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1
Introduction

Singleagent pathfinding is the act of finding a path between two locations. How to do this efficiently
has been researched extensively, with many applications, such as GPS itinerary planning, robotics,
and games. An example of singleagent pathfinding can be seen in Figure 1.1.

Figure 1.1: An example of singleagent pathfinding. The agent 𝐴0 found the red path to target 𝑇0.

This may be extended to have multiple agents find a path simultaneously. When multiple agents
are doing their own pathfinding simultaneously you may need to consider avoiding collisions, depend
ing on the problem definition. Sometimes the assignments indicating which agent should go to which
location are not specified beforehand. This means that the assignments should be established by the
algorithm. The complexity here is that not all agents can go to their nearest target location, as that
would most likely mean that multiple agents are going to the same target location, leaving some target
locations unreached. Therefore, an assignment algorithm should be used that provides each agent
with their own target location (Xie et al., 2017). Examples of use cases of multiagent pathfinding are
robots running a warehouse, where they need to store items in the correct places while avoiding collid
ing with other robots, or autonomous cars that need to avoid other cars or obstacles (Stern et al., 2019).

This multiagent pathfinding can be extended by allowing each target location to move. In these
cases, it is called multiagent multitarget catching. In this case, whenever the targets move, a better
assignment could occur than what was previously the best. This makes the assignment algorithm a lot
more complex. An example of such a case can be seen in Figure 1.2.

This multiagent multitarget catching is the problem that we will be exploring in this thesis. It is
not extensively studied, most of the literature is about nonmoving targets or singleagent chases. For
the literature that is presenting work on multiagent multitarget chases, the algorithms best ensure
that targets are being caught even if these targets are actively fleeing from the agents. However, the
cases in which these targets are cooperative are not considered yet. An example of a case where the

1



2 1. Introduction

Figure 1.2: An example of how moving targets can change the best assignment. This is done on a 4connected gridmap, i.e.
no diagonals. In their starting position in the left picture, the distance of A1 to T1 is equal to its distance to T2. The same holds
for A2. Thus, either assignment is fine. The assignment A1 to T1 and A2 to T2 is chosen. The agents are then moving along to
the red arrow towards their assigned targets. The targets are moving along to the blue arrows. After one iteration, the situation
is as shown in the right picture. There, the distance of both agents to their targets is still 4, while the distance to the other target
is 2 for both. Thus, it is better to change the assignment to A1 to T2 and A2 to T1. Example by Xie et al., 2017.

target is cooperative is potential passengers wanting to get into a taxi. These people can be asked to
wait somewhere, but sometimes they do not mind to keep walking if that is more efficient. It would not
make sense for these passengers to start actively avoiding any taxi. They would rather create their
own path, maybe past a few stores, and get picked up along that path as quickly as possible. This
changes the type of problem from a multiagent pathfinding problem into a cooperative multiagent
multitarget catching problem. Whenever the targets are cooperative such as these passengers, a lot
more information can be acquired to make the assignments and the movements of the agents much
more accurate.

The main contribution of this thesis is making catching cooperative targets more efficient. The main
research question will therefore be: “Does having cooperative targets improve the efficiency of catching
these targets compared to catching noncooperative targets?” The changes that make these targets
cooperative are that they are not actively avoiding the agents and that they are allowing the agents to
see their path. The location in which each of the agents can catch each target can then be calculated.
The assignments of agents to targets can then be based on these locations. Instead of moving to the
current location of their target, the agents can now go to this previouslycalculated location to catch
their target. We have also created a few variants of the problem. One is a case where the agents do
not disappear whenever they catch a target. Another is the addition of stops on the maps. Agents
cannot stop on any other location than these whenever the stops are active. If there are no suitable
locations on the target’s path, their path will be altered to include an efficient location to be intercepted in.

This thesis is divided into 5 different sections. First, we will discuss the problem in a more detailed
fashion in the Problem Definition section. Then we will show what is already done in this field in the
Related work section. We will show the main contributions in the Contributions section. The exper
iments and results will be shown in the Experiments section. The thesis will be concluded with the
Conclusion.



2
Problem Definition

2.1. Formal description
The domain of the multiagent multitarget catching problem can be formally described as a graph
𝐺 = (𝑉, 𝐸), where 𝑉 consists of all accessible locations and 𝐸 consists of all the edges between every
two vertices depicting locations that are directly adjacent, either horizontally, vertically, or diagonally.
These edges have a distance of 1 for horizontal and vertical neighbors and √2 for diagonal neighbors.

The agents can be described as 𝐴𝑔 = {𝐴0, ..., 𝐴𝑛−1}, where 𝑛 is the number of agents. Similarly, the
targets can be described as 𝑇 = {𝑇0, ..., 𝑇𝑚−1}, where 𝑚 is the number of targets.
The assignment can be described as the function 𝑎𝑠 ∶ 𝐴𝑔 → 𝑇, where 𝑎𝑠(𝐴0) = 𝑇1 means that agent
𝐴0 is assigned to target 𝑇1.
Locations of agents and targets at a certain time can be described as the function 𝑙𝑜𝑐 ∶ 𝐴𝑔 × 𝐼𝑡 → 𝑉,
such that 𝑙𝑜𝑐(𝐴0, 𝐼𝑡) = 𝑉1 means that agent 𝐴0 is in the location depicted by vertex 𝑉1 at iteration 𝐼𝑡.
Thus, the starting locations can be written as 𝑙𝑜𝑐(𝐴0, 0) = 𝑉1, which means that agent 𝐴0 has starting
location 𝑉1.

An action, ormove, is a function 𝑎 ∶ 𝐴𝑔𝑖×𝐴𝑔×𝑇×𝐼𝑡×𝑙𝑜𝑐 → 𝑉, in such away that 𝑎(𝐴0, {𝐴0}, {𝑇0}, 0, 𝑙𝑜𝑐) =
𝑉1 means that considering agents {𝐴0}, targets {𝑇0}, iteration 0, and 𝑙𝑜𝑐(𝐴0, 0) = 𝑉0, the best move for
𝐴0 is to go from 𝑉0 to 𝑉1.
A singleagent plan is a sequence of actions that an agent plans to do, denoted as 𝜋𝑖 = (𝑎0, ..., 𝑎𝑛−1),
where 𝑖 is the agent number and n is the number of steps needed to eventually catch the target.
Every entity has a maximum of one move per iteration. Agents have exactly one move per iteration.
Targets have no move once every stayput + 1 iterations to ensure agents can always catch the targets.

Whenever an agent and their target are in the same location in a graph, they both disappear. Thus,
𝐴𝑔 = {𝐴𝑔 − 𝐴𝑖|𝑙𝑜𝑐(𝐴𝑖) == 𝑙𝑜𝑐(𝑇𝑗), 𝑎𝑠(𝐴𝑖) == 𝑇𝑗} and 𝑇 = {𝑇 − 𝑇𝑗|𝑙𝑜𝑐(𝐴𝑖) == 𝑙𝑜𝑐(𝑇𝑗), 𝑎𝑠(𝐴𝑖) == 𝑇𝑗}.
A chase is done whenever no targets are left. The value of the solution can be viewed from either a
summation or makespan perspective.

For summation, its value is
𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 = ∑

𝐴𝑖∈𝐴𝑔
|𝜋𝑖| (2.1)

For makespan, its value is
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max

𝐴𝑖∈𝐴𝑔
|𝜋𝑖| (2.2)

With these notations, the example in Figure 1.1 can be formally described as:
𝐺 = (𝑉, 𝐸), where

𝑉 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 1), (2, 4), (2, 5), (2, 6), (3, 1), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1),
(4, 3), (4, 4), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 4), (6, 5), (6, 6)}

3



4 2. Problem Definition

and
𝐸 = {((1, 1), (1, 2)), ((1, 1), (2, 1)), ((1, 2), (1, 3)), ((1, 3), (1, 4)), ((1, 4), (2, 4)), ((1, 6), (2, 6)),

((2, 1), (3, 1)), ((2, 4), (2, 5)), ((2, 4), (3, 4)), ((2, 5), (2, 6)), ((2, 5), (3, 5)), ((2, 6), (3, 6)),
((3, 1), (4, 1)), ((3, 3), (3, 4)), ((3, 3), (4, 3)), ((3, 4), (3, 5)), ((3, 4), (4, 4)), ((3, 5), (3, 6)),
((3, 6), (4, 6)), ((4, 1), (5, 1)), ((4, 3), (4, 4)), ((4, 3), (5, 3)), ((4, 4), (5, 4)), ((4, 6), (5, 6)),
((5, 1), (5, 2)), ((5, 1), (6, 1)), ((5, 2), (5, 3)), ((5, 2), (6, 2)), ((5, 3), (5, 4)), ((5, 4), (5, 5)),
((5, 4), (6, 4)), ((5, 5), (5, 6)), ((5, 5), (6, 5)), ((5, 6), (6, 6)), ((6, 1), (6, 2)), ((6, 4), (6, 5)), ((6, 5), (6, 6)))}

with as format (xcoordinate, ycoordinate).

