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Abstract

General anesthesia (GA) is an important medical procedure that induces unconsciousness to
patients during surgery. Consciousness is a salient feature of the brain, whose neurophysiolog-
ical features are difficult to be distinguished from unconsciousness. Though it can be defined
as an event arising due to interactions in the nervous system, it entirely is not a reliable mech-
anism. Thus, tracking changes in the brain waves caused by GA is a challenging problem
in neuroscience. The exact mechanism to quantify the state of the brain and to distinguish
between conscious and unconscious brain is still difficult. Specific features to characterize the
state of the brain from the patterns of the brain signal is challenging. Present-day depth of
anesthesia monitors index values does not quantify the state of the brain.

An alternative approach is to use dynamical systems theory to assess the underlying dynamics
of the brain with imaging technology (e.g., electroencephalographic and electrocorticographic
data). Previous results from the literature suggest that stability can play a role in the charac-
terization of unconsciousness. This thesis proposes a detailed study that focus on dynamical
systems properties that go beyond stability. In particular, the proposed methodology aims to
assess which regions of the brain intervene in the process of consciousness and unconscious-
ness, as well as quantify how often they interact with each other. Specifically, the approach
seeks to leverage the eigenstructure of the underlying approximation of the neural activity
captured from intracranial electrocorticographic data.

Our results show that it is possible to differentiate between anesthetic stages of the brain using
eigendecomposition. This was possible through a framework that provides a regularised way
to sparsify the state estimates of electrocorticographic (ECoG) signal to get a model for
analysis of changes in the brain waves affected by GA. Later to look at the eigenvalues and
eigenvectors, which gives the frequency of oscillation and direction between different regions
of the brain, respectively. It was also observed that the pattern in the evolution of eigenvalues
during different anesthetic stages could be able to interpret if the subject was under anesthesia
or not.
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Chapter 1

Introduction

General Anesthesia (GA) is the state of drug induced sleep-like coma and the most important
procedure in a surgical process which puts the patient into an unconscious state [7]. In order to
ensure that adequate GA is induced without any overdose, patients are continuously examined
for their physiological parameters, heart and oxygen rates [8]. Potential clinical limitations
in conventional methods have led to the need for development and exploration of techniques
in monitoring anesthesia.

Unconsciousness is identified generally by response such as movement of eyes or response to
any stimulation [9]. It is to be noted that clinical unresponsiveness is different from that
of unconsciousness, where the former may be caused due to any medical condition and not
necessarily through the induction of anesthesia [10]. When GA is underdosed then there are
chances that patient recovers from unconsciousness during the surgical procedure or before
he is expected to be conscious. On the other hand, overdosage may cause any complications
like seizures or even be fatal [11]. Most of these causes of mortality is due to improper
drug administration or heart related events [12]. Therefore, anesthetic drug administration is
important to keep the patient or subject under GA to be in same state of condition throughout
the surgical procedure to ensure that subject is free from any post operative trauma.

1-1 Motivation

For many decades, anesthesiologists relied on the effects of anesthesia on patients to monitor
their state of consciousness [3]. For example, they assess heart rate, blood pressure to admin-
ister drug dosage. These effects or responses may be related to anesthetic drug. But there
is no direct effect that is reflected on the brain [13]. There needs to be a balance between
the level of anesthetic drug induced and the state of consciousness of the patient [14]. The
state-of-the-art anesthetic dosage level monitors, known as depth of anesthesia (DoA) moni-
tors (see Section 2-2), outputs index values by monitoring the brain waves. These scores can
be misleading in many cases and thus a robust technique is required to monitor the changes
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in the anesthetic stages of the patient. Therefore, anesthesiologists and neuroscientists moved
their focus towards deeper behaviour of the brain signals.

Recent research suggests that it is possible to control the anesthesia delivery by robust tech-
niques of control theory [15]. But before, we require modelling of anesthesia monitoring
techniques, analysis of brain signals effected by induction of anesthesia. Considering and
analysing numerous factors such as multi-variable characteristics, like variation of anesthetic
effect among patients, different anesthetic agents and their effects in brain dynamics has, is
a challenging problem.

To understand how the brain works, there exists a spatial and temporal neural activity [16].
Spatial resolution may give the information of when a region of the brain was active and
temporal resolution gives the information of when the activation took place. The neural
activity is captured by techniques like electrocorticography (ECoG) and electroencephalograph
(EEG) using electrodes that measure the difference in potential between two points. The
output signals correspond to different frequencies which correspond to different regions of the
brain [17]. The ECoG signal activity can be analyzed from the systems point-of-view, which
will reveal the spectral characteristics of the dynamics of the brain. In general, we can say
that control theory reveals the changes in the input and output associated with the dynamics
of the brain. Thus, analysis through system theoretic approach helps to describe the activity
of the brain under anesthetic conditions.

Challenge 1: To develop a model that gives a trade-off between both spatial and temporal
aspects of the brain dynamics.

This thesis work aims at improving the monitoring of anesthesia through a systems approach
by distinguishing different stages of anesthesia from the captured brain waves by ECoG.
Specifically, the benefits of doing such improvement is that the patient can be avoided from
any inter-operative awareness that can cause serious trauma. This improves the monitoring
part of the anesthesiologists during the surgical procedure. Since there is no proper definition
as how to distinguish the conscious and unconscious states of the brain, a deeper study on
the behaviour of the brain under general anesthesia might help. Thus, this work focuses to
develop an approach that gives confidence among the anesthesiologists for reliable clinical
usage in the future. Furthermore, this research also aims to pinpoint different regions of the
brain (spatiotemporal analysis) which are affected during those states.

Challenge 2: Distinguish between the different anesthetic stages of the brain at a given
time using novel control theoretic approaches.

1-2 Research Questions

Properties of a biological or a natural system, which has been realised through ECoG signals
can be fitted to a stochastic time series model. Auto regressive (AR) model is such a technique
that has been recently used in fields of science and research. AR models have been effectively
used to define the oscillations in the system and also to make predictions in a complex system
[18]. In [5], the authors have performed linear stability analysis by independently fitting the
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1-3 Research contributions 3

time series of short windows to an AR model. After which the stability criteria was given by
the drift of eigenvalues, which are obtained from state matrices that were sparsified using a
threshold criteria (see Figure 1-1 red shaded region).

Challenge 3: To regularise the sparsity in the locally linearized model that captures the
dynamics of the brain without overfitting.

The behavioural signatures from EEG by P. Purdon, E. Pierce et al. [19], differentiated the
loss of consciousness (LOC) and recovery of consciousness (ROC) by analysing a particular
frequency of brain waves.

This thesis work aims to propose a model for capturing the brain dynamics in a way that
can give signatures through eigendecomposition of the local linearization of the ECoG data
collected from monkeys induced with different anesthetic drugs.

Research question: To find a method to understand the change between the stages of
anesthesia, while informing the spatiotemporal behavior using the eigendecomposition that
helps to assess the regions of the brain that intervene in the process of consciousness and
unconsciousness.

The green shaded region in Figure 1-1 gives an objective to the following research tasks (RT):

RT1 : Can a regularised way to sparsify the state matrices of ECoG signals improve the
analysis of changes in the brain waves effected by general anesthesia?

RT2 : Does the proposed method address the trade-off between the sparsity of matrices
that allows obtaining similar sparsities to put forward a model which results in better
analysis of what is going on.

RT3 : While aiming to get the preferred model such that changes between the stages of
anesthesia is understood, can the problem of overfitting be avoided?

RT4 : Does considering the magnitude and angle of eigenvalues along with the eigenvec-
tors, contribute in distinguishing signatures for different stages of anesthesia?

RT5 : Does the proposed method performs well in its objective to capture the dynamics
of the brain than the existing method in literature?

1-3 Research contributions

The method of estimating the state matrix by local approximation of linear dynamics of
the data and tuning the level of sparsity by using least absolute shrinkage and selection
operator (LASSO), to the best of the writer’s knowledge has not been formulated before in
the literature. This work aims to pinpoint the regions of the brain active during the different
stages of anesthesia, which will help the anesthesiologists to see if the subject has entered the
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4 Introduction

Figure 1-1: Flow chart of an existing model (red shaded) and proposed model (green shaded).

anesthetic stages or not. The result gives the active electrode map on the brain montage,
which gives the feel of looking at the brain regions, rather than looking at the raw ECoG
signals.

This work contributes in formulating a method that regularises the way in which the state
matrix is sparsified without any threshold criteria, rather uses a penalty term, i.e., a tuning
parameter, to find the optimized amount of sparsity for capturing the brain dynamics. Also,
the analysis is carried out using the eigenvectors as well. These eigenvectors of the corre-
sponding eigenvalues are visualized on the brain image with the location of electrodes. The
obtained results are reliable as the estimates of the state matrices are sparsified in a way to
filter important information, since the eigenvectors chosen depends on the eigenvalues which
are obtained from the state matrix.

The eigenmode decomposition can be effectively used which may help in interpreting how
spatiotemporal characteristics evolve over time. The spatial analysis will better help in
understanding which regions of the brain is affected or is crucial under anesthesia.
Enhancing the time evolution of eigendecomposition is important, as the
eigenvalue-eigenvector pairs captures various linearly independent dynamical spa-
tiotemporal process [20].
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1-4 Thesis outline 5

1-4 Thesis outline

The thesis report structured in the following way.

