set of states for which the vehicle is still able to return to a
target set of states. The backwards and forwards reachable set are often calculated from the
trim envelope as target set or initial set, as this set is considered as an a-priori safe set[8][9].

The problem with this method of calculating the safe flight envelope for higher dimensions is
that, the amount of calculations required increases dramatically with higher number of dimen-
sions. This phenomenon is often called the curse of dimensionality in literature, and is what
makes this method unfeasible for higher dimensional problems[5].

One method to reduce the computational complexity of the problem is to reduce the problem
into several smaller dimensional problems with the use of time scale separation methods[8], where
the fast and slow dynamics of the aircraft are separated. However as was shown in [5], this is
only feasible for the safe flight envelope calculation for the slow dynamics.

Another method to reduce the computational complexity is by system decomposition[10][11].
The method works by separating the full system into several subsystems by means of state
decomposition, for which the reachability sets are separately calculated. These subsystems have
their own subsystem state space χi with their own backwards reachable set Li defined in only
that subspace. When for instance a full system is decomposed into two subsystems, with two

14
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backwards reachable sets Lx1 ∈ χx1 and Lx2 ∈ χx2 , the full system backwards reachable set can
be found by intersecting the backwards projections of the subsystems backwards reachable sets:

L = proj−1(Lx1
) ∩ proj−1(Lx2

) (2.1)

Where proj−1 is the back projection operator, that projects the subsystem state space back
into the full state space Z:

proj−1(xi) = {z ∈ Z | projχxi
(z) = xi} (2.2)

Figure 2.1: Safe Flight Envelope Definition from Backward and Forward Reachable Set[5]

Control Barrier Functions and Set Invariance
Once a safe set of a dynamical system has been determined, the invariance of this set can be

guaranteed using CBFs. This subsection will be for the most part a summary of A.D. Ames et
al. [4].

First the concept of Lyapunov functions and Control Lyapunov Functions (CLFs) will be
discussed, after which CBFs will be further explained. Finally an example application of CBF
implemented with a MPC controller will be given.

Throughout this document a general non-linear control affine system, given in Equation 2.3,
will be assumed. With x ∈ D ⊂ Rn and u ∈ U ⊂ Rm.

ẋ = f(x) + g(x)u (2.3)

2.1.2 Lyapunov Functions

Lyapunov functions ensure asymptotic stability towards an equilibrium point in the system,
which makes the system stable for a given control law or input, but not necessarily safe. This
is done with the aid of a positive definite function that is equal to zero in the equilibrium point
V : D ⊂ Rn → R≥0.

To ensure stability for a control law k(x), the Lyapunov function must be driven to zero.

∃u = k(x)s.t.V̇ (x, k(x)) ≤ −γ(V (x)) (2.4)

Where the derivative of the Lyapunov functions can be obtained by using the chain rule on
Equation 2.3, resulting in:

V̇ (x, k(x)) = ∇V (x)f(x) +∇V (x)g(x)k(x) (2.5)

In Equation 2.5, γ is a class kappa function, that ensures asymptotic stability towards the
equilibrium point. This is because the kappa function becomes greater when its argument is
greater, resulting in a more negative derivative of the Lyapunov function.

The Control Lyapunov Function (CLF) is defined in the following way:

inf
u∈U

[∇V (x)f(x) +∇V (x)g(x)u] ≤ −γ(V (x)) (2.6)

Which allows the definition of the set of all stabilizing controllers:

Kclf = {u ∈ U : ∇V (x)f(x) +∇V (x)g(x)u ≤ −γ(V (x))} (2.7)
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2.1.3 Control Barrier Functions

The CBFs provide set invariance, and thus safety to the system for a given control law or input
if the invariant set is also a safe set.

The invariant set C can be defined by the superlevel set of a function of a continuously
differentiable function h(x) : D ⊂ Rn → R. The interior of this invariant set is {x ⊂ D : h(x) >
0} and the boundary of the set ∂C is {x ⊂ D : h(x) = 0}.