The other variables are filled in as follows:
𝐴𝑔 = {𝐴0}
𝑇 = {𝑇0}
𝑎𝑠(𝐴0) = 𝑇0
𝑙𝑜𝑐(𝐴0, 0) = (1, 1)
𝑙𝑜𝑐(𝑇0, 0) = (4, 4)
𝜋0 = {𝑎(𝐴0, 𝐴𝑔, 𝑇, 0, 𝑙𝑜𝑐) = (1, 2),

𝑎(𝐴0, 𝐴𝑔, 𝑇, 1, 𝑙𝑜𝑐) = (1, 3),
𝑎(𝐴0, 𝐴𝑔, 𝑇, 2, 𝑙𝑜𝑐) = (1, 4),
𝑎(𝐴0, 𝐴𝑔, 𝑇, 3, 𝑙𝑜𝑐) = (2, 4),
𝑎(𝐴0, 𝐴𝑔, 𝑇, 4, 𝑙𝑜𝑐) = (3, 4),
𝑎(𝐴0, 𝐴𝑔, 𝑇, 5, 𝑙𝑜𝑐) = (4, 4)}

2.2. Informal description
Catching multiple targets with multiple agents consists of two different parts. Firstly, the agents must
be assigned a target to move towards. Secondly, the agent must get to the target.

The assignment of targets to agents is a problem that generally has multiple viable solutions. This
is because there are multiple ways for a solution to be considered optimal. A solution may be consid
ered optimal whenever all of the targets are caught as quickly as possible. However, another possible
parameter to optimize is the distance that all agents need to traverse before catching the target. To
illustrate this, Figure 2.1 shows that the optimal solution changes when optimizing for the other param
eter. The optimal assignment is computed of the two agents, A0 and A1, to targets T0 and T1. On the
left, it is optimized for speed, being done in MAX(5,6) = 6 iterations, while for the right assignment, the
targets are caught in MAX(1,7) = 7 iterations. The right assignment is optimized for the least number
of agent moves. This assignment has 1 + 7 = 8 agent moves, while the left assignment has 5 + 6
= 11 agent moves. In this example, the targets are assumed to not move. This is different than in a
real case, so the agents will not generally catch the targets at the locations indicated. However, the
assignment in its original form also only takes the current location of the targets into account, so how
the assignment is done will be the same as in this figure.

While the agents are going towards their target, a different assignment of agents and targets may
become better. This is caused by targets moving into the direction of different agents and agents mov
ing in the direction of different targets as well. An example of this can be found in Figure 2.2. Here,
after the first move, A0 would be better off going after T1 instead of T0 which it was originally planning
to do, and A1 should go after T0 instead of T1 as this assignment would give 2 iterations instead of 4
and 4 agent steps instead of 8. Because of cases like this, it is beneficial to recalculate the assignment
every few iterations to make the agents move as efficiently as possible.

Whenever an agent reaches a target, they both disappear and are unable to move or catch/be
caught. All entities are allowed to be in the same location, collisions are ignored. An agent can only
catch a target that is assigned to it.
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Figure 2.1: Optimizing for speed (left), with MAX(5,6)=6 iterations (left) versus MAX(1,7)=7 iterations (right), and optimizing for
least number of agent moves (right), with 5+6=11 moves (left) versus 1+7=8 moves (right).

Figure 2.2: Using a 4connected gripmap (no diagonals). In the left image, the moves can be seen. The right image show the
resulting locations after one move. In the right image, changing targets gives a better result. Example by Xie et al., 2017.
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What differentiates examples such as the dynamic taxis from police chases is that the potential
passengers want to get caught up by the taxis, while the criminals fleeing from the police do not want
to get caught. This distinction allows for cooperation between agent and target, making the chases
even more efficient. This will be the cornerstone of this thesis.



3
Related work

Cooperative multiagent multitarget catching has come from years of previous research in the field.
This started from regular pathfinding to catching a moving target, first with a single agent and later
with multiple agents. The main components of cooperative multiagent multitarget catching are the
assignment of agents to targets and the movement of the agents. The advantage over multiagent
multitarget catching is that when using cooperative targets, the agents will know where the target will
be in later iterations. This can lead to more accurate assignments and thus more accurate movements.

3.1. Singleagent pathfinding
Before getting agents to catch multiple moving targets, a single agent should first be able to find their
way to a stationary target efficiently. This can be done with Dijkstra’s algorithm shown in Dijkstra et al.,
1959. Problem 2 in Dijkstra’s paper gives us an algorithm that finds the path of the minimum total length
between two given nodes.
Hart et al., 1968 has a heuristics approach to singleagent pathfinding in their algorithm A∗. This means
that estimates are used to determine the shortest path. A commonly used evaluation function for de
termining the cost of an optimal path through node 𝑛 is 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), where 𝑔(𝑛) is the cost to
get from the starting node to 𝑛 and ℎ(𝑛) is the cost to get from 𝑛 to the preferred goal node of 𝑛. 𝑔(𝑛)
and ℎ(𝑛) can be estimated, which will together give an estimation for 𝑓(𝑛). Whenever the estimate for
ℎ(𝑛) is a lower bound for ℎ(𝑛), A∗ is admissible.
Koenig and Likhachev, 2006 improves on this A∗ algorithm with Adaptive A∗, which updates these h
values after each search with the increased information to make them more precise.

3.2. Singleagent chasing
Some targets will not stay in the same place. For a moving target, a singleagent chase is needed.
Ishida and Korf, 1991 presents an algorithm in which heuristics of distance between two points are
used in a singleagent singletarget chase. As the chase continues, these distance values are getting
more accurate. Because heuristics are used, calculating the moves in this chase is done quicker in
exchange for fully being optimal. In order to guarantee that the agents catch these moving targets, the
targets must be slower than the agents or occasionally make an error in avoiding the agent.
Koenig et al., 2007 presents another algorithm for a singleagent chase called MTAdaptive A∗. This
extends the previouslymentioned Adaptive A∗ (Koenig and Likhachev, 2006) by changing the goal
state between searches. It thus updates the hvalues between searches like in Adaptive A∗, but now
also corrects them for the change in goal state.
Sun et al., 2008 presents an algorithm generalizing Adaptive A∗ called Generalized Adaptive A∗ (GAA∗).
This algorithm allows for decreasing the action costs over time by correcting these hvalues for those
after those decreases.

7



8 3. Related work

3.3. Multiagent pathfinding

Stern et al., 2019 presents an overview of multiagent pathfinding (MAPF) variations. They state that
the overarching goal of multiagent pathfinding is to find a solution that can be executed without col
lisions. They define five different types of conflicts, but they acknowledge that it is “certainly not a
complete set of all possible conflicts”. They also mention that there are two common assumptions for
how agents behave at their targets, being either staying at the target and or disappearing whenever
the target is reached. The objective functions makespan and sum of costs are also defined, being the
number of time steps needed for all agents to reach their target and the sum of time steps required by
each agent to reach its target, respectively.

Sharon et al., 2015 introduces a Conflict Based Search (CBS) algorithm for multiagent pathfinding.
It uses singleagent searches at its core and creates a conflict tree to find the conflicts between agents.
Furthermore, Sharon et al., 2015 introduces MetaAgent CBS (MACBS) which groups agents together
that often conflict, treat them as a single composite agent, and work out the conflict separately. This
makes it more flexible than their normal CBS algorithm.
Gange et al., 2019 remarks that CBS still does not work well with maps with many agents. This is partly
due to it not recognizing subproblems and thus continuously solving for the same agents in different
branches of the tree. With their algorithm Lazy CBS, they solve this problem by storing the reasons for
conflicts.

