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Balancing Long-Term Plasticity Mechanisms at the Purkinje Cell in
the Olivocerebellar System

Thijs Hoedemakers
Supervised by: Luka Peternel (TU Delft) and Mario Negrello (TU Delft & ErasmusMC)

ABSTRACT

The olivocerebellar system plays a crucial role in
control of movements of the human body in terms of
coordination, precision and timing. Long-term plasticity
is directly linked to motor learning and control. In this
research, we developed a phenomenological model of
the olivocerebellar system with balancing of long-term
potentiation (LTP) and long-term depression (LTD)
at the parallel fiber-Purkinje cell (PF-PC) synapse. By
ranging the PF input over frequencies, we found that PCs
can select frequencies in a highly non-linear manner.
There is a sharp contrast in synaptic weight change
between neighbouring frequencies, which is caused
by the temporal spiking property of the inferior olive
(IO) cell. This research found a novel signal processing
capability of the PC.

Index terms - Olivocerebellar System, Long-term
plasticity, Resonance, Homeostasis, Purkinje Cell,
Inferior Olive

I. INTRODUCTION

The control of the human body is inherently complex
when you consider, for a start, the degrees of freedom, the
amount of redundant actuators, and the ability to adapt
to new situations. There is currently no man-made control
structure, which controls the body the way the brain does.
Therefore, studying the neural mechanisms of human
motor control can therefore significantly contribute to the
development of robotic systems.

In the control of the human body, the cerebellum plays
a fundamental role. Cerebellar lesions are characterized by
ataxic motor syndromes, which affect speech [1], ocular
motor control and learning [2], [3], and stability of gait
[4]. In all ataxic motor syndromes there is an ongoing
mismatch between the inputs and the response to these
inputs. The inputs to the system, coming from both the
spinal cord and the cerebrum, suggest that the role of the
cerebellar system cannot be separated from either sensory
or motor functions [5]. The cerebellum plays a role in both
motor learning and motor control [6], however the way
it performs its functions remains unknown. We may take
speculative stance and create a model that captures known
physiological, anatomical and dynamical features of the
cerebellar system. Subsequently, use reverse-engineering to

explain the emergent properties. A link has to be created
between brain mechanisms and psychological functions.
A phenomenological model of the cerebellar system (i.e. a
model that is consistent with known facts of the cerebellar
system, although not derived from first principles) can
provide insights on the processes that drive its function.

We developed a phenomenological model that uses an
unsupervised learning method, to uncover the methods
used by the cerebellar system. Since we do not prescribe
an explicit learning method to the system, the system is
said to adapt, and consequently learn, in an unsupervised
manner. By applying this method, one does not assume a
certain function of the system itself, but the observations
can be used to verify or validate hypotheses. The method
is in contrast to Marr-Albus-Ito type models [7], which
assumes the method of learning. We think there is
more to discover and therefore use an unsupervised,
physiological method that explores the processes that drive
learning. This brings us closer to an understanding of the
underlying mechanisms occurring in the cerebellum, which
an organism on a higher-level uses to attain a certain
function. This method is applied in this thesis to analyze
the function and dynamics of the cerebellar system, with
a primary focus on the long-term plasticity mechanisms.

The activity-dependent adaptation of synaptic weights
(’plasticity’) is thought to be directly linked to learning.
Examples being, simple and complex multi-joint
movements in monkeys [8], adaptation in eye movements
(vestibulo-ocular reflex (VOR) [9]), and classical eye-blink
conditioning [10]. Even though there is plasticity at all the
synapses of the cerebellar cortex [11], the most researched
and associated with cerebellar learning is the plasticity at
the Purkinje cell (PC) [12], [13]. Therefore, the focus in
this research of plasticity is at the PC and balancing of the
two long-term plasticity mechanisms that are thought to
drive learning. Long-term plasticity is defined as a synaptic
weight change that is maintained for prolonged periods of
time (minutes to hours).

The two distinct types of long-term plasticity
mechanisms at the PC, that can adapt the synaptic
weight and therefore enhance learning, are long-term
potentiation (LTP) and long-term depression (LTD). Which
plasticity is at play, partly depends on the type of spiking
of the PC. PCs can produce both simple spikes (SS),
with a frequency around 100 Hz, and complex spikes
(CS), with a frequency around 1 Hz. SS can occur either
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spontaneously or driven by parallel fibers (PF), whereas
CS originate solely from the inferior olive cell (IO). A
single PC receives input from a single IO cell [14], [15]
but its connection, with approximately 1500 release sites,
is extremely powerful [16]. The parallel fiber inputs are,
with ∼200.000 contacts, the most abundant synaptic
connection in the vertebrate central nervous system [17].
Whether the PF-PC synapse depresses or potentiates is
dependent on the presynaptic activity. LTP, in general,
states that when the presynaptic neurons fires often,
the postsynaptic neurons starts increasing the density
of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors in the dendrite. The presynaptic activity
for LTP is solely coming from the PF connection and the
postsynaptic cell is the PC. On the other hand, when the
IO triggers a CS in the PC, the simultaneously active PF
undergo LTD. The PF-PC synaptic strength can move in
both directions. The CF can be regarded as a polarity
switch between LTP and LTD [18].