Figure 1-2: Thesis outline.

A more detailed overview of the thesis structure is illustrated in Figure 1-3. The purple boxes
represent the chapters whereas the orange boxes represents the research methodologies and
their outcomes.

Figure 1-3: Overview of chapters in thesis report.
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Chapter 2

Background information

This chapter briefly introduces the basics of anesthesia and brain waves to help the reader
have the knowledge on some related terms used later in this report. Further this chapter
discusses about the related work in the literature for modelling of brain ECoG signals. Also,
the previous work on stability analysis relating to monitoring of anesthesia is discussed. Each
of the literature work discussed is accompanied by its limitations that lead to the foundation
of the proposed methodology.

2-1 Anesthesia and Brain

A basic understanding of how a brain works and is effected by induction of anesthesia is
necessary in order for any investigation or analysis of related data and behaviour. The brain
is a part of the central nervous system (CNS), which has three main parts namely: the
cerebrum, cerebellum and brain stem. The largest part of the brain is cerebrum and has two
halves: the right and left hemispheres [21]. These cerebral hemispheres are divided into four
main lobes: frontal, parietal, occipital and temporal.

Our focus in this thesis work will be entirely towards general anesthesia, which can be in-
duced intravenously or intramuscularly [22]. Upon induction of anesthesia, it affects electrical
activity of the brain, displayed by brain states or brainwaves. The brainwaves are electrical
impulses that can be measured using EEG or ECoG. These electrical impulses occur at var-
ious frequencies which can be classified as four bands as shown in Figure 2-1: beta (12-27
Hz), alpha (8-12 Hz), theta (3-8 Hz) and delta (0.2-3 Hz) (in the order of low amplitude to
high amplitude respectively) [23]. However, these conventional alpha, beta, theta and delta
bands are not associated with smaller regions of the cortical area, which are found to exhibit
additional intrinsic frequency oscillations [24].

The ECoG recordings show additional frequencies while the patient is at rest and awake.
Seven types of oscillations are predominant with peaks at 3-5 Hz, 7 Hz (narrow band), 7 Hz
(broad band), 10 and 17 Hz [24]. These frequencies largely correlate with the conventional
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8 Background information

Figure 2-1: Four states of brain with their average frequency in Hertz (Hz). Source: medium.com

bands and found to be distributed throughout different brain regions, with 7 Hz being a
predominant frequency [24].

As mentioned earlier, general anesthesia affects some key regions of CNS, which means that it
can manipulate its functioning or behaviour. It is important to be noted that most transitions
were noted near the cortex surface and in thalamus nuclei [9]. In this way of tracking the
behaviour of the brain activity in terms of transitions, researchers are finding some alterations
in an anesthetized brain. According to Emery Brown, an anesthesiologist and neuroscientist,
anesthesia effects the brain circuits from communicating with each other, which results in
unconsciousness [7]. Anesthesia alters brain activity by targeting the neuro-receptors, which
are responsible for the transfer of information between neurons [8].

Neuroimaging: Electrocorticography (ECoG) vs. Electroencephalography (EEG)

The changes in brain activity can be measured using non-invasive (EEG) or invasive (ECoG)
techniques to collect the brain signals and analyse data further [25]. EEG is a commonly used
neuro-imaging technique, for example in treatment for epilepsy and to understand epileptic
phenomena. EEG has poor spatial, excellent temporal resolution and very low signal to noise
ratio with poor sensitivity to higher frequencies [26]. On the other hand, ECoG has high
spatial and temporal resolution and less susceptible to artefacts in contrast to EEG [27]. A
possible electrode placement and configuration of ECoG is shown in Figure 2-2.

Figure 2-2: MRI showing ECoG electrodes in grid array (red). This configuration allows to
capture precise brain activity at appropriate physical locations [1].

ECoG is measured by using electrodes that are subdurally implanted to the brain surface
(i.e., the electrodes are placed on the surface of the cortex). Whereas, in EEG the signals
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2-2 Depth of Anesthesia (DoA) monitors 9

are measured from the surface of the head. The electrodes are non-invasive and can be
placed on the scalp using some adhesive. So, EEG does not depend on the region specific
signals like implanted ECoG electrodes, rather they capture brain activity changes above the
skull [28]. This results in smaller amplitude signals and lesser frequency components in EEG
than recorded in ECoG, since the signals get attenuated by tissues and skull [29].

Raw ECoG data is said to contain more information than raw EEG data. When GA is
induced, significant changes in the EEG or ECoG signals can be noted. These oscillations
may help in differentiating awake and anesthesized states from the recordings.

ECoG recording is carried out by placing an array or patch of electrodes on the surface of
the cortex. It is generally a 64 or 128 electrode configuration, that will be implanted on the
surface of the cortex (see Figure 2-2). Unlike EEG having a high temporal resolution, ECoG
additionally has relatively high spatial resolution [30]. ECoG has significant improvement in
the localisation of electrical activity. It also effectively captures higher frequency components
of the signal.

In this thesis, the data utilized for analysis is the ECoG data recorded from monkeys (more
information about signal recordings in Chapter 3 under methods and materials).

Anesthetic agents

Anesthetic agents are used to induce unconsciousness and are classified into intravenous and
inhalational anesthetic agents [31]. Intravenous agents are injected into the patients, as seda-
tives or narcotics. With these anesthetic agents the loss of consciousness (depth of anesthesia)
is achieved immediately. It is to be noted that the effect of anesthetic drugs varies among
patients of different age and gender [30].

Propofol is the most commonly used intravenous sedative [32]. Ketamine is also another
sedative which is an old anesthetic agent but still in clinical use. Sevoflurane is the commonly
used inhalational anesthetic agent for mainly spine surgeries.

2-2 Depth of Anesthesia (DoA) monitors

For many decades, anesthesiologists relied on the effects of anesthesia on patients to monitor
their state of consciousness. For example, they assess heart rate, blood pressure to administer
drug dosage. These effects or responses may be related to anesthetic drug. But there is no
direct effect that is reflected on the brain [13]. There needs to be a balance between the level
of anesthetic drug induced and the state of consciousness of the patient [14]. There are many
DoA monitors used for clinical purposes but the most used method is the Bispectral (BIS)
index. This is the first EEG based quantitative monitor clinically used to monitor DoA [33].

Bispectral analysis

The term bispectral denotes phase and power relationship between any two EEG frequencies.
These monitors process the EEG data for any spontaneous electrical activity in the brain [13].
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BIS is used as a tool to predict the level of hypnosis, derived from EEG data. It was developed
for the purpose to reduce any risk of trauma caused due to wakefulness during a surgical
procedure under anesthesia. When the patient is awake, the electrical activity captured in
EEG is seen as a small amplitude and high frequency. Under various (most) anesthetic dosage,
the EEG signals vary as follows. Initially, the EEG signals show an increased amplitude and
with increased dosage the frequency is reduced. At deeper levels, the EEG becomes flat with
bursts at some periods, which is referred to as isoelectric EEG [6].
The BIS algorithm uses a statistical approach to analyse the measured EEG data and com-
putes a number between 0-100, commonly called as BIS score. These values are not measure-
ments but rather an indication of changes in the state of brain under anesthesia. BIS score of
0 refers to the isoelectric EEG and a score of 40 to 60 refers to surgical anesthesia. Table 2-1
shows the list of BIS scores and their corresponding brain state. The algorithm is not based
on any physical equation or laws, but rather considering empirical medical evidence. The
algorithm uses frequency versus power spectrum of EEG and the synchronization of the EEG
over time, to predict the index value [6].

BIS score Brain state
100 Awake
80 Light to moderate sedation

40-60 General anesthesia
40 Hypnotic
20 Burst suppression
0 Flat line

Table 2-1: BIS score and its corresponding brain states [6].

Synchronization in EEG is the in-phase sine wave component of the signal. Anesthesia effects
this by increasing the degree of synchronisation [6]. To measure the degree of synchronization,
analysis on phase component is needed in addition to power and frequency.

Limitations of bispectral index algorithm

The response time of EEG is slow from 25 seconds to 4 minutes. As a result, the event of a
patient recovering from anesthesia will be known with a considerable delay. The wakefulness
of the patient can happen before the monitor indicates the respective BIS score. This can
be a serious issue on inter-operative awareness, where the patient recovers from anesthesia
during surgery [6].
The anesthetic agents also play a role in its performance. Mostly, it is accurate for both
intravenous and inhalational anesthetic drugs. But anesthetic drugs like ketamine gives a
different EEG signal, which eventually puts a limitation on BIS score. Every patient shows
different EEG responses to different anesthetic doses and BIS algorithm does not give a value
of threshold to indicate a patients’ loss of consciousness [34]. BIS score can mislead in at least
5 percent of the patients, due to the presence of artefacts captured by the EEG. If the BIS
algorithm is designed to be prone to artefacts, consider the type of anesthetic dose given and
increase the response time, it may be a reliable tool [6].
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2-3 Control theoretic and stability approaches in monitoring anes-
thesia

Emerging technologies and major researches in control engineering and neuroscience have
paved way for more accurate measurement and analysis of the loss of consciousness. The
existing monitors have not effectively related to the loss of consciousness and also has its own
disadvantages making it less reliable for clinical use. This section discusses the alternative
methodologies in literature, to assess the brain state as a dynamical system that needs to be
appropriately monitored under such situations. Many theoretical and practical exploration
reveal that statistical analysis gives the relationship between conscious and unconscious states
[35]. The brain is a complex system, and hence the signals recorded from it through EEG
or ECoG is dynamical in nature. Awake versus the anesthetized states are captured by the
spectral properties of the dynamical system [36].