Stern, 2019 shows the heuristics approach to pathfinding. One of those is 𝐴∗. This algorithm ex
pands neighbors starting in the source node and maintains their lowestcost path found, parent node
on that path, and a heuristic estimate of the cost of the path from this vertex to the target vertex. The
heuristic estimate is the shortest path to the target vertex, disregarding any possible collisions that
should be avoided. However, as both the size of the search space and the branching factor, here be
ing the average outgoing degree of a vertex, are exponential in the number of agents, problems with a
large number of agents cannot be solved with 𝐴∗.
One way to combat this lack of scalability is by decoupling the multiagent pathfinding to separate
pathfinding problems with as little interaction as possible. One of the ways to do this is by prioritized
planning. This solves the singleagent pathfinding problems in sequence, while not being allowed to
create a conflict with plans made by earlier agents. The problem with this approach is that it is not
complete nor optimal.

Optimal algorithms, i.e. algorithms that output the best solution possible, are 𝐴∗based (Standley,
2010, Wagner and Choset, 2015), Constraint Programming (CP) (Barták et al., 2017, Surynek, 2010),
Conflictbased search (CBS) (Sharon et al., 2015), and Increasing cost tree search (ICTS) (Sharon
et al., 2013) algorithms. The first two are effective for small graphs, while the latter two are effective
for large graphs.
Approximately optimal multiagent pathfinding algorithms are generally fast but do not always give the
optimal solution. These algorithms accept a parameter 𝜖 > 0 and return a solution that is at most 1+ 𝜖
times the cost of an optimal solution. These are generally based on optimal algorithms and thus the
algorithms mentioned here will also be based on the optimal algorithms previously mentioned. As such,
an 𝐴∗based approximately optimal algorithm isWeighted 𝐴∗ that uses a 𝑔 + (1 + 𝜖)ℎ evaluation func
tion to choose which node to expand (Pohl, 1970). No approximately optimal ICTSbased algorithm
was found, but there is a version in which moving an agent across different edges can have different
costs. This algorithm is based on the Extended ICTS algorithm (Walker et al., 2018). Enhanced CBS
is an approximately optimal MAPF algorithm based on CBS Barer et al., 2014). Suboptimality can be
introduced in the pathfinding of a single agent, by using an approximately optimal algorithm such as
𝐴∗based algorithms. However, suboptimality can also be introduced in the conflict search, by using
focal search, a heuristic search framework introduced by Pearl and Kim, 1982. Lastly, the paper men
tions eMDDSAT, an approximately optimal MAPF algorithm from the CP family that models the MAPF
problem as an SAT problem.
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3.4. Multiagent chasing
Hollinger et al., 2009 presents a bounded approximation algorithm using implicit coordination. They
use a reward function for all different possible actions for every searcher (in our case called an agent).
The reward is higher whenever the target is quickly caught. The solver uses a finitehorizon path
enumeration, meaning that it will plan a finite number of steps ahead and chooses the best path to that
horizon.

3.5. Multiagent multitarget catching
Multiagent multitarget catching is the act of multiple agents chasing and catching multiple moving
targets as efficiently as possible. The difference with the multiagent chasing of the previous section
is that this has multiple moving targets instead of one. One of the challenges is assigning the correct
agent to each target. In the scenario where the targets are moving collisions are usually ignored, i.e.
there can be more than one entity in a single location.

Xie et al., 2017 shows three different assignment criteria: summation cost criterion, which aims to
minimize the total distance between the agent and its assigned target, makespan criterion, which aims
to minimize the number of iterations needed to catch all targets, and mixedcost criterion, which is a
combination of both.
The strategy based on the summation cost criterion uses a Hungarian algorithm (Kuhn, 1955) that
selects the assignments that, together, have the lowest summed distance. This makes sure that the
amount of fuel used is the least possible.
How this works is as follows:
First, turn the assignments into a matrix of the number of agents by the number of targets and fill the
cells with the distance between the corresponding agent and the corresponding target. If the matrix is
not a square matrix, make it a square matrix and fill the remaining row(s) or column(s) with zeros. This
way, you end up with an 𝑛×𝑛 matrix, where 𝑛 is the maximum of the number of agents and the number
of targets.
Second, the Hungarian algorithm will be performed on this matrix:

1. The smallest entry in each row must be subtracted from all of the entries in the row. This makes
that smallest entry equal to 0.

2. The smallest entry in each column must be subtracted from all entries in the column. This makes
that smallest entry also equal to 0.

3. Cover all zeros in the matrix with a minimum number of lines. If the number of lines is equal
to 𝑛, there exists an optimal assignment among the cells with zeros. The agents and targets
corresponding to those cells will be assigned to each other. If the number of lines is less than 𝑛,
continue with step 4.

4. Subtract the value of the smallest element not covered in step 3 from all of the uncovered elements
(including itself). Thus, creating an extra zero. Go back to step 3.

The strategy based on the makespan criterion minimizes the number of iterations needed by removing
assignments that require a high number of steps until a perfect bipartite graph is no longer possible, i.e.
not every agent is assigned to exactly one target. The check of whether a perfect bipartite graph is still
possible is done with the HopcroftKarp algorithm (Hopcroft and Karp, 1973). Assignments with a high
number of steps take up a high number of iterations and therefore using these assignments will not
minimize the number of iterations. It then uses a combination of remaining assignments that together
form a perfect bipartite graph.
The last strategy, based on the mixedcost criterion, uses a combination of the two aforementioned
strategies. It removes the assignments with a higher number of steps and obtains the assignments
that are equal to or below the minimum number of iterations needed, just like in the MKS strategy.
For these remaining assignments, it chooses the combination of assignments that, together, have the
lowest summed distance, calculated with the Hungarian algorithm, as is done in the DIS strategy.
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Another way to solve the multiagent multitarget catching problem is by using multiagent rein
forcement learning (MARL). Every agent will perform a series of decisions based on what it sees and
knows about the environment. Their behavior can be programmed, but often the behaviors are learned
online (Busoniu et al., 2008). This is done by trialanderror and evaluated by the reward values that
the agents receive whenever they get to a new state. Just like the other solutions here, reinforcement
learning is more difficult for multiple agents. In this case, the reason is defining the learning goal. MARL
can be divided into three groups, fully cooperative, fully competitive, and a mix of the two (Zhang et al.,
2021). A fully cooperative setting would be most suitable for our problem. For cooperation, the agents
need to keep track of what information other agents are learning as well. Since the agents are learning
the behaviors of the other agents and targets online, they are not as exact as when using the strategies
mentioned in Xie et al., 2017 but are more flexible.

Sometimes agents cannot see the whole map at once nor are they controlled centrally. This can be
modeled using a decentralized partially observable Markov decision process (DecPOMDP) (Bernstein
et al., 2002). In the example of Oliehoek, 2012, as can be seen in Figure 3.1, the basic idea of the
model can be found, using a twoagent case. Each agent will take action independently, which leads
the environment to change. The environment then rewards the agents based on their new state and
actions. Finally, the agents will observe their new state.
In a DecPOMDP the planning often takes place before execution in a centralized offline phase. The
joint plan will be computed and then sent to all of the agents. The execution phase after will be online,
but decentralized as illustrated in Figure 3.1. The only way the agents can communicate in this phase
is by using states of the environment. As they have limited observations, the planning phase is the
most important.

Figure 3.1: Execution of a decentralized POMDP. Made by Oliehoek, 2012.

Another problem that is a subclass of Multiagent Markov Decision processes (MMDPs) that needs
a decentralized approach is Spatial Task Allocation Problems (SPATAPs) (Claes et al., 2015). Claes
et al., 2015 introduces the idea of Guéant et al., 2011 to the field of online planning in multiagent sys
tems. The key idea is to predict the future actions of the other robots based on their current location.
For this, the robots have to communicate their location to the other robots. Unlike in the DecPOMDP,
this is possible in SPATAPs midexecution, as the planning phase is done at every time step. This way
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a robot does not need to take every target into account in the planning, only the ones that are predicted
to not be caught by other robots. The planning is done online at every time step, allowing the algorithm
to react to changes in the environment. Claes et al., 2015 uses an algorithm for settings with negative
interactions, which discounts rewards for going to a target that another robot is predicted to be going
towards as well. They combine this with the PhaseApproximation approximation algorithm to make
this online planning not as badly scalable.
Claes et al., 2017 expands on this even further by showing that Monte Carlo Tree Search (MCTS)
methods are effective in SPATAPs, especially for more complex problems. Additionally, they extend
SPATAPs with a dropoff point to make the model more realistic.

