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Abstract
We analyze several types of Galerkin approximations of a Gaussian random field
Z : D×Ω → R indexed by a Euclidean domainD ⊂ R

d whose covariance structure
is determinedby anegative fractional power L−2β of a second-order elliptic differential
operator L := −∇ · (A∇) + κ2. Under minimal assumptions on the domain D , the
coefficients A : D → R

d×d , κ : D → R, and the fractional exponent β > 0, we prove
convergence in Lq(Ω; Hσ (D)) and in Lq(Ω; Cδ(D)) at (essentially) optimal rates for
(1) spectral Galerkin methods and (2) finite element approximations. Specifically, our
analysis is solely based on H1+α(D)-regularity of the differential operator L , where
0 < α ≤ 1. For this setting, we furthermore provide rigorous estimates for the error
in the covariance function of these approximations in L∞(D × D) and in the mixed
Sobolev space Hσ,σ (D ×D), showing convergence which is more than twice as fast
compared to the corresponding Lq(Ω; Hσ (D))-rate. We perform several numerical
experiments which validate our theoretical results for (a) the original Whittle–Matérn
class, where A ≡ IdRd and κ ≡ const., and (b) an example of anisotropic, non-
stationary Gaussian random fields in d = 2 dimensions, where A : D → R

2×2 and
κ : D → R are spatially varying.

Mathematics Subject Classification Primary: 35S15 · 65C30 · 65C60 · 65N12 ·
65N30

The first author is supported by the research program VENI Vernieuwingsimpuls with Project Number
639.031.549, which is financed by the Netherlands Organization for Scientific Research (NWO).

B Kristin Kirchner
k.kirchner@tudelft.nl

Sonja G. Cox
s.g.cox@uva.nl

1 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090
GE Amsterdam, The Netherlands

2 Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA
Delft, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-020-01151-x&domain=pdf
http://orcid.org/0000-0002-9417-1542
http://orcid.org/0000-0002-3609-9431


820 S. G. Cox, K. Kirchner

1 Introduction

1.1 Motivation and background

By virtue of their practicality owing to the full characterization by their mean and
covariance structure, Gaussian random fields (GRFs for short) are popular mod-
els for many applications in spatial statistics and uncertainty quantification, e.g.,
[4,7,19,32,39,41]. As a result, several methodologies in these disciplines require the
efficient simulation of GRFs at unstructured locations in various possibly non-convex
Euclidean domains, and this topic has been intensively discussed in both areas, spatial
statistics and computational mathematics, see, e.g., [3,8,14,18,21,28,31,36]. In par-
ticular, sampling from non-stationary GRFs, for which methods based on circulant
embedding are inapplicable, has become a central topic of current research, see, e.g.,
[3,9,18].

In order to capture both stationary and non-stationary GRFs, a new class of random
fields has been introduced in [32], which is based on the following observation made
by Whittle [46]: A GRF Z on D := R

d with covariance function of Matérn type
solves the fractional-order stochastic partial differential equation (SPDE for short)

LβZ = dW in D, L := −Δ + κ2, (1)

where Δ denotes the Laplacian, dW is white noise on R
d , and κ > 0, β > d/4 are

constants which determine the practical correlation length and the smoothness of the
field. In [32] this relation has been exploited to formulate generalizations of Matérn
fields, the generalized Whittle–Matérn fields, by considering the SPDE (1) for non-
stationary differential operators L (e.g., by allowing for a spatially varying coefficient
κ : D → R) on bounded domains D ⊂ R

d , d ∈ {1, 2, 3}. Note that the covariance
structure of a GRF is uniquely determined by its covariance operator, in this case
given by the negative fractional-order differential operator L−2β . Furthermore, for
the case 2β ∈ N, approximations based on a finite element discretization have been
proposed in [32]. Subsequently, a computational approach which allows for arbitrary
fractional exponents β > d/4 has been suggested in [2,3]. To this end, a sinc quadrature
combined with a Galerkin discretization of the differential operator L is applied to the
Balakrishnan integral representation of the fractional-order inverse L−β .

In this work, the Sobolev and Hölder regularity of generalized Whittle–Matérn
fields is investigated, and a rigorous error analysis in these norms is performed for
several Galerkin approximations, including the sinc-Galerkin approximations of [2,3].
Specifically, we consider a GRF Z β : D × Ω → R, indexed by a Euclidean domain
D ⊂ R

d , whose covariance operator is given by the negative fractional power L−2β

of a second-order elliptic differential operator L : D(L) ⊆ L2(D) → L2(D) in
divergence form with Dirichlet boundary conditions, formally given by

Lu = −∇ · (A∇u) + κ2u, u ∈ D(L) ⊆ L2(D). (2)

Here, we solely assume thatD ⊂ R
d has a Lipschitz boundary, κ ∈ L∞(D), and that

A ∈ L∞
(
D; R

d×d
)
is symmetric and uniformly positive definite.
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Whittle–Matérn fields: regularity and approximation 821

For a sequence
(
Z

β
N

)
N∈N of Galerkin approximations for Z β (namely, spec-

tral Galerkin approximations in Sect. 5 and sinc-Galerkin approximations in
Sects. 7 and 8) defined with respect to a family (VN )N∈N of subspaces VN ⊂ H1

0 (D)

of finite dimension dim(VN ) = N < ∞, we prove convergence at (essentially) opti-
mal rates. More precisely, under minimal regularity conditions on the operator L in
(2) and for 0 ≤ σ < 2β − d/2, δ ∈ (0, σ ), within a suitable parameter range we show
that for all ε, q > 0 there exists a constant C > 0 such that, for all N ∈ N,

(
E

[∥∥Z β − Z
β
N

∥∥q
Hσ (D)

])1/q ≤ C N−1/d (2β−σ−d/2−ε), (3)
(
E

[∥∥Z β − Z
β
N

∥∥q

Cδ(D)

])1/q ≤ C N−1/d (2β−σ−d/2−ε), (4)
∥∥
β − 


β
N

∥∥
Hσ,σ (D×D)

≤ C N−1/d (4β−2σ−d/2−ε), (5)

sup
x,y∈D

∣∣
β(x, y) − 

β
N (x, y)

∣∣ ≤ C N−1/d (4β−d−ε). (6)

Here, 
β, 

β
N : D × D → R denote the covariance functions of the Whittle–Matérn

field Z β and of the Galerkin approximation Z
β
N , respectively. For details, see

Corollaries 2–4 for spectral Galerkin approximations, and Theorems 2, 3 for the sinc-
Galerkin approach. “Suitable parameter range” refers to the observations that (a) if a
finite element method of polynomial degree p ∈ N is used to define the sinc-Galerkin
approximation or (b) if L in (2) is H1+α(D)-regular for 0 < α ≤ 1 maximal (see
Definition 4), then the convergence rates of the sinc-Galerkin approximation cannot
exceed p + 1 − σ or min{1 + α − σ, 2α}, where 0 ≤ σ ≤ 1.

We point out that due to the low regularity of white noise, dW ∈ H−d/2−ε(D),
which holds P-almost surely and in Lq(Ω) (cf. [3, Proposition 2.3]) the conver-
gence results (3)–(6) are (essentially, up to ε > 0) optimal and they are also
reflected in our numerical experiments, see Sect. 9 and the discussion in Sect. 10.
Note furthermore that the convergence rates in (4), (6) of the field with respect
to Lq(Ω; Cδ(D)) and of the covariance function in the C(D × D)-norm, which
we obtain via a Kolmogorov–Chentsov argument, are by d/2 better than combin-
ing the results (3), (5) with the Sobolev embeddings H δ+d/2(D) ↪→ Cδ(D) and
H ε+d/2, ε+d/2(D × D) ↪→ C(D × D), respectively. We remark that strong conver-
gence of the sinc-Galerkin approximation with respect to the L2(Ω; L2(D))-norm,
i.e., (3) for σ = 0, at the rate 2β − d/2 has already been proven in [3, Theorem 2.10].
However, the assumptions made in [3, Assumption 2.6 and Equation (2.19)] require
the differential operator L to be at least H2(D)-regular. Thus, our results do not only
generalize the analysis of [3] for the strong error to different norms, but also to less
regular differential operators. This is of relevance for several practical applications,
since the spatial domain, where the GRF is simulated, may be non-convex or the coef-
ficient A may have jumps. For this reason, in Sect. 8.2 we work under the assumption
that L is H1+α(D)-regular for some 0 < α ≤ 1 (for instance, α < π/ω if D is a
non-convex domain with largest interior angle ω > π ).

As an interim result while deriving the error bounds (3)–(6) for the sinc-Galerkin
approximation, we prove a non-trivial extension of one of the main results in [5].
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822 S. G. Cox, K. Kirchner

Namely, we show that for all

β > 0, 0 ≤ σ ≤ min{1, 2β}, −1 ≤ δ ≤ 1 + α, δ 
= 1/2

with

2β + δ − σ > 0,

and for all ε > 0, there exists a constant C > 0 such that, for N ∈ N and g ∈ H δ(D),

∥∥L−βg − L̃−β
N g

∥∥
Hσ (D)

≤ C N−1/d min{2β+δ−σ−ε, 1+α−σ, 1+α+δ, 2α}‖g‖H δ(D). (7)

Here, L̃−1
N : H−1(D) → VN is the approximation of the (non-fractional) data-to-solu-

tion map L−1 : H−1(D) → H1
0 (D) with respect to the Galerkin space

VN ⊂ H1
0 (D). For details see Sect. 6. This error estimate was proven in [5, The-

orem 4.3, Remark 4.1] only for β ∈ (0, 1), σ = 0, and δ ≥ 0, see also the comparison
in Remark 9.

1.2 Outline

After specifying our notation in Sect. 1.3, we rigorously define the second-order ellip-
tic differential operator L from (2) under minimal assumptions on the coefficients A, κ

and the domain D ⊂ R
d in Sect. 2; thereby collecting several auxiliary results for

this type of operators. Section 3 is devoted to the regularity analysis of a GRF colored
by a linear operator T which is bounded on L2(D). These results are subsequently
applied in Sect. 4 to the class of generalized Whittle–Matérn fields, where T := L−β

with L defined as in Sect. 2 and β > d/4. In Sect. 5 we derive the convergence results
(3)–(6) for spectral Galerkin approximations where the finite-dimensional subspace
VN is generated by the eigenvectors of the operator L corresponding to the N smallest
eigenvalues. We then turn to general Galerkin approximations: Section 6 focuses on
establishing estimate (7). In Sect. 7 we provide error estimates for the fully discrete
sinc-Galerkin approximations of generalized Whittle–Matérn fields, where we first
assume that VN is an abstract Galerkin space satisfying certain approximation proper-
ties. Subsequently, in Sect. 8 we show that these approximation properties are indeed
satisfied if the Galerkin spaces originate from a quasi-uniform family of finite element
discretizations of polynomial degree p ∈ N, and we discuss the convergence behavior
for two cases in detail: (i) the coefficients A, κ and the domain D in (2) are smooth,
and (ii) A, κ,D are such that the differential operator L in (2) is only H1+α(D)-
regular for some 0 < α ≤ 1. In Sect. 9 we perform several numerical experiments
for (a) the model example (1), d = 1, using sinc-Galerkin approximations generated
with a conforming finite element method of polynomial degree p ∈ {1, 2}, and (b)
anisotropic, non-stationary generalized Whittle–Matérn fields in d = 2 dimensions,
where the coefficients A : D → R

2×2 and κ : D → R of the differential operator L in
(2) depend on the spatial location. For the latter, we employ conforming finite elements
with bilinear basis functions. In Sect. 10 we reflect on our outcomes.
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Whittle–Matérn fields: regularity and approximation 823

1.3 Notation

Throughout this article, (Ω,F , P) is a complete probability space with expectation
operator E, and D denotes a bounded, connected and open subset of R

d , d ∈ N, with
closure D . Moreover, W is an L2(D)-isonormal Gaussian process, see Definition 1.

For B ⊆ R
d ,B(B) denotes the Borel σ -algebra on B (i.e., the σ -algebra generated

by the sets that are relatively open in B). For two σ -algebrasF and G ,F ⊗ G is the
σ -algebra generated by F × G .

If (E, ‖ · ‖E ) is a Banach space, then (E∗, ‖ · ‖E∗) denotes its dual, 〈 · , · 〉E∗×E

the duality pairing on E∗ × E , IdE the identity on E , and L (E; F) the space of
bounded linear operators from (E, ‖ · ‖E ) to another Banach space (F, ‖ · ‖F ).
For T ∈ L (E; F) we write T ∗ ∈ L (F∗; E∗) for the adjoint of T . If E, F ⊆ V
for some vector space V and if, in addition, IdV |E ∈ L (E; F), then we write
(E, ‖ · ‖E ) ↪→ (F, ‖ · ‖F ). The notation (E, ‖ · ‖E ) ∼= (F, ‖ · ‖F ) indicates
that (E, ‖ · ‖E ) ↪→ (F, ‖ · ‖F ) ↪→ (E, ‖ · ‖E ).

If not specified otherwise, ( · , · )H is the inner product on a Hilbert space H
and L2(H ; U ) ⊆ L (H ; U ) denotes the Hilbert space of Hilbert–Schmidt opera-
tors between two Hilbert spaces H and U . The adjoint of T ∈ L (H ; U ) is identified
with T ∗ ∈ L (U ; H) (via theRieszmaps on H and onU ).WewriteL (E) andL2(H)

whenever E = F and H = U . The domain of a possibly unbounded operator L is
denoted by D(L).

For 1 ≤ q < ∞, Lq(D; E) is the space of equivalence classes of E-valued,
Bochner measurable, q-integrable functions onD and Lq(Ω; E) denotes the space of
equivalence classes of E-valued random variables with finite q-th moment, and

‖ f ‖Lq (D;E) :=
(∫

D
‖ f (x)‖q

E dx

)1/q

, f ∈ Lq(D; E),

‖X‖Lq (Ω;E) := (E[‖X‖q
E

])1/q
, X ∈ Lq(Ω; E).

The space L∞(D; E) consists of all equivalence classes of E-valued, Bochner mea-
surable functions which are essentially bounded on D , and

‖ f ‖L∞(D;E) := ess sup
x∈D

‖ f (x)‖E , f ∈ L∞(D; E).

For γ ∈ (0, 1), we furthermore define the mappings

| · |Cγ (D;E)
, ‖ · ‖Cγ (D;E)

: C(D; E) → [0,∞]

on the Banach space

(
C(D; E), ‖ · ‖C(D;E)

)
, ‖ f ‖C(D;E)

:= sup
x∈D

‖ f (x)‖E ,

123



824 S. G. Cox, K. Kirchner

of continuous functions from D to (E, ‖ · ‖E ) via

| f |Cγ (D;E)
:= sup

x,y∈D
x 
=y

‖ f (x) − f (y)‖E

|x − y|γ , (8)

‖ f ‖Cγ (D;E)
:= sup

x∈D
‖ f (x)‖E + | f |Cγ (D;E)

. (9)

Note that the norm ‖ · ‖Cγ (D;E)
renders the subspace

Cγ (D; E) =
{

f ∈ C(D; E) : ‖ f ‖Cγ (D;E)
< ∞

}
⊂ C(D; E) (10)

of γ -Hölder continuous functions a Banach space. Whenever the functions or random
variables are real-valued, we omit the image space and write C(D), Cγ (D), Lq(D),
and Lq(Ω), respectively. For σ > 0, the (integer- or fractional-order) Sobolev space
is denoted by Hσ (D) (see [13, Sect. 2], [47, Sects. 1.11.4/5]), and H1

0 (D) ⊂ H1(D)

is the closure of the vector space C∞
c (D) of compactly supported smooth functions

in
(
H1(D), ‖ · ‖H1(D)

)
.

We mark equations which hold almost everywhere or P-almost surely with a.e. and

P-a.s., respectively. For two random variables X , Y , we write X
d= Y whenever X

and Y have the same probability distribution. The Dirac measure at x ∈ D is denoted
by δx . Given a parameter set P and mappings A, B : P → R, we let A(p) � B(p)

denote the relation that there exists a constantC > 0, independent of p ∈ P , such that
A(p) ≤ C B(p) for all p ∈ P . For a further parameter setQ and A, B : P×Q → R,
we write A(p, q) �q B(p, q) if, for all q ∈ Q, there exists a constant Cq > 0,
independent of p ∈ P , such that A(p, q) ≤ Cq B(p, q) for all p ∈ P and q ∈ Q.
Finally, A(p) � B(p) indicates that both relations, A(p) � B(p) and B(p) � A(p),
hold simultaneously; and similarly for A(p, q) �q B(p, q).

2 Auxiliary results on second-order elliptic differential operators

As outlined in Sect. 1.1, the overall objective of this article is to study (generalized)
Whittle–Matérn fields andGalerkin approximations for them.Here, we call aGaussian
random field a generalized Whittle–Matérn field if its covariance operator is given by a
negative fractional power of a second-order elliptic differential operator. The purpose
of this section is to present preliminary results on second-order differential operators
which will be of importance for the regularity and error analysis of these fields.

Firstly, we specify the class of differential operators that we consider. We start by
formulating assumptions on the coefficients of the operator. Recall from Sect. 1.3 that
D ⊆ R

d is bounded, connected and open.

Assumption 1 (on the coefficients A and κ) Throughout this article we assume:

123



Whittle–Matérn fields: regularity and approximation 825

I. A ∈ L∞
(
D; R

d×d
)
is symmetric and uniformly positive definite, i.e.,

∃ a0 > 0 : ess inf
x∈D

ξ� A(x)ξ ≥ a0|ξ |2 ∀ ξ ∈ R
d; (11)

II. κ ∈ L∞(D).

Where explicitly specified, we require in addition:

III. A : D → R
d×d is Lipschitz continuous on the closure D , i.e.,

∃ aLip > 0 : |Ai j (x) − Ai j (y)| ≤ aLip|x − y| ∀ x, y ∈ D,

for all i, j ∈ {1, . . . , d}.
Under Assumptions 1.I–II we let L : D(L) ⊂ L2(D) → L2(D) denote the max-

imal accretive operator on L2(D) associated with A and κ2 with domain D(L) ⊂
H1
0 (D). By this we mean thatD(L) consists of precisely those u ∈ H1

0 (D) for which
there exists a constant C ≥ 0 such that

∣
∣∣∣

∫

D

[
(A(x)∇u(x),∇v(x))Rd + κ2(x)u(x)v(x)

]
dx

∣
∣∣∣ ≤ C‖v‖L2(D) ∀ v ∈ H1

0 (D),

and, for u ∈ D(L), Lu is the unique element of L2(D) which, for all v ∈ H1
0 (D),

satisfies

∫

D

[
(A(x)∇u(x),∇v(x))Rd + κ2(x)u(x)v(x)

]
dx = (Lu, v)L2(D). (12)

It is well-known that the operator L : D(L) → L2(D) defined via (12) is densely
defined and self-adjoint (e.g., [37, Propositions 1.22 and 1.24]). Furthermore, by the
Lax–Milgram lemma, its inverse exists and extends to a bounded linear operator
L−1 : H1

0 (D)∗ → H1
0 (D) (e.g., [37, Lemma 1.3]). By the Kondrachov compact-

ness theorem L−1 : L2(D) → L2(D) is compact (e.g., [20, Theorem 7.22]). For this
reason, the spectrum of L consists of a system of only positive eigenvalues (λ j ) j∈N
with no accumulation point, whence we can assume them to be in nondecreasing
order. The following asymptotic spectral behavior, known as Weyl’s law (see, e.g.,
[12, Theorem 6.3.1]), will be exploited several times in our analysis.