Dynamical criticality

Complex systems are found to exhibit stable and unstable dynamic conditions. When systems
possess the property to be dynamic between stability and instability, they attain higher levels
of computational properties [37]. This is called as criticality hypothesis. Dynamic criticality
is also termed as ’the edge of chaos’. At this point, we might recall the definitions of stable
and unstable in dynamical systems.

A stable system is one where the oscillations are regular and stationary states remain the
same over time. If an asymptotically stable system is subject to little perturbation, its
effect on the overall system dies out. By which, stable or ordered systems are robust to
perturbations. An unstable system is one where any tiny perturbation will affect the system
and the steady states do not have a regular pattern over time [37].

A critical system is said to be a mixture of both stable and unstable systems mentioned above.
When the system is subject to perturbations, the effect will remain constant. In neuroscience,
dynamical criticality means managing the change in dynamics steadily and quickly when it
approaches the critical point [38]. When changes in the neural systems are caused by the
input, in our case, anesthesia, will require to balance between the stable and unstable modes
quickly in a short span. The neural signals captured by EEG and ECoG provides a way to
understand brain activity.

Linear time-invariant (LTI) approach

ECoG and EEG signals are time series data. Properties of a biological or a natural system,
which has been realised through these techniques can be fitted to a stochastic time series
model. Auto regressive (AR) model is such a technique that has been recently used in fields
of science and research. AR models have been effectively used to define the oscillations in
the system and also to make predictions in a complex system [18]. Equation 2-1 gives the
definition of autoregressive model y(n) ∈ Rm,
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yn = Σp
i=1A(t)yn−i + en (2-1)

where n is the number of steps of discrete time series, p being the order of the model,
A(t) ∈ Rm×m is a coefficient parameter of AR matrix (square matrix) and e is the error
term (column vector) [18]. State matrix A gives a relationship between the current state of
yn with all the previous values yn−1 [18]. The parameters of the AR model can be fit into
an observed time series data. This way the dynamics of that system can be converted as the
parameters of the AR model.

Autoregressive model for dynamics of brain

The brain is highly nonlinear and literature contains fitting the AR model to its dynamics.
ECoG can be described by a single AR model of any order of choice, for the entire time
series [18]. ECoG being multivariate time series, which means that it depends on other values
in addition to past values of y(n), to predict the future values of the variable. Linear stability
analysis can be carried out by independently fitting the time series of short windows to a AR
model [5]. In [5], the authors studied the stability properties during the loss of consciousness
with ECoG data from monkeys, have implemented fitting the AR model with short time
windows.

Local approximation of dynamics of the system in those short temporal windows V (n), can
be done using AR modelling [5], [18]. V (n) is a column vector, of dimension Ne which denotes
the number of channels in the ECoG recording and n is the number of steps in time t, given
as n = t× Fs, where Fs is the sampling frequency. For each of the windows, the eigenmodes
and the absolute value of eigenvalues (stability parameter) of state matrix A gives useful
information for further stability analyses. These eigenmodes are estimated from the short
windows of size V (n) at time t. This gives the local approximation of the time series window
to fit in the AR model given by Equation 2-2 [18],

yn+1 = A(t)yn + en (2-2)

where yn is the time series from n steps, A(t) is the state matrix containing the coefficients
of size Ne × Ne and e is the noise vector [18]. The estimates of matrix A at every n time
step can be estimated by least squares algorithm, see for instance [39]. The estimation is
carried out by representing the first order AR model (i.e., AR(1)), in the form of an ordinary
regression model. In [18], it is provided evidence that the extracted eigenmodes capture the
critically dynamic system having a Hopf bifurcation.

The autoregressive matrices were simplified and binarized by estimating the mean and stan-
dard deviation of the matrix value distribution. The resulting matrix was known as the
summary matrix. Another matrix was constructed with this summary matrix, say Sij to
capture the diagonal and off-diagonal effects of the autoregressive matrix. The value of the
diagonal element was higher when the subject was awakened [5].
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Eigenmode decomposition

The temporal dynamics can be inferred from the eigenmodes of A of the AR(1) model. One
of the major advantages of using an AR model fitting is that the stability of the underlying
system can be understood from the eigenvalues (λ) of matrix A or evolution matrix [39]. The
mode is said to be asymptotically stable, if |λ| < 1 and unstable if |λ| > 1. The former tends
to zero by time (damping) while the unstable modes might explode or grow exponentially
over time [5]. If the eigenvalues are complex, then they have a frequency of oscillation for the
eigenmodes which is given by fλ = Fs| arg λ |/(2π), where Fs is the sampling frequency [18].

When |λ| = 1, then criticality corresponds to the point at the transition between (asymp-
totically) stable and unstable modes [5]. Thus, stability of the dynamics can be said to be
between the exponential growth and decay along the direction of the corresponding eigenvec-
tor. So, linear stability analysis could be carried out using the autoregressive model of the
ECoG time series data instead of reconstructing the dynamics of the system.

Stability and criticality under the induction of anesthesia

Induction of anesthesia can be related to the changes in dynamics of the brain. It has been
noticed that the cortical dynamics stabilize after the induction of anesthesia [5]. In [5],
the cortical dynamics stabilization was studied for anesthetic drugs namely, propofol and
ketamine-medetomidine dosages, on four different monkeys.

The criticality indices at different stages of anesthesia: before drug administration, during
induction and after recovery was studied. The state matrices of the system model was sparsi-
fied (zeroing few entries) using a threshold criteria and their corresponding eigenvalues were
found. The criticality modes (eigenvalue λ = 1) were found to be crowded near value 1 of
unit circle, during awake and at the time when anesthesia was induced. During the effect of
anesthesia, the criticality modes were found to be decreasing. The criticality modes at 1 were
no longer dense within 4 minutes of induction. The index value decreased approximately to
about 13% from 17%. The decrease is seen below 0.98, and it can be considered as a thresh-
old value arbitrarily. Thus, after the induction of anesthesia the dynamic criticality which is
observed during awake is vanished [18], [5].

2-4 Limitations and gaps in existing work

Unconsciousness caused by induction of general anesthesia has no reliable method to be
distinguished from awake or conscious state, with respect to brain activity. The distinguishing
property between conscious and unconscious states is still unknown and is highly in debate
question in the field of neuroscience. Proving that there exists one has been very difficult
because there was no significant signatures or feature that reflect consciousness or enough
mentioning about in terms of brain activity.

Despite anesthesiologists having experience with awareness and about the amount of anes-
thetic dosage to be induced, the procedure to find if the patient might recover from uncon-
sciousness still remains imperfect. Definition of consciousness is yet to be quantified by some
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theory and the fact that different anesthetic drugs acts differently on individual patients add
additional limitations.

Capturing the dynamics of the brain from its spectral characteristics is a conventional method [40].
The use of dynamical stability to distinguish between the conscious states of the brain was
more superior to the results obtained from the spectral information of the signal [41]. It is
to be noted that the dynamical stability also increased when the temporal window size was
increased. Thus, linear stability analysis of ECoG data, not only brings out the individual
signal characteristics, but also the behaviour and changes in the interactions of the cortical
regions of the brain, that result in the brain signals.

In the context of dynamical stability, the most important factor in systems theory is that the
dynamics are strongly influenced by linearity [5]. But when the system is dynamically critical,
this is highly non-linear. Within the analyses of [5], where the findings suggest that most of
the eigenvalues lie in the critical regime, meaning that the system cannot be predicted in the
long run, as the linear approximation changes. The study can only say how the system moves
within the stable and dynamically stable regions.

The dynamic nature of the brain is critical in the formulation of control objectives for stability
analysis to assess the stable and unstable regimes under the induction of general anesthesia,
in different regions of the brain at different times. Development of methods or algorithms for
better performance and that deals with constraints need to be studied and analysed.

Enhancing the time evolution of eigendecomposition is important, as the eigenvalue-eigenvector
pairs capture various linearly independent dynamical spatio-temporal processes [20]. The fol-
lowing chapter discusses the proposed methodology and how the eigenvalues and eigenvectors
can be effectively utilised to capture the dynamics of the brain.
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Chapter 3

Proposed Methodology

This chapter provides the materials and methods, i.e., the dataset used for analysis and the
proposed methodology over the existing work, respectively. The chapter introduces to the
proposed method to monitor anesthesia using LASSO and effectively utilize the eigendecom-
position in capturing the dynamics. Also, the reader is introduced to the required terms or
metrics to be known for the later part of the report.

