

Delft University of Technology

Framework for Training and Deployment Machine Learning Methods in Real-Time
Simulator: Short-Term Kinetic Energy Forecasting in Power Systems

Riquelme-Dominguez, Jose Miguel; Gonzalez-Longatt, F.; Valles, Jose M.; Rueda, Jose Luis

DOI
10.1109/MELECON56669.2024.10608671
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)

Citation (APA)
Riquelme-Dominguez, J. M., Gonzalez-Longatt, F., Valles, J. M., & Rueda, J. L. (2024). Framework for
Training and Deployment Machine Learning Methods in Real-Time Simulator: Short-Term Kinetic Energy
Forecasting in Power Systems. In Proceedings of the 2024 IEEE 22nd Mediterranean Electrotechnical
Conference (MELECON) (pp. 1164-1168). IEEE. https://doi.org/10.1109/MELECON56669.2024.10608671
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MELECON56669.2024.10608671
https://doi.org/10.1109/MELECON56669.2024.10608671

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Framework for Training and Deployment Machine
Learning Methods in Real-Time Simulator: Short-

Term Kinetic Energy Forecasting in Power Systems

Jose Miguel Riquelme-Dominguez
Electrical Engineering Department

Universidad de Sevilla

Seville, Spain
jmriquelme@us.es

Francisco Gonzalez-Longatt
Centre for Renewable Energy Systems

Technology (CREST))
Loughborough University

Loughborough, United Kingdom
fglongatt@fglongatt.org

Jose Luis Rueda
Department of Electrical Sustainable

Energy
Technische Universiteit Delft Delft,

Netherlands

Delft, Netherlands
J.L.RuedaTorres@tudelft.nl

Jose M. Valles
Instituto de Ingeniería

Universidad Nacional Autónoma de

México

Mexico City, Mexico
JVallesC@iingen.unam.mx

Abstract—Low-inertia power systems require more

innovative operation, control, and protection strategies to

maintain the operation secure and reliable. One of the

challenges related to these systems is the need for knowledge of

the inertia level (kinetic energy stored in the rotating masses) in

real time. This paper proposes a framework for training and

deploying machine learning methods for real-time power

systems’ kinetic energy forecasting. Linear Regression and

Long Short-Term Memory methods are implemented in the

Python interpreter of the Typhoon HIL 404 real-time simulator

for forecasting the kinetic energy of the Nordic Power System in

real-time. This paper provides implementation details together

with possible future expansions of the framework. Simulation

results show that the trained models can predict the kinetic

energy in a forecasting horizon of four hours with a Mean

Absolute Error lower than other methods currently available in

the literature.

Keywords— Forecasting, Inertia, Kinetic Energy, Machine

Learning, Real-Time

I. INTRODUCTION

Historically, power systems have depended primarily on
massive, synchronous generators powered by steam or gas
turbines to produce electricity. These generators typically
have large rotational masses in the rotor, resulting in
considerable amounts of physical rotational inertia [1]. The
rotational inertia of these machines works as a stabilising force
on the grid, helping to maintain the balance between power
supply and demand [2], [3].

One of the key benefits of having enough rotational inertia
in a power system is that it helps to reduce frequency
variations by compensating the active power unbalances. The
frequency in a stable system remains relatively constant,
usually around the nominal frequency (50 or 60 Hertz) [4], [5].
The frequency, on the other hand, might differ from its
nominal value when the balance between generation and load
is interrupted due to unexpected changes in demand or
generation capacity [6], [7]. This frequency fluctuation can
seriously affect the power system’s stability and reliability [8].

Rotational inertia (H) is proportional to the kinetic energy
(KE) stored in the rotating masses of the machines directly

connected to a power system. As the penetration of renewable
inverter-based resources (IBR) increases in power systems,
physical rotational inertia, and kinetic energy decline. In fact,
FINGRID (Finish transmission system operator- TSO)
registers the kinetic energy of the synchronous machines
connected to the Nordic Power System (NPS) and makes it
available to the general public online in [9]. Figure 1 shows
the yearly kinetic energy distribution in the NPS in the last six
years. The trend shows a higher concentration of values under
200 GW·s in the most recent years and the lowest minimum
and maximum values of the kinetic energy registered [10].