The IO and the CSs it triggers in the PC are therefore
of major importance in determining the synaptic weights.
Simultaneous electrode recordings of a group of PCs
have shown that CS occur synchronously among the
group [19], [20]. This suggests that there are groups of
IO cells that fire rhythmically. Electronically coupling
via gap junctions of the IO cells is thought to be the
mechanism underlying the synchrony of the CS [21]. These
gap junctions are mainly located at the dendritic spines
and are required to cluster oscillatory behavior of the IO.
While most IO cells are intrinsically oscillatory, i.e. they
show subthreshold oscillations (1-10 Hz with an amplitude
of 1-20 mV), large sustained oscillations only occur in a
network which allows intercellular flow [22], [23]. These
dynamical, oscillatory properties of the IO cell are of major
influence on the response of the system. It can guide or
show certain resonances of the olivocerebellar loop due
to its reverberating nature. The details of the coupling is
included in our model.
The activity from the IO cell can reverberate back onto
the IO cell, due to the connectivity of the olivocerebellar
system. When a spike of an IO cell produces a CS in
the PC there is often a pause in the SS activity following
this event [24]. Consequently, the deep cerebellar nuclei
(DCN) receive less inhibition and produce a short burst of
rebound spikes after a delay of around 100 ms [25]. This
delay is congruent with the supposed interspike interval
of the population of the IO cells. The rebound activity of
the DCN is directly projected onto the IO cell [26], which
closes the olivocerebellar loop and raises the question what
the resonant properties of the system are. These properties
can yield selection of certain PF inputs. This is concluded
by observing the response of the loop to a range of single
frequency inputs. It was found that the loop selects certain
frequencies with the implemented plasticity mechanism,
i.e. potentiation of the PF-PC synapse. There are different
models on synaptic modification, which are evaluated on
their capacity to capture the biological properties of the

plasticity at the PF-PC synapse.

The earliest models of synaptic change are based on
neuronal activity at the different synapses [32], [33].
These models follow the Hebbian rule which states: when
neuron A connects to neuron B and it fires repeatedly and
persistently, some growth process or metabolic change
takes place [34]. Due to this change, both cells change
such that neuron A’s efficiency increases as well as the
firing rate of neuron B increases. This learning rule implies
a growth without bound and does not yield selectivity for
different input patterns, which is experimentally observed
in neurons. Hebbian learning assumes the presence of
backpropagation of postsynaptic spikes, which was later
found to be present in most neurons [29]. A visualization
is presented in Figure 1(b). Cooper, Liberman, Oja (CLO)
theory [30] combines anti-Hebbian learning, which adds a
component that depresses when the postsynaptic neuron
firing rate is below a certain threshold, with Hebbian
learning, as depicted in Figure 1(c). This process confers
selectivity, since neurons only respond to certain inputs
after learning.
However, CLO is unstable since the value for the threshold
θm can either be too large, which results in depression
and all weights weaken to zero, or it can be too small,
which makes every weight rise indefinitely. By making θm

adjustable to the average firing rate of the postsynaptic

Fig. 1. Theories of synaptic modification [27], [28]. (a) cell i is the
postsynaptic cell and receives signal flow (anterograde) translated from the
firing rates of the presynaptic cells di ,d j and dn at the synapses mi ,m j
and mn . The information flow (retrograde, dotted line) is the information
on the firing rate of the postsynaptic cell i . In most neurons back
propagation is ensured by N a+ channels in the axon, soma and dendrite
[29]. (b-d) These three figures show theories of synaptic modification. φ(c)
is the function that determines the amount of integrated response (c) of
the postsynaptic neuron. (b) The Hebbian learning rule. The response
increases monotonically with the integrated postsynaptic response. (c)
The CLO learning rule combines the Hebbian learning rule with an anti-
Hebbian rule to ensure selective responses [30]. When the input evokes
a postsynaptic response which is higher than the threshold value θm ,
the synaptic connection potentiates and when it is lower, it depresses.
The amount of difference with the threshold determines the level of
depression/potentiation. (d) The BCM theory [31], makes θm adjustable to
the average firing rate of the postsynaptic neuron. There are two different
cases presented.
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neuron homeostasis is guaranteed. This is embodied
by the Bienenstock, Cooper, Munro (BCM) theory, as
shown in Figure 1(d). BCM requires bidirectional synaptic
modification, as is the case for long-term plasticity
mechanisms, described above. The synaptic weights move
towards a stable value where they only respond to certain
part of the input pattern, meaning there is stimulus
selectivity [27].

The plasticity at the site of the PC cannot be captured
by the BCM theory due to the many complexities. Both,
the input coming from the CF, and the PF have excitatory
connections to the PC and therefore do not directly depress
the neuron. The PC has to balance both LTP and LTD
which operate at different frequencies, ∼100 and ∼1 Hz
accordingly. The effect of the CF can only lead to LTD
if accompanied by PF activity. Furthermore, it does not
account for the limited receptor density present in the
dendrite of the PC. Modelling plasticity is only one aspect
in the context of cerebellar modelling. The state-of-the-art
on cerebellar modelling can give insight in their methods,
strengths, and weaknesses.

Modelling of the cerebellar system can be done on
different levels and with diverse goals in mind. Our goal
is to find emerging neural mechanisms of the cerebellar
system in the context of learning. We examine three
state-of-the-art approaches that were designed to pursue
different specific research goals, and evaluate their ability
to contribute to our research goal.
Firstly, a physiological state-of-the-art cerebellar model
was created by Geminiani et al [35]. The model is able to
capture experimentally observed phenomena (burst-pause
in PC, pause-burst in DCN) and has the most complete
cellular representation. However, there is no plasticity rule
implemented and it has no functionality in context of
learning.
Secondly, on a functional level, the cerebellar model
of Casellato et al. [36] can learn to perform different
sensorimotor tasks in real-time with on the fly adaptation.
A caveat of this model, is that the role of the IO cell
is reduced to the provider of an instruction signal for
learning. The model therefore learns in a supervised
manner, which provides no explanation of the underlying
mechanism used by the cerebellum. Also, as mentioned
before, the IO comprises of much more complexity. The
role of the IO cell as provider of error signal is debatable,
as it is shown that groups of IO cells show spontaneous
quasiperiodic rhythmic activity [37], [38]. The CSs are not
only driven by inputs or error and are therefore unlikely
to exclusively encode error.
Finally, a method used by infants to get familiar with their
own sensor-motor relationships is called motor babbling.
The state-of-the-art, cerebellum-inspired, unsupervised
learning method is shown in [39]. The method is able to
control the motion of a redundant plant. Nonetheless,
there is little regard for anatomical accuracy. And Hebbian
learning is used, which, as shown before, is unstable.