3-1 Description of experimental dataset

This research is mainly focused on the data that is acquired from the ECoG electrodes
captured with different types of anesthesia. At the laboratory for Adaptive Intelligence,
Brain Science Institute, data was collected from four different monkeys for two different
types of anesthesia. These datasets were acquired from the public server Neurotycho http:
//www.neurotycho.org/ [42]. These ECoG time series data were recorded during awake,
anesthetic and sleeping conditions. The ECoG time series data consists of 128 channels (rows
in .mat file) and the data was collected under different anesthetic dosages which are propofol,
ketamine and medetomidine. The available data also has the time when the anesthesia was
induced, anesthesia start and recovery time, which is helpful to cross verify during the anal-
ysis. The data was also used in the research work [5], [43], hence can be considered reliable
for this thesis.

The electrodes were placed at a distance of 5mm on the left hemisphere of the brain, covering
the major lobes frontal, parietal, temporal and occipital (see Figures 3-1 and 3-2). All the
data were filtered using a non-causal notch filter to remove harmonics at 50 Hz and bandpass
filtered between 5 and 500 Hz [42]. The available data is found to be filtered when checked
with MATLAB using ’idealfilter’ function. Thus, the data available was directly used
for analysis. The data is provided with the time when the subject was in different stages of
anesthesia. Thus, this is useful for segmenting the windows.
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16 Proposed Methodology

Regions of monkey brain and electrode placement

Since the dataset is obtained from the monkeys, knowledge about the region of the monkey
brain and the activities associated with it is required. The structure of the monkey brain is
slightly different from that of the human brain (discussed in Section 2-1), so the knowledge
about activities associated with the regions of the monkey brain will help in analysing the
different stages of anesthesia from the results. Figure 3-1 shows the functional regions of the
brain of a monkey.

Figure 3-1: Different regions of the monkey brain and its functional mapping [2]

The monkey brain has four cortical regions: frontal cortex, temporal cortex, parietal cortex
and motor cortex. The temporal cortex is divided into audio and visual cortex [44]. The
functional activities of these cortical regions as follows:

• Frontal cortex: Includes any movement in the thighs, legs, toes and foot. This region
also includes the movements in the arms and fingers, also the face muscles.

• Prefrontal cortex: This region is responsible for the action sequences, action obser-
vation, decisions and planning [45].

• Temporal visual: Responsible for the learning perception, object recognition and
aversion. It is also responsible for gaze tracking and attention.

• Temporal audio: To process the sequences of sounds, without which the monkeys
find difficulty in recognising different frequencies of sounds to communicate between
each other [46].
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• Parietal cortex: This cortex relates mostly to the senses the monkey can feel such as
the touch sensation like temperatures and pain.

• Occipital: This region is responsible for action observation and fear recognition.

The placement of the ECoG electrodes on four different monkeys (M1, M2, M3, M4) is shown
in Figure 3-2 [42]. The data was collected by placing the electrodes in a way that covers all
the regions of the monkey brain. This data is thus completely reliable for the analysis as it
will give a better interpretation of brain dynamics.

Figure 3-2: Spatial ECoG electrode placement for four monkeys considered for the analysis. Red
markers represent the electrodes [3].

3-2 Proposed LASSO regularisation model

LASSO extends as least absolute shrinkage and selection operator. This model introduces a
penalty term to the magnitude of the coefficient to be minimised. LASSO is regularisation
method that can induce sparsity to the models. The proposed methodology has a regularised
way to impose sparsity to the A matrix instead of using some threshold criteria. Thus, the
absolute values of weights will be (in general) reduced, and many will tend to be zeros. The
penalty term has a tuning parameter beta (β) that is multiplied to norm-1 of the parameters
that we seek to sparsify (L1 regularisation).

This penalty constraint lowers the size of some of the absolute values coefficients and leads
to some features having a coefficient of 0, essentially dropping it from the model. This way,
it is also a form of filtering the features and results with a model that is simpler and more
interpretable.

The LASSO method aims to produce a model that has high accuracy and only uses a subset
of the original features by penalizing the coefficients and dropping it off which improves
the model.

The following allows to understand the evolution of a least squares problem to a LASSO
model. Equation 3-1 gives the least squares model to minimize the state matrix A (or
coupling matrix).

minA||Xk+1 −Xk ∗A||2 (3-1)
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where Xk is the ECoG data on the kth step and Xk+1 is the ECoG data point on the k+ 1th
step. To induce sparsity to the A matrix, this model is added with a regularisation term
β ∗ ||A||0, where β ≥ 0 is the tuning parameter that adds the penalty. So the problem now
can be read as in Equation 3-2,

minA||Xk+1 −Xk ∗A||2 + β ∗ ||A||0 (3-2)

The above problem with the 0-quasi-norm is difficult to solve since the regularisation term is a
non-convex optimization problem. Replacing the quasi-norm with norm-1 forms the LASSO
problem as given in Equation 3-3,

minA ||Xk+1 −Xk ∗A||2︸ ︷︷ ︸
sum of squares

+ β ∗ ||A||1︸ ︷︷ ︸
LASSO penalty

(3-3)

The norm-1 is a convex problem and the sum of least squares is again convex. And thus
the LASSO problem in Equation 3-3 is a convex optimization problem. Therefore, there is
a global minimum, but the LASSO problem is not strictly convex [47]. Therefore, the β
parameter can have many values that accounts to minimise the objective. In this thesis,
LASSO problem is implemented using cvx in MATLAB (see Appendix C). The formulation
of Equation 3-3 from the LTI model is described in the below section.

3-3 Formulation of LASSO regularisation problem in cvx

The data consists of 128 channels, i.e., 128 electrodes and measured time are in milliseconds
(ms). Therefore, the rows of the ECoG data matrix (m) = 128. The given data matrix is split
into number of windows of size 500 ms non - overlapping windows. Each of these temporal
windows needs to be fit into the model. The following equations describe the formulation of
Equation 3-3 for one of the windows, k.

The dimension of the temporal window of the ECoG data matrix is 128 × 500 and (X, b) =
(Xk, Xk+1).  DATA


128×500

The LTI model to fit the ECoG potentials using least squares for each window is given by,

Xk+1︸ ︷︷ ︸
b

= AXk︸ ︷︷ ︸
X

+εk (3-4)

Since the number of channels in the ECoG array is 128 (i.e., 128 rows), the above equation
can be written as follows,
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[X1
k+1] =

[
a1

]
1×128

Xk


128×1

[X2
k+1] =

[
a2

]
1×128

Xk


128×1

...

[X128
k+1] =

[
a128

]
1×128

Xk


128×1

for all k = 0, . . . , 499, corresponds to the size of the window. Here ai, where i = 1 . . . 128,
is the rows of the state matrix corresponding to each of the channels of the ECoG array in
monkey. Xi

k+1 is a scalar (poles of the scalar will be a scalar again). Now taking transpose,

[X1
k+1]> =

[
a1

]
1×128

Xk


128×1

[X2
k+1]> =

[
a2

]
1×128

Xk


128×1

...

[X128
k+1]>︸ ︷︷ ︸

b

=
[

a128
]

1×128︸ ︷︷ ︸
A

Xk


128×1︸ ︷︷ ︸

x

for all k = 0, . . . , 499. Since Xk+1 is a scalar, so is its transpose. Now for the kth data point
in each window and for each of the channel i, the iteration is as follows,
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For k = 0 and i = 1,

[X1
1 ] =

[
X0

] a1


[X1

2 ] =
[

X1
] a1


[X1

3 ] =
[

X2
] a1


...

[X1
500] =

[
X499

] a1



Therefore, (in general) it can be written as,


X1

1
X1

2
...

X1
500


500×1

=


X0
X1
...

X499


500×128

[
a1
]

128×1
(3-5)

(and so on for ai for all i = 1 . . . 128)

where a1 is the first row of the A matrix of a temporal window. Equation 3-5 is of the form
X1
k+1 = Xk ∗ a1. From this the least squares problem can be written as,

min
ai

∥∥∥Xkai −Xi
k+1

∥∥∥2

2
(3-6)

Since LASSO is an extension of the least squares problem in Equation 3-6, with the regular-
isation parameter, this can be modified as,

min
ai

∥∥∥Xkai −Xi
k+1

∥∥∥2

2
+ β ‖ai‖1 (3-7)

for all k = 0, . . . , 499 and i = 0, . . . , 128, where ai is the ith row of the A matrix. This
way all the rows of the A matrix is minimised, for all the windows. Equation 3-7 is solved
in MATLAB using cvx which is a modelling system for solving convex optimization prob-
lems efficiently. Since the LASSO problem utilizes L1 norm, cvx helps to solve the norm
minimization. Appendix C gives more information about the cvx and its advantages.
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Choosing the tuning parameter β

The crucial part in implementation of LASSO regularisation is the choice of right value
for β. The β value aims to make the model sparse in a regularised way to yield a lower
prediction error [48]. Choosing this tuning parameter is difficult, as an optimal value needs
to be chosen for the lower prediction error. The performance of LASSO depends on choosing
the optimal β. For predicting the value of β, one-step ahead prediction error of the obtained
model from LASSO for each of the β value is computed. The β with the lowest error is chosen
as the optimal value. This is repeated for each of the window for the entire time series.