Fig. 1. Yearly distribution of the kinetic energy in the NPS in the last six
years (2017-2022) [10].

Knowing the kinetic energy evolution of power systems in
advance would greatly help the TSOs, as it would allow
preventive actions to be taken before the system performance
enters an unsafe/dangerous operating zone, allowing
preventive control actions to minimise the operational risk. In
this sense, data-driven and specifically Machine learning
(ML) has emerged as a robust technique for tackling
complicated issues in various domains, including the power
systems industry [11]. ML approaches have been widely used
to address problems in power system operation, control,
planning, and monitoring. Among the techniques are
supervised learning, unsupervised learning, reinforcement
learning, deep learning, and applications in load forecasting,

2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)

979-8-3503-8702-5/24/$31.00 ©2024 IEEE 1164

20
24

 IE
EE

 2
2n

d
M

ed
ite

rr
an

ea
n

El
ec

tro
te

ch
ni

ca
l C

on
fe

re
nc

e
(M

EL
EC

O
N

) |
 9

79
-8

-3
50

3-
87

02
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
EL

EC
O

N
56

66
9.

20
24

.1
06

08
67

1

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 07:28:31 UTC from IEEE Xplore. Restrictions apply.

fault detection, demand response, renewable energy
integration, and grid stability enhancement.

Although there is a consensus in the scientific community
about the timing requirements of real-time machine-learning
applications [11], not many works have focused on Real-Time
Simulators (RTS) [12], which are indispensable tools for
power system analysis. This paper proposes a framework for
training and deploying machine learning methods for real-
time power systems’ kinetic energy forecasting using
Typhoon HIL RTS. All files for replicating the results of this
work are publicly available at [13].

The rest of the paper is organised as follows: Section II
presents the proposed methodology for real-time kinetic
energy forecasting using Typhoon HIL real-time simulator.
Section III shows the simulation results, and finally, Section
IV details the conclusions of the work and possible expansions
of the framework.

II. PROPOSED METHODOLOGY

The proposed real-time modelling and simulation
framework requires the use of appropriate software and
hardware. Although the methodology presented in this paper
is illustrated using the Typhoon HIL modelling and
simulation framework, it can be extended to another
manufacturer with only minor changes (not explained in this
paper because of space limitations).

The general methodology consists of three main steps:
• Step 1. Raw data collection and preparation.
• Step 2. Step up the real-time simulation framework to

use external Python libraries/packages.
• Step 3. Step up and use of the proposed forecasting

methodology in the real-time simulation framework.

A. Step 1. Raw data collection and preparation

The starting point of the methodology is collecting and
preparing the raw data; this step is performed offline but is
essential to ensure the successful development of the other
steps. The dataset consists of a time series of the variables
under consideration. In this paper, the main application is the
forecasting of the kinetic inertia, so the authors took the time
series of the kinetic energy available in the Nordic Power
System (NPS) that is publicly available in [9]. The authors
have created a Python code to use an API to systematically
collect the dataset from the FINGRID repository. The
automatic collection script allows downloading the time
series in a commonly used format, comma-separated values
(CSV) file, for further processing.

The authors have created customised code in Python to
preprocess the time series to remove wrong (out of scale) fill
missing or wrong values, so the data integrity is ensured. The
processing time of this step is irrelevant as it is running
offline on the CPU of the host PC.

B. Step 2. Step up the real-time simulation framework to

use external Python libraries/packages

Real-time simulators are equipped with solid modelling
and simulation software; it has the possibility of extending the
functionalities by using additional computational libraries
and/or packages. Depending on the real-time simulator
hardware and manufacturer, the use of some programming
languages is more suitable. Some real-time manufacturers
such as OPAL-RT and Typhoon HIL extend the testing

functionalities by automating the testing process by using the
popular interpreted programming language Python. In this
paper, the main interest is to create a framework to use of
machine learning algorithms for time series forecasting, so
Python programming language results are very attractive as
several libraries extensively used are available, such as
TensorFlow, SciPy, Skit learn, etc.