Lemma 1 Let L be the second-order differential operator in (12), defined with respect
to the bounded open domain D ⊂ R

d , and with coefficients A and κ fulfilling Assump-
tions 1.I–II. Then, the eigenvalues of L (in nondecreasing order) satisfy

λ j �(A,κ,D) j 2/d, j ∈ N. (13)

We let E := {e j } j∈N denote a system of eigenvectors of the operator L in (12)
which corresponds to the eigenvalues (λ j ) j∈N and which is orthonormal in L2(D).

123



826 S. G. Cox, K. Kirchner

Note that, for σ > 0, the fractional power operator Lσ : D(Lσ ) ⊂ L2(D) → L2(D)

is well-defined. Indeed, on the domain

D(Lσ ) :=
{
ψ ∈ L2(D) :

∑

j∈N
λ2σj (ψ, e j )

2
L2(D) < ∞

}

the action of Lσ is given via the spectral representation

Lσ ψ :=
∑

j∈N
λσ

j (ψ, e j )L2(D)e j , ψ ∈ D(Lσ ).

The subspace

(
Ḣσ

L , ( · , · )σ
)
, Ḣσ

L := D
(
Lσ/2

) ⊂ L2(D), (14)

is itself a Hilbert space with respect to the inner product

(φ,ψ)σ := (Lσ/2φ, Lσ/2ψ
)

L2(D)
=
∑

j∈N
λσ

j (φ, e j )L2(D)(ψ, e j )L2(D),

and the corresponding induced norm ‖ · ‖σ . In what follows, we let Ḣ0
L := L2(D)

and, for σ > 0, Ḣ−σ
L denotes the dual space (Ḣσ

L )∗ after identification via the inner
product ( · , · )L2(D) on L2(D) which is continuously extended to a duality pairing.

In order to derive regularity and convergence results with respect to the Sobolev
space Hσ (D) and the space Cγ (D) of γ -Hölder continuous functions in (10), we
relate the norms involved by employing the Sobolev embeddings and well-known
results from interpolation theory. To this end, we need to consider various assumptions
on the spatial domain D , specified below.

Assumption 2 (on the domain D) Throughout this article, we assume that

I. D has a Lipschitz continuous boundary ∂D .

Where explicitly specified, we additionally suppose one or both of the following:

II. D is convex;
III. D is a polytope.

Note that II. implies I. (see, e.g., [25, Corollary 1.2.2.3]).
In the following lemma we specify the relationship between the spaces Ḣσ

L in (14)
and the Sobolev space Hσ (D), under two sets of assumptions on the spatial domainD
and on the coefficients A, κ of the differential operator L in (12).We recall that [E, F]σ
denotes the complex interpolation space between (E, ‖ · ‖E ) and (F, ‖ · ‖F ) with
parameter σ ∈ [0, 1], see, e.g., [33, Ch. 2].
Lemma 2 Let Assumptions 1.I–II and 2.I be satisfied. Then

(
Ḣσ

L , ‖ · ‖σ

) ∼= ([L2(D), H1
0 (D)

]
σ
, ‖ · ‖[L2(D),H1

0 (D)]σ
)
, 0 ≤ σ ≤ 1, (15)
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Whittle–Matérn fields: regularity and approximation 827

holds for the space
(
Ḣσ

L , ‖ · ‖σ

)
from (14). Furthermore,

(
Ḣσ

L , ‖ · ‖σ

)
↪→ (

Hσ (D), ‖ · ‖Hσ (D)

)
, 0 ≤ σ ≤ 1, (16)

and the norms ‖ · ‖σ , ‖ · ‖Hσ (D) are equivalent on Ḣσ
L for 0 ≤ σ ≤ 1 and σ 
= 1/2.

If, in addition, Assumptions 1.III and 2.II hold, then

(
Ḣσ

L , ‖ · ‖σ

) ∼= (Hσ (D) ∩ H1
0 (D), ‖ · ‖Hσ (D)

)
, 1 ≤ σ ≤ 2. (17)

Proof First, note that [47, Corollary 2.4] implies (15).
If (E, ‖ · ‖E ), (F, ‖ · ‖F ), (G, ‖ · ‖G) are Banach spaces such that the relation

(F, ‖ · ‖F ) ↪→ (G, ‖ · ‖G) holds, then by definition of complex interpolation we have([E, F]σ , ‖ · ‖[E,F]σ
)

↪→ ([E, G]σ , ‖ · ‖[E,G]σ
)
. This observation in connection

with [47, Theorem 1.35] (which collects several results from [45]) shows (16).
Equivalence of ‖ · ‖σ , ‖ · ‖Hσ (D) on Ḣσ

L for 0 ≤ σ ≤ 1, σ 
= 1/2, is proven in
[24, Theorem 8.1].

By combining (15) for σ = 1, [33, Theorem4.36] and [26, Lemma A2] (recalling
Assumption 2.II) we find that (17) for σ ∈ (1, 2) follows once (17) is established for
the case σ = 2.

It thus remains to prove (17) for σ = 2. To this end, we first observe that,
for a vanishing coefficient κ ≡ 0 of the operator L in (12), we have, e.g., by [25,
Theorem3.2.1.2] the regularity result

f ∈ L2(D) ⇒ u := L−1 f ∈ H2(D) ∩ H1
0 (D). (18)

If κ 
≡ 0, then u ∈ H1
0 (D) satisfies the equality−∇ ·(A∇u) = f −κ2u in the weak

sense so that [25,Theorem3.2.1.2] applied to f̃ := f −κ2u ∈ L2(D) again yields (18).
This shows that Ḣ2

L ⊆ H2(D) ∩ H1
0 (D). Since H2(D) ∩ H1

0 (D) ↪→ L2(D) and
Ḣ2

L ↪→ L2(D), continuity of
(
Ḣ2

L , ‖ · ‖2
)

↪→ (
H2(D)∩ H1

0 (D), ‖ · ‖H2(D)

)
follows

from the closed graph theorem.
We now establish the reverse embedding. By Assumption 1.III and, e.g., [17, The-

orem 4 in Ch. 5.8] (note that the assumptions on the boundary posed therein can be
circumvented by exploiting an extension argument as, e.g., in [42, Sect. VI.2.3 Theo-
rem 3], see also the remark below [17, Theorem 4 in Ch. 5.8]), Ai j is differentiable a.e.
in D with essentially bounded weak derivatives ∂xk Ai j ∈ L∞(D), 1 ≤ i, j, k ≤ d.
Thus (by first approximating Ai j in H1(D) with a sequence in C∞(D) to obtain
that Ai j∂x j u is weakly differentiable with ∂xk (Ai j∂x j u) = ∂xk Ai j∂x j u + A∂xk x j u),
we conclude that A∇u ∈ H1(D)d whenever u ∈ H2(D) ∩ H1

0 (D). This shows that
H2(D)∩ H1

0 (D) ⊆ Ḣ2
L . Again by the closed graph theorem, we obtain the continuous

embedding
(
H2(D) ∩ H1

0 (D), ‖ · ‖H2(D)

)
↪→ (

Ḣ2
L , ‖ · ‖2

)
. ��

3 General results on Gaussian random fields

In this section we address different notions of regularity (Hölder and Sobolev) for
Gaussian random fields (GRFs) and their covariance functions. We first recall the
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828 S. G. Cox, K. Kirchner

definition of an L2(D)-isonormal Gaussian process from [35, Definiton 1.1.1]. We
then provide the definition of a GRF on the complete probability space (Ω,F , P) and
specify what we mean by a colored GRF.

Definition 1 We say that a stochastic process W = {W (h) : h ∈ L2(D)} defined
on (Ω,F , P) is an L2(D)-isonormal Gaussian process if W is a family of centered
R-valued Gaussian random variables such that

E[W (h)W (g)] = (h, g)L2(D) ∀ h, g ∈ L2(D). (19)

Recall from [35, Remark 1 on p. 4] that W is linear in h ∈ L2(D).

Definition 2 Let B ⊆ R
d . A family of F -measurable R-valued random variables

(Z (x))x∈B is called a random field (indexed by B). It is called Gaussian if the random
vector (Z (x1), . . . ,Z (xn))� is Gaussian for all finite sets {x1, . . . , xn} ⊂ B. It is
called continuous if the mapping x �→ Z (x)(ω) is continuous for all ω ∈ Ω .

Definition 3 Let T ∈ L (L2(D)). We callZ : D ×Ω → R a Gaussian random field
(GRF) colored by T if it is a GRF, a B(D) ⊗ F -measurable mapping, and

(Z , ψ)L2(D) = W (T ∗ψ) P-a.s. ∀ψ ∈ L2(D). (20)

The covariance operator C ∈ L (L2(D)) of a measurable GRFZ is defined through

(Cφ,ψ)L2(D) = E
[
(Z − E[Z ], φ)L2(D)(Z − E[Z ], ψ)L2(D)

] ∀φ,ψ ∈ L2(D).

This and (19) imply that a GRF colored by T has covariance operator C = T T ∗.

Remark 1 It is well-known that there exists a square-integrable GRFZ colored by T
if and only if T ∈ L2(L2(D)), see also Proposition 3. In this case, the covariance oper-
ator C of the GRFZ has a finite trace on L2(D), tr(C ) = tr(T T ∗) = E

[‖Z ‖2L2(D)

]
.

3.1 Hölder regularity of GRFs

We now provide an abstract result on the construction and Hölder regularity of a GRF
assuming that the color and, thus, the covariance structure of the field is given.

Proposition 1 Assume that T ∈ L (L2(D); Cγ (D)) for some γ ∈ (0, 1). Then, also
T ∈ L (L2(D)) and there exists a continuous GRF Z colored by T such that

Z (x) = W (T ∗δx ) P-a.s. ∀ x ∈ D . (21)

Furthermore, for q ∈ (0,∞) and θ ∈ (0, γ ), we have

(
E

[
‖Z ‖q

Cθ (D)

])1/q

�(q,γ,θ,D) ‖T ‖L (L2(D);Cγ (D))
. (22)
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Whittle–Matérn fields: regularity and approximation 829

Proof Note that T ∈ L (L2(D)) as Cγ (D) ↪→ L2(D). We first define the random
fieldZ0 : D×Ω → R byZ0(x) := W (T ∗δx ) for all x ∈ D . By (19) and the linearity
of W we find, for x, y ∈ D ,

(
E
[|Z0(x) − Z0(y)|2]

)1/2 =
(
E
[|W (T ∗(δx − δy))|2

])1/2 = ‖T ∗(δx − δy)‖L2(D)∗

≤ ‖T ∗‖L (Cγ (D)∗;L2(D)∗)‖δx − δy‖Cγ (D)∗

= ‖T ‖L (L2(D);Cγ (D))
|x − y|γ . (23)

SinceZ0(x)−Z0(y) = W (T ∗(δx −δy)) is a Gaussian random variable, we can apply
the Kahane–Khintchine inequalities (see, e.g., [30, Theorem 6.2.6]) and conclude
with (23) that, for all q ∈ (0,∞), the estimate

|Z0|Cγ (D;Lq (Ω))
≤ Cq sup

x,y∈D
x 
=y

(

E

[∣∣∣∣
Z0(x) − Z0(y)

|x − y|γ
∣∣∣∣

2])1/2

≤ Cq‖T ‖L (L2(D);Cγ (D))
(24)

holds, with a constant Cq > 0 depending only on q.
Thus, by the Kolmogorov–Chentsov continuity theorem (e.g., [40, Theorem I.2.1],

combined with an extension argument as discussed in the proof of [34, Theorem 2.1],
see also [10, Ch. 3]), there exists a continuous random field Z : D × Ω → R such
that Z (x) = Z0(x) P-a.s. for all x ∈ D , and furthermore, for every θ ∈ (0, γ ) and
every finite q > (γ − θ)−1, we can find a constant Cq,γ,θ,D > 0, depending only on
q, γ , θ , as well as the dimension and the diameter of D ⊂ R

d , such that

(
E

[
|Z |q

Cθ (D)

])1/q ≤ Cq,γ,θ,D |Z0|Cγ (D;Lq (Ω))
. (25)

Next, again by the Kahane–Khintchine inequalities, we have, for every x ∈ D and
every q ∈ (0,∞),

(
E
[|Z (x)|q])1/q = (E [|Z0(x)|q])1/q

≤ Cq

(
E

[
|W (T ∗δx )|2

])1/2

≤ Cq‖T ‖L (L2(D);Cγ (D))
. (26)

From (8)–(9) we deduce, for every θ ∈ (0, 1) and all f ∈ Cθ (D), the relation

‖ f ‖Cθ (D)
≤ | f (x)| + (1 + | diam(D)|θ )| f |Cθ (D)

∀ x ∈ D .
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830 S. G. Cox, K. Kirchner

We combine this observation with (24), (25), and (26) to derive, for all θ ∈ (0, γ ) and
all finite q > (γ − θ)−1, the bound

(
E

[
‖Z ‖q

Cθ (D)

])1/q

≤ Cq‖T ‖L (L2(D);Cγ (D))
+ (1 + | diam(D)|θ )

(
E

[
|Z |q

Cθ (D)

])1/q

≤ Cq
(
1 + Cq,γ,θ,D

(
1 + | diam(D)|θ ))‖T ‖L (L2(D);Cγ (D))

. (27)

Note that Hölder’s inequality and (27) ensure that (22) holds for every θ ∈ (0, γ )

and every q ∈ (0,∞). Furthermore, for every ψ ∈ L2(D), one readily verifies the
identity E

[|(Z , ψ)L2(D) − W (T ∗ψ)|2] = 0, i.e., Z is colored by T . ��
If Assumption 2.I is fulfilled, the Sobolev embedding theorem (see, e.g., [13, The-

orem 5.4 and Theorem 8.2]) is applicable and we obtain γ -Hölder continuity (10) for
elements in the fractional-order Sobolev space Hγ+d/2(D) for every γ ∈ (0, 1). This
continuous embedding, Hγ+d/2(D) ↪→ Cγ (D), combined with Proposition 1 leads
to the following result.

Corollary 1 Let Assumption 2.I, γ ∈ (0, 1), and T ∈ L
(
L2(D); Hγ+d/2(D)

)
be

satisfied. Then there exists a continuous GRF Z : D ×Ω → R colored by T , cf. (20),
such that Z (x) = W (T ∗δx ) P-a.s. for all x ∈ D . Moreover, the stability estimate

(
E

[
‖Z ‖q

Cθ (D)

])1/q

�(q,γ,θ,D) ‖T ‖
L
(

L2(D);Hγ+d/2(D)
) (28)

for the q-th moment of Z with respect to the θ -Hölder norm (9) holds for every
θ ∈ (0, γ ) and q ∈ (0,∞).

We close this subsection with a brief discussion on (i) the continuity of covariance
functions of colored GRFs, and (ii) the L∞(D ×D)-distance between two covariance
functions of GRFs colored by different operators.

We recall that the covariance function 
 ∈ L2(D × D) of a square-integrable
random field Z ∈ L2(D × Ω) is defined by


(x, y) = E[(Z (x) − E[Z (x)])(Z (y) − E[Z (y)])] a.e. in D × D . (29)

In the next lemma, this relation and (19) are exploited to characterize continuity of
the covariance function 
 in terms of the color T of the GRF Z .

Proposition 2 Let Z , Z̃ be GRFs colored by T and T̃ , respectively, see (20), with
covariance functions denoted by 
 and 
̃, cf. (29). Then,

(i) 
 has a continuous representative on D × D (again denoted by 
) if and only if
T ∈ L (L2(D); C(D)). In this case,

sup
x,y∈D

|
(x, y)| ≤ ‖T T ∗‖L (C(D)∗;C(D))
; (30)
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(ii) if T , T̃ ∈ L (L2(D); C(D)), then 
, 
̃ ∈ C(D × D) satisfy

sup
x,y∈D

∣
∣
(x, y) − 
̃(x, y)

∣
∣ ≤ ∥∥T T ∗ − T̃ T̃ ∗∥∥

L (C(D)∗;C(D))
. (31)

Proof By (19), (20) and (29), the covariance function 
 of a GRF Z colored by T is
given by


(x, y) = (T ∗δx , T ∗δy)L2(D)∗ a.e. in D × D . (32)

First, let T ∈ L (L2(D); C(D)). Then, we have T ∗ ∈ L (C(D)∗; L2(D)∗) and
continuity of 
 : D × D → R follows from (32).

Assume now that 
 ∈ C(D × D). Then, again by (32), we obtain ‖T ∗δx‖2L2(D)∗ =

(x, x) < ∞ for all x ∈ D and

‖T φ‖C(D)
= sup

x∈D
〈δx , T φ〉C(D)∗×C(D)

≤ sup
x∈D

‖T ∗δx‖L2(D)∗ < ∞

holds for all φ ∈ L2(D) with ‖φ‖L2(D) ≤ 1. Thus, T ∈ L (L2(D); C(D)) if 
 is
continuous. Furthermore, by identifying L2(D)∗ ∼= L2(D) via the Riesz map, the
covariance operator C of Z satisfies C = T T ∗ ∈ L (C(D)∗; C(D)), and we can
deduce (30) from (32) since, for all x, y ∈ D ,

|
(x, y)| = |〈δx , T T ∗δy〉C(D)∗×C(D)
| ≤ ‖T T ∗δy‖C(D)

≤ ‖T T ∗‖L (C(D)∗;C(D))
.

Finally, the estimate (31) can be shown similarly since, for all x, y ∈ D ,

|
(x, y) − 
̃(x, y)| = ∣∣〈δx ,
(
T T ∗ − T̃ T̃ ∗)δy

〉
C(D)∗×C(D)

∣∣.

��

3.2 Sobolev regularity of GRFs and their covariances

After having characterized

(a) the Hölder regularity (in Lq(Ω)-sense) of a GRF Z , and
(b) continuity of the covariance function 
 in (29),

in terms of the color of Z , we now proceed with this discussion for Sobolev spaces.
Specifically, we investigate the regularity of Z in Lq(Ω; Hσ (D)) and of the covari-
ance function 
 with respect to the norm on the mixed Sobolev space

Hσ,σ (D × D) := Hσ (D) ⊗̂ Hσ (D), σ ∈ R. (33)
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Here, ⊗̂ denotes the tensor product of Hilbert spaces. Thus, the inner product on
Hσ,σ (D × D) inducing the norm ‖ · ‖Hσ,σ (D×D) is uniquely defined via

(φ ⊗ χ,ψ ⊗ ϑ)Hσ,σ (D×D) := (φ,ψ)Hσ (D)(χ, ϑ)Hσ (D) ∀φ,ψ, χ, ϑ ∈ Hσ (D).

In Proposition 3 below we first quantify the Ḣσ
L -regularity (in Lq(Ω)-sense) of a

colored GRF in terms of its color, cf. (14) and Definition 3. In addition, we specify
the regularity of the covariance function (29) in the Hilbert tensor product space

(
Ḣσ,σ

L , ‖ · ‖σ,σ

)
, Ḣσ,σ

L := Ḣσ
L ⊗̂ Ḣσ

L , σ ∈ R, (34)

cf. (33). Finally, we characterize the distance between two GRFs which are colored by
different operatorswith respect to these norms.CombiningProposition 3 andRemark 2
below results in the announced Sobolov regularity results.

For brevity of notation we also introduce the following Hilbert–Schmidt space,

(
L θ;σ

2 , ‖ · ‖
L θ;σ

2

) := (L2
(
Ḣ θ

L ; Ḣσ
L

)
, ‖ · ‖L2(Ḣ θ

L ;Ḣσ
L )

)
, σ, θ ∈ R. (35)

Proposition 3 Let Z : D × Ω → R be a GRF colored by T ∈ L (L2(D)), cf. (20).
Then Z is square-integrable, i.e., Z ∈ L2(D × Ω), if and only if its covariance
operator C = T T ∗ has a finite trace on L2(D). More generally, for all σ ≥ 0 and
q ∈ (0,∞), we have

E
[‖Z ‖2σ

] = tr(T T ∗Lσ ) = ‖T ‖2
L 0;σ

2
, (36)

(
E
[‖Z ‖q

σ

])1/q
�q

√
tr(T T ∗Lσ ) = ‖T ‖

L 0;σ
2

, (37)

‖
‖σ,σ = ‖C ‖
L −σ ;σ

2
= ‖T T ∗‖

L −σ ;σ
2

. (38)

Here, tr( · ) is the trace on L2(D), L is the differential operator in (12)with coefficients
A, κ satisfying Assumptions 1.I–II, and 
 is the covariance function of Z , see (29).