When the value of β = 0 in Equation 3-7, the LASSO model formulates as linear regression.
Thus, it is useful when the proposed model performance needs to be compared against the
linear regression model.

cvx algorithm

The following algorithm was implemented in MATLAB using cvx tool.

Algorithm 1 Algorithm for cvx to implement LASSO
Require: β ≥ 0
Ensure: window size = 500
β ← desired range of values
N ← length of β values
P ← length of total windows
for n← 1 to N do

for p← 1 to P do
for i← 1 to 128 do . number of channels

ai ← pth(i, :)
cvx_begin
variable ai
β ← variable n
Xk ← ith data
Xk+1 ← one step ahead predicted data
minimize ai = ‖Xk ∗ ai −Xk+1‖22 + β ∗ ‖ai‖1
cvx_end

end for
end for

end for

3-4 Eigendecomposition

The significant advantage of using the penalized linear approximation is that the dynamics of
the brain can be analysed locally by using the eigendecomposition of the obtained state matrix
estimates [4]. The A matrix obtained from the LASSO model for a window by choosing the
optimal tuning parameter β, the eigenvalue-eigenvector (eigenmodes) pairs were calculated
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for each of the segmented temporal windows. Equation 3-8 gives the decomposition of the
state matrix into eigenmodes.

xk+1 = A>Xk = V λV >xk (3-8)

where λ is the eigenvalue and V is the eigenvector. Therefore pi(k) = v>i (k) gives the ith
eigenvector of the ith eigenvalue of the A matrix. These eigenmodes capture the linearly
independent spatial and temporal aspects of the dynamics. In a spatio-temporal analysis,
a eigenvector represents where the activation took place (location of the sensor) and the
eigenvalues represents the frequency of oscillation of the dynamics.

K-means clustering approach

To choose the eigenvalue-eigenvector pair to visualise the brain dynamics at the given anes-
thetic stage, K-means clustering approach is considered. Choosing the number of clusters to
analyse the dynamics is crucial. Let us consider below three stability scenarios,

• If |λi| < 1, then |pi(k)| → 0 as t → ∞ , then the dynamics is asymptotically
stable as it vanishes over time.

• If |λi| > 1, then |pi(k)| → ∞ as t → ∞, then the dynamics is unstable as it
explodes over time.

• If |λi| = 1, then |pi(k)| → 0 as t→ 0, then the dynamics is stable as it oscillates
between stable and unstable regimes over time.

The above three criteria are used to see the time evolution of the eigenvalue - eigenvector pair,
by looking at its slow and fast decaying oscillations (See Figure 3-3). This way we can better
understand the spatial characteristic of the electrodes that were active during a particular
anesthetic stage. Therefore, a cluster size k = 2 will give a trade-off between these two
oscillatory regimes, to better understand the active electrodes (spatial) at different anesthetic
stages. This evolution of eigenvalues over time shows changes in the following:

• frequency represented by the angle of eigenvalues; and

• magnitude which represents the spatial profile of the eigenmodes [4].

Clustering is the process of grouping data of similar types. K-means clustering is an algo-
rithm that divides the data into k clusters, in a way that the clustered data forms a similar
group [49]. K-means clustering is an unsupervised learning algorithm, which achieves cluster-
ing of different groups without training [50]. Each of the cluster is associated with a centroid.
The K-means clustering aims to minimise the sum of squares within the cluster. So the
process of dividing the data into k clusters is repeated until the best cluster is found [49].

K-means clustering: finds the best value of the centroid (k-center) from its iterative
algorithm and assigns the data to its nearest centroid to seek a local optima.
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Figure 3-3: Eigenvalue evolution at various stability regimes. (A) shows the plot of example
eigenvalues considered whose corresponding evolution (spatiotemporal pattern of oscillations) for
the different frequencies are shown in (B) [4].

3-5 Evaluation metrics

The obtained cluster centroids from the K-means clustering can be viewed on the eigenvector
plane to see how these cluster points vary between different anesthetic stages. The eigenvalue-
eigenvector pair gives the frequency and the direction of oscillation, respectively [4]. The polar
coordinates of (λ) are represented as (θi, |λi|) . Thus, the spatial frequency of oscillation from
the angle of the eigenvalue can be represented as

fi = θi
2πδt, (3-9)

where δ is the sampling frequency. This spatial frequency depicts slow and fast oscillations.
The absolute value of the magnitude of the eigenvalue gives the stability criteria of the ECoG
signal at different temporal windows. If the value of the stability is low, then the signal
will damp over time to 0. Whereas, when the stability value is higher (i.e., closer to 1) the
signals show slow oscillatory behaviour (see Figure 3-3). Hence, having two clusters each one
at slow and fast moving oscillatory regimes will give a better intuition on dynamics for the
spatio-temporal analysis. The distribution of the frequency and stability at different stages
of anesthesia needs to be proven that they are statistically significant (see Appendix D).
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3-6 Analysis pipeline

The ECoG data array is split into windows of size 500 ms. Each of these windows is fit
into the LASSO regression problem given in Equation 3-7, using cvx tool in MATLAB. This
is iterated for different values of β and the optimal value is chosen from the one having
the lowest one-step prediction error. Then the eigenmodes were calculated for each of the
obtained A matrix for each of the temporal windows. The eigenvectors to be visualised on
the brain image is selected based on its spatio-temporal frequency, i.e., the frequency of the
corresponding eigenvalue [4], by using K-means clustering. This way the chosen eigenvector
gives the direction of the spatiotemporal frequency. For visualising in the brain montage,
the eigenvector to be plotted is normalised by dividing each value by the maximum value
across its entries. Therefore, we could able to see the evolution spatiotemporal frequency
contributed by each of the ECoG channels during different stages of anesthesia. Figure 3-4
explains the process outline.
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Figure 3-4: Analysis pipeline of the proposed methodology.
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Chapter 4

Results and discussion

This chapter provides and interprets the obtained results from the proposed model explained
in Chapter 3. The modelling methodology was implemented in MATLAB®(9.7, R2019b). The
available ECoG data is already pre-processed so it was used directly for analysis. For the
implementation of cvx for finding an optimal solution, the standard MATLAB cvx tool was
used. This chapter also addresses the research questions in Chapter 1 and provides claims
to support the obtained results in the discussion section. The results are provided for the
different stages of anesthesia such that the reader knows how the evolution of dynamics is
affected by the induction of anesthesia.

4-1 Estimating state matrix (coupling matrix) from the LASSO
model

The ECoG data matrix is split into windows of size 500 ms and the rows of the data is 128,
representing the number of channels (electrodes). For ease of understanding, the results for
one monkey M2 (see Figure 3-2), induced with anesthetic drug propofol is discussed in the
following sections.

The data of monkey M2 induced with propofol drug is provided with 5 different anesthetic
stages: anesthesia injected, anesthesia start, anesthesia end, recovery start and recovery end.
So, the windows of size 500 ms in spread across all of these stages. The time series is of
length 3680698 ms and hence the number of windows of size 500 ms is 7360. The non-linear
dynamics of the brain in each of the windows is linearized using the LTI model proposed in
[4], [51].

The linearized matrices need to be simplified by inducing sparsity to capture the spatial
temporal aspects of the dynamics. For inducing the sparsity in those matrices, the LASSO
modelling formulated in Equation 3-7 is implemented using cvx (see Algorithm 1). Equa-
tion 3-7 which describes the definition of LASSO.
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4-2 Choosing the tuning parameter β

In the cvx algorithm, different β values are used. This way one-step ahead prediction error is
performed as the cross validation for choosing the right tuning parameter i.e., optimal β (see
Equation 3-7). The obtained state matrices for different β values are used to find the one-step
ahead predicted value. This is compared with the original ECoG data point and their error
values are calculated. Figure 4-1 shows the error values plotted for different β values for each
of the anesthetic stages.

The Table 4-1 gives the β values and their corresponding error values for different stages.
The eigendecomposition is performed on these state matrices of chosen β values. For monkey
M2, the optimal β values for the anesthetic stages were found to be – see Table 4-1.

Stage Window number β value
Anesthesia injected 200 185
Anesthesia start 1500 1500
Anesthesia end 2500 1525
Recovery start 6000 1525
Recovery end 7360 20.5

Table 4-1: Optimal β values obtained for respective temporal windows for different stages
of anesthesia.

From Figure 4-1, it can be seen that for β = 0, which corresponds to the least squares estimate,
the error value is higher than the value of optimal β chosen for analysis – see Table 4-2. This
way LASSO reduces the model error than the least squares by using the tuning parameter β.
So, it is essential that we choose an optimal value of β with minimal one-step ahead error.
Also, it is to be noted from Table 4-1 that for each of the windows, the value of β is different
that correspond to lowest error. This implies that the model prevents overfitting by optimally
tuning the β parameter, thus resulting in a regularised sparsity in the state matrices.

