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Abstract—Low-inertia power systems require more 

innovative operation, control, and protection strategies to 

maintain the operation secure and reliable. One of the 

challenges related to these systems is the need for knowledge of 

the inertia level (kinetic energy stored in the rotating masses) in 

real time. This paper proposes a framework for training and 

deploying machine learning methods for real-time power 

systems’ kinetic energy forecasting. Linear Regression and 

Long Short-Term Memory methods are implemented in the 

Python interpreter of the Typhoon HIL 404 real-time simulator 

for forecasting the kinetic energy of the Nordic Power System in 

real-time. This paper provides implementation details together 

with possible future expansions of the framework. Simulation 

results show that the trained models can predict the kinetic 

energy in a forecasting horizon of four hours with a Mean 

Absolute Error lower than other methods currently available in 

the literature. 

Keywords— Forecasting, Inertia, Kinetic Energy, Machine 

Learning, Real-Time 

I. INTRODUCTION 

Historically, power systems have depended primarily on 
massive, synchronous generators powered by steam or gas 
turbines to produce electricity. These generators typically 
have large rotational masses in the rotor, resulting in 
considerable amounts of physical rotational inertia [1]. The 
rotational inertia of these machines works as a stabilising force 
on the grid, helping to maintain the balance between power 
supply and demand [2], [3]. 

One of the key benefits of having enough rotational inertia 
in a power system is that it helps to reduce frequency 
variations by compensating the active power unbalances. The 
frequency in a stable system remains relatively constant, 
usually around the nominal frequency (50 or 60 Hertz) [4], [5]. 
The frequency, on the other hand, might differ from its 
nominal value when the balance between generation and load 
is interrupted due to unexpected changes in demand or 
generation capacity [6], [7]. This frequency fluctuation can 
seriously affect the power system’s stability and reliability [8]. 

Rotational inertia (H) is proportional to the kinetic energy 
(KE) stored in the rotating masses of the machines directly 

connected to a power system. As the penetration of renewable 
inverter-based resources (IBR) increases in power systems, 
physical rotational inertia, and kinetic energy decline. In fact, 
FINGRID (Finish transmission system operator- TSO)  
registers the kinetic energy of the synchronous machines 
connected to the Nordic Power System (NPS) and makes it 
available to the general public online in [9]. Figure 1 shows 
the yearly kinetic energy distribution in the NPS in the last six 
years. The trend shows a higher concentration of values under 
200 GW·s in the most recent years and the lowest minimum 
and maximum values of the kinetic energy registered [10]. 

 
Fig. 1. Yearly distribution of the kinetic energy in the NPS in the last six 
years (2017-2022) [10]. 

Knowing the kinetic energy evolution of power systems in 
advance would greatly help the TSOs, as it would allow 
preventive actions to be taken before the system performance 
enters an unsafe/dangerous operating zone, allowing 
preventive control actions to minimise the operational risk. In 
this sense, data-driven and specifically Machine learning 
(ML) has emerged as a robust technique for tackling 
complicated issues in various domains, including the power 
systems industry [11]. ML approaches have been widely used 
to address problems in power system operation, control, 
planning, and monitoring. Among the techniques are 
supervised learning, unsupervised learning, reinforcement 
learning, deep learning, and applications in load forecasting, 
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fault detection, demand response, renewable energy 
integration, and grid stability enhancement. 

Although there is a consensus in the scientific community 
about the timing requirements of real-time machine-learning 
applications [11], not many works have focused on Real-Time 
Simulators (RTS) [12], which are indispensable tools for 
power system analysis. This paper proposes a framework for 
training and deploying machine learning methods for real-
time power systems’ kinetic energy forecasting using 
Typhoon HIL RTS. All files for replicating the results of this 
work are publicly available at [13]. 

The rest of the paper is organised as follows: Section II 
presents the proposed methodology for real-time kinetic 
energy forecasting using Typhoon HIL real-time simulator. 
Section III shows the simulation results, and finally, Section 
IV details the conclusions of the work and possible expansions 
of the framework. 

II. PROPOSED METHODOLOGY 

The proposed real-time modelling and simulation 
framework requires the use of appropriate software and 
hardware. Although the methodology presented in this paper 
is illustrated using the Typhoon HIL modelling and 
simulation framework, it can be extended to another 
manufacturer with only minor changes (not explained in this 
paper because of space limitations). 