The centre or core of the Typhon HIL real-time modelling
and simulation framework is the Typhoon HIL Control
Centre. It enables de use of the Schematic Editor to create the
models and HIL SCADA to control and run the real-time
simulation; in both cases, a Python interpreter was created
when developing the software. However, the user cannot
install anything to this Python interpreter because it is
unalterable from the building stage [14], [15]. There is a
solution, however, that allows the user to install additional
packages in HIL SCADA and Schematic Editor. The essential
concept behind this solution is to include the relevant path
from the host PC into this unalterable Python.

Initially, the user installs the desired library using the
package-management system called Pip; it is written in
Python and is used to install and manage software packages.
Any library/package available on the PyPI website
(https://pypi.org/) can be installed using Pip in the typhoon-
python interpreter. For Microsoft Windows cases, the
Command prompt must be used, to do so: Press the Windows
Key + R, type in cmd.exe, and press Enter. Open search and
type in cmd. To install the free and open-source software
library for machine learning and artificial intelligence
Tensorflow, the user must type in the Command Prompt and
then press Enter:

1: typhoon-python -m pip install tensorflow

Fig. 2 shows a screen capture showing the use of the
command-line interpreter to install the very popular Python
library TensorFlow.

Fig. 2. Illustrative example of Microsoft Windows Command Prompt
window showing the command line for installing library TensorFlow in the
Typhoon HIL Python interpreter.

As soon as the Python library is installed in the appropriate
location and using the process described above, the library can
be imported and used in the typhoon-python interpreter.
However, the user must be careful to add the appropriate path
where the library was installed.

The installed Python libraries can be used in several places
inside the Typhoon HIL framework; one of the places is inside
the graphical environment used to create a specific interface
with the real-time model, Typhoon HIL SCADA. The Panel
Initialization inside the SCADA allows to specify global
constants, variables, and functions; it includes the use of the
recently installed Python Libraries. Code 1 (below) shows the
Python code lines needed to make the code of the library
available in the module that the user is developing inside the
HIL SCADA. Again, the path stored in the variable
sendto_dir is essential to make possible use of the library.
The installed library will be used for the proposed forecasting
methodology in the real-time simulation framework in Step 3.

2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)

1165
Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 07:28:31 UTC from IEEE Xplore. Restrictions apply.

Code 1: Importing external Python packages in Typhoon
HIL SCADA environment

1: import os

2: from os import path

3: import sys

4: sendto_dir =

path.expandvars(r’C:\Users\user_name\AppData\Roaming\typhoon\20

XX.X\python_portables\python3_portable\Lib\site-packages’)

add_to_python_path(os.path.normpath(sendto_dir))

5: import tensorflow as tf

C. Step 3: Step up and use the proposed forecasting

methodology in the real-time simulation framework

The proposed time-series forecasting for real-time
hardware is configured to work in three sub-steps, shown
below and explained in the following subsections.

• Step 3.1. Initialisation.
• Step 3.2. Real-time forecasting
• Step 3.3. Publishing results

1) Step 3.1. Initialisation

The initialisation process is performed once at the
beginning of the real-time simulation. Referring to the
Typhoon HIL framework, the Typhoon HIL SCADA is used
to initialise the proposed time-series forecasting framework.
During this step, the code embedded in the initialisation panel
allows importing the CSV files containing the KE raw data.
Next, the data is preprocessed according to Code 2, in which
the gaps in the raw data are filled using the backfill technique
and then scaled to the interval [-1.0,1.0], a common practice
in machine learning data preprocessing. Finally, dropna
function from the Pandas library removes missing values in
the time series.