If Z̃ ∈ L2(D × Ω) is another GRF colored by T̃ ∈ L (L2(D)), with covariance
function 
̃ and covariance operator C̃ = T̃ T̃ ∗, we have, for σ ≥ 0 and q ∈ (0,∞),

(
E

[∥∥Z − Z̃
∥∥q

σ

])1/q

�q
∥∥T − T̃

∥∥
L 0;σ

2
, (39)

‖
 − 
̃‖σ,σ = ∥∥C − C̃
∥
∥
L −σ ;σ

2
= ∥∥T T ∗ − T̃ T̃ ∗∥∥

L −σ ;σ
2

. (40)

Proof Assume first that Z ∈ L2(D × Ω). Since Z has mean zero and since it is
colored by T ∈ L (L2(D)), we obtain C = T T ∗, i.e.,

E
[
(Z , φ)L2(D)(Z , ψ)L2(D)

] = (T T ∗φ,ψ)L2(D) ∀φ,ψ ∈ L2(D).
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Whittle–Matérn fields: regularity and approximation 833

By choosing φ = ψ := λ
σ/2
j e j , summing these equalities over j ∈ N, and exchanging

the order of summation and expectation via Fubini’s theorem, we obtain the identity

E
[‖Z ‖2σ

] =
∑

j∈N
λσ

j (T T ∗e j , e j )L2(D) = tr(T T ∗Lσ ) = ∥∥Lσ/2T
∥∥
L 0;0

2
= ‖T ‖

L 0;σ
2

,

and the first part of the proposition as well as (36) are proven. The estimate (37)
follows from (36) by the Kahane–Khintchine inequalities and the Karhunen–Loève
expansion, since Z is an Ḣσ

L -valued zero-mean Gaussian random variable.
Assume now that Z̃ ∈ L2(D × Ω) is another GRF colored by T̃ ∈ L (L2(D)).

Then we obtain (39) from (37), since Z − Z̃ is again a GRF, colored by T − T̃ ,
see (20) and Definition 3. Furthermore, we find

‖
 − 
̃‖2σ,σ =
∑

i∈N

∑

j∈N
λσ

i λσ
j

((
T T ∗ − T̃ T̃ ∗)ei , e j

)2
L2(D)

=
∑

i∈N

∥
∥(T T ∗ − T̃ T̃ ∗)Lσ/2ei

∥
∥2

σ
= ∥∥T T ∗ − T̃ T̃ ∗∥∥2

L −σ ;σ
2

.

This proves (40) and (38) follows from this result for Z̃ ≡ 0. ��
Remark 2 Note that if Assumptions 1.I–II, 2.I and 0 ≤ σ ≤ 1 (or Assumptions 1.I–III,
2.II and 0 ≤ σ ≤ 2) are satisfied and σ 
= 1/2, it follows from Lemma 2 that all
assertions of Proposition 3 remain true if we replace the equalities with equivalences
and the norms ‖ · ‖σ , ‖ · ‖σ,σ (cf. the spaces in (14), (34)) with the Sobolev norm
‖ · ‖Hσ (D) and with the norm ‖ · ‖Hσ,σ (D×D) on the mixed Sobolev space (33),
respectively. Furthermore, by (16) Proposition 3 provides upper bounds for these
quantities if σ = 1/2.

4 Regularity of Whittle–Matérn fields

In this section we focus on the regularity of (generalized) Whittle–Matérn fields, i.e.,
of GRFs colored (cf. Definition 3) by a negative fractional power of the differential
operator L as provided in (12). Specifically, we consider

Z β : D × Ω → R,
(
Z β, ψ

)
L2(D)

= W
(
L−βψ

)
P-a.s. ∀ψ ∈ L2(D), (41)

for

β := nβ + β�, nβ ∈ N0, 0 ≤ β� < 1. (42)

We emphasize the dependence of the covariance structure of Z β on the fractional
exponent β > 0 by the index and write 
β for the covariance function (29) of Z β .

The first aim of this section is to apply Proposition 3 for specifying the regularity
of Z β in (41) and of its covariance function 
β with respect to the spaces Ḣσ

L and

123



834 S. G. Cox, K. Kirchner

Ḣσ,σ
L in (14), (34). As already pointed out in Remark 2, provided that the assumptions

of Lemma 2 are satisfied, this implies regularity in the Sobolev space Hσ (D) and in
the mixed Sobolev space Hσ,σ (D × D) in (33), respectively.

Besides this regularity result with respect to the spaces Ḣσ
L and Hσ (D), we obtain

a stability estimate with respect to the Hölder norm from Corollary 1 and continuity
of the covariance function from Proposition 2. Although we believe that, at least in
some specific cases, these results are well-known, for the sake of completeness, we
derive them here in our general framework.

Lemma 3 Let Assumptions 1.I–II be fulfilled, β, q ∈ (0,∞), σ ≥ 0, and Z β be the
Whittle–Matérn field in (41), with covariance function 
β . Then,

(i) E

[∥∥Z β
∥∥q

σ

]
< ∞ if and only if 2β > σ + d/2, and

(ii)
∥∥
β

∥∥
σ,σ

< ∞ if and only if 2β > σ + d/4.

If, in addition, Assumption 2.I and 0 ≤ σ ≤ 1 (or Assumptions 1.I–III, 2.II, and
0 ≤ σ ≤ 2) hold and σ 
= 1/2, then the assertions (i)–(ii) remain true if we formulate
them with respect to the Sobolev norms ‖ · ‖Hσ (D), ‖ · ‖Hσ,σ (D×D).

Proof By Proposition 3 we have, for any β, q ∈ (0,∞) and σ ≥ 0,

(
E

[∥∥Z β
∥∥q

σ

])2/q

�q tr
(
L−2β+σ

) =
∑

j∈N
λ

−(2β−σ)
j , (43)

∥∥
β
∥∥2

σ,σ
= ∥∥L−2β

∥∥2
L2
(
Ḣ−σ

L ;Ḣσ
L

) =
∑

j∈N
λ

−2(2β−σ)
j . (44)

Combining the spectral behavior (13) of L from Lemma 1 with (43)/(44) proves
assertions (i)/(ii) for ‖ · ‖σ , ‖ · ‖σ,σ . If the assumptions stated in the second part of
the lemma are satisfied, then applying Lemma 2 completes the proof. ��
Remark 3 We note that the regularity result for the covariance function in Lemma 3
holds in greater generality: 
β ∈ Hσ1,σ2(D×D) := Hσ1(D) ⊗̂ Hσ2(D) if and only if
4β > σ1+σ2+d/2, provided that 0 ≤ σ1, σ2 ≤ 2 and Assumptions 1.I–III and 2.II are
satisfied. In particular, we have 
β ∈ Hσ,0(D ×D) ∩ H0,σ (D ×D) = Hσ (D ×D)

for all 0 ≤ σ ≤ 2 with σ < 4β − d/2, where Hσ (D × D) is the standard Sobolev
space on D × D . The proof in the general case proceeds analogously.

Lemma 4 Suppose that

(i) Assumptions 1.I–II are satisfied, 0 < 2γ ≤ 1, and d = 1, or
(ii) Assumptions 1.I–III and 2.II are fulfilled, d ∈ {1, 2, 3} and γ ∈ (0, 1) are such

that γ ≤ 2 − d/2.

In either of these cases and if 2β ≥ γ + d/2, there exists a continuous Whittle–
Matérn field Z β : D×Ω → R satisfying (41) such that Z β(x) = W (L−βδx ), P-a.s.
for all x ∈ D , and, for every θ ∈ (0, γ ) and q ∈ (0,∞), the bound

(
E

[∥∥Z β
∥∥q

Cθ (D)

])1/q

�(q,γ,θ,D)

∥∥L−β
∥∥
L
(

Ḣ0
L ;Ḣγ+d/2

L

) < ∞, (45)
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for the q-th moment of Z β with respect to the θ -Hölder norm, cf. (9), holds.

Proof Note that by definition of Ḣσ
L , see (14), for any β > 0, the operator

L−β : L2(D) = Ḣ0
L → Ḣ2β

L

is an isometric isomorphism. For this reason, L−β : L2(D) → Ḣγ+d/2

L is bounded
provided that 2β ≥ γ + d/2. For d and γ as specified in (i) or (ii) above, we have(
Ḣγ+d/2

L , ‖ · ‖γ+d/2

)
↪→ (

Hγ+d/2(D), ‖ · ‖Hγ+d/2(D)

)
by the relations (16)–(17) from

Lemma 2 and we conclude that L−β ∈ L
(
L2(D); Hγ+d/2(D)

)
. The proof is then

completed by applying Corollary 1 in both cases (i)/(ii). ��
Lemma 5 Let Assumptions 1.I–II be satisfied and β > d/4. Suppose furthermore that
a system of L2(D)-orthonormal eigenvectors E = {e j } j∈N corresponding to the
eigenvalues 0 < λ1 ≤ λ2 ≤ . . . of L in (12) is uniformly bounded in C(D), i.e.,

∃ CE > 0 : sup
j∈N

sup
x∈D

|e j (x)| ≤ CE . (46)

Then the covariance function, cf. (29), of the Whittle–Matérn field Z β in (41) has
a continuous representative 
β : D × D → R and

sup
x,y∈D

∣∣
β(x, y)
∣∣ ≤ C2

E tr
(
L−2β),

where tr( · ) denotes the trace on L2(D).

Proof By Proposition 2(i) we have to show boundedness of L−β : L2(D) → C(D)

to infer that 
β ∈ C(D × D), with

sup
x,y∈D

∣
∣
β(x, y)

∣
∣ ≤ ∥∥L−2β

∥
∥
L (C(D)∗;C(D))

. (47)

For ψ ∈ L2(D), the spectral representation L−βψ = ∑
j∈N λ

−β
j (ψ, e j )L2(D) e j

shows that, for all x ∈ D ,

∣
∣(L−βψ

)
(x)
∣
∣ ≤ CE

∑

j∈N
λ

−β
j

∣
∣(ψ, e j )L2(D)

∣
∣ �(A,κ,D) CE

∣∣
∣∣
∑

j∈N
j−4β/d

∣∣
∣∣

1/2

‖ψ‖L2(D)

is finite, provided that β > d/4. Here, we have used the Cauchy–Schwarz inequality
and the spectral behavior (13) from Lemma 1 in the last estimate. Similarly,

∣∣(L−2βϕ
)
(x)
∣∣ ≤ CE

∑

j∈N
λ

−2β
j

∣∣〈ϕ, e j 〉C(D)∗×C(D)

∣∣ ≤ C2
E tr

(
L−2β)‖ϕ‖C(D)∗ , (48)

for all ϕ ∈ C(D)∗. Combining (47) and (48) completes the proof. ��
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Remark 4 Note that if γ ∈ (0, 1) and d ∈ {1, 2, 3} are such that Assumption (i) or (ii)
of Lemma 4 is satisfied, then the Sobolev embedding H θ+d/2(D) ↪→ Cθ (D) and
Lemma 2 are applicable for any 0 < θ ≤ γ . Thus, if 2β ≥ θ + d/2, we find

L−β : L2(D) = Ḣ0
L → Ḣ2β

L ↪→ Ḣ θ+d/2
L

∼= H θ+d/2(D) ↪→ Cθ (D) ↪→ C(D),

i.e., L−β : L2(D) → C(D) is bounded. Thus, by Proposition 2(i) the covariance
function 
β : D × D → R of the Whittle–Matérn field Z β in (41) is a continuous
kernel and Ḣ2β

L is the corresponding reproducing kernel Hilbert space, see also [43].

5 Spectral Galerkin approximations

In this section we investigate convergence of spectral Galerkin approximations for the
Whittle–Matérn fieldZ β in (41). Recall that the covariance structure of the GRFZ β

is uniquely determined via its color (20) given by the negative fractional power L−β

of the second-order differential operator L in (12) which is defined with respect to the
bounded spatial domain D ⊂ R

d .
For N ∈ N, the spectral Galerkin approximationZ β

N ofZ β is (P-a.s.) defined by

(
Z

β
N , ψ

)
L2(D)

= W
(
L−β

N ψ
)

P-a.s. ∀ψ ∈ L2(D), (49)

i.e., it is a GRF colored by the finite-rank operator

L−β
N : L2(D) → VN ⊂ L2(D), L−β

N ψ :=
N∑

j=1

λ
−β
j (ψ, e j )L2(D)e j , (50)

mapping to the finite-dimensional subspace VN := span{e1, . . . , eN } generated by the
first N eigenvectors of L corresponding to the eigenvalues 0 < λ1 ≤ . . . ≤ λN .

The following three corollaries, which provide explicit convergence rates of these
approximations and their covariance functions with respect to the truncation parame-
ter N , are consequences of the Propositions 1, 2 and 3. We first formulate the results
in the Sobolev norms.

Corollary 2 Suppose Assumptions 1.I–II and that d ∈ N, σ ≥ 0, and β, q ∈ (0,∞).
Let Z β be the Whittle–Matérn field in (41) and, for N ∈ N, let Z β

N be the spectral
Galerkin approximation in (49). If 2β − σ > d/2, then the following bounds hold:

(
E

[∥
∥Z β − Z

β
N

∥
∥q

σ

])1/q

�(q,σ,β,A,κ,D) N−1/d (2β−σ−d/2), (51)
∥∥
β − 


β
N

∥∥
σ,σ

�(σ,β,A,κ,D) N−1/d (4β−2σ−d/2), (52)

where 
β, 

β
N denote the covariance functions of Z β and Z

β
N , respectively, cf. (29).
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Whittle–Matérn fields: regularity and approximation 837

If, in addition, Assumption 2.I and 0 ≤ σ ≤ 1 (or Assumptions 1.I–III, 2.II, and
0 ≤ σ ≤ 2) are satisfied, then the assertions (51)–(52) remain true if we formulate
them with respect to the Sobolev norms ‖ · ‖Hσ (D), ‖ · ‖Hσ,σ (D×D).

Proof The estimates (51)/(52) follow from (39)/(40) of Proposition 3 withZ := Z β ,
Z̃ := Z

β
N , T := L−β , and T̃ := L−β

N by exploiting the spectral behavior (13) from
Lemma 1. Finally, applying Lemma 2 proves the last claim of this proposition. ��
Remark 5 We note that the L2-estimate for the error of the covariance function ((52)
for σ = 0) can essentially be derived from [22, Theorem 3.5] or [23, Theorem 3.3,
Corollary 3.4]. There the convergence rate of the truncation error for spectral approx-
imations of a general kernel f ∈ Hs(D1 × D2) is quantified. Specifically, recalling
from Remark 3 that 
β ∈ Hσ (D × D) for all σ < 4β − d/2, [22, Theorem 3.5] or
[23, Theorem 3.3, Corollary 3.4] yield the L2-convergence rate 1/d(4β − d/2 − ε), for
any ε > 0, in line with (52).

By Proposition 2 we furthermore obtain the following convergence result in the
L∞(D × D)-norm for the covariance function 


β
N as N → ∞.

Corollary 3 Suppose Assumptions 1.I–II and that the system E = {e j } j∈N of L2(D)-
orthonormal eigenvectors of the operator L in (12) is uniformly bounded in C(D) as
in (46). Then, for β > d/4, the covariance functions of Z β in (41) and of Z β

N in (49)

have continuous representatives 
β, 

β
N : D × D → R, and

sup
x,y∈D

∣∣
β(x, y) − 

β
N (x, y)

∣∣ �(CE ,β,A,κ,D) N−1/d (4β−d). (53)

Proof By Lemma 5, 
β and 

β
N have continuous representatives. In addition, the

estimate (31) from Proposition 2 proves (53) since, for all x ∈ D , ϕ ∈ C(D)∗,

〈
δx ,
(
L−2β − L−2β

N

)
ϕ
〉
C(D)∗×C(D)

≤ C2
E ‖ϕ‖C(D)∗

∑

j>N

λ
−2β
j .

Finally, for β > d/4, the spectral behavior (13) of L from Lemma 1 yields

∥∥L−2β − L−2β
N

∥∥
L (C(D)∗;C(D))

�(CE ,β,A,κ,D) N−1/d (4β−d).

��
Provided that Assumption (i) or (ii) of Lemma 4 is satisfied, we obtain not only

Sobolev regularity of the GRFZ β in (Lq(Ω)-sense), but also Hölder continuity. The
next proposition shows that in this case the sequence of spectral Galerkin approxima-
tions

(
Z

β
N

)
N∈N converges also with respect to these norms.

Corollary 4 Suppose that d ∈ {1, 2, 3}, γ ∈ (0, 1) satisfy Assumption (i) or (ii) of
Lemma 4. Let L and L−β

N be the operators in (12) and (50). Then, for every N ∈ N
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838 S. G. Cox, K. Kirchner

and for 2β ≥ γ + d/2, there exist continuous random fields Z β,Z
β
N : D × Ω → R,

colored by L−β and L−β
N , respectively, such that

(
E

[∥
∥Z β − Z

β
N

∥
∥q

Cθ (D)

])1/q

�(q,γ,θ,β,A,κ,D) N−1/d (2β−γ−d/2), (54)

for every θ ∈ (0, γ ) and q ∈ (0,∞).

Proof By Lemma 4 there exist continuous random fields Z β,Z
β
N : D × Ω → R

colored by L−β and L−β
N , respectively. Their differenceZ β −Z

β
N is then a continuous

random field colored by TN := L−β − L−β
N = (L − L N )−β and we obtain the

convergence result in (54) from the stability estimate (45) of Lemma 4 applied to
Z β − Z

β
N , since, for every ψ ∈ L2(D),

‖TN ψ‖2
Ḣγ+d/2

L

=
∑

j>N

λ
−2β+γ+d/2

j (ψ, e j )
2
L2(D) ≤ λ

−2β+γ+d/2

N

∑

j>N

(ψ, e j )
2
L2(D)

�(γ,β,A,κ,D) N−2/d (2β−γ−d/2)‖ψ‖2L2(D).

Here, we have used the spectral behavior (13) from Lemma 1 for λN . ��

6 Estimates for fractional powers of general Galerkin approximations

The aim of this section is to quantify the effect that a finite-dimensional Galerkin dis-
cretization of the differential operator L in (12) has on the approximation of solutions
to fractional-order equations of the form Lβu = g, with a deterministic right-hand
side g. Specifically, Theorem 1 below provides a bound for the deterministic Galerkin
error in the fractional case, i.e., we consider the distance between L−βg and L−β

h Πh g,
where Lh is a Galerkin approximation of L and Πh is the orthogonal projection onto
the Galerkin space (for details see below). This theorem is one of our main results and
it will be a crucial ingredient when analyzing general Galerkin approximations of the
Whittle–Matérn field Z β from (41) in Sect. 7.2.

To this end, we assume that we are given a family (Vh)h>0 of subspaces of H1
0 (D),

with dimension Nh := dim(Vh) < ∞. We let Πh : L2(D) → Vh denote the L2(D)-
orthogonal projection onto Vh . Since Vh ⊂ H1

0 (D) = Ḣ1
L , Πh can be uniquely

extended to a bounded linear operator Πh : Ḣ−1
L → Vh . Let Lh : Vh → Vh be the

Galerkin discretization of the differential operator L in (12) with respect to Vh , i.e.,

(Lhφh, ψh)L2(D) = 〈Lφh, ψh〉Ḣ−1
L ×Ḣ1

L
∀φh, ψh ∈ Vh . (55)

We arrange the eigenvalues of Lh in nondecreasing order,

0 < λ1,h ≤ λ2,h ≤ . . . ≤ λNh ,h,
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and let {e j,h}Nh
j=1 be a set of corresponding eigenvectors, orthonormal in L2(D).