Similar as with the Lyapunov function, a control function can be described[12], which makes
sure that the function h(x) does not go below zero, and thus makes sure that the trajectory does
not leave the invariant set C:

sup
u∈U

[∇h(x)f(x) +∇h(x)g(x)u] ≥ −α(h(x)) (2.8)

In the above equation α is a function of the extended class ∞, which makes the derivative of
the barrier function increase as the trajectory nears the boundary of the invariant set. At the
boundary α(0) = 0, and thus the derivative of the barrier function may only be greater or equal
then zero.

Equation 2.8 allows for the definition of all controllers that render C to be invariant:

Kcbf = {u ∈ U : ∇h(x)f(x) +∇h(x)g(x)u ≥ −α(h(x)} (2.9)

So far for the CLF and the CBF the relative-degree has been assumed to be one, but for
systems with a higher relative-degree, the above method will not work as the first order derivative
of the function will not contain the input. To enforce arbitrarily high relative-degree safety
constraints a type of CBF could be used called the Exponential Control Barrier Function[13],
which uses an approach very similar to Non-linear dynamic inversion.

The Exponential Control Barrier Function (ECBF) works by reapplying the chain rule and
finding higher order derivatives of h(x) until, the input comes up. The rth derivative of h(x) will
then be:

h(r)(x, u) = Lrfh(x) + LgL
r−1
f h(x)u (2.10)

In the above equation, Lrf is the rth Lie derivative (also called directional derivative) of the

function f. Similar to Non Linear Dynamic Inversion h(r)(x, u) is then set equal to a virtual
control input, h(r) = µ, which can be driven by a linear controller to control h(x) and its
derivatives.

A system can be defined with a control law to ensure that h(x) and its derivatives satisfy the
safety constraints.

The system has the following state vector:

ηb(x) =




h(x)

ḣ(x)
...

h(r−1)


 =




h(x)
Lfh(x)

...

L
(r−1)
f h(x)


 (2.11)

Which results in the following system:

η̇b(x) = Fηb(x) +Gµ (2.12)

With:

F =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 0 1
0 0 0 0 0



, G =




0
0
...
1


 (2.13)

If for the virtual control input µ, a control law µ ≥ −Kαηb is chosen, the solution of the
system will be:

h(x(t)) ≥ Ce(F−GKα)tηb(x0) (2.14)
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With:
C =

[
1 0 · · · 0

]
(2.15)

Then the function h(x) is an ECBF if the equation below holds:

sup
u∈U

[Lrfh(x) + LgL
r−1
f h(x)u] ≥ −Kαηb(x) (2.16)

This only makes the set C invariant if Kα has certain properties. The properties of this row
vector fall outside of the scope of this report, but the interested reader is advised to read A. D.
Ames et al. [4] for more information about these properties.

2.1.4 Applications CBF

One possible application of CBF is using it in combination with a Model Predictive Control
(MPC) controller, and Lyapunov Control Functions[3].

Model Predictive Control (MPC), predicts future states of a model, and assesses multiple of
these predictions against cost functions. It tries to minimize this cost function by looking what
input results in the minimal cost. There are multiple cost functions possible in MPC, but a
common example is given in Equation 2.17[3]. In this equation, p is the terminal cost, and q
is the stage cost, which together form the cost function. After an input has been found that
results in the minimal value for the cost function, only the first step of this input is applied (this
algorithm is set up in discrete time), after which the algorithm is performed again to find the
input that results in the minimum of the cost function of the new current state.

J∗
t = min

u⃗t:t+N|t
p(x⃗t+N |t) +

N−1∑

k=0

q(x⃗t+k|t, u⃗t+k|t) (2.17)

Discrete Control Barrier Functions (DCBF) can be used together with MPC, for the use in
safety critical control. The discrete version of the CBF is given below in Equation 2.18.

∃u⃗ | h(x⃗k+1) ≥ (1− γ)h(x⃗k), 0 < γ ≤ 1 (2.18)

DCBF can be combined with Discrete Lyapunov Control Functions (DLCF), to not only
ensure system safety but also be able to stabilize the system with a feedback control law u⃗. The
discrete version of the CLF is given in Equation 2.19.