Resulting from these state-of-the-art models, our model
satisfies the following prerequisites:

• p1 : Functionality in context of learning
• p2 : Unsupervised adaptation
• p3 : Physiological accuracy

In line with the aforementioned modelling approach,
we developed a novel plasticity mechanism, that is able to
overcome the above-mentioned problems of modelling the
plasticity at the level of the PC. The model aims to describe
the empirical relation between the PF-PC plasticity and the
PF input, in context of the cerebellar loop. The biological
observations drive the requirements of the entire model
and the plasticity mechanism. We model the dynamical
properties of the IO in detail due to its considerable
influence on the loop dynamics. The emergent properties
of the olivocerebellar loop are analyzed with different PF
input frequencies.

Our plasticity mechanism can account for the difficulties
that present themselves at the PC. The biological con-
straints that drive the plasticity mechanism can satisfy the
following requirements:

• r1 : Account for the inconsistent firing rate of PCs and
IO cells

• r2 : Final weights, after adaptation, settle on different
values for different PCs

• r3 : Weight change only occurs if there is causal
relation between presynaptic activity and change in
firing frequency

• r4 : The weights do not grow without bounds
• r5 : Ensured homeostasis at the synapse and on a

network level

Once our model and plasticity mechanism obeys the
biological criteria, the weight changes are analyzed for a
range of PF input frequencies. A novel signal processing
capability of the PC was found.

II. METHOD

A. Introduction to the model

The model that is used to reverse-engineer properties
of the cerebellar system consists of three types of cells:
Purkinje cells (PC), deep-cerebellar nuclei (DCN) and
inferior olive cells (IO). The network consists of 10 PCs, 20
DCN, and 20 IO cells. The size of the network represents
a cerebellar module. A cerebellar module is defined here,
as a parasagittally arranged zone of PCs, their projection
to a well-defined region of DCN, and the IO cells of a
distinct region which synapse onto PCs [40]. An other
reason for the network size is that, while it can represent
the dynamical loop properties, it remains computational
tractable.

The DCN and PC neurons are adaptive exponential leaky
integrate-and-fire (aEIF) neurons [41]. The parameters of
the cells are based on neural and physiological data to
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match the firing frequencies observed in experiments [42]–
[44]. The differential equation that is used to describe the
membrane potential is given by

dV

d t
= 1

Cm
( f (V )−w + I ), (1)

in which Cm is the membrane capacitance, f (V ) is a
function that captures the passive properties of the cell and
the spiking mechanism, w is an variable that captures the
adaptation current, and I is the synaptic current. Further
elaboration of the equations and parameter values can be
found in Appendix A.

The model of the IO cell is a two-compartment model
of the soma and the dendrite. It is a modification of the
Schweighofer model [45]. The model is able to produce
spiking and oscillatory behavior. An additional property of
the IO cell model is the possible presence of gap junctions
between the IO cells. As discussed in Sec I, the gap junctions
facilitate the presence of large and sustained subthreshold
oscillations. By having the ability to electronically couple
the IO cells, the effect of this connection can be observed.
The electronic coupling is represented as a current flowing
between the dendrites of the cells. The implementation and
details of the IO model can be found in Appendix A.

B. Prerequisites of the model

As discussed in Sec I, there are three prerequisites that
are taken into account, that follow from the state-of-the-
art approaches of cerebellar modelling. Prerequisite p3
Physiological accuracy is elaborated in Table I, and the
method of validation is presented.

The connectivity between the different cells are presented
in Table II and based on anatomical observations. The
amount and shape of the PF inputs to the cerebellar system
is under control of the user of the model. In this research
the PF input is kept at two with a sinusoidal shape. In Table
II, the static component of the weight is presented, while
during plasticity these weights change over time.

TABLE II
SYNAPTIC CONNECTIVITY BETWEEN THE DIFFERENT NEURONS

Synapse (Source-Target) Connectivity Static Weight

PF - PC 2 - 1 0.5
PC - DCN 1 - 10 1
IO - PC 1 - 1 1
DCN - IO 1 - 10 1

C. Plasticity Mechanism

The two plasticity mechanisms at play, that determine
the change of synaptic strength of PF-PC synapse, are LTP
and LTD. The PC is able to balance these two mechanisms.
Since the mechanisms are purely biologically inspired
and implemented without a prior function or error-driven
functionality, prerequisite p2 Unsupervised adaptation is
met. In this section, both the equations that describe
its behavior, and the assumptions are presented for the

implementation of the plasticity mechanism.

It is assumed that all PCs receive same amount of
input current from postsynaptic activity. Since the model is
evaluated with at its maximum two input, the initial weights
are set equal to 0.5 for all PF-PC synaptic connections. The
weight change is given by

wi , j = ws +∆wi , j , (2)

where ws is static component of the weight, the weight wi , j

and ∆wi , j depict the synaptic strength for input i , at PC j ,
and the change of weight accordingly.

The change of weight is the combination of the contri-
bution of both LTP and LTD, as shown below.

∆wi , j = wLT P +wLT D (3)

Each one of these values is determined independently
during the simulation.