The operator Rh : H1
0 (D) = Ḣ1

L → Vh is the Rayleigh–Ritz projection, defined by
Rh := L−1

h Πh L and, for all ψ ∈ Ḣ1
L ,

(Rhψ, φh)1 = (ψ, φh)1 ∀φh ∈ Vh . (56)

All further assumptions on the finite-dimensional subspaces (Vh)h>0 are summa-
rized below and explicitly referred to, when needed in our error analysis.

Assumption 3 (on the Galerkin discretization)

I. There exist θ1 > θ0 > 0 and a linear operator Ih : H θ1(D) → Vh such that, for
all θ0 < θ ≤ θ1, Ih : H θ (D) → Vh is a continuous extension, and

‖v − Ihv‖Hσ (D) �(σ,θ,D) hθ−σ ‖v‖H θ (D) ∀ v ∈ H θ (D) (57)

holds for 0 ≤ σ ≤ min{1, θ} and sufficiently small h > 0.
II. For all h > 0 sufficiently small and all 0 ≤ σ ≤ 1 the following inverse inequality

holds:

‖φh‖Hσ (D) �(σ,D) h−σ ‖φh‖L2(D) ∀φh ∈ Vh . (58)

III. dim(Vh) = Nh �D h−d for sufficiently small h > 0.
IV. There exist r , s0, t, C0, Cλ > 0 such that for all h > 0 sufficiently small and for

all j ∈ {1, . . . , Nh} the following error estimates hold:

λ j ≤ λ j,h ≤ λ j + Cλhrλt
j , (59)

‖e j − e j,h‖2L2(D) ≤ C0h2s0λt
j , (60)

where {(λ j , e j )} j∈N are the eigenpairs of the operator L in (12).

We refer to Sect. 8 for explicit examples of finite element spaces (Vh)h>0, which
satisfy these assumptions.

Remark 6 The first inequality in (59), i.e., λ j ≤ λ j,h , is satisfied for all conforming
Galerkin spaces Vh ⊂ Ḣ1

L due to the min-max principle.

Theorem 1 Let L be as in (12) and, for h > 0, let Lh be as in (55). Suppose Assump-
tions 1.I–II, 2.I, 3.II. In addition, assume that Πh is H1(D)-stable, i.e., that there
exists a constant CΠ > 0 such that

‖Πh‖L (H1(D)) ≤ CΠ (61)

for all sufficiently small h > 0. Let 0 < α ≤ 1 be such that

(
Ḣ1+δ

L , ‖ · ‖1+δ

) ∼= (H1+δ(D) ∩ H1
0 (D), ‖ · ‖H1+δ(D)

)
, 0 ≤ δ ≤ α, (62)
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where Ḣ1+δ
L is defined as in (14). Let Assumption 3.I be satisfied with parameters

θ0 ∈ (0, 1)and θ1 ≥ 1+α. Assume further thatβ > 0,0 ≤ σ ≤ 1, and−1 ≤ δ ≤ 1+α

are such that 2β + δ − σ > 0 and 2β − σ ≥ 0.
Then, for all g ∈ Ḣ δ

L , we have

∥
∥L−βg − L−β

h Πh g
∥
∥

σ
�(ε,δ,σ,α,β,A,κ,D) hmin{2β+δ−σ−ε, 1+α−σ, 1+α+δ, 2α}‖g‖δ,

(63)

for arbitrary ε > 0 and all h > 0 sufficiently small.

The proof of Theorem 1 is deferred to the end of this section.

Remark 7 (H2(D)-regularity) Note that if Assumptions 1.I–III and 2.II are satisfied,
i.e., if the coefficient A of the operator L in (12) is Lipschitz continuous and the domain
D is convex, then the equivalence (62) for α = 1 is part of Lemma 2, see (17).

Remark 8 (Sobolev bounds) By (16) of Lemma 2 and under the assumption given
by (62), the result (63) implies an error bound with respect to the Sobolev norms, for
all 0 ≤ σ ≤ 1 and −1 ≤ δ ≤ 1 + α, δ 
= 1/2. Namely, for all g ∈ H δ(D),

∥∥L−βg − L−β
h Πh g

∥∥
Hσ (D)

�(ε,δ,σ,α,β,A,κ,D) hmin{2β+δ−σ−ε, 1+α−σ, 1+α+δ, 2α}‖g‖H δ(D),

for any ε > 0 and all h > 0 sufficiently small.

Remark 9 (Comparison with [5]) For the specific case β ∈ (0, 1), σ = 0, and δ ≥ 0
the error in (63) has already been investigated in [5], where (Vh)h>0 are chosen as finite
element spaces with continuous piecewise affine basis functions, defined with respect
to a quasi-uniform family of triangulations (Th)h>0 of D . If g ∈ Ḣ δ

L , δ ≥ 0 and
α < β, the results of [5, Theorem 4.3] show convergence at the rate 2α, in accordance
with (63). For α ≥ β and g ∈ Ḣ δ

L , by [5, Theorem 4.3 & Remark 4.1]

∥∥L−βg − L−β
h Πh g

∥∥
L2(D)

≤
{

C ln(1/h)h2β+δ‖g‖δ if 0 ≤ δ ≤ 2(α − β),

Ch2α‖g‖δ if δ > 2(α − β),

i.e., compared to (63), one obtains a log-term ln(1/h) instead of h−ε in the first case.
We point out that the purpose of Theorem 1 is to allow for all β > 0 and, in addition,
for the wider range of parameters: 0 ≤ σ ≤ 1 and −1 ≤ δ ≤ 1 + α.

Remark 10 (p-FEM) Due to the term 2α and 0 < α ≤ 1, (63) will be sharp for finite
elements of first order, but not for finite elements of polynomial degree p ≥ 2 when
β > 1 and the problem is “smooth” such that (62) holds for some α > 1.

For the derivation of Theorem 1, we need the following two lemmata.
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Lemma 6 Let L be as in (12) and, for h > 0, let Lh, Rh be as in (55) and (56). Suppose
Assumptions 1.I–II and 2.I. Let 0 < α ≤ 1 be such that (62) holds. Furthermore, let
Assumption 3.I be satisfied with parameters θ0 ∈ (0, 1) and θ1 ≥ 1 + α.

Then, for every 0 ≤ η ≤ ϑ ≤ α,

‖u − Rhu‖1−η �(η,ϑ,A,κ,D) hϑ+η‖u‖1+ϑ , u ∈ Ḣ1+ϑ
L , (64)

∥∥L−1g − L−1
h Πh g

∥∥
1−η

�(η,ϑ,A,κ,D) hϑ+η‖g‖ϑ−1, g ∈ Ḣϑ−1
L , (65)

for sufficiently small h > 0.

Proof Since Rhu ∈ Vh is the best approximation of u ∈ Ḣ1
L with respect to ‖ · ‖1, we

find by Assumption 3.I and the assumed equivalence (62) that, for e := u − Rhu and
any 0 ≤ ϑ ≤ α,

‖e‖1 �(A,κ,D) ‖u − Ihu‖H1(D) �(ϑ,A,κ,D) hϑ‖u‖H1+ϑ (D) �(ϑ,A,κ,D) hϑ‖u‖1+ϑ ,

i.e., (64) for η = 0 follows. Furthermore, if we let ψ := L−ϑe ∈ Ḣ1+2ϑ
L , the estimate

above and the orthogonality of e to Vh in Ḣ1
L , combined with (16), Assumption 3.I

and (62) yield

‖e‖21−ϑ = (ψ, e)1 = (ψ − Ihψ, e)1 ≤ ‖ψ − Ihψ‖1‖e‖1
�(ϑ,A,κ,D) h2ϑ‖u‖1+ϑ‖ψ‖1+ϑ ,

which proves (64) for η = ϑ since ‖ψ‖1+ϑ = ‖e‖1−ϑ . For η ∈ (0, ϑ), the result (64)
holds by interpolation.

Now let g ∈ Ḣϑ−1
L be given. Then, (65) follows from (64) for u := L−1g ∈ Ḣ1+ϑ

L ,
since ‖u‖1+ϑ = ‖g‖ϑ−1. ��
Lemma 7 Suppose Assumptions 1.I–II and 2.I. Let L be as in (12) and, for h > 0, let
Lh be as in (55). Then, for each 0 ≤ γ ≤ 1/2, we have

∥∥Lγ L−γ

h Πh
∥∥
L (L2(D))

�γ 1. (66)

Furthermore, if the L2(D)-orthogonal projection Πh is H1(D)-stable, i.e., if there
exists a constant CΠ > 0 such that (61) holds for all sufficiently small h > 0, then,
for such h > 0 and all 0 ≤ γ ≤ 1/2,

∥∥Lγ

h Πh L−γ
∥∥
L (L2(D))

�(γ,A,κ,D) 1. (67)

If additionally Assumption 3.II is satisfied and if 0 < α ≤ 1 is as in (62), then (67)
holds for 0 ≤ γ ≤ (1+α)/2.

Proof For g ∈ L2(D) = Ḣ0
L , we find by the Definition (55) of Lh that

∥
∥L1/2L−1/2

h Πh g
∥
∥2
0 = 〈L L−1/2

h Πh g, L−1/2
h Πh g

〉
Ḣ−1

L ×Ḣ1
L

= ‖Πh g‖20 ≤ ‖g‖20.

123



842 S. G. Cox, K. Kirchner

Thus, (66) holds for γ ∈ {0, 1/2}. In other words, the canonical embedding Ih of Vh

into L2(D) is a continuous mapping from Ḣ2γ
h to Ḣ2γ

L , for γ ∈ {0, 1/2}, where Ḣ2γ
h

denotes the space Vh equipped with the norm ‖ · ‖
Ḣ2γ

h
:= ‖Lγ

h · ‖L2(D). Thus,

∥∥Lγ L−γ

h Πh
∥∥
L (L2(D))

= ‖Ih‖
L
(

Ḣ2γ
h ;Ḣ2γ

L

) �γ ‖Ih‖1−2γ
L
(
Ḣ0

h ;Ḣ0
L

)‖Ih‖2γ
L
(
Ḣ1

h ;Ḣ1
L

) ≤ 1

follows by interpolation for all 0 ≤ γ ≤ 1/2, which completes the proof of (66).
If Πh is H1(D)-stable, by Lemma 2 we have ‖Πh‖L (

Ḣ1
L

) �(A,κ,D) CΠ , and

∥∥L
1/2
h Πh L−1/2g

∥∥2
0 = (LhΠh L−1/2g,Πh L−1/2g

)
0 = 〈LΠh L−1/2g,Πh L−1/2g

〉
Ḣ−1

L ×Ḣ1
L

= ∥∥Πh L−1/2g
∥∥2
1 �(A,κ,D) C2

Π

∥∥L−1/2g
∥∥2
1 = C2

Π‖g‖20
follows, i.e., (67) holds for γ ∈ {0, 1/2}. By interpreting this result as continuity of
Πh as a mapping from Ḣ2γ

L to Ḣ2γ
h , again by interpolation, we obtain (67) for all

0 ≤ γ ≤ 1/2. Finally, if γ = (1+ϑ)/2 for some 0 < ϑ ≤ α, we use the identity

L
(1+ϑ)/2
h Πh L−(1+ϑ)/2 = L−(1−ϑ)/2

h Πh L (1−ϑ)/2 + L
(1+ϑ)/2
h Πh

(
IdḢ1+ϑ

L
−Rh

)
L−(1+ϑ)/2,

where Rh = L−1
h Πh L is the Rayleigh–Ritz projection (56). Since 0 < ϑ ≤ α ≤ 1,

we obtain for the first term by (66) that

∥∥L−(1−ϑ)/2
h Πh L (1−ϑ)/2

∥∥
L (L2(D))

= ∥∥L (1−ϑ)/2L−(1−ϑ)/2
h Πh

∥∥
L (L2(D))

�γ 1.

To estimate the second term, we write E R
h := IdḢ1+ϑ

L
−Rh . Then,

∥∥L
(1+ϑ)/2
h Πh E R

h L−(1+ϑ)/2
∥∥
L (L2(D))

≤ ∥∥L
ϑ/2
h Πh L−ϑ/2

∥∥
L (L2(D))

∥∥Lϑ/2L
1/2
h Πh E R

h L−(1+ϑ)/2
∥∥
L (L2(D))

.

Here, ‖L
ϑ/2
h Πh L−ϑ/2‖L (L2(D)) �(γ,A,κ,D) 1, since 0 < ϑ = 2γ − 1 ≤ 1, and we can

use Assumption 3.II, (61), and (64) to conclude for ϑ 
= 1/2 (i.e., γ 
= 3/4) as follows,

∥∥L
1/2
h Πh E R

h

∥∥
L
(

Ḣ1+ϑ
L ;Ḣϑ

L

) �(γ,A,κ,D) h−ϑ
∥∥L

1/2
h Πh E R

h

∥∥
L
(

Ḣ1+ϑ
L ;Ḣ0

L

)

�(γ,A,κ,D) h−ϑ
∥
∥Πh E R

h

∥
∥
L
(

Ḣ1+ϑ
L ;Ḣ1

L

)

�(γ,A,κ,D) CΠ h−ϑ
∥∥E R

h

∥∥
L
(

Ḣ1+ϑ
L ;Ḣ1

L

) �(γ,A,κ,D) 1.

A slight modification for γ = 3/4 (and, thus, ϑ = 1/2) completes the proof of (67) for
the whole parameter range 0 ≤ γ ≤ (1+α)/2. ��
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Proof (of Theorem 1) Case I: δ ≥ 0. We first prove (63) for 0 ≤ δ ≤ 1 + α. To this
end, let β > 0 and 0 ≤ σ ≤ min{2β, 1} satisfying 2β + δ > σ be given. Without loss
of generality we may assume that ε ∈ (0, 2β + δ − σ − α1{2β+δ−σ−α>0}

)
.

We write I := IdL2(D) and split as follows,

∥∥L−β − L−β
h Πh

∥∥
L
(
Ḣ δ

L ;Ḣσ
L

) = ∥∥Lσ/2
(
L−β − L−β

h Πh
)
L−δ/2

∥∥
L (L2(D))

≤ ∥∥Lσ/2−β
(
I − Πh

)
L−δ/2

∥∥
L (L2(D))

+ ∥∥Lσ/2
(
L−β − L−β

h

)
Πh L−δ/2

∥∥
L (L2(D))

=: (A) + (B).

Case I, term (A). In order to estimate term (A), we first note that byAssumption 3.I,
with θ = 1 + α, and by (62) the following holds, for h > 0 sufficiently small,

‖I − Πh‖
L
(

Ḣ1+α
L ;Ḣ0

L

) �(α,A,κ,D) ‖I − Πh‖L (H1+α(D);L2(D)) �(α,A,κ,D) h1+α,

since Πh g ∈ Vh is the L2(D)-best approximation of g ∈ H θ (D). Furthermore, we
have ‖I − Πh‖L (L2(D)) = 1, and by interpolation

‖I − Πh‖L (
Ḣ θ

L ;Ḣ0
L

) �(θ,α,A,κ,D) hθ , 0 ≤ θ ≤ 1 + α.

By exploiting the identity

(
Lσ/2−β

(
I − Πh

)
L−δ/2φ,ψ

)
0 = ((I − Πh

)
L−δ/2φ,

(
I − Πh

)
Lσ/2−βψ

)
0,

which holds for all φ,ψ ∈ L2(D), we thus obtain, for all h > 0 sufficiently small,

(A) = sup
φ∈L2(D)\{0}

sup
ψ∈L2(D)\{0}

1
‖φ‖0‖ψ‖0

(
Lσ/2−β

(
I − Πh

)
L−δ/2φ,ψ

)
0

≤ ∥∥I − Πh
∥∥
L
(
Ḣ δ

L ;Ḣ0
L

)
∥∥I − Πh

∥∥
L
(
Ḣ θ

L ;Ḣ0
L

) �(δ,σ,α,β,A,κ,D) hmin{2β+δ−σ, 1+α+δ},

where we set θ := min{2β − σ, 1 + α} and, hence, 0 ≤ θ, δ ≤ 1 + α.
Case I, term (B). For bounding term (B), we first note that by (67) of Lemma 7

(B) �(δ,A,κ,D)

∥
∥Lσ/2

(
L−β − L−β

h

)
L−δ/2

h Πh
∥
∥
L (L2(D))

.

Next, we fix ω ∈ (0, π) and r := λ1/2, and define the contour

C :=
{

te−iω : r ≤ t < ∞
}

∪
{

reiθ : θ ∈ (−ω,ω)
}

∪
{

teiω : r ≤ t < ∞
}

.
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By, e.g., [38, Ch. 2.6, Equation (6.3)] we have, with C defined as above,

L−β = 1

2π i

∫

C
z−β (L − z I )−1 dz

= −1

2π i
e−iω(1−β)

∫ ∞

r
t−β

(
L − e−iωt I

)−1
dt

+ r1−β

2π

∫ ω

−ω

ei(1−β)θ
(

L − reiθ I
)−1

dθ

+ 1

2π i
eiω(1−β)

∫ ∞

r
t−β

(
L − eiωt I

)−1
dt .

From the limit ω → π , we then obtain the representation

L−β = sin(πβ)

π

∫ ∞

r
t−β (t I + L)−1 dt + r1−β

2π

∫ π

−π

ei(1−β)θ
(

L − reiθ I
)−1

dθ.

(68)

Next, observe that the spectrum of Lh is also encircled by the contourC , see Remark 6.
This implies that we can apply the same arguments as above to obtain representa-
tion (68) with L replaced by Lh . Combining both representations we obtain

(
L−β − L−β

h

)
Πh

= sin(πβ)

π

∫ ∞

r
t−β
(
(t I + L)−1 − (t I + Lh)−1)Πh dt

+ r1−β

2π

∫ π

−π

ei(1−β)θ

((
L − reiθ I

)−1 −
(

Lh − reiθ I
)−1
)

Πh dθ.

We exploit this integral representation as well as the identity

(
(L − z I )−1 − (Lh − z I )−1

)
Πh

= (L − z I )−1L
(

L−1 − L−1
h Πh

)
Lh(Lh − z I )−1Πh,

which holds for any z ∈ C, and bound term (B) as follows

(B) �(δ,A,κ,D)

(
sin(πβ)

π
+ r1−β

2π

) ∥
∥L (1−η)/2(L−1 − L−1

h )L
(1−ϑ)/2
h Πh

∥
∥
L (L2(D))

×
(∫ ∞

r
t−β
∥∥(t I + L)−1Lμ

∥∥
L (L2(D))

∥∥Lν
h(t I + Lh)−1Πh

∥∥
L (L2(D))

dt

+
∫ π

−π

∥∥∥
(

L − reiθ I
)−1

Lμ
∥∥∥
L (L2(D))

∥∥∥Lν
h

(
Lh − reiθ I

)−1
Πh

∥∥∥
L (L2(D))

dθ

)
,

(69)
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where μ := (1+η+σ)/2, ν := (1+ϑ−δ)/2 and 0 ≤ η ≤ ϑ ≤ α are chosen as follows

η := 0, ϑ := 2β + δ − σ − ε, if 2β + δ − σ ∈ (0, α],
η := min{2β + δ − α − ε, 1} − σ, ϑ := α, if 2β + δ − σ ∈ (α, 2α],
η := min{α, 1 − σ }, ϑ := α, if 2β + δ − σ > 2α.