∃u⃗ | V (x⃗k + 1) ≤ (1− α)V (x⃗k), 0 < α ≤ 1 (2.19)

The DCBF and DLCF can be combined into one optimization program, which achieves the
control objectives and guaranties safety[3]. The program was first introduced in [14], and is given
in Equation 2.20 to Equation 2.22. In the formulation δ is a slack variable, that can be increased
by the program if the Lyapunov function conflicts with the control barrier function.

u⃗∗k =(u⃗k,δ) u⃗
⊺
kH(x)u⃗k + l · δ2 (2.20)

∆V (x⃗k, u⃗k) + αV (x⃗k) ≤ δ (2.21)

∆h(x⃗k, u⃗k) + γh(x⃗k) ≥ 0 (2.22)



Chapter 3

Research Question(s)

Throughout the research, the following main research question will be the central focus:
What will be the required properties of a CBF to guarantee set invariance of a (known) damage

event based time-varying safe set?

With the research also the following sub-questions will be investigated:

• Is it possible to make a time varying set invariant by using a time parametrization of a
CBF that meets the constraints at each time instant?

• How to construct a continuous CBF that ensures set invariance for a known set that is
changing over time?

• How to construct a time varying Exponential CBF, for systems with a relative degree higher
then one?

• How to construct a time varying CBF of a system with actuation constraints?

• How to construct Discrete CBFs online from an online time-varying safe set, while ensuring
set invariance between updates?

• How could a time varying CBF be applied in a safety critical MPC?

18



Chapter 4

Theoretical
Content/Methodology

The theoretical basis that will be used in the research is best summarized by A.D. Ames et al.
[4], as it contains an extensive overview of theory and application of CBFs. In this section, the
specific theorems that are presented in the paper that will be used as the basis of this research
proposal will be given. Afterwards, the general Methodology of the research will be discussed.

4.1 Theoretical Content

The below theorems are copied form A.D. Ames et al. [4]. These theorems are the most important
for the research and will be used as the basis of the research. Other theorems that will be used
in the research will not be stated here, as providing the context of these theorems will be outside
of the scope of this thesis proposal. The interested reader is advised to read the paper of A.D.
Ames et al. [4] for the additional theorems, as well as the context wherein they are given. The
context of the theorems provided below is given in Figure 2.1.1.

Theorem 1. Let C ⊂ Rn a set defined as the superlevel set of a continuously differentiable
function h : DRn → R. If h is a control barrier function on D and ∂h

∂x (x) ̸= 0 for all x ∈ ∂C, then
any Lipschitz continuous controller u(x) ∈ Kcbf (x) for the system (3) renders the set C safe.
Additionally, the set C is asymptotically stable in D.

Theorem 2. Let C be a compact set that is the super level set of a continuously differentiable
function h : D → R with the property that ∂h

∂x ̸= 0 for all x ∈ ∂C. If there exists a control law
u = k(x) that renders C safe, i.e., C is forward invariant with respect to (3), then h|C : C → R is
a control barrier function on C.

4.2 Methodology

In this subsection the general methodology of the research will be explained. The research will
first start with gaining intuition of constructing CBFs from safe sets. This will be done by using
some toy example problem, e.g. simple double integrator dynamics, to find the safe set of the
system and generating a CBF from that set.

From there two safe sets will be calculated before and after a failure mode for a toy problem,
and two CBFs will be constructed from these safe sets, to gain insight how the construction of
the CBF might change after the safe set changes. This will then eventually be done for more
instances to investigate the transient behavior of going from the safe set before the fault event,
to the safe set after the fault has occurred.

Then a continuous parameterization of a CBF for a simple toy problem is sought that satisfies
the constraints for each time instant. After such a parametrization is found, a generalization is
sought that will provide constraints for the definition of a time varying CBFs, that guarantees
set invariance of a time varying set, and a more general algorithm is sought that can find these
CBFs for a (class of) time varying safe sets. This step, will try to answer the hypothesis ”There
exist for every time varying safe set that can be made invariant, a continuous time varying CBF
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that paired with a controller u ∈ Kcbf , will ensure that the set is invariant”, and if achieved
will be the main result of the research. This step in the research will most likely take the most
amount of time, and will form the bulk of the research process.

After this step, the generalization may be extended to Exponential CBFs, such that it can
also be applied to systems with a relative degree higher than one. Also this generalization may
be extended to a system with actuation constraints.

If time allows it, the rest of the research will focus on the required properties of Discrete
CBFs, such that it may applied with for instance a MPC controller.