3.6. Map types
Different types of maps also yield different results. For that reason, we made sure that multiple types
of maps were represented. Stern et al., 2019 displays a vast array of map types, for which we ensured
to include at least one of each in our experiments.
Being able to run the algorithms on all of these map types also ensures that the algorithm works for
every map in which all locations can reach all other locations. These different types consist of: Empty,
Open (small empty map with a lot of agents and targets), Open + obstacles (empty map with randomly
spread obstacles, also called Random), Maze, Room, and Warehouse. Examples of these types of
maps can be found in Figure 3.2.

(a) Example of an empty map. (b) Example of an open map. (c) Example of an open + obstacles map.

(d) Example of a maze map. (e) Example of a room map. (f) Example of a warehouse map.

Figure 3.2: Examples of all the types of maps.
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Contributions

In the assignment strategies of Xie et al., 2017, the location of the target at that moment in time is used
for both assigning agents to targets and for determining which direction each agent should move in.
This means that the agents will always be chasing the targets and the time it takes them to catch the
target entirely depends on the distance between the target and the agent and the difference in speed.
However, since we are picturing scenarios where the targets are cooperative, the targets can help the
agents get to them quicker. The main way this thesis allows the agents to be quicker is by adding the
knowledge of the targets’ paths to the agents.
The advantage of using this exact method over something like the multiagent reinforcement learning
is how optimal it is. With the cooperation of the targets every move is known beforehand, so we better
make use of it. MARL, DecPOMDP, and SPATAPs are all more flexible when not all information is
known. However, they are generally not as precise when all moves are known.

In this chapter, we will discuss the additions of this thesis to the current literature and their impact.
We will first create an overview of the program. We will then highlight the importance of knowing the
target’s path and show how this path can be used. The different variants created will be introduced in
Section 4.3. Lastly, the scalability of the program is discussed.

4.1. Overview program
In the pseudocode of Algorithm 1, an overview of the program is shown. In iteration −1, the paths of
the targets are determined. This is to ensure that those are known before any calculations or moves
are done. After iteration −1, the general sequence of events per iteration is:

1. Assign targets to agents

2. Move all agents

3. Move all targets

The assignments are only done once every number of iterations equal to the variable 𝑔𝑎𝑝. This saves
time and often does not diminish the results as explained in Section 5.5. The agents can move every
iteration. The targets, however, have to stop for one iteration after a number of iterations equal to the
variable 𝑠𝑡𝑎𝑦𝑝𝑢𝑡 has gone by. This indicates the speed difference between the agents and the targets,
where a lower 𝑠𝑡𝑎𝑦𝑝𝑢𝑡 indicates a higher speed difference, with 1 being the lowest 𝑠𝑡𝑎𝑦𝑝𝑢𝑡 at twice
the speed.

4.2. Target path
In the literature, the targets are often trying to not get caught for as long as possible. This means that
they react to where each agent is going and alter their path in such a way as to make it as difficult as
possible for the agents to catch them. In our use cases, the targets want to get caught, so it would not
make sense for them to actively try to get away from the agents. Therefore, the targets will instead

13
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1 for All runs do
2 iteration ←1
3 gap_counter ←gap
4 stayput_counter ←0
5 while not all targets caught do
6 if iteration = 1 then
7 Determine paths of targets
8 else
9 if gap = gap_counter then
10 Determine distance and #steps between all agents and targets
11 Assign targets to agents according to assignment strategies, distances, and

#steps
12 gap_counter ←1
13 else
14 gap_counter ←gap_counter + 1
15 end
16 for Agent agent ∈ all_agents do
17 Move towards assigned target
18 if On location of assigned target then
19 Catch target
20 Disappear
21 end
22 end
23 if stayput = stayput_counter then
24 for Target target ∈ all_targets do
25 Move along own path
26 if On location of assigned agent then
27 Get caught by agent
28 Disappear
29 end
30 end
31 stayput_counter ←0
32 else
33 stayput_counter ←stayput_counter + 1
34 end
35 end
36 iteration ←iteration + 1
37 end
38 end

Algorithm 1: The overview of the whole program
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take the shortest path to a few random locations.
The path of a target, given the target has a predefined path and will not deviate from it, is very valu
able for an agent to know. With this information, along with the knowledge of their difference in speed,
agents can calculate in which location they can intercept their target. While the literature uses the cur
rent location of the target for determining the movement of the agent and the assignment process, the
location in which the agent can intercept the target can now be used. This makes both the moves of
the agent and the assignment much more accurate.
For this, line 10 of Algorithm 1 does not determine the distance and number of steps between the agent
and the target, but between the agent and the location in which it can first catch the target.

4.2.1. New formal description
The formal description of the cooperative variant of the multiagent multitarget chase is very similar to
the noncooperative one.
The objective values of this variant are the same as of the noncooperative variant: catching all of the
targets with values for both total agent distance (Equation 2.1) and number of iterations until the last
target is caught (Equation 2.2).
Just like in the noncooperative variant, the domain can be described as a graph 𝐺 = (𝑉, 𝐸) with 𝑉
depicting the locations and 𝐸 the edges of adjacent locations. The difference is that the agents can
now access the path of the targets.
This path of a target can be described as a list 𝑝𝑎𝑡ℎ = {𝑉𝑘 , ..., 𝑉𝑙}, where both 𝑉𝑘 and 𝑉𝑙 are independent
locations, along with all other locations in the list. For each of the locations in the list, the next one in
the list (if applicable) must be a neighboring location, either vertically, horizontally, or diagonally. When
a target moves, it will go from its current location in the path to the next location in the list.

4.2.2. New informal description
The problem definition of the chase while using the targets’ paths as references of where to go is quite
similar to the original problem described in Chapter 2. The difference is that an agent can now access
the path of the targets and change their strategy based on this extra knowledge.

4.2.3. Using the target’s path
The original assignment function uses the current locations of the targets, calculates the number of
steps and distance to each agent using Dijkstra’s shortest path algorithm (Dijkstra et al., 1959), and in
puts these number of steps and distances into their respective assignment strategies. The assignment
function of the cooperative variant does not use the current location of the target as its reference point
but instead uses the first interceptable location where the agent can catch the target on their path.
The moves of the agents are also not in the direction of the target, but rather in the direction of this
previouslymentioned first intercept location.

4.2.4. Example
In Figure 4.1, an example is shown for how much of an improvement knowing the path of the target
can be. A 4connected gridmap is used, meaning that every move will be either up, right, down, or left
and therefore always be a distance of 1.
The path of the target, using the notation explained in Subsection 4.2.1 is:
𝑝𝑎𝑡ℎ = {(6, 3), (5, 3), (4, 3), (3, 3), (2, 3), (2, 4), (2, 5), (2, 6), (1, 6)}.
In the top half of the Figure, when the agent knows the path of the target, it will go to the left, as it knows
it can intercept the target at the location X (location (2, 3)) shown. This chase will last for 4 iterations,
as the agent needs 4 iterations to get to location X. In the bottom section, which will happen if the agent
does not know the path of the target, the agent will go right, as that is the fastest way to go from its
own location (location (4, 5)) to the current location of the target (location (6, 3)). In picture 2.3, only the
agent will take a step as with a stayput of 4, the target must stay in the same location for one iteration
after every 4 iterations. The chase continues in picture 2.4 and ends up lasting for 12 iterations. As the
agent moves every iteration with a distance of 1, the agent distance is equal to the number of iterations,
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being 4 with path knowledge, and 12 without. This means that in this example, not knowing the target’s
path costs the agent three times as much time and distance.