The differential equation of wLT P and wLT D are respec-
tively described by

d wLT P

d t
= −wLT P

τ
(4)

d wLT D

d t
= −wLT D

τ
(5)

in which τ is an variable shared decay term. These dif-
ferential equations describe an exponential decay function
towards zero, with a rate determined by the value of τ.
The variable τ is a shared variable. It is created to capture
the interaction between wLT P and wLT D . Without this term,
both values, wLT P and wLT D , would eventually grow to their
maximal value and the net change of weight would go to
zero over time. There would be no long-lasting plasticity
changes and all weights return to their original static value
ws . Therefore, the variable ensures that requirement r2 is
being met. Below, the equations for this parameter are
described.

1) Decay term τ: The value of the decay term τ is
determined at every time step of the simulation by

τ(τmax ,η,σ) = τmax ·η(w f r ac ,α,σs ,κ) ·σ(k,∆max , wi , j ), (6)

where the shared-decay parameters η and σ are defined by

η(w f r ac ,α,σs ,κ) =−α ·e
−0.5·( (

w f r ac−0.5
σs )2

σs ·
p

2·π ) +κ (7)

σ(k,∆max , wi , j ) = 1− 1

1+e−k·(wLT P+|wLT D |−∆max ·wi , j )
. (8)

In turn, w f r ac is described by

w f r ac =
wLT P

wLT P +|wLT D | . (9)

In Appendix B all the different parameters of the decay
term are presented. Each term captures an underlying
biological observation, and is mathematically represented.
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TABLE I
PHYSIOLOGICAL ACCURACY p3 : SUB-PREREQUISITES

Prerequisites Elaboration Validation

Modulation The present synaptic connections in the model need to modulate
the postsynaptic activity. An example: PCs have an inhibitory
connection to DCN. When PCs have a sudden increase in firing
rate, one would expect to see an effect in the DCN (i.e. a decrease
in firing rate)

Look at the raster plot of the network.
Raster plots are used to study the neural
responses by marking the events of spikes.
It can also be used to see whether there is
modulation at every synaptic connection.

Connectivity The network has to be connected in a way that is congruent with
anatomical observations.

The synaptic connections are based on
anatomical observations, as found in lit-
erature. The connections are initially ran-
domized where needed (e.g. 1 PC con-
nects to 10 DCN), which are then set con-
stant to compare different simulations.

Biological Plausibility There are numerous assumptions made in modelling. The objec-
tive is to maintain the most important properties of the model
and simplify where possible, while maintaining physiological and
biological plausibility.

Bound certain cell properties to be within
a viable range and evaluate firing frequen-
cies.

2) Synaptic weight change ∆wLT P and ∆wLT D : It is as-
sumed that LTP and LTD are directly linked to PC and IO
cell spikes, respectively. The weight change that a spike
brings about is evaluated using

∆wk = wmax,k · Id ,k · fd ,k ·ρd ,k , (10)

in which the subscript k is either LT P or LT D , wmax is
the maximal weight change, Id is the input dependency,
fd is the frequency dependency, and ρd is the density
dependency. The different dependencies of the synaptic
weight changes are defined by

wmax,k = ws ·∆max

tl ear n · fk
(11)

Id ,k = It spi ke

Imax
, (12)

fd ,k =
{

1
1+e−k·( fst −α fl t ) , if fst ≥ fl t

0, otherwise,

ρd ,LT P = 1− 1

1+e−k·(wLT P−α·ws ·∆max )
, (13)

ρd ,LT D = 1

1+e−k·(wLT D−α·ws ·∆max )
. (14)

All different terms of the equations are discussed in more
detail in Appendix C.

III. RESULTS

The results consist of neuronal spiking behavior of the
different cell types. By observing the population activity
one can conclude whether the prior prerequisites are met
and see emergent properties of the circuit. The synaptic
weight change at PF-PC is analyzed as a function of PF
input frequency. Subsequently, a dissection of the plasticity
mechanism of two contrasting results is presented, which
gives insight causation of the differences.

A. Neuronal Behavior

Figure 2 A shows a schematic representation of the
model used in the experiments. It shows the different layers
of cell types and visualizes the connectivity. The model
consists of 10 PCs, 20 DCN and 20 IO cells. The size is
chosen to represent a cerebellar module while remaining
computationally tractable.
In Figure 2 B one can observe the raster plot of the network,
which results from a sinusoidal PF input with an amplitude
of 0.2 nA and a frequency of 10 Hz. Raster plots visualize the
spike times of the different cells in the work. The following
observations are made, based on the raster plot:

• Modulation at every level. IO spike causes pause in SS
activity and consequently an increase in DCN activity,
see yellow stripe.

• The input entrains the PC activity.
• DCN have an increase in firing rate if the PC pauses.
• The firing rate of the DCN shows peak activity with a

rhythmicity around the same frequency as the input,
as depicted by the red stripe.

• The population frequency of the IO shows a high level
of synchrony, see green stripe.

• As for the DCN, the IO population activity shows
consistent peaks around 10 Hz.