The last phase will be the verification and validation of the theoretical results, if achieved.
The process of this will be described in more detail in chapter 5.



Chapter 5

Set-up

To test the theoretic results, simulations will be performed to check if the CBFs will indeed
provide set invariance for the fault event time varying safe sets. This will be done by using
four example problems that will be simulated in Python and Matlab, because a lot of code and
modules are already written in these two programming languages.

The simulation will be performed in the following way:

• The system is set up with a control law that is theoretically able to keep the system within
the safe set, even after a scripted failure has occurred.

• The system is simulated with the scripted fault event.

• The states of the system are recorded throughout the simulation and compared with the
safe set over time, to check whether or not it stays within the interior of the safe set.

The set-up will not answer the research question directly, but will aim verify the theoretical
results of the research. Below the different example problems that will be used, will be described.

5.1 Double Integrator Dynamics

The double integrator dynamics, will be modeled as a simple linear system, where the input
controls the second derivative of the system.

The system will be of the generic form:

[
ẋ
ẍ

]
= A

[
x
ẋ

]
+

[
0
1

]
u (5.1)

5.2 Dubins Car

Dubins car is a simple non-linear system where the input controls the turn rate control. The
equations of the system are given below:

ẋ = V cos(θ) (5.2)

ẏ = V sin(θ) (5.3)

θ̇ = u (5.4)

5.3 Inverted Pendulum

This is a slightly more complex non-linear system, that involves an inverted pendulum that is
situated on a cart, as can be seen in Figure 5.1.

The system is described in Equation 5.5, with state vector η =
[
x ẋ θ θ̇

]T
.
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η̇ =




ẋ
ẍ

θ̇

θ̈


 =




ẋ

− ml
M+m (θ̈cos(θ)− θ̇2sin(θ)) + F

m+M

θ̇
ml

Ip+ml2
(gsin(θ)− ẍcos(θ))


 (5.5)

Figure 5.1: Cart with inverted pendulum[15]



Chapter 6

Results and Outcomes

The results of the set-up will mostly have a verification purpose for the theoretical results that
may come from the research described in chapter 4. As the research is very theoretical in nature,
it is difficult to exactly define which variables and parameters will be used.

In terms of data management, most of the code that is made available for use in the research
group is distributed via GitHub, which has version control to keep data safe. For text, overleaf
will be used, which stores its data on servers across the globe. For extra redundancy, from time
to time a local backup will be made on a local PC. For other data, e.g. images, personal cloud
services will be used to safely store the data.
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Chapter 7

Project Planning

In this section the planning of the project is discussed. For an overview of the planning, see
Figure 7.1.

In the planning the major milestones of the thesis project are:

• Midterm Review (will be on 5th of June)

• Green Light Review (will be on October 30th)

• Thesis Defence (will be around November 27th)

The milestones do not include the Kick-off, as this milestone has happened already. The
bulk of the work will be from the midterm review to the green light review, where the work
will be divided into two large chunks. These being, the theoretical research (approximately 3
months duration) and the verification (around 1 month in duration). Writing the draft before
the green light review is estimated to be around 1 month of work. After the green light review,
the preparation for the thesis defence will take approximately 1 month.

During this last phase of my studies I will not have any holidays planned, apart from a few
days off here and there.

7.1 Gantt Chart
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Figure 7.1: Gantt Chart of Thesis Project



Chapter 8

Conclusions

In this section the thesis proposal will be concluded. The main goal of the research is to contribute
to the field of Control Barrier Functions, and aid in making dynamical systems more safe to
operate, even when a failure happens to the system. To make a contribution, the thesis aims
to find the required properties of Control Barrier Functions that can be used with time varying
systems.
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Appendix A

Practical Application of the
ftCBF for a Dubin’s Car
Simulation

This appendix chapter will go over some details concerning the practical application of the ftCBF
on a Dubin’s Car system.