The general methodology consists of three main steps: 
• Step 1. Raw data collection and preparation. 
• Step 2. Step up the real-time simulation framework to 

use external Python libraries/packages. 
• Step 3. Step up and use of the proposed forecasting 

methodology in the real-time simulation framework. 

A. Step 1. Raw data collection and preparation 

The starting point of the methodology is collecting and 
preparing the raw data; this step is performed offline but is 
essential to ensure the successful development of the other 
steps. The dataset consists of a time series of the variables 
under consideration. In this paper, the main application is the 
forecasting of the kinetic inertia, so the authors took the time 
series of the kinetic energy available in the Nordic Power 
System (NPS) that is publicly available in [9]. The authors 
have created a Python code to use an API to systematically 
collect the dataset from the FINGRID repository. The 
automatic collection script allows downloading the time 
series in a commonly used format, comma-separated values 
(CSV) file, for further processing. 

The authors have created customised code in Python to 
preprocess the time series to remove wrong (out of scale) fill 
missing or wrong values, so the data integrity is ensured. The 
processing time of this step is irrelevant as it is running 
offline on the CPU of the host PC.  

B. Step 2. Step up the real-time simulation framework to 

use external Python libraries/packages 

Real-time simulators are equipped with solid modelling 
and simulation software; it has the possibility of extending the 
functionalities by using additional computational libraries 
and/or packages. Depending on the real-time simulator 
hardware and manufacturer, the use of some programming 
languages is more suitable. Some real-time manufacturers 
such as OPAL-RT and Typhoon HIL extend the testing 

functionalities by automating the testing process by using the 
popular interpreted programming language Python. In this 
paper, the main interest is to create a framework to use of 
machine learning algorithms for time series forecasting, so 
Python programming language results are very attractive as 
several libraries extensively used are available, such as 
TensorFlow, SciPy, Skit learn, etc.  

The centre or core of the Typhon HIL real-time modelling 
and simulation framework is the Typhoon HIL Control 
Centre. It enables de use of the Schematic Editor to create the 
models and HIL SCADA to control and run the real-time 
simulation; in both cases, a Python interpreter was created 
when developing the software. However, the user cannot 
install anything to this Python interpreter because it is 
unalterable from the building stage [14], [15]. There is a 
solution, however, that allows the user to install additional 
packages in HIL SCADA and Schematic Editor. The essential 
concept behind this solution is to include the relevant path 
from the host PC into this unalterable Python.  

Initially, the user installs the desired library using the 
package-management system called Pip; it is written in 
Python and is used to install and manage software packages. 
Any library/package available on the PyPI website 
(https://pypi.org/) can be installed using Pip in the typhoon-
python interpreter. For Microsoft Windows cases, the 
Command prompt must be used, to do so: Press the Windows 
Key + R, type in cmd.exe, and press Enter. Open search and 
type in cmd. To install the free and open-source software 
library for machine learning and artificial intelligence 
Tensorflow, the user must type in the Command Prompt and 
then press Enter: 

1: typhoon-python -m pip install tensorflow 

Fig. 2 shows a screen capture showing the use of the 
command-line interpreter to install the very popular Python 
library TensorFlow. 

 
Fig. 2. Illustrative example of Microsoft Windows Command Prompt 
window showing the command line for installing library TensorFlow in the 
Typhoon HIL Python interpreter. 

As soon as the Python library is installed in the appropriate 
location and using the process described above, the library can 
be imported and used in the typhoon-python interpreter. 
However, the user must be careful to add the appropriate path 
where the library was installed. 

The installed Python libraries can be used in several places 
inside the Typhoon HIL framework; one of the places is inside 
the graphical environment used to create a specific interface 
with the real-time model, Typhoon HIL SCADA. The Panel 
Initialization inside the SCADA allows to specify global 
constants, variables, and functions; it includes the use of the 
recently installed Python Libraries. Code 1 (below) shows the 
Python code lines needed to make the code of the library 
available in the module that the user is developing inside the 
HIL SCADA. Again, the path stored in the variable 
sendto_dir is essential to make possible use of the library. 
The installed library will be used for the proposed forecasting 
methodology in the real-time simulation framework in Step 3. 
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Code 1: Importing external Python packages in Typhoon 
HIL SCADA environment 

1: import os  

2: from os import path  

3: import sys  

4: sendto_dir = 

path.expandvars(r’C:\Users\user_name\AppData\Roaming\typhoon\20

XX.X\python_portables\python3_portable\Lib\site-packages’)  

add_to_python_path(os.path.normpath(sendto_dir))  

5: import tensorflow as tf 

C. Step 3: Step up and use the proposed forecasting 

methodology in the real-time simulation framework  

The proposed time-series forecasting for real-time 
hardware is configured to work in three sub-steps, shown 
below and explained in the following subsections. 