Figure 4.1: The difference between an agent knowing the target’s path (top) and not knowing the target’s path (bottom).
Using a 4connected gridmap (no diagonals). The stayput parameter is 4, so after every 4 moves, the target has to stand still for
one iteration. This happens in 2.3 . The red arrows are in the direction of the moves that the agent is making. The blue arrows
are in the directions of the target’s moves.

4.2.5. Algorithm for the intercept location
This pseudocode for the algorithm for determining the first interceptable location can be found in Algo
rithm 2. The simplified version where every target path has at least one stopping location and does not
allow changes is explained here. The version that does allow changes is explained in Subsection 4.2.6.

The algorithm has a for loop, initialized at line 2, that goes over the indices of the path. It stores the
location indicated by this index in 𝑙𝑜𝑐. The number of agent steps is determined at line 7 by taking a
Dijkstra’s shortest path from the agent’s current location to 𝑙𝑜𝑐 with distances of all edges set to one
to mimic the number of steps. This is done with the algorithm 𝑠𝑡𝑒𝑝𝑠_𝑡𝑜_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. The number of
target steps is the same as the index of the location, as the path starts with the target’s current location
and every location in the path is adjacent to the previous location. These target steps are stored in
𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑡𝑒𝑝𝑠 at line 8. However, since the target has to stop after every 𝑠𝑡𝑎𝑦𝑝𝑢𝑡 iterations, the num
ber of iterations for the target to arrive is not equal to the number of steps. Thus, the iteration of arrival
is calculated at line 10 and stored in 𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑟𝑟𝑖𝑣𝑒𝑠. The iteration of the departure of the target is
calculated at line 12. This iteration is increased by one as the agent can move earlier than the targets,
allowing them to catch the target just before they leave.
Line 16 checks if the agent arrives at the location earlier than or at the same time as when the target
is leaving location 𝑙𝑜𝑐, i.e. 𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑒𝑝𝑠 ≤ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑣𝑒𝑠, and if location 𝑙𝑜𝑐 can be stopped in. If
both of these checks are true, the agent can catch the target in this location. Whenever this happens,
the location 𝑙𝑜𝑐 will be returned as the first interceptable location. If there is no stoppable location for
which the agent can intercept the target, the algorithm will return the last stoppable location after the
for loop at line 20. This last stoppable location is maintained at line 5.

The algorithm is optimized to have the least number of steps needed for each target. This could,
however, mean that there is another location further on the path that is closer to the agent but for which
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Input : A path 𝑝𝑎𝑡ℎ of the target
The agent 𝑎𝑔𝑒𝑛𝑡 for which the first intercept location is checked
A function 𝑠𝑡𝑜𝑝𝑝𝑎𝑏𝑙𝑒 that takes as input a location and outputs whether the location
can be stopped in

Output: The first interceptable location
1 last_stoppable_location ←1
2 for i ←0 to path_size do
3 loc ←𝑖𝑡ℎ location in path
4 if stoppable(loc) then
5 last_stoppable_location ←loc
6 end
7 agent_steps ←steps_to_location(agent_location, loc)
8 target_steps ←i
9 This is the iteration at which the target arrives at this location
10 target_arrives ←(target_steps + (MAX(target_steps + target_stop_counter  1, 0) / stayput))
11 This is the iteration at which the target leaves this location
12 target_leaves ←(target_steps + (target_steps + target_stop_counter) / stayput) + 1
13 The next two variables are not used in this simplified algorithm

but show what the values are when using this location
14 iterations_to_catch ←MAX(agent_steps, target_arrives)
15 distance_to_catch ←distance_to_location(agent_location, loc)
16 if stoppable(loc) & agent_steps ≤ target_leaves then
17 return loc
18 end
19 end
20 return last_stoppable_location

Algorithm 2: The algorithm to find the first interceptable location on the target’s path

the target takes longer to travel. This will be elaborated on further in Chapter 5.

4.2.6. Advanced algorithm for the intercept location
The advanced pseudocode as explained in this subsection is for when a target is allowed to go off of
its original path. The pseudocode is shown in Algorithm 3.
Just like with the simplified version shown in Figure 2, the forloop goes over all of the indices in the
path and stores the corresponding location to 𝑙𝑜𝑐. This is done at line 6. Just like in the simplified
version, the agent steps, target steps, iteration of arrival of the target, and iteration of departure of the
target are stored. This is done at lines 10, 11, 13, and 15, respectively.

Now what is different here is that for every index in the 𝑝𝑎𝑡ℎ, it is checked whether a different loca
tion can be inserted on that index as a more favorable intercept location. The target is already on the
0𝑡ℎ location on its path, so this will be checked for index 1 and further. Every location will be checked
in the forloop starting at line 20. Line 21 will then filter out all locations in which cannot be stopped,
as those are not suitable intercept locations. For all of these locations the agent steps, target steps,
iteration of arrival of the target, and iteration of departure of the target are stored at lines 22, 23, 24, and
25, respectively. Both the number of iterations until the catch happens and the distance of the agent to
that location are multiplied by the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 to discourage leaving the original path. This is done in lines
26 and 27.

If this is indeed a better location than the original i𝑡ℎ location on the path and the agent can get
there earlier or at the time of the target leaving, store this location and its minimum_iterations and min
imum_distance. After this is done for all of the locations on the map, it is checked whether the target
can stop on the original i𝑡ℎ location and the agent can get there on time. If this is the case, it is checked
whether the original location is at least as good as the best location found outside of the path, factoring
in the penalty for going off of the original path. If this is the case, the algorithm will return the original
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𝑙𝑜𝑐 at line 39. If the other location is better, that location is added to the path in the correct location as
stored in index_to_insert and that location is returned at line 42. If the agent cannot catch the target in
any original or alternative location, the algorithm returns the last stoppable location on the original path
at line 46. This last_stoppable_location is maintained at line 8.

4.2.7. Proof efficiency intercept location
In terms of the number of iterations, this first interceptable location will always be equal or lower than
when the current target location is used, which is when no target path is used. The proof for this claim
is as follows:

Theorem 1. Given a target 𝑡 with its path 𝑝𝑎𝑡ℎ, an agent 𝑎, and the map that they are in, the number of
iterations it takes for agent 𝑎 to catch the target 𝑡 in the first intercept location is always equal or lower
than when the agent chases the target by going after their current location.

Proof. Proof by contradiction:
Assume agent 𝑎 catches target 𝑡 quicker by going after 𝑡’s current location rather than going towards
the first intercept location.
Denote the location that the agent catches the target in using the current location as 𝑙𝑐 and the first
intercept location as 𝑙𝑓.
Since 𝑙𝑓 is the first intercept location, this is the first location where the number of agent steps is lower
than or equal to the iteration in which the target leaves the location.
This means that there cannot be a location earlier on the path that the target can be caught in when it
is there at those iterations.
When going after 𝑡’s current location, no path is known and thus no alterations to the target’s path are
made.
With no earlier location on 𝑝𝑎𝑡ℎ that target 𝑡 can be caught in, and the agent going towards 𝑙𝑓 in the
shortest way possible, there is no way to catch the target faster than the agent going to 𝑙𝑓 using the
shortest path. Thus, agent 𝑎 cannot catch target 𝑡 quicker by going after 𝑡’s current location.
This is a contradiction.

The reason that this also works with multiple agents and multiple targets is that the assignments
are based on every combination of agents and targets.

Theorem 2. Given a set of targets 𝑇 = {𝑡0, ..., 𝑡𝑛}, a set of agents 𝐴 = {𝑎0, ..., 𝑎𝑚}, and the first intercept
locations 𝑙𝑓_𝑖𝑗 for each pair of 𝑡𝑖 and 𝑎𝑗, using other locations for the intercept location will not make
the makespan lower.