By (67) and (65), we find for the term outside of the integral,

∥∥L (1−η)/2(L−1 − L−1
h )L

(1−ϑ)/2
h Πh

∥∥
L (L2(D))

≤ ∥∥L−1 − L−1
h Πh

∥∥
L
(

Ḣϑ−1
L ;Ḣ1−η

L

)
∥∥L−(1−ϑ)/2L

(1−ϑ)/2
h Πh

∥∥
L (L2(D))

�(ε,δ,σ,α,β,A,κ,D)

⎧
⎪⎨

⎪⎩

h2β+δ−σ−ε if 0 < 2β + δ − σ ≤ α,

hmin{2β+δ−σ−ε, 1+α−σ } if α < 2β + δ − σ ≤ 2α,

hmin{2α, 1+α−σ } if 2β + δ − σ > 2α,

for h > 0 sufficiently small, where these three cases can be summarized as in (63),
since 2β + δ − σ − ε < α ≤ 1 + α − σ for all 0 ≤ σ ≤ 1 if 2β + δ − σ ≤ α and
2α < 2β + δ − σ − ε for ε > 0 sufficiently small if 2β + δ − σ > 2α. It remains to
show that the two integrals in (69) converge, uniformly in h. To this end, we first note
that 0 ≤ μ ≤ 1 and, thus, for any t > 0,

∥
∥(t I + L)−1Lμ

∥
∥
L (L2(D))

≤ sup
λ∈σ(L)

λμ

t + λ
≤ sup

x∈[λ1,∞)

xμ

t + x
≤ sup

x∈[λ1,∞)

(t + x)μ−1 ≤ tμ−1.

By the same argument we find that
∥∥Lν

h(t I + Lh)−1Πh
∥∥
L (L2(D))

≤ tν−1, for t > 0,
since also 0 ≤ ν ≤ 1. Thus, we can bound the first integral arising in (69) by

∫ ∞

λ1/2
tμ+ν−2−β dt = 21+β−μ−ν

(1+β−μ−ν)λ
1+β−μ−ν
1

.

Here, we have used that r = λ1/2, μ + ν − 2− β = −1+ (η+ϑ+σ−δ−2β)/2 ≤ −1− ε/2

if 2β + δ − σ ≤ 2α, and μ + ν − 2 − β ≤ −1 − (β + δ/2 − σ/2 − α) < −1 if
2β + δ − σ > 2α. To estimate the second integral in (69), we note that, for any z ∈ C

with |z| = λ1/2,

∥∥(L − z I )−1Lμ
∥∥
L (L2(D))

≤ sup
x∈[λ1,∞)

xμ

x − |z| ≤ sup
x∈[λ1,∞)

(x − |z|)μ + |z|μ
x − |z| ≤ 22−μ

λ
1−μ
1

,

since (x + y)μ ≤ xμ + yμ if 0 ≤ μ ≤ 1 and x, y ≥ 0. Similarly, for 0 ≤ ν ≤ 1,

∥
∥Lν

h(Lh − z I )−1Πh
∥
∥
L (L2(D))

≤ sup
x∈[λ1,h ,∞)

xν

x − |z| ≤ sup
x∈[λ1,∞)

xν

x − |z| ≤ 22−ν

λ1−ν
1

.
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With these observations, we finally can bound the second integral in (69),

∫ π

−π

∥∥∥
(

L − reiθ I
)−1

Lμ
∥∥∥
L (L2(D))

∥∥∥Lν
h

(
Lh − reiθ I

)−1
Πh

∥∥∥
L (L2(D))

dθ ≤ π 25−μ−ν

λ
2−μ−ν
1

,

which completes the proof of (63) for the case that 0 ≤ δ ≤ 1 + α.
Case II: δ < 0. Assume now that δ = −σ̃ for some 0 < σ̃ ≤ 1. Then, for g ∈ Ḣ δ

L ,

∥∥L−βg − L−β
h Πh g

∥∥
σ

≤ ∥∥Lσ/2(L−β − L−β
h Πh)L σ̃/2

∥∥
L (L2(D))

‖g‖δ.

After rewriting,

Lσ/2(L−β − L−β
h Πh)L σ̃/2 = Lσ/2

(
L−(β−σ̃/2) − L−(β−σ̃/2)

h Πh
)
L−σ̃/2

h Πh L σ̃/2

+ L−(2β−σ̃−σ)/2
(
L−σ̃/2 − L−σ̃/2

h Πh
)
L σ̃/2,

we may exploit (63), which has already been proven for 0 ≤ δ ≤ 1 + α, as follows,

∥∥L−(β−σ̃/2) − L−(β−σ̃/2)
h Πh

∥∥
L
(
Ḣ0

L ;Ḣσ
L

) �(ε,̃σ ,σ,α,β,A,κ,D) hmin{2β−σ̃−σ−ε, 1+α−σ, 2α},
∥∥L−σ̃/2 − L−σ̃/2

h Πh
∥∥
L
(

Ḣ δ̃
L ;Ḣ σ̃

L

) �(ε,̃σ ,σ,α,β,A,κ,D) hmin{2β−σ̃−σ−ε, 1+α−σ̃ , 2α},

where δ̃ := min{2β − σ̃ − σ, 1 + α} = min{2β + δ − σ, 1 + α} > 0 by assump-
tion. Furthermore, by (66) of Lemma 7 we have

∥∥L−σ̃/2
h Πh L σ̃/2

∥∥
L (L2(D))

�σ̃ 1. We
conclude that

∥
∥L−β − L−β

h Πh
∥
∥
L
(
Ḣ δ

L ;Ḣσ
L

) �(ε,δ,σ,α,β,A,κ,D) hmin{2β+δ−σ−ε, 1+α−σ, 1+α+δ, 2α},

for the whole range of parameters σ, δ as stated in the theorem. ��

7 General sinc-Galerkin approximations for generalized
Whittle–Matérn fields

After having discussed spectral Galerkin approximations for generalized Whittle–
Matérn fields as given byZ β in (41) in Sect. 5, we now consider a family of general
Galerkin approximations which, for the case β ∈ (0, 1), has been proposed in [2,3].
These approximations are based on two components: (a) a Galerkin method for the
(spatial) discretization Lh of L , see (55), and (b) a sinc quadrature for an integral
representation of the resulting discrete fractional inverse L−β

h . We recall the approach
of [2,3] inSect. 7.1, thereby extending it to all admissible values ofβ > 0. Furthermore,
we formulate all assumptions and auxiliary resultswhich are needed for the subsequent
error analysis of the fully discrete scheme in Sect. 7.2.

123



Whittle–Matérn fields: regularity and approximation 847

7.1 Sinc quadrature and the fully discrete scheme

As proposed in [3] we introduce, for β ∈ (0, 1) and k > 0, the sinc quadrature
approximation of L−β

h from [5],

Qβ
h,k : Vh → Vh, Qβ

h,k := 2k sin(πβ)

π

K +∑

�=−K −
e2β�k

(
IdVh +e2�k Lh

)−1
, (70)

where K − := ⌈
π2

4βk2
⌉
, K + := ⌈

π2

4(1−β)k2
⌉
. We also formally define this operator for

the case β = 0 by setting Q0
h,k := IdVh .

For a general β = nβ + β� > 0 as in (42), we then consider the approxima-

tions Z̃ β
h,k,Z

β
h,k : D × Ω → R of the Whittle–Matérn field Z β in (41) which are

(P-a.s.) defined by

(
Z

β
h,k, ψ

)

L2(D)
= W

((
Qβ�

h,k L
−nβ

h Πh
)∗

ψ
)

P-a.s. ∀ψ ∈ L2(D), (71)
(
Z̃

β
h,k, ψ

)

L2(D)
= W

((
Qβ�

h,k L
−nβ

h Π̃h
)∗

ψ
)

P-a.s. ∀ψ ∈ L2(D), (72)

i.e.,Z β
h,k and Z̃

β
h,k are GRFs colored by Qβ�

h,k L
−nβ

h Πh and Qβ�

h,k L
−nβ

h Π̃h , respectively,
cf. Definition 3. Here, the finite-rank operator Π̃h is given by

Π̃h : L2(D) → Vh ⊂ L2(D), Π̃hψ :=
Nh∑

j=1

(ψ, e j )L2(D)e j,h . (73)

For β ∈ (0, 1), the construction (72) of Z̃ β
h,k gives the same approximation as

considered in [2,3]. Note furthermore that, in contrast to Πh , the operator Π̃h in (73)
is neither a projection nor self-adjoint, and its definition depends on the particular
choice of the eigenbases {e j } j∈N ⊂ L2(D) and {e j,h}Nh

j=1 ⊂ Vh . The reason why we

consider both approximations Z β
h,k , Z̃

β
h,k will become apparent in the error analysis

of Sect. 7.2. Although, in general, they do not coincide in Lq(Ω; L2(D))-sense, i.e.,

E

[∥∥Z β
h,k − Z̃

β
h,k

∥∥q
L2(D)

]

= 0,

they have the same Gaussian distribution as shown in the following lemma.

Lemma 8 Suppose Assumptions 1.I–II and 2.I. Let Πh denote the L2(D)-orthogonal
projection onto Vh, and Π̃h be the operator in (73). Then, if Th ∈ L (Vh),

((ThΠh)∗φ, (ThΠh)∗ψ)L2(D) = ((ThΠ̃h
)∗

φ,
(
ThΠ̃h

)∗
ψ
)

L2(D)
(74)
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holds for all φ,ψ ∈ L2(D). In particular, Z β
h,k

d= Z̃
β

h,k as L2(D)-valued random

variables, where Z
β

h,k and Z̃
β

h,k are as defined in (71)–(72).

Proof Note that (ThΠh)∗ (resp. (ThΠ̃h)∗) denotes the adjoint of ThΠh (resp. of ThΠ̃h)
when interpreted as an operator in L (L2(D)). This means, we are identifying ThΠh

with Ih ThΠh (resp. ThΠ̃h with Ih ThΠ̃h), where Ih denotes the canonical embedding
of Vh into L2(D). Since I ∗

h = Πh , we therefore conclude that (ThΠh)∗ = T ∗
h Πh and

(ThΠ̃h)∗ = Π̃∗
h T ∗

h Πh , which combined with Π̃hΠ̃∗
h = IdVh proves (74).

By definition of Z β
h,k , Z̃

β
h,k in (71)–(72), for M ∈ N and ψ1, . . . , ψM ∈ L2(D),

the random vectors z, z̃with entries z j = (Z β
h,k, ψ j

)
L2(D)

and z̃ j = (Z̃ β
h,k, ψ j

)
L2(D)

,
where 1 ≤ j ≤ M , are multivariate Gaussian distributed. Furthermore, both vanish in
expectation and their covariance matrices, C := Cov(z) and C̃ := Cov

(
z̃
)
, coincide

due to (74) applied to Th := Qβ�

h,k L
−nβ

h . This shows thatZ β
h,k

d= Z̃
β

h,k as L2(D)-valued
random variables. ��

Remark 11 (Simulation in practice) To simulate samples of the in (71)–(72) abstractly
defined (P-a.s.) Vh-valued Gaussian random variablesZ β

h,k or Z̃
β

h,k in practice, in both
cases, one first has to generate a sample of a multivariate Gaussian random vector b
with mean 0 and covariance matrix M, where M is the Gramian with respect to any
fixed basis Φh = {φ j,h}Nh

j=1 of Vh , i.e., Mi j := (φi,h, φ j,h)L2(D). This follows from

the identical distribution of the GRFsZ 0
h and Z̃ 0

h colored byΠh and Π̃h , respectively.

Since Z β
h,k

d= Qβ�

h,k L
−nβ

h Z 0
h

d= Qβ�

h,k L
−nβ

h Z̃ 0
h

d= Z̃
β

h,k are also equal in distribution,

the random vector Zβ
k , given by

Zβ
k :=

{
L−1

(
ML−1

)nβ−1b, if β� = 0,

Qβ�

k

(
ML−1

)nβb, if β� ∈ (0, 1),
(75)

is then the vector of coefficients when expressing the Vh-valued sample of Z β
h,k (or

of Z̃ β
h,k) with respect to the basis Φh . Here, L ∈ R

Nh×Nh represents the action of the
Galerkin operator Lh in (55), i.e., Li j := (Lhφ j,h, φi,h)L2(D), and, for β� ∈ (0, 1),

Qβ�

k ∈ R
Nh×Nh is the matrix analog of the operator Qβ�

h,k from (70), i.e.,

Qβ�

k := 2k sin(πβ�)

π

K +∑

�=−K −
e2β��k

(
M + e2�kL

)−1
. (76)

For a detailed discussion of preconditioning techniques to efficiently simulate Zβ
k

in (75), including a complete complexity analysis, we refer to [29].
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7.2 Error analysis

The errorsZ β −Z
β

h,k andZ
β − Z̃

β
h,k of the approximations in (71)–(72) compared

to the true Whittle–Matérn field Z β from (41) are GRFs colored (see Definition 3)
by

Eβ
h,k := L−β − Qβ�

h,k L
−nβ

h Πh and Ẽβ
h,k := L−β − Qβ�

h,k L
−nβ

h Π̃h,

respectively. In order to perform the error analysis for Z β
h,k and Z̃

β
h,k , we split these

operators as follows

Eβ
h,k = Eβ

Vh
+ Eβ

Q and Ẽβ
h,k = Ẽβ

Nh
+ Ẽβ

Vh
+ Ẽβ

Q,

where Ẽβ
Nh

:= L−β − L−β
Nh

is a dimension truncation error (recall the finite-rank

operator L−β
Nh

from (50)) which can be estimated with the results from Sect. 5 on
spectral Galerkin approximations. Furthermore, we shall refer to

Eβ
Vh

:= L−β − L−β
h Πh, Ẽβ

Vh
:= L−β

Nh
− L−β

h Π̃h, (77)

Eβ
Q := (L−β

h − Qβ�

h,k L
−nβ

h

)
Πh, Ẽβ

Q := (L−β
h − Qβ�

h,k L
−nβ

h

)
Π̃h, (78)

as the Galerkin errors and as the quadrature errors, respectively.
In the following we provide error estimates for both approximations, Z β

h,k and

Z̃
β

h,k in (71)–(72), with respect to the norm on Lq(Ω; Hσ (D)) as well as for its

covariance functions 

β
h,k = 
̃

β
h,k in the mixed Sobolev norm, cf. (33). By exploiting

Theorem 1 the bounds for Z β
h,k and 


β
h,k in Proposition 4 below will be sharp if

a conforming finite element method with piecewise affine basis functions is used.
However, to derive optimal rates for the case of finite elements of higher polynomial
degree, a different approach will be necessary, cf. Remark 10. To this end, we perform
an error analysis for Z̃ β

h,k and 
̃
β
h,k based on spectral expansions, see Proposition 5.

Since these arguments work only if the differential operator L in (12) is at least
H2(D)-regular, both approaches and results are needed for a complete discussion of
smooth vs. H1+α(D)-regular problems in Sect. 8. Finally, in Proposition 6, we use
the approximation Z

β
h,k from (71) to formulate convergence results with respect to

the Hölder norm (9) in Lq(Ω)-sense and with respect to the L∞(D × D)-norm for

its covariance function 

β
h,k .

We note that, at the cost of other assumptions on the parameters involved (such as,
e.g., α > 1/2), it is possible to circumvent the additional condition β > 1 (instead of
β > 3/4) needed in the next proposition for the Lq(Ω; Hσ (D))-estimate if d = 3.

Proposition 4 Suppose Assumptions 1.I–II, 2.I, 3.II–III, and let Assumption 3.I be
satisfied with parameters θ0 ∈ (0, 1) and θ1 ≥ 1 + α, where 0 < α ≤ 1 is as in (62).
Assume furthermore that Πh is H1(D)-stable, see (61), and that d ∈ {1, 2, 3}, β > 0
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and 0 ≤ σ ≤ 1 are such that 2β − σ > d/2. Let Z β be the Whittle–Matérn field
in (41) and, for h, k > 0, let Z β

h,k be the sinc-Galerkin approximation in (71), with

covariance functions 
β and 

β
h,k , respectively. Then, for all q, ε > 0 and sufficiently

small h > 0,

(
E

[∥∥Z β − Z
β

h,k

∥∥q
Hσ (D)

])1/q

�(q,ε,σ,α,β,A,κ,D)

(
hmin{2β−σ−d/2−ε, 1+α−σ, 2α} + e−π2/(2k)h−σ−d/21{β<1}

)
, (79)

∥∥
β − 

β
h,k

∥∥
Hσ,σ (D×D)

�(ε,σ,α,β,A,κ,D)

(
hmin{4β−2σ−d/2−ε, 1+α−σ, 2α} + e−π2/(2k)h−2σ−d/21{β<1}

)
, (80)

where, if d = 3, for (79) to hold, we also suppose that β > 1 and α ≥ 1/2 − σ .

Proof Part I: estimate (79). We split the error with respect to the Ḣσ
L -norm (14),

(
E

[∥∥Z β − Z
β

h,k

∥∥q
σ

])1/q ≤
(
E

[∥∥Z β − Z
β

h

∥∥q
σ

])1/q +
(
E

[∥∥Z β
h − Z

β
h,k

∥∥q
σ

])1/q

=: (AZ ) + (BZ ),

which by (16) of Lemma 2 bounds the error (79) in the Sobolev norm.
HereZ β

h denotes a GRF colored by L−β
h Πh , with covariance function 


β
h . Further-

more, we note the following: For m ≥ 0, we have

‖L−m
h Πh‖2L2(L2(D)) =

Nh∑

�=1

λ−2m
�,h ≤

Nh∑

�=1

λ−2m
� ,

where the observation of Remark 6 was used in the last step. Thus, by the spectral
asymptotics from Lemma 1 and by Assumption 3.III we have for m ≥ 0, m 
= d/4,

‖L−m
h Πh‖L2(L2(D)) �(m,A,κ,D) max

{
h2m−d/2, 1

}
. (81)

For the terms (AZ ) and (BZ ), recalling the definition of L 0;σ
2 from (35) and

the Galerkin and quadrature errors Eβ
Vh

, Eβ
Q from (77)–(78), we obtain by (39) of

Proposition 3 that

(AZ ) �q
∥∥Eβ

Vh

∥∥
L 0;σ

2
and (BZ ) �q

∥∥Eβ
Q

∥∥
L 0;σ

2
.

Part Ia: the term (AZ ). Let γ ∈ (0, β) and rewrite Eβ
Vh

from (77) as follows,

Eβ
Vh

= (L−(β−γ ) − L−(β−γ )

h Πh
)
L−γ

h Πh + L−(β−γ )
(
L−γ − L−γ

h Πh
)
. (82)
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Part Ia, case d ∈ {1, 2}. We first bound (AZ ) for d ∈ {1, 2}. To this end, let ε0 > 0
be chosen sufficiently small such that 2β − σ − d/2 > 4ε0 and choose γ := d/4 + ε0
in (82). We obtain thus (AZ ) �q (A′

Z ) + (A′′
Z ), where

(A′
Z ) := ∥∥Lσ/2

(
L−(β−d/4−ε0) − L−(β−d/4−ε0)

h Πh
)
L−(d/4+ε0)

h Πh
∥∥
L 0;0

2
,

(A′′
Z ) := ∥∥L−(β−σ/2−d/4−ε0)

(
L−(d/4+ε0) − L−(d/4+ε0)

h Πh
)∥∥

L 0;0
2

.