Stage Error value
β = 0 optimal β

Anesthesia injected 1153.290 1121.376
Anesthesia start 1344.979 1265.100
Anesthesia end 804.267 706.984
Recovery start 1395.716 1313.595
Recovery end 983.351 977.413

Table 4-2: Error values for β = 0 (least squares) and optimal β for each stage of
anesthesia for monkey M2.

The state matrices of the temporal windows at each anesthetic stage with the computed
optimal β value is shown in Figure 4-2.
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Figure 4-1: One-step ahead error plot for different β values in each window for every anesthetic
stage of monkey M2. The green line shows the optimal β value chosen for each of the windows
considered. The optimal β corresponding to the green line is mentioned. The red markers show
the β value of the computed error.
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Figure 4-2: State matrices for each of the anesthetic stages (anesthesia injected, anesthesia start,
anesthesia end, recovery start, recovery end) corresponding to the optimal β value in Table 4-2.
The x- and y-axis corresponds to the number of channels (128) implanted in monkey M2.

4-3 Eigendecomposition

The eigenvalues of the state matrices with optimal β value for each stage of anesthesia can be
visualised on a complex plane. Figure 4-3 shows the eigenvalue evolution through different
anesthetic stages.

From Figure 4-3, it can be noticed that, as the subject enters to anesthetic start stage eigen-
values shrinks in complex magnitude and converge towards the real axis. During the injection
and recovery stage the eigenvalues are spread in the complex plane. This criteria is easier to
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Figure 4-3: Eigenvalues for the state matrices for β values in Table 4-1 for each of the anesthetic
stage.

interpret to say if the anesthesia stage has started, rather than dynamical stability method
in [5], using criticality index.

The changes in dynamics of the local oscillation which accounts for the spatiotemporal evo-
lution is effectively captured from the eigenmodes. Since there are 128 channels, it is crucial
to choose one channel that contributes to the dynamics the most without the expense of
dropping another channel that contributes to the spatiotemporal evolution. For choosing the
appropriate eigenvector, a classification is done with the eigenvalues. In this thesis, K-means
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clustering (see Section 3-4) is utilised to choose the eigenvalues and find its corresponding
eigenvectors to visualise on the monkey brain montage. The cluster size chosen is 2, as ex-
plained in Section 3-4, two clusters can give two centroids on the complex plane such that
there is a trade-off between the slow and fast decaying oscillations. Figure 4-4 shows the
centroids obtained from K-means clustering.

Figure 4-4: K-means clusters of eigenvalues in Figure 4-3 for windows given in Table 4-1 in
each of the anesthetic stages. The red clusters correspond to cluster 1 representing fast wave
oscillations and the blue clusters correspond to cluster 2 representing slow wave oscillations. The
x mark represents the centroids of each of the clusters.

From Figure 4-4, the eigenvalues in blue clusters correspond to slow decaying oscillations
whereas the eigenvalues in red clusters correspond to fast decaying oscillations. Furthermore,
the frequency vs. stability plot of the eigenvalues for different anesthetic stages are shown in
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Figure 4-5. Visually it can be seen that the eigenvalue cluster distributions are not similar
between the different stages. To prove that the clusters are statistically different, two-sample
Kolmogorov-Smirnov (K-S) test is carried out (see Appendix D). The test rejects the null
hypothesis that the distribution of eigenvalue clusters between different anesthetic stages are
statistically similar, at a significance level of 5%.

Figure 4-5: Spectral clustering of the eigenvalues of state matrices resulted from the LASSO
model based on the frequency and stability (argument and absolute magnitude respectively)
of eigenvalue. The coloured dots represent the distribution of eigenvalues from the K-means
clustering of different anesthetic stages for monkey M2 with propofol drug. Error bar gives the
mean and standard deviation from frequency and stability of each of the clusters. Distribution of
cluster points is shown for (A) anesthesia injection vs. anesthesia start, (B) anesthesia start vs.
anesthesia end, (C) anesthesia end vs. recovery start, (D) recovery start vs. recovery end.

The eigenvectors of the centroids are visualised on the brain montage of monkey M2 (see
Figure 3-2). Figure 4-6 shows the eigenvector of centroids for different stages of anesthesia.
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The visualisation on brain montage is compared with the regions of the brain shown in
Figure 3-1, to relate the active regions and the stage of anesthesia. From Figure 4-6, the
following inferences can be obtained for the different stages of anesthesia,

• Anesthesia injection: The electrodes near the parietal lobe and occipital lobe shows
some oscillatory values. During this stage, the subject might have experienced some
pain and was awakened, which could account for these oscillations.

• Anesthesia start: Not much oscillations could be observed near the frontal cortex and
also in the visual cortex. This can be interpreted as the subject to have entered into
the anesthetic stage.

• Anesthesia end: Same as anesthesia start, anesthesia end also shows oscillations in
one or two electrodes. Anesthesia end however means that the anesthetic dosage was
stopped, yet the subject has not recovered from unconsciousness.

• Recovery start: The brain visualisation clearly shows some oscillation in the audio
and visual cortex, which clearly says the subject is recovering from anesthesia.

• Recovery end: Many oscillatory electrodes in the regions of the brain are observed
here, which clearly justifies that the subject has recovered from its unconscious state.

The results above clearly show that the electrodes rightly interprets the anesthetic stages and
that the model has rightly captured the dynamics of the brain. The results from ECoG data
for other monkeys (M1, M3, and M4) are presented below.
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Figure 4-6: Eigenvector of the centroids from K-means clustering for different stages of anes-
thesia - Monkey M2 with propofol. (A) shows the eigenvalue distribution with 2 clusters (red -
cluster1 and blue - cluster2) from K-means clustering, (B) eigenvector of centroid of cluster 1,
(C) eigenvector of centroid of cluster 2, visualised on electrode configuration. The colorbar in (B)
and (C) represents the normalised eigenvector values.
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Results for monkey M1 with drug propofol

Figure 4-7: Spectral clustering of the eigenvalues of state matrices resulting from LASSO model
based on the frequency and stability (argument and absolute magnitude respectively) of eigen-
value. The coloured dots represent the distribution of eigenvalues from the K-means clustering of
different anesthetic stages for monkey M1 with propofol drug. Error bar gives the mean and stan-
dard deviation from frequency and stability of each of the clusters. Distribution of cluster points
is shown for (A) anesthesia injection vs. anesthesia start, (B) anesthesia start vs. anesthesia end,
(C) anesthesia end vs. recovery start, (D) recovery start vs. recovery end.
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Figure 4-8: Eigenvector of the centroids from K-means clustering for different stages of anes-
thesia - Monkey M1 with propofol. (A) shows the eigenvalue distribution with 2 clusters (red -
cluster1 and blue - cluster2) from K-means clustering, (B) eigenvector of centroid of cluster 1,
(C) eigenvector of centroid of cluster 2, visualised on monkey M1 electrode configuration. The
colorbar in (B) and (C) represents the normalised eigenvector values.
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Reviewing results in Figure 4-7 and Figure 4-8:

• The eigenvalue pattern in Figure 4-8 (A) converges towards the real axis through
anesthesia injected and anesthesia end stages and is found to be spreading out
during the recovery stage.

• From K-S test, eigenvalue clusters reject the null hypothesis that their distribu-
tion in different stages of anesthesia are statistically similar at a significance level
of 5%.

• The dynamics captured by the LASSO model which is visually represented in
Figure 4-8 (B) and (C) shows the frontal region of the brain (see Figure 3-1 for
reference) has very minimal oscillations during anesthetic start to recovery start
stage.

• Anesthesia injected and recovery end stages show oscillations in many electrodes
than other stages. This indicates that the subject was awakened and active.
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Results for monkey M3 with drug ketamine-medetomidine

Figure 4-9: Spectral clustering of the eigenvalues of state matrices resulting from LASSO model
based on the frequency and stability (argument and absolute magnitude respectively) of eigen-
value. The coloured dots represent the distribution of eigenvalues from the K-means clustering of
different anesthetic stages for monkey M3 with ketamine-medetomidine drug. Error bar gives the
mean and standard deviation from frequency and stability of each of the clusters. Distribution of
cluster points is shown for (A) anesthesia injection vs. anesthesia start, (B) anesthesia start vs.
anesthesia end, (C) anesthesia end vs. recovery start, (D) recovery start vs. recovery end.
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Figure 4-10: Eigenvector of the centroids from K-means clustering for different stages of anes-
thesia - Monkey M3 with ketamine-medetomidine. (A) shows the eigenvalue distribution with
2 clusters (red - cluster1 and blue - cluster2) from K-means clustering, (B) eigenvector of cen-
troid of cluster 1, (C) eigenvector of centroid of cluster 2, visualised on monkey M3 electrode
configuration. The colorbar in (B) and (C) represents the normalised eigenvector values.
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Reviewing results in Figure 4-9 and Figure 4-10:

• From Figure 4-9 it can be seen that the clusters (obtained from K-means) between
different anesthetic stages under comparison are not identical.

• From K-S test, eigenvalue clusters reject the null hypothesis that their distribu-
tion in different stages of anesthesia are statistically similar at a significance level
of 5%.

• The dynamics captured by the LASSO model which is visually represented in
Figure 4-10 (A) and (B) shows some oscillations in the prefrontal cortex and
parietal lobe (see Figure 3-1 for reference) in anesthesia end stage. The subject
might have started to recover to a conscious state during that time window.