When not swapping assignments, no intercept location can get lower. The reason for this is that for
every assignment, the previous theorem holds.
When swapping assignments, the following proof holds:

Proof. Proof by contradiction:
Assume using a further location on the target’s path than 𝑙𝑓_𝑖𝑗 for a target and agent results in a lower
makespan when swapping assignments.
This means that for the assignment 𝑡𝑘  𝑎𝑙 with the highest makespan, an agent 𝑎ℎ can be paired with
𝑡𝑘 to create a lower makespan, while a combination of the other agents and targets can be paired to
have equal or lower makespan than the assignment 𝑡𝑘  𝑎ℎ.
The way the makespan assignment works is that it removes every assignment that has the highest
makespan until no assignment is possible anymore. This means that without assignment 𝑡𝑘  𝑎𝑙 either
𝑡𝑘 takes longer to be caught than when using assignment 𝑡𝑘  𝑎𝑙 or 𝑎𝑙 takes longer to catch another
target than 𝑡𝑘.
Since using the first intercept location for a single agenttarget pair uses the lowest makespan, as
proven in the proof above, using locations later than the first intercept locations does not change that



4.2. Target path 19

Input : A path 𝑝𝑎𝑡ℎ of the target
The agent 𝑎𝑔𝑒𝑛𝑡 for which the first intercept location is checked
A function 𝑠𝑡𝑜𝑝𝑝𝑎𝑏𝑙𝑒 that takes as input a location and outputs whether the location
can be stopped in
The penalty 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 for going off the original path
An algorithm 𝑏𝑒𝑡𝑡𝑒𝑟_𝑓𝑜𝑟_𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 that takes as input the number of iterations and
distance for one location and the number of iterations and distance of another location
and returns true if the first location is better for the current assignment strategy

Output: The first interceptable location
1 minimum_iterations ←max_value
2 minimum_distance ←max_value
3 new_location ←1
4 index_to_insert ←1
5 for i ←0 to path_size do
6 loc ←𝑖𝑡ℎ location in path
7 if stoppable(loc) then
8 last_stoppable_location ←loc
9 end
10 agent_steps ←steps_to_location(agent_location, loc)
11 target_steps ←i
12 This is the iteration at which the target arrives at this location
13 target_arrives ←(target_steps + (MAX(target_steps + target_stop_counter  1, 0) / stayput))
14 This is the iteration at which the target leaves this location
15 target_leaves ←(target_steps + (target_steps + target_stop_counter) / stayput) + 1
16 iterations_to_catch ←MAX(agent_steps, target_arrives)
17 distance_to_catch ←distance_to_location(agent_location, loc)
18 if i > 0 then
19 previous_loc ←(𝑖 − 1)𝑡ℎ location in path
20 for other_location ∈ map do
21 if stoppable(other_location) then
22 new_agent_steps ←steps_to_location(agent_location, other_location)
23 new_target_steps ←steps_to_location(previous_loc, other_location)
24 new_target_arrives ←(new_target_steps + (MAX(new_target_steps +

target_stop_counter  1, 0) / stayput))
25 new_target_leaves ←(new_target_steps + (new_target_steps +

target_stop_counter) / stayput) + 1
26 new_iterations_to_catch ←MAX(new_agent_steps, new_target_arrives) *

𝑝𝑒𝑛𝑎𝑙𝑡𝑦
27 new_distance_to_catch ←distance_to_location(agent_location, loc) * 𝑝𝑒𝑛𝑎𝑙𝑡𝑦
28 if new_agent_steps ≤ new_target_leaves &

better_for_assignment(new_iterations_to_catch, new_distance_to_catch,
minimum_iterations, minimum_distance) then

29 minimum_iterations ←new_iterations_to_catch
30 minimum_distance ←new_distance_to_catch
31 new_location ←other_location
32 index_to_insert ←i
33 end
34 end
35 end
36 end
37 if stoppable(loc) & agent_steps ≤ target_leaves then
38 if better_for_assignment(iterations_to_catch, distance_to_catch, minimum_iterations,

minimum_distance) then
39 return loc
40 else
41 add_location_to_path(new_location, index_to_insert)
42 return new_location
43 end
44 end
45 end
46 return last_stoppable_location

Algorithm 3: The algorithm to find the first interceptable location on the target’s path
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either 𝑡𝑘 takes longer to be caught than when using assignment 𝑡𝑘  𝑎𝑙 or 𝑎𝑙 takes longer to catch
another target than 𝑡𝑘.
Thus, the makespan is not lower when swapping assignments after using later intercept locations than
the first intercept locations.
This is a contradiction.

As explained in 4.2.5, the first intercept location algorithm is not necessarily optimized for the agent
distance. It is possible for agents to stay closer to their starting location and still catch the target, but this
means that the target has to travel further. Since the target is always slower than the agent, letting the
target travel further for the agent’s benefit would increase the number of iterations needed a lot quicker
than when an agent needs to travel further. This could introduce a potentially significant increase in
the number of iterations needed. This is why we have decided that the first intercept location is more
appropriate.

4.3. Variants
We have decided to make different variants for the problem. The main variant makes both the tar
get and the agent disappear whenever an agent catches a target. Whenever there is an equal number
of agents and targets, every agent must catch exactly one target. This is called variation 0 in the figures.

Another variant we have implemented only makes the target disappear, while allowing the agent to
immediately be assigned another target. This is a less realistic variant for many use cases. For ex
ample, for taxis picking up passengers, as the agent (taxi) cannot immediately look for another target
(passenger). This also skews the results, as the assignment algorithms are not designed to have one
agent catch multiple targets, but rather have each agent catch one target. This is called variation 1 in
the figures. For this variation, line 20 of Algorithm 1 is omitted and the agent will not disappear anymore.

Both previously mentioned variants have two different types of maps used. This map type deter
mines whether or not a target or agent can stop in all locations or only in some predetermined ones.
In the latter case, the agents cannot catch targets in locations that are not these stop locations either.
These maps with only specific stop locations are created to simulate a bit more realism, as in real life
a lot of locations are often not safe to stop in. For instance, a passenger cannot stop in the middle of
the highway to get picked up. When searching for a location to catch the target, these locations will
therefore not be taken into consideration. If there are no locations in which the target can stop on the
original path of the target, or another location close to that path is a lot more efficient, the target will
change their path to go through that location instead.

All in all, this means that the following variants are available:

• Variation 0 without stops

• Variation 0 with stops

• Variation 1 without stops

• Variation 1 with stops

4.4. Scalability
To make sure that the storage does not get flooded with paths from each location to every other loca
tion, the paths should be stored intelligently. In our code, this is done by storing for each location to
every other location what direction to go in next. After being in the new location in the direction that
was just returned, the new direction will be checked to get one step closer to the end location. This is
visualized in Figure 4.2. This is the route of the agent shown in 1.1. The ‘X’ shown when in location
(4,4) means that it should not move, as the agent is already in the correct location. For comparison,
the most straightforward way of storing this path would be to store the full list containing “(1,1), (1,2),
(1,3), (1,4), (2,4), (3,4), (4,4)” in the cell with (1,1) as starting location and (4,4) as end location.
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Figure 4.2: The path done by the agent in Figure 1.1 can be stored using one direction for each location passed. Instead of
storing the full path from (1,1) to (4,4) in the matrix cell depicting the path from (1,1) and to (4,4), the agent will request the value
of the matrix cell depicting from every new location to (4,4), returning the direction to go into next.

The time complexity of the Hungarian algorithm and the summation strategy is 𝑂((𝑎 + 𝑡)3) where a
is the number of agents and t is the number of targets (Grinman, 2015, Edmonds and Karp, 1972). The
HopcroftKarp algorithm has a time complexity of 𝑂((𝑎 + 𝑡)2.5), and together with the binary search of
𝑂(𝑙𝑜𝑔(𝑎+𝑡)) used to determine what the lowest maximum steps are such that there is still a viable as
signment, the time complexity is 𝑂((𝑎+𝑡)2.5𝑙𝑜𝑔(𝑎+𝑡)) (Hopcroft and Karp, 1973). The mixed strategy
is a sequence of the makespan strategy and the summation strategy, meaning that the time complexity
is the same as the highest of the two. In this case, that is the summation strategy with 𝑂((𝑎 + 𝑡)3).

The memory is a problem for bigger maps. This is most likely due to the distances and number
of steps between two locations being stored for each location to each other location. One way this
is already alleviated is by storing only the side where the first location is more to the top left than the
second. Unfortunately, even then a 2D array is needed of the number of locations by the number of
locations. Thus, the space complexity of this problem is 𝑂(𝑛2), where 𝑛 is the number of locations.
Another way to compress these paths is by using compression techniques, such as the Compressed
Path Database as shown in Zhao et al., 2020 or even further compression with for instance wildcards
and redundant symbols as described in Chiari et al., 2019. This will be reserved for future work.