In Figure 2 C all the weight changes for all PCs are
shown over a period of 14 seconds. The input that results
in this weight changes is a sinusoidal wave form with
a frequency of 15 Hz and an amplitude of 0.2 nA. The
plasticity mechanism starts operating at six seconds, since
the delta weight starts changing at that time. It can be seen
that the weights follow different trajectories and settle on
different values, as r2 demanded. It can also be seen that
the weights do not grow without bounds and it can be
concluded that PCs are able to balance the two plasticity
mechanisms.
Figure 2 D shows the final weights after the simulation
of 20 seconds, of which the last 14 seconds the plasticity
mechanism at PF-PC synapse is active. The first six seconds
are not evaluated since cells showed transient behavior.
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Fig. 2. Overview of results of modelling. A : Schematic representation of the olivocerebellar system. The inputs from the parallel fiber (PF) are generated
by the user. PCs are connected, with a 1:10 ratio, to deep cerebellar nuclei (DCN), which are connected with a 1:10 ratio to inferior olive (IO) cells. 10
randomly selected IO cells are connected with 1:1 ratio to PCs via climbing fibers (CF). B : Raster plot together with input. The input from PF is here
set to 10 Hz with an amplitude of 0.2 nA. The spike times of PCs, DCN, and IO cells are visualized in the raster plot. The time scale of the x-axis is
chosen, to capture certain properties of the circuit. The modulation from the input to the PC is clearly visible, i.e. the input entrains the firing time of
the PC. C : Weight change of all PC-PF weights. The change of weights over time is represented here with the new plasticity rule. The plasticity occurs
for a time frame of fourteen seconds. D : Overview of all normalized weight changes. The mean with an error bar of a single standard deviation is
presented for frequencies from one to 20 Hz. PCs select certain frequency input by alteration of weight change and it may be said that it can filter
these inputs over time.

As mentioned in Sec II, the IO cells can be coupled via
gap junctions and the synaptic weight change is evaluated
with and without this property. The property does not show
distinct differences in weight changes and is therefore, in
this research, not further evaluated. Interestingly, this figure
shows an emerging signal processing property of the PC.
The PC shows a preference for certain PF input frequencies,
as can be concluded from the observation that certain input
frequencies result in LTD and others in LTP. In accordance
with this observation, it is worth noting that the distinction
between frequencies mainly occurs at the higher end of

the frequency spectrum. Neighbouring frequencies show
a sharp contrast in weight change. This feature is most
distinct between 15 and 16 Hz. Since the simulations are
recorded and all data can be analyzed, one can answer the
question why this is the case.

B. Comparing weight change 15 and 16 Hz with coupled IO
cells

The contrast between the final weight of 15 and 16
Hz is quite significant. The dissection of the plasticity
mechanism is shown in Figure 3. The PF input of 15 Hz
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15 Hz - LTD 16 Hz - LTP

Fig. 3. Dissection of the plasticity mechanism. A : The comparison between 15 and 16 Hz PF input frequency is presented and their corresponding
weight changes. B : Separation of all dependencies for ∆wLT P and ∆wLT D for a single second time frame. The input dependence for wLT D is smaller
for 16 Hz as for 15 Hz. Other values are similar. C : Averages over the entire simulation of the different dependencies with a single standard deviation.
For potentiation the dependencies are similar. The mean for the input dependence of depression differ in their mean value (σ15H z = 0.272, σ16H z =
0.131) and are therefore the major reason for potentiation. D : PF input kernel before CS. At the time of the CS, the input for 16 Hz is smaller than
for 15 Hz. The amplitude of the sinusoidal shape kernel is larger for 16 Hz. And there is a phase shift between the two signals.

leads to LTD while 16 Hz leads to LTP. By taking a look at
the dependencies of the plasticity mechanism for 15 and
16 Hz, the causation for this contrast can be found. As
described in Section II-C, the amount of weight change
has three dependencies which are evaluated at the time of
the spike. The PF input is shown in the top plot in Figure
3 A. The time window is set to a single second since it

makes the effect of the spikes the clearest. IO cells that
synapse onto PCs and therefore contribute to wLT D are
presented in the plot below. Since there are ten PCs, there
are also ten IO cells shown in the raster, even though the
network consists of 20 IO cells. PC spike times, and the
corresponding ∆wLT P are presented for both frequencies.
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The amount of wLT P is on average similar for 15
and 16 Hz, but there is a higher variance for 15 Hz. The
average of wLT D is smaller for 16 Hz compared to 15 Hz,
even tough there are some IO cells that do not depress at
all. Therefore, it can be suggested the reason why 16 Hz
causes LTP while 15 Hz causes LTD, has to be sought in
the difference of wLT D .
In Figure 3 B, all the dependencies are presented for
both wLT P and wLT D . By simply looking at the different
dependencies for the input and comparing the different
frequencies, one can observe that wLT P is similar, while
wLT D is larger for 15 Hz as compared to wLT D of 16
Hz. The frequency dependency shows no clear difference
between the two frequencies. The last dependency shows
the density dependency, which is equal to one in both
cases. This is expected since it represents the proximity of
the wLT P and wLT D to its maximal value, and the time
window is taken in the beginning of the simulation, so
both values are nowhere near their maximum.
The mean of the dependencies over the entire simulation
are visualized in Figure 3 C. In the left plot of wLT P , it
can be seen that the dependencies for wLT P show no
significant differences. The dependencies on the figure
on the right confirm the previous observation that the
input dependency of wLT D is lower for 16 Hz than for 15 Hz.

Thus, the input at the time of the IO spike is lower
for 15 Hz than for 16 Hz which, respectively leads to a
depression and potentiation of PF-PC synapse. In Figure 3
D, the kernel of PF input at the time of the CS is presented.
The kernel is obtained by averaging the PF input, before
the IO produces a CS, over all PCs and all related CSs.
Congruent with previous observations, the kernel of 16 Hz
shows a lower current at the time of CS, compared to the
kernel of 15 Hz. Both kernels show a sinusoidal shape with
its minima close to the CS. While the minima are close
together, there is still a phase shift visible. The amplitude
of the 16 Hz kernel is significantly larger than the 15 Hz
kernel.