A.1 Offline Computation of the ftCBF Constraint

The ftCBF constraint (from Part I (41)) is given below.

min
t∈I(x0)|t0≤t≤t∗

γ cos(θ0 + umin0
(
at

ln(a)
− 1

ln(a)
))

−(V0 + γt)(umin0 · at) sin(θ0 + umin0(
at

ln(a)
− 1

ln(a)
))

+2(V0 + γt) cos(θs + umin0
(
at

ln(a)
− 1

ln(a)
))

+

∫ t

0

(V0 + γζ) cos(θ0 + umin0
(
aζ

ln(a)
− 1

ln(a)
))dζ

≥ −x0

(A.1)

Before computing the value of the left hand side of the above constraint, it is practical to
first calculate the value for t∗ for which ψ̇m ≥ 0, ∀t ≥ t∗ (Part I Definition 10). To find this
value, the equation for θ(t) for u(t) = u∗ could be used (Part I (37)):

θ(t) = θ0 +

∫ t

0

θ̇(ζ)dζ

= θ0 +

∫ t

0

u(ζ)dζ

= θ0 + umin0
(
at

ln(a)
− 1

ln(a)
)

(A.2)

For t = t∗ the angle θ should be θ(t∗) = π
2 :

θ0 + umin0
(
at

∗

ln(a)
− 1

ln(a)
) =

π

2
(A.3)

and rearranging to above equation results in:

t∗ =
ln( ln(a)(π/2−θ0)umin0

+ 1)

ln(a)
(A.4)
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For θ0 = π, a = 0.9 and umin0 = −0.5, this results in t∗ ≈ 3.815, thus the left hand side of
the constraint (A.1) for several θ0 and v0 was found in the interval 0 ≤ t ≤ 3.815. umin0

is kept
constant, because it assumed that the failure will keep diminishing the control effectiveness until
it is effectively zero, starting from the nominal value of umin. If this was not the case, and the
control effectiveness could fail within several time intervals, then for every umin0

a new t∗ should
be computed. However, eventually for a value of umin0 that is too low, the recovery function u∗

will not be defined for the entire region 0 ≤ θ(t) ≤ π. This is because the recovery function is
only defined for

lim
t→∞

θ0 + umin0(
at

ln(a)
− 1

ln(a)
) ≤ π

2

θ0 −
umin0

ln(a)
≤ π

2

(A.5)

and for θ0 = π and a = 0.9, this results in umin0
≤ −0.165. And thus if umin0

≥ −0.165,
t∗ would be infinite for θ0 = π and a = 0.9. A value less but close to -0.165 would also be
impractical, as the recovery time t∗ would be enormous. For this application the failure is
assumed to be complete (i.e. until the control effectiveness is effectively zero), and occurring in
only one time interval, and thus in the simulation umin0

= −0.5 and is not allowed to change
during the simulation.

The exact code that was used for the computation of the left hand side of (A.1) can be seen
in Figure A.1. In this code the minimum is found for 0 ≤ t ≤ t∗.

Figure A.1: The exact code that was used for generating the constraint function values offline,
stored in the variable psim. In this figure V worst slope is the same as the constant γ, used
in the thesis paper. In the offline calculation the most computationally expensive part of the
calculation is the integral

∫ t
0
V (t) cos θ(ζ)dζ.
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A.2 Online Implementation of the ftCBF Constraint

For the online implementation, the constraint that was calculated for several values of θ0, v0
and stored in a variable called psim, was interpolated in real time using the Matlab[16] function
interpn. To interpolate the current value of the constraint, only the current value for θ(t) and
V (t) should be given as an input to the function. The exact code of the real time interpolation
of the ftCBF constraint is given in Figure A.2.

Figure A.2: This is the code of the ftCBF constraint that is used in real time in the simulation.
This code works for the entire domain of 0 ≤ θ(t) ≤ 2π, because when θ > π the upper control
bound is used instead of the lower control bound, but the constraint function remains the same.
For the interpolation of the offline calculated constraint, the Matlab[16] function interpn was
used. The variables XX1,XX2 and XX3 are ndgrid variables, for which the construction can be
seen in Figure A.1.



Appendix B

ftCBF Application: Full State
Drone Model

In this appendix chapter the preparatory steps required for the application of the ftCBF on a
full state drone model will be discussed.