For (A′
Z ), we find by (63) of Theorem 1 and by (81), applied for the parameters

β ′ := β − d/4 − ε0, σ ′ := σ , δ′ := 0, and m = d/4 + ε0, respectively,

(A′
Z ) ≤ ∥∥L−(β−d/4−ε0) − L−(β−d/4−ε0)

h Πh
∥
∥
L
(
Ḣ0

L ;Ḣσ
L

)
∥
∥L−(d/4+ε0)

h Πh
∥
∥
L 0;0

2

�(ε0,ε′,σ,α,β,A,κ,D) hmin{2β−σ−d/2−2ε0−ε′, 1+α−σ, 2α},

for any ε′ > 0 and sufficiently small h > 0.
After rewriting term (A′′

Z ) we again apply (63) of Theorem 1, this time for the
parameters β ′′ := d/4 + ε0 > 0, σ ′′ := 0, and δ′′ := min{2β − σ − d − 4ε0, 1 + α}.
Note that, due to the choice of ε0 > 0 and since d ∈ {1, 2}, we have δ′′ > −1 and

2β ′′ − σ ′′ + δ′′ = min{2β − σ − d/2 − 2ε0, 1 + α + d/2 + 2ε0} > 2ε0 > 0.

We thus find that, for any ε′′ > 0 and sufficiently small h > 0,

(A′′
Z ) ≤ ∥∥(L−(d/4+ε0) − L−(d/4+ε0)

h Πh
)
L−(β−σ/2−d/2−2ε0)

∥
∥
L (L2(D))

∥
∥L−(d/4+ε0)

∥
∥
L 0;0

2

�(ε0,ε′′,σ,α,β,A,κ,D) hmin{2β−σ−d/2−2ε0−ε′′, 1+α+δ′′, 2α}∥∥L−(d/4+ε0)
∥∥
L 0;0

2
.

The Hilbert–Schmidt norm ‖L−(d/4+ε0)‖
L 0;0

2
converges for any ε0 > 0 due to the

spectral asymptotics (13) of Lemma 1. In addition, since 1 + α > d/2 for d ∈ {1, 2},
we find that 1 + α + δ′′ > min{2β − σ − d/2 − 4ε0, 1 + α}, and we conclude that

(AZ ) �(ε,σ,α,β,A,κ,D) hmin{2β−σ−d/2−ε, 1+α−σ, 2α}, (83)

for sufficiently small h > 0 and any ε > 0 (by adjusting ε0, ε
′, ε′′ > 0).

Part Ia, case d = 3. Let ε0 > 0 be such that 2ε0 < min{2β − σ − 3/2, β − 1}, and
choose γ := 3/4 − σ/2 + ε0 ∈ (0, β) in (82). We thus need to bound the terms

(A′
Z ) := ∥∥Lσ/2

(
L−(β+σ/2−3/4−ε0) − L−(β+σ/2−3/4−ε0)

h Πh
)
L

σ/2−(3/4+ε0)
h Πh

∥∥
L 0;0

2
,

(A′′
Z ) := ∥∥L−(β−3/4−ε0)

(
L−(3/4−σ/2+ε0) − L−(3/4−σ/2+ε0)

h Πh
)∥∥

L 0;0
2

.
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This can be achieved similarly as for d ∈ {1, 2} by picking the parameters

β ′ := β + σ/2 − 3/4 − ε0, σ ′ := σ, δ′ := −σ,

β ′′ := 3/4 − σ/2 + ε0, σ ′′ := 0, δ′′ := min{2β − 3 − 4ε0, 1 + α},

(recall that β > 1 if d = 3 and, thus, δ′′ > −1). These choices result, for sufficiently
small h > 0, in the estimates

(A′
Z ) �(A,κ,D)

∥
∥L−β ′ − L−β ′

h Πh
∥
∥
L
(
Ḣ−σ

L ;Ḣσ
L

)
∥
∥L−(3/4+ε0)

h Πh
∥
∥
L 0;0

2

�(ε0,ε′,σ,α,β,A,κ,D) hmin{2β−σ−3/2−2ε0−ε′, 1+α−σ, 2α},

(A′′
Z ) := ∥∥(L−β ′′ − L−β ′′

h Πh
)
L−(β−3/2−2ε0)

∥∥
L (L2(D))

∥∥L−(3/4+ε0)
∥∥
L 0;0

2

�(ε0,ε′′,σ,α,β,A,κ,D) hmin{2β−σ−3/2−2ε0−ε′′, 1+α+δ′′, 2α},

for all ε′, ε′′ > 0, where we also have used (67) and (81) for (A′
Z ). Finally, since

α ≥ 1/2 − σ if d = 3, we again have 1 + α + δ′′ ≥ min{2β − σ − d/2 − 4ε0, 1 + α}.
Thus, (83) also holds for d = 3.

Part Ib: the term (BZ ). To estimate (BZ ), we recall the convergence result of the
sinc quadrature from [5, Lemma 3.4, Remark 3.1 & Theorem 3.5]. For a sufficiently
small step size k > 0 in the sinc quadrature, we have

∥∥Eβ
Qψ
∥∥

L2(D)
�(β,A,κ,D) e−π2/(2k)

∥∥L
−nβ

h Πhψ
∥∥

L2(D)
∀ψ ∈ L2(D).

Next, by equivalence of the norms ‖ · ‖σ , ‖ · ‖Hσ (D) for σ ∈ {0, 1}, see Lemma 2,
and by the inverse inequality (58) from Assumption 3.II, we find, for σ ∈ {0, 1},

(BZ ) �q
∥∥Eβ

Q

∥∥
L 0;σ

2
= ∥∥Lσ/2Πh Eβ

Q

∥∥
L 0;0

2
�(σ,A,κ,D) h−σ

∥∥Eβ
Q

∥∥
L 0;0

2

�(q,σ,β,A,κ,D) e−π2/(2k)h−σ
∥∥L

−nβ

h Πh
∥∥
L 0;0

2
�(β,A,κ,D) e−π2/(2k)h−σ−d/21{β<1} ,

(84)

where we have applied (81) with m = nβ ∈ N0, m 
= d/4 for d ∈ {1, 2, 3} in the last
step. If σ ∈ (0, 1), a respective bound for (BZ ) follows by interpolation.

Part II: estimate (80). We split the error with respect to the Ḣσ,σ
L -norm (34):

∥
∥
β − 


β
h,k

∥
∥

σ,σ
≤ ∥∥
β − 


β
h

∥
∥

σ,σ
+ ∥∥
β

h − 

β
h,k

∥
∥

σ,σ
=: (A
) + (B
),

which by (16) of Lemma 2 bounds the error (80) in the Sobolev norm. By (40) of
Proposition 3 we obtain

(A
) = ∥∥L−2β − L−2β
h Πh

∥∥
L −σ ;σ

2
, (B
) = ∥∥L−2β

h Πh − Qβ�

h,k L
−2nβ

h Qβ�

h,kΠh
∥∥
L −σ ;σ

2
.
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Part IIa: the term (A
). We let ε0 > 0 be such that 2β − σ − d/2 > 2ε0 and write

L−2β − L−2β
h Πh = (L−(2β−σ/2−d/4−ε0) − L−(2β−σ/2−d/4−ε0)

h Πh
)
L−(σ/2+d/4+ε0)

h Πh

+ L−(2β−σ/2−d/4−ε0)
(
L−(σ/2+d/4+ε0) − L−(σ/2+d/4+ε0)

h Πh
)
,

and find therefore that (A
) ≤ (A′

) + (A′′


), where

(A′

) := ∥∥(L−(2β−σ/2−d/4−ε0) − L−(2β−σ/2−d/4−ε0)

h Πh
)
L−(σ/2+d/4+ε0)

h Πh
∥∥
L −σ ;σ

2
,

(A′′

) := ∥∥L−(2β−σ/2−d/4−ε0)

(
L−(σ/2+d/4+ε0) − L−(σ/2+d/4+ε0)

h Πh
)∥∥

L −σ ;σ
2

.

For term (A′

), we apply (63) of Theorem 1, for β ′ := 2β − σ/2− d/4− ε0, σ ′ := σ ,

and δ′ := 0. We thus obtain that, for any ε′ > 0 and sufficiently small h > 0,

(A′

) ≤ ∥∥L−β ′ − L−β ′

h Πh
∥∥
L
(
Ḣ0

L ;Ḣσ
L

)
∥∥L−(σ/2+d/4+ε0)

h Πh Lσ/2
∥∥
L 0;0

2

�(ε0,ε′,σ,α,β,A,κ,D) hmin{4β−2σ−d/2−2ε0−ε′, 1+α−σ, 2α}∥∥L−(σ/2+d/4+ε0)
h Πh

∥∥
L 0;σ

2
.

Here, the arising Hilbert–Schmidt norm is bounded by a constant, since

∥∥L−(σ/2+d/4+ε0)
h Πh

∥∥
L 0;σ

2
≤ ∥∥Lσ/2L−σ/2

h Πh
∥∥
L (L2(D))

∥∥L−(d/4+ε0)
h Πh

∥∥
L2(L2(D))

,

and boundedness follows from (66) and (81). For the term (A′′

), we choose the

parameters in (63) of Theorem 1 as follows: β ′′ := σ/2 + d/4 + ε0, σ ′′ := σ , and
δ′′ := min{4β −2σ −d −4ε0, 1+α} > 0. This gives, for any ε′′ > 0 and sufficiently
small h > 0,

(A′′

) := ∥∥Lσ/2

(
L−(σ/2+d/4+ε0) − L−(σ/2+d/4+ε0)

h Πh
)
L−(2β−σ−d/4−ε0)

∥
∥
L 0;0

2

≤ ∥∥L−β ′′ − L−β ′′
h Πh

∥
∥
L
(

Ḣ δ′′
L ;Ḣσ

L

)
∥
∥L−d/4−ε0

∥
∥
L 0;0

2

�(ε0,ε′′,σ,α,β,A,κ,D) hmin{4β−2σ−d/2−2ε0−ε′′, 1+α−σ, 2α},

since
∥∥L−d/4−ε0

∥∥
L 0;0

2
is bounded due to the spectral asymptotics (13) of Lemma 1.

We conclude that

(A
) �(ε,σ,α,β,A,κ,D)) hmin{4β−2σ−d/2−ε, 1+α−σ, 2α},

for every ε > 0 and sufficiently small h > 0.
Part IIb: the term (B
). We use the estimate

∥∥T T ∗ − T̃ T̃ ∗∥∥
L −σ ;σ

2
= ∥∥ 12

(
T + T̃

)(
T − T̃

)∗ + 1
2

(
T − T̃

)(
T + T̃

)∗∥∥
L −σ ;σ

2

≤ ∥∥(T + T̃
)(

T − T̃
)∗∥∥

L −σ ;σ
2

(85)
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with T = L−β
h Πh and T̃ = Qβ�

h,k L
−nβ

h Πh , as well as the inverse inequality (58) to
conclude for term (B
) for σ ∈ {0, 1} that

(B
) �(σ,A,κ,D) h−σ
∥∥(L−β

h + Qβ�

h,k L
−nβ

h

)
Πh
∥∥
L (L2(D))

∥∥(Eβ
Q

)∗∥∥
L −σ ;0

2

�(σ,A,κ,D) h−σ
(∥∥L−β

h Πh
∥∥
L (L2(D))

+ ∥∥Qβ�

h,k L
−nβ

h Πh
∥∥
L (L2(D))

) ∥∥Eβ
Q

∥∥
L 0;σ

2
.

Combining the above estimate with (84) and stability of the operators

L−β
h , Qβ�

h,k : (Vh, ‖ · ‖L2(D)

)→ (
Vh, ‖ · ‖L2(D)

)
(86)

which is uniform in h and k for sufficiently small h, k > 0, shows that

(B
) �(σ,β,A,κ,D) e−π2/(2k)h−2σ−d/21{β<1} .

Interpolation for σ ∈ (0, 1) completes the proof of (80). ��

Due to the similarity in the derivation with the proof of [3, Theorem 2.10], we have
moved the proof of the following proposition to “Appendix A”.

Proposition 5 Suppose Assumptions 1.I–II, 2.I, and 3.II–III. Let Assumption 3.IV be
satisfied with parameters r , s0, t > 0 such that r/2 ≥ t − 1 and s0 ≥ t . Let d ∈ N,
β > 0 and 0 ≤ σ ≤ 1 be such that 2β − σ > d/2. For τ ≥ 0, set

r0(τ ) := min {r , s0, 2β + τ − d/2} , r1(τ ) := min {r/2, s0, 2β − 1 + τ − d/2} .

(87)

Furthermore, define, for 0 ≤ σ ≤ 1,

rZ (σ ) := (1 − σ)r0(0) + σ r1(0), r
(σ ) := (1 − σ)r0(2β) + σ r1(2β − 1). (88)

Let Z β be the Whittle–Matérn field in (41) and, for h, k > 0, let Z̃ β
h,k denote the sinc-

Galerkin approximation in (72), with covariance functions 
β and 
̃
β
h,k , respectively.

Then, for all q > 0,

(
E

[∥∥Z β − Z̃
β

h,k

∥∥q
Hσ (D)

])1/q

�(q,P) CZ
β,h

(
hrZ (σ ) + e−π2/(2k)h−σ−d/21{β<1}

)
,

(89)
∥∥
β − 
̃

β
h,k

∥∥
Hσ,σ (D×D)

�P C


β,h

(
hr
(σ ) + e−π2/(2k)h−2σ−d/21{β<1}

)
(90)
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hold for sufficiently small h, k > 0, where

CZ
β,h :=

{√
ln(1/h) if 2β ∈ {2(t − 1) + γ + d/2, t + γ + d/2 : γ ∈ {0, 1}} ,

1 otherwise,

C


β,h :=
{√

ln(1/h) if 4β ∈ {2(t − 1) + γ + d/2, t + γ + d/2 : γ ∈ {0, 1, 2}} ,

1 otherwise,

and P := {C0, Cλ, σ, β, A, κ,D}.

Proposition 6 Suppose Assumptions 1.I–II, 3.II–III, and let Assumption 3.I be satisfied
with parameters θ0 ∈ (0, 1) and θ1 ≥ 1 + α, where 0 < α ≤ 1 is as in (62).
Assume furthermore that Πh is H1(D)-stable, see (61), and that d = 1, β > 0 and
0 < γ ≤ 1/2 are such that 2β > γ + 1/2. Then, the Whittle–Matérn field Z β in (41)
and the sinc-Galerkin approximation Z

β
h,k in (71) can be taken as continuous random

fields. Moreover, for every δ ∈ (0, γ ), all ε, q > 0 and sufficiently small h > 0, we
have

(
E

[∥∥Z β − Z
β

h,k

∥∥q

Cδ(D)

])1/q

�(q,γ,δ,ε,α,β,A,κ,D) hmin{2β−γ−1/2−ε, 1/2+α−γ, 2α} + e−π2/(2k)h−γ−1/2, (91)

sup
x,y∈D

∣
∣
β(x, y) − 


β
h,k(x, y)

∣
∣

�(ε,α,β,A,κ,D) hmin{4β−1−ε, 1/2+α−ε, 2α} + e−π2/(2k)h−1−ε. (92)

Here, 
β, 

β
h,k denote the covariance functions of Z β and Z

β
h,k , respectively.

Proof Clearly, Qβ�

h,k L
−nβ

h Πh ∈ L
(
L2(D); Hγ+1/2(D)

)
, since Qβ�

h,k L
−nβ

h Πh is a

finite-rank operator and Vh ⊂ H1
0 (D) ⊂ Hγ+1/2(D) by assumption. Thus, by

Corollary 1 Z
β

h,k can be taken as a continuous GRF; and the same is true for the

Whittle–Matérn field Z β by Corollary 4. Then, Z β − Z
β

h,k is a continuous random

field, colored by Eβ
h,k = Eβ

Vh
+ Eβ

Q , see (77)–(78). Furthermore, by (28) and by
Lemma 2, since d = 1 and 1/2 < γ + 1/2 ≤ 1, we have, for δ ∈ (0, γ ) and q ∈ (0,∞),

(
E

[∥∥Z β − Z
β

h,k

∥∥q

Cδ(D)

])1/q

�(q,γ,δ,A,κ,D)

∥∥Eβ
Vh

+ Eβ
Q

∥∥
L
(

Ḣ0
L ;Ḣγ+1/2

L

).

By (63) of Theorem 1 we then find, for any ε > 0 and sufficiently small h > 0,

∥∥Eβ
Vh

∥∥
L
(

Ḣ0
L ;Ḣγ+1/2

L

) �(γ,ε,α,β,A,κ,D) hmin{2β−γ−1/2−ε, 1/2+α−γ, 2α}.
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For Eβ
Q ∈ L (Vh) we use the inverse inequality (58) as well as the quadrature error

estimate from [5, Lemma 3.4, Remark 3.1 & Theorem 3.5] and obtain

∥∥Eβ
Q

∥∥
L
(

Ḣ0
L ;Ḣγ+1/2

L

) �(γ,β,A,κ,D) e−π2/(2k)h−γ−1/2, (93)

for sufficiently small h > 0, which completes the proof of (91).
For the L∞(D ×D)-estimate (92) of the covariance function, fix ε ∈ (0, 2). First,

we recall the Sobolev embedding H ε/4+1/2(D) ↪→ C ε/4(D) as well as the equivalence
of the spaces H ε/4+1/2(D) ∼=(A,κ,D) Ḣ

ε/4+1/2
L , seeLemma2.We then concludewith (31)

of Proposition 2(ii) that, for σ := 1/2 + ε/4 ∈ (1/2, 1),

sup
x,y∈D

∣∣
β(x, y) − 

β
h,k(x, y)

∣∣

≤ ∥∥L−2β − Qβ�

h,k L
−nβ

h Πh
(
Qβ�

h,k L
−nβ

h Πh
)∗∥∥

L (C(D)∗;C(D))

�(ε,A,κ,D)

∥
∥(L−2β − L−2β

h Πh
)+ (L−2β

h − Qβ�

h,k L
−2nβ

h Qβ�

h,k

)
Πh
∥
∥
L
(
Ḣ−σ

L ;Ḣσ
L

).

By (63) of Theorem 1 we have

∥∥L−2β − L−2β
h Πh

∥∥
L
(
Ḣ−σ

L ;Ḣσ
L

) �(ε,α,β,A,κ,D) hmin{4β−1−ε, 1/2+α−ε/4, 2α}.

Furthermore, we find, similarly as in (85), that

∥∥(L−2β
h − Qβ�

h,k L
−2nβ

h Qβ�

h,k

)
Πh
∥∥
L
(
Ḣ−σ

L ;Ḣσ
L

)

≤ ∥∥(L−β
h + Qβ�

h,k L
−nβ

h )(L−β
h − Qβ�

h,k L
−nβ

h )∗Πh
∥∥
L
(
Ḣ−σ

L ;Ḣσ
L

)

�(ε,A,κ,D) h−1/2−ε/4
∥∥(L−β

h + Qβ�

h,k L
−nβ

h

)
Πh
∥∥
L (L2(D))

∥∥(Eβ
Q

)∗∥∥
L
(
Ḣ−σ

L ;Ḣ0
L

),

where we have used the inverse inequality (58) in the last step. The proof is completed
by observing that

∥∥(Eβ
Q

)∗∥∥
L
(
Ḣ−σ

L ;Ḣ0
L

) = ∥∥Eβ
Q

∥∥
L
(
Ḣ0

L ;Ḣσ
L

), recalling (93), and using

the uniform stability (86) of L−β
h and Qβ�

h,k . ��

8 Application to finite element approximations of Gaussian random
fields

In this section we apply the abstract convergence results of the previous section (see
Propositions 4, 5, and 6) for the sinc-Galerkin approximationsZ β

h,k , Z̃
β

h,k in (71)–(72)
to derive explicit rates of convergencewhen theGalerkin spaces (Vh)h>0 are generated
with a quasi-uniform, conforming finite element (FE) method of polynomial degree
p ∈ N. We thereby consider different scenarios of

(a) regularity of the second-order differential L in (12),
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(b) finite element (FE) discretizations satisfying Assumptions 3.I–IV for specific val-
ues of 0 < θ0 < θ1 and of r , s0, t > 0.