Code 2: HIL SCADA panel initialisation dialog

1: # I: Import Libraries

2: import tensorflow as tf

3: import numpy as np

4: import pandas as pd

5: import datetime as dt

6: from sklearn.linear_model import LinearRegression

7: from sklearn.preprocessing import MinMaxScaler

8: # II: Define a dictionary

9: return_dict = {“predicted”:ypred,

 “realvalue”:ytest,

 “elapsed”:elapsed,

 “timecount”:time_count}

10: # II: Import the time-series from the CSV files

11: files = os.listdir(data_path)

12: df = pd.concat([pd.read_csv(f"{data_path}/{filename}") for

filename in files])

13: # III: Preprocess the data

14: df = df.asfreq("1min", method="backfill")

15: SCALER = MinMaxScaler((-1,1)).fit([[130.0], [260.0]])
16: df[['Value']] = SCALER.transform(df[['Value']])

17: df = df.drop("Value", axis=1)

18: df = df.dropna()

19: # III. Training process

20: # A. Linear Regression model

21: model = LinearRegression()

22: model.fit(X_train,y_train)

23: # B. LSTM model

24: X_train = np.expand_dims(X_train, axis=2)

25: X_test = np.expand_dims(X_test, axis=2)

26: model = tf.keras.Sequential([tf.keras.layers.LSTM(64,…)])

27: model.fit(X_train, y_train,validation_data=(X_test,y_test),

batch_size=512, epochs=100)

The panel initialisation dialogue can be used either to load
or train the models. In Code 2, it is shown how to train Linear
Regression (LR) and Long Short-Term Memory (LSTM)
models by using model.fit function. At this point, the data is
loaded and preprocessed, and the models are ready to start the
real-time forecasting process.

2) Step 3.2. Real-Time forecasting

The real-time forecasting process takes place in HIL
SCADA macro blocks. Depending on the configuration,
these blocks execute at the beginning of the simulation, on
user clicks, on a pre-defined timer and on the simulation stop.
To mimic real-time operation and control of a power system,
the forecasting is performed on timer event, executed each
1000 ms. The Python code executed periodically is shown in
Code 3.

Code 3: HIL SCADA macro

1: # I: Load the dictionary

2: global return_dict

3: # Extract the correspongding rows of X_test and y_test

matrixes

4: X_test_row=X_test[time_count,:]

5: y_test_row=y_test[time_count,:]

6: # Perform the forecasting

7: y_pred_row = model.predict(X_test_row.reshape(1, -1))

8: # De-normalize predictions

9: y_pred_row = SCALER.inverse_transform(y_pred_row.reshape(1,

-1))

10: y_test_row =

SCALER.inverse_transform(y_test_row.reshape(1, -1))

11: # Store the results in a matrix

12: y_test_matrix[time_count,:] = y_test_row

13: # Calculate Mean Absolute Error

14: mae = np.mean(np.abs(y_pred_row-y_test_row))

15: # Update the fields of the dictionary

16: return_dict={"prediccion":y_pred_row[0,0],

 "valorreal":y_test_row[0,0],

 “elapsed”:elapsed,

 “timecount”:time_count}

17: # Update the time counter

18: time_count = time_count + 1

3) Step 3.3. Publishing results

The final step of the proposed methodology is to publish
the results of the forecasted time series. The Typhoon HIL
framework uses the graphical environment available in the
HIL SCADA to create a specific interface with the real-time
model. Several widgets available in HIL SCADA, such as
Text Displays and Trace Graphs widgets, achieve real-time
monitoring. The former block helps show some information
about the real-time simulation, for example, the model used
to make predictions, the past history considered or the
forecasting horizon length, and the current date. The latter
block represents in real-time the evolution of the selected
signals. Code 4 shows the code expression to depict
simultaneously the actual value and the predicted one in the
last few predictions.

Code 4: Expression code of the Trace Graph widget

1: # I: Load the dictionary

2: global return_dict

3: # II: Extract the correspongding fields

4: ypred=return_dict.get("predicted")

5: ytest=return_dict.get("realvalue")

6: # III: Define the data to be displayed

7: data = {

 "analog_names": ["y_pred","y_test"],

 "analog_values": [float(ypred),float(ytest)],

 }

8: displayValue = data

III. SIMULATIONS AND RESULTS

The proposed framework was tested with the KE data of
the NPS in 2020 with a resolution of one sample per minute.
The data is preprocessed as detailed in Section II. The data
from the first nine months of the year are used to train both
LR and LSTM, considering different sizes of the past history
(number of samples considered to make a new prediction)
and the forecasting horizon (number of future values to be

2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)

1166
Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 07:28:31 UTC from IEEE Xplore. Restrictions apply.

predicted). The trained models are tested with the data of
October, November, and December 2020.