IV. DISCUSSION

A. Prerequisites of the Model

There are three prerequisites of the model presented
in Sec I. Physiological accuracy p3 was divided into three
sub-prerequisites, as given by Table I. Whether the model
meets the prerequisites can be concluded from the results.

Prerequisite p1 states that our model should show
functionality in the context of learning. Our model shows
a novel signal processing property of the PC, which can be
placed in the context of learning.
Prerequisite p2 is met because the plasticity mechanism is
based on physiological properties of the loop, which causes
the synaptic weight change to adapt in an unsupervised
manner.

The first of the three sub-prerequisites of p3 states that
there should be modulation at every synaptic connection.

In the yellow transparent stroke of Figure 2 B, one can
observe that there is modulation at every level. In other
words: the PCs modulate the DCN activity, the DCN affect
the IO cells, and the IO cells cause a CS in the PC. This is
tuned by altering the amount of postsynaptic current based
on the event of a presynaptic spike. Setting the postsynaptic
current too high resulted in a complete silencing of the
postsynaptic cell (in the case of an inhibitory connection),
while setting the value too low resulted in no alteration of
the postsynaptic membrane potential.
The second sub-prerequisite of p3 states that the connectiv-
ity should be in line with anatomical observations. This is
done by creating random connectivity with the proper ratio
of synaptic connections. This randomization of connectivity
was done once, and the resulting connectivity was used
for further simulations, since it enables the possibility to
preform analysis across different frequency inputs and to
compare the results. The connectivity of the loop is the
same across the different simulations.
The final sub-prerequisite of p3 states that our model has to
be biologically plausible. The arbitrary choice was made to
evaluate the firing rates of the different cells. The firing rates
of the different cells are within a plausible range: PC ∼ 100
Hz, DCN ∼ 30 Hz [46], and IO cell ∼ 1 Hz. While there are
always improvements to be made in terms of modelling,
we felt confident to take a leap of faith and analyse the
emergent properties, drawn from reverse-engineering.

B. Requirements of the Plasticity Mechanism

The requirements of the long-term plasticity mechanism,
mentioned in Sec I, are discussed. The first requirement r1
states that it should be able to account for different firing
frequencies of PC and IO, since PC spikes are assumed
to be linked to LTP and spikes of the IO cell to LTD.
While these firing frequencies differ significantly, ∼ 100
and ∼ 1 Hz for PC and IO respectively, it is accounted
for by including a moving average of the two types of
cells in question and making the maximum amount of
weight change that a spike brings about dependent on that
firing frequency. The relative weight change is therefore
dependent on the firing rate of the cells and the long-term
plasticity can account for those changes.
The second requirement r2 declares that the weights of
the different cells should not settle at the same level. If
this would be the case, then there would be no selectivity
of inputs by the PC. In Figure 2 C, it can be seen that,
during the adaptation of the weights, the weights do not
settle at the same level. The requirement is met due to
the decay-term τ. Without this term, both wLT P and wLT D

would reach their maximal value and a resulting net weight
change of zero.

The third requirement r3 states that the weight change
should only occur if the change in firing rate is causally
linked to presynaptic activity. Since PCs also spike sponta-
neously and are therefore not necessarily related to presy-
naptic activity. The most direct term that ensures this
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property is the frequency dependency of the plasticity
mechanism, as described in Section II-C. By comparing the
short- and long-term frequency of the postsynaptic cell,
one can quantify the extend to which the spike is linked
to presynaptic activity.
The fourth requirement r4 states that the weight should not
grow without bounds. Both wLT P and wLT D are bounded
by a maximal value. This is done by evaluating the current
value at the time of the spike and comparing it to the
maximal value via a sigmoidal function. In other words, the
contribution of the weight change at the time of the spike,
is dependent on the distance to its maximal value. If the
current value is close to its minimum, the value does not
hinder the weight change. When it is close to its maximum,
the weight change is brought to a stop. The shape of this
function that evaluates this parameter is sigmoidal. The
sigmoidal shape is chosen since it is commonly used to
describe other biological phenomena, such as mechanical
muscle properties [47], and activation functions of neurons
[48].
The final requirement r5 has common ground with the
previous one. Homeostasis should be ensured, i.e. stability
during the ongoing process, at the synaptic level and for the
entire network. In the case that there is no input, homeosta-
sis in obviously present due to the input dependency. When
there is no input, the dependency will be zero and there will
be no weight changes. When the weight changes over time,
it is bounded by the previously mentioned condition. When
there is no plasticity at play during the simulation, the level
of decay towards the original, static value is dependent on
the original value of τmax , as described in Table III.

C. Discussion of Emergent Properties

The aforementioned requirements and prerequisites
are arbitrary and in complete control of the user of the
model. Not all aspects of the olivocerebellar system can
be modelled with the same physiological accuracy. The
model does not have any inhibitory interneurons which
are present on the molecular layer. These types of neurons
modulate the response of the granule cell to produce
better activity patterns [49]. While these cells shape the PF
input, it does not alter the dynamics of the olivocerebellar
loop. So within the prerequisites of the model in this
research, the analysis has merit and can be possibly linked
to physiological observations and high-level functioning.

In Figure 2 D, it can be seen that most PF-PC synapse
undergo LTD. While it was long thought that LTD plays a
predominant role in motor learning, it was recently shown
that it is not essential [50]. Together with the finding that
LTP prominently contributes to cerebellar motor learning
[51], it may be suggested, that the presented finding
suggest a selection of frequency input required for motor
learning at the PC synapse.
Since the presented data of plasticity dependencies is
for a single network with a single randomization of cell
parameters, there is merit in running the simulation with

new cell randomization and observe the synaptic weight
changes. The synaptic weight change can then be linked
to certain cellular properties, such as leak conductance or
the adaptation time constant. Furthermore, the observed
selection of frequencies can be validated in a statistical
manner by running the simulation multiple times and
adding noise (e.g. white Gaussian) to the sinusoidal PF
input.