Assumption 4 (FE discretization) Throughout this section, we suppose:

I. the (minimal) Assumptions 1.I–II on the coefficients A, κ of the operator L;
II. Assumptions 2.I, i.e., D ⊂ R

d is a bounded Lipschitz domain;
III. (Th)h>0 is a quasi-uniform family of triangulations on D , indexed by the mesh

width h > 0;
IV. the basis functions of the finite-dimensional space Vh ⊂ H1

0 (D) are continuous
on D and piecewise polynomial with respect to Th of degree at most p ∈ N.

All further assumptions on the operator L , on the domain D , and on the FE spaces
are explicitly specified for each case. Note that quasi-uniformity of (Th)h>0 already
guarantees that Assumptions 3.II and 3.III are satisfied (3.III is obvious, for the inverse
inequality 3.II see, e.g., [16, Corollary 1.141]).

In Sect. 8.1 we briefly comment on the situation of smooth coefficients and apply
Proposition 5 to derive optimal convergence rateswhen p ≥ 1. Afterwards, in Sect. 8.2
we focus on less regular problems and p = 1 by using the results from Propositions 4
and 6.

8.1 The smooth case

The remaining crucial ingredient in order to derive explicit rates of convergence from
Proposition 5 is to prove validity of Assumption 3.IV for the finite element spaces
(Vh)h>0. For the case of a second-order elliptic differential operator L with smooth
coefficients, these results are well-known and we summarize them below.

Assumption 5 (smooth case) The domain D has a smooth C∞-boundary ∂D , and
the coefficients of L in (12) are smooth, i.e., A ∈ C∞(D)d×d and κ ∈ C∞(D).
Furthermore, the Rayleigh–Ritz projection Rh : H1

0 (D) → Vh in (56) satisfies the
a-priori estimates

‖v − Rhv‖H1(D) �(p,A,κ,D) h p‖v‖H p+1(D),

‖v − Rhv‖L2(D) �(p,A,κ,D) h p+1‖v‖H p+1(D).

Lemma 9 Suppose Assumptions 4.I–IV and 5. In this case, Assumption 3.IV is satisfied
for r = 2p and s0 = t = p + 1.

Proof See, e.g., [44, Theorem 6.1 & Theorem 6.2]. ��

Theorem 2 Suppose Assumptions 4.I–IV and 5. Let d ∈ N, β > 0, and 0 ≤ σ ≤ 1 be
such that 2β − σ > d/2, let Z β be the Whittle–Matérn field in (41) and, for h, k > 0,
let Z̃ β

h,k be the sinc-Galerkin approximation in (72), and let 
β , 
̃
β
h,k denote their

covariance functions. Then we have, for sufficiently small h > 0, sufficiently small
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k = k(h) > 0, and all q ∈ (0,∞),

(
E

[∥∥Z β − Z̃
β

h,k

∥∥q
Hσ (D)

])1/q

�(q,P) CZ
β,h hmin{2β−σ−d/2, p+1−σ },

∥∥
β − 
̃
β
h,k

∥∥
Hσ,σ (D×D)

�P C


β,h h(1−σ)min{4β−d/2, p+1}+σ min{4β−2−d/2, p},

where C


β,h, CZ
β,h and P are as in Proposition 5.

Proof By Lemma 9 we have r = 2p and s0 = t = p + 1. Thus, for γ ∈ {0, 1}, we
obtain from (87) that rγ (τ ) = min {p + 1 − γ, 2β + τ − γ − d/2}. Finally,

rZ (σ ) = min {2β − d/2, p + 1} − σ,

r
(σ ) = (1 − σ)min {4β − d/2, p + 1} + σ min {4β − 2 − d/2, p}

in (88), for any 0 ≤ σ ≤ 1, and the assertion holds by Proposition 5. ��
Remark 12 The convergence rates with respect to the L2(D)-norms (σ = 0)

min{2β − d/2, p + 1} and min{4β − d/2, p + 1}

of the sinc-Galerkin FE approximation Z̃
β

h,k and its covariance function 
̃
β
h,k reflect

the higher regularity of the Whittle–Matérn field Z β in (41) for large β > 0 in (42).
In particular, when the integer part does not vanish, nβ ∈ N, a polynomial degree
p > 1 is meaningful, since thus higher order convergence rates can be achieved, see
also the numerical experiments in Sect. 9.

Remark 13 Certain error estimates for FE approximations of (not necessarily Gaus-
sian) random fields have already been derived in [28].

Specifically, for a random field a : D × Ω → R, the approximation Πha
is shown to converge to a in L2(Ω; L2(D)) at the rate min{σ, p} provided that
a ∈ L2(Ω; Hσ (D)), see [28, Theorem 2.4 & Corollary 2.5]. Combining this
with the regularity result for the Whittle–Matérn field from Lemma 3, namely that
Z β ∈ L2(Ω; Hσ (D)) for all σ < 2β − d/2, would give the L2(Ω; L2(D))-
convergence rate min{2β − d/2 − ε, p}, ε > 0, for the approximation ΠhZ β . The
convergence result for Z̃ β

h,k in the L2(Ω; L2(D))-norm derived in Theorem 2 above
improves this by taking the minimum of 2β − d/2 with p + 1 instead of with p. Note
that this improvement is, in essence, a result of the Aubin–Nitsche trick.

8.2 Less regularity

We now discuss convergence of FE discretizations when the operator L in (12) has
a coefficient A which is not necessarily Lipschitz continuous or the domain D is
not convex, i.e., the general case that L is only H1+α(D)-regular. In the following
definition we specify what we mean by this.
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Definition 4 Suppose Assumptions 1.I–II, 2.I, let 0 < α ≤ 1 and L be the second-
order differential operator in (12).We say that the elliptic problem associated with L is
H1+α(D)-regular if the restriction of L : H1

0 (D) → H1
0 (D)∗ to H1

0 (D) ∩ H1+α(D)

is a continuous map to Ḣ−1+α
L = (Ḣ1−α

L )∗, see (14), and if additionally the data-
to-solution map L−1 : f �→ L−1 f is a bounded linear operator as a mapping from
Ḣ−1+α

L to H1
0 (D) ∩ H1+α(D).

Below we quote an extension of the equivalence in (15), see Lemma 2, to values
1 ≤ σ ≤ 1 + α, which holds provided that the elliptic problem associated with L is
H1+α(D)-regular. The result of the next lemma is taken from [5, Proposition 4.1].

Lemma 10 Let the elliptic problem associated with L be H1+α(D)-regular, see Defi-
nition 4. Then the equivalence in (62) holds for this parameter 0 < α ≤ 1.

Lemma 11 Suppose Assumptions 4.I–IV and 2.III (i.e., D is a Lipschitz polytope), and
let p = 1. Then, Assumption 3.I is satisfied for θ0 = 1/2 and θ1 = 2.

Proof The operator Ih : H θ (D) → Vh in Assumption 3.I can be taken as the Scott–
Zhang interpolant, see, e.g., [16, Lemma 1.130]. ��
Theorem 3 In addition to Assumptions 4.I–IV, 2.III, suppose that the elliptic problem
associated with L is H1+α(D)-regular for some 0 < α ≤ 1 (see Definition 4) and
let p = 1. Assume further that d ∈ {1, 2, 3}, β > 0 and 0 ≤ σ ≤ 1 are such that
2β − σ > d/2. Let Z β be the Whittle–Matérn field in (41) and, for h, k > 0, let Z β

h,k

be the sinc-Galerkin approximation in (71), with covariance functions 
β and 

β
h,k .

Then, for every q, ε > 0 and sufficiently small h > 0, k = k(h) > 0,

(
E

[∥∥Z β − Z
β

h,k

∥∥q
Hσ (D)

])1/q

�(q,ε,σ,α,β,A,κ,D) hmin{2β−σ−d/2−ε, 1+α−σ, 2α},
∥∥
β − 


β
h,k

∥∥
Hσ,σ (D×D)

�(ε,σ,α,β,A,κ,D) hmin{4β−2σ−d/2−ε, 1+α−σ, 2α},

where, if d = 3, for (79) to hold, we also suppose that β > 1 and α ≥ 1/2 − σ .
In addition, if d = 1 and 0 < γ ≤ 1/2 is such that 2β > γ + 1/2, then

(
E

[∥∥Z β − Z
β

h,k

∥∥q

Cδ(D)

])1/q

�(q,γ,δ,ε,α,β,A,κ,D) hmin{2β−γ−1/2−ε, 1/2+α−γ, 2α},

sup
x,y∈D

∣
∣
β(x, y) − 


β
h,k(x, y)

∣
∣ �(ε,α,β,A,κ,D) hmin{4β−1−ε, 1/2+α−ε, 2α},

for sufficiently small h > 0, k = k(h) > 0, every δ ∈ (0, γ ) and ε, q > 0.

Proof By Lemma 10 the equivalence in (62) holds. Furthermore, by Lemma 11
Assumption 3.I is satisfied for θ0 = 1/2 < 1 and θ1 = 2 ≥ 1 + α. Finally, since
we assume that the family of triangulations (Th)h>0 ofD ⊂ R

d is quasi-uniform, the
L2(D)-orthogonal projection Πh is H1(D)-stable, see [11] for d ∈ {1, 2} and [6] for
arbitrary d ∈ N. Thus, Propositions 4 and 6 are applicable and yield the assertions of
this theorem. ��
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9 Numerical experiments

9.1 The originalWhittle–Matérn class for d = 1

In the following numerical experiment we consider the original Whittle–Matérn field
from (1) in Sect. 1.1, i.e., L := −Δ + κ2, on the unit interval D = (0, 1), augmented
with homogeneous Dirichlet boundary conditions. We choose κ := 0.5 and apply a
finite element discretization with continuous, piecewise polynomial basis functions of
degree at most p ∈ {1, 2} to compute the sinc-Galerkin approximationZ β

h,k (or Z̃
β

h,k)
in (71)/(72). More precisely, we investigate

(1.) the empirical convergence to the Whittle–Matérn fieldZ β , see (41), with respect
to the norms on L2(Ω; L2(D)), L1(Ω; L∞(D)), and L2(Ω; H1

0 (D)) for the frac-
tional exponents β ∈ {0.5, 0.8, 1.1, 1.4, 1.7};

(2.) the empirical convergence of the covariance function with respect to the norms on
L2(D × D) and L∞(D × D) for β ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}.
To this end, we generate an equidistant initial mesh on D = [0, 1] with N0 := 9

nodes (resp. N0 := 17 for the L∞-studies), of mesh size h0 := 2−3 (resp. h0 := 2−4).
This initial mesh is four times uniformly refined, so that on level � ∈ {0, . . . , 4} the
mesh is of width h� = h02−�. For p ∈ {1, 2}, we use the MATLAB-based package
ppfem [1] to assemble the matrices M and L in (75) and (76) with respect to the
Babuška–Shen nodal basis {φ j,h}Nh

j=1. On level �, the step size k = k� > 0 of the sinc
quadrature is calibrated with the finite element mesh width via k� = −1/(β ln h�).

The reference solutions for the field and the covariance function are generated based
on an overkill Karhunen–Loève expansion of Z β with NKL = 1000 terms,

Z
β
ref :=

NKL∑

j=1

ξ jλ
−β
j e j and 


β
ref(x, y) :=

NKL∑

j=1

λ
−2β
j e j (x)e j (y),

where λ j = j2π2 + κ2 and e j (x) = √
2 sin( jπx) are the eigenvalues and eigenfunc-

tions of L = −Δ + κ2 on D = (0, 1). Here, for each of 100 Monte Carlo runs, the
same realization of the set of random variables {ξ1, . . . , ξNKL} is used to generateZ β

ref
and the load vector b ∼ N (0,M) via

b := R
(
ξ1, . . . , ξNh

)�
, where Ri j := (φi,h, e j,h)L2(D).

For d = 1, the operator L does not have multiple eigenvalues and we can assemble
the matrix R, for each h ∈ {h0, . . . , h4}, by computing the discrete eigenfunc-
tions {e j,h}Nh

j=1 and by adjusting their signs so that e j,h indeed approximates e j for
each j ∈ {1, . . . , Nh}. Note that we only have to assemble this matrix R to have
comparable samples of the sinc-Galerkin approximation and the reference solution
needed for the strong error studies. For the simulation practice, one could compute
the Cholesky factor of the Gramian M or approximate the matrix square root

√
M,

as proposed in [27] and employed in [29] for the fast simulation of GRFs in a gen-
eral setting, in order to sample from b. Since furthermore the dimension of the finite
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Table 1 Expected rates of convergence for the experiment of Sect. 9.1, cf. Theorems 2 and 3

L2 L∞ H1
0

Z
β

h,k min {2β − 1/2, p + 1} min {2β − 1/2, p + 1} min {2β − 3/2, p}



β
h,k min {4β − 1/2, p + 1} min {4β − 1, p + 1} min {4β − 5/2, p}

element spaces, even at the highest level � = 4, is relatively small, we can assemble
the covariance matrices of the sinc-Galerkin approximation directly, without Monte
Carlo sampling, as

Cov
(
Zβ

k

) =
{
L−1

(
ML−1

)nβ−1M
(
ML−1

)nβ−1L−1, if β� = 0,

Qβ�

k

(
ML−1

)nβM
(
ML−1

)nβQβ�

k , if β� ∈ (0, 1),

cf. (75)–(76).
Note that the operator L := −Δ+0.25 has constant (and, thus, smooth) coefficients.

Therefore, Theorem 2 provides (essentially) optimal convergence rates for the error
of Z̃ β

h,k in L2(Ω; L2(D)), L2(Ω; H1
0 (D)) and of 
̃

β
h,k in L2(D × D). Furthermore,

the convergence results of Theorem 3 on the L1(Ω; L∞(D))-error are (essentially)
sharp if β ∈ (1/4, 1) (resp. if β ∈ (1/4, 5/8) for the L∞-error of the covariance). For this
smooth case, we have α > p + 1 in (62). For this reason, we expect the convergence
rates listed in Table 1. The expected rates corresponding to the values of β > 1/4 used
in our experiments are shown in parentheses in Table 2.

For every of the 100 Monte Carlo samples, we approximate the integrals needed
for computing the L2(D) and H1

0 (D)-errors by using MATLAB’s built-in function
integralwith tolerance 1e-6. For the L∞-studies we consider the largest error with
respect to an equidistant mesh on on D = [0, 1] with Nok = 1001 nodes, i.e.,

sup
x∈D

∣∣Z β
h,k(x) − Z

β
ref(x)

∣∣ ≈ sup
1≤ j≤Nok

∣∣Z β
h,k(x j ) − Z

β
ref(x j )

∣∣,

sup
x,y∈D

∣∣
β
h,k(x, y) − 


β
ref(x, y)

∣∣ ≈ sup
1≤i, j≤Nok

∣∣
β
h,k(xi , x j ) − 


β
ref(xi , x j )

∣∣,

where x j := ( j −1)10−3. Furthermore, to compute the L2(D ×D)-error, we approx-
imate the distance of the covariances by a function which is piecewise constant on a
regular lattice with N 2

ok nodes. Finally, the empirical convergence rates, also shown
in Table 2, are obtained via a least-squares affine fit with respect to the data set
{(ln h�, ln err�) : 2 ≤ � ≤ 4}. Here, err� denotes the error on level � with respect
to the norm used in the study and for the respective value of β and p.

The resulting observed errors are displayed in Fig. 1 for the fields and in Fig. 2
for the covariances. Overall, the empirical results validate our theoretical outcomes
fairly well, with a slight deviation for the L∞-studies which may be caused by a larger
pre-asymptotic range.
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Table 2 Observed (resp. theoretical) rates of convergence for the errors of the field shown in Fig. 1 and for
the errors of the covariance function shown in Fig. 2

β for field error studies
p 0.5 0.8 1.1 1.4 1.7

L2 1 0.54 (0.5) 1.10 (1.1) 1.67 (1.7) 1.94 (2) 1.96 (2)

2 0.56 (0.5) 1.10 (1.1) 1.68 (1.7) 2.27 (2.3) 2.85 (2.9)

L∞ 1 0.55 (0.5) 1.05 (1.1) 1.60 (1.7) 1.93 (2) 1.99 (2)

2 0.68 (0.5) 1.14 (1.1) 1.67 (1.7) 2.25 (2.3) 2.79 (2.9)

H1
0 1 – 0.22 (0.1) 0.70 (0.7) 1.00 (1) 1.05 (1)

2 – 0.27 (0.1) 0.73 (0.7) 1.30 (1.3) 1.87 (1.9)

β for covariance error studies
p 0.5 0.6 0.7 0.8 0.9 1

L2 1 1.53 (1.5) 1.85 (1.9) 1.98 (2) 2.00 (2) 2.00 (2) 2.00 (2)

2 1.57 (1.5) 1.94 (1.9) 2.32 (2.3) 2.69 (2.7) 2.94 (3) 3.00 (3)

L∞ 1 1.07 (1) 1.41 (1.4) 1.72 (1.8) 1.91 (2) 1.98 (2) 1.99 (2)

2 1.23 (1) 1.52 (1.4) 1.86 (1.8) 2.23 (2.2) 2.61 (2.6) 2.99 (3)

9.2 Anisotropic, non-stationary generalizedWhittle–Matérn fields and d = 2

The results of this work apply to a considerably wider class of models than the original
Whittle–Matérn class. Namely, the differential operator L defined as in (12) may have
spatially varying coefficients A : D → R

d×d and κ : D → R. We will illustrate
this in the following numerical experiment by considering the Whittle–Matérn field
from (41) on the unit square D = (0, 1)2. In order to model GRFs (Z β)β>d/4 with
non-stationary and anisotropic covariance structures, we proceed as follows:

• Following [19, Sect. 3.2] we define A : D = [0, 1]2 → R
2×2 by

A(x, y) := c IdR2 + v(x, y)v(x, y)�, 0 ≤ x, y ≤ 1. (94)

Here, c > 0 is constant and v : D → R
2 is a periodic vector field on D . We set

c = 2 and define v(x, y) := (−2 cos(2π y), cos(2πx))� for all 0 ≤ x, y ≤ 1.
• The coefficient κ determines the correlation length of the random field. We let

κ ∈ L∞(D) be piecewise constant, with a jump along the vertical axis at x = 1/2:

κ2(x, y) :=
{
1/4 if 0 ≤ x ≤ 1/2,

1/2 if 1/2 < x ≤ 1,

corresponding to a longer correlation length for x ∈ (0, 1/2) than for x ∈ (1/2, 1).

A realization of the Whittle–Matérn defined via (41) for this choice of coefficients is
shown in Fig. 3, together with the vector field v used to generate A via (94). Both
the influence of the vector field v on the non-stationary behavior as well as a spatial
difference in the correlation length are apparent.
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Fig. 1 Observed errors of the field in L2(Ω; L2(D)) (top), L1(Ω; L∞(D)) (middle) and L2(Ω; H1
0 (D))

(bottom) for polynomial degree p ∈ {1, 2} (left, right), and different values of β, shown in a log-log scale
as a function of the mesh width h. Here, D = (0, 1) and the GRF Z β is of the original Whittle–Matérn
class as described in Sect. 9.1. The corresponding observed convergence rates are given in Table 2

For the numerical approximation (71), we employ bilinear finite elements of first
order, i.e., we use the piecewise affine basis functions of the previous example for the
discretization in each direction.We then proceed similarly as in Sect. 9.1:We generate
a regular initial lattice on D = [0, 1]2 with N0 = (h−1

0 + 1)2 nodes and refine this
lattice �max := 3 times uniformly, resulting in a mesh which on level � ∈ {0, 1, 2, 3}
has N� = (h−1

0 2� + 1)2 nodes and is of width h� = h02−�. The step size of the
sinc quadrature is chosen as in Sect. 9.1. We again use the MATLAB-based package
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Fig. 2 Observed Lq (D × D)-error of the covariance function for q ∈ {2, ∞} (top, bottom), polynomial
degree p ∈ {1, 2} (left, right), and different values of β, shown in a log-log scale as a function of the mesh
width h. Here,D = (0, 1) and the GRFZ β considered is of the original Whittle–Matérn class as described
in Sect. 9.1. The corresponding observed rates of convergence are given in Table 2

Fig. 3 Left: One realization of the generalized Whittle–Matérn field Z β on D = (0, 1)2 as considered in
Sect. 9.2. Right: The vector field v : D → R

2 employed in A(x, y) = c Id
R2 + v(x, y)v(x, y)� ∈ R

2×2,
for x, y ∈ [0, 1], to generate the anisotropic coefficient A of the differential operator L in (12)

ppfem to assemble the (weighted) stiffness and mass matrices in each direction and
obtain the matricesM and L in (75) and (76) for this example as Kronecker products.