For the implementation and testing of the proposed
methodology, a Typhoon HIL 404 real-time simulator with
Typhoon HIL Control Center V2022.4 sp1 software is used.
Python programming language version 3.9.6 was installed on
the host PC. The host PC has Intel® CoreTM i7-7700 CPU-
based processor running Microsoft Windows 10 Pro. Table I
shows the results of the experiments in terms of the Mean
Absolute Error (MAE) and the mean execution time in
milliseconds for different combinations of the model, past
history and forecasting horizon.

TABLE I. SIMULATIONS RESULTS AND PERFORMANCE INDICATORS

Model

Past
history

Forecasting
horizon

MAE
(GW·s)

Mean

execution

time (ms)

LR 90 15 0.49 2.69
LR 180 30 0.72 2.57
LR 360 60 1.16 2.73
LR 1440 240 2.71 3.21

LSTM 90 15 0.46 56.8
LSTM 180 30 0.71 63.8
LSTM 360 60 1.09 83.5
LSTM 1440 240 2.64 126.6

The results of Table I can draw different conclusions:
first, the forecasting accuracy decreases when the forecasting
horizon increases for the two ML approaches. In all the
combinations of past history and forecasting horizon values,
LSTM performs slightly better than LR. However, the
forecasting error is lower for both approaches than that
presented in [7], [8]. Finally, the mean execution time was
computed for the algorithms. As seen, the execution time is
almost constant for the LR approach, whereas it increases as
well as the past history and the forecasting horizon increase
in the case of LSTM is used. Nevertheless, these times are
low enough when compared to the execution rate of the
forecasting (minute by minute), which means that the
algorithms are suitable for real-time operation.

Fig. 3. Screen capture of the HIL SCADA panel during the real-time
simulation.

Fig. 3 shows the HIL SCADA panel during the real-time
simulation. As depicted, the panel gives online information
about the forecasting, such as the ML model in use, the past
history and forecasting horizon values or the current date. In
addition, visual information is provided employing Trace
Graph widgets, which represent the evolution of the predicted
KE over the last 40 predictions and the mean execution time
elapsed in each of them.

IV. CONCLUSIONS

Integration of high levels of inverter-based resources in
power systems requires system operators to develop more
advanced tools for power systems planning and control. This
work proposes a framework for training and deploying
machine learning algorithms for real-time kinetic energy
forecasting. The framework is designed to operate in the
Python interpreter of the Typhoon HIL Control Center
software. Implementation details and the forecasting results
of Linear Regression and Long Short-Term Memory
algorithms are provided. The real-time simulations showed
that the algorithms could run online, and the Mean Absolute
Error was lower than other methods available in the literature.

Future developments of the proposed framework will
focus on expanding it to train models in real time.

ACKNOWLEDGMENT

This research has been funded by the Andalusian Regional
Government under the project PAIDI 2021-
PROYEXCEL_00588. The authors would like to recognise
the strong support provided by the technical team of Typhoon
HIL.

REFERENCES
[1] B. Tan, J. Zhao, M. Netto, V. Krishnan, V. Terzija, and Y. Zhang,

“Power system inertia estimation: Review of methods and the impacts
of converter-interfaced generations,” Int. J. Electr. Power Energy Syst.,
vol. 134, p. 107362, Jan. 2022, doi: 10.1016/J.IJEPES.2021.107362.

[2] J. M. Valles, C. Angeles-camacho, and F. Gonzalez-longatt, “Modelica
Implementation and Validation of Virtual Synchronous Machine
Control for a VSC in ePHASORSIM,” in IEEE PES General Meeting
2023, Orlando, FL, USA: IEEE, 2023.