• Step 3.1. Initialisation. 
• Step 3.2. Real-time forecasting 
• Step 3.3. Publishing results 

1) Step 3.1. Initialisation 

The initialisation process is performed once at the 
beginning of the real-time simulation. Referring to the 
Typhoon HIL framework, the Typhoon HIL SCADA is used 
to initialise the proposed time-series forecasting framework. 
During this step, the code embedded in the initialisation panel 
allows importing the CSV files containing the KE raw data. 
Next, the data is preprocessed according to Code 2, in which 
the gaps in the raw data are filled using the backfill technique 
and then scaled to the interval [-1.0,1.0], a common practice 
in machine learning data preprocessing. Finally, dropna 
function from the Pandas library removes missing values in 
the time series. 

Code 2: HIL SCADA panel initialisation dialog 

1: # I: Import Libraries 

2:  import tensorflow as tf  

3:  import numpy as np     

4:  import pandas as pd 

5:  import datetime as dt 

6:  from sklearn.linear_model import LinearRegression 

7:  from sklearn.preprocessing import MinMaxScaler 

8: # II: Define a dictionary 

9:  return_dict = {“predicted”:ypred, 

                 “realvalue”:ytest, 

                 “elapsed”:elapsed, 

                 “timecount”:time_count} 

10: # II: Import the time-series from the CSV files 

11:  files = os.listdir(data_path) 

12: df = pd.concat([pd.read_csv(f"{data_path}/{filename}") for 

filename in files]) 

13: # III: Preprocess the data 

14: df = df.asfreq("1min", method="backfill") 

15: SCALER = MinMaxScaler((-1,1)).fit([[130.0], [260.0]]) 
16: df[['Value']] = SCALER.transform(df[['Value']]) 

17: df = df.drop("Value", axis=1) 

18: df = df.dropna() 

19: # III. Training process 

20: # A. Linear Regression model 

21: model = LinearRegression() 

22: model.fit(X_train,y_train) 

23: # B. LSTM model 

24: X_train = np.expand_dims(X_train, axis=2) 

25: X_test = np.expand_dims(X_test, axis=2) 

26: model = tf.keras.Sequential([tf.keras.layers.LSTM(64,…)]) 

27: model.fit(X_train, y_train,validation_data=(X_test,y_test), 

batch_size=512, epochs=100) 

The panel initialisation dialogue can be used either to load 
or train the models. In Code 2, it is shown how to train Linear 
Regression (LR) and Long Short-Term Memory (LSTM) 
models by using model.fit  function. At this point, the data is 
loaded and preprocessed, and the models are ready to start the 
real-time forecasting process. 

 

2) Step 3.2. Real-Time forecasting 

The real-time forecasting process takes place in HIL 
SCADA macro blocks. Depending on the configuration, 
these blocks execute at the beginning of the simulation, on 
user clicks, on a pre-defined timer and on the simulation stop. 
To mimic real-time operation and control of a power system, 
the forecasting is performed on timer event, executed each 
1000 ms. The Python code executed periodically is shown in 
Code 3. 

Code 3: HIL SCADA macro 

1: # I: Load the dictionary 

2:  global return_dict 

3: # Extract the correspongding rows of X_test and y_test 

matrixes 

4:  X_test_row=X_test[time_count,:] 

5:  y_test_row=y_test[time_count,:] 

6: # Perform the forecasting 

7:  y_pred_row = model.predict(X_test_row.reshape(1, -1)) 

8: # De-normalize predictions 

9:  y_pred_row = SCALER.inverse_transform(y_pred_row.reshape(1, 

-1)) 

10:  y_test_row = 

SCALER.inverse_transform(y_test_row.reshape(1, -1)) 

11: # Store the results in a matrix 

12:  y_test_matrix[time_count,:] = y_test_row 

13: # Calculate Mean Absolute Error 

14:  mae = np.mean(np.abs(y_pred_row-y_test_row)) 

15: # Update the fields of the dictionary 

16:  return_dict={"prediccion":y_pred_row[0,0], 

                  "valorreal":y_test_row[0,0], 

                  “elapsed”:elapsed, 

                  “timecount”:time_count} 

17: # Update the time counter 

18: time_count = time_count + 1   

3) Step 3.3. Publishing results 

The final step of the proposed methodology is to publish 
the results of the forecasted time series. The Typhoon HIL 
framework uses the graphical environment available in the 
HIL SCADA to create a specific interface with the real-time 
model. Several widgets available in HIL SCADA, such as 
Text Displays and Trace Graphs widgets, achieve real-time 
monitoring. The former block helps show some information 
about the real-time simulation, for example, the model used 
to make predictions, the past history considered or the 
forecasting horizon length, and the current date. The latter 
block represents in real-time the evolution of the selected 
signals. Code 4 shows the code expression to depict 
simultaneously the actual value and the predicted one in the 
last few predictions. 