• Anesthesia injected and recovery end stages show oscillations in many electrodes
than other stages. This indicates that the subject was awakened and active.
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Results for monkey M4 with drug ketamine-medetomidine

Figure 4-11: Spectral clustering of the eigenvalues of state matrices resulting from the LASSO
model based on the frequency and stability (argument and absolute magnitude respectively)
of eigenvalue. The coloured dots represent the distribution of eigenvalues from the K-means
clustering of different anesthetic stages for monkey M4 with ketamine-medetomidine drug. Error
bar gives the mean and standard deviation from frequency and stability of each of the clusters.
Distribution of cluster points is shown for (A) anesthesia injection vs. anesthesia start, (B)
anesthesia start vs. anesthesia end, (C) anesthesia end vs. recovery start, (D) recovery start vs.
recovery end.
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Figure 4-12: Eigenvector of the centroids from K-means clustering for different stages of anes-
thesia - Monkey M4 with ketamine-medetomidine. (A) shows the eigenvalue distribution with
2 clusters (red - cluster1 and blue - cluster2) from K-means clustering, (B) eigenvector of cen-
troid of cluster 1, (C) eigenvector of centroid of cluster 2, visualised on monkey M4 electrode
configuration. The colorbar in (B) and (C) represents the normalised eigenvector values.
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Reviewing results in Figure 4-11 and Figure 4-12:

• From Figure 4-11 it can be seen that the clusters (obtained from K-means) be-
tween different anesthetic stages under comparison are not identical.

• From K-S test, eigenvalue clusters reject the null hypothesis that their distribu-
tion in different stages of anesthesia are statistically similar at a significance level
of 5%.

• The dynamics captured by the LASSO model which is visually represented in
Figure 4-12 (A) and (B) shows some oscillations in the prefrontal cortex and
parietal lobe (see Figure 3-1 for reference) in anesthesia start stage. The subject
might be entering an unconscious state and not completely into it yet. This could
have contributed to the respective oscillations.

• Anesthesia injected and recovery end stages show oscillations in many electrodes
than other stages. This indicates that the subject was awakened and active.
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4-4 Discussion

The results provided in the previous sections are discussed in brief addressing the research
questions formulated in Chapter 1. This section focuses on a comparative and quantitative
analysis of the obtained results, to show the performance of the proposed model.

A regularized method to induce sparsity to capture the dynamics:

The ECoG data analysis is leveraged by using the LASSO model proposed in Equation 3-7,
such that the state matrices are induced with sparsity to capture the right dynamics. The
method of sparsifying the state matrices done in [5] studies about the stability in loss of
consciousness using a threshold criteria. Rather, the LASSO model has regularised the way
of sparsification using the tuning parameter β. A sanity check to induce the same amount of
sparsity followed in [5] was tuned in the LASSO model to get the same amount of sparsity.
It was seen that the LASSO model could capture some oscillation for the anesthesia injected
stage, whereas the threshold method was completely flat with values 0 for all the electrodes
(see Appendix A-2). This has clearly addressed the RT1 and RT5 in Section 1-2.

Trade off between sparsity of the matrices

The tuning parameter β regularises the sparsity induced in each of the state matrices of the
temporal windows. The results were presented for one window in each of the anesthetic stages
in Figure 4-5. The other neighbouring windows also showed similar results. A sanity check
is shown in Appendix A for monkey M2 in anesthetic start stage for a neighbouring win-
dow (window 1501) (see Appendix A-1). The neighbouring window shows similar oscillations
justifying that the proposed model rightly captures the dynamics between and within the
different anesthetic stages. The tuning parameter β is not the same for every window in the
same anesthetic stage. Anesthetic start stage in Figure 4-1 has a optimal β value of 1500
whereas its neighbouring window has a β value of 225. Yet the oscillations contributed from
the resulting state matrices have similar behaviour, hence, justifying the subject to belong
in anesthetic start stage. The proposed model does ensure that the sparsity of the matrices
induced by the tuning parameter β, rightly captures the dynamics of the brain. Thus, RT2
in Section 1-2 has been handled by the proposed LASSO model.

Proposed model vs. overfitting

Overfitting can be one of the major issues while trying to give a better model for studying
the dynamics under different anesthetic stages. The proposed model is found to be handling
the problem of overfitting with the help of β tuning parameter. Finding the right β with
one-step ahead prediction error has addressed the occurrence of over-fitting. A same value
of β for the different stages can cause over-fitting or under-fitting (see Appendix B), but this
was avoided by finding the one-step ahead error for each of the windows and by customiz-
ing the β value. Hence, RT3 in Section 1-2 has been addressed by the proposed LASSO model.

Eigenmode analysis

In the proposed methodology, eigenmode decomposition, i.e., eigenvalue-eigenvector pair was

Master of Science Thesis M. Sathyanarayanan



46 Results and discussion

computed for analysis of the brain dynamics. In the exiting work in literature [5], only
the magnitude of the eigenvalues were considered, whereas the proposed method utilizes
eigenvectors and the angle of eigenvalue. By choosing the eigenvalues that gives a trade-off
between slow and fast decaying oscillations, and visualising their corresponding eigenvectors
has given great insights to differentiate between anesthetic stages. The oscillations viewed on
the electrode map in Figure 4-6, 4-8, 4-10 and 4-12 rightly relates to the anesthetic stages by
comparing it with the brain regions in Figure 3-1 and each of its functional characteristics.
This method can hence be a starting point in developing signatures that can identify the
stages with real time data, thus addressing the RT5 in Section 1-2.

LASSO model over least squares

The LASSO model in Equation 3-7 is an extension of the least squares model. If the β value
in Equation 3-7 is 0, it formulates as least squares minimization problem. But from the Fig-
ure 4-1 and Table 4-2, it can be clearly seen that the error from one-step ahead prediction is
high for β = 0 than the chosen optimal β value. Perhaps, β, the tuning parameter present in
LASSO is an advantage over the least squares technique.

Advantages of the proposed methodology

• The proposed model uses the tuning parameter β to regularise the sparsity of the system
matrices. Since each of the temporal windows are computed for its optimal β value, the
analysis of the brain dynamics is improved under anesthesia.

• The performance of proposed model is not influenced by the type of drug induced to the
patient/subject. Present day anesthesia monitors, however, do not perform well under
certain types of anesthetic drugs. Since the type of drug is not the parameter of interest
while modelling, it does not have a greater effect on the results.

• The end results, i.e., the electrode oscillations obtained from the eigenvectors are visu-
alised on the brain montage with electrode configuration of the patient. This enhances
the output interpretation in real time rather than an index value used in present day
DoA monitors.

• The data used for analysis was from ECoG, whereas EEG is a commonly used imaging
technique. Since EEG is a non-invasive method to capture the brain waves, the skull of
the head can act as a high pass filter. Therefore, only fast decaying oscillations could
be captured. But with the help of ECoG data, it was possible to study and analyse
using both fast and slow decaying oscillations.
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Chapter 5

Conclusion

Unconsciousness caused by induction of general anesthesia has no reliable method to be
distinguished from awake or unconscious state, with respect to brain activity [10]. The dis-
tinguishing property between conscious and unconscious states is still unknown and is highly
in debate question in the field of neuroscience. Despite anesthesiologists having experience
with awareness and about amount the of anesthetic induction to be dosed, the procedure to
find if the patient might recover from unconsciousness still remains imperfect. In this thesis, a
control theoretic approach was derived to quote the different stages of anesthesia from ECoG
data collected from patients. The results discern a pattern of behaviour from the eigende-
composition, which can be viewed on the brain map, leveraging the method of monitoring
the anesthetic stages in patients.

The existing methods in literature suggested that stability plays an important role in defining
consciousness. The proposed methodology in Chapter 3, is a cut above approach to stability
analysis that studies the properties of the dynamical system. Results in this thesis have im-
proved the assessment of the brain anesthetic states, by inducing a regularised way to choose
the right parameters that contribute to the dynamics. Sections 4-2 and 4-3, highlight how
the proposed model was designed to choose the tuning parameter that captures the system
dynamics and how those dynamics can be viewed to distinguish between different anesthetic
stages. However, from the eigendecomposition, choosing the right eigenvalue to visualise the
eigenvector was a challenge. It was solved by using K-means clustering, of cluster size 2,
which gives a trade-off between slow/fast decaying oscillations highlighted in Figure 4-6.

The minimization problem implemented in cvx, which formulates as a convex optimization
problem, and to find the minimum with β (in Equation 3-7) having different values. Specif-
ically, the proposed model aims to pinpoint the regions of the brain that were active during
different anesthetic stages. This was achieved through the eigenvectors, that were visualised
on the brain electrode mapping. Therefore, it highly helps the end user to clearly have an idea
of the change in dynamics of the brain through the different anesthetic changes. Section 4-3
highlight how electrode activity minimized during the active anesthetic stages, which also can
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be seen in the pattern of eigenvalue evolution (see Figure 4-6). To validate and support the
claims that address the research questions, various sanity checks were done, whose results
are attached in the Appendix A. Overall, the proposed methodology paves a way for a high
level method of anesthetic stage signatures, which can improve the monitoring of patients
(physiologically they are similar to primates) induced with similar anesthetic drugs explored
in this thesis.