It can observed in Figure 3 C, that between 15 and 16
Hz, the driving difference of LTP and LTD comes from the
input dependency of wLT D . This suggests that potentiation
of the synapse does not come from PF stimulation but is
governed by the temporal spiking property of the IO cell.

The next steps in gaining a better understanding of the
functioning of the cerebellar system would be to place the
model in context of motor commands and actual feedback
coming from a dynamical system. Such a dynamical system
could be a robotic arm, that learns by means of motor
babbling, which is a strategy infants use by moving their
limbs without a specific goal. The only ’goal’ is get familiar
with their own dynamics and kinematics. The cellular
behavior can then be observed with more ’realistic’ input
to the system.

V. CONCLUSIONS

This thesis proposed an olivocerebellar model with a
focus on the balancing of long-term plasticity at the level
of the PC. The prior requirements, based on biological
constraints, were met for both the phenomenological
model, as for the plasticity mechanism.
It was shown that the PC is able to balance the two forms
of plasticity in context of sinusoidal PF input. The analysis
of ranging the frequency input showed that, while most
low frequency input led to depression of the weights, there
is a highly non-linear weight change for high frequency
inputs. The PC can distinguish different frequencies and
may select certain aspect of the PF input signal which is
relevant for motor learning.
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APPENDIX

A. Appendix A: Code description

A github repository is made to track the process of
modelling of the olivocerebellar system. The modelling
is done with use of Brian2 in Jupyter notebooks and
stand-alone Python-files. From here, one can pull the
repository and reproduce the results presented in this
paper. The github repository is the following:
https://github.com/ThijsHoedemakers/CerebellarLoop.git

Here a brief overview of the different files are presented
that acts as a guide through the simulation process.

A Functions: Set up functions that are used throughout
the rest of the code. The different functions are:

1) Visualise : visualise the connection between the dif-
ferent cell types.

2) rand params : randomize the cell parameters.
3) NoiseGenerator : Create the PF input.

B StartUp: The different cell parameters are either
randomized when no run is done before, or the parameters
from a prior simulation are used. The parameters will later
be used for the construction of aEIF neurons (PCs and
DCN) and the two-compartment model for the IO cells.

C Equations: The prior generated input signal of the
NoiseGenerator-function is loaded in and simulated as a
neuron group. This group will later be used to connect
to a dummy neuron, which is connected to the PCs.
The dummy neurons pass the input from the PF with a
multiplication factor. This multiplication factor changes
due to the implemented plasticity mechanism.
The differential equations of PCs and DCN are given based
on [41]. Also, the adaptation of the Schweighofer [45] is
presented here.
The equations that drive PF-PC synaptic weight change are
given here. The difference between coupled and uncoupled
is already made since it makes it easier to use later on. It
consists of the dependencies, as described in Section II.

D NeuronGroups: From this file onward, a distinction
has to be made between ’Plasticity’ and ’NoPlasticity’, since
both simulation will be ran parallel. The file creates the cell
groups for the coupled and uncoupled scenario and takes
the randomized cell parameters to do that.
The cellular activity is monitored. There are different types
of monitors of cell activity:

1) StateMonitor : tracks time evolution of cellular vari-
ables

2) PopulationRateMonitor : tracks firing rate of a popu-
lation of cells

3) SpikeMonitor : tracks spikes of cells

All the required data is monitored during the simulation
and later used for analysis.

E New Plasticity: The plasticity mechanisms use the
long- and short-term averages of the firing rates to
determine the effect a spike brings about. For the firing
rate of the IO cells the interspike-interval (ISI) is taken
and averaged, while for the PCs the moving average over a
time window is taken. This has to do with the occurrence
of the spikes. The pause in PC caused by the CS would
not significantly influence the firing rate if one would look
at the ISI, since it would only have a single value and its
effect would be minimal. Therefore it would not accurately
depict the firing rate of the PC.

E Synapses: The synapses between the different cell
types are created here. A distinction is made between the
fixed and randomized connectivity, since the simulation is
only comparable if the connectivity remains constant. The
connectivity for five and two PF inputs is already given.
The static weight of (2) is set to 0.5 for all synaptic
connections. LTD and LTP are represented in the equations
of the synaptic connections in event of a spike of the pre-
or postsynaptic neuron.

F save data: All recorded data is stored in a hfd5 struc-
ture, which uses groups and data-sets in a hierarchical
structure. The data has the following structure:

• 1Hz
• 2Hz

– Initial

∗ Voltage Cells
∗ Spikes

· PC coupled/uncoupled
· DCN coupled/uncoupled
· IO cells coupled/uncoupled

∗ Population rate
∗ Input
∗ Parameters Values

– Plasticity
– Adapted
...

• 20Hz

The data for the spikes of a 2Hz PF input, initial run,is
now expanded. The same can be done for all frequencies,
types of run, and recorded variables.

G plot: Visualize the different cell responses, extracted
from the aforementioned monitors.
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RunAll: To run multiple simulations consecutively, this
file is created. It can be called from the command window
with the following command:

for /l %i in (1,1,20) do for %k in (0,1,2)
do python RunAll.py 1 %i %k

in which i is the input frequency, and k represents the
type of simulation (initial, plasticity, and adapted). With
a simple adaptation to this command, one can put in
a mixture of frequencies, which might be interesting for
future research.

RunMe files: These files can be used to run a single
simulation with or without plasticity. The advantage of
using RunAll.py is that it can run multiple simulations
after each other. When you only want a single run, the
specified RunMe can be used.