Code 4: Expression code of the Trace Graph widget 

1: # I: Load the dictionary 

2:  global return_dict 

3: # II: Extract the correspongding fields 

4:  ypred=return_dict.get("predicted") 

5:  ytest=return_dict.get("realvalue") 

6: # III: Define the data to be displayed 

7:  data = { 

            "analog_names": ["y_pred","y_test"], 

            "analog_values": [float(ypred),float(ytest)], 

            } 

8:  displayValue = data 

III. SIMULATIONS AND RESULTS 

The proposed framework was tested with the KE data of 
the NPS in 2020 with a resolution of one sample per minute. 
The data is preprocessed as detailed in Section II. The data 
from the first nine months of the year are used to train both 
LR and LSTM, considering different sizes of the past history 
(number of samples considered to make a new prediction) 
and the forecasting horizon (number of future values to be 
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predicted). The trained models are tested with the data of 
October, November, and December 2020.  

For the implementation and testing of the proposed 
methodology, a Typhoon HIL 404 real-time simulator with 
Typhoon HIL Control Center V2022.4 sp1 software is used. 
Python programming language version 3.9.6 was installed on 
the host PC. The host PC has Intel® CoreTM i7-7700 CPU-
based processor running Microsoft Windows 10 Pro. Table I 
shows the results of the experiments in terms of the Mean 
Absolute Error (MAE) and the mean execution time in 
milliseconds for different combinations of the model, past 
history and forecasting horizon. 

TABLE I.  SIMULATIONS RESULTS AND PERFORMANCE INDICATORS 

Model 

Past 
history 

Forecasting 
horizon 

MAE 
(GW·s) 

Mean 

execution 

time (ms) 

LR 90 15 0.49 2.69 
LR 180 30 0.72 2.57 
LR 360 60 1.16 2.73 
LR 1440 240 2.71 3.21 

LSTM 90 15 0.46 56.8 
LSTM 180 30 0.71 63.8 
LSTM 360 60 1.09 83.5 
LSTM 1440 240 2.64 126.6 

The results of Table I can draw different conclusions: 
first, the forecasting accuracy decreases when the forecasting 
horizon increases for the two ML approaches. In all the 
combinations of past history and forecasting horizon values, 
LSTM performs slightly better than LR. However, the 
forecasting error is lower for both approaches than that 
presented in [7], [8]. Finally, the mean execution time was 
computed for the algorithms. As seen, the execution time is 
almost constant for the LR approach, whereas it increases as 
well as the past history and the forecasting horizon increase 
in the case of LSTM is used. Nevertheless, these times are 
low enough when compared to the execution rate of the 
forecasting (minute by minute), which means that the 
algorithms are suitable for real-time operation. 

 
Fig. 3. Screen capture of the HIL SCADA panel during the real-time 
simulation. 

Fig. 3 shows the HIL SCADA panel during the real-time 
simulation. As depicted, the panel gives online information 
about the forecasting, such as the ML model in use, the past 
history and forecasting horizon values or the current date. In 
addition, visual information is provided employing Trace 
Graph widgets, which represent the evolution of the predicted 
KE over the last 40 predictions and the mean execution time 
elapsed in each of them. 

IV. CONCLUSIONS 

Integration of high levels of inverter-based resources in 
power systems requires system operators to develop more 
advanced tools for power systems planning and control. This 
work proposes a framework for training and deploying 
machine learning algorithms for real-time kinetic energy 
forecasting. The framework is designed to operate in the 
Python interpreter of the Typhoon HIL Control Center 
software. Implementation details and the forecasting results 
of Linear Regression and Long Short-Term Memory 
algorithms are provided. The real-time simulations showed 
that the algorithms could run online, and the Mean Absolute 
Error was lower than other methods available in the literature. 

Future developments of the proposed framework will 
focus on expanding it to train models in real time. 
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