In absence of an analytical solution,we take the numerical approximation computed
on amesh of size href = h02−(�max+2) as reference solution. Since in d ≥ 2 dimensions
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Table 3 Observed (resp. theoretical) rates of convergence for the errors shown in Fig. 4

β for field error study
Error 0.75 1 1.25 1.5 1.75

L2(Ω; L2(D)) 0.63 (0.5) 1.07 (1) 1.51 (1.5) 1.84 (2) 1.97 (2)

β for covariance error study
0.6 0.7 0.8 0.9 1

L2(D × D) 1.40 (1.4) 1.68 (1.8) 1.85 (2) 1.93 (2) 1.96 (2)

Fig. 4 Observed error of the field in L2(Ω; L2(D)) (left) as well as the L2(D ×D)-error of the covariance
function (right) for different values of β, shown in a log-log scale as a function of the mesh width h. Here,
D = (0, 1)2, p = 1, and the generalized Whittle–Matérn field Z β has non-stationary coefficients as
described in Sect. 9.2. The corresponding observed rates of convergence are shown in Table 3

our results on FE approximations from Sect. 8 do not provide L∞-estimates, we focus
on the L2-errors for this example. More precisely, we consider the error of the field
Z

β
h,k in the L2(Ω; L2(D))-norm (approximated with 100 Monte Carlo samples) for

β ∈ {0.75, 1, 1.25, 1.5, 1.75} and h0 = 2−3, as well as the L2(D × D)-error of its
covariance function 


β
h,k for β ∈ {0.6, 0.7, 0.8, 0.9, 1} and h0 = 2−2. The observed

errors are presented in Fig. 4. The data set used in the least-squares affine fit to compute
the empirical convergence rates is {(ln h�, ln err�) : 1 ≤ � ≤ 3} for this example,
resulting in the observed convergence rates presented in Table 3.

Since A is Lipschitz continuous, Theorem 3 is applicable with α = 1, yielding the
expected convergence rates min{2β − 1 − ε, 2} for the L2(Ω; L2(D))-error of the
fieldZ β

h,k and min{4β − 1− ε, 2} for the error of the covariance function 

β
h,k in the

L2(D × D)-norm, shown in parentheses in Table 3. Again, the empirical results can
be seen to validate our theoretical findings.

10 Conclusion and discussion

We have identified necessary and sufficient conditions for square-integrability, Sobo-
lev regularity, and Hölder continuity (in Lq(Ω)-sense) for GRFs in terms of their
color, as well as square-integrability, mixed Sobolev regularity, and continuity of their
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covariance functions, see Propositions 1, 2 and 3. Subsequently, we have applied
these findings to generalized Whittle–Matérn fields, see Z β in (41), where these
conditions become assumptions on the smoothness parameter β > 0, corresponding
to the fractional exponent of the color L−β , see Lemmata 3–5.

While these regularity results readily implied convergence of spectral Galerkin
approximations, see Corollaries 2–4, significantly more work was needed to derive
convergence for general Galerkin (such as finite element) approximations, for the
following reason: It was unknown, how the deterministic fractional Galerkin error
L−βg − L−β

h Πh g behaves in the Sobolev space Hσ (D), for 0 ≤ σ ≤ 1, all possible
exponents β > 0, and sources g ∈ H δ(D) of possibly negative regularity δ < 0. We
have identified this behavior in Theorem 1 for the general situation that the second-
order elliptic differential operator L is H1+α(D)-regular for some 0 < α ≤ 1. This
result could be exploited to show convergence of the sinc-Galerkin approximations and
their covariances to the Whittle–Matérn field Z β and to its covariance function 
β ,
respectively, see Theorems 2 and 3.

The fact that theRayleigh–Ritz projection and, thus, the deterministicGalerkin error
L−1g − L−1

h Πh g converges at the rate min{1 + α − σ, 2α} in Hσ (D), 0 ≤ σ ≤ 1,
if L is H1+α(D)-regular, cf. Lemma 6, and at the rate p + 1 − σ if the problem is
“smooth” and a conforming finite element discretization with piecewise polynomial
basis functions of degree at most p ∈ N is used, combined with the low regularity
of white noise in Ḣ−d/2−ε

L , show that the Sobolev convergence rates of Theorems 2
and 3 are (essentially, up to ε > 0) optimal. In addition, we believe that our results on
Hölder convergence of the field and on L∞-convergence of the covariance function
for d = 1 in Theorem 3 are optimal in the following cases:

(a) if the problem is only H1+α(D)-regular for α ∈ (0, 1/2) maximal, or
(b) if the problem is smooth and β ∈ (1/4, 1) (resp. β ∈ (1/4, 5/8) for the covariance).

However, the deterministic p-FEM L∞-rate for d = 1 is known to be p + 1 if the
problem is smooth, see [15]. Hence, our results will not be sharp in this case, see also
the numerical experiments in Sect. 9.1.

Since the approach on deriving optimal L∞-rates involves non-Hilbertian regularity
of the solution in W p+1,∞(D), such a discussion was beyond the scope of this article
and we leave this problem as well as the Cδ(D) / L∞(D × D) error analysis of sinc-
Galerkin approximations in dimension d ∈ {2, 3} as topics for future research.
Acknowledgements The authors thank Mark Veraar and an anonymous referee for helpful and valuable
comments.
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A Proof of Proposition 5

The following lemma will be the main tool for the derivation of Proposition 5.

Lemma 12 Suppose Assumptions 1.I–II and 3.III, and let Assumption 3.IV be fulfilled
with parameters r , s0, t > 0 such that r/2 ≥ t − 1 and s0 ≥ t . Let d ∈ N, β > 0, and
r0( ·), r1( · ) be as in (87), i.e.,

r0(τ ) := min {r , s0, 2β + τ − d/2} , r1(τ ) := min {r/2, s0, 2β − 1 + τ − d/2} ,

and define the exception set

Eτ := {2(t − 1) − 2β + σ + d/2, t − 2β + σ + d/2 : σ ∈ {0, 1}} .

Then, for σ ∈ {0, 1}, the Galerkin error Ẽβ
Vh

in (77) satisfies

∑

j∈N
λ−τ

j

∥∥Ẽβ
Vh

e j
∥∥2

σ
�(C0,Cλ,σ,τ,β,A,κ,D) Cτ,hh2rσ (τ ) ∀ τ ≥ 0, (95)

for sufficiently small h > 0. Here, {(λ j , e j )} j∈N are the L2(D)-orthonormal, ordered
eigenpairs of L in (12) and we set Cτ,h := 1 if τ /∈ Eτ and Cτ,h := ln(1/h) if τ ∈ Eτ .

Proof Fix τ ≥ 0. The definitions of Ẽβ
Vh

in (77) and of Π̃h in (73) yield

∑

j∈N
λ−τ

j

∥∥Ẽβ
Vh

e j
∥∥2

σ
=

Nh∑

j=1

λ−τ
j

∥∥λ−β
j e j − λ

−β
j,he j,h

∥∥2
σ

�
Nh∑

j=1

λ−τ+σ
j

∣∣λ−β
j − λ

−β
j,h

∣∣2 +
Nh∑

j=1

λ−τ
j λ

−2β
j,h ‖e j − e j,h‖2σ . (96)

By the mean value theorem, λ
−β
j − λ

−β
j,h = βλ̃

−β−1
j (λ j,h − λ j ) holds for some

λ̃ j ∈ (λ j , λ j,h). Thus, we can use (59) from Assumption 3.IV and the spectral behav-
ior (13) from Lemma 1 combined with Assumption 3.III to bound the first sum in (96),

Nh∑

j=1

λ−τ+σ
j

∣∣λ−β
j − λ

−β
j,h

∣∣2 ≤ C2
λh2r

Nh∑

j=1

λ
−2β−τ+σ+2(t−1)
j

�(Cλ,σ,τ,β,A,κ,D) Cτ,hh2min{r , 2β−σ+τ−d/2}. (97)

where we also have used that r ≥ 2(t − 1) by assumption. For the second sum in
(96) we distinguish the cases σ = 0 and σ = 1. If σ = 0, we can apply (60) of
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Assumption 3.IV and obtain

Nh∑

j=1

λ−τ
j λ

−2β
j,h ‖e j − e j,h‖20 ≤ C0h2s0

Nh∑

j=1

λ
−2β−τ+t
j

�(C0,σ,τ,β,A,κ,D) Cτ,hh2min{s0, 2β+τ−d/2}, (98)

since s0 ≥ t . For σ = 1, we first note that (59)–(60) of Assumption 3.IV imply the
following estimate with respect to the norm on Ḣ1

L ,

‖e j − e j,h‖21 = λ j‖e j − e j,h‖20 + λ j,h − λ j ≤ C0h2s0λt+1
j + Cλhrλt

j .

Here, we have used the identity (e j , e j,h)1 = λ j (e j , e j,h)0. Thus, if σ = 1, we can
bound the second sum in (96) as follows,

Nh∑

j=1

λ−τ
j λ

−2β
j,h ‖e j − e j,h‖21 ≤ C0h2s0

Nh∑

j=1

λ
−2β−τ+t+1
j + Cλhr

Nh∑

j=1

λ
−2β−τ+t
j

�(C0,Cλ,σ,τ,β,A,κ,D) Cτ,hh2min{r/2, s0, 2β−1+τ−d/2}, (99)

since s0 ≥ t and r/2 ≥ t − 1 by assumption. Combining (96), (97), (98) and (99)
completes the proof. ��
Proof (of Proposition 5) Part I: estimate (89). We start with splitting the error in the
norm ‖ · ‖σ on Ḣσ

L , cf. (14), which by (16) of Lemma 2 implies an upper bound for
the Sobolev norm:

(
E

[∥∥Z β − Z̃
β

h,k

∥∥q
σ

])1/q ≤
(
E

[∥∥Z β − Z
β
Nh

∥∥q
σ

])1/q +
(
E

[∥∥Z β
Nh

− Z̃
β

h

∥∥q
σ

])1/q

+
(
E

[∥∥Z̃ β
h − Z̃

β
h,k

∥∥q
σ

])1/q =: (AZ ) + (BZ ) + (CZ ).

Here, Z β
Nh

is the spectral Galerkin approximation from (49) and Z̃
β

h denotes a GRF

colored by L−β
h Π̃h . We readily obtain a bound for (AZ ) from (51) of Corollary 2,

combined with Assumption 3.III. This gives

(AZ ) �(q,σ,β,A,κ,D) N−1/d (2β−σ−d/2)
h �(q,σ,β,A,κ,D) h2β−σ−d/2.

Note that it suffices to estimate the terms (BZ ), (CZ ) for σ ∈ {0, 1}. The respective
bounds for σ ∈ (0, 1) then follow by interpolation. By definition of the Galerkin and
the quadrature error, Ẽβ

Vh
, Ẽβ

Q , in (77)–(78) and by Proposition 3,

(BZ ) �q
∥∥Ẽβ

Vh

∥∥
L 0;σ

2
and (CZ ) �q

∥∥Ẽβ
Q

∥∥
L 0;σ

2
,
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where the Hilbert–Schmidt spaceL θ;σ
2 is defined as in (35). Since we have to consider

these terms only for σ ∈ {0, 1}, the first term can be bounded by (95) of Lemma 12
(with τ := 0),

(BZ )2 �q
∥∥Ẽβ

Vh

∥∥2
L 0;σ

2
=
∑

j∈N

∥∥Ẽβ
Vh

e j
∥∥2

σ
�(C0,Cλ,σ,β,A,κ,D)

(
CZ

β,h

)2
h2rσ (0).

where CZ
β,h > 0 is defined as in the statement of Proposition 5. To estimate (CZ ), we

first apply the convergence result of the sinc quadrature from [5, Lemma 3.4, Remark
3.1, Theorem 3.5]. Thus, for sufficiently small k > 0 and all 1 ≤ j ≤ Nh ,

∥∥Ẽβ
Qe j
∥∥

L2(D)
= ∥∥(L−β�

h − Qβ�

h,k

)
L

−nβ

h e j,h
∥∥

L2(D)
�(β,A,κ,D) e−π2/(2k)λ

−nβ

j,h .

Again by equivalence of the norms ‖ · ‖σ , ‖ · ‖Hσ (D) for σ ∈ {0, 1}, see Lemma 2,
and by the inverse inequality (58) from Assumption 3.II, we then find

(CZ )2 �q
∥
∥Ẽβ

Q

∥
∥2
L 0;σ

2
=

Nh∑

j=1

∥
∥Ẽβ

Qe j
∥
∥2

σ
�(σ,A,κ,D) h−2σ

Nh∑

j=1

∥
∥Ẽβ

Qe j
∥
∥2

L2(D)

�(q,σ,β,A,κ,D) e−π2/kh−2σ
Nh∑

j=1

λ
−2nβ

j,h �(q,σ,β,A,κ,D) e−π2/kh−2σ−d 1{β<1} ,

where we have used the spectral behavior (13) and Assumptions 3.III–IV in the last
step. This completes the proof of (89).

Part II: estimate (90). We consider the error with respect to the norm ‖ · ‖σ,σ ,
see (34), since the embedding in (16) implies that Ḣσ,σ

L ↪→ Hσ,σ (D ×D). We again
partition the error in three terms,

∥∥
β − 
̃
β
h,k

∥∥
σ,σ

≤ ∥∥
β − 

β
Nh

∥∥
σ,σ

+ ∥∥
β
Nh

− 
̃
β
h

∥∥
σ,σ

+ ∥∥̃
β
h − 
̃

β
h,k

∥∥
σ,σ

=: (A
) + (B
) + (C
),

where 
̃
β
h denotes the covariance function of the above-introduced GRF Z̃

β
h colored

by L−β
h Π̃h . A bound for the truncation error is given by (52) in Proposition 2,

(A
) �(σ,β,A,κ,D) N
1/d (4β−2σ−d/2)
h �(σ,β,A,κ,D) h4β−2σ−d/2,

where we also used Assumption 3.III.
We bound the remaining terms (B
) and (C
) for σ ∈ {0, 1}. Since [Ḣ0,0

L , Ḣ1,1
L

]
σ

=
Ḣσ,σ

L , see [47, Theorem 16.1], we may again interpolate these results for σ ∈ (0, 1).
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To this end, we first exploit (40) from Proposition 3 and (85) to derive for (B
) that

(B
) = ∥∥L−2β
Nh

− L−β
h Π̃h

(
L−β

h Π̃h
)∗∥∥

L −σ ;σ
2

≤ ∥∥Ẽβ
Vh

(
L−β

Nh
+ L−β

h Π̃h
)∗∥∥

L −σ ;σ
2

≤ ∥∥Ẽβ
Vh

L−β
Nh

∥∥
L −σ ;σ

2
+ ∥∥Ẽβ

Vh

(
L−β

h Π̃h
)∗∥∥

L −σ ;σ
2

=: (B′

) + (B′′


).

By Lemma 12 (for τ := 2β − σ > d/2 > 0 in (95)) we have, for σ ∈ {0, 1} and for
C


β,h > 0 defined as in the statement of Proposition 5,

(B′

)2 =

∑

j∈N
λ

−(2β−σ)
j

∥∥Ẽβ
Vh

e j
∥∥2

σ
�(C0,Cλ,σ,β,A,κ,D)

(
C


β,h

)2
h2rσ (2β−σ).

Next, we use the identity
(
L−β

h Π̃h
)∗

e j = ∑Nh
�=1 λ

−β
�,h (e j , e�,h)L2(D) e�, the orthogo-

nality (ek,h, e�,h)σ = δk�λ
σ
k,h (here, δk� denotes the Kronecker delta), which holds for

σ ∈ {0, 1}, and the relation λ j ≤ λ j,h from Assumption 3.IV. We obtain then, again
by (95) of Lemma 12 (with τ := 2β − σ ), a bound for (B′′


),

(B′′

)2 =

∑

j∈N

Nh∑

i=1

Nh∑

�=1

λσ
j λ

−β
i,h λ

−β
�,h (e j , ei,h)L2(D)(e j , e�,h)L2(D)

(
Ẽβ

Vh
ei , Ẽβ

Vh
e�

)
σ

=
Nh∑

i=1

Nh∑

�=1

λ
−β
i,h λ

−β
�,h (ei,h, e�,h)σ

(
Ẽβ

Vh
ei , Ẽβ

Vh
e�

)
σ

=
Nh∑

�=1

λ
−(2β−σ)
�,h

∥
∥Ẽβ

Vh
e�

∥
∥2

σ

≤
∑

�∈N
λ

−(2β−σ)
�

∥∥Ẽβ
Vh

e�

∥∥2
σ

�(C0,Cλ,σ,β,A,κ,D)

(
C


β,h

)2
h2rσ (2β−σ).

In conclusion,
∥∥
β

Nh
−
̃

β
h

∥∥
σ,σ

≤ (B′

)+(B′′


) �(C0,Cλ,σ,β,A,κ,D)

(
C


β,h

)2
hrσ (2β−σ) for

σ ∈ {0, 1}. For (C
), we derive with the equivalence of the norms ‖ · ‖σ , ‖ · ‖Hσ (D),
the inverse inequality (58) from Assumption 3.II, and the convergence result for the
sinc quadrature [5, Lemma 3.4, Remark 3.1, Theorem 3.5] the following, if σ ∈ {0, 1},

(C
)2 �(σ,A,κ,D) h−2σ
∑

j∈N
λσ

j

∥
∥Ẽβ

Q

(
L−β

h Π̃h + Qβ�

h,k L
−nβ

h Π̃h
)∗

e j
∥
∥2

L2(D)

�(σ,β,A,κ,D) e−π2/kh−2σ
∑

j∈N
λσ

j

∥∥L
−nβ

h Π̃hΠ̃∗
h (L

−nβ

h )∗
(
L−β�

h + Qβ�

h,k

)∗
e j
∥∥2

L2(D)
.

Since L
−nβ

h Π̃hΠ̃∗
h (L

−nβ

h )∗e�,h = λ
−2nβ

�,h e�,h for all � ∈ {1, . . . , Nh}, this shows that

(C
)2 �(σ,β,A,κ,D) e−π2/kh−2σ
Nh∑

�=1

∑

j∈N
λσ

j λ
−4nβ

�,h

(
e j ,
(
L−β�

h + Qβ�

h,k

)
e�,h
)2

L2(D)
.

123



Whittle–Matérn fields: regularity and approximation 871

Next, again by the inverse inequality (58) we find

(C
)2 �(σ,β,A,κ,D) e−π2/kh−4σ
Nh∑

�=1

λ
−4nβ

�,h

∥∥(L−β�

h + Qβ�

h,k

)
e�,h
∥∥2

L2(D)

�(σ,β,A,κ,D) e−π2/kh−4σ
Nh∑

�=1

λ
−4nβ

� �(σ,β,A,κ,D) e−π2/kh−4σ−d 1{β<1} .

Here, we have used the uniform stability of L−β� , Qβ�

h,k with respect to h and k, see
(86), as well as (13) from Lemma 1 and Assumption 3.I. Combining the bounds for
(A
), (B
) and (C
) completes the proof. ��
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