B.1 Equations of Motion

The equations of motion for the full state drone model are adopted from Sun et al. [17]. The
equations of motion uses two coordinate frames, being the inertial frame FI = {OI , xI , yI , zI}
and the body frame FB = {OB , xB , yB , zB}. As is the convention, zB will be pointed downwards
and xB will be pointed forwards. The direction of yB can be derived from the right handed
coordinate system. The equations of motion are given below:

˙⃗
P I = V⃗ I

mv
˙⃗
V I = mv g⃗

I + R⃗F⃗B

˙⃗
R = R⃗Ω⃗B×

I⃗v
˙⃗
ΩB = −Ω⃗B×I⃗vΩ⃗

B + M⃗B

(B.1)

In the above equations of motion, P⃗ is the position vector of the center of mass of the vehicle,
and V⃗ is the velocity vector of the center of mass of the vehicle. I⃗v denotes the inertia matrix
of the vehicle including the motors, and g⃗ is the gravity vector. R⃗ is the transformation matrix
from FB to FI . F⃗ and M⃗ are force and moment vectors respectively. The subscript [·]× denotes
the skew symmetric matrix and is related to the cross product.

Furthermore, the resultant force F⃗B and the resultant moment M⃗B are given below:

F⃗B =




0
0

−κ̄∑4
i=1 ω

2
i


+ F⃗a (B.2)

M⃗B = κ̄



b sinβ −b sinβ −b sinβ b sinβ
b cosβ b cosβ −b cosβ −b cosβ
σ −σ σ −σ







ω2
1

ω2
2

ω2
3

ω2
4




+



Ipq(ω1 − ω2 + ω3 − ω4)
−Ipp(ω1 − ω2 + ω3 − ω4)
Ip(ω̇1 − ω̇2 + ω̇3 − ω̇4)


+




0
0

−γr


+ M⃗a

(B.3)

In the above equation, κ̄ is a trust coefficient valid in the hovering condition, σ is the ratio
between thrust and drag coefficient of the rotor, b and β are geometry parameters (shown in

31
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Figure B.1: A depiction of the drone parameters[17]

Figure B.1) and Ip is the moment of inertia of the rotor around the rotation axis and F⃗a and

M⃗a are the additional aerodynamic resultant force and moment respectively. The variables p, q
and r are the roll, pitch and yaw rates respectively.

B.2 Simulation Model

The model that was used for experimentation was adapted from the model made by Sun et al.
[17] and is publicly available. The model is controlled by a Fault Tolerant Incremental Non-
linear Dynamic Inversion (INDI) controller, that allows for the control of a quadcopter with two
opposing defect rotors.

To be able to use the model for the purposes of applying the ftCBF, a flaw in the system
that caused instability was fixed. This was done by first prioritizing the commanded attitude
before the commanded z was followed, as first the model would simultaneously try to recover
the height of the vehicle and the attitude, which led to instability.

Another problem with the model was that the controller could not make a distinction between
a commanded trust vector that was pointed up, and a commanded trust vector that was pointed
down. This is due to the nature of the fault tolerant controller that only tracks the lateral
components of the desired trust vector if two of the four rotors have failed. This is done because
with two propellers only 2 outputs can be followed. This however results in the fact that the
quadcopter will not be able to make a proper distinction between up and down, which makes it
very difficult to develop a recovery function.

B.3 Recovery Function

For the application of the ftCBF, a recovery function must be found. This function does not have
to be optimal, but must provide a way to increase the distance from the boundary eventually.

If the boundary in this case is assumed to be ψ0 := −z(t) ≥ 0 (direction of zI axis is
downwards), then a valid recovery strategy would be to first recover the attitude of the vehicle
such that the thrust vector is pointed up, and afterwards recover the altitude by setting the
propellers to an equal amount of maximum possible thrust.

On the current model however, such a recovery function is not possible as the attitude is
not fully controllable. This is in one part due to the inability of the current INDI controller
to differentiate up from down, and to another part due to what seems to be instabilities in the
controller or system model.

Once the attitude can be controlled over the whole domain (meaning all possible starting atti-
tudes and rotational rates), a recovery function as mentioned above would be easy to implement,
which allows the ftCBF constraint to be calculated.

B.4 Discussion

The current way of application of the ftCBF on the full state drone model would not be practically
usable, because the full ftCBF constraint cannot be computed accurately due to the curse of
dimensionality.
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Before a practical application of the ftCBF on a full state drone model can be made, first
the curse of dimensionality should be mitigated and secondly the attitude of the vehicle must be
made controllable over its entire domain.
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