[3] R. D. Rodriguez-Soto, E. Barocio, F. Gonzalez-Longatt, F. R. S. Sevilla,
and P. Korba, “Robust Three-Stage Dynamic Mode Decomposition for
Analysis of Power System Oscillations,” IEEE Trans. Power Syst., pp.
1–10, 2023, doi: 10.1109/TPWRS.2023.3275102.

[4] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “On the Inertia of Future
More-Electronics Power Systems,” IEEE J. Emerg. Sel. Top. Power
Electron., vol. 7, no. 4, pp. 2130–2146, 2019, doi:
10.1109/JESTPE.2018.2877766.

[5] H. R. Chamorro, A.-J. Guel-Cortez, E. Kim, F. Gonzalez-Longatt, Á.
Ortega, and W. Martinez, “Information Length Quantification and
Forecasting of Power Systems Kinetic Energy,” IEEE Trans. Power
Syst., vol. 37, no. 6, pp. 4473–4484, 2022, doi:
10.1109/TPWRS.2022.3146314.

[6] J. M. Riquelme-Dominguez, M. N. Acosta, F. Gonzalez-Longatt, M. A.
Andrade, E. Vazquez, and J. L. Rueda, “Improved Harmony Search
Algorithm to Compute the Underfrequency Load Shedding Parameters,”
Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1–15, Nov. 2022, doi:
10.1155/2022/5381457.

[7] A. J. Veronica, N. S. Kumar, and F. Gonzalez-Longatt, “Design of Load
Frequency Control for a Microgrid Using D-partition Method,” Int. J.
Emerg. Electr. Power Syst., vol. 21, no. 1, Feb. 2020, doi:
10.1515/ijeeps-2019-0175.

[8] J. M. Riquelme-Dominguez, F. M. Gonzalez-Longatt, and S. Martinez,
“Decoupled Photovoltaic Power Ramp-rate Calculation Method for
Perturb and Observe Algorithms,” J. Mod. Power Syst. Clean Energy,
vol. 10, no. 4, pp. 932–940, 2022, doi: 10.35833/MPCE.2021.000603.

[9] “Kinetic energy of the Nordic power system - real time data - Dataset -
Fingridin avoin data.” https://data.fingrid.fi/en/dataset/kinetic-energy-
nordic-realtime (accessed May 22, 2023).

[10] F. Gonzalez-Longatt, M. N. Acosta, H. R. Chamorro, and D. Topic,
“Short-term Kinetic Energy Forecast using a Structural Time Series
Model: Study Case of Nordic Power System,” in International
Conference on Smart Systems and Technologies (SST), Osijek, Croatia,
2020.

[11] J. Bian et al., “Machine Learning in Real-Time Internet of Things (IoT)
Systems: A Survey,” IEEE Internet Things J., vol. 9, no. 11, pp. 8364–
8386, Jun. 2022, doi: 10.1109/JIOT.2022.3161050.

[12] J. M. Riquelme-Dominguez et al., "A machine learning-based method-

2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)

1167
Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 07:28:31 UTC from IEEE Xplore. Restrictions apply.

ology for short-term kinetic energy forecasting with real-time
application: Nordic power system case", International Jour-
nal of Electrical Power Energy Systems 156 (2024) 109730.
doi:https://doi.org/10.1016/j.ijepes.2023.109730.

[13] J. M. Riquelme-Dominguez, M. Carranza-García, P. Lara-Benítez, F.
GonzalezLongatt. Kinetic-energy-forecasting. 2023, URL
https://github.com/carranza96/ kinetic-energy-forecasting. (Accessed

12 November 2023).
[14] “(PDF) Import external Python packages in Typhoon HIL.”

https://www.researchgate.net/publication/370341383_Import_external
_Python_packages_in_Typhoon_HIL (accessed May 22, 2023).

[15] “Typhoon HIL.” https://ticket.typhoon-hil.com/kb/faq.php?id=271
(accessed May 22, 2023).

2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)

1168
Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 07:28:31 UTC from IEEE Xplore. Restrictions apply.