5
Experiment

The overall goal of the experiment is to figure out what the impact is of the additional knowledge of
the targets’ paths, different assignment strategies, different maps, different number of agents (which
always equals the number of initial targets), and all of the different variables.

When measuring the impact of the target path knowledge, the different assignment strategies, and
all of the different variables, it will be compared to instances where all of the other influences stay the
same, including the map, the agents’ and targets’ starting locations and the targets’ original paths. For
the number of agents and the different maps, all but the starting locations and paths will stay the same,
as this is in both cases the changing factor.

For all combinations of variables and maps, 100 runs are done. We have created nine different
maps with different features to best represent all maps. The maps used are the ones mentioned in
Section 3.6 with an alternative map for the types random, room, and warehouse. With these maps,
the algorithm is tested for how much distance the agents have traveled (see equation 2.1) and for how
many iterations are needed for all targets to get caught (see equation 2.2). The variables are as follows:

• Map: empty, open, original (mazelike), random, random2, room, room2, warehouse, ware
house2

• Target path used: true/false

• The three assignment strategies: summation (DIS), makespan (MKS), and mixed (MIX)

• The initial number of targets and agents: 1, 2, 5, 10, 20, and 40

• The number of iterations between one iteration the targets cannot move (stayput): 1, 2, 4, 8, and
16

• Every number of iterations (gap) the assignments get recalculated: 1, 2, 4, 8, and 16

• Variation: Variation 0, Variation 1

• Stops: true (specific stopping locations)/false (no specific stopping locations)

With the nine different maps, two different target path used values, three different assignment strate
gies, six different numbers of targets and agents, five different stayput values, five different gap values,
two different variations, and two different stops (latter two as stated in Section 4.3), and 100 runs per
different combination, the total number of runs is 9 × 2 × 3 × 6 × 5 × 5 × 2 × 2 × 100 = 3, 240, 000.

There will first be a summary of all the results in this chapter in Section 5.1. After that, the impact
of the different variables will be shown within their own section, starting with the maps in Section 5.2.
This is followed by the target path usage in Section 5.3 and strategy in Section 5.4. Gap and stayput
are grouped together in Section 5.5 for their similarity in results. Lastly, the variations are explained
with variation 1 in Section 5.6 and stops used in Section 5.7.
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5.1. Summary experiment
The maps have quite a big impact on the performance. Knowing the targets’ paths significantly lowers
the number of iterations and agent distance needed to catch all targets similarly for all maps except for
roomtype maps that do not decrease as significantly as the other.
In general, knowing the targets’ paths leads to about half the number of iterations needed and two
thirds of the agent distance.
Choosing the right strategy is also important, as the distancebased strategy is the worst of the three
for the number of iterations, but the best for agent distance. On the flip side, the makespanbased
strategy is the best in terms of the number of iterations but the worst for agent distance. The mixed
strategy is tied lowest with the makespanbased strategy for the number of iterations and almost as
low as the distancebased strategy for agent distance.

Higher gap values are slightly increasing the number of iterations and agent distance when not us
ing the targets’ paths. When the targets’ paths are used, the different values of the gap and stayput
have no impact.
Higher stayput values have a more significant increase in number of iterations and agent distance
needed to catch all targets when the targets’ paths are unknown. When these paths are known, there
is next to no impact.
Not making agents disappear after catching a target, i.e. variation 1, causes the number of iterations
and agent distance to decrease for each strategy. The makespanbased strategy takes the least ad
vantage of freeing up an agent after catching a target.
Using specific stopping locations generally increases the number of iterations needed. The agent dis
tance is impacted less when not using the targets’ paths and is about the same when the targets’ paths
are used.

5.2. Maps
Using different maps has an impact on the performance. Figure 5.1 shows the average number of
iterations for all number of agents for each of the maps. The entities can stop anywhere and the paths
of the targets are not used. As can be seen, the open map consistently needs the least number of itera
tions to have all targets caught, followed by the empty map. This makes sense, as in those maps there
are no obstacles any of the entities need to go around. The smaller space in the open map compared
to in the empty map leads to fewer iterations needed. The map with consistently the highest number
of iterations needed is the room2 map. In this map, there is often only one way to reach a room which
rarely starts by going in the same direction as the room itself. This leads to a high number of iterations
to even get close to a target.

Figure 5.2 has the same setup as Figure 5.1, but now with the agents using the paths of the targets.
In addition to showing that using the paths here is a lot more efficient in getting the targets caught
quickly, most of the patterns between the different map results are similar. The only maps that stand
out in their pattern are the room maps that stay higher relative to the other maps. Similar to why the
room2 map was higher in Figure 5.1, both of the room maps did not have as much impact from the
knowledge of the targets’ paths because getting to a room often needs a lot of iterations already. Most
of the time, there is only one way to get to a certain room so it does not really matter whether the agents
know the targets’ paths because the agent needs to get to that room anyway.

5.3. Target path difference
The difference between the agent knowing the path of the target or not for the “original” mazelike map
with no stops and using the mixed strategy can be seen in Figures 5.3 and 5.4. This map is chosen
because the results in Section 5.2 have shown “original” to be near the average of all of the maps. As
can be seen, the number of iterations is about twice as low when knowing the targets’ paths. The agent
distance is also lower, being about 1.5 times as effective.
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Figure 5.1: Impact of the type of map without stops and without using the targets’ paths, with the mixed strategy.

Figure 5.2: Impact of the type of map without stops, but with using the targets’ paths, with the mixed strategy.
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Figure 5.3: Difference between an agent NOT knowing the path of the target (in red) and an agent knowing the path of the target
(in blue) on the “original” mazelike map without stops. Shown by measuring the number of iterations for each number of agents.

Figure 5.4: Difference between an agent NOT knowing the path of the target (in red) and an agent knowing the path of the target
(in blue) on the “original” mazelike map without stops. Shown by measuring the agent distance for each number of agents.
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5.4. Strategy difference
Figure 5.5 shows the difference in the resulting number of iterations for each of the three strategies
on the “original” mazelike map without stops. Here can be seen that the distancebased strategy has
the highest number of iterations, which is to be expected as this strategy is the only one of the three
not optimizing for the lowest number of iterations. The number of iterations for the makespanbased
and the mixed strategy is the same for all number of agents. This is because the mixed strategy first
optimizes the makespan before optimizing the resulting possible assignments for the distance.
For this same configuration, the difference in agent distance can be found in Figure 5.6. Here can be
seen that the makespan assignment strategy is the worst for the agent distance. This makes sense
as this strategy is not optimizing for the agent distance, while the other two are. The mixed strategy is
very close to the optimal distancebased strategy in terms of agent distance.

Figure 5.5: Difference in resulting number of iterations for each of the strategies on the “original” mazelike map without stops.
The red line indicates the distancebased strategy, the blue line indicates the makespanbased strategy, and the green line,
which is equal to the blue line, indicates the mixed strategy.

As mentioned in Chapter 4.2.1, the algorithm for determining the location to intercept the target in
is optimized for the least number of steps for the target. The earliest location for which the agent can
catch the target will be the intercept location, which makes sure that the target is caught as early as
possible, but not necessarily with the lowest agent distance. Later locations on the path of the target
may be closer to the agent than the first interceptable location, but it takes more iterations for the target
to get to that location. Given that the target is slower than the agent, this difference in the number
of iterations may be quite significant. If this is not the target that is caught last, this could be a free
decrease in agent distance, but this is something for future work.

5.5. Gap and stayput
The results shown above are only shown in terms of the number of iterations or agent distance for every
number of agents. However, we also mentioned that we would show results for the gap and the stayput.

The results for the different gaps on the “original” mazelike map without stops can be seen in Fig
ures 5.7 and 5.8. Both the number of iterations and agent distance without using the target paths are
very slowly increasing for higher gaps. This is to be expected, as higher gaps mean fewer recalcula
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Figure 5.6: Difference in resulting agent distance for each of the strategies on the “original” mazelike map without stops. The
red line indicates the distancebased strategy, the blue line indicates the makespanbased strategy, and the green line indicates
the mixed strategy.

tions for the assignments. This means less often the most accurate information and thus less often
the most optimal assignments, leading to a higher number of iterations and agent distance. When the
target paths are used, all the agents know where they can catch any target. The assignment is based
on these locations and therefore there is no need for reassignment, rendering the gaps useless. The
results show this by not showing any difference in number of iterations or agent distance for different
values of gap.