Data Analysis pt2: The figures generated in this paper
come from this Jupyter-notebook. For the first five seconds
of the simulation no input is given to the system and is
therefore removed from the data-set. The data that is used
in the .hfd5-format exceeds the maximum size allowed on
Github. If one would want to reproduce the results and
figures, contact the author.

B. Appendix B: decay term

All parameters that make up the shared decay term τ are
presented and discussed in Table III.

C. Appendix C : delta w

All the terms that make up the weight change are pre-
sented in the Table IV.
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TABLE III
SHARED DECAY-TERM τ

Parameter Description Unit Value

τmax The maximal value of the decay. The larger this value, the smaller the decay
at every time step. It is also an indicator of how long the changes in weight
maintain at their newly reached value.

[s] 800

η(w f r ac ,α,σ,κ) (Eq.(7)) Evaluates the value of w f r ac at an inverse Gaussian with its center at 0.5
and its minimal value close to zero. It represents the level of competing
between the two plasticity mechanisms. When both wLT P and wLT D are
contributing to the total weight change, the shared decay term τ becomes
smaller, which in turn makes the system remains receptive to the changes
in both weights and the homeostasis between them.

[-] ∼0 - 1

w f r ac (Eq.(9)) It evaluates the level of contribution of wLT P to the total amount of weight
change.

[-] ∼0 - 1

α Constant that adjusts the size of the inverse Gaussian to range from zero to
one.

[-] 0.0376

σs Standard deviation of the Gaussian function. The value determines the width
of the Gaussian distribution. The higher this value, the less the level of
competence has to be close to the center 0.5.

[-] 0.015

κ Constant that is used to move the inverse Gaussian vertically. This minimal
value of the inverse Gaussian should be close to zero. However, it should
not be exactly zero, since that would result in τ being zero, and a division
by zero for the differential equation.

[-] 1.01

σ (Eq.(8)) Sigmoidal function that evaluates the total amount of weight change, i.e.
the sum of wLT P and wLT D . The synaptic weight can change freely when
the weight remains close to its original value. Once the weight reaches a
value near its maximum, the value of σ descends, together with the decay.
This way the dynamic relation between LTP and LTD is simulated.

[-] ∼0 - 1

k Steepness of the sigmoidal function. [-] 100

∆max Maximum amount of weight change in decimals. [-] 0.1 - 0.4

wi , j Current value of the weight [-] 0-1
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TABLE IV
∆W

Parameter Description Unit Value

∆wLT P,LT D The weight change of wLT P and wLT D . This value is added in the discrete event
of a spike. The PC spike is responsible for the evaluation of ∆wLT P and the IO cell
spike,that synapses onto the corresponding PC for ∆wLT D .

[-] «1

wmax,k The maximal amount of synaptic change a weight can undergo in the event of a
spike. It is dependent on the firing frequency and can therefore account for the
inconsistent firing rate (r1).

[-] «1

ws The static component of the weight. The value is dependent on the amount of
inputs and the amount of current coming from the inputs.

[-] 0.5

∆max Maximum amount of weight change. [-] 0.1 - 0.4

tlear n A time scale constant which indicates at the time in which the maximum amount
of potentiation or depression can be reached. A high value indicates that it takes
a long time before the weights reach their maximum. This could be functionally
linked to a learning a difficult task. For the sake of simulation it is set relatively low,
to ’speed up’ the results.

[s] 5

fk Firing frequency of the cell: PC for LTP, IO for LTD. [Hz] 1-10 - IO,
60-140 - PC

Id ,k The dependency of the input current at the moment of the spike. It shows the
correlation between the input current and the produced spike

[-] 0 - 1

It spi ke The input current at the time of the spike. [nA] 0 - 0.4

Imax The maximal value of the input current. This value is the result of tuning until the
prior prerequisites are met (see Table I).

[nA] 0.4

fd ,k The frequency dependence compares the long-term firing rate and the short-term
firing rate of the cell. The parameter fd ,k is only larger than zero if the short-term
firing rate is larger than the long-term firing rate. When this condition holds, the
value increases in a graded manner, i.e. the larger the difference, the larger the
value. The parameter captures the extend of influence the input has on the firing
rate of the cell and the ascribed change in synaptic weight, as was prescribed by
r3. Since both the parallel fiber and climbing fiber have an excitatory connections,
the frequency dependence is solely based on the firing rate of the PC.

[-] 0-1

k Steepness of sigmoidal function [-] 0.3

fst Short-term firing rate of the cell. The value for the PC is based on the amount of
spikes over a 150 ms interval, divided by 150 ms.

[Hz] 60-140 PC

fl t Long-term firing rate of the cell. The value is derived in the same manner as the
short-term firing rate, only the time window is now 5 s.

[Hz] 60-140 PC

α Constant to move the center of the sigmoidal function. [-] 1.1

ρd ,k Sigmoidal function that evaluates the current contribution of potentiation and
depression. It represents the bounded amount of physiological properties that
enable the potentiation and depression. If the potentiation or depression is close
to its maximal value, the ρ parameter will approach zero, which means that
without this parameter, wLT P and wLT D could grow without bounds, which is
not biologically plausible. It ensures that requirement r4 is met. The shape of the
sigmoidal function differs due to the sign of wLT D .

[-] 0 - 1

k Steepness of the sigmoidal function [-] 200

wi Current value of the wLT P or wLT D [-] 0.4-0.6

α Constant to move the center of the sigmoidal function. [-] 0.833

ws The static component of the weight. The value is dependent on the amount of
inputs and the amount of current coming from the inputs.

[-] 0.5

∆max Maximum amount of weight change [-] 0.1 - 0.4
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