5-1 Limitations

The proposed method was worked with ECoG data. It is not the most commonly used clin-
ical medical imaging technique. As ECoG is an invasive technique, it is limited to a specific
group of patients, for example, with epilepsy. While electroencephalograph (EEG) is the
widely used imaging technique for capturing the brain. It is also easy to mount to the head
of the patient as the electrodes are fitted to a cap shape structure and work by the patient
(non-invasive). The EEG data is prone to artefacts and the number of electrodes covering
the head surface is lesser compared to ECoG. The proposed model may have to be effected
with minor changes to mitigate the characteristics of EEG. The performance of the proposed
model with EEG data is unknown as the gel patch used to stick the electrodes of EEG, the
skull surface of the head and the number of electrodes in EEG might affect.

The proposed model was tested on a laptop with limited processor specifications. Hence the
speed of computation was long and therefore to get the results without delay with real time
data a processor with high speed may be required.

5-2 Future work

This research work uses ECoG data from monkeys. While EEG is the most commonly used
and the easiest method to capture brain signals, the performance of the proposed methodology
can be tested with EEG data from humans. The structure and function of the human brain
is more or less the same as that of monkeys. Therefore, the study of comparison using active
electrodes on the regions of the brain, during different anesthetic stages should not affect (see
page 34). Unlike the ECoG, which are implanted into patients per specific regions of purpose,
the EEG electrodes have a standard configuration, hence, the electrode mapping to view the
active electrodes will be the same for all patients.

The proposed methodology can also be implemented in future in a robotic surgery environ-
ment, where the anesthesia can be monitored by viewing the changed in the electrode mapping
and induce anesthetic drugs when needed. But this shall be a phase after rigorous tests and
validations had been carried out on multiple levels, such that the model gains the confidence
among the anesthesiologists and doctors.
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Sanity checks

The LASSO model proposed needs to clear few sanity checks to prove its authenticity. This
section provides results on some of the criteria that the writer anticipates as potential queries
among the readers.

A-1 Sanity check with neighbouring windows

The results shown in the Section 4-3 were for only one of the windows in each of the anesthetic
stage. The model has to perform and provide the same results for the neighbouring windows
of the same anesthetic stage. Figure A-1 shows the results of window 1501 (in Section 4-3,
result was provided for window 1500), which corresponds to the anesthesia start stage.
From Figure A-1, it can be seen that the results are similar that was presented in Figure 4-6
for anesthesia start stage (window 1500)
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Figure A-1: Result for Monkey M2 induced with propofol in anesthesia start stage (window
1501). (A) shows the one-step ahead error plot for β values, with optimal beta β shown with
green vertical line. (B) shows the eigenvalue plot from the state matrix of the chosen β in a
complex plane. (C) shows the cluster assignments and centroids from K-means clustering and
(D) shows the eigenvector plot of the centroids in (C) on monkey M2 electrode configuration.

M. Sathyanarayanan Master of Science Thesis



A-2 Sanity check with same amount of sparsity 51

A-2 Sanity check with same amount of sparsity

The sparsity induced in [5] is by using the threshold criteria. The number of zeros for one of
the window is checked and the same amount of sparsity is induced in the LASSO model for
the same window by tuning the β parameter. Figure A-2 shows the window corresponding to
anesthesia start for same number of zeros for both the threshold criteria and LASSO method.

Figure A-2: Plots showing the results with same amount of sparsity induced in LASSO model in
Equation 3-7 and from threshold criteria in [5]. (A) shows the eigenvalue (top) and eigen vector
plot (bottom) from LASSO model which is tuned using the β parameter to have same amount
of sparsity obtained through threshold criteria shown in (B) (top - eigenvalue plot, bottom -
eigenvector plot)

LASSO has captured some dynamics even with the same sparsity criteria used. It can be
argued that the feature selection by LASSO captures the right dynamics without dropping
it.
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Appendix B

Supplementary

B-1 Effect of same β values

In the proposed model LASSO allows to tune the β parameter for each of the temporal
windows to get the sparsification of the state matrices. The following results shows the effect
of β being the same value (> 0), and analyse how it affects the visualisation of the dynamics.

It can be noted from Figure B-1 that the dynamics for anesthesia injected, recovery start
and recovery end is different from that was obtained for different β values through one-step
ahead error in Figure 4-8. Since the β value was fixed, it has greatly affected the dynamics
being visualised. It can be difficult to differentiate between the stages as they more or less
look similar (see Figure B-1 (A) and (B)). Therefore, finding the optimal β value for each of
the temporal windows can be preferred, than having same value of β for all the windows.
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Figure B-1: Eigenvector of the centroids from K-means clustering for different stages of anes-
thesia - Monkey M1 with propofol for β = 1000. (A) shows the eigenvalue distribution with 2
clusters (red - cluster1 and blue - cluster2) from K-means clustering, (B) eigenvector of centroid
of cluster 1, (C) eigenvector of centroid of cluster 2, visualised on electrode configuration. The
colorbar in (B) and (C) represents the normalised eigenvector values.
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Appendix C

About cvx

cvx is a MATLAB modelling tool to solve convex optimization problem. In general, it is used
to solve linear programs, quadratic programs and also l1 norms. cvx tool enables to formulate
and solve minimization, maximization and other problems. In the proposed methodology,
the LASSO model in Equation 3-7, was implemented using cvx. The algorithm can be
implemented using standard MATLAB commands with the model specifications. The most
commonly used solvers for cvx is SeDuPi [52] and SDPT3 [53], which are interior-point
optimization solvers. For this project the default SDPT3 solver was used. It is to be noted
that cvx cannot be used to check if the problem is convex or not, but a basic knowledge about
convex optimization sis needed before using the solve the problem.

The algorithm in Chapter 3 Section 4-2 is revisited for convenience.

The highlighted cvx formulation in Algorithm 2 is examined below.

• cvx_begin – denotes the specification for the the new cvx formulation and allows the
MATLAB to accept declaration of the variables, objective function and constraints of
the problem.

• variable ai – denotes ai as the optimization variable. This ai is used in the objective
function.

• minimize ai = ‖Xk ∗ ai−Xk+1‖22 + β ∗ ‖ai‖1 – denotes the objective function that is to
be minimised. Here the LASSO problem in Equation 3-7 is implemented.

• cvx_end – denotes the end of cvx specification and that the problem is solved.
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Algorithm 2 Algorithm for cvx to implement LASSO
Require: β ≥ 0
Ensure: window size = 500
β ← desired range of values
N ← length of β values
P ← length of total windows
for n← 1 to N do

for p← 1 to P do
for i← 1 to 128 do . number of channels

ai ← pth(i, :)

cvx_begin
variable ai
β ← variable n
Xk ← ith data
Xk+1 ← one step ahead predicted data
minimize ai = ‖Xk ∗ ai −Xk+1‖22 + β ∗ ‖ai‖1
cvx_end

end for
end for

end for

Instruction to run a cvx block

For this thesis, the latest version of cvx was downloaded from http://www.stanford.edu/
~boyd/cvx. The package needs to be initialized in the MATLAB in the following way [54].

• Open MATLAB

• Change the current directory in the MATLAB to be the location where the package
was placed on the local computer.

• Type cvx_setup in command window of MATLAB. This allows MATLAB to access all
the cvx package files and runs a test code to complete the installation with a No error
message.

• Now run the cvx problem.
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Appendix D

Statistical test

D-1 Two-sample Kolmogorov-Smirnov test

To validate that the distribution of eigenvalues through different anesthetic stages were not
same, it was important to emphasize through a statistical test they were significantly different.
Two-sample Kolmogorov-Smirnov test (K-S test) was used an their results were discussed in
Chapter 4 in pages 38, 41, and 44. The statistical test aims to reject the null hypothesis, which
implies that the alternate hypothesis is true. If the test fails to reject the null hypothesis,
then this implies that the null hypothesis can no longer be accepted [55]. K-S test is a non-
parametric test technique, which means that it is not a function of a parameter, but of a
sample [55]. K-S test is defined as,

H0 : The distribution of the vectors x and y are same (null hypothesis)
H1 : The distribution of the vectors x and y are different (alternate hypothesis)

α(alpha) : 5% significance level.
Test statistic : Difference between the cumulative distribution function of the two vectors.

Null distribution means that the distribution of the test statistic under null hypothesis, where
test statistic is the random variable calculated. Null hypothesis here refers to the condition
or hypothesis where the difference between the two vectors is zero. Therefore, in K-S test,
null distribution happens when the vectors are drawn from the same distribution itself.
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Glossary

List of Acronyms

GA General Anesthesia
DoA depth of anesthesia
ECoG electrocorticography
EEG electroencephalograph
LASSO least absolute shrinkage and selection operator
AR Auto regressive
CNS central nervous system
BIS Bispectral

List of Symbols

β Tuning parameter
δ Sampling frequency
λ Eigenvalue
A State matrix or coupling matrix

Fs Sampling frequency
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