The results for the different stayput values on the “original” mazelike map without stops can be
seen in Figures 5.9 and 5.10. Without the knowledge of the targets’ paths, the number of iterations
and agent distance needed for all targets to get caught ramp up with higher stayput values. In this
case, agents are generally following the targets, which makes them rely on their higher speed to catch
the targets. When the stayput value is high, the targets become quicker. It takes the agents therefore
longer to catch up to the targets, explaining the higher number of iterations and agent distance for
higher stayput values.
When the agents do know the path of the targets, they can calculate where the target will be caught
based on the stayput value. Since the targets start anywhere and go anywhere, a faster target could
both mean that the target approaches the agent faster or gets away from the agent faster. Regardless
of that, the agent will calculate where they can intercept the target the earliest and go to that location.
Therefore, the stayput will have next to no influence on the number of iterations or agent distance.

5.6. Variation 1
When agents do not disappear whenever they catch a target, as used in variation 1, the number of
iterations and agent distance is a bit different than whenever they do disappear. This difference can be
seen in Figures 5.11 and 5.12. For the iterations, all are lower than with variation 0. The distancebased
strategy improves the most out of the change to variation 1. The reason for this is that the distance
based strategy often tries to catch each target as quickly as possible, which for this variation frees one
of the agents up to catch another target. The makespanbased strategy, on the other hand, only tries to
get the latest catch as early as possible, which means the closest targets will not necessarily be caught
quickly. This variant, therefore, does not improve the results for this strategy as much. For the agent
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Figure 5.7: Results for different gaps on the “original” mazelike map without stops in terms of number of iterations. The red, blue,
and green lines are the results for the distancebased, makespanbased, and mixed strategy without using the target paths, while
the yellow, magenta, and cyan (directly under the magenta line) lines are the results for the distancebased, makespanbased,
and mixed strategy with the target paths used.

Figure 5.8: Results for different gaps on the “original” mazelike map without stops in terms of agent distance. The red, blue, and
green lines are the results for the distancebased, makespanbased, and mixed strategy without using the target paths, while
the yellow, magenta, and cyan lines are the results for the distancebased, makespanbased, and mixed strategy with the target
paths used.
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Figure 5.9: Results for different stayput values on the “original” mazelike map without stops in terms of number of iterations.
The red, blue, and green lines are the results for the distancebased, makespanbased, and mixed strategy without using the
target paths, while the yellow, magenta, and cyan (directly under the magenta line) lines are the results for the distancebased,
makespanbased, and mixed strategy with the target paths used.

Figure 5.10: Results for different stayput values on the “original” mazelike map without stops in terms of agent distance. The
red, blue, and green lines are the results for the distancebased, makespanbased, and mixed strategy without using the target
paths, while the yellow, magenta, and cyan lines are the results for the distancebased, makespanbased, and mixed strategy
with the target paths used.
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distance, all strategies with variation 1 are lower than their counterpart with variation 0. However, the
makespanbased strategy with variation 1 is still worse than the distancebased and mixed strategy
with variation 0. This is most likely due to the makespanbased strategy not being optimized for agent
distance, nor getting much value out of freeing up agents because the strategy does not necessarily
catch closest targets quickly.

Figure 5.11: The difference in iterations for both variants on the “original” mazelike map without stops. The red, blue, and green
(directly under the blue) line are the distancebased, makespanbased, and mixed strategy with variation 0 where the agents
disappear whenever they catch a target. The yellow, magenta and cyan lines are the distancebased, makespanbased, and
mixed strategy, respectively, for the variation where the agents do not disappear whenever they catch a target.

5.7. Stops
Figures 5.13 and 5.14 show the difference in using only specific stopping locations or allowing agents
and targets to stop anywhere. This is done for all of the three assignment strategies DIS (summa
tion), MKS (makespan), and MIX (mixed), using no paths of the targets, all on the “original” mazelike
map. The figure shows that having no specific stopping location is generally marginally better, both in
terms of the number of iterations and agent distance needed. The reason for this is that the agents are
generally following the targets when no paths are used. Normally, they can instantly catch the target
whenever they get to the same location as them. However, in this case, they may need to follow them
for a few more steps to get to a location in which they can stop and catch them.

Figures 5.15 and 5.16 also show the difference in using only specific stopping locations or allowing
to stop anywhere, for all three assignment strategies on the “original” mazelike map, but now when the
targets’ paths are known. Similar to when no paths were known, allowing to stop anywhere is generally
better in terms of the number of iterations. The difference between having specific stops and allowing
the agents and targets to stop anywhere is bigger when target paths are known. The reason for this
is that the algorithm determining the first intercept location (see Section 4.2) also takes into account
whether the location found can be stopped in.
For the agent distance, however, the results are about the same regardless of being allowed to stop
anywhere or not. The reason for this is that a target could be going towards the agent, which would
make specific stops and therefore a later stopping location advantageous for the agent distance, as the
target will therefore stop closer to the agent’s starting position. The target could also be moving away
from the agent’s starting location, making the later intercept location disadvantageous for the agent’s
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Figure 5.12: The difference in agent distance for both variants on the “original” mazelike map without stops. The red, blue
and green line are variation 0 where the agents disappear whenever they catch a target. The yellow, magenta and cyan lines
are the distancebased, makespanbased, and mixed strategy, respectively, for the variation where the agents do not disappear
whenever they catch a target.

Figure 5.13: Impact in terms of number of iterations of the different strategies shown with both maps with specific stopping lo
cations (stops) and maps where all locations can be stopped in (nostops). No target paths are used, measured on the “original”
mazelike map. The red, blue and green line are the distancebased, makespanbased, and mixed strategy when no specific
stops are used, while the yellow, magenta, and cyan lines are the distancebased, makespanbased, and mixed strategy, re
spectively, where the specific stopping locations are used.
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Figure 5.14: Impact in terms of agent distance of the different strategies shown with both maps with specific stopping locations
(stops) and maps where all locations can be stopped in (nostops). No target paths are used and on the “original” mazelike map.
The red, blue and green line are the distancebased, makespanbased, and mixed strategy when no specific stops are used,
while the yellow, magenta, and cyan lines are the distancebased, makespanbased, and mixed strategy, respectively, where
the specific stopping locations are used.

distance traveled.
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Figure 5.15: Impact in terms of number of iterations of the different strategies shown with both maps with specific stopping
locations (stops) and maps where all locations can be stopped in (nostops). Target paths are used and on the “original” maze
like map. The red, blue and green (equal to the blue line) lines are the distancebased, makespanbased, and mixed strategy
when no specific stops are used, while the yellow, magenta, and cyan (directly under the magenta line) lines are the distance
based, makespanbased, and mixed strategy, respectively, where the specific stopping locations are used.

Figure 5.16: Impact in terms of agent distance of the different strategies shown with both maps with specific stopping locations
(stops) and maps where all locations can be stopped in (nostops). Target paths are used and on the “original” mazelike map.
The red, blue and green lines are the distancebased, makespanbased, and mixed strategy when no specific stops are used,
while the yellow, magenta, and cyan lines are the distancebased, makespanbased, and mixed strategy, respectively, where
the specific stopping locations are used.



6
Conclusion and Future work

We have introduced a way for agents to more efficiently catch cooperative moving targets. Thus, the
research question ”Does having cooperative targets improve the efficiency of catching these targets
compared to catching noncooperative targets?” can be answered with ”Yes”. The way we have in
creased the efficiency is by using the targets’ paths. When targets can share their path, agents can
calculate where they can intercept them and plan accordingly. For all types of maps, both the number
of iterations and agent distance are reduced significantly. The number of iterations needed is about
half of what is needed when no target paths are known. The agent distance is about twothirds.
When knowing the targets’ paths, recalculation of which agent needs to catch which target is not nec
essary anymore, nor does the speed difference between the agents and targets matter much anymore.
Variations in which agents can repeatedly catch different targets improve the performance a little. Vari
ations with specific stopping locations increase the number of iterations needed slightly while staying
relatively even in terms of agent distance when targets’ paths are known.
For future work, compression techniques can be used to be able to perform cooperative multiagent
multitarget catching on bigger maps.
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